NOTICE

The information in this document is subject to change without notice and should not be construed as a commitment by ABB. ABB assumes no responsibility for any errors that may appear in this document.

In no event shall ABB be liable for direct, indirect, special, incidental or consequential damages of any nature or kind arising from the use of this document, nor shall ABB be liable for incidental or consequential damages arising from use of any software or hardware described in this document.

This document and parts thereof must not be reproduced or copied without written permission from ABB, and the contents thereof must not be imparted to a third party nor used for any unauthorized purpose.

The software described in this document is furnished under a license and may be used, copied, or disclosed only in accordance with the terms of such license.

TRADEMARKS

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. All other trademarks are the property of their respective owners.

COPYRIGHT

Copyright © 2000-2013 ABB Limited. All Rights Reserved.

Document: Logidraw User Guide
Revision: 2.0
Published: February 2013
Software: Logidraw
Version: 4.0.5

SUPPORT INFORMATION

This program is developed, maintained and supported by PEL Support Services, ABB. We run a Hotline telephone and email service to answer any queries about Logidraw.

Please let us have any suggestions on how you feel we could improve Logidraw. You can contact us by any of the following routes:

By Telephone: +44 (0)1925 74 1126 By Post: PEL Support Services
ABB Limited.
Daresbury Park
Daresbury
Warrington
Cheshire WA4 4BT
United Kingdom.

By Fax: +44 (0)1925 74 1265

By email: pel.support@gb.abb.com
Contents

Preface .. 1
 About this guide ... 1
 Who should read this guide ... 1
 What is in this guide ... 1
 How this guide is structured .. 1
 Conventions .. 2

Chapter 1 – Introduction ... 3
 Hazard studies .. 3
 Process safety ... 3
 Overview of PEL .. 5

Chapter 2 – Getting started .. 7
 Starting Logidraw ... 7
 Quitting Logidraw ... 7
 User interface ... 8
 Project windows .. 8
 Menu bar .. 10
 User assistance .. 10
 Online help .. 10
 Online documentation ... 11
 PEL Support Services ... 11

Part A – Fault Trees

Chapter 3 – Fault trees Quick Tour .. 15

Chapter 4 – Fault tree basics .. 19
 Creating a new fault tree project ... 19
 Opening an existing fault tree project .. 19
 Opening a legacy fault tree project ... 20
 Defining inputs .. 20
 Adding inputs .. 20
 Editing an existing input .. 21
 Copying an input .. 21
 Deleting an input ... 21
 Connecting inputs with logic gates .. 22
 Adding a logic gate .. 22
 Deleting a gate ... 22
 Viewing your fault tree diagrams ... 23
 Printing your fault tree diagram ... 23
 Saving your fault tree project .. 24
 Closing a fault tree project ... 24

Chapter 5 – Advanced features .. 25
Sensitivity analysis ... 25
 Automatic sensitivity analysis ... 25
 Spot sensitivity analysis ... 25
 Performing path analysis .. 26
Moving entities within a logic diagram 27
 Moving inputs .. 27
 Moving blocks .. 27
 Moving entities using cut & paste .. 27
Copying entities ... 27
 Copying inputs .. 27
 Copying gate blocks .. 27
 Copying entities between projects ... 28
Erasing gates and inputs ... 28
 Erasing all gates ... 28
 Erasing inputs and gates .. 28
Working with connections .. 29
 Adding a connection ... 29
 Removing a connection ... 29
 Unlinking a connection ... 29
Advanced editing features .. 30
 Editing multiple input/gate values 30
 Inserting a gate .. 31
 Replacing an input with a gate output 31
Maintaining project details .. 32
Maintaining diagram notes .. 33
 Entering reference text for inputs 33
 Automatic input references .. 34
 Re-Generating/Clearing input references 34

Chapter 6 – Customising fault trees .. 35
 Customisation options for fault trees 35
 Setting a default folder ... 35
 Setting display preferences .. 35
 Setting general display preferences 38
 Specifying input references ... 38
 Building a glossary .. 39
 Setting sensitivity analysis preferences 40
 Printing setup ... 41
 Setting the resizing options for fault trees 41
 Setting the Confidentiality text 41
 Resetting all the print options 42

Quick reference .. 43

Shortcuts .. 47

Part B – Event Trees

Chapter 7 – Event trees Quick Tour .. 51

Chapter 8 – Event trees basics .. 55
 Creating a new event tree project 55
 Opening an existing event tree project 55
 Adding events ... 56
 Adding the initiator event .. 56
 Adding null events .. 56
Contents

Inserting a null event to the left ... 57
Appending a null event.. 57
Deleting a null event.. 57
Editing events... 57
Entering reference text for events and outcomes 57
Viewing your event tree diagrams.. 58
Printing your event tree diagram.. 59
Saving your event tree project... 59
Closing an event tree project... 59

Chapter 9 – Advanced features ... 61
Erasing all events.. 61
Connecting a fault tree to an event tree... 61

Chapter 10 – Customising event trees .. 63
Customisation options for event trees... 63

Quick reference .. 65

Shortcuts ... 69

Revision history .. 71

Glossary .. 73

Index .. 75
Welcome to Logidraw, the drawing tool for process safety engineers. It lets you create fault tree diagrams and event tree diagrams as part of a hazard analysis or safety case.

About this guide

This guide is designed to assist you in becoming quickly familiar with the capabilities of Logidraw, its interface and how the program is used.

Who should read this guide

This guide is written for users of Logidraw to help you take full advantage of its calculation tools. If you are new to this product, we recommend that you first read The 60 Second Guide to Logidraw: Fault Trees and The 60 Second Guide to Logidraw: Event Trees.

The guide assumes you are familiar with the Windows operating system. If you are new to Windows, you can find help, tutorials and support information by clicking Start > Help and Support.

What is in this guide

The guide contains descriptions and step-by-step instructions for all the tasks involved in using Logidraw.

How this guide is structured

The chapters are organised as follows:

1. Introduction
 Introduces the product, outlining the main features.
2. Getting started
 Shows how to start Logidraw, introducing the user interface for the application.

 Part A – Fault Trees

3. Logidraw Fault trees Quick Tour
 Tutorial for typical session using Logidraw to draw a fault tree, emphasising the commonly used features
4. Fault tree basics
 How to create, change and delete fault trees.
5. Advanced features
 Advanced features to develop and maintain your fault tree diagrams
6. Customisation
 How to change the customisation and print setup options for fault trees.
Part B – Event Fault Trees

7. Logidraw Quick Tour
 Tutorial for using Logidraw to draw an event tree

8. Event tree basics
 shows you how to manage event tree projects.
 How to create, change and delete event trees

9. Advanced features
 Advanced features for your event tree diagrams

10. Customisation
 How to change the customisation options for event trees.

The guide also includes a quick reference and a shortcuts section in each part and a glossary.

Conventions

The following typographical conventions are used in this guide:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bold</td>
<td>To help with procedures, items that you click, select, or view may appear with the bold format (buttons, options, and window titles, for example).</td>
</tr>
<tr>
<td>Italic</td>
<td>Proper names (software products, for example) and titles appear in the italic format.</td>
</tr>
<tr>
<td>Monospace</td>
<td>Represents any text that appears on the computer screen or text that you should type. It is also used for filenames, functions, and examples.</td>
</tr>
<tr>
<td>Monospace oblique</td>
<td>Represents variable text where you would type in a specific value.</td>
</tr>
<tr>
<td>></td>
<td>The chevron indicates a menu option in a procedure. For example, click File > Open, means “on the File menu, click Open.”</td>
</tr>
</tbody>
</table>
Chapter 1 – Introduction

Logidraw lets you create fault tree diagrams and event tree diagrams as part of a process hazard analysis or safety case for large process plants.

Hazard studies
Large plants in the chemical or process industries need to perform hazard and risk studies to identify process related hazards and to assess the adequacy of safeguards. A number of different techniques and methods may be used in these studies, such as:

- Hazard and Operability (HAZOP) study
- Failure Modes and Effects Analysis (FMEA)
- Safety Integrity Level (SIL) Assessment
- Layer of Protection Analysis (LOPA)
- Fault Tree Analysis (FTA) / Event Tree Analysis (ETA)

Process safety
Process safety is a key consideration in the design, building and commissioning of any chemical or process plant or system. Key questions that need answers are:

- What can go wrong?
- How often will this happen?
- What will be the consequences?

Answering the first question involves some form of hazard identification. Typically this will involve a formal technique, such as a Hazard and Operability (HAZOP) study. Providing answers to the other two questions involves using hazard analysis techniques. This could be a qualitative process, such as Layer of Protection Analysis (LOPA) or more quantitative techniques, such as Fault Tree Analysis (FTA), Event Tree Analysis (ETA), or sometimes a combination of the two.

Fault tree analysis
Fault tree analysis involves drawing a logic diagram to show the logical links between certain failure (basic) events, such as operator error or component failure, and an undesired outcome (top) event, such as an explosion at an oil storage depot.

The diagram can then be used in two ways:

- qualitatively – to show the combinations of basic events sufficient to cause the occurrence of the top event,
- quantitatively – to estimate the probability or frequency of an event.
Logidraw helps you create fault tree diagrams by adding each of the basic failure events as a series of inputs and then linking them using AND and OR logic gates. Each input can be quantified typically as a probability or a frequency, with the output of the final gate providing a frequency for the final (undesired) outcome.

Event tree analysis

Event tree analysis involves tracing the consequences from an undesired initiator event (such as a component failure) through a series of subsequent events through to a series of final consequences.

Logidraw helps you create event tree diagrams, with each event added as a success or failure gate with a split of probabilities of taking either branch. The overall outcome of a range of "top events" arising from the initial event can then be seen.

Bowtie diagrams

A Bowtie diagram is a graphical representation of the links between the causes of hazardous events (on the left side of the diagram), an undesired event (such as loss of containment) and the possible consequences of the undesired event on the right side of the diagram. Safeguards are shown on both sides of the tie, sometimes considered to
be preventative safeguards on the left and reactive safeguards or mitigations on the right.

The diagram can be used at different of detail. At a simple level, it can be used qualitatively to show which safeguards apply to particular causes or consequences. This is how it may be used in a safety case or process hazard review (PHR). At a more detailed level, a detailed fault tree on the left and event tree on the right can include quantitative calculations.

Logidraw allow you to use a bowtie diagram in a quantitative way by connecting the starting event in the event tree diagram to the final outcome of a fault tree diagram.

Overview of PEL

PEL is a collection of tools to enable process engineers to carry out their day-to-day tasks more quickly and reliably. The software includes purpose built programs to generate datasheets, perform engineering calculations of liquid and / or gas flow, investigate physical properties and create fault tree diagrams. Designed by engineers for engineers, the tools are intuitive and easy to use. They can be used to work out every day calculations, for troubleshooting issues such as bottlenecks, or when making plant modifications. This low cost solution will enable engineers to design processes more quickly and reliably with up-to-date and permanently available design data.

Benefits

- Allows engineers to be more efficient and productive. With fewer manual calculations to do, tasks are carried out quicker;
- Improves QA and standardises procedures, through everyone using same set of data and calculations;
- Human errors in calculations are reduced;
- Improves production as bottlenecks can be identified quickly so a solution can be sought;
- Allows operators to get the best out of their existing assets by carrying out modifications rather than designing new ones.
Chapter 2 – Getting started

This chapter shows you how to start Logidraw and introduces the user interface for the application.

Starting Logidraw

The most common way of starting Logidraw is from the Windows Start menu, but you can also run it from a desktop shortcut.

To start Logidraw from the Start menu:

- Click **Start > All Programs > PEL > Logidraw**.

 If using the classic Start menu or earlier versions of Windows, click **Start > Programs**...

 The Logidraw application opens.

Quitting Logidraw

To quit Logidraw:

- Do one of:

 - On the **File** menu, click **Exit**.

 - Click the Close (X) button.
User interface

Once you have started Logidraw, you see the following, or similar, user interface.

The following main features are apparent:

Menu bar. Shows the command menus for accessing various features of the application. The menu expands to include extra options when a diagram is open.

Main pane. The main area of the screen where you open your diagrams. A quick start toolbar appears in the centre.

Status bar. This shows a progress bar during lengthy operations (such as when calculating sensitive inputs or when the logic diagram is being redrawn).

Project windows

Within the overall main pane your project diagrams appear while open. You can have multiple projects open concurrently, using the standard Windows commands (tile, cascade, maximize, etc) to arrange the space. The arrangement of the windows differs between fault tree diagrams and event tree diagrams.
Fault tree project window

The layout of a fault tree diagram looks as follows:

The main parts of the fault tree window are:

Project toolbar This contains buttons for the most common commands, such as **Add Input** and **Connect As Gate**.

Inputs panel This shows the value of each input. When an input is added, or changed, the panel shows the new value. The panel separates frequency inputs from probability, time and multiplier inputs by using two separate columns. The reference string is also displayed for each input.

Logic diagram The main area of the project window shows the logic diagram. Inputs are drawn from top to bottom: logic is constructed from left to right.

Commands on the View menu let you show or hide the inputs panel, the project toolbar and the status bar. You can also define which of these features appear by default using the Customise options.

Event tree window

An event tree window is a single pane. The status bar is not used with an event tree.
The main parts of the event tree window are:

Event levels. Each event level appears as a column.

Results panel. The final outcomes appear as the results panel.

Event lines. Each event line is labelled with the event name, its outcome probability and the outcome value.

Commands on the View menu let you show (or hide) the outcome probabilities, the outcome values and the column lines.

Menu bar

The options on the menu bar differ between fault tree diagrams (top) and event tree diagrams.

The Data and Maths menus only appear for a fault tree diagram: the Connect and Tree menus are only for event trees. In addition, the Edit and View menus have different options for each diagram type.

User assistance

Logidraw has the following forms of user assistance:

- Online help
- Online documentation
- PEL Support Services

Online help

Logidraw has an integrated online help system, which provides clear reference information and step-by-step instructions for tasks. This is an online help version of this guide.

To open the help system:

 The help opens in a separate window.

Online documentation

Documentation is provided for PEL products on the website. The documents are provided as PDF files for you to download and print. These include:

- 60 second guides
- Online user guides
PEL Support Services

This program is developed, maintained and supported by PEL Support Services, ABB. We run a Hotline telephone and email service to answer any queries about Logidraw.

Please let us have any suggestions on how you feel we could improve Logidraw. You can contact us by any of the following routes:

By Telephone: +44 (0)1925 74 1126
By Fax: +44 (0)1925 74 1265
By email: pel.support@gb.abb.com
By Post: PEL Support Services
ABB Limited.
Daresbury Park
Daresbury
Warrington
Cheshire WA4 4BT
United Kingdom.
Part A – Fault Trees
Chapter 3 – Fault trees Quick Tour

This short self-paced tutorial will show you how to begin to draw Fault Trees using Logidraw.

The diagram below describes the demands and protection failures that, when they occur, lead to a specific overpressure event.

Within seconds from now you will have learned how to draw this Fault Tree:

Okay start Logidraw.

1) Click Start > Programs > PEL > Logidraw. After the splash screen disappears, click Create A Fault Tree and when the Fault Tree Project window appears enter the title as 60 Second Guide and click OK.

The first thing to do is to display the logic and Project Toolbar

2) Click the View menu and check Project Toolbar.

We are now ready to create the first two demand Inputs.

3) Click Add Input on the toolbar to open the “Inputs in Logidraw Fault Tree” window. Enter Demand 1 in the Comment box, select the type Frequency using the radio buttons, and enter 0.5 in the Value field which corresponds to a demand rate of once in 2 years. Click Add to enter this data.

When we clicked Add, Logidraw cleared the data ready for the next Input. So let’s add the second demand input.

4) Enter Demand 2 in the Comment box, select the type Frequency using the radio buttons, and enter 0.1 in the Value field which corresponds to a demand rate of once in 10 years. Click Add to enter this data.

The risk from these two sources of demand is reduced by an alarm but what happens if the operator fails to respond?

5) Enter Alarm 1 – no operator response in the Comment box, leave the selected type as Probability, and enter 0.2 in the Value field which corresponds to a failure probability of 1 in 5. Click Add to enter this data and then click Close to close the window.

We now have three inputs on the screen like this:

We now need to draw some gates.
6) Select **Demand 1** by clicking it, hold down the Ctrl key, and select **Demand 2** by clicking that too. Release the Ctrl key and click **Connect as Gate** on the toolbar. When the Gate No 1 window opens, click **OK**.

We now have the two demands connected into an OR Gate. Let’s add another gate to link in the third input.

7) Click the **OR** Gate and then the input **Alarm 1 – no operator response**. Again click **Connect as Gate**. When the Gate No 2 window opens, click **OK**.

This will create another gate, an AND Gate this time. Now we need to create another demand, Demand 3, a trip input, and a Pressure Relief Valve input.

8) Click **Add Input** to open the “Inputs in LogiDraw Fault Tree” window. Enter **Demand 3** in the Comment box, select the type **Frequency** using the radio buttons, and enter **0.1** in the Value field which corresponds to a demand rate of once in 10 years; click **Add** to enter this data.

Next, enter **Trip in failed state** in the Comment box, leave the selected type as **Probability**, and enter **0.04** in the Value field which corresponds to a failure probability of 1 in 25; click **Add** to enter this data.

Finally, enter **Pressure Relief Valve in failed state** in the Comment box, leave the selected type as **Probability**, and enter **0.02** in the Value field to correspond to a failure probability of 1 in 50; click **Add** to enter this data and then **Close** to close the window.

We need to add three more gates.

9) Click the **AND** Gate, then the input **Demand 3** and then **Connect as Gate** on the toolbar. When the Gate No 3 window appears, click **OK**. This creates a second OR Gate.

Now, click this second **OR** Gate, then the input **Trip in failed state**, and then **Connect as Gate**. When the Gate No 4 window appears, click **OK**. This creates a second AND Gate.

Finally, repeat the process for the second **AND** Gate and the input **Pressure Relief Valve in failed state** to create a third AND Gate.

There is a second identical system adjacent to the first that can also fail and cause the same overpressure event. We can provide for this simply by adding another input as a multiplier to the final AND gate.

10) Click **Add Input** to open the “Inputs in Logidraw Fault Tree” window. Enter **Second System Multiplier** in the Comment box, select the type **Multiplier** using the radio buttons, and enter **2** in the Value field. Click **Add** to enter this data and then **Close** to close the window. Now click this new input and drag the arrow icon to the final **AND** gate and drop the icon to connect the input to the gate.

We need to add some gate output descriptions.

11) Double-click the first **OR** Gate; in the “Detailed Comment” box enter **Demand on Pressure Alarm** and click **OK**. Repeat the above to add the descriptions detailed on the above diagram for the second **OR** gate and the last two **AND** gates to complete the fault tree.

To complete the exercise, let’s customise the display to look like the drawing at the beginning of the guide.
12) On the File menu, click **Customise**. When the Customise Options window appears, click the **Display** tab and then:

- Remove the check mark from **Display ‘Short’ Gate Comment on Screen**;
- Change **Max. No. of Characters to Display For Inputs** to 40;
- In the Default Drawing Orientation panel, check **Right to Left**.

13) Finally click **File > Print** to print the diagram, which should look like the image below.
Chapter 4 – Fault tree basics

The task of creating and maintaining fault trees involves creating a project and then adding a series of demand inputs and gates to build up the fault tree diagram. This chapter describes the basics of how to create fault tree projects.

Creating a new fault tree project

The first task in developing a fault tree is to create the project.

To create a new fault tree project:

1) Do one of:
 - On the initial screen click Create A Fault Tree.
 - Click File > New > Fault Tree.
 - Press Ctrl + N.

 The Hazard Under Analysis dialog opens.

2) Enter a project name for your fault tree and click OK.

 A blank fault tree diagram opens in the main pane. You can now start to add demand inputs and gates to build up the diagram.

Opening an existing fault tree project

To open an existing fault tree project:

1) Do one of:
 - On the initial screen click Load File.
 - Click File > Open.
 - Press Ctrl + O.

2) Select Logidraw 95 files (*.LDR) as the file type.

3) Browse to locate the project file and click Open.

 Your fault tree diagram opens in the main pane.
Opening a legacy fault tree project

Logidraw lets you open fault tree project files created in the earlier DOS version of the software. These files have a .LOG extension.

To open a legacy fault tree project:

1) Do one of:
 • On the initial screen click Load File.
 • Click File > Open.
 • Press Ctrl + O.

2) Select Logidraw DOS files (*.LOG) as the file type.

3) Browse to locate the project file and click Open.

Your fault tree diagram opens in the main pane.

Defining inputs

Adding inputs

Once you have set up your project file you can start adding demand inputs.

To add an input:

1) Do one of:
 • On the project toolbar click Add Input.
 • On the Data menu, click Inputs > Add.
 • Right-click in the diagram and click Inputs > Add.
 • Press Ctrl+I.

The Inputs in Logidraw Fault Tree dialog opens.

2) Specify the input type.

3) Click Add.
Editing an existing input

To edit an input:
1) Do one of:
 - Double-click the input in the diagram.
 - Right-click the input in the diagram and click **Edit Data**.
 The **Inputs in Logidraw Fault Tree** dialog opens.

Copying an input

To copy a single input:
- Do one of:
 - Select the input in the diagram and then on the project toolbar click **Copy Inputs**.
 - Right-click the input in the diagram and click **Copy**.
 - Select the input in the diagram and press Ctrl+C and Ctrl+V.

The input is added at the bottom of the diagram.

Deleting an input

To delete a single input:
- Do one of:
 - Select the input in the diagram and then on the project toolbar click **Delete Inputs**.
 - Right-click the input in the diagram and click **Delete**.
 - Select the input in the diagram and press Delete.

To delete multiple inputs:
- Select the inputs in the diagram (Ctrl+click) and then do one of:
 - On the project toolbar click **Delete Inputs**.
 - On the **Edit** menu, click **Delete Block**.
 - Press Delete.
Connecting inputs with logic gates

Once you have added inputs you need to connect them using logic gates.

Adding a logic gate

To connect inputs with a logic gate:
1) Select the two inputs you want to connect. Click the first one and then use Ctrl+click to select the second input.
2) Do one of:
 - On the project toolbar click **Connect as Gate**.
 - On the Data menu, click **Connect as Gate**.
 - Press Ctrl+G.

The Gate dialog opens.

![Gate dialog](image)

3) Click **OK**.

Deleting a gate

This feature lets you delete an individual gate, but leave all the inputs and connections to its left.

To delete a gate:
1) Select the gate to be deleted.
2) Do one of:
 - On the project toolbar, Click **Delete Gate**.
 - On the Edit menu, click **Delete Gate**.
 - Right-click the gate and click **Delete > Gate**.
Viewing your fault tree diagrams

Logidraw provides various ways in which a logic diagram can be drawn and viewed. There are two orientation options:

- **Left to Right (Align) orientation.** Gates within the logic diagram are all aligned by level. This mode can result in very wide but ‘neat’ diagrams.
- **Right To Left (Optimise Space) orientation.** Gates within the logic diagram are spaced to accommodate the input/gate/value strings. No aligning takes place. This mode usually results in ‘messy’ looking diagrams, but is efficient in terms of space.

There is also a **Logic Only** view. This hides all the gate strings and values. This is useful if you are editing a very large diagram and space is at a premium.

You can also set a default view using the customisation dialog.

To set the orientation:

- On the **View** menu click one of:
 - Orientate Left To Right (Align)
 - Orientate Right To Left (Optimise Space)
 A check mark appears on the menu against the selected option.

To select the logic only view:

- On the **View** menu click **Logic Only**.
 All gate strings and values are hidden in the diagram. A check mark appears on the menu against the option.

To clear the logic only view:

- On the **View** menu click **Logic Only** again.
 Gate strings and values are shown in the diagram. The check mark is removed from the menu.

Printing your fault tree diagram

To print your fault tree diagram:

1) Do one of:

- Click **File > Print**.
- Press Ctrl + P.

The status window opens, showing whether the printout will fit easily on the page.
2) If the diagram size is OK, click **Proceed**.

The diagram is printed on your default printer.

Saving your fault tree project

To save a fault tree project:

1) Do one of:
 - Click **File > Save**.
 - Press Ctrl + S.

2) Browse to where you want to save the file, enter a file name and click **Save**.

The project is saved with a file extension `.LDR`.

Closing a fault tree project

To close the current fault tree project:

- Do one of:
 - Click **File > Close**.
 - Click the Close (X) button for the window.

To close all open projects:

- Click **File > Close All**.

 This closes all open fault tree and event tree projects.
Chapter 5 – Advanced features

This chapter shows you how to use various advanced features to develop and maintain your fault tree diagrams.

Sensitivity analysis

Logidraw supports three modes of sensitivity analysis for faults trees – automatic, spot, and path. The purpose of sensitivity analysis is to determine whether a particular input or path is critical for the final outcome (end-gate value) of the logic diagram.

Note For Logidraw to perform any form of sensitivity analysis, an end-gate of non-zero value must exist. If one doesn’t exist, sensitivity analysis will not proceed.

Automatic sensitivity analysis

If automatic analysis is set on, sensitive paths in the logic diagram are automatically calculated and updated as you add inputs and logic gates. Automatic analysis works by halving each input in turn and calculating the percentage change to the end-gate value. If this change is within a supplied threshold, then the input is regarded as sensitive.

For example, if the threshold is set at 5% then if halving an input’s value results in a value +/- 5%, the input is regarded as sensitive.

Sensitive paths can be shown with thicker lines on the display. See Customising Fault Trees.

To turn automatic sensitivity analysis on (or off):

A check mark appears against the option.

Note You can set automatic sensitivity analysis on by default using the Customisation dialog. This also lets you change the sensitivity threshold.

Spot sensitivity analysis

Spot analysis allows you to determine the sensitivity of an input by changing its value and seeing how the final end-gate value changes.

To spot analyse an input:

1) Select an input on your diagram and do one of:

- On the Maths menu, click Analyse One Input.
- Right-click and click **Analyse**.

A dialog opens showing the current details on the input.

2) Type in a new value for the input and click **Analyse**.

The analysis routine recalculates the value of the end-gate. If the end-gate value has changed, an alert appears showing the new value of the end-gate and the percentage change from the old end-gate value.

3) Click **OK**.

Performing path analysis

Paths analysis lets you select a gate and calculate its most sensitive paths (constituents).

To perform path analysis:

1) Select a single gate in the diagram and click **Maths > Find Most Sensitive Paths To Gate**.

The path analysis routine finds the most sensitive path into that gate. An alert appears showing the number of sensitive paths found (if any).

2) Click **OK**.

If sensitive paths have been found, they appear selected in the diagram. The routine handles multiple paths having the same sensitivity rating.

To clear the sensitive paths:

- Click **Edit > Deselect All**.
Moving entities within a logic diagram

Moving inputs

To move a single input, simply drag the input you wish to move and drop on another input. The input you have dragged is now positioned above this input.

To move a block of inputs, you must first select the inputs and then drag and drop as above.

Moving blocks

To move a complete block (i.e., inputs and gates) within the logic diagram you must drag the gate (which will mark the block you wish to move) to a different location in the tree. This location must be another logic gate (the ‘target gate’).

When a gate is dropped onto another gate the ‘Block Move’ dialog appears:

Moving entities using cut & paste

You can move entities using a cut & paste operation. This also lets you move entities between projects.

Copying entities

Copying inputs

You can copy inputs by selecting the one or more inputs and then pressing Ctrl+C. This places the selected inputs in the copy buffer. It is then possible to copy these inputs either above another input or to the end of the input list.

To copy the selected inputs above another input, select another input as a ‘paste point’ and then press Ctrl+V to paste the inputs.

To copy the inputs to the end of the inputs list simply press Ctrl+V (with no input selected).

Copying gate blocks

You can copy Gate blocks in a similar fashion as inputs. However, you can only copy a single block.
To copy a gate block, select a gate and then press Ctrl+C. This places the selected gate block into the copy buffer. It is then possible to copy this gate block into another gate or to the end of the logic diagram.

To copy the gate block into another gate, select another gate as a ‘paste point’ and then press Ctrl+V to paste the gate. Upon doing this, a block move dialog will request information as to how the copied gate should be connected into the target gate.

To copy the gate block to the end of the diagram, either:

- Use Ctrl+V with no ‘paste point’ selected, OR
- Drag the gate you wish to copy into free space.

Copying entities between projects

Erasing gates and inputs

Two commands let you remove either all the gates in a diagram or all inputs and gates.

Erasing all gates

This command lets you remove all the gates, but leaving all the inputs alone.

To erase all gates:

1) Click Edit > Erase > Gates only.
 A message asks you to confirm that you want to continue.
2) Click Yes.

 Note You can use the *Undo* command to recover.

Erasing inputs and gates

This command clears your diagram to start again.

To erase inputs and gates:

1) Click Edit > Erase > Inputs & Gates.
 A message asks you to confirm that you want to continue.
2) Click Yes.

 Note You can use the *Undo* command to recover.
Working with connections

Connections on your fault tree diagram are the lines that link an input and a gate. These commands allow you to develop your diagram by connecting or disconnecting blocks of inputs and gates within the diagram.

Adding a connection

To add a connection between an input and a gate, the elements to be connected must be in a position to be connected. For example, in the diagram below we want to connect the new input (Demand 5) to the selected OR gate. To do this we must drag (move) the input above demand 3.

The diagram will look as follows:

![Diagram showing connection](image)

We can then connect the two.

To connect an input and gate:
1) Select the two elements to be connected.
2) Click Data > Connection > Add.

Removing a connection

This lets you remove a connection between any two points.

To remove a connection:
1) Select the two elements to be disconnected.
2) Click Data > Connection > Remove.

Unlinking a connection

Sometimes after removing a connection, you may end up with a gate containing only one input. This feature lets you remove this gate and connect the single input through to the output of that gate. For example, in the diagram below removing the connection from demand 7 leaves an orphan gate (in red) with a single input.
To remove the orphan gate:

1) Select the orphan gate.

2) Click Data > Connection > Unlink from Gate.

A message asks if you want to remove the gate and create a through connection.

3) Click Yes.

The orphan gate is removed.

Advanced editing features

Editing multiple input/gate values

If you need to make changes to a large project with many inputs and gates, you can search for the items to change by scrolling through a tabular display that shows all the data in your fault tree.

If sensitivity analysis is on, values marked with an asterisk (*) denote a sensitive path.

To edit multiple inputs and gates:

1) Click Edit > Input/Gate Values.

The Input & Gate Values dialog opens.

2) Scroll down the list and do one of:

 • Double-click the input or gate you want to change.

 • Select the input or gate to change and click Edit.

The Input or gate dialog opens as appropriate.

3) Edit the input or gate as required and click OK.

The tree values are automatically recalculated in the dialog. If sensitivity analysis is on, then sensitivity is also recalculated.

4) Repeat as necessary to change all the data you want; then click Close.
The tree is redrawn to show all your changes.

Inserting a gate

This feature lets you insert a gate between the output of a selected gate and the input of the gate it feeds. The new gate has the output of the selected gate as one input and a selected, unconnected input as its second input.

For example, in the diagram below, we want to insert a gate between the output of the selected AND gate and the OR gate it feeds. The unconnected input (demand 4) will provide the second input to the new gate.

With the gate added the diagram will look as follows:

To insert the new gate:

1) Select the gate after which the new gate is to be inserted, and select the unconnected input as the other input for the new gate.

2) Click **Data > Insert Gate**.

The gate dialog opens.

3) Enter any comments and then click **OK**.

The gate is added, connecting the two selected items.

Replacing an input with a gate output

This feature lets you add a series of logic inputs and gates Suppose a user has a logic diagram where one of the inputs really requires some logic to define it. The user can develop the defining logic, select the end gate of this logic, select also the input which it defines, and then replace the input with the logic.

For example, in the diagram below we want to add the selected block at the bottom of the diagram as the input to demand 4.
With the input replaced the diagram will look as follows:

![Diagram](image)

To replace the input with a gate output:

1) Select the end gate of the defining logic and the input it replaces
2) Click **Data > Replace Input with Gate Output.**

 This will move the defining logic into the part of the logic diagram previously occupied by the selected input.

Maintaining project details

The Project Details dialog let you maintain various titles and descriptions for your project, either to annotate the printed view or to be held as background notes.

![Project Details Dialog](image)

To change the project details and notes:

1) Click **File > Edit Title & Notes.**

 The Project Details dialog opens.

2) Enter or change the following details as required:
 - **Title.** The title for the logic diagram.
 - **Date.** The date for the logic diagram.
 - **Reference.** Reference text.
 - **Page Heading.** Heading text to appear at the top of first printed page.
Top Of Diagram Note. Text to appear at the top of the diagram.

Bottom Of Diagram Note. Text to appear at the bottom of the diagram.

Additional Comments To Appear In Notes File. These comments will be saved in the diagram’s accompanying notes file.

3) Click OK.

Maintaining diagram notes

When you save a Logidraw project file, an accompanying text file is automatically created containing all inputs and reference text (if this option is switched on – see Specifying input references). The text file also contains additional notes which can be entered by selecting File/Edit Project Details.

The file created has the same filename as the project but with the extension.TXT. If the file currently exists, it will be overwritten without warning.

To create or (or regenerate) the notes file:

- Click File > Re-Generate Notes File.

Important Note

If you modify the text file (externally from Logidraw) the changes will be lost when the project file is re-loaded. This is because the reference details are stored with the project file and not the text file. The text file is simply a one way ‘dump’ of reference text associated with the project file.

Entering reference text for inputs

Logidraw lets you add reference text when you add or edit an input.

To add reference text for an input:

1) Do one of:
 - Double-click the input in the diagram.
 - Right-click the input in the diagram and click Edit Data.

 The Inputs in Logidraw Fault Tree dialog opens.

2) On the Add Input dialog, click Notes.

3) Enter or change the text as required.
4) Click **OK** to close the dialog.

5) Click **OK** again to close the Inputs dialog

Automatic input references
Logidraw assigns reference strings for inputs as they are created. You can let these be assigned automatically, specifying a start number and optional prefix/suffix strings. See Specifying input references.

Re-Generating/Clearing input references

To re-generate input references:
- Do one of:
 - Click **Data > Inputs > Re-Generate Input References**.
 - Press Ctrl+K.
 The references for each input in the Inputs Panel are refreshed.

To clear all input references
- Click **Data > Inputs > Clear References**.

 Note The reference text is not affected.
Chapter 6 – Customising fault trees

Logidraw lets you customise the application via a multi-tab customisation dialog. The customisation settings are saved in your setup file and are restored each time you start the application. You can also set options to customise your printouts.

This chapter describes how you can change the customisation and print set up options.

Customisation options for fault trees

The customisation options for fault trees are available when a fault tree project is open (and on focus) or when you start the application and no project files are open.

Setting a default folder

You can set a default folder for saving and loading your files.

To specify where to look for and save files:
1) With a fault tree project in focus, click File > Customise.
2) Click the Files tab.
3) Select the drive and then the folder for your files.
4) Click OK to save your setting.

Setting display preferences

You can set various options about how your fault trees appear on display. This does not affect the printed output.

To change the display preferences:
1) With a fault tree project in focus, click File > Customise.
2) Click the **Display** tab.

![Customization Options](image)

3) Set the following options as required:

 Show Sensitive Inputs With Bold Lines. If you select this check box, and sensitivity analysis is switched on, all sensitive paths will be drawn with thick connecting lines.

 Indent Non-Frequency Inputs. If you select this check box, non frequency inputs are indented on your diagram. This can improve the readability.

 Display Short Comment On Screen. If you select this check box, the short comment for gates appears on the diagram instead of the full comment. If you clear the check box, you can enter specify a maximum number of characters to show for gate strings.

 Max No. Of Characters To Display For Inputs. This lets you supply a maximum number of characters to display for inputs.

4) Click **OK** to save your settings.

Using colour on your diagrams

By default Logidraw displays paths on your diagram in colour, with different colours set for each input type.

To switch off colour:

1) With a fault tree project in focus, click **File > Customise.**
2) Click the **Display** tab.
3) Clear the **Use Colour** check box and then click **OK** to save your setting.

To revert to the default colours:

1) With a fault tree project in focus, click **File > Customise.**
2) Click the **Display** tab.
3) Click **Use Defaults** to revert to the default colours.
4) Click **OK** to save your settings.
To specify custom colours:

1) With a fault tree project in focus, click File > Customise.
2) Click the Display tab.

The colour panel defines a colour for each of input type (probability, frequency, time and multiplier) and a background colour for the drawing window.

3) To change a colour, click the button to open the standard Windows colour picker. Select one of the basic colours, or click Define Custom Colors to select from the full color palette.
4) Select your colour and click OK to return to the Display tab.
5) Click OK again to save your settings.

Setting the default drawing view modes

Logidraw lets you set defaults for the modes that define how a logic diagram is drawn and viewed. There are two orientation options and a separate logic only view.

To set the default drawing orientation:

1) With a fault tree project in focus, click File > Customise.
2) Click the Display tab.
3) Set the default drawing orientation as either of the options:
 - Left to Right (Align)
 - Right to Left (Optimise Space)
4) Click OK to save your settings.

To set (clear) the logic only option:

1) With a fault tree project in focus, click File > Customise.
2) Click the Display tab.
3) Select (or clear) the Display Logic Only check box.
4) Click OK to save your settings.
Setting general display preferences

You can define which parts of the project window appear by default when you load your files.

To specify general display preferences:

1) With a fault tree project in focus, click **File > Customise**.

2) Click the **General** tab.

3) Select (or clear) the check boxes to define which parts of the project window are open by default.

4) Click **OK** to save your settings.

Specifying input references

When you install Logidraw, the default identification for input references is a numeric sequence starting at one. You can start the sequence at a different value and add a prefix and/or suffix to allow unique identification over multiple projects.

To specify input references:

1) With a fault tree project in focus, click **File > Customise**.

2) Click the **Input References** tab.

3) Enter a prefix and/or suffix as required.
4) Enter a new start number if you want to continue from another project.
5) Click OK to save your settings.

To clear automatic numbering of inputs:
1) With a fault tree project in focus, click File > Customise.
2) Click the Input References tab.
3) Clear the Automatically Generate Sequential Input References check box.
4) Click OK to save your settings.
The reference field will now be blank when you add inputs to your fault tree.

To stop (or start) automatic creation of a comments text file:
1) With a fault tree project in focus, click File > Customise.
2) Click the Input References tab.
3) Clear (or select) the Create Comments File When Project is Saved check box.
4) Click OK to save your settings.
If the check box is selected a text file containing all your inputs and reference text is created when you save your project file.

Building a glossary

The Glossary tab lets you build up a selection of phrases to be saved in your user setup file. You can recall these phrases in any project dialog by pressing Ctrl+W. Recalling phrases can be useful when entering gate comments/input descriptions.

To open the glossary:
1) With a fault tree project in focus, click File > Customise.
2) Click the Glossary tab.
 You can add, change or remove phrases from the glossary.

To add a phrase to the glossary:
1) Type your phrase in the Phrase text box and click Add.
The phrase is added to the **Saved Phrases** list.

2) Repeat as necessary to add more phrases.

3) Click **OK** to save the glossary.

To replace a phrase in the glossary:
1) Select a phrase in the the **Saved Phrases** list.
2) In the **Phrase** text box, edit the phrase as you want and then click **Replace**.

 The edited phrase replaces the original in the **Saved Phrases** list.
3) Click **OK** to save the glossary.

To remove a phrase from the glossary:
1) Select a phrase in the the **Saved Phrases** list and then click **Remove**.

 The phrase is removed from the **Saved Phrases** list.
2) Click **OK** to save the glossary (and make the deletion permanent).

Setting sensitivity analysis preferences

The **Maths** tab lets you set automatic sensitivity analysis on by default. You can also change the sensitivity threshold for inputs.

To specify sensitivity analysis preferences:
1) With a fault tree project in focus, click **File > Customise**.
2) Click the **Maths** tab.
3) Select the check box to set automatic sensitivity analysis on by default.

 Clear the check box to set automatic sensitivity analysis off.
4) The sensitivity is set to 5% when you install Logidraw. Enter a new value if required.
5) Click **OK** to save your settings.
Printing setup

The print setup dialog lets you set various options used when printing your fault tree (or event tree) diagram.

Note Some of the options only apply to fault trees.

To set the printing options for your diagram:

1) Click **File > Print Setup**.

2) Under **Margins**, adjust the page margins (in centimetres) as required.

3) Click **OK** to save the changes.

Setting the resizing options for fault trees

These options control how fault tree diagram are resized for printing.

To set the resizing options:

1) Click **File > Print Setup**.

2) If you select the **Automatically Attempt Folding** check box, Logidraw will wrap long text strings on inputs and comments to help make the printout fit.

3) For font reduction, select the **Automatically Reduce Font** check box and then set the starting and minimum font sizes. A **Starting Font Size** of 12 and a **Minimum Font Size** of 6 are typical values.

4) Click **OK** to save the changes.

Setting the Confidentiality text

This lets you customise the text that appears at the top of each printed sheet.

To set the confidentiality text:

1) Click **File > Print Setup**.
2) Enter the new text as required.
3) Click OK to save the changes.

Resetting all the print options

To reset all the print options:

1) Click File > Print Setup.
2) Click Use Defaults.
3) Click OK to save the changes.
Quick reference

The following tables define the commands on the menu system.

File menu

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>New > Fault Tree</td>
<td>Create a new fault tree project</td>
<td>“Creating a new fault tree project” on page 19</td>
</tr>
<tr>
<td>New > Event Tree</td>
<td>Create a new event tree project</td>
<td>“Creating a new event tree project” on page 55</td>
</tr>
<tr>
<td>Open</td>
<td>Open a Logidraw file (.evt, .ldr, .log)</td>
<td>“Opening an existing fault tree project” on page 19</td>
</tr>
<tr>
<td>Close</td>
<td>Close the current file (prompting user to save file)</td>
<td>“Closing a fault tree project” on page 24</td>
</tr>
<tr>
<td>Close All</td>
<td>Close the all open files (prompting user to save each currently open file)</td>
<td>“Closing a fault tree project” on page 24</td>
</tr>
<tr>
<td>Save</td>
<td>Save the current file with current filename (for new Projects this gives Save As dialog) - during Saving both *.Ldr and *.Txt files are saved</td>
<td>“Saving your fault tree project” on page 24</td>
</tr>
<tr>
<td>Save As</td>
<td>Save the files with new names; creates file name for new Projects</td>
<td></td>
</tr>
<tr>
<td>Edit Title & Notes</td>
<td>Edit the Project details recorded in Logidraw files</td>
<td>“Maintaining project details” on page 32</td>
</tr>
<tr>
<td>Re-generate Notes File</td>
<td>Re-save the *.Txt file</td>
<td>“Maintaining diagram notes” on page 33</td>
</tr>
<tr>
<td>Print Setup</td>
<td>Set the Printing Options</td>
<td>“Printing setup” on page 41</td>
</tr>
<tr>
<td>Print</td>
<td>Print the Logic Diagram</td>
<td>“Printing your fault tree diagram” on page 23</td>
</tr>
<tr>
<td>Customise</td>
<td>Set the user Preferences</td>
<td>“Customisation options for fault trees” on page 35</td>
</tr>
<tr>
<td>Exit</td>
<td>Quit Logidraw</td>
<td>“Quitting Logidraw” on page 7</td>
</tr>
</tbody>
</table>
Edit menu

These options only appear when a fault tree is open.

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input/Gate Values</td>
<td>Open a window listing all inputs and gates which can then be selected and edited</td>
<td>“Editing multiple input/gate values” on page 30</td>
</tr>
<tr>
<td>Undo</td>
<td>Undo the last change</td>
<td></td>
</tr>
<tr>
<td>Redo</td>
<td>Redo the last change</td>
<td></td>
</tr>
<tr>
<td>Copy Diagram To Clipboard</td>
<td>Copy a printout of the diagram to the clipboard</td>
<td></td>
</tr>
<tr>
<td>Cut</td>
<td>Cut selected item to the clipboard</td>
<td></td>
</tr>
<tr>
<td>Copy</td>
<td>Copy selected item to the clipboard</td>
<td></td>
</tr>
<tr>
<td>Paste</td>
<td>Copy selected item from the clipboard</td>
<td></td>
</tr>
<tr>
<td>Delete Block</td>
<td>Delete the selected gate and delete all the logic leading to the inputs of the gate</td>
<td>“Deleting an input” on page 21</td>
</tr>
<tr>
<td>Delete Gate</td>
<td>Delete a selected gate but leave the logic leading to all the inputs of the gate</td>
<td>“Deleting a gate” on page 22</td>
</tr>
<tr>
<td>Erase > Gates only</td>
<td>Erase all gates in the diagram</td>
<td>“Erasing all gates” on page 28</td>
</tr>
<tr>
<td>Erase > Inputs & Gates</td>
<td>Erase the complete diagram</td>
<td>“Erasing inputs and gates” on page 28</td>
</tr>
<tr>
<td>Deselect All</td>
<td>Deselect all selected inputs and gates</td>
<td></td>
</tr>
</tbody>
</table>

View menu

These options only appear when a fault tree is open.

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redraw</td>
<td>Redraws the screen</td>
<td></td>
</tr>
<tr>
<td>Logic Only</td>
<td>Selects display of Logic without gate comments and numeric values</td>
<td>“Viewing your fault tree diagrams” on page 23</td>
</tr>
<tr>
<td>Orientate Left to Right (Align)</td>
<td>Selects on-screen vertical alignment of gates according to hierarchical level in the logic</td>
<td>“Viewing your fault tree diagrams” on page 23</td>
</tr>
<tr>
<td>Orientate Right to Left (Optimise space)</td>
<td>Gates moved as close to inputs as permitted to Optimise space.</td>
<td>“Viewing your fault tree diagrams” on page 23</td>
</tr>
<tr>
<td>Project Toolbar</td>
<td>Show/hide the project toolbar</td>
<td>“Viewing your fault tree diagrams” on page 23</td>
</tr>
<tr>
<td>Status Bar</td>
<td>Show/hide the status bar</td>
<td>“Fault tree project window” on page 9</td>
</tr>
<tr>
<td>Inputs Panel</td>
<td>Show/hide the inputs panel</td>
<td>“Fault tree project window” on page 9</td>
</tr>
</tbody>
</table>
Data menu
This menu only appears when a fault tree is open.

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inputs > Add</td>
<td>Add input</td>
<td>“Adding inputs” on page 20</td>
</tr>
<tr>
<td>Inputs > Re-Generate Input References</td>
<td>Regenerate input references</td>
<td>“Re-Generating/Clearing input references” on page 34</td>
</tr>
<tr>
<td>Inputs > Clear References</td>
<td>Clear input references</td>
<td>“Re-Generating/Clearing input references” on page 34</td>
</tr>
<tr>
<td>Connect as Gate</td>
<td>Connects selected inputs and gate outputs as inputs to a new gate</td>
<td>“Adding a logic gate” on page 22</td>
</tr>
<tr>
<td>Connection > Add</td>
<td>Add connection</td>
<td>“Adding a connection” on page 29</td>
</tr>
<tr>
<td>Connection > Remove</td>
<td>Remove connection</td>
<td>“Removing a connection” on page 29</td>
</tr>
<tr>
<td>Connection > Unlink Gate</td>
<td>Unlink gate</td>
<td>“Unlinking a connection” on page 29</td>
</tr>
<tr>
<td>Insert Gate</td>
<td>Insert a new gate</td>
<td>“Inserting a gate” on page 31</td>
</tr>
<tr>
<td>Replace Input With Gate Output</td>
<td>Replace input with block of logic</td>
<td>“Replacing an input with a gate output” on page 31</td>
</tr>
</tbody>
</table>

Maths menu
This menu only appears when a fault tree is open.

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyse One Input</td>
<td>Enables the effect of a change to the value of a selected input to be calculated in terms of its % change on the value of the final gate output value.</td>
<td>“Spot sensitivity analysis” on page 25</td>
</tr>
<tr>
<td>Find Most Sensitive Path(s) To Gate</td>
<td>Highlights the sensitive paths to a selected gate.</td>
<td>“Performing path analysis” on page 26</td>
</tr>
<tr>
<td>Automatic “Real-Time” Sensitivity Calculation</td>
<td>Selects automatic sensitivity assessment of inputs and indication by line thickness</td>
<td>“Automatic sensitivity analysis” on page 25</td>
</tr>
</tbody>
</table>

Window menu

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tile Horizontally</td>
<td>Tile open diagrams side-by-side</td>
<td></td>
</tr>
<tr>
<td>Tile Vertically</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cascade</td>
<td>Overlay open diagrams</td>
<td></td>
</tr>
<tr>
<td>Arrange Icons</td>
<td>Arrange minimised diagram icons</td>
<td></td>
</tr>
</tbody>
</table>
Help menu

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>Help – User Guide</td>
<td>Open the online help version of the Logidraw User Guide</td>
<td></td>
</tr>
<tr>
<td>Check for updates</td>
<td>Check if you have the latest version of the software</td>
<td></td>
</tr>
<tr>
<td>About</td>
<td>Open the Logidraw splash screen</td>
<td></td>
</tr>
</tbody>
</table>
The following table shows the keyboard shortcuts that let you perform commands quickly.

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
<th>Menu equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl+N</td>
<td>New Fault Tree</td>
<td>File > New > Fault Tree</td>
</tr>
<tr>
<td>Ctrl+O</td>
<td>Open</td>
<td>File > Open</td>
</tr>
<tr>
<td>Ctrl+S</td>
<td>Save</td>
<td>File > Save</td>
</tr>
<tr>
<td>Ctrl+A</td>
<td>Save All</td>
<td>File > Save All</td>
</tr>
<tr>
<td>Ctrl+P</td>
<td>Print</td>
<td>File > Print</td>
</tr>
<tr>
<td>F12</td>
<td>Open Customisation Options</td>
<td>File > Customise</td>
</tr>
</tbody>
</table>

Fault trees

These shortcuts are only available when a fault tree is open.

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
<th>Menu equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl+Z</td>
<td>Undo the last change</td>
<td>Edit > Undo</td>
</tr>
<tr>
<td>Ctrl+Y</td>
<td>Redo the last change</td>
<td>Edit > Redo</td>
</tr>
<tr>
<td>Ctrl+X</td>
<td>Cut</td>
<td>Edit > Cut</td>
</tr>
<tr>
<td>Ctrl+C</td>
<td>Copy</td>
<td>Edit > Copy</td>
</tr>
<tr>
<td>Ctrl+V</td>
<td>Paste</td>
<td>Edit > Paste</td>
</tr>
<tr>
<td>Del</td>
<td>Delete Block</td>
<td>Edit > Delete Block</td>
</tr>
<tr>
<td>Ctrl+R</td>
<td>Redraw</td>
<td>View > Redraw</td>
</tr>
<tr>
<td>Ctrl +I</td>
<td>Add input</td>
<td>Data > Inputs > Add</td>
</tr>
<tr>
<td>Ctrl +K</td>
<td>Regenerate input references</td>
<td>Data > Inputs > Regenerate Input References</td>
</tr>
<tr>
<td>Ctrl +G</td>
<td>Connect inputs as a gate</td>
<td>Data > Connect as Gate</td>
</tr>
<tr>
<td>PgUp,PgDn</td>
<td>Scroll diagram up or down</td>
<td></td>
</tr>
<tr>
<td>Ctrl+PgUp,PgDn</td>
<td>Scroll diagram to top or bottom</td>
<td></td>
</tr>
<tr>
<td>Ctrl+Home,End</td>
<td>Scroll diagram to top or bottom</td>
<td></td>
</tr>
<tr>
<td>Left,right arrow keys</td>
<td>Scroll diagram left or right</td>
<td></td>
</tr>
<tr>
<td>Ctrl+left/right arrow</td>
<td>Scroll to left or right margin</td>
<td></td>
</tr>
</tbody>
</table>
Part B – Event Trees
Chapter 7 – Event trees Quick Tour

This short self-paced tutorial will show you how to begin to draw Event Trees using Logidraw.

We describe the events and the outcomes that occur when a level control fails. There are two event levels – one for the hardware and one for the operator - with one event in each level each of which has two outcomes.

Within seconds from now you will have learned how to draw the Event Tree below:

Okay start Logidraw.

Starting Logidraw

1) Click Start > Programs > PEL > Logidraw. After the splash screen disappears, click Create Event Tree and when the Event Tree Project window appears enter the title as 60 Second Guide and click OK.

The first thing to do is to create the Initiator Event.

2) Click the window to add the Initiator Event and then enter the event name as Failure of Level Control.

Next we need to specify outcomes. By default each new event has 2 outcomes named S (success) and F (failure) each with a probability of 50%. We need to rename the outcomes and specify new probabilities.

3) Double-click S(0.5) in the Outcome list and rename the outcome to High Level Alarm operates. Set the probability as 0.9 and click OK. Repeat for outcome F(0.5) renaming it to High Level Alarm in failed state with a probability of 0.1 and click OK.

To complete the input for the Initiator Event we need to specify a frequency of 0.1 per year.

4) Keeping the Input Value Type as Frequency, type 0.1 into Value and select yr in the Units list. Finally click OK.

Now we need to give this level of the event tree a meaningful name.

5) Double-click the heading Level 1 and rename it to Alarm Hardware.
We now have the Initiator Event with the first event level. Next we need to add the second level of events.

6) Click the first outcome. The event and its outcomes are highlighted blue and the selected outcome also has blue handles on it. Right-click this outcome (the blue horizontal line - not the handles) and click the last item **Attach Event to Outcome**.

This will create two further outcomes that we again need to rename and reset their probabilities.

7) Edit the outcome **S(0.5)** and rename it to **Operator stops flow to tank**; set the probability to **0.8**. Repeat for outcome **F(0.5)** renaming it to **Flow to tank not stopped by operator** with a probability of **0.2**.

Now we need to promote the second outcome of the event in the first level to the final outcome column.

8) Click the second outcome in the **Alarm Hardware** column to give it blue handles then right-click and click **Promote to Outcome Column**. This will extend the outcome to the final **Outcomes** column.

Complete this second level of events by renaming the header.

9) Double-click the heading **Level 2** and rename it to **Operator response to Alarm**.

Finally we need to add the final outcome descriptions.

10) Double-click 0.072 in the **Outcomes Value** column and add the description **No Overflow** and click OK. Repeat for the values 0.018, 0.010 and enter **Overflow Occurs** for each description.

We should now have a total frequency that overflow occurs of 0.028/yr.

And that’s it! If you have time try extending the drawing to include a third event level called **Trip Function** as shown below:

![Diagram](image)

11) First attach a new event to the outcome **Flow to tank not stopped by operator** with two new outcomes (a) **Trip in working state stops flow** with a probability of **0.95** and (b) **Trip in failed state** with a probability of **0.05**.

12) Next, attach a new event to the outcome **High Level Alarm in failed state** again with two outcomes (a) **Trip in working state stops flow** with a probability of **0.95** and (b) **Trip in failed state** with a probability of **0.05**.

13) Next, promote the outcome **Operator stops flow to tank** to the final **Outcomes** column.
14) Complete the drawing by renaming the Level 3 header to Trip Function and adding appropriate descriptions to the final Outcomes.

15) Finally, on the File menu click Customise and set the font size to 10 pt for the column headings and to 8 pt regular for the Outcome text and values.

You should end up with a total frequency that overflow occurs of 0.001/yr.
Chapter 8 – Event trees basics

The task of creating and maintaining event trees involves creating a project and then adding a series of events and outcomes to build up the event tree diagram. This chapter shows you how to manage event tree projects.

Creating a new event tree project

The first task in developing an event tree is to create the project.

To create a new event tree project:

1) Do one of:
 • On the initial screen click Create Event Tree.
 • Click File > New > Event Tree.
 • Press Ctrl + E.

The Event Tree dialog opens.

2) Enter a project name for your event tree and click OK.

A blank event tree diagram opens in the main pane.

You can now start to add events and outcomes to build up the diagram.

Opening an existing event tree project

To open an existing event tree project:

1) Do one of:
• On the initial screen click **Load File**.
• Click **File > Open**.
• Press Ctrl + O.
• Select **Logidraw Event Diagrams (*.EVT)** as the file type.

2) Browse to locate the project file and click **Open**.

Your event tree diagram opens in the main pane.

Adding events

Adding the initiator event

Once you have set up your project file you can start adding events.

To add the initiator event:

1) Click the background of the project window you have just created.

 The **Create initiator event** dialog opens.

2) Enter the name or short description for the event.
3) Change the outcomes as required.
4)
5) Click **OK**.

Adding null events

You can add levels to your chart by adding Null events.

Inserting a null event adds the event to the left of the current level and moves the following levels to the right. Appending a null event adds the event to the right of the current level.
Inserting a null event to the left

To insert a null event:
- Select the level where you want the null event to be added and do one of:
 - On the Tree menu click Insert NULL Event.
 - Right-click and click Insert NULL Event.

Appending a null event

To append a null event:
- Do one of:
 - Select the null event in the diagram and then on the Tree menu click Append NULL Event.
 - Right-click the null event in the diagram and click Append NULL Event.

Deleting a null event

To delete a null event:
1) Do one of:
 - Select the null event in the diagram and then on the Tree menu click Delete NULL Event.
 - Right-click the null event in the diagram and click Delete NULL Event.
 A prompt asks you if you want to delete the event.
2) Click Yes.
 The Null event is deleted and following event levels are moved to the left.

Editing events

Entering reference text for events and outcomes
Logidraw lets you add reference text when you edit an event or outcome.

To add reference text for the initiator event:
1) Do one of:
 - Double-click the initiator event in the diagram.
 - Right-click the initiator event and click Edit Event.
 - Select the initiator event and on the Tree menu click Edit Event.
 The Edit Initiator Event dialog opens.
2) On the dialog, click Notes.
3) Enter or change the text as required
4) Click OK to close the dialog.
5) Click OK again to close the Edit Initiator Event dialog.

To add reference text for an outcome:
1) Do one of:
 • Double-click the outcome in the diagram.
 • Right-click the outcome and click Edit Outcome.
 • Select the outcome, and on the Tree menu click Edit Outcome.
 The Edit Outcome dialog opens.
2) On the dialog, click Notes.
3) Enter or change the text as required
4) Click OK to close the dialog.
5) Click OK again to close the Edit Outcome dialog.

Viewing your event tree diagrams

Logidraw provides various ways in which an event diagram can be drawn and viewed. There are two options:

- **Fitted.** The event tree is compressed to fit the window.
- **Scrolled.** The event tree is allowed to scroll without any compression.
To set the view:

- On the View menu click one of:
 - Fitted
 - Scrolled

A check mark appears on the menu against the selected option.

Printing your event tree diagram

To print your event tree diagram:

1) Do one of:
 - Click File > Print.
 - Press Ctrl + P.

 The diagram is printed on your default printer.

Saving your event tree project

To save an event tree project:

1) Do one of:
 - Click File > Save.
 - Press Ctrl + S.

2) Browse to where you want to save the file, enter a file name and click Save.

 The project is saved with a file extension .EVT.

Closing an event tree project

To close the current event tree project:

- Do one of:
 - Click File > Close.
 - Click the Close (X) button for the window.

To close all open projects:

- Click File > Close All.

 This closes all open fault tree and event tree projects.
Chapter 9 – Advanced features

This chapter shows you how to use various advanced features for your event tree diagrams.

Erasing all events

This command clears your diagram to start again.

To erase all events:

1) Click Edit > Erase All Events.
 A message asks you to confirm that you want to continue.
2) Click Yes.

Note You cannot undo this command.

Connecting a fault tree to an event tree

Logidraw lets you connect the final gate from a fault tree as the input to an event tree. The final gate value must be a frequency or probability.

To connect a fault tree:

3) Open the Fault tree project whose output you want to use.
4) Switch the focus to your Event tree diagram.
5) On the Connect menu, click Connect Fault Tree Output.
 The Connect From Fault Tree Gate dialog opens.

6) Select the output gate and click OK.
 Details on the connection appear in the top banner (in blue) and the gate value is shown on the selected initator event.
To disconnect a fault tree:

1) On the Connect menu, click Disconnect Fault Tree Output. A message tells you the Fault tree has been disconnected.

2) Click OK. The top banner is cleared but the gate value remains for the initiator event.
Chapter 10 – Customising event trees

Logidraw lets you customise the application via a multi-tab customisation dialog. The customisation settings are saved in your setup file and are restored each time you start the application.

This chapter describes how you can change the following aspects of how Logidraw works:

Customisation options for event trees

The options for event trees define the various fonts used in drawing the diagram and the line style.

The customisation options for event trees are available when an event tree project is open (and on focus) or when you start the application and no project files are open.

To specify event tree preferences:

1) With an event tree project in focus, click File > Customise.
The dialog defines a font for each of: column headings, outcome text, outcome values and results panel.

2) To change a font, click the Change to open the standard Windows font picker.

3) Select your font, style and size and click OK to return to the Customisation Options dialog.
Quick reference

The following tables define the commands on the menu system.

File menu

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>New > Fault Tree</td>
<td>Create a new fault tree project</td>
<td>“Creating a new fault tree project” on page 19</td>
</tr>
<tr>
<td>New > Event Tree</td>
<td>Create a new event tree project</td>
<td>“Creating a new event tree project” on page 55</td>
</tr>
<tr>
<td>Open</td>
<td>Open a Logidraw file (.evt, .ldr, .log)</td>
<td>“Opening an existing fault tree project” on page 19</td>
</tr>
<tr>
<td>Close</td>
<td>Close the current file (prompting user to save file)</td>
<td>“Closing a fault tree project” on page 24</td>
</tr>
<tr>
<td>Close All</td>
<td>Close the all open files (prompting user to save each currently open file)</td>
<td>“Closing a fault tree project” on page 24</td>
</tr>
<tr>
<td>Save</td>
<td>Save the current file with current filename (for new Projects this gives Save As dialog) - during Saving both *.Ldr and *.Txt files are saved</td>
<td>“Saving your fault tree project” on page 24</td>
</tr>
<tr>
<td>Save As</td>
<td>Save the files with new names; creates file name for new Projects</td>
<td></td>
</tr>
<tr>
<td>Edit Title & Notes</td>
<td>Edit the Project details recorded in Logidraw files</td>
<td>“Maintaining project details” on page 32</td>
</tr>
<tr>
<td>Re-generate Notes File</td>
<td>Re-save the *.Txt file</td>
<td>“Maintaining diagram notes” on page 33</td>
</tr>
<tr>
<td>Print Setup</td>
<td>Set the Printing Options</td>
<td></td>
</tr>
<tr>
<td>Print</td>
<td>Print the Logic Diagram</td>
<td>“Printing your event tree diagram” on page 59</td>
</tr>
<tr>
<td>Customise</td>
<td>Set the user Preferences</td>
<td>“Customisation options for event trees” on page 83</td>
</tr>
<tr>
<td>Exit</td>
<td>Quit Logidraw</td>
<td>“Quitting Logidraw” on page 7</td>
</tr>
</tbody>
</table>
Edit menu

These options only appear when an event tree is open.

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undo</td>
<td>Undo for last change</td>
<td></td>
</tr>
<tr>
<td>Redo</td>
<td>Redo the last change</td>
<td></td>
</tr>
<tr>
<td>Erase All Events</td>
<td>Erase the complete diagram</td>
<td>"Erasing all events" on page 61</td>
</tr>
<tr>
<td>Copy Diagram To Clipboard</td>
<td>Copy the diagram to the clipboard</td>
<td></td>
</tr>
</tbody>
</table>

View menu

These options only appear when an event tree is open.

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fitted</td>
<td>Fit the event tree to the window</td>
<td>"Viewing your event tree diagrams" on page 58</td>
</tr>
<tr>
<td>Scrolled</td>
<td>Let the event tree scroll to view</td>
<td>"Viewing your event tree diagrams" on page 58</td>
</tr>
<tr>
<td>Show Outcome Probabilities</td>
<td>Show/hide the outcome probabilities</td>
<td>"Event tree window" on page 9</td>
</tr>
<tr>
<td>Show Outcome Values</td>
<td>Show/hide the outcome values</td>
<td>"Event tree window" on page 9</td>
</tr>
<tr>
<td>Show Column Lines</td>
<td>Show/hide the column lines</td>
<td>"Event tree window" on page 9</td>
</tr>
</tbody>
</table>

Connect menu

This menu only appears when an event tree is open.

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connect Fault Tree Output</td>
<td>Connect a fault tree output to an event tree</td>
<td>"Connecting a fault tree to an event tree" on page 61</td>
</tr>
<tr>
<td>Disconnect Fault Tree Output</td>
<td>Disconnect fault tree from an event tree</td>
<td>"Connecting a fault tree to an event tree" on page 61</td>
</tr>
</tbody>
</table>
Tree menu

This menu only appears when an event tree is open.

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promote to Outcome Column</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insert Null Event to Left</td>
<td>Insert a null event to the left</td>
<td>“Inserting a null event to the left” on page 57</td>
</tr>
<tr>
<td>Append NULL Event</td>
<td>Append a null event</td>
<td>“Appending a null event” on page 57</td>
</tr>
<tr>
<td>Edit Event</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete Event</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add Outcome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete Outcome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edit Outcome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attach Event to Outcome</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Window menu

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tile Horizontally</td>
<td>Tile open diagrams side-by-side</td>
<td></td>
</tr>
<tr>
<td>Tile Vertically</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cascade</td>
<td>Overlay open diagrams</td>
<td></td>
</tr>
<tr>
<td>Arrange Icons</td>
<td>Arrange minimised diagram icons</td>
<td></td>
</tr>
</tbody>
</table>

Help menu

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>Help – User Guide</td>
<td>Open the online help version of the Logidraw User Guide</td>
<td></td>
</tr>
<tr>
<td>Check for updates</td>
<td>Check if you have the latest version of the software</td>
<td></td>
</tr>
<tr>
<td>About</td>
<td>Open the Logidraw splash screen</td>
<td></td>
</tr>
</tbody>
</table>
The following table shows the keyboard shortcuts that let you perform commands quickly.

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
<th>Menu equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl+E</td>
<td>New Event Tree</td>
<td>File > New > Event Tree</td>
</tr>
<tr>
<td>Ctrl+O</td>
<td>Open</td>
<td>File > Open</td>
</tr>
<tr>
<td>Ctrl+S</td>
<td>Save</td>
<td>File > Save</td>
</tr>
<tr>
<td>Ctrl+A</td>
<td>Save All</td>
<td>File > Save All</td>
</tr>
<tr>
<td>Ctrl+P</td>
<td>Print</td>
<td>File > Print</td>
</tr>
<tr>
<td>F12</td>
<td>Open Customisation Options</td>
<td>File > Customise</td>
</tr>
</tbody>
</table>

Event trees

These shortcuts are only available when an event tree is open.

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
<th>Menu equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl+Z</td>
<td>Undo the last change</td>
<td>Edit > Undo</td>
</tr>
<tr>
<td>Ctrl+Y</td>
<td>Redo the last change</td>
<td>Edit > Redo</td>
</tr>
</tbody>
</table>
The following table records the revision history of this guide.

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description of change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>10 Oct 2002</td>
<td>First Approved Issue</td>
</tr>
<tr>
<td>1.1</td>
<td>24 Oct 2005</td>
<td>Removed Industrial IT logo</td>
</tr>
<tr>
<td>2.0</td>
<td>4 Feb 2013</td>
<td>Completely rewritten to include Event trees and Undo/Redo changes</td>
</tr>
</tbody>
</table>
Glossary

AND Special Gates
This gate type is generally used when we wish to combine multiple frequencies into an AND gate and supply an off-line calculation. An output dimension must be supplied for a gate of this type.

Constituent
A constituent is simply an input to a gate. This input can be a primary input or a gate output.

End-Gate
An end-gate is simply the final gate of a logic diagram. A valid logic diagram can have only one end-gate. The edit gate dialog displays ‘(End-Gate)’ in the caption of the dialog if a gate is an end-gate.

Entity
In Logidraw, an entity is simply an input or a gate.

ETA
Event Tree Analysis

FMEA
Failure Modes and Effects Analysis. A technique for failure analysis developed in the 1950s for analysing component failures in military system and their causes and effects. It is essentially a qualitative analysis.

FTA
Fault Tree Analysis

HAZOP
Hazards and operability study. A process hazards analysis procedure originally developed by ICI in the 1970s. The method is highly structured and divides the process into different operationally-based nodes and investigates the behaviour of the different parts of each node based on an array of possible deviation conditions or guidewords.
LOPA
Layer of Protection Analysis. A method of analysing the likelihood (frequency) of a harmful outcome event based on an initiating event frequency and on the probability of failure of a series of independent layers of protection capable of preventing the harmful outcome.

MDI
Multiple Document Interface.

PHR
Process Hazard Review

QRA
Quantitative risk assessment.

SIL
Safety Integrity Level. A quantitative target for measuring the level of performance needed for safety function to achieve a tolerable risk for a process hazard.
Index

A
Adding a connection 29
Adding a logic gate 22
Adding inputs 20
Adding the initiator event 56
Appending a null event 57
Automatic input references 34
Automatic sensitivity analysis 25

B
Bowtie diagrams 4
Building a glossary 39

C
Connect menu 66
Conventions 2
Copying an input 21
Copying entities between projects 28
Copying gate blocks 27
Copying inputs 27

D
Data menu 45
Deleting a gate 22
Deleting a null event 57
Deleting an input 21

E
Edit menu 44, 66
Editing an existing input 21
Editing multiple input/gate values 30
Entering reference text for events and outcomes 57
Entering reference text for inputs 33
Erasing all gates 28
Erasing inputs and gates 28
Event tree analysis 4
Event tree window 9
Event trees 69

F
Fault tree analysis 3
Fault tree project window 9
Fault trees 47
File menu 43

H
Hazard studies 3
Help menu 46, 67

I
Inserting a gate 31
Inserting a null event to the left 57

M
Maths menu 45
Menu bar 10
Moving blocks 27
Moving entities using cut & paste 27
Moving inputs 27

O
Online documentation 10
Online help 10
Opening a legacy fault tree project 20
Opening an existing event tree project 55
Opening an existing fault tree project 19

P
PEL Support Services 11
Performing path analysis 26
Process safety 3
Project windows 8

R
Re-Generating/Clearing input references 34
Removing a connection 29
Replacing an input with a gate output 31
Resetting all the print options 42

S
Setting a default folder 35
Setting display preferences 35
Setting general display preferences 38
Setting sensitivity analysis preferences 40
Setting the Confidentiality text 41
Setting the default drawing view modes 37
Setting the resizing options for fault trees 41
Specifying input references 38
Spot sensitivity analysis 25
Logidraw User Guide

T
Tree menu 67

U
Unlinking a connection 29
Using colour on your diagrams 36

V
View menu 44, 66

W
Window menu 45, 67