Relion® 650 series

Bay control REC650
Application manual
Copyright

This document and parts thereof must not be reproduced or copied without written permission from ABB, and the contents thereof must not be imparted to a third party, nor used for any unauthorized purpose.

The software and hardware described in this document is furnished under a license and may be used or disclosed only in accordance with the terms of such license.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit. (http://www.openssl.org/)

This product includes cryptographic software written/developed by: Eric Young (eay@cryptsoft.com) and Tim Hudson (tjh@cryptsoft.com).

Trademarks

ABB and Relion are registered trademarks of the ABB Group. All other brand or product names mentioned in this document may be trademarks or registered trademarks of their respective holders.

Warranty

Please inquire about the terms of warranty from your nearest ABB representative.

ABB AB
Grid Automation Products
SE-721 59 Västerås
Sweden
Telephone: +46 (0) 21 32 50 00
Facsimile: +46 (0) 21 14 69 18
http://www.abb.com/protection-control
Disclaimer

The data, examples and diagrams in this manual are included solely for the concept or product description and are not to be deemed as a statement of guaranteed properties. All persons responsible for applying the equipment addressed in this manual must satisfy themselves that each intended application is suitable and acceptable, including that any applicable safety or other operational requirements are complied with. In particular, any risks in applications where a system failure and/or product failure would create a risk for harm to property or persons (including but not limited to personal injuries or death) shall be the sole responsibility of the person or entity applying the equipment, and those so responsible are hereby requested to ensure that all measures are taken to exclude or mitigate such risks.

This document has been carefully checked by ABB but deviations cannot be completely ruled out. In case any errors are detected, the reader is kindly requested to notify the manufacturer. Other than under explicit contractual commitments, in no event shall ABB be responsible or liable for any loss or damage resulting from the use of this manual or the application of the equipment.
Conformity

This product complies with the directive of the Council of the European Communities on the approximation of the laws of the Member States relating to electromagnetic compatibility (EMC Directive 2004/108/EC) and concerning electrical equipment for use within specified voltage limits (Low-voltage directive 2006/95/EC). This conformity is the result of tests conducted by ABB in accordance with the product standards EN 50263 and EN 60255-26 for the EMC directive, and with the product standards EN 60255-1 and EN 60255-27 for the low voltage directive. The product is designed in accordance with the international standards of the IEC 60255 series.
Table of contents

Section 1 **Introduction** ... 15
This manual ... 15
Intended audience ... 15
Product documentation .. 16
Product documentation set.. 16
Document revision history .. 17
Related documents ... 17
Symbols and conventions ... 18
Symbols .. 18
Document conventions .. 19

Section 2 **Application** ... 21
REC650 application .. 21
Available functions ... 25
Control and monitoring functions ... 25
Back-up protection functions .. 28
Station communication ... 29
Basic IED functions .. 31
REC650 application examples.. 32
Adaptation to different applications .. 32
Single breaker line bay, single or double busbar, in solidly earthed network.. 32
Single breaker line bay, single or double busbar, in high impedance earthed network................................. 33
Bus coupler in a solidly earthed network...................................... 35
Bus coupler in a high impedance earthed network..................... 35

Section 3 **REC650 setting examples** .. 39
Setting example when REC650 is used as back-up protection in a transformer protection application 39
Calculating general settings for analogue inputs 8I 2U 40
Calculating settings for global base values GBASVAL 41
Calculating settings for instantaneous phase overcurrent protection, HV-side, PHPIOC .. 42
Calculating settings for four step phase overcurrent protection 3-phase output, HV-side, OC4PTOC 43
Calculating general settings ... 43
Calculating settings for step 1 ... 43
Calculating settings for four step phase overcurrent protection 3-phase output, LV-side OC4PTOC 46

Application manual
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Analog inputs</th>
<th>Setting guidelines</th>
<th>Setting of the phase reference channel</th>
<th>Relationships between setting parameter Base Current, CT rated primary current and minimum pickup of a protection IED</th>
<th>Setting of current channels</th>
<th>Example 1</th>
<th>Example 2</th>
<th>Examples on how to connect, configure and set CT inputs for most commonly used CT connections</th>
<th>Example on how to connect a star connected three-phase CT set to the IED</th>
<th>Setting of voltage channels</th>
<th>Example</th>
<th>Examples how to connect, configure and set VT inputs for most commonly used VT connections</th>
<th>Examples on how to connect a three phase-to-earth connected VT to the IED</th>
<th>Example on how to connect a phase-to-phase connected VT to the IED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Section 5</td>
<td>Local human-machine interface</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Local HMI</td>
<td>Display</td>
<td>LEDs</td>
<td>Keypad</td>
<td>Local HMI functionality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 Application manual
Section 6 Current protection

Instantaneous phase overcurrent protection 3-phase output
PHPIOC
Identification
Application
Setting guidelines

4-step phase overcurrent protection 3-phase output
OC4PTOC
Identification
Application
Setting guidelines

Instantaneous residual overcurrent protection EFPIOC
Identification
Application
Setting guidelines

Four step residual overcurrent protection, zero, negative sequence direction EF4PTOC
Identification
Application
Setting guidelines

Sensitive directional residual overcurrent and power protection
SDEPSDE
Identification
Application
Setting guidelines

Thermal overload protection, one time constant Celsius/Fahrenheit
LCPTTR/LFPTTR
Identification
Application
Setting guidelines

Breaker failure protection 3-phase activation and output CCRBRF

Table of contents

Protection and alarm indication .. 76
Parameter management .. 78
Front communication .. 78
Single-line diagram ... 79

Section 6 Current protection .. 81
Instantaneous phase overcurrent protection 3-phase output
PHPIOC ... 81
Identification .. 81
Application ... 81
Setting guidelines .. 82

Meshed network without parallel line 82
Meshed network with parallel line .. 84

Four step phase overcurrent protection 3-phase output
OC4PTOC .. 86
Identification .. 86
Application ... 86
Setting guidelines .. 87
Settings for steps 1 to 4 ... 88
2nd harmonic restrain ... 90

Instantaneous residual overcurrent protection EFPIOC 95
Identification .. 95
Application ... 95
Setting guidelines .. 95

Four step residual overcurrent protection, zero, negative sequence direction EF4PTOC ... 97
Identification .. 98
Application ... 98
Setting guidelines .. 100
Settings for steps 1 and 4 ... 100
Common settings for all steps ... 102
2nd harmonic restrain ... 103
Line application example .. 104

Sensitive directional residual overcurrent and power protection
SDEPSDE .. 109
Identification .. 109
Application ... 109
Setting guidelines .. 110

Thermal overload protection, one time constant Celsius/Fahrenheit
LCPTTR/LFPTTR ... 118
Identification .. 118
Application ... 118
Setting guidelines .. 119

Breaker failure protection 3-phase activation and output CCRBRF 120
Identification.. 120
Application...120
Setting guidelines.. 121

Stub protection STBPTOC .. 123
Identification.. 123
Application...123
Setting guidelines.. 124

Pole discordance protection CCRPLD .. 124
Identification.. 125
Application...125
Setting guidelines.. 125

Broken conductor check BRCPTOC ... 126
Identification.. 126
Application...126
Setting guidelines.. 126

Directional over-/under-power protection GOPPDOP/GUPPDUP. 127
Application...127

Directional overpower protection GOPPDOP129
Identification.. 129
Setting guidelines.. 129

Directional underpower protection GUPPDUP..........................133
Identification.. 133
Setting guidelines.. 133

Negative sequence based overcurrent function DNSPTOC136
Identification.. 136
Application...136
Setting guidelines.. 136

Section 7 Voltage protection.. 139
Two step undervoltage protection UV2PTUV 139
Identification.. 139
Application...139
Setting guidelines.. 140

Equipment protection, such as for motors and generators...140
Disconnected equipment detection...................................... 140
Power supply quality ... 140
Voltage instability mitigation... 140
Backup protection for power system faults......................... 140
Settings for Two step undervoltage protection..................... 141

Two step overvoltage protection OV2PTOV 142
Identification.. 142
Application...142
Setting guidelines.. 143

Two step residual overvoltage protection ROV2PTOV 145
Section 8 Frequency protection

Underfrequency protection SAPTUF

Identification

Application

Setting guidelines

Overfrequency protection SAPTOF

Identification

Application

Setting guidelines

Rate-of-change frequency protection SAPFRC

Identification

Application

Setting guidelines

Section 9 Secondary system supervision

Current circuit supervision CCSRDIF

Identification

Application

Setting guidelines

Fuse failure supervision SDDRFUF

Identification

Application

Setting guidelines

General

Setting of common parameters

Negative sequence based

Zero sequence based

Delta U and delta I

Dead line detection

Breaker close/trip circuit monitoring TCSSCBR

Identification
Table of contents

Application ... 163

Section 10 Control ... 167

- Synchrocheck, energizing check, and synchronizing SESRSYN 167
 - Identification .. 167
 - Application .. 167
 - Synchronizing ... 167
 - Synchrocheck ... 168
 - Energizing check .. 170
 - Voltage selection .. 171
 - External fuse failure ... 172
 - Application examples .. 173
 - Single circuit breaker with single busbar .. 174
 - Single circuit breaker with double busbar, external voltage selection 175
 - Single circuit breaker with double busbar, internal voltage selection 176
 - Setting guidelines ... 176

- Autorecloser for 3-phase operation SMBRREC .. 181
 - Identification .. 181
 - Application .. 181
 - Auto-reclosing operation OFF and ON .. 184
 - Start auto-reclosing and conditions for start of a reclosing cycle 184
 - Start auto-reclosing from CB open information 184
 - Blocking of the autorecloser ... 185
 - Control of the auto-reclosing open time ... 185
 - Long trip signal ... 185
 - Maximum number of reclosing shots ... 185
 - 3-phase reclosing, one to five shots according to setting NoOfShots 185
 - Reclosing reclaim timer ... 186
 - Transient fault ... 186
 - Permanent fault and reclosing unsuccessful signal 186
 - Lock-out initiation ... 186
 - Automatic continuation of the reclosing sequence 188
 - Thermal overload protection holding the auto-reclosing function back ... 188
 - Setting guidelines ... 188
 - Configuration ... 188
 - Auto-recloser parameter settings .. 192

- Apparatus control ... 195
 - Identification .. 195
 - Application .. 195
Table of contents

<table>
<thead>
<tr>
<th>Interaction between modules</th>
<th>203</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting guidelines</td>
<td>205</td>
</tr>
<tr>
<td>Switch controller (SCSWI)</td>
<td>206</td>
</tr>
<tr>
<td>Switch (SXB/SXSWI)</td>
<td>206</td>
</tr>
<tr>
<td>Bay control (QCBAY)</td>
<td>207</td>
</tr>
</tbody>
</table>

Interlocking | 207 |
| Identification | 207 |
| Configuration guidelines | 209 |

Interlocking for busbar earthing switch BB_ES | 209 |
Application	209
Signals in single breaker arrangement	209
Signals in double-breaker arrangement	213
Signals in 1 1/2 breaker arrangement	214

Interlocking for bus-section breaker A1A2_BS | 215 |
Application	215
Signals from all feeders	216
Configuration setting	218

Interlocking for bus-section disconnector A1A2_DC | 219 |
Application	219
Signals in single breaker arrangement	219
Signals in double-breaker arrangement	222
Signals in 1 1/2 breaker arrangement	225

Interlocking for bus-coupler bay ABC_BC | 226 |
Application	226
Configuration	227
Signals from all feeders	227
Signals from bus-coupler	229
Configuration setting	231

Interlocking for 1 1/2 CB BH | 232 |
| Application | 232 |
| Configuration setting | 233 |

Interlocking for double CB bay DB | 234 |
| Application | 234 |
| Configuration setting | 235 |

Interlocking for line bay ABC_LINE | 235 |
Application	235
Signals from bypass busbar	236
Signals from bus-coupler	237
Configuration setting	240

Interlocking for transformer bay AB_TRAFO | 241 |
| Application | 241 |
| Signals from bus-coupler | 241 |

Application manual
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Configuration setting</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td>Logic rotating switch for function selection and LHMI presentation</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>Identification</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>Application</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>Setting guidelines</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>Selector mini switch VSGGIO</td>
<td>244</td>
</tr>
<tr>
<td></td>
<td>Identification</td>
<td>244</td>
</tr>
<tr>
<td></td>
<td>Application</td>
<td>244</td>
</tr>
<tr>
<td></td>
<td>Setting guidelines</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>IEC61850 generic communication I/O functions DPGGIO</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>Identification</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>Application</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>Setting guidelines</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>Single point generic control 8 signals SPC8GGIO</td>
<td>246</td>
</tr>
<tr>
<td></td>
<td>Identification</td>
<td>246</td>
</tr>
<tr>
<td></td>
<td>Application</td>
<td>246</td>
</tr>
<tr>
<td></td>
<td>Setting guidelines</td>
<td>246</td>
</tr>
<tr>
<td></td>
<td>Automation bits AUTOBITS</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>Identification</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>Application</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>Setting guidelines</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>Section 11 Logic</td>
<td>249</td>
</tr>
<tr>
<td></td>
<td>Tripping logic common 3-phase output SMPPTRC</td>
<td>249</td>
</tr>
<tr>
<td></td>
<td>Identification</td>
<td>249</td>
</tr>
<tr>
<td></td>
<td>Application</td>
<td>249</td>
</tr>
<tr>
<td></td>
<td>Three-phase tripping</td>
<td>249</td>
</tr>
<tr>
<td></td>
<td>Lock-out</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Blocking of the function block</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Setting guidelines</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Trip matrix logic TMAGGIO</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>Identification</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>Application</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>Setting guidelines</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>Configurable logic blocks</td>
<td>252</td>
</tr>
<tr>
<td></td>
<td>Identification</td>
<td>252</td>
</tr>
<tr>
<td></td>
<td>Application</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>Configuration</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>Fixed signals FXDSIGN</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>Identification</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>Application</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>Boolean 16 to integer conversion B16I</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td>Identification</td>
<td>257</td>
</tr>
</tbody>
</table>
Table of contents

- Application... 257
- Setting guidelines... 257
- Boolean 16 to integer conversion with logic node representation
 B16IFCVI.. 258
- Identification.. 258
- Application... 258
- Setting guidelines... 258
- Integer to boolean 16 conversion IB16A...................................... 258
- Identification.. 258
- Application... 258
- Setting guidelines... 258
- Integer to boolean 16 conversion with logic node representation
 IB16FCVB... 259
- Identification.. 259
- Application... 259
- Settings.. 259
- Elapsed time integrator with limit transgression and overflow
 supervision TEIGGIO.. 259
- Identification.. 259
- Application... 260
- Setting guidelines... 260

Section 12 Monitoring... 261

- IEC61850 generic communication I/O functions SPGGIO............. 261
 - Identification... 261
 - Application... 261
 - Setting guidelines... 261
- IEC61850 generic communication I/O functions 16 inputs
 SP16GGIO... 261
 - Identification... 261
 - Application... 261
 - Setting guidelines... 262
- IEC61850 generic communication I/O functions MVGGIO........... 262
 - Identification... 262
 - Application... 262
 - Setting guidelines... 262
- Measurements.. 263
 - Identification... 263
 - Application... 263
 - Setting guidelines... 265
 - Setting examples... 268
 - Measurement function application for a 110kV OHL.............. 268
- Event counter CNTGGIO.. 271
 - Identification... 271

Application manual
Section 14 Station communication

IEC61850-8-1 communication protocol ... 291
Identification.. 291
Application... 291
Horizontal communication via GOOSE.. 293
Setting guidelines... 295
DNP3 protocol.. 295
IEC 60870-5-103 communication protocol... 296
IEC 61850-8-1 redundant station bus communication......................... 296
Application.. 296
Setting guidelines... 297

Section 15 Basic IED functions

Self supervision with internal event list .. 301
Identification.. 301
Application.. 301
Time synchronization... 302
Identification.. 302
Application.. 302
Setting guidelines... 303
Parameter setting group handling... 305
Identification.. 305
Application.. 305
Setting guidelines... 306
Test mode functionality TESTMODE.. 306
Identification.. 306
Application.. 306
Setting guidelines... 306
Change lock CHNGLCK... 307
Identification.. 307
Application.. 307
Setting guidelines... 308
IED identifiers TERMINALID... 308
Identification.. 308
Application.. 308
Customer specific settings... 308
Product information PRODINF.. 308
Identification.. 308
Application.. 309
Factory defined settings... 309
Primary system values PRIMVAL... 310
Identification.. 310
Table of contents

Section 16 Requirements...319
 Current transformer requirements..319
 Current transformer classification...319
 Conditions..320
 Fault current...320
 Secondary wire resistance and additional load........................321
 General current transformer requirements.............................321
 Rated equivalent secondary e.m.f. requirements.......................322
 Breaker failure protection...322
 Non-directional instantaneous and definitive time, phase and residual overcurrent protection..........................322
 Non-directional inverse time delayed phase and residual overcurrent protection..323
 Directional phase and residual overcurrent protection...........324
 Current transformer requirements for CTs according to other standards..324
 Current transformers according to IEC 61869-2, class P, PR325
Current transformers according to IEC 61869-2, class PX, PXR (and old IEC 60044-6, class TPS and old British Standard, class X).. 325
Current transformers according to ANSI/IEEE.. 325
Voltage transformer requirements.. 326
SNTP server requirements.. 327
SNTP server requirements.. 327

Section 17 Glossary.. 329
Section 1 Introduction

1.1 This manual

The application manual contains application descriptions and setting guidelines sorted per function. The manual can be used to find out when and for what purpose a typical protection function can be used. The manual can also provide assistance for calculating settings.

1.2 Intended audience

This manual addresses the protection and control engineer responsible for planning, pre-engineering and engineering.

The protection and control engineer must be experienced in electrical power engineering and have knowledge of related technology, such as protection schemes and communication principles.
The engineering manual contains instructions on how to engineer the IEDs using the various tools available within the PCM600 software. The manual provides instructions on how to set up a PCM600 project and insert IEDs to the project structure. The manual also recommends a sequence for the engineering of protection and control functions, LHMI functions as well as communication engineering for IEC 60870-5-103, IEC 61850 and DNP 3.0.

The installation manual contains instructions on how to install the IED. The manual provides procedures for mechanical and electrical installation. The chapters are organized in the chronological order in which the IED should be installed.

The commissioning manual contains instructions on how to commission the IED. The manual can also be used by system engineers and maintenance personnel for assistance during the testing phase. The manual provides procedures for the checking of external circuitry and energizing the IED, parameter setting and configuration as well as verifying settings by secondary injection. The manual describes the process of testing an IED in a substation which is not in service. The chapters are organized in the
chronological order in which the IED should be commissioned. The relevant procedures may be followed also during the service and maintenance activities.

The operation manual contains instructions on how to operate the IED once it has been commissioned. The manual provides instructions for the monitoring, controlling and setting of the IED. The manual also describes how to identify disturbances and how to view calculated and measured power grid data to determine the cause of a fault.

The application manual contains application descriptions and setting guidelines sorted per function. The manual can be used to find out when and for what purpose a typical protection function can be used. The manual can also provides assistance for calculating settings.

The technical manual contains application and functionality descriptions and lists function blocks, logic diagrams, input and output signals, setting parameters and technical data, sorted per function. The manual can be used as a technical reference during the engineering phase, installation and commissioning phase, and during normal service.

The communication protocol manual describes the communication protocols supported by the IED. The manual concentrates on the vendor-specific implementations.

The point list manual describes the outlook and properties of the data points specific to the IED. The manual should be used in conjunction with the corresponding communication protocol manual.

1.3.2 Document revision history

<table>
<thead>
<tr>
<th>Document revision/date</th>
<th>History</th>
</tr>
</thead>
<tbody>
<tr>
<td>-/March 2013</td>
<td>First release</td>
</tr>
<tr>
<td>A/October 2016</td>
<td>Minor corrections made</td>
</tr>
</tbody>
</table>

1.3.3 Related documents

Documents related to REC650

<table>
<thead>
<tr>
<th>Identity number</th>
<th>Application manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1MRK 511 286-UEN</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Identity number</th>
<th>Technical manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1MRK 511 287-UEN</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Identity number</th>
<th>Commissioning manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1MRK 511 288-UEN</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Identity number</th>
<th>Product Guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>1MRK 511 289-BEN</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Identity number</th>
<th>Type test certificate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1MRK 511 289-TEN</td>
<td></td>
</tr>
</tbody>
</table>

650 series manuals

<table>
<thead>
<tr>
<th>Identity number</th>
<th>Communication protocol manual, DNP 3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1MRK 511 280-UEN</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Identity number</th>
<th>Communication protocol manual, IEC 61850–8–1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1MRK 511 281-UEN</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Identity number</th>
<th>Communication protocol manual, IEC 60870-5-103</th>
</tr>
</thead>
<tbody>
<tr>
<td>1MRK 511 282-UEN</td>
<td></td>
</tr>
</tbody>
</table>

Table continues on next page
1.4 Symbols and conventions

1.4.1 Symbols

The electrical warning icon indicates the presence of a hazard which could result in electrical shock.

The warning icon indicates the presence of a hazard which could result in personal injury.

The caution icon indicates important information or warning related to the concept discussed in the text. It might indicate the presence of a hazard which could result in corruption of software or damage to equipment or property.

The information icon alerts the reader of important facts and conditions.

The tip icon indicates advice on, for example, how to design your project or how to use a certain function.

Although warning hazards are related to personal injury, it is necessary to understand that under certain operational conditions, operation of damaged equipment may result in degraded process performance leading to personal injury or death. It is important that the user fully complies with all warning and cautionary notices.
1.4.2 Document conventions

- Abbreviations and acronyms in this manual are spelled out in the glossary. The glossary also contains definitions of important terms.
- Push button navigation in the LHMI menu structure is presented by using the push button icons. For example, to navigate between the options, use ▲ and ▼.
- HMI menu paths are presented in bold. For example, select Main menu/Settings.
- LHMI messages are shown in Courier font. For example, to save the changes in non-volatile memory, select Yes and press ▼.
- Parameter names are shown in italics. For example, the function can be enabled and disabled with the Operation setting.
- Each function block symbol shows the available input/output signal.
 - the character ^ in front of an input/output signal name indicates that the signal name may be customized using the PCM600 software.
 - the character * after an input/output signal name indicates that the signal must be connected to another function block in the application configuration to achieve a valid application configuration.
Section 2 Application

2.1 REC650 application

REC650 is used for the control, protection and monitoring of different types of bays in power networks. The IED is especially suitable for applications in control systems with distributed control IEDs in all bays with high demands on reliability. It is intended mainly for sub-transmission stations. It is suitable for the control of all apparatuses in single busbar single CB, double busbar single CB switchgear arrangement.

The control is performed from remote (SCADA/Station) through the communication or from local HMI. Different control configurations can be used, and one control IED per bay is recommended. Interlocking modules are available for common types of switchgear arrangements. The control is based on the select before execute principle to give highest possible security. A synchronism control function is available to interlock breaker closing. A synchronizing function where breaker closes at the right instance in asynchronous networks is also provided.

A number of protection functions are available for flexibility in use for different station types and busbar arrangements. The auto-reclose includes priority circuits for single-breaker arrangements. It co-operates with the synchrocheck function with high-speed or delayed reclosing.

High set instantaneous phase and earth overcurrent, 4 step directional or non-directional delayed phase and earth overcurrent, thermal overload and two step under- and overvoltage functions are examples of the available functions allowing user to fulfill any application requirement.

Disturbance recording is available to allow independent post-fault analysis after primary disturbances.

Three packages have been defined for following applications:

- Single breaker for single busbar (A01)
- Single breaker for double busbar (A02)
- Bus coupler for double busbar (A07)

The packages are configured and ready for direct use. Analog and control circuits have been pre-defined. Other signals need to be applied as required for each application. The main differences between the packages above are the interlocking modules and the number of apparatuses to control.

The graphical configuration tool ensures simple and fast testing and commissioning.
Figure 2: A typical protection and control application for a single busbar in single breaker arrangement
Figure 3: A typical protection and control application for a double busbar in single breaker arrangement
Figure 4: A typical protection and control application for a bus coupler in single breaker arrangement
2.2 Available functions

2.2.1 Control and monitoring functions

<table>
<thead>
<tr>
<th>IEC 61850 or Function name</th>
<th>ANSI</th>
<th>Function description</th>
<th>REC650</th>
<th>REC650 (A01) 3Ph/1CBA</th>
<th>REC650 (A02) 3Ph/1CBAB</th>
<th>REC896 (A07) BCAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SESRSYN</td>
<td>25</td>
<td>Synchrocheck, energizing check, and synchronizing</td>
<td>0–1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SMBRREC</td>
<td>79</td>
<td>Autorecloser for 3-phase operation</td>
<td>0–1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SLGGGIO</td>
<td></td>
<td>Logic Rotating Switch for function selection and LHMI presentation</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>VSGGIO</td>
<td></td>
<td>Selector mini switch</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>DPGGIO</td>
<td></td>
<td>IEC 61850 generic communication I/O functions double point</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>SPC8GGGIO</td>
<td></td>
<td>Single point generic control 8 signals</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>AUTOBITS</td>
<td></td>
<td>AutomationBits, command function for DNP3.0</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>I103CMD</td>
<td></td>
<td>Function commands for IEC60870-5-103</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>I103IEDCMD</td>
<td></td>
<td>IED commands for IEC60870-5-103</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>I103USRCMD</td>
<td></td>
<td>Function commands user defined for IEC60870-5-103</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>I103GENCMD</td>
<td></td>
<td>Function commands generic for IEC60870-5-103</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>I103POSCMD</td>
<td></td>
<td>IED commands with position and select for IEC60870-5-103</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Apparatus control and Interlocking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APC8</td>
<td></td>
<td>Apparatus control for single bay, max 8 app. (1CB) incl. interlocking</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SCILO</td>
<td>3</td>
<td>Logical node for interlocking</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>BB_ES</td>
<td>3</td>
<td>Interlocking for busbar earthing switch</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>A1A2_BS</td>
<td>3</td>
<td>Interlocking for bus-section breaker</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>A1A2_DC</td>
<td>3</td>
<td>Interlocking for bus-section disconnector</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ABC_BC</td>
<td>3</td>
<td>Interlocking for bus-coupler bay</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>BH_CONN</td>
<td>3</td>
<td>Interlocking for 1 1/2 breaker diameter</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>BH_LINE_A</td>
<td>3</td>
<td>Interlocking for 1 1/2 breaker diameter</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>BH_LINE_B</td>
<td>3</td>
<td>Interlocking for 1 1/2 breaker diameter</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>DB_BUS_A</td>
<td>3</td>
<td>Interlocking for double CB bay</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>DB_BUS_B</td>
<td>3</td>
<td>Interlocking for double CB bay</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>DB_LINE</td>
<td>3</td>
<td>Interlocking for double CB bay</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>IEC 61850 or Function name</th>
<th>ANSI</th>
<th>Function description</th>
<th>Bay</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC_LINE</td>
<td>3</td>
<td>Interlocking for line bay</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td>AB_TRAFO</td>
<td>3</td>
<td>Interlocking for transformer bay</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td>SXCWI</td>
<td>8</td>
<td>Switch controller</td>
<td>8 8 8 8</td>
</tr>
<tr>
<td>SXCBR</td>
<td>3</td>
<td>Circuit breaker</td>
<td>3 3 3 3</td>
</tr>
<tr>
<td>SXSWI</td>
<td>7</td>
<td>Circuit switch</td>
<td>7 7 7 7</td>
</tr>
<tr>
<td>POS_EVAL</td>
<td>8</td>
<td>Evaluation of position indication</td>
<td>8 8 8 8</td>
</tr>
<tr>
<td>SELGGIO</td>
<td></td>
<td>Select release</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td>QCBAY</td>
<td></td>
<td>Bay control</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td>LOCREM</td>
<td>1</td>
<td>Handling of LR-switch positions</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td>LOCREMCTRL</td>
<td>1</td>
<td>LHMI control of Permitted Source To Operate (PSTO)</td>
<td>1 1 1 1</td>
</tr>
</tbody>
</table>

Secondary system supervision

CCSRDIF	87	Current circuit supervision	0–1 1 1 1
SDDRFUF		Fuse failure supervision	0–1 1 1 1
TCSSCBR		Breaker close/trip circuit monitoring	3 3 3 3

Logic

SMPPTRC	94	Tripping logic, common 3–phase output	1 1 1 1
TMAGGIO		Trip matrix logic	12 12 12 12
OR		Configurable logic blocks	283 283 283 283
INVERTER		Configurable logic blocks	140 140 140 140
PULSETIMER		Configurable logic blocks	40 40 40 40
GATE		Configurable logic blocks	40 40 40 40
XOR		Configurable logic blocks	40 40 40 40
LOOPDELAY		Configurable logic blocks	40 40 40 40
TIMERSET		Configurable logic blocks	40 40 40 40
AND		Configurable logic blocks	280 280 280 280
SRMEMORY		Configurable logic blocks	40 40 40 40
RSMEMORY		Configurable logic blocks	40 40 40 40
Q/T		Configurable logic blocks Q/T	0–1 1 1 1
ANDQT		Configurable logic blocks Q/T	0–120 120 120 120
ORQT		Configurable logic blocks Q/T	0–120 120 120 120
INVERTERQT		Configurable logic blocks Q/T	0–120 120 120 120
XORQT		Configurable logic blocks Q/T	0–40 40 40 40
SRMEMORYQT		Configurable logic blocks Q/T	0–40 40 40 40
RSMEMORYQT		Configurable logic blocks Q/T	0–40 40 40 40
TIMERSETQT		Configurable logic blocks Q/T	0–40 40 40 40

Table continues on next page
<table>
<thead>
<tr>
<th>IEC 61850 or Function name</th>
<th>ANSI</th>
<th>Function description</th>
<th>Bay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>REC650 (A01)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>REC650 (A02)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>REC650 (A05)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>REC650 (A07)</td>
<td></td>
</tr>
<tr>
<td>PULSETIMERQT</td>
<td></td>
<td>Configurable logic blocks Q/T</td>
<td>0–40</td>
</tr>
<tr>
<td>INVALIDQT</td>
<td></td>
<td>Configurable logic blocks Q/T</td>
<td>0–12</td>
</tr>
<tr>
<td>INDECOMBSPQT</td>
<td></td>
<td>Configurable logic blocks Q/T</td>
<td>0–20</td>
</tr>
<tr>
<td>INDEXTSPQT</td>
<td></td>
<td>Configurable logic blocks Q/T</td>
<td>0–20</td>
</tr>
<tr>
<td>FXDSIGN</td>
<td></td>
<td>Fixed signal function block</td>
<td>1</td>
</tr>
<tr>
<td>B16I</td>
<td></td>
<td>Boolean 16 to Integer conversion</td>
<td>16</td>
</tr>
<tr>
<td>B16IFCVI</td>
<td></td>
<td>Boolean 16 to Integer conversion with logic node representation</td>
<td>16</td>
</tr>
<tr>
<td>IB16A</td>
<td></td>
<td>Integer to Boolean 16 conversion</td>
<td>16</td>
</tr>
<tr>
<td>IB16FCVB</td>
<td></td>
<td>Integer to Boolean 16 conversion with logic node representation</td>
<td>16</td>
</tr>
<tr>
<td>TEIGGIO</td>
<td></td>
<td>Elapsed time integrator with limit transgression and overflow supervision</td>
<td>12</td>
</tr>
<tr>
<td>Monitoring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVMMXN</td>
<td></td>
<td>Measurements</td>
<td>6</td>
</tr>
<tr>
<td>CMMXU</td>
<td></td>
<td>Phase current measurement</td>
<td>10</td>
</tr>
<tr>
<td>VMMXU</td>
<td></td>
<td>Phase-phase voltage measurement</td>
<td>6</td>
</tr>
<tr>
<td>CMSQI</td>
<td></td>
<td>Current sequence component measurement</td>
<td>6</td>
</tr>
<tr>
<td>VMSQI</td>
<td></td>
<td>Voltage sequence measurement</td>
<td>6</td>
</tr>
<tr>
<td>VNMMXU</td>
<td></td>
<td>Phase-neutral voltage measurement</td>
<td>6</td>
</tr>
<tr>
<td>AISVBAS</td>
<td></td>
<td>Function block for service values presentation of the analog inputs</td>
<td>1</td>
</tr>
<tr>
<td>TM_P_P2</td>
<td></td>
<td>Function block for service values presentation of primary analog inputs 600TRM</td>
<td>1</td>
</tr>
<tr>
<td>AM_P_P4</td>
<td></td>
<td>Function block for service values presentation of primary analog inputs 600AIM</td>
<td>1</td>
</tr>
<tr>
<td>TM_S_P2</td>
<td></td>
<td>Function block for service values presentation of secondary analog inputs 600TRM</td>
<td>1</td>
</tr>
<tr>
<td>AM_S_P4</td>
<td></td>
<td>Function block for service values presentation of secondary analog inputs 600AIM</td>
<td>1</td>
</tr>
<tr>
<td>CNTGGIO</td>
<td></td>
<td>Event counter</td>
<td>5</td>
</tr>
<tr>
<td>L4UFCNT</td>
<td></td>
<td>Event counter with limit supervision</td>
<td>12</td>
</tr>
<tr>
<td>DRRPRDR</td>
<td></td>
<td>Disturbance report</td>
<td>1</td>
</tr>
<tr>
<td>AnRADR</td>
<td></td>
<td>Analog input signals</td>
<td>4</td>
</tr>
<tr>
<td>BnRBDR</td>
<td></td>
<td>Binary input signals</td>
<td>6</td>
</tr>
<tr>
<td>SPGGIO</td>
<td></td>
<td>IEC 61850 generic communication I/O functions</td>
<td>64</td>
</tr>
<tr>
<td>SP16GGIO</td>
<td></td>
<td>IEC 61850 generic communication I/O functions 16 inputs</td>
<td>16</td>
</tr>
</tbody>
</table>

Table continues on next page
Back-up protection functions

<table>
<thead>
<tr>
<th>IEC 61850 or Function name</th>
<th>ANSI</th>
<th>Function description</th>
<th>Bay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current protection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHPIOC</td>
<td>50</td>
<td>Instantaneous phase overcurrent protection, 3-phase output</td>
<td>0–1</td>
</tr>
<tr>
<td>OC4PTOC</td>
<td>51/67</td>
<td>Four step phase overcurrent protection, 3-phase output</td>
<td>0–1</td>
</tr>
<tr>
<td>EFPIOC</td>
<td>50N</td>
<td>Instantaneous residual overcurrent protection</td>
<td>0–1</td>
</tr>
<tr>
<td>Metering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCGGIO</td>
<td></td>
<td>Pulse counter</td>
<td>16</td>
</tr>
<tr>
<td>ETPMMTR</td>
<td></td>
<td>Function for energy calculation and demand handling</td>
<td>3</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>IEC 61850 or Function name</th>
<th>ANSI</th>
<th>Function description</th>
<th>Bay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>REC650</td>
</tr>
<tr>
<td>EF4PTOC</td>
<td>51N/67N</td>
<td>Four step residual overcurrent protection, zero/ negative sequence direction</td>
<td>0–1</td>
</tr>
<tr>
<td>SDEPSDE</td>
<td>67N</td>
<td>Sensitive directional residual overcurrent and power protection</td>
<td>0–1</td>
</tr>
<tr>
<td>LCPTTR</td>
<td>26</td>
<td>Thermal overload protection, one time constant, Celsius</td>
<td>0–1</td>
</tr>
<tr>
<td>LFPTTR</td>
<td>26</td>
<td>Thermal overload protection, one time constant, Fahrenheit</td>
<td>0–1</td>
</tr>
<tr>
<td>CCRBRF</td>
<td>50BF</td>
<td>Breaker failure protection, 3–phase activation and output</td>
<td>0–1</td>
</tr>
<tr>
<td>STBPTOC</td>
<td>50STB</td>
<td>Stub protection</td>
<td>0–1</td>
</tr>
<tr>
<td>CCRPLD</td>
<td>52PD</td>
<td>Pole discordance protection</td>
<td>0–1</td>
</tr>
<tr>
<td>BRCPTOC</td>
<td>46</td>
<td>Broken conductor check</td>
<td>0–1</td>
</tr>
<tr>
<td>GUPPDUP</td>
<td>37</td>
<td>Directional underpower protection</td>
<td>0–1</td>
</tr>
<tr>
<td>GOPPDOP</td>
<td>32</td>
<td>Directional overpower protection</td>
<td>0–1</td>
</tr>
<tr>
<td>DNSPTOC</td>
<td>46</td>
<td>Negative sequence based overcurrent function</td>
<td>0–1</td>
</tr>
<tr>
<td>Voltage protection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UV2PTUV</td>
<td>27</td>
<td>Two step undervoltage protection</td>
<td>0–1</td>
</tr>
<tr>
<td>OV2PTOV</td>
<td>59</td>
<td>Two step overvoltage protection</td>
<td>0–1</td>
</tr>
<tr>
<td>ROV2PTOV</td>
<td>59N</td>
<td>Two step residual overvoltage protection</td>
<td>0–1</td>
</tr>
<tr>
<td>LOVPTUV</td>
<td>27</td>
<td>Loss of voltage check</td>
<td>0–1</td>
</tr>
<tr>
<td>Frequency protection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAPTUF</td>
<td>81</td>
<td>Underfrequency function</td>
<td>0–2</td>
</tr>
<tr>
<td>SAPTOF</td>
<td>81</td>
<td>Overfrequency function</td>
<td>0–2</td>
</tr>
<tr>
<td>SAPFRC</td>
<td>81</td>
<td>Rate-of-change frequency protection</td>
<td>0–2</td>
</tr>
</tbody>
</table>

2.2.3 Station communication

<table>
<thead>
<tr>
<th>IEC 61850 or Function name</th>
<th>ANSI</th>
<th>Function description</th>
<th>Bay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>REC650</td>
</tr>
<tr>
<td>Station communication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEC61850-8-1</td>
<td></td>
<td>IEC 61850 communication protocol</td>
<td>1</td>
</tr>
<tr>
<td>DNPGEN</td>
<td></td>
<td>DNP3.0 communication general protocol</td>
<td>1</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>IEC 61850 or Function name</th>
<th>ANSI</th>
<th>Function description</th>
<th>Bay</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS485DNP</td>
<td></td>
<td>DNP3.0 for RS-485 communication protocol</td>
<td>1</td>
</tr>
<tr>
<td>CH1TCP</td>
<td></td>
<td>DNP3.0 for TCP/IP communication protocol</td>
<td>1</td>
</tr>
<tr>
<td>CH2TCP</td>
<td></td>
<td>DNP3.0 for TCP/IP communication protocol</td>
<td>1</td>
</tr>
<tr>
<td>CH3TCP</td>
<td></td>
<td>DNP3.0 for TCP/IP communication protocol</td>
<td>1</td>
</tr>
<tr>
<td>CH4TCP</td>
<td></td>
<td>DNP3.0 for TCP/IP communication protocol</td>
<td>1</td>
</tr>
<tr>
<td>OPTICALDNP</td>
<td></td>
<td>DNP3.0 for optical RS-232 communication protocol</td>
<td>1</td>
</tr>
<tr>
<td>MSTSERIAL</td>
<td></td>
<td>DNP3.0 for serial communication protocol</td>
<td>1</td>
</tr>
<tr>
<td>MST1TCP</td>
<td></td>
<td>DNP3.0 for TCP/IP communication protocol</td>
<td>1</td>
</tr>
<tr>
<td>MST2TCP</td>
<td></td>
<td>DNP3.0 for TCP/IP communication protocol</td>
<td>1</td>
</tr>
<tr>
<td>MST3TCP</td>
<td></td>
<td>DNP3.0 for TCP/IP communication protocol</td>
<td>1</td>
</tr>
<tr>
<td>MST4TCP</td>
<td></td>
<td>DNP3.0 for TCP/IP communication protocol</td>
<td>1</td>
</tr>
<tr>
<td>RS485GEN</td>
<td></td>
<td>RS485</td>
<td>1</td>
</tr>
<tr>
<td>OPTICALPROT</td>
<td></td>
<td>Operation selection for optical serial</td>
<td>1</td>
</tr>
<tr>
<td>RS485PROT</td>
<td></td>
<td>Operation selection for RS485</td>
<td>1</td>
</tr>
<tr>
<td>DNPFREC</td>
<td></td>
<td>DNP3.0 fault records for TCP/IP communication protocol</td>
<td>1</td>
</tr>
<tr>
<td>OPTICAL103</td>
<td></td>
<td>IEC60870-5-103 Optical serial communication</td>
<td>1</td>
</tr>
<tr>
<td>RS485103</td>
<td></td>
<td>IEC60870-5-103 serial communication for RS485</td>
<td>1</td>
</tr>
<tr>
<td>GOOSEINTLKRCV</td>
<td></td>
<td>Horizontal communication via GOOSE for interlocking</td>
<td>59</td>
</tr>
<tr>
<td>GOOSEBINRCV</td>
<td></td>
<td>GOOSE binary receive</td>
<td>4</td>
</tr>
<tr>
<td>ETHFRNT</td>
<td></td>
<td>Ethernet configuration of front port, LAN1 port and gateway</td>
<td>1</td>
</tr>
<tr>
<td>ETHLAN1_AB</td>
<td></td>
<td>Ethernet configuration of LAN1 port</td>
<td>1</td>
</tr>
<tr>
<td>PRPSTATUS</td>
<td></td>
<td>System component for parallel redundancy protocol</td>
<td>1</td>
</tr>
<tr>
<td>CONFPROT</td>
<td></td>
<td>IED Configuration Protocol</td>
<td>1</td>
</tr>
<tr>
<td>ACTIVLOG</td>
<td></td>
<td>Activity logging parameters</td>
<td>1</td>
</tr>
</tbody>
</table>

Table continues on next page
2.2.4 Basic IED functions

<table>
<thead>
<tr>
<th>IEC 61850 or Function block name</th>
<th>Function description</th>
<th>SECALARM</th>
<th>AGSAL</th>
<th>GOOSEDPDCV</th>
<th>GOOSEINTRCV</th>
<th>GOOSEMVRCV</th>
<th>GOOSESPPRCV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Component for mapping security events on protocols such as DNP3 and IEC103</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Generic security application component</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>GOOSE function block to receive a double point value</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>GOOSE function block to receive an integer value</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>GOOSE function block to receive a measurand value</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>GOOSE function block to receive a single point value</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
</tr>
</tbody>
</table>

Table continues on next page
IEC 61850/Function block name

<table>
<thead>
<tr>
<th>Function block name</th>
<th>Function description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DOSFRNT</td>
<td>Denial of service, frame rate control for front port</td>
<td>1</td>
</tr>
<tr>
<td>DOSLAN1</td>
<td>Denial of service, frame rate control for LAN1A and LAN1B ports</td>
<td>1</td>
</tr>
<tr>
<td>DOSSCKT</td>
<td>Denial of service, socket flow control</td>
<td>1</td>
</tr>
</tbody>
</table>

2.3 REC650 application examples

2.3.1 Adaptation to different applications

The IED has pre-defined configurations mainly for sub-station control applications. There is however the possibility to integrate back-up protection functions in the IED. In sub-transmission systems it can be valuable to have another IED for line or transformer application, giving the main protection functionality and the bay control IED giving control functionality together with back-up protection.

The IED is available in three different versions:

- A01: for a single breaker bay connected to single busbar
- A02: for a single breaker bay connected to double busbar
- A07: for a bus coupler bay

A selection of common applications are described below.

- Application 1: Single breaker line bay, single or double busbar, in solidly earthed network
- Application 2: Single breaker line bay, single or double busbar, in high impedance earthed network
- Application 3: Bus coupler in solidly earthed network
- Application 4: Bus coupler in a high impedance earthed network

2.3.2 Single breaker line bay, single or double busbar, in solidly earthed network

Normally the following fault scenarios require back-up protection functions:

- Close in line short circuits: For close in faults the instantaneous phase overcurrent protection should be used. As the fault current is often high at this fault case fast tripping is essential. It is however important to base the setting on fault calculations considering different operational states.
- Short circuits on the whole line length. For these faults the four step phase overcurrent protection should be used. The four step phase overcurrent protection has the possibility of directional function as well as different time delay characteristics. It is important to base the setting on fault calculations considering
different operational states as well as time delay co-ordination with other protections in the system.

- Close in line phase-to-earth faults: For close in faults the instantaneous residual overcurrent protection should be used. As the fault current is often high at this fault case fast tripping is essential. It is however important to base the setting on fault calculations considering different operational states.

- Phase-to-earth faults on the whole line length. For these faults the four step residual overcurrent protection should be used. The four step residual overcurrent protection has the possibility of directional function as well as different time delay characteristics. It is important to base the setting on fault calculations considering different operational states as well as time delay co-ordination with other protections in the system.

- Failure of the circuit beaker to interrupt fault current after protection trip. The breaker failure protection function is essential in a protection system using local redundancy.

- Autoreclosing is normally used on overhead power lines as most faults are transient, that is, the arcing fault will extinguish after a short zero voltage interval.

2.3.3 Single breaker line bay, single or double busbar, in high impedance earthed network

Normally the following fault scenarios require back-up protection functions:

- Close in line short circuits: For close in faults the instantaneous phase overcurrent protection should be used. As the fault current is often high at this fault case fast tripping is essential. It is however important to base the setting on fault calculations considering different operational states.

- Short circuits on the whole line length. For these faults the four step phase overcurrent protection should be used. The four step phase overcurrent protection has the possibility of directional function as well as different time delay characteristics. It is important to base the setting on fault calculations considering different operational states as well as time delay co-ordination with other protections in the system.

- Phase-to-earth faults. In high impedance earthed networks the fault current at a single phase-to-earth fault is small. For these faults the sensitive residual overcurrent protection should be used. The sensitive residual overcurrent protection has the possibility of directional function. It is important to base the setting on fault calculations considering different operational states as well as time delay co-ordination with other protections in the system. As a second protection a residual voltage protection is often used.

- Failure of the circuit beaker to interrupt fault current after protection trip. The breaker failure protection function is essential in a protection system using local redundancy.

- Autoreclosing is normally used on power lines as most faults are transient, that is, the arcing fault will extinguish after a short zero voltage interval.
The recommendations in table 1 have the following meaning:

- **On**: It is recommended to have the function activated in the application
- **Off**: It is recommended to have the function deactivated in the application
- **Application dependent**: The decision to have the function activated or not is dependent on the specific conditions in each case

Application 1 and Application 2 in table 1 are according to application examples given in previous sections.

<table>
<thead>
<tr>
<th>Function</th>
<th>Application 1</th>
<th>Application 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instantaneous phase overcurrent protection , 3-phase output PHPIOC</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>Four step phase overcurrent protection, 3-phase output OC4PTOC</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>Instantaneous residual overcurrent protection EFPIOC</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>Four step residual overcurrent protection EF4PTOC</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>Sensitive directional residual overcurrent and power protection SDEPSDE</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>Application dependent</td>
<td>Application dependent</td>
<td>Application dependent</td>
</tr>
<tr>
<td>Thermal overload protection, one time constant, Celsius LCPTTR/LFPTTR Celsius/Fahrenheit</td>
<td>Application dependent</td>
<td>Application dependent</td>
</tr>
<tr>
<td>Breaker failure protection, 3-phase activation and output CCRBRF</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>Pole discordance protection CCRPLD</td>
<td>Application dependent</td>
<td>Application dependent</td>
</tr>
<tr>
<td>Broken conductor check BRCPTOC</td>
<td>Application dependent</td>
<td>Application dependent</td>
</tr>
<tr>
<td>Directional under-power protection GUDDUP</td>
<td>Application dependent</td>
<td>Application dependent</td>
</tr>
<tr>
<td>Directional over-power protection GOPPDOP</td>
<td>Application dependent</td>
<td>Application dependent</td>
</tr>
<tr>
<td>Negative sequence based overcurrent protection DNSPTOC</td>
<td>Application dependent</td>
<td>Application dependent</td>
</tr>
<tr>
<td>Two step undervoltage protection UV2PTUV</td>
<td>Application dependent</td>
<td>Application dependent</td>
</tr>
<tr>
<td>Two step overvoltage protection OV2PTOV</td>
<td>Application dependent</td>
<td>Application dependent</td>
</tr>
<tr>
<td>Two step residual overvoltage protection ROV2PTOV</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>Under frequency protection SAPTUF (instance 1)</td>
<td>Application dependent</td>
<td>Application dependent</td>
</tr>
<tr>
<td>Under frequency protection SAPTUF (instance 2)</td>
<td>Application dependent</td>
<td>Application dependent</td>
</tr>
<tr>
<td>Over frequency protection SAPTOF (instance 1)</td>
<td>Application dependent</td>
<td>Application dependent</td>
</tr>
</tbody>
</table>

Table continues on next page
2.3.4 Bus coupler in a solidly earthed network

Normally the following fault scenarios require back-up protection functions:

- Short circuits on one of the busbar sections and short circuits on outgoing lines. For these faults the four step phase overcurrent protection should be used. The four step phase overcurrent protection has the possibility of directional function as well as different time delay characteristics. It is important to base the setting on fault calculations considering different operational states as well as time delay coordination with other protections in the system.

- Phase-to-earth faults one of the busbar sections and phase-to-earth faults on outgoing lines. For these faults the four step residual overcurrent protection should be used. The four step residual overcurrent protection has the possibility of directional function as well as different time delay characteristics. It is important to base the setting on fault calculations considering different operational states as well as time delay coordination with other protections in the system.

- Failure of the circuit breaker to interrupt fault current after protection trip. The breaker failure protection function is essential in a protection system using local redundancy.

2.3.5 Bus coupler in a high impedance earthed network

Normally the following fault scenarios require back-up protection functions:

- Short circuits on one of the busbar sections and short circuits on outgoing lines. For these faults the four step phase overcurrent protection should be used. The four step phase overcurrent protection has the possibility of directional function as well as different time delay characteristics. It is important to base the setting on fault calculations considering different operational states as well as time delay coordination with other protections in the system.
fault calculations considering different operational states as well as time delay co-
ordination with other protections in the system.

- Phase-to-earth faults. In high impedance earthed networks the fault current at a
 single phase-to-earth fault is small. For these faults the sensitive residual
 overcurrent protection should be used. The sensitive residual overcurrent
 protection has the possibility of directional function. It is important to base the
 setting on fault calculations considering different operational states as well as
 time delay co-ordination with other protections in the system. As a second
 protection a residual voltage protection is often used.
- Failure of the circuit beaker to interrupt fault current after protection trip. The
 breaker failure protection function is essential in a protection system using local
 redundancy.

The recommendations in table 1 have the following meaning:

- On: It is recommended to have the function activated in the application
- Off: It is recommended to have the function deactivated in the application
- Application dependent.: The decision to have the function activated or not is
 dependent on the specific conditions in each case

Application 3 and Application 4 in table 1 are according to application examples given in previous sections.

<table>
<thead>
<tr>
<th>Function</th>
<th>Application 3</th>
<th>Application 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instantaneous phase overcurrent protection, 3-phase output PHPIOC</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>Four step phase overcurrent protection, 3-phase output OC4PTOC</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>Instantaneous residual overcurrent protection EFPIOC</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>Four step residual overcurrent protection EF4PTOC</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>Sensitive directional residual overcurrent protection SDEPSDE</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>Thermal overload protection, one time constant, Celsius/Fahrenheit LCPTTR/LFPTTR</td>
<td>Application dependent</td>
<td>Application dependent</td>
</tr>
<tr>
<td>Breaker failure protection, 3-phase activation and output CCRBRF</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>Pole discordance protection CCRPLD</td>
<td>Application dependent</td>
<td>Application dependent</td>
</tr>
<tr>
<td>Broken conductor check BRCPTOC</td>
<td>Application dependent</td>
<td>Application dependent</td>
</tr>
<tr>
<td>Directional under-power protection GUPPDUP</td>
<td>Application dependent</td>
<td>Application dependent</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>Function</th>
<th>Application 3</th>
<th>Application 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directional over-power protection GOPPDOP</td>
<td>Application dependent</td>
<td>Application dependent</td>
</tr>
<tr>
<td>Negative sequence overcurrent protection DNSPTOC</td>
<td>Application dependent</td>
<td>Application dependent</td>
</tr>
<tr>
<td>Two step Undervoltage Protection UV2PTUV</td>
<td>Application dependent</td>
<td>Application dependent</td>
</tr>
<tr>
<td>Two step Overvoltage Protection OV2PTOV</td>
<td>Application dependent</td>
<td>Application dependent</td>
</tr>
<tr>
<td>Two step Residual Overvoltage Protection ROV2PTOV</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>Under frequency protection SAPTUF (instance 1)</td>
<td>Application dependent</td>
<td>Application dependent</td>
</tr>
<tr>
<td>Under frequency protection SAPTUF (instance 2)</td>
<td>Application dependent</td>
<td>Application dependent</td>
</tr>
<tr>
<td>Over frequency protection SAPTOF (instance 1)</td>
<td>Application dependent</td>
<td>Application dependent</td>
</tr>
<tr>
<td>Over frequency protection SAPTOF (instance 2)</td>
<td>Application dependent</td>
<td>Application dependent</td>
</tr>
<tr>
<td>Rate-of-change of frequency protection SAPFRC (instance 1)</td>
<td>Application dependent</td>
<td>Application dependent</td>
</tr>
<tr>
<td>Rate-of-change of frequency protection SAPFRC (instance 2)</td>
<td>Application dependent</td>
<td>Application dependent</td>
</tr>
<tr>
<td>Current circuit supervision CCSRDIF</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>Fuse failure supervision SDDRFUF</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>Breaker close/trip circuit monitoring TCSSCBR</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>Synchrocheck, energizing check, and synchronizing SESRSYN</td>
<td>Application dependent</td>
<td>Application dependent</td>
</tr>
<tr>
<td>Autorecloser for 3-phase operation SMBRREC</td>
<td>Off</td>
<td>Off</td>
</tr>
</tbody>
</table>
Section 3 RE650 setting examples

3.1 Setting example when RE650 is used as back-up protection in a transformer protection application

The application example has a 145/22 kV transformer as shown in figure 5.

![Figure 5: Two-winding HV/MV transformer, Y/Δ-transformer](image)

Table 3: Typical data for the transformer application

<table>
<thead>
<tr>
<th>Item</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transformer rated power SN</td>
<td>60 MVA</td>
</tr>
<tr>
<td>Transformer high voltage side rated voltage UN1</td>
<td>145 kV ±9 · 1.67 % (with on load tap changer)</td>
</tr>
<tr>
<td>Transformer low voltage side rated voltage UN2</td>
<td>22 kV</td>
</tr>
<tr>
<td>Transformer vector group</td>
<td>YNd11</td>
</tr>
<tr>
<td>Transformer impedance voltage at tap changer mid point: ek</td>
<td>12 %</td>
</tr>
<tr>
<td>Maximum allowed continuous overload</td>
<td>1.30 · SN</td>
</tr>
<tr>
<td>Phase CT ratio at 145 kV level</td>
<td>300/1 A</td>
</tr>
<tr>
<td>CT at 145 kV earth point</td>
<td>300/1 A</td>
</tr>
<tr>
<td>Phase CT ratio at 22 kV level</td>
<td>2 000/1 A</td>
</tr>
<tr>
<td>22 kV VT ratio</td>
<td>(\frac{22}{\sqrt{3}}), (\frac{0.11}{\sqrt{3}}), (\frac{0.11}{3}) kV</td>
</tr>
<tr>
<td>High positive sequence source impedance at the HV side</td>
<td>j10 Ω (about 2 100 MVA)</td>
</tr>
<tr>
<td>Low positive sequence source impedance at the HV side</td>
<td>j3.5 Ω (about 6 000 MVA)</td>
</tr>
</tbody>
</table>

Table continues on next page
Calculating general settings for analogue inputs 8I 2U

The analogue input module has the capability of 8 current inputs (1 A) and 2 voltage inputs.

The 145 kV current CTs (three phase current transformer group) are connected to inputs 1 – 3 (L1, L2, L3).

The 22 kV current CTs (three phase current transformer group) are connected to inputs 4 – 6 (L1, L2, L3).

The 145 kV neutral point CT is connected to input 7 (IN).

The input 8 is not used. The input is used for connection of the low voltage side neutral point CT (not in this application).

The 22 kV phase-to-phase (L1 – L2) VT is connected to input 9.

The 22 kV open delta connected VT (residual voltage) is connected to input 10.

1. Set the 145 kV current transformer input 1.
 1.1. Set CTStarPoint1 to ToObject
1.2. Set $CTSec1$ to $1\ A$
(The rated secondary current of the CT)

1.3. Set $CTPrim1$ to $300\ A$
(The rated primary current of the CT)

2. Set current inputs 2 and 3 to the same values as for current input 1.

3. Set the $22\ kV$ current transformer input 4.

3.1. Set $CTStarPoint4$ to $ToObject$
(The CT secondary is earthed towards the protected transformer)

3.2. Set $CTSec4$ to $1\ A$
(The rated secondary current of the CT)

3.3. Set $CTPrim4$ to $2000\ A$
(The rated primary current of the CT)

4. Set current inputs 5 and 6 to the same values as for current input 4.

5. Set the $145\ kV$ neutral point current transformer input 7.

5.1. Set $CTStarPoint7$ to $ToObject$
(The CT secondary is earthed towards the protected line)

5.2. Set $CTSec7$ to $1\ A$
(The rated secondary current of the CT)

5.3. Set $CTPrim7$ to $300\ A$
(The rated primary current of the CT)

Current input 8 is intended for connection of a low voltage side neutral point CT. In this application the input is not used.

6. Set the voltage transformer inputs 9 and 10.

6.1. Set $VTSec9$ to $110\ V$
(The rated secondary voltage of the VT, given as phase-phase voltage)

6.2. Set $VTPrim9$ to $22\ kV$
(The rated secondary voltage of the VT, given as phase-phase voltage)

6.3. Set $VTSec10$ to $110\ V\sqrt{3}$
(The rated secondary voltage of the VT, given as phase-phase voltage)

6.4. Set $VTPrim10$ to $22\ kV$
(The rated secondary voltage of the VT, given as phase-phase voltage)

3.1.2 Calculating settings for global base values GBASVAL

Each function uses primary base values as a reference for the settings. The base values are defined in Global base values for setting GBASVAL function. It is possible to include up to GBASVAL function. In this application GBASVAL instance 1 is used to define the base for $145\ kV$ inputs and GBASVAL instance 2 for $22\ kV$ inputs.
For transformer protection it is recommended to set the base parameters according to the power transformer primary rated values:

1. Set Global Base 1
 1.1. Set I_{Base} to 239 A
 1.2. Set U_{Base} to 145 kV
 1.3. Set S_{Base} to 60 MVA ($S_{\text{Base}} = \sqrt{3} \cdot U_{\text{Base}} \cdot I_{\text{Base}}$)

2. Set Global Base 2
 2.1. Set I_{Base} to 1575 A
 2.2. Set U_{Base} to 22 kV
 2.3. Set S_{Base} to 60 MVA ($S_{\text{Base}} = \sqrt{3} \cdot U_{\text{Base}} \cdot I_{\text{Base}}$)

There are six instances of global base GBASVAL function, each instance includes the three parameters: $I_{\text{Base}}, U_{\text{Base}}, S_{\text{Base}}$. The GlobalBaseSel setting which can be found in the different IED functions references a specific instance of the GBASVAL function.

3.1.3 Calculating settings for instantaneous phase overcurrent protection, HV-side, PHPIOC

1. Set GlobalBaseSel to 1
 The (HV) winding data should be related to Global base 1.

2. Set $I_{P>>}$ to 1000 % of I_{Base}
 The instantaneous phase overcurrent protection on the high voltage side is used for fast trip ping during severe internal faults. The protection shall be selective with respect to the protections of the outgoing 22 kV feeders. Therefore the maximum 145 kV current during a three-phase short circuit on the 22 kV side of the transformer is calculated:

 $$I = \frac{145}{\sqrt{3} \cdot (Z_{\text{net}} + Z_T)} = \frac{145}{\sqrt{3} \cdot (3.5 + \frac{145^2}{60} - 0.12)} = 1.83 \text{ kA}$$

 (Equation 1)

 The dynamic overreach, due to fault current DC-component, shall be considered in the setting. This factor is less than 5 %. The setting is chosen with a safety margin of 1.2:

 $$I_{\text{set}} \geq 1.2 \cdot 1.05 \cdot 1830 = 2306 \text{ A}$$

 Setting $I_{P>>} = 1000 \%$ of I_{Base}
3.1.4 Calculating settings for four step phase overcurrent protection 3-phase output, HV-side, OC4PTOC

The phase overcurrent protection is difficult to set as the short circuit current is highly dependent of the switching state in the power system as well as the fault type. In order to achieve setting that assure a selective fault clearance, a large number of calculations have to be made with different fault locations, different switching states in the system and different fault types.

The 145 kV phase overcurrent protection has the following tasks:

- Backup protection for short circuits on the transformer
- Backup protection for short circuits on 22 kV busbar
- Backup protection for short circuits on outgoing 22 kV feeders (if possible)

Although it is possible to make hand calculations of the different faults it is recommended to use computer based fault calculations.

The following principle for the phase overcurrent protection is proposed:

- Only one step (step 1) is used. The time delay principle is chosen according to network praxis, in this case inverse time characteristics using IEC Normal inverse.

3.1.4.1 Calculating general settings

1. Set GlobalBaseSel to 1
 For the (HV) winding data should be related to Global base 1
2. Set DirModel1 to Non-directional
 The function shall be non-directional
3. Set Characterist1 to IEC Norm.inv.
 For the choice of the time delay characteristic IEC Normal inverse is used in this network.

3.1.4.2 Calculating settings for step 1

1. Set \(I_1 > \) to 140\% of \(I_{Base} \) (334 A primary current)
 The first requirement is that the phase overcurrent protection shall never trip for load current during the extreme high load situations. It is assumed that the transformer shall be able to be operated up to 130 \% of the rated power during limited time. The protection resetting ratio shall be considered as well. The reset ratio is 0.95. The minimum setting can be calculated as:
The next requirement is that the protection shall be able to detect all short circuits within the defined protected zone. In this case it is required, if possible, that the protection shall detect phase-to-phase short circuit at the most remote point of the outgoing feeders as shown in figure 6.

![Figure 6: Fault calculation for phase overcurrent protection setting](image)

A phase-phase-earth short circuit is applied. In this calculation the short circuit power of the feeder shall be minimized (the source impedance maximized). The longest 22 kV feeder has an impedance of \(Z = 3 + j10 \) \(\Omega \). The external network has a maximum source impedance of \(Z_{sc} = j10 \) \(\Omega \) (145 kV level). This impedance is transformed to the 22 kV level:

\[
Z_{sc,22} = \left(\frac{22}{145} \right)^2 \cdot j10 = j0.23 \Omega
\]

(Equation 3)

The transformer impedance referred to 22 kV level is:

\[
Z_{T,22} = j \frac{22^2}{60} \cdot 0.12 = j0.97 \Omega
\]

(Equation 4)

The fault current can be calculated as follows:

\[
I_{sc,ph} = \frac{\sqrt{2}}{2} \cdot \frac{22000}{\sqrt{0.23 + j0.97 + 3 + j10}} = 948 \text{ A}
\]

(Equation 5)

This fault current is recalculated to the 145 kV level:

\[
I_{sc,ph,145} = \frac{22}{145} \cdot 948 = 144 \text{ A}
\]

(Equation 6)

This current is smaller than the required minimum setting to avoid an unwanted trip when experiencing a large load current. This means that the 145 kV phase
overcurrent protection cannot serve as complete back-up protection for the outgoing 22 kV feeders.

2. **Set** k_1 **to** 0.15

The time setting must be coordinated with the feeder protections to assure selectivity. It can be stated that there is no need for selectivity between the high voltage side phase overcurrent protection and the low voltage side phase overcurrent protection.

The feeder short circuit protections have the following setting:
- $I_{>}$: 300 A which corresponds to 45 A on 145 kV level.
- $I_{>>}$: 6 000 A which corresponds to 910 A on 145 kV level.

Characteristics: IEC Normal Inverse (IEC Norm. inv.) with k-factor = 0.25

The setting of the k-factor for the 145 kV phase overcurrent protection is derived from graphical study of the inverse time curves. It is required that the smallest time difference between the inverse time curves shall be 0.4 s. With the setting $k_1 = 0.15$ the time margin between the characteristics is about 0.4 s as shown in figure 7.

![Inverse time operation characteristics for selectivity](figure7.png)
3.1.5 Calculating settings for four step phase overcurrent protection 3-phase output, LV-side OC4PTOC

The 22 kV phase overcurrent protection has the following purpose:

• Main protection for short circuits on 22 kV busbar
• Backup protection for short circuits on outgoing 22 kV feeders (if possible)

The reach of the phase overcurrent line protection is dependent on the operation state and the fault type. Therefore the setting must be based on fault calculations made for different faults, fault points and switching states in the network. Although it is possible to make manual calculations of the different faults it is recommended to use computer based fault calculations.

The following principle for the phase overcurrent protection is proposed:

• Step 1 serves as the main protection for the 22 kV busbar. This step has a short delay and also has blocking input from the phase overcurrent protections of the 22 kV feeders. This is a way to achieve a fast trip of 22 kV busbar short circuits while the selectivity is realized by means of the blocking from the feeder protections.
• Step 4 is used as back-up short circuit protection for the 22 kV feeders as far as possible. The time delay principle is chosen according to network praxis, in this case inverse time characteristics using IEC Normal inverse. As the step shall have an inverse time characteristic the step 4 function is used.

An inverse time characteristics is not available for step 2 and 3.

3.1.5.1 Calculating general settings

1. Set GlobalBaseSel to 2
 The settings are made in primary values. These values are given in the base settings in Global base 2.
2. Set directional mode
 2.1. Set DirMode1 to Non-directional
 2.2. Set DirMode4 to Non-directional
 The function shall be non-directional.
3. Set Characterist1 to IEC Def.Time
 Step 1 shall have definite time delay
4. Set Characterist4 to IEC Norm.inv
 Step 4: For the choice of the time delayed characteristic IEC Normal inverse is used in this network.

3.1.5.2 Calculating settings for step 1
1. Set \(I > 500 \% \) of \(I_{\text{Base}} \)

The requirement is that step 1 shall detect all short circuits on the 22 kV busbar. The external network has a maximum source impedance of \(Z_{sc} = j10 \Omega \) (145 kV level). This impedance is transformed to 22 kV level:

\[
Z_{sc,22} = \left(\frac{22}{145}\right)^2 \cdot j10 = j0.23 \Omega
\]

(Equation 7)

The transformer impedance, referred to 22 kV level, is:

\[
Z_{T,22} = \frac{22^2}{60} \cdot 0.12 = j0.97 \Omega
\]

(Equation 8)

Calculation of a phase-to-phase short circuit at this busbar:

\[
I_{sc\,ph} = \frac{\sqrt{3}}{2} \frac{22000 / \sqrt{3}}{j0.23 + j0.97} = 9167 A
\]

(Equation 9)

The setting is chosen to 5 \(I_{\text{Base}} \) which corresponds to 7875 A primary current.

2. Set \(t \) to 0.1 s

The time delay must be chosen so that the blocking signal shall be able to prevent unwanted operation during feeder short circuits. 0.1 s should be sufficient.

3.1.5.3 Calculating settings for step 4

The first requirement is that the phase overcurrent protection shall never trip for load current during extreme high load situations. It is assumed that the transformer shall be able to be operated up to 130% of the rated power during the limited time. The protection resetting ratio of 0.95 shall also be considered. The minimum setting can be calculated as follows:

\[
I_{pu} \geq 1.3 \cdot \frac{1}{0.95} \cdot \frac{60 \cdot 1000}{\sqrt{3} \cdot 22} = 2155 A
\]

(Equation 10)

The next requirement is that the protection shall be able to detect all short circuits within the defined protected zone. In this case it is required, if possible, that the protection shall detect phase-to-phase short circuit at the most remote point of the outgoing feeders as shown in figure 8.
Figure 8: Fault calculation for phase overcurrent protection

A phase-phase-earth short circuit is applied. In this calculation the short circuit power of the feeder shall be minimized (the source impedance maximized).

1. Set \(I_{2>} \) to 140 % of \(I_{\text{Base}} \)

 2205 A primary current.

 The longest 22 kV feeder has an impedance of \(Z = 3 + j10 \, \Omega \). The external network has a maximum source impedance of \(Z_{\text{sc}} = j10 \, \Omega \) (145 kV level). This impedance is transformed to the 22 kV level:

 \[
 Z_{\text{sc,22}} = \left(\frac{22}{145} \right)^2 \cdot j10 = j0.23 \, \Omega
 \]

 (Equation 11)

 The transformer impedance, referred to 22 kV level is:

 The phase-to-phase fault current can be calculated as follows:

 \[
 I_{\text{sc,2ph}} = \frac{\sqrt{3}}{2} \frac{22000 / \sqrt{3}}{\sqrt{0.23 + 0.97 + 3 + j10}} = 949 \, A
 \]

 (Equation 12)

 This current is smaller than the required minimum setting to avoid unwanted trip at large load current. This means that the 22 kV phase overcurrent protection cannot serve as complete back-up protection for the outgoing 22 kV feeders.

2. Set \(k_4 \) to 0.15

 The feeder short circuit protections has the following setting:

 \(I_{>}: 300 \, A \).

 \(I_{>>}: 6000 \, A \).

 Characteristic: IEC Normal Inverse with k-factor = 0.25

 The setting of the k-factor for the 22 kV phase overcurrent protection is derived from graphical study of the inverse time curves. It is required that the smallest time difference between the inverse time curves is 0.4 s. With the setting \(k_4 = 0.15 \) the time margin between the characteristics is about 0.4 s as shown in figure 9.
3.1.6 Calculating settings for four step residual overcurrent protection, zero or negative sequence direction HV-side EF4PTOC

The protection is fed from the 145 kV neutral point of the current transformer.

The residual overcurrent protection is more difficult to set as the earth-fault current is highly dependent on the network configuration of the power system. In order to achieve settings that assure selective fault clearance, a large number of calculations have to be made with different fault locations, different switching states in the system and different earth-fault types. Below one example of setting of residual overcurrent protection for a line in a meshed solidly earthed system is given.
If there is no generation at the low voltage side of the generator the transformer can only feed earth-fault currents as long as any of the non-faulted lines are still in operation. If there is generation connected to the low voltage side of the transformer the transformer can only feed 145 kV earth-faults.

The residual overcurrent protection has the following purpose:

- Fast and sensitive protection for earth-faults on the 145 kV busbar
- Backup protection for earth-faults in the 145 kV transformer winding
- Backup protection for earth-faults on the outgoing 145 kV lines
- Sensitive detection of high resistive earth-faults and series faults in the 145 kV network

The reach of the residual overcurrent line protection is dependent on the operation state and the fault type. Therefore the setting must be based on fault calculations made for different faults, fault points and switching states in the network. Although it is possible to make hand calculations of the different faults it is recommended to use computer based fault calculations.

The following principle for the residual overcurrent protection is proposed:

- Step 1 ($\text{IN1}>$) with a high current setting and a short delay (about 0.4 s). Step 1 is a non-directional function. This step gives a fast trip for busbar earth-faults and some earth-faults on the lines.
- Step 2 ($\text{IN2}>$) with a current setting, if possible, that enables detection of earth-faults on the 145 kV lines out from the substation. Step 2 is a non-directional function. The function has a delay to enable selectivity with respect to the line protections.
- Step 4 ($\text{IN4}>$) with a current setting that enables detection of high resistive earth-faults and series faults in the network. Step 3 is a non-directional function. The function has a longer delay to enable selectivity.

3.1.6.1 Calculating general settings

The (HV) winding data should be related to Global base 1.

1. Set GlobalBaseSel to 1, $\text{IBase} = 240$ A
2. Set DirMode1, DirMode2 and DirMode4 to Non-directional
3. Set DirMode3 to Off

3.1.6.2 Calculating settings for step 1

Set the operating residual current level and time delay

1. Set $\text{IN1}>$ to 689% of IBase, corresponding to 1650 A
Faults are applied at the 145 kV busbar as shown in figure 10.

Figure 10: Fault calculation for 145 kV residual overcurrent protection setting

The following fault types are applied: phase-phase-earth short circuit and phase-earth-fault. The source impedance (both positive sequence and zero sequence) at the 145 kV level gives the following residual current from the transformer during a phase-to-earth busbar fault (the current is hand-calculated but is normally calculated in a computer).

The zero sequence transformer impedance is assumed to be equal to the positive sequence short circuit impedance:

\[Z_{0T} = j \frac{U_0^2}{S_N} \cdot \epsilon_e = j \frac{145^2}{60} \cdot 0.12 = j42 \text{ \Omega} \]

(Equation 13)

The residual current from the transformer during a single phase-earth-fault and with maximum short circuit power is:

\[3I_{0T} = \frac{Z_{0,\text{net}}}{Z_{0,\text{net}} + Z_{0T}} \cdot \frac{\sqrt{3} \cdot U}{2 \cdot Z_{4,\text{net}} + \frac{Z_{0,\text{net}} \cdot Z_{0T}}{Z_{0,\text{net}} + Z_{0T}}} = \frac{j15}{j15 + j42} \cdot \frac{\sqrt{3} \cdot 145}{2 \cdot j3.5 + \frac{j15 \cdot j42}{j15 + j42}} = 3.7 \text{ kA} \]

(Equation 14)

The residual current from the transformer during a single phase-earth-fault and with minimum short circuit power is:

\[3I_{0T} = \frac{Z_{0,\text{net}}}{Z_{0,\text{net}} + Z_{0T}} \cdot \frac{\sqrt{3} \cdot U}{2 \cdot Z_{4,\text{net}} + \frac{Z_{0,\text{net}} \cdot Z_{0T}}{Z_{0,\text{net}} + Z_{0T}}} = \frac{j20}{j20 + j42} \cdot \frac{\sqrt{3} \cdot 145}{2 \cdot j10 + \frac{j20 \cdot j42}{j20 + j42}} = 2.4 \text{ kA} \]

(Equation 15)

The residual current from the transformer during a phase-to-phase to earth-fault and with maximum short circuit power is:
The residual current from the transformer during a phase-to-phase to earth-fault and with minimum short circuit power is:

\[3I_{0T} = \frac{Z_{0,net}}{Z_{0,net} + Z_{0T}} \cdot \frac{\sqrt{3} \cdot U}{Z_{1,net} + 2 \cdot \frac{Z_{0,net} \cdot Z_{0T}}{Z_{0,net} + Z_{0T}}} = \frac{j15}{j15 + j42} \cdot \frac{\sqrt{3} \cdot 145}{j3.5 + 2 \cdot \frac{j15 \cdot j42}{j15 + j42}} = 2.6 \text{kA} \]

(Equation 16)

To assure that the protection detects all earth-faults on the 145 kV busbar the protection should be set as follows:

\[IN_1 > 0.75 \cdot 2.2 = 1.65 \text{kA} = 687\% \text{IBase} \]

Figure 11: Fault calculation for 145 kV residual overcurrent protection selectivity

The calculations show that the largest residual current from the transformer = 1.2 kA.
To assure selectivity the setting must fulfil:

\[I_{\text{high, set}} \geq 1.2 \cdot k \cdot 3I_{0 \text{max}} \]

which gives about 1 500 A, where k is the transient overreach (due to the fault current DC-component) of the overcurrent function. For the four step residual overcurrent function; \(k = 1.05 \).

2. Set \(t_1 \) to 0.4 s

Characterist1: ANSI Def.Time
As the protection should be set for a time delay of 0.4 s the selectivity to the line protections should be assured. Therefore earth-faults should be calculated where the fault point on the lines is at zone 1 reach (about 85% out on the line).
1. Set $I_{N2} >$ to 400% of I_{Base}, corresponding to 956 A

To assure that step 2 detects all earth-faults on the outgoing lines earth-faults calculations are made where single phase-faults and phase-to-phase-to earth-faults are applied to the adjacent busbars.

![Fault calculation for sufficient reach of the 145 kV residual overcurrent protection](image)

Figure 12: Fault calculation for sufficient reach of the 145 kV residual overcurrent protection

The minimum residual current to detect works out as $3I_{0,AB,\text{min}} = 1.0 \text{ kA}$.

2. Set t_2 to 0.8 s

Characteristic2: ANSI Def.Time

The delay of $I_{N2} >$ should be set longer than the distance protection zone 2 (normally 0.4 s). 0.8 s is proposed.

3.1.6.4 Calculating settings for step 4

1. Set $I_{N4} >$ to 42 % of I_{Base}, corresponding to 100 A

The current setting of step 4 should be chosen according to standard procedure in the grid. From experience it can be concluded that a setting down to about 100 A can be used. This setting is however highly dependent on the line configuration, mainly if the line is transposed or not.

The delay of $I_{N4} >$ should be set larger than the delay of the sensitive residual current protection of the lines.

2. Set k_4 to 0.3

Characteristic4: RD type

3. Set t_{4Min} to 1.2 s

4. Set inverse time delay of type RD to logarithmic

If definite time delay is used there is some risk of unselective trip during high resistive earth-faults or series faults. If a dependent time delay (inverse time) is used some degree of selectivity can be achieved.

Here an inverse time delay of the RD type is selected: logarithmic
3.1.7 Calculating settings for two step residual overvoltage protection LV-side, ROV2PTOV

The residual overvoltage protection is fed from the open delta connected voltage transformer at the 22 kV side of the transformer.

The residual overvoltage protection has the following purpose:

- Back-up protection for earth-faults on the 22 kV feeders out from the substation.
- Main protection for earth-faults on the 22 kV busbar
- Main protection for earth-faults on the 22 kV transformer winding

The residual voltage protection has two steps. In this application step 1 should trip the 22 kV circuit breaker and if the earth-fault is situated in the transformer 22 kV winding or between the transformer and the 22 kV breaker the 145 kV breaker is tripped from step 2.

The voltage setting of the protection is dependent on the required sensitivity and the system earthing. The 22 kV system has earthing through a Petersen coil (connected to the system via a separate earthing transformer) and a parallel neutral point resistor. The Petersen coil is tuned to compensate for the capacitive earth-fault current in the 22 kV system. The neutral point resistor gives a 10 A earth-fault current during a zero resistance earth-fault. This means that the resistance is

$$R_N = \frac{22000 / \sqrt{3}}{10} = 1270 \, \Omega$$

(Equation 18)

The total zero sequence impedance of the 22 kV system is:

$$Z_0 = 3R_N / / j3X_N / / jX_C \, \Omega / \text{phase}$$

As the Petersen coil is tuned the zero sequence impedance is:

$$Z_0 = 3R_N \, \Omega / \text{phase}$$

The residual voltage during a resistive earth-fault in the 22 kV system is:

$$U_o = \frac{U_{\text{phase}}}{1 + \frac{3 \cdot R_f}{Z_0}} \quad \text{or} \quad \frac{U_o}{U_{\text{phase}}} = \frac{1}{1 + \frac{3 \cdot R_f}{Z_0}}$$

(Equation 19)

In our case the requirement is that earth-faults with a resistance up to 5 000 Ω shall be detected. This gives:

$$\frac{U_o}{U_{\text{phase}}} = \frac{1}{1 + \frac{3 \cdot 5000}{3 \cdot 1270}} = 0.20$$

(Equation 20)
Step 1 and step 2 is given the same voltage setting but step 2 shall have longer time delay.

The residual earth-fault protection shall have a definite time delay. The time setting is set longer than the time delay of the earth-fault protection of the outgoing feeders having maximum 2 s delay. The time delay for step 1 is set to 3 s and the time delay for step 2 is set to 4 s.

1. Set GlobalBaseSel to 2
 The (LV) winding data should be related to Global base 2.
2. Set Characterist1 to Definite time
3. Set U1> to 20 % of UBase
4. Set t1 to 3.0 s
5. Set U2> to 20 % of UBase
6. Set t2 to 4.0 s

3.1.8 Calculating settings for HV-side breaker failure protection, CCRBRF

The breaker failure protection can use either the position indication of the circuit breaker or measure the current going through the CT in order to detect correct breaker functioning. For transformer protections it is most suitable to use current measurement as a circuit breaker failure check.

1. Set GlobalBaseSel to 1
 The (HV) winding data should be related to Global base 1.
2. Set FunctionMode to Current
3. Set BuTripMode to 1 out of 4
 The current measurement function uses the three-phase currents from the line CT and either, a measured residual current or a calculated 3I0. Based on this analogue data one of the following rules can be chosen in order to determine a breaker failure:
 - **1 out of 3**: at least one of the three-phase current shall be larger than the set level to detect failure to break
 - **1 out of 4**: at least one of the three-phase current and the residual current shall be larger than the set level to detect failure to break
 - **2 out of 4**: at least two of the three-phase current and the residual current shall be larger than the set level to detect failure to break.

 As the residual current protection is one of the protection functions to initiate the breaker failure protection the setting **1 out of 4** is chosen.
4. Set IP> to 20 % of IBase
 IP> should be set lower than the smallest current to be detected by the differential protection which is set 30% of IBase.
5. Set IN> to 20 % of IBase
IN> should be set lower than the smallest current to be detected by the most sensitive step of the residual overcurrent protection which is 100 A.

6. Set the re-tip time delay $t1$ to 0

7. Set $t2$ to 0.17 s

The delay time of the breaker failure protection (BuTrip) is chosen according to figure 13.

The maximum opening time of the circuit breaker is considered to be 100 ms. The breaker failure protection BFP maximum reset time is 15 ms.

A margin of about 2 cycles should be chosen. This gives a minimum setting of back-up trip delay $t2$ of about 155 ms.

![Figure 13: Overexcitation protection characteristics](en05000479.vsd)

3.1.9 Calculating settings for LV-side breaker failure protection, CCRBRF

The breaker failure protection can use either the position indication of the circuit breaker or measure the current going through the CT in order to detect correct breaker functioning. For transformer protections it is most suitable to use current measurement as a circuit breaker failure check.

1. Set `GlobalBaseSel` to 2
The (LV) winding data should be related to Global base 2.

2. **Set FunctionMode to Current**

3. **Set BuTripMode to 1 out of 3**

 The current measurement function uses the three-phase currents from the line CT and either, a measured residual current or a calculated 3I0. Based on this analogue data one of the following rules can be chosen in order to determine a breaker failure:

 - **1 out of 3**: at least one of the three-phase current shall be larger than the set level to detect failure to break
 - **1 out of 4**: at least one of the three-phase current and the residual current shall be larger than the set level to detect failure to break
 - **2 out of 4**: at least two of the three-phase current and the residual current shall be larger than the set level to detect failure to break.

 There is no residual current measurement protection on the 22 kV side of the transformer. Therefore **1 out of 3** is chosen.

4. **Set IP> to 20 % of IBase**

 IP> should be set lower than the smallest current to be detected by the differential protection which is set 25 % of IBase.

5. **Set the re-tip time delay t1 to 0 s**

6. **Set t2 to 0.17 s**

 The delay time of the breaker failure protection (BuTrip) is chosen according to figure 13.

 The maximum open time of the circuit breaker is considered to be 100 ms.

 The BFP maximum reset time is 15 ms.

 A margin of about 2 cycles should be chosen. This gives a minimum setting of back-up trip delay t2 of about 155 ms.
The fault occurs

Protection operate time

Normal t_{cbopen}

Retrip delay t_1

t_{cbopen} after re-trip

$t_{bFPreset}$

Margin

Minimum back-up trip delay t_2

Critical fault clearance time for stability

Time sequences for breaker failure protection setting

Figure 14: Time sequences for breaker failure protection setting
Section 4 Analog inputs

4.1 Introduction

Analog input channels in the IED must be set properly in order to get correct measurement results and correct protection operations. For power measuring and all directional and differential functions the directions of the input currents must be defined in order to reflect the way the current transformers are installed/connected in the field (primary and secondary connections). Measuring and protection algorithms in the IED use primary system quantities. Consequently the setting values are expressed in primary quantities as well and therefore it is important to set the transformation ratio of the connected current and voltage transformers properly.

The availability of CT and VT inputs, as well as setting parameters depends on the ordered IED.

A reference \textit{PhaseAngleRef} must be defined to facilitate service values reading. This analog channels phase angle will always be fixed to zero degrees and all other angle information will be shown in relation to this analog input. During testing and commissioning of the IED the reference channel can be changed to facilitate testing and service values reading.

4.2 Setting guidelines

4.2.1 Setting of the phase reference channel

All phase angles are calculated in relation to a defined reference. An appropriate analog input channel is selected and used as phase reference. The parameter \textit{PhaseAngleRef} defines the analog channel that is used as phase angle reference.

The initially connected phase-to-earth voltage is usually chosen as \textit{PhaseAngleRef}. A phase-to-phase voltage can also be used in theory, but a 30 degree phase shift between the current and voltage is observed in this case.

If no suitable voltage is available, the initially connected current channel can be used. Although the phase angle difference between the different phases will be firm, the whole system will appear to rotate when observing the measurement functions.

The phase reference does not work if the current channel is not available. For example, when the circuit breaker is opened and no
current flows. Although the phase angle difference between the different phases is firm, the whole system appears to be rotating when the measurement functions are observed.

4.2.2 Relationships between setting parameter Base Current, CT rated primary current and minimum pickup of a protection IED

Note that for all line protection applications the parameter Base Current (i.e. IBase setting in the IED) used by the relevant protection function, shall always be set equal to the largest rated CT primary current among all CTs involved in the protection scheme. The rated CT primary current value is set as parameter CTPrim under the IED TRM settings.

For all other protection applications (e.g. transformer protection) it is typically desirable to set IBase parameter equal to the rated current of the protected object. However this is only recommended to do if the rated current of the protected object is within the range of 40% to 120% of the selected CT rated primary current. If for any reason (e.g. high maximum short circuit current) the rated current of the protected object is less than 40% of the rated CT primary current, it is strongly recommended to set the parameter IBase in the IED to be equal to the largest rated CT primary current among all CTs involved in the protection scheme and installed on the same voltage level. This will effectively make the protection scheme less sensitive; however, such measures are necessary in order to avoid possible problems with loss of the measurement accuracy in the IED.

Regardless of the applied relationship between the IBase parameter and the rated CT primary current, the corresponding minimum pickup of the function on the CT secondary side must always be verified. It is strongly recommended that the minimum pickup of any instantaneous protection function (e.g. differential, restricted earth fault, distance, instantaneous overcurrent, etc.) shall under no circumstances be less than 4% of the used IED CT input rating. This corresponds to 40mA secondary for main CTs with 1A rating and to 200mA secondary for main CTs with 5A rating. This shall be individually verified for all current inputs involved in the protection scheme.

4.2.3 Setting of current channels

The direction of a current depends on the connection of the CT. Unless indicated otherwise, the main CTs are supposed to be star connected. The IED can be connected with its earthing point towards the object or away from the object. This information must be set in the IED via the parameter CTStarPoint, which can be changed between FromObject and ToObject. Internally in the IED algorithms and IED functions, the convention of the directionality is defined as follows:
A positive value of current, power, and so on (forward) means that the quantity has a
direction towards the object. A negative value of current, power, and so on (reverse)
means a direction away from the object. See figure 15.

Diagram:

<table>
<thead>
<tr>
<th>Protected Object</th>
<th>Line, transformer, etc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>Reverse</td>
</tr>
<tr>
<td></td>
<td>e.g. P, Q, I</td>
</tr>
<tr>
<td>Measured quantity is positive when flowing towards the object</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition of direction for directional functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTStarPoint</td>
</tr>
<tr>
<td>Correct Setting is "ToObject"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition of direction for directional functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
</tr>
</tbody>
</table>

| e.g. P, Q, I |
| Measured quantity is positive when flowing towards the object |

<table>
<thead>
<tr>
<th>Set parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTStarPoint</td>
</tr>
<tr>
<td>Correct Setting is "FromObject"</td>
</tr>
</tbody>
</table>

Figure 15: Internal convention of the directionality in the IED

With correct setting of the primary CT direction, **CTStarPoint** set to **FromObject** or **ToObject**, a positive quantity always flows towards the protected object and a direction defined as Forward is always looking towards the protected object. The following examples show the principle.

4.2.3.1 Example 1

Two IEDs used for protection of two objects.
Figure 16: Example how to set CTStarPoint parameters in the IED

The figure 16 shows the most common case where the objects have their own CTs. For the transformer protection, the protected object is the transformer. Therefore both CTStarPoint directions should be set ToObject. For the line protection, the protected object is the line. The line CT is earthed towards the busbar, therefore the CTStarPoint should be set FromObject.

4.2.3.2 Example 2

Two IEDs used for protection of two objects and sharing a CT.
Setting of current input:
Set parameter CTStarPoint with Transformer as reference object.
Correct setting is "ToObject"

Setting of current input:
Set parameter CTStarPoint with Transformer as reference object.
Correct setting is "FromObject"

Setting of current input:
Set parameter CTStarPoint with Line as reference object.
Correct setting is "ToObject"

Figure 17: Example how to set CTStarPoint parameters in the IED

This example is similar to example 1, but the power transformer is feeding just one line; both line protection IED and transformer protection IED use the same CT. The CT direction is set with different reference objects for the two IEDs though it is the same current from the same CT that is feeding the two IEDs. With these settings the directional functions of the line protection shall be set to Forward to look towards the line.

4.2.3.3 Examples on how to connect, configure and set CT inputs for most commonly used CT connections

Figure 18 defines the marking of current transformer terminals commonly used around the world:

In the SMAI function block, you have to set if the SMAI block is measuring current or voltage. This is done with the parameter: AnalogInputType: Current/voltage. The ConnectionType: phase-phase/phase-earth and GlobalBaseSel.
Figure 18: Commonly used markings of CT terminals

Where:

- a) is symbol and terminal marking used in this document. Terminals marked with a dot indicates the primary and secondary winding terminals with the same (that is, positive) polarity.
- b) and c) are equivalent symbols and terminal marking used by IEC (ANSI) standard for CTs. Note that for these two cases the CT polarity marking is correct!

It shall be noted that depending on national standard and utility practices, the rated secondary current of a CT has typically one of the following values:

- 1A
- 5A

However in some cases the following rated secondary currents are used as well:

- 2A
- 10A

The IED fully supports all of these rated secondary values.

4.2.3.4 Example on how to connect a star connected three-phase CT set to the IED

Figure 19 gives an example about the wiring of a star connected three-phase CT set to the IED. It gives also an overview of the actions which are needed to make this measurement available to the built-in protection and control functions within the IED as well.

For correct terminal designations, see the connection diagrams valid for the delivered IED.
Figure 19: **Star connected three-phase CT set with star point towards the protected object**

Where:

1) The drawing shows how to connect three individual phase currents from a star connected three-phase CT set to the three CT inputs of the IED.

2) The current inputs are located in the TRM. It shall be noted that for all these current inputs the following setting values shall be entered for the example shown in figure 19.

 - CTprim=600A
 - CTsec=5A
 - CTStarPoint=ToObject

Inside the IED only the ratio of the first two parameters is used. The third parameter (CTStarPoint=ToObject) as set in this example causes no change on the measured currents.

In other words, currents are already measured towards the protected object.

Table continues on next page
3) These three connections are the links between the three current inputs and the three input channels of the preprocessing function block 4). Depending on the type of functions, which need this current information, more than one preprocessing block might be connected in parallel to the same three physical CT inputs.

4) The preprocessing block that has the task to digitally filter the connected analog inputs and calculate:
 - fundamental frequency phasors for all four input channels
 - harmonic content for all four input channels
 - positive, negative and zero sequence quantities by using the fundamental frequency phasors for the first three input channels (channel one taken as reference for sequence quantities)

 These calculated values are then available for all built-in protection and control functions within the IED, which are connected to this preprocessing function block. For this application most of the preprocessing settings can be left to the default values.

 If frequency tracking and compensation is required (this feature is typically required only for IEDs installed in power plants), then the setting parameters DFTReference shall be set accordingly.

 Section SMAI in this manual provides information on adaptive frequency tracking for the signal matrix for analogue inputs (SMAI).

5) AI3P in the SMAI function block is a grouped signal which contains all the data about the phases L1, L2, L3 and neutral quantity; in particular the data about fundamental frequency phasors, harmonic content and positive sequence, negative and zero sequence quantities are available.

 AI1, AI2, AI3, AI4 are the output signals from the SMAI function block which contain the fundamental frequency phasors and the harmonic content of the corresponding input channels of the preprocessing function block.

 AIN is the signal which contains the fundamental frequency phasors and the harmonic content of the neutral quantity. In this example, GRP2N is not connected so this data is calculated by the preprocessing function block on the basis of the inputs GRPL1, GRPL2 and GRPL3. If GRP2N is connected, the data reflects the measured value of GRP2N.

Another alternative is to have the star point of the three-phase CT set as shown in figure below:
In the example in figure 20 case everything is done in a similar way as in the above described example (figure 19). The only difference is the setting of the parameter CTStarPoint of the used current inputs on the TRM (item 2 in the figure):

- CTprim=600A
- CTsec=5A
- CTStarPoint=FromObject

Inside the IED only the ratio of the first two parameters is used. The third parameter as set in this example will negate the measured currents in order to ensure that the currents are measured towards the protected object within the IED.

4.2.4 Setting of voltage channels

As the IED uses primary system quantities the main VT ratios must be known to the IED. This is done by setting the two parameters VTsec and VTprim for each voltage channel. The phase-to-phase value can be used even if each channel is connected to a phase-to-earth voltage from the VT.

4.2.4.1 Example

Consider a VT with the following data:
\[
\frac{132kV}{\sqrt{3}} \bigg/ \frac{110V}{\sqrt{3}}
\]
(Equation 21)

The following setting should be used: \(VT_{prim} = 132\) (value in kV) \(VT_{sec} = 110\) (value in V)

4.2.4.2 Examples how to connect, configure and set VT inputs for most commonly used VT connections

Figure 21 defines the marking of voltage transformer terminals commonly used around the world.

\begin{itemize}
 \item [a)] is the symbol and terminal marking used in this document. Terminals marked with a dot indicate the primary and secondary winding terminals with the same (positive) polarity
 \item [b)] is the equivalent symbol and terminal marking used by IEC (ANSI) standard for phase-to-earth connected VTs
 \item [c)] is the equivalent symbol and terminal marking used by IEC (ANSI) standard for open delta connected VTs
 \item [d)] is the equivalent symbol and terminal marking used by IEC (ANSI) standard for phase-to-phase connected VTs
\end{itemize}

It shall be noted that depending on national standard and utility practices the rated secondary voltage of a VT has typically one of the following values:

- 100 V
- 110 V
- 115 V
- 120 V
- 230 V

The IED fully supports all of these values and most of them will be shown in the following examples.
4.2.4.3 Examples on how to connect a three phase-to-earth connected VT to the IED

Figure 22 gives an example on how to connect a three phase-to-earth connected VT to the IED. It as well gives overview of required actions by the user in order to make this measurement available to the built-in protection and control functions within the IED.

For correct terminal designations, see the connection diagrams valid for the delivered IED.

![Diagram of a three phase-to-earth connected VT](image)

Figure 22: A Three phase-to-earth connected VT
Where:

1) shows how to connect three secondary phase-to-earth voltages to three VT inputs on the IED.

2) is the TRM where these three voltage inputs are located. For these three voltage inputs, the following setting values shall be entered:
 \[VT_{prim} = 66 \text{ kV} \]
 \[VT_{sec} = 110 \text{ V} \]

 Inside the IED, only the ratio of these two parameters is used. It shall be noted that the ratio of the entered values exactly corresponds to ratio of one individual VT.

 \[
 \frac{66}{110} = \frac{66}{110} \cdot \frac{\sqrt{3}}{\sqrt{3}}
 \]

 \text{(Equation 22)}

3) are three connections made in Signal Matrix Tool (SMT), which connect these three voltage inputs to first three input channels of the preprocessing function block.

 Depending on the type of functions which need this voltage information, more than one preprocessing block might be connected in parallel to these three VT inputs.

4) shows that in this example the fourth (that is, residual) input channel of the preprocessing block is not connected in SMT tool. Thus the preprocessing block will automatically calculate \(3U_0\) inside by vectorial sum from the three phase to earth voltages connected to the first three input channels of the same preprocessing block.

4) is a Preprocessing block that has the task to digitally filter the connected analog inputs and calculate:

 • fundamental frequency phasors for all four input channels
 • harmonic content for all four input channels
 • positive, negative and zero sequence quantities by using the fundamental frequency phasors for the first three input channels (channel one taken as reference for sequence quantities)

 These calculated values are then available for all built-in protection and control functions within the IED, which are connected to this preprocessing function block in the configuration tool. For this application most of the preprocessing settings can be left to the default values. However the following settings shall be set as shown here:

 \[U_{Base}=66 \text{ kV} \] (that is, rated Ph-Ph voltage)

 If frequency tracking and compensation is required (this feature is typically required only for IEDs installed in the generating stations) then the setting parameters \textit{DFTReference} shall be set accordingly.

4.2.4.4 Example on how to connect a phase-to-phase connected VT to the IED

Figure 23 gives an example how to connect a phase-to-phase connected VT to the IED. It gives an overview of the required actions by the user in order to make this measurement available to the built-in protection and control functions within the IED as well. It shall be noted that this VT connection is only used on lower voltage levels (that is, rated primary voltage below 40 kV).

For correct terminal designations, see the connection diagrams valid for the delivered IED.
Figure 23: A Phase-to-phase connected VT

Where:

1) shows how to connect the secondary side of a phase-to-phase VT to the VT inputs on the IED
2) is the TRM or AIM where this voltage input is located. The following setting values shall be entered:
 \[VT_{prim} = 13.8 \text{ kV} \]
 \[VT_{sec} = 120 \text{ V} \]
3) are three connections, which connects these three voltage inputs to three input channels of the preprocessing function block 4). Depending on the type of functions, which need this voltage information, more than one preprocessing block might be connected in parallel to these three VT inputs
4) Preprocessing block has a task to digitally filter the connected analog inputs and calculate:
 - fundamental frequency phasors for all four input channels
 - harmonic content for all four input channels
 - positive, negative and zero sequence quantities by using the fundamental frequency phasors for the first three input channels (channel one taken as reference for sequence quantities)

These calculated values are then available for all built-in protection and control functions within the IED, which are connected to this preprocessing function block. For this application most of the preprocessing settings can be left to the default values. However the following settings shall be set as shown here:

- ConnectionType=Ph-Ph
- UBase=13.8 kV

If frequency tracking and compensation is required (this feature is typically required only for IEDs installed in the generating stations) then the setting parameters DFTReference shall be set accordingly.

Application manual
Section 5 Local human-machine interface

5.1 Local HMI

The LHMI of the IED contains the following elements:

- Display (LCD)
- Buttons
- LED indicators
- Communication port for PCM600

The LHMI is used for setting, monitoring and controlling.

5.1.1 Display

The LHMI includes a graphical monochrome display with a resolution of 320 x 240 pixels. The character size can vary. The amount of characters and rows fitting the view depends on the character size and the view that is shown.

The display view is divided into four basic areas.
The function button panel shows on request what actions are possible with the function buttons. Each function button has a LED indication that can be used as a feedback signal for the function button control action. The LED is connected to the required signal with PCM600.
The alarm LED panel shows on request the alarm text labels for the alarm LEDs. Three alarm LED pages are available.

![Figure 27: Alarm LED panel](image)

The function button and alarm LED panels are not visible at the same time. Each panel is shown by pressing one of the function buttons or the Multipage button. Pressing the ESC button clears the panel from the display. Both the panels have dynamic width that depends on the label string length that the panel contains.

5.1.2 LEDs

The LHMI includes three protection status LEDs above the display: Ready, Start and Trip.

There are 15 programmable alarm LEDs on the front of the LHMI. Each LED can indicate three states with the colors: green, yellow and red. The alarm texts related to each three-color LED are divided into three pages.

There are 3 separate pages of LEDs available. The 15 physical three-color LEDs in one LED group can indicate 45 different signals. Altogether, 135 signals can be indicated since there are three LED groups. The LEDs can be configured with PCM600 and the operation mode can be selected with the LHMI or PCM600.

5.1.3 Keypad

The LHMI keypad contains push-buttons which are used to navigate in different views or menus. With the push-buttons you can give open or close commands to one primary object, for example, a circuit breaker, disconnector or an earthing switch. The push-buttons are also used to acknowledge alarms, reset indications, provide help and switch between local and remote control mode.

The keypad also contains programmable push-buttons that can be configured either as menu shortcut or control buttons.
Figure 28: LHMI keypad with object control, navigation and command push-buttons and RJ-45 communication port

1...5 Function button
6 Close
7 Open
8 Escape
9 Left
10 Down
11 Up
12 Right
13 User Log on
14 Enter
15 Remote/Local
16 Uplink LED
17 Ethernet communication port (RJ-45)
18 Multipage
19 Menu
20 Clear
21 Help
22 Programmable alarm LEDs
23 Protection status LEDs

5.1.4 Local HMI functionality

5.1.4.1 Protection and alarm indication

Protection indicators

The protection indicator LEDs are Ready, Start and Trip.
The start and trip LEDs are configured via the disturbance recorder. The yellow and red status LEDs are configured in the disturbance recorder function, DRPRDRE, by connecting a start or trip signal from the actual function to a BxRBDR binary input function block using the PCM600 and configure the setting to Off, Start or Trip for that particular signal.

Table 4: Ready LED (green)

<table>
<thead>
<tr>
<th>LED state</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Auxiliary supply voltage is disconnected.</td>
</tr>
<tr>
<td>On</td>
<td>Normal operation.</td>
</tr>
<tr>
<td>Flashing</td>
<td>Internal fault has occurred.</td>
</tr>
</tbody>
</table>

Table 5: Start LED (yellow)

<table>
<thead>
<tr>
<th>LED state</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Normal operation.</td>
</tr>
<tr>
<td>On</td>
<td>A protection function has started and an indication message is displayed.</td>
</tr>
<tr>
<td></td>
<td>• The start indication is latching and must be reset via communication or</td>
</tr>
<tr>
<td></td>
<td>by pressing Reset.</td>
</tr>
<tr>
<td>Flashing</td>
<td>A flashing yellow LED has a higher priority than a steady yellow LED.</td>
</tr>
<tr>
<td></td>
<td>• The indication disappears when the IED is no longer in test mode and</td>
</tr>
<tr>
<td></td>
<td>blocking is removed.</td>
</tr>
</tbody>
</table>

Table 6: Trip LED (red)

<table>
<thead>
<tr>
<th>LED state</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Normal operation.</td>
</tr>
<tr>
<td>On</td>
<td>A protection function has tripped and an indication message is displayed.</td>
</tr>
<tr>
<td></td>
<td>• The trip indication is latching and must be reset via communication or</td>
</tr>
<tr>
<td></td>
<td>by pressing Reset.</td>
</tr>
</tbody>
</table>

Alarm indicators

The 15 programmable three-color LEDs are used for alarm indication. An individual alarm/status signal, connected to any of the LED function blocks, can be assigned to one of the three LED colors when configuring the IED.
Table 7: Alarm indications

<table>
<thead>
<tr>
<th>LED state</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Normal operation. All activation signals are off.</td>
</tr>
<tr>
<td>On</td>
<td>• Follow-S sequence: The activation signal is on.</td>
</tr>
<tr>
<td></td>
<td>• LatchedColl-S sequence: The activation signal is on, or it is off but the indication</td>
</tr>
<tr>
<td></td>
<td>has not been acknowledged.</td>
</tr>
<tr>
<td></td>
<td>• LatchedAck-F-S sequence: The indication has been acknowledged, but the activation signal is</td>
</tr>
<tr>
<td></td>
<td>still on.</td>
</tr>
<tr>
<td></td>
<td>• LatchedAck-S-F sequence: The activation signal is on, or it is off but the indication</td>
</tr>
<tr>
<td></td>
<td>has not been acknowledged.</td>
</tr>
<tr>
<td></td>
<td>• LatchedReset-S sequence: The activation signal is on, or it is off but the indication</td>
</tr>
<tr>
<td></td>
<td>has not been acknowledged.</td>
</tr>
<tr>
<td>Flashing</td>
<td>• Follow-F sequence: The activation signal is on.</td>
</tr>
<tr>
<td></td>
<td>• LatchedAck-F-S sequence: The activation signal is on, or it is off but the indication</td>
</tr>
<tr>
<td></td>
<td>has not been acknowledged.</td>
</tr>
<tr>
<td></td>
<td>• LatchedAck-S-F sequence: The indication has been acknowledged, but the activation signal is</td>
</tr>
<tr>
<td></td>
<td>still on.</td>
</tr>
</tbody>
</table>

5.1.4.2 Parameter management

The LHMI is used to access the IED parameters. Three types of parameters can be read and written.

- Numerical values
- String values
- Enumerated values

Numerical values are presented either in integer or in decimal format with minimum and maximum values. Character strings can be edited character by character. Enumerated values have a predefined set of selectable values.

5.1.4.3 Front communication

The RJ-45 port in the LHMI enables front communication.

- The green uplink LED on the left is lit when the cable is successfully connected to the port.
When a computer is connected to the IED front port with a crossed-over cable, the IED's DHCP server for the front interface assigns an IP address to the computer if DHCP\textit{Server} = \textit{On}. The default IP address for the front port is 10.1.150.3.

Do not connect the IED front port to a LAN. Connect only a single local PC with PCM600 to the front port.

5.1.4.4 Single-line diagram

Single-line diagram is used for bay monitoring and/or control. It shows a graphical presentation of the bay which is configured with PCM600.
Figure 30: Single-line diagram example (REC650)
Section 6 Current protection

6.1 Instantaneous phase overcurrent protection 3-phase output PHPIOC

6.1.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instantaneous phase overcurrent protection 3-phase output</td>
<td>PHPIOC</td>
<td></td>
<td>31/32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

6.1.2 Application

Long transmission lines often transfer great quantities of electric power from production to consumption areas. The unbalance of the produced and consumed electric power at each end of the transmission line is very large. This means that a fault on the line can easily endanger the stability of a complete system.

The transient stability of a power system depends mostly on three parameters (at constant amount of transmitted electric power):

- The type of the fault. Three-phase faults are the most dangerous, because no power can be transmitted through the fault point during fault conditions.
- The magnitude of the fault current. A high fault current indicates that the decrease of transmitted power is high.
- The total fault clearing time. The phase angles between the EMFs of the generators on both sides of the transmission line increase over the permitted stability limits if the total fault clearing time, which consists of the protection operating time and the breaker opening time, is too long.

The fault current on long transmission lines depends mostly on the fault position and decreases with the distance from the generation point. For this reason the protection must operate very quickly for faults very close to the generation (and relay) point, for which very high fault currents are characteristic.

The instantaneous phase overcurrent protection 3-phase output PHPIOC can operate in 10 ms for faults characterized by very high currents.
6.1.3 Setting guidelines

The parameters for instantaneous phase overcurrent protection 3-phase output PHPIOC are set via the local HMI or PCM600.

This protection function must operate only in a selective way. So check all system and transient conditions that could cause its unwanted operation.

Only detailed network studies can determine the operating conditions under which the highest possible fault current is expected on the line. In most cases, this current appears during three-phase fault conditions. But also examine single-phase-to-earth and two-phase-to-earth conditions.

Also study transients that could cause a high increase of the line current for short times. A typical example is a transmission line with a power transformer at the remote end, which can cause high inrush current when connected to the network and can thus also cause the operation of the built-in, instantaneous, overcurrent protection.

\textit{GlobalBaseSel}: Selects the global base value group used by the function to define (\textit{IBase}), (\textit{UBase}) and (\textit{SBase}).

\textit{IP}>>: Set operate current in \% of \textit{IBase}.

6.1.3.1 Meshed network without parallel line

The following fault calculations have to be done for three-phase, single-phase-to-earth and two-phase-to-earth faults. With reference to figure 31, apply a fault in B and then calculate the current through-fault phase current \(I_{fB} \). The calculation should be done using the minimum source impedance values for \(Z_A \) and the maximum source impedance values for \(Z_B \) in order to get the maximum through fault current from A to B.

![Diagram of meshed network without parallel line](image)

\textit{Figure 31:} Through fault current from A to B: \(I_{fB} \)
Then a fault in A has to be applied and the through fault current \(I_{fA} \) has to be calculated, figure 32. In order to get the maximum through fault current, the minimum value for \(Z_B \) and the maximum value for \(Z_A \) have to be considered.

![Diagram](IEC09000023-1-en.vsd)

Figure 32: Through fault current from B to A: \(I_{fA} \)

The IED must not trip for any of the two through-fault currents. Hence the minimum theoretical current setting (\(I_{\text{min}} \)) will be:

\[
I_{\text{min}} \geq \text{MAX}(I_{fA}, I_{fB})
\]

(Equation 23)

A safety margin of 5% for the maximum protection static inaccuracy and a safety margin of 5% for the maximum possible transient overreach have to be introduced. An additional 20% is suggested due to the inaccuracy of the instrument transformers under transient conditions and inaccuracy in the system data.

The minimum primary setting (\(I_s \)) for the instantaneous phase overcurrent protection 3-phase output is then:

\[
I_s \geq 1.3 \cdot I_{\text{min}}
\]

(Equation 24)

The protection function can be used for the specific application only if this setting value is equal to or less than the maximum fault current that the IED has to clear, \(I_F \) in figure 33.
6.1.3.2 Meshed network with parallel line

In case of parallel lines, the influence of the induced current from the parallel line to the protected line has to be considered. One example is given in figure 34 where the two lines are connected to the same busbars. In this case the influence of the induced fault current from the faulty line (line 1) to the healthy line (line 2) is considered together with the two through fault currents I_{fA} and I_{fB} mentioned previously. The maximal influence from the parallel line for the IED in figure 34 will be with a fault at the C point with the C breaker open.

A fault in C has to be applied, and then the maximum current seen from the IED (I_M) on the healthy line (this applies for single-phase-to-earth and two-phase-to-earth faults) is calculated.

Figure 33: Fault current: I_F

\[
IP >>= \frac{Is}{IBase} \cdot 100
\]

(Equation 25)
The minimum theoretical current setting for the overcurrent protection function (Imin) will be:

\[
I_{\text{min}} \geq \text{MAX}(I_{\text{IA}}, I_{\text{IB}}, I_{\text{M}})
\]
(Equation 26)

Where \(I_{\text{IA}}\) and \(I_{\text{IB}}\) have been described in the previous paragraph. Considering the safety margins mentioned previously, the minimum setting (Is) for the instantaneous phase overcurrent protection 3-phase output is then:

\[
I_{\text{s}} \geq 1.3 \cdot I_{\text{min}}
\]
(Equation 27)

The protection function can be used for the specific application only if this setting value is equal or less than the maximum phase fault current that the IED has to clear.

The IED setting value \(IP>>\) is given in percentage of the primary base current value, \(I_{\text{Base}}\). The value for \(IP>>\) is given from this formula:

\[
IP >> = \frac{I_{s}}{I_{\text{Base}}} \cdot 100
\]
(Equation 28)
6.2 Four step phase overcurrent protection 3-phase output OC4PTOC

6.2.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Four step phase overcurrent protection 3-phase output</td>
<td>OC4PTOC</td>
<td></td>
<td>51/67</td>
</tr>
</tbody>
</table>

6.2.2 Application

The Four step phase overcurrent protection 3-phase output OC4PTOC is used in several applications in the power system. Some applications are:

- Short circuit protection of feeders in distribution and subtransmission systems. Normally these feeders have radial structure.
- Back-up short circuit protection of transmission lines.
- Back-up short circuit protection of power transformers.
- Short circuit protection of different kinds of equipment connected to the power system such as; shunt capacitor banks, shunt reactors, motors and others.
- Back-up short circuit protection of power generators.

If VT inputs are not available or not connected, setting parameter DirModex \((x = \text{step 1, 2, 3 or 4)}\) shall be left to default value Non-directional or set to Off.

In many applications several steps with different current pick up levels and time delays are needed. OC4PTOC can have up to four different, individual settable, steps. The flexibility of each step of OC4PTOC is great. The following options are possible:

- Non-directional / Directional function: In most applications the non-directional functionality is used. This is mostly the case when no fault current can be fed from the protected object itself. In order to achieve both selectivity and fast fault clearance, the directional function can be necessary.

- Choice of delay time characteristics: There are several types of delay time characteristics available such as definite time delay and different types of inverse time delay characteristics. The selectivity between different overcurrent protections is normally enabled by co-ordination between the function time delays of the different protections. To enable optimal co-ordination between all overcurrent protections,
they should have the same time delay characteristic. Therefore a wide range of
standardized inverse time characteristics are available: IEC and ANSI.

The time characteristic for step 1 and 4 can be chosen as definite time delay or inverse
time characteristic. Step 2 and 3 are always definite time delayed and are used in
system where IDMT is not needed.

Power transformers can have a large inrush current, when being energized. This
phenomenon is due to saturation of the transformer magnetic core during parts of the
period. There is a risk that inrush current will reach levels above the pick-up current
of the phase overcurrent protection. The inrush current has a large 2nd harmonic
content. This can be used to avoid unwanted operation of the protection. Therefore,
OC4PTOC have a possibility of 2nd harmonic restrain if the level of this harmonic
current reaches a value above a set percentage of the fundamental current.

6.2.3 Setting guidelines

When inverse time overcurrent characteristic is selected, the operate
time of the stage will be the sum of the inverse time delay and the set
definite time delay. Thus, if only the inverse time delay is required, it
is important to set the definite time delay for that stage to zero.

The parameters for Four step phase overcurrent protection 3-phase output OC4PTOC
are set via the local HMI or PCM600.

The following settings can be done for OC4PTOC.

GlobalBaseSel: Selects the global base value group used by the function to define
(IBase), (UBase) and (SBase).

MeasType: Selection of discrete Fourier filtered (DFT) or true RMS filtered (RMS)
signals. RMS is used when the harmonic contents are to be considered, for example in
applications with shunt capacitors.

Operation: The protection can be set to Off or On

2ndHarmStab: Operate level of 2nd harmonic current restrain set in % of the
fundamental current. The setting range is 5 - 100% in steps of 1%. Default setting is
20%.
Figure 35: Directional function characteristic

1. RCA = Relay characteristic angle 55°
2. ROA = Relay operating angle 80°
3. Reverse
4. Forward

6.2.3.1 Settings for steps 1 to 4

\[n \text{ means step 1 and 4. } x \text{ means step 1, 2, 3 and 4.} \]

DirModex: The directional mode of step \(x \). Possible settings are Off/Non-directional/Forward/Reverse.

Characteristn: Selection of time characteristic for step \(n \). Definite time delay and different types of inverse time characteristics are available according to table 8. Step 2 and 3 are always definite time delayed.
Table 8: Inverse time characteristics

<table>
<thead>
<tr>
<th>Curve name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI Extremely Inverse</td>
</tr>
<tr>
<td>ANSI Very Inverse</td>
</tr>
<tr>
<td>ANSI Normal Inverse</td>
</tr>
<tr>
<td>ANSI Moderately Inverse</td>
</tr>
<tr>
<td>ANSI/IEEE Definite time</td>
</tr>
<tr>
<td>ANSI Long Time Extremely Inverse</td>
</tr>
<tr>
<td>ANSI Long Time Very Inverse</td>
</tr>
<tr>
<td>ANSI Long Time Inverse</td>
</tr>
<tr>
<td>IEC Normal Inverse</td>
</tr>
<tr>
<td>IEC Very Inverse</td>
</tr>
<tr>
<td>IEC Inverse</td>
</tr>
<tr>
<td>IEC Extremely Inverse</td>
</tr>
<tr>
<td>IEC Short Time Inverse</td>
</tr>
<tr>
<td>IEC Long Time Inverse</td>
</tr>
<tr>
<td>IEC Definite Time</td>
</tr>
<tr>
<td>ASEA RI</td>
</tr>
<tr>
<td>RXIDG (logarithmic)</td>
</tr>
</tbody>
</table>

The different characteristics are described in Technical manual.

$Ix>$: Operate phase current level for step x given in $\%$ of $IBase$.

tx: Definite time delay for step x. The definite time tx is added to the inverse time when inverse time characteristic is selected.

kn: Time multiplier for inverse time delay for step n.

$IMinn$: Minimum operate current for step n in $\%$ of $IBase$. Set $IMinn$ below $Ix>$ for every step to achieve ANSI reset characteristic according to standard. If $IMinn$ is set above $Ix>$ for any step the ANSI reset works as if current is zero when current drops below $IMinn$.

$tnMin$: Minimum operate time for all inverse time characteristics. At high currents the inverse time characteristic might give a very short operation time. By setting this parameter the operation time of the step can never be shorter than the setting. Setting range: 0.000 - 60.000s in steps of 0.001s.
Figure 36: Minimum operate current and operation time for inverse time characteristics

In order to fully comply with curves definition setting parameter $tnMin$ shall be set to the value, which is equal to the operating time of the selected inverse curve for measured current of twenty times the set current pickup value. Note that the operating time value is dependent on the selected setting value for time multiplier kn.

HarmRestrainx: Enable block of step n from the harmonic restrain function (2nd harmonic). This function should be used when there is a risk if power transformer inrush currents might cause unwanted trip. Can be set Off/On.

6.2.3.2 2nd harmonic restrain

If a power transformer is energized there is a risk that the transformer core will saturate during part of the period, resulting in an inrush transformer current. This will give a declining residual current in the network, as the inrush current is deviating between the phases. There is a risk that the phase overcurrent function will give an unwanted trip. The inrush current has a relatively large ratio of 2nd harmonic component. This component can be used to create a restrain signal to prevent this unwanted function.

The settings for the 2nd harmonic restrain are described below.

2ndHarmStab: The rate of 2nd harmonic current content for activation of the 2nd harmonic restrain signal, to block chosen steps. The setting is given in % of the fundamental frequency residual current. The setting range is 5 - 100% in steps of 1%. The default setting is 20% and can be used if a deeper investigation shows that no other value is needed.
HarmRestrainx: This parameter can be set *Off/On*, to disable or enable the 2nd harmonic restrain.

The four step phase overcurrent protection 3-phase output can be used in different ways, depending on the application where the protection is used. A general description is given below.

The operating current setting of the inverse time protection, or the lowest current step of the definite time protection, must be defined so that the highest possible load current does not cause protection operation. Here consideration also has to be taken to the protection reset current, so that a short peak of overcurrent does not cause operation of the protection even when the overcurrent has ceased. This phenomenon is described in figure 37.

![Graph](IEC05000203-en-2.vsd)

Figure 37: Operate and reset current for an overcurrent protection

The lowest setting value can be written according to equation 29.

\[
I_{pu} \geq 1.2 \cdot \frac{I_{max}}{k}
\]

(Equation 29)

where:

- 1.2 is a safety factor
- \(k \) is the resetting ratio of the protection
- \(I_{max} \) is the maximum load current
The maximum load current on the line has to be estimated. There is also a demand that all faults, within the zone that the protection shall cover, must be detected by the phase overcurrent protection. The minimum fault current \(I_{\text{sc min}} \), to be detected by the protection, must be calculated. Taking this value as a base, the highest pick up current setting can be written according to equation \(30 \).

\[
I_{\text{pu}} \leq 0.7 \cdot I_{\text{sc min}}
\]

(Equation 30)

where:
- \(0.7 \) is a safety factor
- \(I_{\text{sc min}} \) is the smallest fault current to be detected by the overcurrent protection.

As a summary the operating current shall be chosen within the interval stated in equation \(31 \).

\[
1.2 \cdot \frac{I_{\text{max}}}{k} \leq I_{\text{pu}} \leq 0.7 \cdot I_{\text{sc min}}
\]

(Equation 31)

The high current function of the overcurrent protection, which only has a short delay of the operation, must be given a current setting so that the protection is selective to other protection in the power system. It is desirable to have a rapid tripping of faults within as large portion as possible of the part of the power system to be protected by the protection (primary protected zone). A fault current calculation gives the largest current of faults, \(I_{\text{sc max}} \), at the most remote part of the primary protected zone. Considerations have to be made to the risk of transient overreach, due to a possible DC component of the fault current. The lowest current setting of the most rapid stage, of the phase overcurrent protection, can be written according to

\[
I_{\text{high}} \geq 1.2 \cdot k_t \cdot I_{\text{sc max}}
\]

(Equation 32)

where:
- \(1.2 \) is a safety factor
- \(k_t \) is a factor that takes care of the transient overreach due to the DC component of the fault current and can be considered to be less than 1.1
- \(I_{\text{sc max}} \) is the largest fault current at a fault at the most remote point of the primary protection zone.

The operate times of the phase overcurrent protection has to be chosen so that the fault time is so short that protected equipment will not be destroyed due to thermal overload, at the same time as selectivity is assured. For overcurrent protection, in a radial fed network, the time setting can be chosen in a graphical way. This is mostly used in the case of inverse time overcurrent protection. Figure 38 shows how the time-
versus-current curves are plotted in a diagram. The time setting is chosen to get the shortest fault time with maintained selectivity. Selectivity is assured if the time difference between the curves is larger than a critical time difference.

![Time-current curves](en05000204.wmf)

Figure 38: Fault time with maintained selectivity

To assure selectivity between different protections, in the radial network, there have to be a minimum time difference Δt between the time delays of two protections. The minimum time difference can be determined for different cases. To determine the shortest possible time difference, the operation time of protections, breaker opening time and protection resetting time must be known. These time delays can vary significantly between different protective equipment. The following time delays can be estimated:

- Protection operation time: 15-60 ms
- Protection resetting time: 15-60 ms
- Breaker opening time: 20-120 ms

Example for time coordination

Assume two substations A and B directly connected to each other via one line, as shown in the figure 39. Consider a fault located at another line from the station B. The
fault current to the overcurrent protection of IED B1 has a magnitude so that the protection will have instantaneous function. The overcurrent protection of IED A1 must have a delayed function. The sequence of events during the fault can be described using a time axis, see figure 39.

Figure 39: Sequence of events during fault

where:
- \(t=0 \) is when the fault occurs
- \(t=t_1 \) is when the trip signal from the overcurrent protection at IED B1 is sent to the circuit breaker. The operation time of this protection is \(t_1 \)
- \(t=t_2 \) is when the circuit breaker at IED B1 opens. The circuit breaker opening time is \(t_2 - t_1 \)
- \(t=t_3 \) is when the overcurrent protection at IED A1 resets. The protection resetting time is \(t_3 - t_2 \).

To ensure that the overcurrent protection at IED A1, is selective to the overcurrent protection at IED B1, the minimum time difference must be larger than the time \(t_3 \). There are uncertainties in the values of protection operation time, breaker opening time and protection resetting time. Therefore a safety margin has to be included. With normal values the needed time difference can be calculated according to equation 33.

\[
\Delta t \geq 40 \text{ms} + 100 \text{ms} + 40 \text{ms} + 40 \text{ms} = 220 \text{ms}
\]

(Equation 33)

where it is considered that:
- the operate time of overcurrent protection B1 is 40 ms
- the breaker open time is 100 ms
- the resetting time of protection A1 is 40 ms and
- the additional margin is 40 ms
6.3 Instantaneous residual overcurrent protection EFPIOC

6.3.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instantaneous residual overcurrent protection</td>
<td>EFPIOC</td>
<td></td>
<td>IN>></td>
</tr>
</tbody>
</table>

6.3.2 Application

In many applications, when fault current is limited to a defined value by the object impedance, an instantaneous earth-fault protection can provide fast and selective tripping.

The Instantaneous residual overcurrent EFPIOC, which can operate in 15 ms (50 Hz nominal system frequency) for faults characterized by very high currents, is included in the IED.

6.3.3 Setting guidelines

The parameters for the Instantaneous residual overcurrent protection EFPIOC are set via the local HMI or PCM600.

Some guidelines for the choice of setting parameter for EFPIOC is given.

GlobalBaseSel: Selects the global base value group used by the function to define (IBase), (UBase) and (SBase).

The setting of the function is limited to the operate residual current to the protection (IN>>).

The basic requirement is to assure selectivity, that is EFPIOC shall not be allowed to operate for faults at other objects than the protected object (line).

For a normal line in a meshed system single phase-to-earth faults and phase-to-phase-to-earth faults shall be calculated as shown in figure 40 and figure 41. The residual currents (3I₀) to the protection are calculated. For a fault at the remote line end this fault current is IFB. In this calculation the operational state with high source impedance ZA and low source impedance ZB should be used. For the fault at the home busbar this fault current is IFB. In this calculation the operational state with low source impedance ZA and high source impedance ZB should be used.
Section 6
Current protection

The function shall not operate for any of the calculated currents to the protection. The minimum theoretical current setting \(I_{\text{min}} \) will be:

\[
I_{\text{min}} \geq \text{MAX}(I_{fA}, I_{fB}, I_{fA} \cdot I_{fB})
\]

\[(\text{Equation 34})\]

A safety margin of 5% for the maximum static inaccuracy and a safety margin of 5% for maximum possible transient overreach have to be introduced. An additional 20% is suggested due to inaccuracy of instrument transformers under transient conditions and inaccuracy in the system data.

The minimum primary current setting \(I_s \) is:

\[
I_s \geq 1.3 \cdot I_{\text{min}}
\]

\[(\text{Equation 35})\]

In case of parallel lines with zero sequence mutual coupling a fault on the parallel line, as shown in figure 42, should be calculated.
The minimum theoretical current setting (Imin) will in this case be:

\[I_{\text{min}} \geq \text{MAX}(I_{A}, I_{B}, I_{M}) \]
(Equation 36)

Where:
\(I_{A} \) and \(I_{B} \) have been described for the single line case.

Considering the safety margins mentioned previously, the minimum setting (Is) is:

\[I_{s} \geq 1.3 \cdot I_{\text{in}} \]
(Equation 37)

Transformer inrush current shall be considered.

The setting of the protection is set as a percentage of the base current (IBase).

Operation: set the protection to *On* or *Off*.

IN/>: Set operate current in % of IBase. IBase is a global parameter valid for all functions in the IED.

6.4 Four step residual overcurrent protection, zero, negative sequence direction EF4PTOC
6.4.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Four step residual overcurrent protection, zero or negative sequence direction</td>
<td>EF4PTOC</td>
<td></td>
<td>S1N/67N</td>
</tr>
</tbody>
</table>

6.4.2 Application

The four step residual overcurrent protection, zero or negative sequence direction EF4PTOC is used in several applications in the power system. Some applications are:

- Earth-fault protection of feeders in effectively earthed distribution systems. Normally these feeders have radial structure.
- Back-up earth-fault protection of subtransmission and transmission lines.
- Sensitive earth-fault protection of transmission lines. EF4PTOC can have better sensitivity to detect resistive phase-to-earth-faults compared to distance protection.
- Back-up earth-fault protection of power transformers with earth source at substation.
- Earth-fault protection of different kinds of equipment connected to the power system such as shunt capacitor banks, shunt reactors and others.
- Negative sequence directional earth-fault protection of feeders with PTs connected in Open Delta connection from which it is not possible to derive Zero sequence voltage.
- Negative sequence directional earth-fault protection of double-circuit medium or long transmission lines with significant mutual coupling.

In many applications several steps with different current operating levels and time delays are needed. EF4PTOC can have up to four, individual settable steps. The flexibility of each step of EF4PTOC is great. The following options are possible:

Non-directional/Directional function: In some applications the non-directional functionality is used. This is mostly the case when no fault current can be fed from the protected object itself. In order to achieve both selectivity and fast fault clearance, the directional function can be necessary. This can be the case for earth-fault protection in meshed and effectively earthed transmission systems. The directional residual overcurrent protection is also well suited to operate in teleprotection communication schemes, which enables fast clearance of earth faults on transmission lines. The directional function uses the polarizing quantity as decided by setting. Voltage polarizing ($3U_0$ or U_2) is most commonly used, but alternatively current polarizing ($3I_0$ or I_2) where currents in transformer neutrals providing the neutral (zero sequence) source (ZN) is used to polarize ($IPol \cdot ZN$) the function. Dual polarizing where the sum of both voltage and current components is allowed to polarize can also be selected.
Choice of time characteristics: There are several types of time characteristics available such as definite time delay and different types of inverse time characteristics. The selectivity between different overcurrent protections is normally enabled by co-ordination between the operate time of the different protections. To enable optimal co-ordination all overcurrent protections, to be co-ordinated against each other, should have the same time characteristic. Therefore a wide range of standardized inverse time characteristics are available: IEC and ANSI. The time characteristic for step 1 and 4 can be chosen as definite time delay or inverse time characteristic. Step 2 and 3 are always definite time delayed and are used in system where IDMT is not needed.

<table>
<thead>
<tr>
<th>Curve name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI Extremely Inverse</td>
</tr>
<tr>
<td>ANSI Very Inverse</td>
</tr>
<tr>
<td>ANSI Normal Inverse</td>
</tr>
<tr>
<td>ANSI Moderately Inverse</td>
</tr>
<tr>
<td>ANSI/IEEE Definite time</td>
</tr>
<tr>
<td>ANSI Long Time Extremely Inverse</td>
</tr>
<tr>
<td>ANSI Long Time Very Inverse</td>
</tr>
<tr>
<td>ANSI Long Time Inverse</td>
</tr>
<tr>
<td>IEC Normal Inverse</td>
</tr>
<tr>
<td>IEC Very Inverse</td>
</tr>
<tr>
<td>IEC Inverse</td>
</tr>
<tr>
<td>IEC Extremely Inverse</td>
</tr>
<tr>
<td>IEC Short Time Inverse</td>
</tr>
<tr>
<td>IEC Long Time Inverse</td>
</tr>
<tr>
<td>IEC Definite Time</td>
</tr>
<tr>
<td>ASEA RI</td>
</tr>
<tr>
<td>RXIDG (logarithmic)</td>
</tr>
</tbody>
</table>

Power transformers can have a large inrush current, when being energized. This inrush current can have residual current components. The phenomenon is due to saturation of the transformer magnetic core during parts of the cycle. There is a risk that inrush current will give a residual current that reaches level above the operating current of the residual overcurrent protection. The inrush current has a large second harmonic content. This can be used to avoid unwanted operation of the protection. Therefore, EF4PTOC has a possibility of second harmonic restrain $2ndHarmStab$ if the level of this harmonic current reaches a value above a set percentage of the fundamental current.
6.4.3 Setting guidelines

When inverse time overcurrent characteristic is selected, the operate time of the stage will be the sum of the inverse time delay and the set definite time delay. Thus, if only the inverse time delay is required, it is important to set the definite time delay for that stage to zero.

The parameters for the four step residual overcurrent protection, zero or negative sequence direction EF4PTOC are set via the local HMI or PCM600.

The following settings can be done for the four step residual overcurrent protection.

- GlobalBaseSel: Selects the global base value group used by the function to define \(I_{Base} \), \(U_{Base} \) and \(S_{Base} \).
- SeqTypeUpol: It is used to select type of voltage polarization quantity, i.e. ZeroSeq and NegSeq for direction detection.
- SeqTypeIpol: It is used to select type of current polarization quantity, i.e. ZeroSeq and NegSeq for direction detection.
- SeqTypeIDir: It is used to select type of operating quantity, i.e. ZeroSeq and NegSeq for direction detection.
- Operation: Sets the protection to On or Off.
- EnaDir: Enables the directional calculation in addition to the directional mode selection in each step.

6.4.3.1 Settings for steps 1 and 4

\[n \] means step 1 and 4. \[x \] means step 1, 2, 3 and 4.

- DirModex: The directional mode of step \(x \). Possible settings are Off/Non-directional/Forward/Reverse.
- Characterisn: Selection of time characteristic for step \(n \). Definite time delay and different types of inverse time characteristics are available.

Inverse time characteristic enables fast fault clearance of high current faults at the same time as selectivity to other inverse time phase overcurrent protections can be assured. This is mainly used in radial fed networks but can also be used in meshed networks. In meshed networks the settings must be based on network fault calculations.

To assure selectivity between different protections, in the radial network, there have to be a minimum time difference \(\Delta t \) between the time delays of two protections. The minimum time difference can be determined for different cases. To determine the
shortest possible time difference, the operation time of protections, breaker opening
time and protection resetting time must be known. These time delays can vary
significantly between different protective equipment. The following time delays can
be estimated:

<table>
<thead>
<tr>
<th>Time Delay</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection operate time</td>
<td>15-60 ms</td>
</tr>
<tr>
<td>Protection resetting time</td>
<td>15-60 ms</td>
</tr>
<tr>
<td>Breaker opening time</td>
<td>20-120 ms</td>
</tr>
</tbody>
</table>

The different characteristics are described in the Technical Manual (TM).

\(tx\): Definite time delay for step \(x\). The definite time \(tx\) is added to the inverse time when
inverse time characteristic is selected.

\(IN_x>\): Operate residual current level for step \(x\) given in % of \(I_{Base}\).

\(kn\): Time multiplier for inverse time delay for step \(n\).

\(IM_{inn}\): Minimum operate current for step \(n\) in % of \(I_{Base}\). Set \(IM_{inn}\) below \(IN_x>\) for
every step to achieve ANSI reset characteristic according to standard. If \(IM_{inn}\) is set
above \(IN_x>\) for any step then signal will reset at current equals to zero.

\(tn_{Min}\): Minimum operating time for inverse time characteristics. At high currents the
inverse time characteristic might give a very short operation time. By setting this
parameter the operation time of the step \(n\) can never be shorter than the setting.

Figure 43: Minimum operate current and operate time for inverse time characteristics
In order to fully comply with curves definition the setting parameter txMin shall be set to the value which is equal to the operate time of the selected IEC inverse curve for measured current of twenty times the set current pickup value. Note that the operate time value is dependent on the selected setting value for time multiplier kn.

6.4.3.2 Common settings for all steps

\(tx \): Definite time delay for step \(x \). Used if definite time characteristic is chosen.

\(\text{AngleRCA} \): Relay characteristic angle given in degree. This angle is defined as shown in figure 44. The angle is defined positive when the residual current lags the reference voltage (\(\text{Upol} = 3U_0 \) or \(U_2 \))

\[I_{\text{Dir}} > 0 \]

\(\text{Operation} \)

\(\text{Upol} = 3U_0 \) or \(U_2 \)

\(\text{RCA} \)

Figure 44: Relay characteristic angle given in degree

In a normal transmission network a normal value of RCA is about 65°. The setting range is -180° to +180°.

\(\text{polMethod} \): Defines if the directional polarization is from

- \(\text{Voltage} \) (\(3U_0 \) or \(U_2 \))
- \(\text{Current} \) (\(3I_0 \cdot ZN\text{pol} \) or \(3I_2 \cdot ZN\text{pol} \) where ZNpol is RNpol + jXNpol), or
- both currents and voltage, \(\text{Dual} \) (dual polarizing, \((3U_0 + 3I_0 \cdot ZN\text{pol}) \) or \((U_2 + I_2 \cdot ZN\text{pol})\)).

Normally voltage polarizing from the internally calculated residual sum or an external open delta is used.
Current polarizing is useful when the local source is strong and a high sensitivity is required. In such cases the polarizing voltage ($3U_0$) can be below 1% and it is then necessary to use current polarizing or dual polarizing. Multiply the required set current (primary) with the minimum impedance (Z_{Npol}) and check that the percentage of the phase-to-earth voltage is definitely higher than 1% (minimum $3U_0 > U_{PolMin}$ setting) as a verification.

R_{NPol}, X_{NPol}: The zero-sequence source is set in primary ohms as base for the current polarizing. The polarizing voltage is then achieved as $3I_0 \cdot Z_{Npol}$. The Z_{Npol} can be defined as $(Z_{S1} - Z_{S0})/3$, that is the earth return impedance of the source behind the protection. The maximum earth-fault current at the local source can be used to calculate the value of Z_N as $U/(\sqrt{3} \cdot 3I_0)$ Typically, the minimum Z_{NPol} (3 · zero sequence source) is set. Setting is in primary ohms.

When the dual polarizing method is used it is important that the product $I_{Nx>x} \cdot Z_{Npol}$ is not greater than $3U_0$. If so, there is a risk for incorrect operation for faults in the reverse direction.

I_{PolMin}: is the minimum earth-fault current accepted for directional evaluation. For smaller currents than this value the operation will be blocked. Typical setting is 5-10% of I_{Base}.

U_{PolMin}: Minimum polarization (reference) residual voltage for the directional function, given in % of $U_{Base}/\sqrt{3}$.

$I_{>Dir}$: Operate residual current release level in % of I_{Base} for directional comparison scheme. The setting is given in % of I_{Base} and must be set below the lowest $I_{Nx>x}$ setting, set for the directional measurement. The output signals, STFW and STRV can be used in a teleprotection scheme. The appropriate signal should be configured to the communication scheme block.

6.4.3.3 2nd harmonic restrain

If a power transformer is energized there is a risk that the current transformer core will saturate during part of the period, resulting in a transformer inrush current. This will give a declining residual current in the network, as the inrush current is deviating between the phases. There is a risk that the residual overcurrent function will give an unwanted trip. The inrush current has a relatively large ratio of 2nd harmonic component. This component can be used to create a restrain signal to prevent this unwanted function.

At current transformer saturation a false residual current can be measured by the protection. Also here the 2nd harmonic restrain can prevent unwanted operation.

$2ndHarmStab$: The rate of 2nd harmonic current content for activation of the 2nd harmonic restrain signal. The setting is given in % of the fundamental frequency residual current.

$HarmRestrainx$: Enable block of step x from the harmonic restrain function.
6.4.3.4 Line application example 1

The Four step residual overcurrent protection EF4PTOC can be used in different ways. Below is described one application possibility to be used in meshed and effectively earthed systems.

The protection measures the residual current out on the protected line. The protection function has a directional function where the residual voltage (zero-sequence voltage) is the polarizing quantity.

The residual voltage and current can be internally generated when a three-phase set of voltage transformers and current transformers are used.

![Connection diagram](xx05000149.vsd)

Figure 45: Connection of polarizing voltage from an open delta

The different steps can be described as follows.

Step 1
This step has directional instantaneous function. The requirement is that overreaching of the protected line is not allowed.
The residual current out on the line is calculated at a fault on the remote busbar (one- or two-phase-to-earth fault). To assure selectivity it is required that step 1 shall not give a trip at this fault. The requirement can be formulated according to equation 38.

\[I_{0r} \geq 1.2 \cdot 3I_e \text{ (remote busbar)} \]

(Equation 38)

As a consequence of the distribution of zero sequence current in the power system, the current to the protection might be larger if one line out from the remote busbar is taken out of service, see figure 47.

The requirement is now according to equation 39.
$I_{\text{loct}} \geq 1.2 \cdot 3I_0$ (remote busbar with one line out)

(Equation 39)

A higher value of step 1 might be necessary if a big power transformer (Y0/D) at remote busbar is disconnected.

A special case occurs at double circuit lines, with mutual zero-sequence impedance between the parallel lines, see figure 48.

Figure 48: Step 1, third calculation

In this case the residual current out on the line can be larger than in the case of earth fault on the remote busbar.

$\text{IEC}05000152\text{-en-2.vsd}$

$\text{IEC}05000152\text{-en-2.vsd}$

The current setting for step 1 is chosen as the largest of the above calculated residual currents, measured by the protection.

Step 2
This step has directional function and a short time delay, often about 0.4 s. Step 2 shall securely detect all earth faults on the line, not detected by step 1.
The residual current, out on the line, is calculated at an operational case with minimal earth-fault current. The requirement that the whole line shall be covered by step 2 can be formulated according to equation 41.

\[I_{step2} \geq 0.7 \cdot 3I_0 \text{ (at remote busbar)} \]

(Equation 41)

To assure selectivity the current setting must be chosen so that step 2 does not operate at step 2 for faults on the next line from the remote substation. Consider a fault as shown in figure 50.

A second criterion for step 2 is according to equation 42.

\[I_{step2} \geq 1.2 \cdot \frac{3I_0}{3I_{01}} \cdot I_{step1} \]

(Equation 42)

where:

- \(I_{step1} \) is the current setting for step 1 on the faulted line.
Step 3

This step has directional function and a time delay slightly larger than step 2, often 0.8 s. Step 3 shall enable selective trip of earth faults having higher fault resistance to earth, compared to step 2. The requirement on step 3 is selectivity to other earth-fault protections in the network. One criterion for setting is shown in figure 51.

![Figure 51: Step 3, Selectivity calculation](IEC05000156-en-2.vsd)

$$I_{step3} \geq 1.2 \cdot \frac{3I_0}{3I_{02}} \cdot I_{step2}$$

(Equation 43)

where:

- I_{step2} is the chosen current setting for step 2 on the faulted line.

Step 4

This step normally has non-directional function and a relatively long time delay. The task for step 4 is to detect and initiate trip for earth faults with large fault resistance, for example tree faults. Step 4 shall also detect series faults where one or two poles, of a breaker or other switching device, are open while the other poles are closed.

Both high resistance earth faults and series faults give zero-sequence current flow in the network. Such currents give disturbances on telecommunication systems and current to earth. It is important to clear such faults both concerning personal security as well as risk of fire.

The current setting for step 4 is often set down to about 100 A (primary $3I_0$). In many applications definite time delay in the range 1.2 - 2.0 s is used. In other applications a current dependent inverse time characteristic is used. This enables a higher degree of selectivity also for sensitive earth-fault current protection.
6.5 Sensitive directional residual overcurrent and power protection SDEPSDE

6.5.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitive directional residual over current and power protection</td>
<td>SDEPSDE</td>
<td>-</td>
<td>67N</td>
</tr>
</tbody>
</table>

6.5.2 Application

In networks with high impedance earthing, the phase-to-earth fault current is significantly smaller than the short circuit currents. Another difficulty for earth-fault protection is that the magnitude of the phase-to-earth fault current is almost independent of the fault location in the network.

Directional residual current can be used to detect and give selective trip of phase-to-earth faults in high impedance earthed networks. The protection uses the residual current component \(3I_0 \cdot \cos \phi\), where \(\phi\) is the angle between the residual current and the residual voltage (-3U_0), compensated with a characteristic angle. Alternatively, the function can be set to strict \(3I_0\) level with a check of angle \(3I_0\) and \(\cos \phi\).

Directional residual power can also be used to detect and give selective trip of phase-to-earth faults in high impedance earthed networks. The protection uses the residual power component \(3I_0 \cdot 3U_0 \cdot \cos \phi\), where \(\phi\) is the angle between the residual current and the reference residual voltage, compensated with a characteristic angle.

A normal non-directional residual current function can also be used with definite or inverse time delay.

A back-up neutral point voltage function is also available for non-directional sensitive back-up protection.

In an isolated network, that is, the network is only coupled to earth via the capacitances between the phase conductors and earth, the residual current always has -90° phase shift compared to the reference residual voltage. The characteristic angle is chosen to -90° in such a network.

In resistance earthed networks or in Petersen coil earthed, with a parallel resistor, the active residual current component (in phase with the residual voltage) should be used for the earth-fault detection. In such networks the characteristic angle is chosen to 0°.

As the amplitude of the residual current is independent of the fault location the selectivity of the earth-fault protection is achieved by time selectivity.
When should the sensitive directional residual overcurrent protection be used and when should the sensitive directional residual power protection be used? Consider the following facts:

- Sensitive directional residual overcurrent protection gives possibility for better sensitivity. The setting possibilities of this function are down to 0.25 % of IBase, 1 A or 5 A. This sensitivity is in most cases sufficient in high impedance network applications, if the measuring CT ratio is not too high.
- Sensitive directional residual power protection gives possibility to use inverse time characteristics. This is applicable in large high impedance earthed networks, with large capacitive earth-fault current
- In some power systems a medium size neutral point resistor is used, for example, in low impedance earthed system. Such a resistor will give a resistive earth-fault current component of about 200 - 400 A at a zero resistive phase-to-earth fault. In such a system the directional residual power protection gives better possibilities for selectivity enabled by inverse time power characteristics.

Figure 52: Connection of SDEPSDE to analog preprocessing function block

Over current functionality uses true 3I0, i.e. sum of GRPxL1, GRPxL2 and GRPxL3. For 3I0 to be calculated, connection is needed to all three phase inputs.

Directional and power functionality uses IN and UN. If a connection is made to GRPxN this signal is used, else if connection is made to all inputs GRPxL1, GRPxL2 and GRPxL3 the sum of these inputs (3I0 and 3U0) will be used.

6.5.3 Setting guidelines

The sensitive earth-fault protection is intended to be used in high impedance earthed systems, or in systems with resistive earthing where the neutral point resistor gives an
earth-fault current larger than what normal high impedance gives but smaller than the phase-to-phase short circuit current.

In a high impedance system the fault current is assumed to be limited by the system zero sequence shunt impedance to earth and the fault resistance only. All the series impedances in the system are assumed to be zero.

In the setting of earth-fault protection, in a high impedance earthed system, the neutral point voltage (zero sequence voltage) and the earth-fault current will be calculated at the desired sensitivity (fault resistance). The complex neutral point voltage (zero sequence) can be calculated as:

\[
U_0 = \frac{U_{\text{phase}}}{1 + \frac{3 \cdot R_f}{Z_0}}
\]

(Equation 44)

Where

- \(U_{\text{phase}}\) is the phase voltage in the fault point before the fault,
- \(R_f\) is the resistance to earth in the fault point and
- \(Z_0\) is the system zero sequence impedance to earth

The fault current, in the fault point, can be calculated as:

\[
I_j = 3I_s = \frac{3 \cdot U_{\text{phase}}}{Z_0 + 3 \cdot R_f}
\]

(Equation 45)

The impedance \(Z_0\) is dependent on the system earthing. In an isolated system (without neutral point apparatus) the impedance is equal to the capacitive coupling between the phase conductors and earth:

\[
Z_0 = -jX_c = -j \frac{3 \cdot U_{\text{phase}}}{I_j}
\]

(Equation 46)

Where

- \(I_j\) is the capacitive earth-fault current at a non-resistive phase to earth-fault
- \(X_c\) is the capacitive reactance to earth

In a system with a neutral point resistor (resistance earthed system) the impedance \(Z_0\) can be calculated as:
Where
\(R_n \) is the resistance of the neutral point resistor

In many systems there is also a neutral point reactor (Petersen coil) connected to one or more transformer neutral points. In such a system the impedance \(Z_0 \) can be calculated as:

\[
Z_0 = \frac{-jX_n \cdot 3R_n}{-jX + 3R_n}
\]

(Equation 47)

Where

\(X_n \) is the reactance of the Petersen coil. If the Petersen coil is well tuned we have \(3X_n = X_c \). In this case the impedance \(Z_0 \) will be: \(Z_0 = 3R_n \)

Now consider a system with an earthing via a resistor giving higher earth-fault current than the high impedance earthing. The series impedances in the system can no longer be neglected. The system with a single phase to earth-fault can be described as in figure 53.
Figure 53: Equivalent of power system for calculation of setting

The residual fault current can be written:

\[3I_0 = \frac{3U_{\text{phase}}}{2 \cdot Z_1 + Z_0 + 3 \cdot R_f} \]

(Equation 49)

Where
- \(U_{\text{phase}} \) is the phase voltage in the fault point before the fault
- \(Z_1 \) is the total positive sequence impedance to the fault point
 \[Z_1 = Z_{sc} + Z_{T,1} + Z_{\text{lineAB},1} + Z_{\text{lineBC},1} \]
- \(Z_0 \) is the total zero sequence impedance to the fault point
 \[Z_0 = Z_{T,0} + 3R_N + Z_{\text{lineAB},0} + Z_{\text{lineBC},0} \]
- \(R_f \) is the fault resistance.

The residual voltages in stations A and B can be written:

\[U_{0A} = 3I_0 \cdot (Z_{T,0} + 3R_N) \]

(Equation 50)

\[U_{0B} = 3I_0 \cdot (Z_{T,0} + 3R_N + Z_{\text{lineAB},0}) \]

(Equation 51)
The residual power, measured by the sensitive earth-fault protections in A and B will be:

\[S_{0A} = 3U_{0A} \cdot 3I_0 \]
(Equation 52)

\[S_{0B} = 3U_{0B} \cdot 3I_0 \]
(Equation 53)

The residual power is a complex quantity. The protection will have a maximum sensitivity in the characteristic angle RCA. The apparent residual power component in the characteristic angle, measured by the protection, can be written:

\[S_{0A,\text{prot}} = 3U_{0A} \cdot 3I_0 \cdot \cos \phi_A \]
(Equation 54)

\[S_{0B,\text{prot}} = 3U_{0B} \cdot 3I_0 \cdot \cos \phi_B \]
(Equation 55)

The angles \(\phi_A \) and \(\phi_B \) are the phase angles between the residual current and the residual voltage in the station compensated with the characteristic angle RCA.

The protection will use the power components in the characteristic angle direction for measurement, and as base for the inverse time delay.

The inverse time delay is defined as:

\[t_{\text{inv}} = \frac{kSN \cdot (3I_0 \cdot 3U_0 \cdot \cos \phi(\text{reference}))}{3I_0 \cdot 3U_0 \cdot \cos \phi(\text{measured})} \]
(Equation 56)

GlobalBaseSel: Selects the global base value group used by the function to define \((IBase)\), \((UBase)\) and \((SBase)\).

The function can be set On/Off with the setting of Operation.

With the setting OpMode the principle of directional function is chosen.

With OpMode set to 3I0cosfi the current component in the direction equal to the characteristic angleRCADir has the maximum sensitivity. The characteristic for RCADir is equal to 0° is shown in figure 54.
The characteristic is for RCADir equal to -90° is shown in figure 55.

When OpMode is set to $3\text{U03I0}\cos\phi$ the apparent residual power component in the direction is measured.

When OpMode is set to 3I0 and fI the function will operate if the residual current is larger than the setting INDir> and the residual current angle is within the sector $\text{RCADir} \pm \text{ROADir}$.

The characteristic for $\text{RCADir} = 0^\circ$ and $\text{ROADir} = 80^\circ$ is shown in figure 56.
Figure 56: Characteristic for $RCADir = 0^\circ$ and $ROADir = 80^\circ$

DirMode is set Forward or Reverse to set the direction of the trip function from the directional residual current function.

All the directional protection modes have a residual current release level setting $INRel>$ which is set in % of $IBase$. This setting should be chosen smaller than or equal to the lowest fault current to be detected.

All the directional protection modes have a residual voltage release level setting $UNRel>$ which is set in % of $UBase$. This setting should be chosen smaller than or equal to the lowest fault residual voltage to be detected.

$tDef$ is the definite time delay, given in s, for the directional residual current protection if definite time delay is chosen.

The characteristic angle of the directional functions $RCADir$ is set in degrees. $RCADir$ is normally set equal to 0° in a high impedance earthed network with a neutral point resistor as the active current component is appearing out on the faulted feeder only. $RCADir$ is set equal to -90° in an isolated network as all currents are mainly capacitive.

The relay open angle $ROADir$ is set in degrees. For angles differing more than $ROADir$ from $RCADir$ the function from the protection is blocked. The setting can be used to prevent unwanted function for non-faulted feeders, with large capacitive earth-fault current contributions, due to CT phase angle error.

$INCosPhi>$ is the operate current level for the directional function when $OpMode$ is set $3I0Cosfi$. The setting is given in % of $IBase$. The setting should be based on calculation of the active or capacitive earth-fault current at required sensitivity of the protection.
SN> is the operate power level for the directional function when OpMode is set 3I03U0Cosfi. The setting is given in % of SBase. The setting should be based on calculation of the active or capacitive earth-fault residual power at required sensitivity of the protection.

The input transformer for the Sensitive directional residual over current and power protection function has the same short circuit capacity as the phase current transformers.

If the time delay for residual power is chosen the delay time is dependent on two setting parameters. SRef is the reference residual power, given in % of SBase. kSN is the time multiplier. The time delay will follow the following expression:

\[t_{\text{inv}} = \frac{kSN \cdot Sref}{3I_0 \cdot 3U_0 \cdot \cos \phi (\text{measured})} \]

(Equation 57)

INDir> is the operate current level for the directional function when OpMode is set 3I0 and fi. The setting is given in % of IBase. The setting should be based on calculation of the earth-fault current at required sensitivity of the protection.

OpINNonDir> is set On to activate the non-directional residual current protection.

INNonDir> is the operate current level for the non-directional function. The setting is given in % of IBase. This function can be used for detection and clearance of cross-country faults in a shorter time than for the directional function. The current setting should be larger than the maximum single-phase residual current out on the protected line.

TimeChar is the selection of time delay characteristic for the non-directional residual current protection. Definite time delay and different types of inverse time characteristics are available:

<table>
<thead>
<tr>
<th>Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI Extremely Inverse</td>
</tr>
<tr>
<td>ANSI Very Inverse</td>
</tr>
<tr>
<td>ANSI Normal Inverse</td>
</tr>
<tr>
<td>ANSI Moderately Inverse</td>
</tr>
<tr>
<td>ANSI/IEEE Definite time</td>
</tr>
<tr>
<td>ANSI Long Time Extremely Inverse</td>
</tr>
<tr>
<td>ANSI Long Time Very Inverse</td>
</tr>
<tr>
<td>ANSI Long Time Inverse</td>
</tr>
<tr>
<td>IEC Normal Inverse</td>
</tr>
<tr>
<td>IEC Very Inverse</td>
</tr>
<tr>
<td>IEC Inverse</td>
</tr>
<tr>
<td>IEC Extremely Inverse</td>
</tr>
<tr>
<td>IEC Short Time Inverse</td>
</tr>
</tbody>
</table>

Table continues on next page
The different characteristics are described in Technical Manual.

$t\mathrm{IN}_{\text{NonDir}}$ is the definite time delay for the non directional earth-fault current protection, given in s.

$OpUN>$ is set On to activate the trip function of the residual voltage protection.

$t\mathrm{UN}$ is the definite time delay for the trip function of the residual voltage protection, given in s.

6.6 Thermal overload protection, one time constant

6.6.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal overload protection, one time constant, Celsius</td>
<td>LCPTTR</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>Thermal overload protection, one time constant, Fahrenheit</td>
<td>LFPTTR</td>
<td></td>
<td>26</td>
</tr>
</tbody>
</table>

6.6.2 Application

Lines and cables in the power system are designed for a certain maximum load current level. If the current exceeds this level the losses will be higher than expected. As a consequence the temperature of the conductors will increase. If the temperature of the lines and cables reaches too high values the equipment might be damaged:

- The sag of overhead lines can reach unacceptable value.
- If the temperature of conductors, for example aluminium conductors, get too high the material will be destroyed.
- In cables the insulation can be damaged as a consequence of the overtemperature. As a consequence of this phase to phase or phase to earth faults can occur
In stressed situations in the power system it can be required to overload lines and cables for a limited time. This should be done without risks.

The thermal overload protection provides information that makes a temporary overloading of cables and lines possible. The thermal overload protection estimates the conductor temperature continuously, in Celsius or Fahrenheit depending on whether, LCPTTR or LFPTTR is chosen. This estimation is made by using a thermal model of the line/cable based on the current measurement.

If the temperature of the protected object reaches a set warning level AlarmTemp, a signal ALARM can be given to the operator. This enables actions in the power system to be taken before dangerous temperatures are reached. If the temperature continues to increase to the trip value TripTemp, the protection initiates trip of the protected line.

6.6.3 Setting guidelines

The parameters for the Thermal overload protection one time constant, Celsius/ Fahrenheit LCPTTR/LFPTTR are set via the local HMI or PCM600.

The following settings can be done for the thermal overload protection.

- **GlobalBaseSel**: Selects the global base value group used by the function to define (IBase), (UBase) and (SBase).
- **Operation**: Off/On
- **I_{Ref}**: Reference, steady state current, given in % of IBase that will give a steady state (end) temperature rise T_{Ref}. It is suggested to set this current to the maximum steady state current allowed for the line/cable under emergency operation (a few hours per year).
- **T_{Ref}**: Reference temperature rise (end temperature) corresponding to the steady state current I_{Ref}. From cable manuals current values with corresponding conductor temperature are often given. These values are given for conditions such as earth temperature, ambient air temperature, way of laying of cable and earth thermal resistivity. From manuals for overhead conductor temperatures and corresponding current is given.
- **τ**: The thermal time constant of the protected circuit given in minutes. Please refer to manufacturers manuals for details.
- **TripTemp**: Temperature value for trip of the protected circuit. For cables, a maximum allowed conductor temperature is often stated to be 90°C (194°F). For overhead lines, the critical temperature for aluminium conductor is about 90 - 100°C (194-212°F). For a copper conductor a normal figure is 70°C (158°F).
- **AlarmTemp**: Temperature level for alarm of the protected circuit. ALARM signal can be used as a warning before the circuit is tripped. Therefore the setting shall be lower than the trip level. It shall at the same time be higher than the maximum conductor temperature at normal operation. For cables this level is often given to 65°C (149°F).
Similar values are stated for overhead lines. A suitable setting can be about 15°C (59°F) below the trip value.

ReclTemp: Temperature where lockout signal LOCKOUT from the protection is released. When the thermal overload protection trips a lock-out signal is activated. This signal is intended to block switch in of the protected circuit as long as the conductor temperature is high. The signal is released when the estimated temperature is below the set value. This temperature value should be chosen below the alarm temperature.

6.7 Breaker failure protection 3-phase activation and output CCRBRF

6.7.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 80617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breaker failure protection, 3-phase activation and output</td>
<td>CCRBRF</td>
<td>3I>BF</td>
<td>50BF</td>
</tr>
</tbody>
</table>

6.7.2 Application

In the design of the fault clearance system the N-1 criterion is often used. This means that a fault needs to be cleared even if any component in the fault clearance system is faulty. One necessary component in the fault clearance system is the circuit breaker. It is from practical and economical reason not feasible to duplicate the circuit breaker for the protected component. Instead a breaker failure protection is used.

Breaker failure protection, 3-phase activation and output (CCRBRF) will issue a back-up trip command to adjacent circuit breakers in case of failure to trip of the “normal” circuit breaker for the protected component. The detection of failure to break the current through the breaker is made by means of current measurement or as detection of remaining trip signal (unconditional).

CCRBRF can also give a re-trip. This means that a second trip signal is sent to the protected circuit breaker. The re-trip function can be used to increase the probability of operation of the breaker, or it can be used to avoid back-up trip of many breakers in case of mistakes during relay maintenance and test.
6.7.3 Setting guidelines

The parameters for Breaker failure protection 3-phase activation and output CCRBRF are set via the local HMI or PCM600.

The following settings can be done for the breaker failure protection.

GlobalBaseSel: Selects the global base value group used by the function to define \((I_{Base})\), \((U_{Base})\) and \((S_{Base})\).

Operation: Off/On

FunctionMode This parameter can be set *Current* or *Contact*. This states the way the detection of failure of the breaker is performed. In the mode current the current measurement is used for the detection. In the mode *Contact* the long duration of breaker position signal is used as indicator of failure of the breaker. The mode *Current&Contact* means that both ways of detections are activated. *Contact* mode can be usable in applications where the fault current through the circuit breaker is small. This can be the case for some generator protection application (for example reverse power protection) or in case of line ends with weak end infeed.

RetripMode: This setting states how the re-trip function shall operate. *Retrip Off* means that the re-trip function is not activated. *CB Pos Check* (circuit breaker position check) and *Current* means that a phase current must be larger than the operate level to allow re-trip. *CB Pos Check* (circuit breaker position check) and *Contact* means re-trip is done when circuit breaker is closed (breaker position is used). *No CBPos Check* means re-trip is done without check of breaker position.

<table>
<thead>
<tr>
<th>RetripMode</th>
<th>FunctionMode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrip Off</td>
<td>N/A</td>
<td>the re-trip function is not activated</td>
</tr>
<tr>
<td>CB Pos Check</td>
<td>Current</td>
<td>a phase current must be larger than the operate level to allow re-trip</td>
</tr>
<tr>
<td></td>
<td>Contact</td>
<td>re-trip is done when breaker position indicates that breaker is still closed after re-trip time has elapsed</td>
</tr>
<tr>
<td></td>
<td>Current&Contact</td>
<td>both methods are used</td>
</tr>
<tr>
<td>No CBPos Check</td>
<td>Current</td>
<td>re-trip is done without check of breaker position</td>
</tr>
<tr>
<td></td>
<td>Contact</td>
<td>re-trip is done without check of breaker position</td>
</tr>
<tr>
<td></td>
<td>Current&Contact</td>
<td>both methods are used</td>
</tr>
</tbody>
</table>

BuTripMode: Back-up trip mode is given to state sufficient current criteria to detect failure to break. For *Current* operation 2 out of 4 means that at least two currents, of the three-phase currents and the residual current, shall be high to indicate breaker
failure. *1 out of 3* means that at least one current of the three-phase currents shall be high to indicate breaker failure. *1 out of 4* means that at least one current of the three-phase currents or the residual current shall be high to indicate breaker failure. In most applications *1 out of 3* is sufficient. For *Contact* operation means back-up trip is done when circuit breaker is closed (breaker position is used).

IP>: Current level for detection of breaker failure, set in % of *IBase*. This parameter should be set so that faults with small fault current can be detected. The setting can be chosen in accordance with the most sensitive protection function to start the breaker failure protection. Typical setting is 10% of *IBase*.

I>BlkCont: If any contact based detection of breaker failure is used this function can be blocked if any phase current is larger than this setting level. If the *FunctionMode* is set *Current&Contact* breaker failure for high current faults are safely detected by the current measurement function. To increase security the contact based function should be disabled for high currents. The setting can be given within the range 5 – 200% of *IBase*.

IN>: Residual current level for detection of breaker failure set in % of *IBase*. In high impedance earthed systems the residual current at phase- to-earth faults are normally much smaller than the short circuit currents. In order to detect breaker failure at single-phase-earth faults in these systems it is necessary to measure the residual current separately. Also in effectively earthed systems the setting of the earth-fault current protection can be chosen to relatively low current level. The *BuTripMode* is set *1 out of 4*. The current setting should be chosen in accordance to the setting of the sensitive earth-fault protection. The setting can be given within the range 2 – 200 % of *IBase*.

t1: Time delay of the re-trip. The setting can be given within the range 0 – 60s in steps of 0.001 s. Typical setting is 0 – 50ms.

t2: Time delay of the back-up trip. The choice of this setting is made as short as possible at the same time as unwanted operation must be avoided. Typical setting is 90 – 200ms (also dependent of re-trip timer).

The minimum time delay for the re-trip can be estimated as:

\[
t_2 \geq t1 + t_{chopen} + t_{BFP_reset} + t_{margin}
\]

(Equation 58)

where:
- \(t_{chopen}\) is the maximum opening time for the circuit breaker
- \(t_{BFP_reset}\) is the maximum time for breaker failure protection to detect correct breaker function (the current criteria reset)
- \(t_{margin}\) is a safety margin
It is often required that the total fault clearance time shall be less than a given critical time. This time is often dependent of the ability to maintain transient stability in case of a fault close to a power plant.

![Time sequence diagram]

Figure 57: Time sequence

6.8 Stub protection STBPTOC

6.8.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stub protection</td>
<td>STBPTOC</td>
<td></td>
<td>50STB</td>
</tr>
</tbody>
</table>

6.8.2 Application

Stub protection STBPTOC is a simple phase overcurrent protection, fed from the two current transformer groups feeding the object taken out of service. The stub protection is only activated when the disconnector of the object is open. STBPTOC enables fast fault clearance of faults at the section between the CTs and the open disconnector.
6.8.3 Setting guidelines

The parameters for Stub protection STBPTOC are set via the local HMI or PCM600.

The following settings can be done for the stub protection.

GlobalBaseSel: Selects the global base value group used by the function to define \((I_{\text{Base}}), (U_{\text{Base}})\) and \((S_{\text{Base}})\).

Operation: Off/On

I: Current level for the Stub protection, set in % of \(I_{\text{Base}}\). This parameter should be set so that all faults on the stub can be detected. The setting should thus be based on fault calculations.

6.9 Pole discordance protection CCRPLD
6.9.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850</th>
<th>IEC 60617</th>
<th>ANSI/IEEE C37.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pole discordance protection</td>
<td>CCRPLD</td>
<td></td>
<td>52PD</td>
</tr>
</tbody>
</table>

6.9.2 Application

There is a risk that a circuit breaker will get discordance between the poles at circuit breaker operation: closing or opening. One pole can be open and the other two closed, or two poles can be open and one closed. Pole discordance of a circuit breaker will cause unsymmetrical currents in the power system. The consequence of this can be:

- Negative sequence currents that will give stress on rotating machines
- Zero sequence currents that might give unwanted operation of sensitive earth-fault protections in the power system.

It is therefore important to detect situations with pole discordance of circuit breakers. When this is detected the breaker should be tripped directly.

Pole discordance protection CCRPLD will detect situation with deviating positions of the poles of the protected circuit breaker. The protection has two different options to make this detection:

- By connecting the auxiliary contacts in the circuit breaker so that logic is created and a signal can be sent to the pole discordance protection, indicating pole discordance.
- Each phase current through the circuit breaker is measured. If the difference between the phase currents is larger than a CurrUnsymLevel this is an indication of pole discordance, and the protection will operate.

6.9.3 Setting guidelines

The parameters for the Pole discordance protection CCRPLD are set via the local HMI or PCM600.

The following settings can be done for the pole discordance protection.

- GlobalBaseSel: Selects the global base value group used by the function to define (IBase), (UBase) and (SBase).
- Operation: Off or On
- tTrip: Time delay of the operation.
ContSel: Operation of the contact based pole discordance protection. Can be set: Off/PD signal from CB. If PD signal from CB is chosen the logic to detect pole discordance is made in the vicinity to the breaker auxiliary contacts and only one signal is connected to the pole discordance function.

CurrSel: Operation of the current based pole discordance protection. Can be set: Off/CB oper monitor/Continuous monitor. In the alternative CB oper monitor the function is activated only directly in connection to breaker open or close command (during 200 ms). In the alternative Continuous monitor function is continuously activated.

CurrUnsymLevel: Unsymmetrical magnitude of lowest phase current compared to the highest, set in % of the highest phase current.

CurrRelLevel: Current magnitude for release of the function in % of IBase.

6.10 Broken conductor check BRCPTOC

6.10.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 80617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broken conductor check</td>
<td>BRCPTOC</td>
<td>-</td>
<td>46</td>
</tr>
</tbody>
</table>

6.10.2 Application

Conventional protection functions can not detect the broken conductor condition. Broken conductor check (BRCPTOC) function, consisting of continuous current unsymmetrical check on the line where the IED connected will give alarm or trip at detecting broken conductors.

6.10.3 Setting guidelines

GlobalBaseSel: Selects the global base value group used by the function to define (IBase), (UBase) and (SBase).

Broken conductor check BRCPTOC must be set to detect open phase/s (series faults) with different loads on the line. BRCPTOC must at the same time be set to not operate for maximum asymmetry which can exist due to, for example, not transposed power lines.

All settings are in primary values or percentage.

Set minimum operating level per phase $IP >$ to typically 10-20% of rated current.
Set the unsymmetrical current, which is relation between the difference of the minimum and maximum phase currents to the maximum phase current to typical $I_{ub} > = 50\%$.

Note that it must be set to avoid problem with asymmetry under minimum operating conditions.

Set the time delay $t_{Oper} = 5 - 60$ seconds and reset time $t_{Reset} = 0.010 - 60.000$ seconds.

6.11 Directional over-/under-power protection GOPPDOP/GUPPDUP

6.11.1 Application

The task of a generator in a power plant is to convert mechanical energy available as a torque on a rotating shaft to electric energy.

Sometimes, the mechanical power from a prime mover may decrease so much that it does not cover bearing losses and ventilation losses. Then, the synchronous generator becomes a synchronous motor and starts to take electric power from the rest of the power system. This operating state, where individual synchronous machines operate as motors, implies no risk for the machine itself. If the generator under consideration is very large and if it consumes lots of electric power, it may be desirable to disconnect it to ease the task for the rest of the power system.

Often, the motoring condition may imply that the turbine is in a very dangerous state. The task of the reverse power protection is to protect the turbine and not to protect the generator itself.

Steam turbines easily become overheated if the steam flow becomes too low or if the steam ceases to flow through the turbine. Therefore, turbo-generators should have reverse power protection. There are several contingencies that may cause reverse power: break of a main steam pipe, damage to one or more blades in the steam turbine or inadvertent closing of the main stop valves. In the last case, it is highly desirable to have a reliable reverse power protection. It may prevent damage to an otherwise undamaged plant.

During the routine shutdown of many thermal power units, the reverse power protection gives the tripping impulse to the generator breaker (the unit breaker). By doing so, one prevents the disconnection of the unit before the mechanical power has become zero. Earlier disconnection would cause an acceleration of the turbine generator at all routine shutdowns. This should have caused overspeed and high centrifugal stresses.
When the steam ceases to flow through a turbine, the cooling of the turbine blades will disappear. Now, it is not possible to remove all heat generated by the windage losses. Instead, the heat will increase the temperature in the steam turbine and especially of the blades. When a steam turbine rotates without steam supply, the electric power consumption will be about 2% of rated power. Even if the turbine rotates in vacuum, it will soon become overheated and damaged. The turbine overheats within minutes if the turbine loses the vacuum.

The critical time to overheating a steam turbine varies from about 0.5 to 30 minutes depending on the type of turbine. A high-pressure turbine with small and thin blades will become overheated more easily than a low-pressure turbine with long and heavy blades. The conditions vary from turbine to turbine and it is necessary to ask the turbine manufacturer in each case.

Power to the power plant auxiliaries may come from a station service transformer connected to the secondary side of the step-up transformer. Power may also come from a start-up service transformer connected to the external network. One has to design the reverse power protection so that it can detect reverse power independent of the flow of power to the power plant auxiliaries.

Hydro turbines tolerate reverse power much better than steam turbines do. Only Kaplan turbine and bulb turbines may suffer from reverse power. There is a risk that the turbine runner moves axially and touches stationary parts. They are not always strong enough to withstand the associated stresses.

Ice and snow may block the intake when the outdoor temperature falls far below zero. Branches and leaves may also block the trash gates. A complete blockage of the intake may cause cavitations. The risk for damages to hydro turbines can justify reverse power protection in unattended plants.

A hydro turbine that rotates in water with closed wicket gates will draw electric power from the rest of the power system. This power will be about 10% of the rated power. If there is only air in the hydro turbine, the power demand will fall to about 3%.

Diesel engines should have reverse power protection. The generator will take about 15% of its rated power or more from the system. A stiff engine may require perhaps 25% of the rated power to motor it. An engine that is good run in might need no more than 5%. It is necessary to obtain information from the engine manufacturer and to measure the reverse power during commissioning.

Gas turbines usually do not require reverse power protection.

Figure 59 illustrates the reverse power protection with underpower protection and with overpower protection. The underpower protection gives a higher margin and should provide better dependability. On the other hand, the risk for unwanted operation immediately after synchronization may be higher. One should set the underpower protection (reference angle set to 0) to trip if the active power from the generator is less than about 2%. One should set the overpower protection (reference angle set to 180) to trip if the power flow from the network to the generator is higher than 1%.
6.11.2 Directional overpower protection GOPPDOP

6.11.2.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directional overpower protection</td>
<td>GOPPDOP</td>
<td></td>
<td>32</td>
</tr>
</tbody>
</table>

6.11.2.2 Setting guidelines

GlobalBaseSel: Selects the global base value group used by the function to define *(IBase), (UBase)* and *(SBase).*

Operation: With the parameter *Operation* the function can be set *On/Off.*

Mode: The voltage and current used for the power measurement. The setting possibilities are shown in table 11.

For reverse power applications *PosSeq* or *Arone* modes are strongly recommended.
Table 11: Complex power calculation

<table>
<thead>
<tr>
<th>Set value Mode</th>
<th>Formula used for complex power calculation</th>
</tr>
</thead>
</table>
| L1, L2, L3 | $S = \bar{U}_{L1} \cdot \bar{I}_{L1}^* + \bar{U}_{L2} \cdot \bar{I}_{L2}^* + \bar{U}_{L3} \cdot \bar{I}_{L3}^*$
(Equation 59) |
| Arone | $S = \bar{U}_{L1L2} \cdot \bar{I}_{L1}^* - \bar{U}_{L2L3} \cdot \bar{I}_{L3}^*$
(Equation 60) |
| PosSeq | $S = 3 \cdot \bar{U}_{PosSeq} \cdot \bar{I}_{PosSeq}^*$
(Equation 61) |
| L1L2 | $S = \bar{U}_{L1L2} \cdot (\bar{I}_{L1}^* - \bar{I}_{L2}^*)$
(Equation 62) |
| L2L3 | $S = \bar{U}_{L2L3} \cdot (\bar{I}_{L2}^* - \bar{I}_{L3}^*)$
(Equation 63) |
| L3L1 | $S = \bar{U}_{L3L1} \cdot (\bar{I}_{L3}^* - \bar{I}_{L1}^*)$
(Equation 64) |
| L1 | $S = 3 \cdot \bar{U}_{L1} \cdot \bar{I}_{L1}^*$
(Equation 65) |
| L2 | $S = 3 \cdot \bar{U}_{L2} \cdot \bar{I}_{L2}^*$
(Equation 66) |
| L3 | $S = 3 \cdot \bar{U}_{L3} \cdot \bar{I}_{L3}^*$
(Equation 67) |

The function has two stages that can be set independently.

With the parameter *OpMode1(2)* the function can be set On/Off.

The function gives trip if the power component in the direction defined by the setting *Angle1(2)* is larger than the set pick up power value *Power1(2)*.
The setting $Power1(2)$ gives the power component pick up value in the $Angle1(2)$ direction. The setting is given in p.u. of the generator rated power, see equation 68.

Minimum recommended setting is 1.0% of S_N. Note also that at the same time the minimum IED pickup current shall be at least 9 mA secondary.

$$S_N = \sqrt{3} \cdot U_{Base} \cdot I_{Base}$$

(Equation 68)

The setting $Angle1(2)$ gives the characteristic angle giving maximum sensitivity of the power protection function. The setting is given in degrees. For active power the set angle should be 0° or 180°. 180° should be used for generator reverse power protection in 50Hz network while -179.5° should be used for generator reverse power protection in 60Hz network. This angle adjustment in 60Hz networks will improve accuracy of the power function.
For reverse power the set angle should be 180° in the overpower function.

TripDelay1(2) is set in seconds to give the time delay for trip of the stage after pick up.

The possibility to have low pass filtering of the measured power can be made as shown in the formula:

\[
S = k \cdot S_{\text{old}} + (1 - k) \cdot S_{\text{Calculated}}
\]

(Equation 69)

Where

- \(S\) is a new measured value to be used for the protection function
- \(S_{\text{old}}\) is the measured value given from the function in previous execution cycle
- \(S_{\text{Calculated}}\) is the new calculated value in the present execution cycle
- \(k\) is settable parameter

The value of \(k=0.98\) or even \(k=0.99\) is recommended in generator reverse power applications as the trip delay is normally quite long. This filtering will improve accuracy of the power function.
6.11.3 Directional underpower protection GUPPDUP

6.11.3.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 80617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directional underpower protection</td>
<td>GUPPDUP</td>
<td></td>
<td>37</td>
</tr>
</tbody>
</table>

6.11.3.2 Setting guidelines

GlobalBaseSel: Selects the global base value group used by the function to define \(I_{\text{Base}}\), \(U_{\text{Base}}\) and \(S_{\text{Base}}\).

Operation: With the parameter *Operation* the function can be set *On*/*Off*.

Mode: The voltage and current used for the power measurement. The setting possibilities are shown in table 12.

For reverse power applications *PosSeq* or *Arone* modes are strongly recommended.

<table>
<thead>
<tr>
<th>Set value (\text{Mode})</th>
<th>Formula used for complex power calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1, L2, L3</td>
<td>[\bar{S} = U_{L1} \cdot I_{L1}^* + U_{L2} \cdot I_{L2}^* + U_{L3} \cdot I_{L3}^*]</td>
</tr>
<tr>
<td></td>
<td>[(\text{Equation 70})]</td>
</tr>
<tr>
<td>Arone</td>
<td>[\bar{S} = U_{L1L2} \cdot I_{L1}^* - U_{L2L3} \cdot I_{L3}^*]</td>
</tr>
<tr>
<td></td>
<td>[(\text{Equation 71})]</td>
</tr>
<tr>
<td>PosSeq</td>
<td>[\bar{S} = 3 \cdot U_{\text{PosSeq}} \cdot I_{\text{PosSeq}}^*]</td>
</tr>
<tr>
<td></td>
<td>[(\text{Equation 72})]</td>
</tr>
<tr>
<td>L1L2</td>
<td>[\bar{S} = U_{L1L2} \cdot (I_{L1}^* - I_{L2}^*)]</td>
</tr>
<tr>
<td></td>
<td>[(\text{Equation 73})]</td>
</tr>
<tr>
<td>L2L3</td>
<td>[\bar{S} = U_{L2L3} \cdot (I_{L2}^* - I_{L3}^*)]</td>
</tr>
<tr>
<td></td>
<td>[(\text{Equation 74})]</td>
</tr>
<tr>
<td>L3L1</td>
<td>[\bar{S} = U_{L3L1} \cdot (I_{L3}^* - I_{L1}^*)]</td>
</tr>
<tr>
<td></td>
<td>[(\text{Equation 75})]</td>
</tr>
</tbody>
</table>

Table continues on next page
The function has two stages that can be set independently.

With the parameter `OpMode1(2)` the function can be set On/Off.

The function gives trip if the power component in the direction defined by the setting `Angle1(2)` is smaller than the set pick up power value `Power1(2)`

![Diagram of power components and trip conditions](en06000441.vsd)

Figure 62: Underpower mode

The setting `Power1(2)` gives the power component pick up value in the `Angle1(2)` direction. The setting is given in p.u. of the generator rated power, see equation 79.

Minimum recommended setting is 1.0% of S_N. At the same time the minimum IED pickup current shall be at least 9 mA secondary.
The setting Angle1(2) gives the characteristic angle giving maximum sensitivity of the power protection function. The setting is given in degrees. For active power the set angle should be 0° or 180°. 0° should be used for generator low forward active power protection.

\[S_N = \sqrt{3} \cdot U\text{Base} \cdot I\text{Base} \]

(Equation 79)

Figure 63: For low forward power the set angle should be 0° in the underpower function

$\text{TripDelay1}(2)$ is set in seconds to give the time delay for trip of the stage after pick up.

The possibility to have low pass filtering of the measured power can be made as shown in the formula:

\[S = k \cdot S_{\text{old}} + (1-k) \cdot S_{\text{calculated}} \]

(Equation 80)

Where

- S is a new measured value to be used for the protection function
- S_{old} is the measured value given from the function in previous execution cycle
- $S_{\text{calculated}}$ is the new calculated value in the present execution cycle
- k is settable parameter
The value of $k=0.98$ or even $k=0.99$ is recommended in generator low forward power applications as the trip delay is normally quite long. This filtering will improve accuracy of the power function.

6.12 Negative sequence based overcurrent function DNSPTOC

6.12.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 80617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative sequence based overcurrent function</td>
<td>DNSPTOC</td>
<td></td>
<td>3/2></td>
</tr>
</tbody>
</table>

6.12.2 Application

Negative sequence based overcurrent function DNSPTOC is typically used as sensitive earth-fault protection of power lines, where incorrect zero sequence polarization may result from mutual induction between two or more parallel lines.

Additionally, it is applied in applications on cables, where zero sequence impedance depends on the fault current return paths, but the cable negative sequence impedance is practically constant.

The directional function is current and voltage polarized. The function can be set to forward, reverse or non-directional independently for each step. Both steps are provided with a settable definite time delay.

DNSPTOC protects against all unbalanced faults including phase-to-phase faults. The minimum start current of the function must be set to above the normal system unbalance level in order to avoid unwanted operation.

6.12.3 Setting guidelines

Below is an example of Negative sequence based overcurrent function (DNSPTOC) used as a sensitive earth-fault protection for power lines. The following settings must be done in order to ensure proper operation of the protection:

GlobalBaseSel: Selects the global base value group used by the function to define $(IBase)$, $(UBase)$ and $(SBase)$.
• setting $RCADir$ to value $+65$ degrees, that is, the negative sequence current typically lags the inverted negative sequence voltage for this angle during the fault
• setting $ROADir$ to value 90 degrees
• setting $LowVolt_{VM}$ to value 2%, that is, the negative sequence voltage level above which the directional element will be enabled
• setting $Operation_{OC1}$ to On
• setting $StartCurr_{OC1}$ to value between $3-10\%$, (typical values)
• setting $tDef_{OC1}$ to insure proper time coordination with other earth-fault protections installed in the vicinity of this power line
• setting $DirMode_{OC1}$ to $Forward$
• setting $DirPrinc_{OC1}$ to $IcosPhi&U$
• setting $ActLowVolt1_{VM}$ to $Block$

DNSPTOC is used in directional comparison protection scheme for the power line protection, when communication channels to the remote end of this power line are available. In that case, two negative sequence overcurrent steps are required - one in forward and another in reverse direction. The OC1 stage is used to detect faults in forward direction and the OC2 stage is used to detect faults in reverse direction.

However, the following must be noted for such application:

• setting $RCADir$ and $ROADir$ are applicable for both steps OC1 and OC2
• setting $DirMode_{OC1}$ must be set to $Forward$
• setting $DirMode_{OC2}$ must be set to $Reverse$
• setting $StartCurr_{OC2}$ must be made more sensitive than pickup value of the forward OC1 element, that is, typically 60% of $StartCurr_{OC1}$ set pickup level in order to insure proper operation of the directional comparison scheme during current reversal situations
• the start signals STOC1 and STOC2 from OC1 and OC2 elements is used to send forward and reverse signals to the remote end of the power line
• the available scheme communications function block within IED is used between the protection function and the teleprotection communication equipment, in order to insure proper conditioning of the above two start signals.

$ActLowVolt1$ and $ActLowVolt2$ should not be set to $Memory$.
Section 7 Voltage protection

7.1 Two step undervoltage protection UV2PTUV

7.1.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two step undervoltage protection</td>
<td>UV2PTUV</td>
<td></td>
<td>27</td>
</tr>
</tbody>
</table>

3U<

7.1.2 Application

Two-step undervoltage protection function (UV2PTUV) is applicable in all situations, where reliable detection of low phase voltages is necessary. It is used also as a supervision and fault detection function for other protection functions, to increase the security of a complete protection system.

UV2PTUV is applied to power system elements, such as generators, transformers, motors and power lines in order to detect low voltage conditions. Low voltage conditions are caused by abnormal operation or fault in the power system. UV2PTUV is used in combination with overcurrent protections, either as restraint or in logic "and gates" of the trip signals issued by the two functions. Other applications are the detection of "no voltage" condition, for example, before the energization of a HV line or for automatic breaker trip in case of a blackout. UV2PTUV is also used to initiate voltage correction measures, like insertion of shunt capacitor banks to compensate for reactive load and thereby increasing the voltage. The function has a high measuring accuracy to allow applications to control reactive load.

UV2PTUV is used to disconnect apparatuses, like electric motors, which will be damaged when subject to service under low voltage conditions. UV2PTUV deals with low voltage conditions at power system frequency, which can be caused by the following reasons:

1. Malfunctioning of a voltage regulator or wrong settings under manual control (symmetrical voltage decrease).
2. Overload (symmetrical voltage decrease).
3. Short circuits, often as phase-to-earth faults (unsymmetrical voltage decrease).
UV2PTUV prevents sensitive equipment from running under conditions that could cause their overheating and thus shorten their life time expectancy. In many cases, it is a useful function in circuits for local or remote automation processes in the power system.

7.1.3 Setting guidelines

All the voltage conditions in the system where UV2PTUV performs its functions should be considered. The same also applies to the associated equipment, its voltage and time characteristic.

There is a very wide application area where general undervoltage functions are used. All voltage related settings are made as a percentage of the global settings base voltage U_{Base}, which normally is set to the primary rated voltage level (phase-to-phase) of the power system or the high voltage equipment under consideration.

The setting for UV2PTUV is normally not critical, since there must be enough time available for the main protection to clear short circuits and earth faults.

Some applications and related setting guidelines for the voltage level are described in the following sections.

7.1.3.1 Equipment protection, such as for motors and generators

The setting must be below the lowest occurring "normal" voltage and above the lowest acceptable voltage for the equipment.

7.1.3.2 Disconnected equipment detection

The setting must be below the lowest occurring "normal" voltage and above the highest occurring voltage, caused by inductive or capacitive coupling, when the equipment is disconnected.

7.1.3.3 Power supply quality

The setting must be below the lowest occurring "normal" voltage and above the lowest acceptable voltage, due to regulation, good practice or other agreements.

7.1.3.4 Voltage instability mitigation

This setting is very much dependent on the power system characteristics, and thorough studies have to be made to find the suitable levels.

7.1.3.5 Backup protection for power system faults

The setting must be below the lowest occurring "normal" voltage and above the highest occurring voltage during the fault conditions under consideration.
7.1.3.6 Settings for Two step undervoltage protection

The following settings can be done for two step undervoltage protection (UV2PTUV).

GlobalBaseSel: Selects the global base value group used by the function to define \((I_{Base}), (U_{Base})\) and \((S_{Base})\).

ConnType: Sets whether the measurement shall be phase-to-earth fundamental value, phase-to-phase fundamental value, phase-to-earth RMS value or phase-to-phase RMS value.

Operation: Off/On.

UV2PTUV measures selectively phase-to-earth voltages, or phase-to-phase voltage chosen by the setting *ConnType.*

This means operation for phase-to-earth voltage if:

\[
U < \frac{U_{Base}(kV)}{\sqrt{3}} (\%)
\]

(Equation 81)

and operation for phase-to-phase voltage if:

\[
U < (\%) \cdot U_{Base}(kV)
\]

(Equation 82)

Characteristic1: This parameter gives the type of time delay to be used for step 1. The setting can be *Definite time/Inverse Curve A/Inverse Curve B.* The choice is highly dependent of the protection application.

OpModen: This parameter describes how many of the three measured voltages that should be below the set level to give operation for step \(n\) \((n=\text{step 1 and 2})\). The setting can be *1 out of 3, 2 out of 3 or 3 out of 3.* It is sufficient that one phase voltage is low to give operation. If the function shall be insensitive for single phase-to-earth faults *2 out of 3* can be chosen.

Un<: Set undervoltage operation value for step \(n\) \((n=\text{step 1 and 2})\), given as \% of the global parameter \(U_{Base}\). This setting is highly dependent of the protection application. Here it is essential to consider the minimum voltage at non-faulted situations. This voltage is larger than 90\% of nominal voltage.

tn: Time delay for step \(n\) \((n=\text{step 1 and 2})\), given in s. This setting is highly dependent of the protection application. In many applications the protection function does not directly trip where there is short circuit or earth faults in the system. The time delay must be coordinated to the short circuit protection.

t1Min: Minimum operating time for inverse time characteristic for step 1, given in s. When using inverse time characteristic for the undervoltage function during very low voltages can give a short operation time. This might lead to unselective trip. By setting...
t_{1Min} longer than the operation time for other protections such unselective tripping can be avoided.

k_1: Time multiplier for inverse time characteristic. This parameter is used for coordination between different inverse time delayed undervoltage protections.

The function must be externally blocked when the protected object is disconnected.

7.2 Two step overvoltage protection OV2PTOV

7.2.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two step overvoltage protection</td>
<td>OV2PTOV</td>
<td></td>
<td>59</td>
</tr>
</tbody>
</table>

7.2.2 Application

Two step overvoltage protection OV2PTOV is applicable in all situations, where reliable detection of high voltage is necessary. OV2PTOV is used for supervision and detection of abnormal conditions, which, in combination with other protection functions, increase the security of a complete protection system.

High overvoltage conditions are caused by abnormal situations in the power system. OV2PTOV is applied to power system elements, such as generators, transformers, motors and power lines in order to detect high voltage conditions. OV2PTOV is used in combination with low current signals, to identify a transmission line, open in the remote end. In addition to that, OV2PTOV is also used to initiate voltage correction measures, like insertion of shunt reactors, to compensate for low load, and thereby decreasing the voltage. The function has a high measuring accuracy and hysteresis setting to allow applications to control reactive load.

OV2PTOV is used to disconnect apparatuses, like electric motors, which will be damaged when subject to service under high voltage conditions. It deals with high voltage conditions at power system frequency, which can be caused by:

1. Different kinds of faults, where a too high voltage appears in a certain power system, like metallic connection to a higher voltage level (broken conductor...
falling down to a crossing overhead line, transformer flash over fault from the high voltage winding to the low voltage winding and so on).

2. Malfunctioning of a voltage regulator or wrong settings under manual control (symmetrical voltage decrease).

3. Low load compared to the reactive power generation (symmetrical voltage decrease).

4. Earth-faults in high impedance earthed systems causes, beside the high voltage in the neutral, high voltages in the two non-faulted phases, (unsymmetrical voltage increase).

OV2PTOV prevents sensitive equipment from running under conditions that could cause their overheating or stress of insulation material, and, thus, shorten their lifetime expectancy. In many cases, it is a useful function in circuits for local or remote automation processes in the power system.

Setting guidelines

The parameters for Two step overvoltage protection (OV2PTOV) are set via the local HMI or PCM600.

All the voltage conditions in the system where OV2PTOV performs its functions should be considered. The same also applies to the associated equipment, its voltage and time characteristic.

There is a very wide application area where general overvoltage functions are used. All voltage related settings are made as a percentage of a settable base primary voltage, which normally is set to the nominal voltage level (phase-to-phase) of the power system or the high voltage equipment under consideration.

The time delay for the OV2PTOV can sometimes be critical and related to the size of the overvoltage - a power system or a high voltage component can withstand smaller overvoltages for some time, but in case of large overvoltages the related equipment should be disconnected more rapidly.

Some applications and related setting guidelines for the voltage level are given below:

Equipment protection, such as for motors, generators, reactors and transformers

High voltage can cause overexcitation of the core and deteriorate the winding insulation. The setting must be above the highest occurring "normal" voltage and below the highest acceptable voltage for the equipment.

Equipment protection, capacitors

High voltage can deteriorate the dielectricum and the insulation. The setting must be above the highest occurring "normal" voltage and below the highest acceptable voltage for the capacitor.
High impedance earthed systems

In high impedance earthed systems, earth-faults cause a voltage increase in the non-faulty phases. OV2PTOV can be used to detect such faults. The setting must be above the highest occurring "normal" voltage and below the lowest occurring voltage during faults. A metallic single-phase earth-fault causes the non-faulted phase voltages to increase a factor of $\sqrt{3}$.

The following settings can be done for Two step overvoltage protection

GlobalBaseSel: Selects the global base value group used by the function to define (I_{Base}), (U_{Base}) and (S_{Base}).

ConnType: Sets whether the measurement shall be phase-to-earth fundamental value, phase-to-phase fundamental value, phase-to-earth RMS value or phase-to-phase RMS value.

Operation: Off/On.

OV2PTOV measures the phase-to-earth voltages, or phase-to-phase voltages as selected. The function will operate if the voltage gets higher than the set percentage of the global set base voltage U_{Base}. This means operation for phase-to-earth voltage over:

$$U > (\%) \cdot U_{\text{Base}}(kV) / \sqrt{3}$$

(Equation 83)

and operation for phase-to-phase voltage over:

$$U > (\%) \cdot U_{\text{Base}}(kV)$$

(Equation 84)

Characteristic: This parameter gives the type of time delay to be used. The setting can be *Definite time/Inverse Curve A/Inverse Curve B/Inverse Curve C*. The choice is highly dependent of the protection application.

OpModen: This parameter describes how many of the three measured voltages that should be above the set level to give operation for step n (n=step 1 and 2). The setting can be *1 out of 3, 2 out of 3 or 3 out of 3*. In most applications it is sufficient that one phase voltage is high to give operation. If the function shall be insensitive for single phase-to-earth faults *3 out of 3* can be chosen, because the voltage will normally rise in the non-faulted phases at single phase-to-earth faults.

Un,: Set overvoltage operating value for step n (n=step 1 and 2), given as % of the global parameter U_{Base}. The setting is highly dependent of the protection application. Here it is essential to consider the Maximum voltage at non-faulted situations. Normally this voltage is less than 110% of nominal voltage.

tn: Time delay for step n (n=step 1 and 2), given in s. The setting is highly dependent of the protection application. In many applications the protection function has the task...
to prevent damages to the protected object. The speed might be important for example in case of protection of transformer that might be overexcited. The time delay must be co-ordinated with other automated actions in the system.

$t1Min$: Minimum operating time for inverse time characteristic for step 1, given in s. For very high voltages the overvoltage function, using inverse time characteristic, can give very short operation time. This might lead to unselective trip. By setting $t1Min$ longer than the operation time for other protections such unselective tripping can be avoided.

$k1$: Time multiplier for inverse time characteristic. This parameter is used for co-ordination between different inverse time delayed undervoltage protections.

7.3 Two step residual overvoltage protection

ROV2PTOV

7.3.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two step residual overvoltage protection</td>
<td>ROV2PTOV</td>
<td></td>
<td>59N</td>
</tr>
</tbody>
</table>

7.3.2 Application

Two step residual overvoltage protection ROV2PTOV is primarily used in high impedance earthed distribution networks, mainly as a backup for the primary earth-fault protection of the feeders and the transformer. To increase the security for different earth-fault related functions, the residual overvoltage signal can be used as a release signal. The residual voltage can be measured either at the transformer neutral or from a voltage transformer open delta connection. The residual voltage can also be calculated internally, based on measurement of the three-phase voltages.

In high impedance earthed systems the residual voltage will increase in case of any fault connected to earth. Depending on the type of fault and fault resistance the residual voltage will reach different values. The highest residual voltage, equal to three times the phase-to-earth voltage, is achieved for a single phase-to-earth fault. The residual voltage increases approximately to the same level in the whole system and does not provide any guidance in finding the faulted component. Therefore, ROV2PTOV is often used as a backup protection or as a release signal for the feeder earth-fault protection.
7.3.3 Setting guidelines

All the voltage conditions in the system where ROV2PTOV performs its functions should be considered. The same also applies to the associated equipment, its voltage and time characteristic.

There is a very wide application area where general single input or residual overvoltage functions are used. All voltage related settings are made as a percentage of a settable base voltage, which can be set to the primary nominal voltage (phase-phase) level of the power system or the high voltage equipment under consideration.

The time delay for ROV2PTOV is seldom critical, since residual voltage is related to earth-faults in a high impedance earthed system, and enough time must normally be given for the primary protection to clear the fault. In some more specific situations, where the single overvoltage protection is used to protect some specific equipment, the time delay is shorter.

Some applications and related setting guidelines for the residual voltage level are given below.

7.3.3.1 Power supply quality

The setting must be above the highest occurring "normal" residual voltage and below the highest acceptable residual voltage, due to regulation, good practice or other agreements.

7.3.3.2 High impedance earthed systems

In high impedance earthed systems, earth faults cause a neutral voltage in the feeding transformer neutral. Two step residual overvoltage protection ROV2PTOV is used to trip the transformer, as a backup protection for the feeder earth-fault protection, and as a backup for the transformer primary earth-fault protection. The setting must be above the highest occurring "normal" residual voltage, and below the lowest occurring residual voltage during the faults under consideration. A metallic single-phase earth fault causes a transformer neutral to reach a voltage equal to the nominal phase-to-earth voltage.

The voltage transformers measuring the phase-to-earth voltages measure zero voltage in the faulty phase. The two healthy phases will measure full phase-to-phase voltage, as the earth is available on the faulty phase and the neutral has a full phase-to-earth voltage. The residual overvoltage will be three times the phase-to-earth voltage. See Figure 64.
7.3.3.3 Direct earthed system

In direct earthed systems, an earth fault on one phase indicates a voltage collapse in that phase. The two healthy phases will have normal phase-to-earth voltages. The residual sum will have the same value as the remaining phase-to-earth voltage. See Figure 65.
Settings for Two step residual overvoltage protection

GlobalBaseSel: Selects the global base value group used by the function to define \((I_{Base})\), \((U_{Base})\) and \((S_{Base})\).

Operation: Off or On

\(U_{Base}\) is used as voltage reference for the voltage. The voltage can be fed to the IED in different ways:

1. The IED is fed from a normal voltage transformer group where the residual voltage is created from the phase-to-earth voltages within the protection software.
2. The IED is fed from a broken delta connection normal voltage transformer group. In an open delta connection the protection is fed by the voltage \(3U_0\) (single input). The Setting chapter in the application manual explains how the analog input needs to be set.
3. The IED is fed from a single voltage transformer connected to the neutral point of a power transformer in the power system. In this connection the protection is fed by the voltage \(U_N=U_0\) (single input). The Setting chapter in the application manual explains how the analog input needs to be set. ROV2PTOV will measure the residual voltage corresponding nominal phase-to-earth voltage for a high impedance earthed system. The measurement will be based on the neutral voltage displacement.
Characteristic1: This parameter gives the type of time delay to be used. The setting can be, *Definite time* or *Inverse curve A* or *Inverse curve B* or *Inverse curve C*. The choice is highly dependent of the protection application.

\(U_n >: \) Set overvoltage operate value for step \(n \) (\(n = \text{step 1 and 2} \)), given as \% of residual voltage corresponding to global set parameter \(U_{Base} \):

\[
U > (\%) \cdot U_{Base}(kV) / \sqrt{3}
\]
(Equation 85)

The setting is dependent of the required sensitivity of the protection and the system earthing. In non-effectively earthed systems the residual voltage can be maximum the rated phase-to-earth voltage, which should correspond to 100\%.

In effectively earthed systems this value is dependent of the ratio \(Z_0/Z_1 \). The required setting to detect high resistive earth-faults must be based on network calculations.

\(t_n \): time delay of step \(n \) (\(n = \text{step 1 and 2} \)), given in s. The setting is highly dependent of the protection application. In many applications, the protection function has the task to prevent damages to the protected object. The speed might be important for example in case of protection of transformer that might be overexcited. The time delay must be co-ordinated with other automated actions in the system.

\(t1\text{Min} \): Minimum operate time for inverse time characteristic for step 1, given in s. For very high voltages the overvoltage function, using inverse time characteristic, can give very short operation time. This might lead to unselective trip. By setting \(t1\text{Min} \) longer than the operation time for other protections such unselective tripping can be avoided.

\(k1 \): Time multiplier for inverse time characteristic. This parameter is used for co-ordination between different inverse time delayed undervoltage protections.

7.4 Loss of voltage check LOVPTUV

7.4.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss of voltage check</td>
<td>LOVPTUV</td>
<td>-</td>
<td>27</td>
</tr>
</tbody>
</table>

7.4.2 Application

The trip of the circuit breaker at a prolonged loss of voltage at all the three phases is normally used in automatic restoration systems to facilitate the system restoration after a major blackout. Loss of voltage check (LOVPTUV) generates a TRIP signal only if the voltage in all the three phases is low for more than the set time. If the trip
to the circuit breaker is not required, LOVPTUV is used for signallization only through an output contact or through the event recording function.

7.4.3 Setting guidelines

Loss of voltage check (LOVPTUV) is in principle independent of the protection functions. It requires to be set to open the circuit breaker in order to allow a simple system restoration following a main voltage loss of a big part of the network and only when the voltage is lost with breakers still closed.

GlobalBaseSel: Selects the global base value group used by the function to define \((IBase)\), \((UBase)\) and \((SBase)\).

All settings are in primary values or per unit. Set operate level per phase to typically 70% of the global parameter \(UBase\) level. Set the time delay \(tTrip=5\text{-}20\) seconds.

7.4.4 Advanced users settings

For advanced users the following parameters need also to be set. Set the length of the trip pulse to typical \(tPulse=0.15\) sec. Set the blocking time \(tBlock\) to block Loss of voltage check (LOVPTUV), if some but not all voltage are low, to typical 5.0 seconds and set the time delay for enabling the function after restoration \(tRestore\) to 3 - 40 seconds.
Section 8 Frequency protection

8.1 Underfrequency protection SAPTUF

8.1.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underfrequency protection</td>
<td>SAPTUF</td>
<td></td>
<td>81</td>
</tr>
</tbody>
</table>

8.1.2 Application

Underfrequency protection SAPTUF is applicable in all situations, where reliable detection of low fundamental power system frequency is needed. The power system frequency, and the rate of change of frequency, is a measure of the unbalance between the actual generation and the load demand. Low fundamental frequency in a power system indicates that the available generation is too low to fully supply the power demanded by the load connected to the power grid. SAPTUF detects such situations and provides an output signal, suitable for load shedding, generator boosting, HVDC-set-point change, gas turbine start up and so on. Sometimes shunt reactors are automatically switched in due to low frequency, in order to reduce the power system voltage and hence also reduce the voltage dependent part of the load.

SAPTUF is very sensitive and accurate and is used to alert operators that frequency has slightly deviated from the set-point, and that manual actions might be enough. The underfrequency signal is also used for overexcitation detection. This is especially important for generator step-up transformers, which might be connected to the generator but disconnected from the grid, during a roll-out sequence. If the generator is still energized, the system will experience overexcitation, due to the low frequency.

8.1.3 Setting guidelines

All the frequency and voltage magnitude conditions in the system where SAPTUF performs its functions should be considered. The same also applies to the associated equipment, its frequency and time characteristic.

There are two specific application areas for SAPTUF:
1. to protect equipment against damage due to low frequency, such as generators, transformers, and motors. Overexcitation is also related to low frequency
2. to protect a power system, or a part of a power system, against breakdown, by shedding load, in generation deficit situations.

The under frequency START value is set in Hz. All voltage magnitude related settings are made as a percentage of a global base voltage parameter. The UBase value should be set as a primary phase-to-phase value.

Some applications and related setting guidelines for the frequency level are given below:

Equipment protection, such as for motors and generators

The setting has to be well below the lowest occurring "normal" frequency and well above the lowest acceptable frequency for the equipment.

Power system protection, by load shedding

The setting has to be below the lowest occurring "normal" frequency and well above the lowest acceptable frequency for power stations, or sensitive loads. The setting level, the number of levels and the distance between two levels (in time and/or in frequency) depends very much on the characteristics of the power system under consideration. The size of the "largest loss of production" compared to "the size of the power system" is a critical parameter. In large systems, the load shedding can be set at a fairly high frequency level, and the time delay is normally not critical. In smaller systems the frequency START level has to be set at a lower value, and the time delay must be rather short.

8.2 Overfrequency protection SAPTOF

8.2.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overfrequency protection</td>
<td>SAPTOF</td>
<td></td>
<td>81</td>
</tr>
</tbody>
</table>

8.2.2 Application

Overfrequency protection function SAPTOF is applicable in all situations, where reliable detection of high fundamental power system frequency is needed. The power system frequency, and rate of change of frequency, is a measure of the unbalance
between the actual generation and the load demand. High fundamental frequency in a power system indicates that the available generation is too large compared to the power demanded by the load connected to the power grid. SAPTOF detects such situations and provides an output signal, suitable for generator shedding, HVDC-set-point change and so on. SAPTOF is very sensitive and accurate and can also be used to alert operators that frequency has slightly deviated from the set-point, and that manual actions might be enough.

8.2.3 Setting guidelines

All the frequency and voltage magnitude conditions in the system where SAPTOF performs its functions must be considered. The same also applies to the associated equipment, its frequency and time characteristic.

There are two specific application areas for SAPTOF:

1. to protect equipment against damage due to high frequency, such as generators, and motors
2. to protect a power system, or a part of a power system, against breakdown, by shedding generation, in over production situations.

The overfrequency start value is set in Hz. All voltage magnitude related settings are made as a percentage of a settable global base voltage parameter \(U_{\text{Base}} \). The \(U_{\text{Base}} \) value should be set as a primary phase-to-phase value.

Some applications and related setting guidelines for the frequency level are given below:

Equipment protection, such as for motors and generators

The setting has to be well above the highest occurring "normal" frequency and well below the highest acceptable frequency for the equipment.

Power system protection, by generator shedding

The setting must be above the highest occurring "normal" frequency and below the highest acceptable frequency for power stations, or sensitive loads. The setting level, the number of levels and the distance between two levels (in time and/or in frequency) depend very much on the characteristics of the power system under consideration. The size of the "largest loss of load" compared to "the size of the power system" is a critical parameter. In large systems, the generator shedding can be set at a fairly low frequency level, and the time delay is normally not critical. In smaller systems the frequency START level has to be set at a higher value, and the time delay must be rather short.

8.3 Rate-of-change frequency protection SAPFRC
8.3.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate-of-change frequency protection</td>
<td>SAPFRC</td>
<td></td>
<td>df/dt ≥ 81</td>
</tr>
</tbody>
</table>

8.3.2 Application

Rate-of-change frequency protection (SAPFRC), is applicable in all situations, where reliable detection of change of the fundamental power system voltage frequency is needed. SAPFRC can be used both for increasing frequency and for decreasing frequency. SAPFRC provides an output signal, suitable for load shedding or generator shedding, generator boosting, HVDC-set-point change, gas turbine start up and so on. Very often SAPFRC is used in combination with a low frequency signal, especially in smaller power systems, where loss of a fairly large generator will require quick remedial actions to secure the power system integrity. In such situations load shedding actions are required at a rather high frequency level, but in combination with a large negative rate-of-change of frequency the underfrequency protection can be used at a rather high setting.

8.3.3 Setting guidelines

The parameters for Rate-of-change frequency protection SAPFRC are set via the local HMI or or through the Protection and Control Manager (PCM600).

All the frequency and voltage magnitude conditions in the system where SAPFRC performs its functions should be considered. The same also applies to the associated equipment, its frequency and time characteristic.

There are two specific application areas for SAPFRC:

1. to protect equipment against damage due to high or too low frequency, such as generators, transformers, and motors
2. to protect a power system, or a part of a power system, against breakdown by shedding load or generation, in situations where load and generation are not in balance.

SAPFRC is normally used together with an overfrequency or underfrequency function, in small power systems, where a single event can cause a large imbalance between load and generation. In such situations load or generation shedding has to take place very quickly, and there might not be enough time to wait until the frequency signal has reached an abnormal value. Actions are therefore taken at a frequency level closer to the primary nominal level, if the rate-of-change frequency is large (with respect to sign).
SAPFRCSTART value is set in Hz/s. All voltage magnitude related settings are made as a percentage of a settable base voltage, which normally is set to the primary nominal voltage level (phase-phase) of the power system or the high voltage equipment under consideration.

SAPFRC is not instantaneous, since the function needs some time to supply a stable value. It is recommended to have a time delay long enough to take care of signal noise. However, the time, rate-of-change frequency and frequency steps between different actions might be critical, and sometimes a rather short operation time is required, for example, down to 70 ms.

Smaller industrial systems might experience rate-of-change frequency as large as 5 Hz/s, due to a single event. Even large power systems may form small islands with a large imbalance between load and generation, when severe faults (or combinations of faults) are cleared - up to 3 Hz/s has been experienced when a small island was isolated from a large system. For more "normal" severe disturbances in large power systems, rate-of-change of frequency is much less, most often just a fraction of 1.0 Hz/s.
Section 9 Secondary system supervision

9.1 Current circuit supervision CCSRDIF

9.1.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current circuit supervision</td>
<td>CCSRDIF</td>
<td>-</td>
<td>87</td>
</tr>
</tbody>
</table>

9.1.2 Application

Open or short circuited current transformer cores can cause unwanted operation of many protection functions such as differential, earth-fault current and negative-sequence current functions. When currents from two independent three-phase sets of CTs, or CT cores, measuring the same primary currents are available, reliable current circuit supervision can be arranged by comparing the currents from the two sets. If an error in any CT circuit is detected, the protection functions concerned can be blocked and an alarm given.

In case of large currents, unequal transient saturation of CT cores with different remanence or different saturation factor may result in differences in the secondary currents from the two CT sets. Unwanted blocking of protection functions during the transient stage must then be avoided.

Current circuit supervision CCSRDIF must be sensitive and have short operate time in order to prevent unwanted tripping from fast-acting, sensitive numerical protections in case of faulty CT secondary circuits.

Open CT circuits creates extremely high voltages in the circuits which is extremely dangerous for the personell. It can also damage the insulation and cause new problems.

The application shall, thus, be done with this in consideration, especially if the protection functions are blocked.

9.1.3 Setting guidelines

GlobalBaseSel: Selects the global base value group used by the function to define (IBase), (UBase) and (SBase).
Current circuit supervision CCSRDIF compares the residual current from a three-phase set of current transformer cores with the neutral point current on a separate input taken from another set of cores on the same current transformer.

The minimum operate current, \(I_{\text{MinOp}} \), must be set as a minimum to twice the residual current in the supervised CT circuits under normal service conditions and rated primary current.

The parameter \(I_p > Block \) is normally set at 150\% to block the function during transient conditions.

The FAIL output is connected in the PCM configuration to the blocking input of the protection function to be blocked at faulty CT secondary circuits.

9.2 Fuse failure supervision SDDRFUF

9.2.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuse failure supervision</td>
<td>SDDRFUF</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

9.2.2 Application

Different protection functions within the protection IED, operates on the basis of the measured voltage in the relay point. Examples are:

- impedance protection functions
- undervoltage function
- energizing check function and voltage check for the weak infeed logic

These functions can operate unintentionally if a fault occurs in the secondary circuits between the voltage instrument transformers and the IED.

It is possible to use different measures to prevent such unwanted operations. Miniature circuit breakers in the voltage measuring circuits, located as close as possible to the voltage instrument transformers, are one of them. Separate fuse-failure monitoring IEDs or elements within the protection and monitoring devices are another possibilities. These solutions are combined to get the best possible effect in the fuse failure supervision function (SDDRFUF).

SDDRFUF function built into the IED products can operate on the basis of external binary signals from the miniature circuit breaker or from the line disconnector. The first case influences the operation of all voltage-dependent functions while the second one does not affect the impedance measuring functions.
The negative sequence detection algorithm, based on the negative-sequence measuring quantities, a high value of voltage $3U_2$ without the presence of the negative-sequence current $3I_2$, is recommended for use in isolated or high-impedance earthed networks.

The zero sequence detection algorithm, based on the zero sequence measuring quantities, a high value of voltage $3U_0$ without the presence of the residual current $3I_0$, is recommended for use in directly or low impedance earthed networks. In cases where the line can have a weak-infeed of zero sequence current this function shall be avoided.

A criterion based on delta current and delta voltage measurements can be added to the fuse failure supervision function in order to detect a three phase fuse failure. This is beneficial for example during three phase transformer switching.

9.2.3 Setting guidelines

9.2.3.1 General

The negative and zero sequence voltages and currents always exist due to different non-symmetries in the primary system and differences in the current and voltage instrument transformers. The minimum value for the operation of the current and voltage measuring elements must always be set with a safety margin of 10 to 20%, depending on the system operating conditions.

Pay special attention to the dissymmetry of the measuring quantities when the function is used on longer untransposed lines, on multicircuit lines and so on.

The settings of negative sequence, zero sequence and delta algorithm are in percent of the base voltage and base current for the function, U_{Base} and I_{Base} respectively. Set U_{Base} to the primary rated phase-phase voltage of the potential voltage transformer and I_{Base} to the primary rated current of the current transformer.

9.2.3.2 Setting of common parameters

GlobalBaseSel: Selects the global base value group used by the function to define (I_{Base}), (U_{Base}) and (S_{Base}).

The settings of negative sequence, zero sequence and delta algorithm are in percent of the global base voltage and global base current for the function, U_{Base} and I_{Base} respectively.

The voltage threshold $U_{SealIn}<$ is used to identify low voltage condition in the system. Set $U_{SealIn}<$ below the minimum operating voltage that might occur during emergency conditions. We propose a setting of approximately 70% of the global parameter U_{Base}.

The drop off time of 200 ms for dead phase detection makes it recommended to always set $SealIn$ to On since this will secure a fuse failure indication at persistent fuse fail
when closing the local breaker when the line is already energized from the other end. When the remote breaker closes the voltage will return except in the phase that has a persistent fuse fail. Since the local breaker is open there is no current and the dead phase indication will persist in the phase with the blown fuse. When the local breaker closes the current will start to flow and the function detects the fuse failure situation. But due to the 200 ms drop off timer the output BLKZ will not be activated until after 200 ms. This means that distance functions are not blocked and due to the “no voltage but current” situation might issue a trip.

The operation mode selector OpMode has been introduced for better adaptation to system requirements. The mode selector makes it possible to select interactions between the negative sequence and zero sequence algorithm. In normal applications the OpMode is set to either UNsINs for selecting negative sequence algorithm or UZsIZs for zero sequence based algorithm. If system studies or field experiences shows that there is a risk that the fuse failure function will not be activated due to the system conditions, the dependability of the fuse failure function can be increased if the OpMode is set to UZsIZs OR UNsINs or OptimZsNs. In mode UZsIZs OR UNsINs both the negative and zero sequence based algorithm is activated and working in an OR-condition. Also in mode OptimZsNs both the negative and zero sequence algorithm are activated and the one that has the highest magnitude of measured sequence current will operate. If there is a requirement to increase the security of the fuse failure function OpMode can be selected to UZsIZs AND UNsINs, which gives that both negative and zero sequence algorithm is activated working in an AND-condition, that is, both algorithms must give condition for block in order to activate the output signals BLKU or BLKZ.

9.2.3.3 Negative sequence based

The relay setting value \(3U2>\) is given in percentage of the base voltage \(U_{\text{Base}}\) and should not be set lower than according to equation 86.

\[
3U2 >= \frac{3U2}{U_{\text{Base}}} \cdot 100
\]

(Equation 86)

where:

- \(3U2\) is the maximal negative sequence voltage during normal operation conditions, plus a margin of 10...20%
- \(U_{\text{Base}}\) is setting of the global base voltage for all functions in the IED.

The setting of the current limit \(3I2<\) is in percentage of global parameter \(I_{\text{Base}}\). The setting of \(3I2<\) must be higher than the normal unbalance current that might exist in the system and can be calculated according to equation 87.
\[3I_2 \leq \frac{3I_2}{IBase} \cdot 100 \]
(Equation 87)

where:
- \(3I_2 \) is the maximal negative sequence current during normal operating conditions, plus a margin of 10...20%
- \(IBase \) is the setting of base current for the function

9.2.3.4 Zero sequence based

The relay setting value \(3U0 \) is given in percentage of the global parameter \(UBase \). The setting of \(3U0 \) should not be set lower than according to equation 88.

\[3U0 \geq \frac{3U0}{UBase} \cdot 100 \]
(Equation 88)

where:
- \(3U0 \) is the maximal zero sequence voltage during normal operation conditions, plus a margin of 10...20%
- \(UBase \) is setting of global base voltage all functions in the IED.

The setting of the current limit \(3I0 \) is done in percentage of the global parameter \(IBase \). The setting of \(3I0 \) must be higher than the normal unbalance current that might exist in the system. The setting can be calculated according to equation 89.

\[3I0 \leq \frac{3I0}{IBase} \cdot 100 \]
(Equation 89)

where:
- \(3I0 \) is the maximal zero sequence current during normal operating conditions, plus a margin of 10...20%
- \(IBase \) is setting of global base current all functions in the IED.

9.2.3.5 Delta U and delta I

Set the operation mode selector \(OpDUDI \) to \(On \) if the delta function shall be in operation.

The setting of \(DU \) should be set high (approximately 60% of \(UBase \)) and the current threshold \(DI \) low (approximately 10% of \(IBase \)) to avoid unwanted operation due to
normal switching conditions in the network. The delta current and delta voltage function shall always be used together with either the negative or zero sequence algorithm. If $U_{Set\text{prim}}$ is the primary voltage for operation of dU/dt and $I_{Set\text{prim}}$ the primary current for operation of dI/dt, the setting of $DU>$ and $DI<$ will be given according to equation 90 and equation 91.

$$DU \geq \frac{U_{Set\text{prim}}}{UBase} \cdot 100$$ \hspace{1cm} \text{(Equation 90)}

$$DI \leq \frac{I_{Set\text{prim}}}{IBase} \cdot 100$$ \hspace{1cm} \text{(Equation 91)}

The voltage thresholds $UPh>$ is used to identify low voltage condition in the system. Set $UPh>$ below the minimum operating voltage that might occur during emergency conditions. A setting of approximately 70% of $UBase$ is recommended.

The current threshold $IPh>$ shall be set lower than the $IMinOp$ for the distance protection function. A 5...10% lower value is recommended.

9.2.3.6 Dead line detection

The condition for operation of the dead line detection is set by the parameters $IDLD<$ for the current threshold and $UDLD<$ for the voltage threshold.

Set the $IDLD<$ with a sufficient margin below the minimum expected load current. A safety margin of at least 15-20% is recommended. The operate value must however exceed the maximum charging current of an overhead line, when only one phase is disconnected (mutual coupling to the other phases).

Set the $UDLD<$ with a sufficient margin below the minimum expected operating voltage. A safety margin of at least 15% is recommended.

9.3 Breaker close/trip circuit monitoring TCSSCBR

9.3.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 80617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breaker close/trip circuit monitoring</td>
<td>TCSSCBR</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Application manual
9.3.2 Application

TCSSCBR detects faults in the electrical control circuit of the circuit breaker. The function can supervise both open and closed coil circuits. This kind of supervision is necessary to find out the vitality of the control circuits continuously.

Trip circuit supervision generates a current of approximately 1.0 mA through the supervised circuit. It must be ensured that this current will not cause a latch up of the controlled object.

To protect the trip circuit supervision circuits in the IED, the output contacts are provided with parallel transient voltage suppressors. The breakdown voltage of these suppressors is 400 +/- 20 V DC.

Figure 66: Operating principle of the trip-circuit supervision with an external resistor. The TCSSCBR blocking switch is not required since the external resistor is used.

If TCS is required only in a closed position, the external shunt resistance can be omitted. When the circuit breaker is in the open position, TCS sees the situation as a faulty circuit. One way to avoid TCS operation in this situation would be to block the supervision function whenever the circuit breaker is open.
IS: Constant current generator.
Current level ~ 1.0 mA (I_c)

V: Transient Voltage Suppressor
Breakdown Voltage 380 to 400 VDC

Figure 67: Operating principle of the trip-circuit supervision without an external resistor. The circuit breaker open indication is set to block TCSSCBR when the circuit breaker is open.

Trip-circuit supervision and other trip contacts

It is typical that the trip circuit contains more than one trip contact in parallel, for example in transformer feeders where the trip of a Buchholz relay is connected in parallel with the feeder terminal and other relays involved.

Figure 68: Constant test current flow in parallel trip contacts and trip-circuit supervision
Several trip-circuit supervision functions parallel in circuit

Not only the trip circuit often have parallel trip contacts, it is also possible that the circuit has multiple TCS circuits in parallel. Each TCS circuit causes its own supervising current to flow through the monitored coil and the actual coil current is a sum of all TCS currents. This must be taken into consideration when determining the resistance of R_{ext}.

Trip-circuit supervision with auxiliary relays

Many retrofit projects are carried out partially, that is, the old electromechanical relays are replaced with new ones but the circuit breaker is not replaced. This creates a problem that the coil current of an old type circuit breaker can be too high for the protection IED trip contact to break.

The circuit breaker coil current is normally cut by an internal contact of the circuit breaker. In case of a circuit breaker failure, there is a risk that the protection IED trip contact is destroyed since the contact is obliged to disconnect high level of electromagnetic energy accumulated in the trip coil.

An auxiliary relay can be used between the protection IED trip contact and the circuit breaker coil. This way the breaking capacity question is solved, but the TCS circuit in the protection IED monitors the healthy auxiliary relay coil, not the circuit breaker coil. The separate trip circuit supervision relay is applicable for this to supervise the trip coil of the circuit breaker.

Dimensioning of the external resistor

Under normal operating conditions, the applied external voltage is divided between the relay’s internal circuit and the external trip circuit so that at the minimum 20V (3...20 V) remains over the relay’s internal circuit. Should the external circuit’s resistance be too high or the internal circuit’s too low, for example due to welded relay contacts, the fault is detected.

Mathematically, the operation condition can be expressed as:

$$U_c - (R_{ext} + R_s) \times I_c \geq 20V \quad DC$$

(Equation 92)

- U_c: Operating voltage over the supervised trip circuit
- I_c: Measuring current through the trip circuit, appr. 1.0 mA (0.85...1.20 mA)
- R_{ext}: external shunt resistance
- R_s: trip coil resistance

If the external shunt resistance is used, it has to be calculated not to interfere with the functionality of the supervision or the trip coil. Too high a resistance causes too high a voltage drop, jeopardizing the requirement of at least 20 V over the internal circuit, while a resistance too low can enable false operations of the trip coil.
Table 13: Values recommended for the external resistor R_{ext}

<table>
<thead>
<tr>
<th>Operating voltage U_c</th>
<th>Shunt resistor R_{ext}</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 V DC</td>
<td>10 kΩ, 5 W</td>
</tr>
<tr>
<td>60 V DC</td>
<td>22 kΩ, 5 W</td>
</tr>
<tr>
<td>110 V DC</td>
<td>33 kΩ, 5 W</td>
</tr>
<tr>
<td>220 V DC</td>
<td>68 kΩ, 5 W</td>
</tr>
</tbody>
</table>

Due to the requirement that the voltage over the TCSSCBR contact must be 20V or higher, the correct operation is not guaranteed with auxiliary operating voltages lower than 48V DC because of the voltage drop in R_{ext} and the operating coil or even voltage drop of the feeding auxiliary voltage system which can cause too low voltage values over the TCSSCBR contact. In this case, erroneous alarming can occur.

At lower ($<$48V DC) auxiliary circuit operating voltages, it is recommended to use the circuit breaker position to block unintentional operation of TCSSCBR. The use of the position indication is described earlier in this chapter.
10.1 Synchrocheck, energizing check, and synchronizing

SESRSYN

10.1.1 Identification

Function description

<table>
<thead>
<tr>
<th>IEC 61850 identification</th>
<th>IEC 60617 device number</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchrocheck, energizing check, and synchronizing</td>
<td>SESRSYN</td>
<td>25</td>
</tr>
</tbody>
</table>

10.1.2 Application

10.1.2.1 Synchronizing

To allow closing of breakers between asynchronous networks a synchronizing function is provided. The breaker close command is issued at the optimum time when conditions across the breaker are satisfied in order to avoid stress on the network and its components.

The systems are defined to be asynchronous when the frequency difference between bus and line is larger than an adjustable parameter. If the frequency difference is less than this threshold value the system is defined to have a parallel circuit and the synchrocheck function is used.

The synchronizing function measures the difference between the U-Line and the U-Bus. It operates and enables a closing command to the circuit breaker when the calculated closing angle is equal to the measured phase angle and the following conditions are simultaneously fulfilled:

- The measured voltage U-Line is higher than 80% of $GlbBaseSelLine$ and the measured voltage U-Bus is higher than 80% of $GlbBaseSelBus$.
- The voltage difference is smaller than 0.10 p.u, that is $(\text{measured U-Bus}/GlbBaseSelBus) - (\text{measured U-Line}/GlbBaseSelLine) < 0.10$.
- The difference in frequency is less than the set value of $FreqDiffMax$ and larger than the set value of $FreqDiffMin$. If the frequency is less than $FreqDiffMin$ the synchrocheck is used and the value of $FreqDiffMin$ must thus be identical to the value $FreqDiffM resp FreqDiffA$ for synchrocheck function. The bus and line
frequencies must also be within a range of +/- 5 Hz from the rated frequency. When the synchronizing option is included also for autoreclose there is no reason to have different frequency setting for the manual and automatic reclosing and the frequency difference values for synchronism check should be kept low.

- The frequency rate of change is less than set value for both U-Bus and U-Line.
- The closing angle is decided by the calculation of slip frequency and required pre-closing time.

The synchronizing function compensates for measured slip frequency as well as the circuit breaker closing delay. The phase angle advance is calculated continuously. Closing angle is the change in angle during the set breaker closing operate time t_{Breaker}.

The reference voltage can be phase-neutral L1, L2, L3 or phase-phase L1-L2, L2-L3, L3-L1 or positive sequence. The bus voltage must then be connected to the same phase or phases as are chosen for the line. If different phases voltages are used for the reference voltage, the phase shift has to be compensated with the parameter PhaseShift, and the voltage amplitude has to be compensated by the factor URatio. Positive sequence selection setting requires that both reference voltages are three phase voltages.

10.1.2.2 Synchrocheck

The main purpose of the synchrocheck function is to provide control over the closing of circuit breakers in power networks in order to prevent closing if conditions for synchronism are not detected. It is also used to prevent the re-connection of two systems, which are divided after islanding and after a three pole reclosing.

Single pole auto-reclosing does not require any synchrocheck since the system is tied together by two phases.

SESRSYN function block includes both the synchronism check function and the energizing function to allow closing when one side of the breaker is dead. SESRSYN function also includes a built in voltage selection scheme which allows adoption to various busbar arrangements.

Figure 69: Two interconnected power systems

Figure 69 shows two interconnected power systems. The cloud means that the interconnection can be further away, that is, a weak connection through other stations.
The need for a check of synchronization increases if the meshed system decreases since the risk of the two networks being out of synchronization at manual or automatic closing is greater.

The synchrocheck function measures the conditions across the circuit breaker and compares them to set limits. Output is generated only when all measured conditions are within their set limits simultaneously. The check consists of:

- Live line and live bus.
- Voltage level difference.
- Frequency difference (slip). The bus and line frequency must also be within a range of ±5 Hz from rated frequency.
- Phase angle difference.

A time delay is available to ensure that the conditions are fulfilled for a minimum period of time.

In very stable power systems the frequency difference is insignificant or zero for manually initiated closing or closing by automatic restoration. In steady conditions a bigger phase angle difference can be allowed as this is sometimes the case in a long and loaded parallel power line. For this application we accept a synchrocheck with a long operation time and high sensitivity regarding the frequency difference. The phase angle difference setting can be set for steady state conditions.

Another example is the operation of a power network that is disturbed by a fault event: after the fault clearance a highspeed auto-reclosing takes place. This can cause a power swing in the net and the phase angle difference may begin to oscillate. Generally, the frequency difference is the time derivative of the phase angle difference and will, typically oscillate between positive and negative values. When the circuit breaker needs to be closed by auto-reclosing after fault-clearance some frequency difference should be tolerated, to a greater extent than in the steady condition mentioned in the case above. But if a big phase angle difference is allowed at the same time, there is some risk that auto-reclosing will take place when the phase angle difference is big and increasing. In this case it should be safer to close when the phase angle difference is smaller.

To fulfill the above requirements the synchrocheck function is provided with duplicate settings, one for steady (Manual) conditions and one for operation under disturbed conditions (Auto).
10.1.2.3 Energizing check

The main purpose of the energizing check function is to facilitate the controlled recon-nection of disconnected lines and buses to energized lines and buses.

The energizing check function measures the bus and line voltages and compares them to both high and low threshold values. The output is given only when the actual measured conditions match the set conditions. Figure 71 shows two substations, where one (1) is energized and the other (2) is not energized. Power system 2 is energized (DLLB) from substation 1 via the circuit breaker A.
Figure 71: Principle for the energizing check function

The energizing operation can operate in the dead line live bus (DLLB) direction, dead bus live line (DBLL) direction, or in both directions over the circuit breaker. Energizing from different directions can be different for automatic reclosing and manual closing of the circuit breaker. For manual closing it is also possible to allow closing when both sides of the breaker are dead, Dead Bus Dead Line (DBDL).

The equipment is considered energized (Live) if the voltage is above 80% of the base voltage U_{Base}, which is defined in the Global Base Value group, according to the setting of $GblBaseSelBus$ and $GblBaseSelLine$; in a similar way, the equipment is considered non-energized (Dead) if the voltage is below 40% of the base voltage U_{Base} of the Global Base Value group. A disconnected line can have a considerable potential because of factors such as induction from a line running in parallel, or feeding via extinguishing capacitors in the circuit breakers. This voltage can be as high as 50% or more of the base voltage of the line. Normally, for breakers with single breaking elements (<330 kV) the level is well below 30%.

When the energizing direction corresponds to the settings, the situation has to remain constant for a certain period of time before the close signal is permitted. The purpose of the delayed operate time is to ensure that the dead side remains de-energized and that the condition is not due to temporary interference.

10.1.2.4 Voltage selection

The voltage selection function is used for the connection of appropriate voltages to the synchrocheck and energizing check functions. For example, when the IED is used in a double bus arrangement, the voltage that should be selected depends on the status of the breakers and/or disconnectors. By checking the status of the disconnectors
auxiliary contacts, the right voltages for the synchronizing, synchrocheck and energizing check functions can be selected.

Available voltage selection types are for single circuit breaker with double busbars and the 1½ circuit breaker arrangement. A double circuit breaker arrangement and single circuit breaker with a single busbar do not need any voltage selection function. Neither does a single circuit breaker with double busbars using external voltage selection need any internal voltage selection.

The voltages from busbars and lines must be physically connected to the voltage inputs in the IED and connected, using the control software, to each of the SESRSYN functions available in the IED.

10.1.2.5 External fuse failure

Either external fuse-failure signals or signals from a tripped fuse (or miniature circuit breaker) are connected to HW binary inputs of the IED; these signals are connected to inputs of SESRSYN function in the application configuration tool of PCM600. The internal fuse failure supervision function can also be used, for at least the line voltage supply. The signal BLKU, from the internal fuse failure supervision function, is then used and connected to the fuse supervision inputs of the energizing check function block. In case of a fuse failure, the SESRSYN energizing function is blocked.

The UB1OK/UB2OK and UB1FF/UB2FF inputs are related to the busbar voltage and the ULN1OK/ULN2OK and ULN1FF/ULN2FF inputs are related to the line voltage.

External selection of energizing direction

The energizing can be selected by use of the available logic function blocks. Below is an example where the choice of mode is done from a symbol on the local HMI through selector switch function block, but alternatively there can for example, be a physical selector switch on the front of the panel which is connected to a binary to integer function block (B16I).

If the PSTO input is used, connected to the Local-Remote switch on the local HMI, the choice can also be from the station HMI system, typically ABB Microscada through IEC 61850–8–1 communication.

The connection example for selection of the manual energizing mode is shown in figure 72. Selected names are just examples but note that the symbol on the local HMI can only show the active position of the virtual selector.
10.1.3 Application examples

SESRSYN function block can also be used in some switchyard arrangements, but with different parameter settings. Below are some examples of how different arrangements are connected to the IED analogue inputs and to the function block SESRSYN.

The input used below in example are typical and can be changed by use of configuration and signal matrix tools.

The SESRSYN and connected SMAI function block instances must have the same cycle time in the application configuration.
Figure 73 illustrates connection principles. For the SESRSYN function there is one voltage transformer on each side of the circuit breaker. The voltage transformer circuit connections are straightforward; no special voltage selection is necessary.

The voltage from busbar VT is connected to U3PBB1 and the voltage from the line VT is connected to U3PLN1. The positions of the VT fuses shall also be connected as shown above. The voltage selection parameter \(CBConfig \) is set to \(\text{No voltage sel.} \).
10.1.3.2 Single circuit breaker with double busbar, external voltage selection

Figure 74: Connection of SESRSYN function block in a single breaker, double busbar arrangement with external voltage selection

In this type of arrangement no internal voltage selection is required. The voltage selection is made by external relays typically connected according to figure 74. Suitable voltage and VT fuse failure supervision from the two busbars are selected based on the position of the busbar disconnectors. This means that the connections to the function block will be the same as for the single busbar arrangement. The voltage selection parameter CBConfig is set to No voltage sel.
10.1.3.3 Single circuit breaker with double busbar, internal voltage selection

When internal voltage selection is needed, the voltage transformer circuit connections are made according to figure 75. The voltage from busbar1 VT is connected to U3PBB1 and the voltage from busbar2 VT is connected to U3PBB2. The voltage from the line VT is connected to U3PLN1. The positions of the disconnectors and VT fuses shall be connected as shown in figure 75. The voltage selection parameter CBConfig is set to Double bus.

10.1.4 Setting guidelines

The setting parameters for the Synchronizing, synchrocheck and energizing check function SESRSYN are set via the local HMI (LHMI) or PCM600.

This setting guidelines describes the settings of the SESRSYN function via the LHMI.

Common base IED value for primary voltage (UBase) is set in a Global base value function, GBASVAL, found under Main menu/Configuration/Power system/Global base values/X:GBASVAL/UBase. GBASVAL has six instances which can be set independently of each other. The SESRSYN function has one setting for the bus reference voltage (GblBaseSelBus) and one setting for the line reference voltage (GblBaseSelLine) which independently of each other can be set to select one of the six GBASVAL functions used for reference of base values. This means that the reference voltage of bus and line can be set to different values. The settings for the SESRSYN function found under Main menu/Settings/Control/SESRCYN(25,SYNC)/...
X:SESRSYN has been divided into four different setting groups: General, Synchronizing, Synchrocheck and Energizing check.

General settings

Operation: The operation mode can be set *On* or *Off*. The setting *Off* disables the whole function.

GblBaseSelBus and *GblBaseSelLine*

These configuration settings are used for selecting one of six GBASVAL functions; the base voltage *UBase* of the set Global Base Value group is used as base value of the voltage, for bus and line respectively.

SelPhaseBus1 and *SelPhaseBus2*

Configuration parameters for selection of measuring phase of the voltage for the busbar 1 and 2 respectively, which can be a single-phase (phase-neutral) or two-phase (phase-phase) voltage or positive sequence.

SelPhaseLine1 and *SelPhaseLine2*

Configuration parameters for selection of measuring phase of the voltage for line 1 and 2 respectively, which can be a single-phase (phase-neutral) or two-phase (phase-phase) voltage or positive sequence.

CBConfig

This configuration setting is used to define type of voltage selection. Type of voltage selection can be selected as:

- no voltage selection
- single circuit breaker with double bus
- 1 1/2 circuit breaker arrangement with the breaker connected to busbar 1
- 1 1/2 circuit breaker arrangement with the breaker connected to busbar 2
- 1 1/2 circuit breaker arrangement with the breaker connected to line 1 and 2 (tie breaker)

URatio

The *URatio* is defined as *URatio = bus voltage/line voltage*. This setting scales up the line voltage to an equal level with the bus voltage.

PhaseShift

This setting is used to compensate the phase shift between the measured bus voltage and line voltage when:
• a. different phase-neutral voltages are selected (for example UL1 for bus and UL2 for line);
• b. one available voltage is phase-phase and the other one is phase-neutral (for example UL1L2 for bus and UL1 for line).

The set value is added to the measured line phase angle. The bus voltage is reference voltage.

If single phase UL1 or two-phase UL1L2 is not available, parameters PhaseShift and URatio can be used to compensate for other choices.

Table 14: Voltage settings examples

<table>
<thead>
<tr>
<th>Line voltage</th>
<th>Bus voltage</th>
<th>Bus voltage pre-processing</th>
<th>SESRSYN setting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>PhaseShift</td>
</tr>
<tr>
<td>UL1</td>
<td>UL1</td>
<td>Connect UL1 to channel 1</td>
<td>-</td>
</tr>
<tr>
<td>UL2</td>
<td>UL1</td>
<td>Connect UL2 to channel 1</td>
<td>- 120º</td>
</tr>
<tr>
<td>UL3</td>
<td>UL1</td>
<td>Connect UL3 to channel 1</td>
<td>+ 120º</td>
</tr>
<tr>
<td>UL1L2</td>
<td>UL1L2</td>
<td>Connect UL1L2 to channel 1</td>
<td>-</td>
</tr>
<tr>
<td>UL2L3</td>
<td>UL1L2</td>
<td>Connect UL2L3 to channel 1</td>
<td>- 120º</td>
</tr>
<tr>
<td>UL3L1</td>
<td>UL1L2</td>
<td>Connect UL3L1 to channel 1</td>
<td>+ 120º</td>
</tr>
<tr>
<td>UL1</td>
<td>UL1L2</td>
<td>Connect UL1L2 to channel 1</td>
<td>- 30º</td>
</tr>
<tr>
<td>UL2L3</td>
<td>UL1L2</td>
<td>Connect UL2L3 to channel 1</td>
<td>- 90º</td>
</tr>
<tr>
<td>UL3L1</td>
<td>UL1L2</td>
<td>Connect UL3L1 to channel 1</td>
<td>+ 150º</td>
</tr>
</tbody>
</table>

Synchronizing settings

OperationSynch

The setting Off disables the Synchronizing function. With the setting On, the function is in service and the output signal depends on the input conditions.

FreqDiffMin

The setting FreqDiffMin is the minimum frequency difference where the system are defined to be asynchronous. For frequency difference lower than this value the systems are considered to be in parallel. A typical value for the FreqDiffMin is 10 mHz. Generally, the value should be low if both, synchronizing and synchrocheck function is provided as it is better to let synchronizing function close as it will close at the exact right instance if the networks run with a frequency difference.
Note! The \textit{FreqDiffMin} shall be set to the same value as \textit{FreqDiffM} respective \textit{FreqDiffA} for SESRSYN irrespective of whether the functions are used for manual operation, autoreclosing or both.

\textit{FreqDiffMax}

The setting \textit{FreqDiffMax} is the maximum slip frequency at which synchronizing is accepted. \(1/\textit{FreqDiffMax}\) shows the time for the vector to move 360 degrees, one turn on the synchronoscope and is called the Beat time. A typical value for the \textit{FreqDiffMax} is 200-250 mHz which gives beat times on 4-5 seconds. Higher values should be avoided as the two networks normally are regulated to nominal frequency independent of each other so the frequency difference shall be small.

\textit{FreqRateChange}

The maximum allowed rate of change for the frequency.

\textit{tBreaker}

The \textit{tBreaker} shall be set to match the closing time for the circuit breaker and should also include the possible auxiliary relays in the closing circuit. It is important to check that no slow logic components are used in the configuration of the IED as there then can be big variations in closing time due to those components. Typical setting is 80-150 ms depending on the breaker closing time.

\textit{tClosePulse}

Setting for the duration of the breaker close pulse.

\textit{tMaxSynch}

The \textit{tMaxSynch} is set to reset the operation of the synchronizing function if the operation does not take place within this time. The setting must allow for the setting of \textit{FreqDiffMin}, which will decide how long it will take maximum to reach phase equality. At a setting of 10 ms the beat time is 100 seconds and the setting would thus need to be at least \textit{tMinSynch} plus 100 seconds. If the network frequencies are expected to be outside the limits from start a margin needs to be added. Typical setting is 600 seconds.

\textit{tMinSynch}

The \textit{tMinSynch} is set to limit the minimum time at which synchronizing closing attempt is given. The synchronizing function will not give a closing command within this time, from when the synchronizing is started, even if a synchronizing condition is fulfilled. Typical setting is 200 ms.

\textbf{Synchrocheck settings}

\textit{OperationSC}

The \textit{OperationSC} setting \textit{Off} disables the synchrocheck function and sets the outputs AUTOSYOK, MANSYOK, TSTAUTSY and TSTMANSY to low.
With the setting \textit{On}, the function is in service and the output signal depends on the input conditions.

\textit{UDiffSC}

Setting for voltage difference between line and bus in p.u. This setting in p.u is defined as \((\text{measured U-Bus}/\text{UBase for bus according to GblBaseSelBus}) - (\text{measured U-Line}/\text{UBase for line according to GblBaseSelLine})\). A typical value for the voltage difference can be 15%.

\textit{FreqDiffM} and \textit{FreqDiffA}

The frequency difference level settings, \textit{FreqDiffM} and \textit{FreqDiffA}, shall be chosen depending on the condition in the network. At steady conditions a low frequency difference setting is needed, where the \textit{FreqDiffM} setting is used. For auto-reclosing a bigger frequency difference setting is preferable, where the \textit{FreqDiffA} setting is used. A typical value for the \textit{FreqDiffM} can 10 mHz and a typical value for the \textit{FreqDiffA} can be 100-200 mHz, when the synchronizing function is not used.

\textit{PhaseDiffM} and \textit{PhaseDiffA}

The phase angle difference level settings, \textit{PhaseDiffM} and \textit{PhaseDiffA}, shall also be chosen depending on conditions in the network. The phase angle setting must be chosen to allow closing under maximum load. A typical maximum value in heavy-loaded networks can be 45 degrees whereas in most networks the maximum occurring angle is below 25 degrees. The setting of \textit{PhaseDiffA} setting is limited by the \textit{PhaseDiffM} setting.

\textit{tSCM} and \textit{tSCA}

The purpose of the timer delay settings, \textit{tSCM} and \textit{tSCA}, is to ensure that the synchrocheck conditions remains constant and that the situation is not due to a temporary interference. Should the conditions not persist for the specified time, the delay timer is reset and the procedure is restarted when the conditions are fulfilled again. Circuit breaker closing is thus not permitted until the synchrocheck situation has remained constant throughout the set delay setting time. Under stable conditions a longer operation time delay setting is needed, where the \textit{tSCM} setting is used. During auto-reclosing a shorter operation time delay setting is preferable, where the \textit{tSCA} setting is used. A typical value for the \textit{tSCM} may be 1 second and a typical value for the \textit{tSCA} may be 0.1 second.

\textbf{Energizing check settings}

\textit{AutoEnerg} and \textit{ManEnerg}

Two different settings can be used for automatic and manual closing of the circuit breaker. The settings for each of them are:

- \textit{Off}, the energizing function is disabled.
- \textit{DLLB}, Dead Line Live Bus: the line voltage is below 40\% of the line base voltage \textit{UBase} according to the setting \textit{GblBaseSelLine} about the Global Base Value
group, and the bus voltage is above 80% of the bus base voltage \(U_{Base} \), according to the setting \(GblBaseSelBus \).

- **DBLL**, Dead Bus Live Line, the bus voltage is below 40% of the bus base voltage \(U_{Base} \), according to the setting \(GblBaseSelBus \) about the Global Base Value group, and the line voltage is above 80% of the line base voltage \(U_{Base} \), according to the setting \(GblBaseSelLine \).

- **Both**, energizing can be done in both directions, DLLB or DBLL.

\(\text{ManEnergDBDL} \)

If the parameter is set to \(\text{On} \), manual closing is enabled when line voltage is below 40% of the line base voltage \(U_{Base} \), according to the setting \(GblBaseSelLine \) about the Global Base Value group, and when bus voltage is below 40% of the bus base voltage \(U_{Base} \), according to the setting \(GblBaseSelBus \) and also \(\text{ManEnerg} \) is set to DLLB, DBLL or Both.

\(t\text{AutoEnerg} \) and \(t\text{ManEnerg} \)

The purpose of the timer delay settings, \(t\text{AutoEnerg} \) and \(t\text{ManEnerg} \), is to ensure that the dead side remains de-energized and that the condition is not due to a temporary interference. Should the conditions not persist for the specified time, the delay timer is reset and the procedure is restarted when the conditions are fulfilled again. Circuit breaker closing is thus not permitted until the energizing condition has remained constant throughout the set delay setting time.

10.2 Autorecloser for 3-phase operation SMBRREC

10.2.1 Identification

<table>
<thead>
<tr>
<th>Function Description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autorecloser for 3-phase operation</td>
<td>SMBRREC</td>
<td></td>
<td>79</td>
</tr>
</tbody>
</table>

10.2.2 Application

Automatic reclosing is a well-established method for the restoration of service in a power system after a transient line fault. The majority of line faults are flashover arcs, which are transient by nature. When the power line is switched off by the operation of line protection and line breakers, the arc de-ionizes and recovers its ability to withstand voltage at a somewhat variable rate. Thus, a certain dead time with a de-energized line is necessary. Line service can then be resumed by automatic reclosing.
of the line breakers. The dead time selected should be long enough to ensure a high probability of arc de-ionization and successful reclosing.

For individual line breakers, auto-reclosing equipment or functions, the auto-reclosing open time is used to determine line “dead time”. When simultaneous tripping and reclosing at the two line ends occurs, auto-reclosing open time is approximately equal to the line “dead time”. If the open time and dead time differ then, the line will be energized until the breakers at both ends have opened.

![Line protection diagram](IEC06000204_1_en.vsd)

Figure 76: Single-shot automatic reclosing at a permanent fault

Three-phase automatic reclosing can be performed with or without the use of a synchrocheck, and an energizing check, such as dead line or dead busbar check.

For the individual line breakers and auto-reclosing equipment, the "auto-reclosing open time" expression is used. This is the dead time setting for the Auto-Recloser. During simultaneous tripping and reclosing at the two line ends, auto-reclosing open time is approximately equal to the line dead time. Otherwise these two times may differ as one line end might have a slower trip than the other end which means that the line will not be dead until both ends have opened.

If the fault is permanent, the line protection will trip again when reclosing is attempted in order to clear the fault.

It is common to use one automatic reclosing function per line circuit-breaker (CB). When one CB per line end is used, then there is one auto-reclosing function per line
end. If auto-reclosing functions are included in duplicated line protection, which means two auto-reclosing functions per CB, one should take measures to avoid uncoordinated reclosing commands. In 1 1/2 breaker, double-breaker and ring bus arrangements, two CBs per line end are operated. One auto-reclosing function per CB is recommended. Arranged in such a way, sequential reclosing of the two CBs can be arranged with a priority circuit available in the auto-reclose function. In case of a permanent fault and unsuccessful reclosing of the first CB, reclosing of the second CB is cancelled and thus the stress on the power system is limited. Another advantage with the breaker connected auto-recloser is that checking that the breaker closed before the sequence, breaker prepared for an auto-reclose sequence and so on. is much simpler.

The auto-reclosing function performs three-phase automatic-reclosing with single-shot or multiple-shots.

In power transmission systems it is common practise to apply single and/or three phase, single-shot Auto-Reclosing. In Sub-transmission and Distribution systems tripping and auto-reclosing are usually three-phase. The mode of automatic-reclosing varies however. Single-shot and multi-shot are in use. The first shot can have a short delay, HSAR, or a longer delay, DAR. The second and following reclosing shots have a rather long delay. When multiple shots are used the dead time must harmonize with the breaker duty-cycle capacity.

Automatic-reclosing is usually started by the line protection and in particular by instantaneous tripping of such protection. The auto-reclosing function can be inhibited (blocked) when certain protection functions detecting permanent faults, such as shunt reactor, cable or busbar protection are in operation. Back-up protection zones indicating faults outside the own line are also connected to inhibit the Auto-Reclose.

Automatic-reclosing should not be attempted when closing a CB and energizing a line onto a fault (SOTF), except when multiple-shots are used where shots 2 etc. will be started at SOTF. Likewise a CB in a multi-breaker busbar arrangement which was not closed when a fault occurred should not be closed by operation of the Auto-Reclosing function. Auto-Reclosing is often combined with a release condition from synchrocheck and dead line or dead busbar check. In order to limit the stress on turbo-generator sets from Auto-Reclosing onto a permanent fault, one can arrange to combine Auto-Reclosing with a synchrocheck on line terminals close to such power stations and attempt energizing from the side furthest away from the power station and perform the synchrocheck at the local end if the energizing was successful.

Transmission protection systems are usually sub-divided and provided with two redundant protection IEDs. In such systems it is common to provide auto-reclosing in only one of the sub-systems as the requirement is for fault clearance and a failure to reclose because of the auto-recloser being out of service is not considered a major disturbance. If two auto-reclosers are provided on the same breaker, the application must be carefully checked and normally one must be the master and be connected to inhibit the other auto-recloser if it has started. This inhibit can for example be done from Autorecloser for 3-phase operation(SMBRREC) In progress.
A permanent fault will cause the line protection to trip again when it recloses in an attempt to clear the fault.

The auto-reclosing function allows a number of parameters to be adjusted.

Examples:

- number of auto-reclosing shots
- auto-reclosing open times (dead time) for each shot

10.2.2.1 Auto-reclosing operation OFF and ON

Operation of the automatic reclosing can be set OFF and ON by a setting parameter and by external control. Parameter *Operation* = *Off* or *On* sets the function OFF and ON. In setting *Operation* = *ExternalCtrl*, OFF and ON control is made by input signal pulses, for example, from the control system or from the binary input (and other systems).

When the function is set ON and operative (other conditions such as CB closed and CB Ready are also fulfilled), the output SETON is activated (high). When the function is ready to accept a reclosing start.

10.2.2.2 Start auto-reclosing and conditions for start of a reclosing cycle

The usual way to start a reclosing cycle, or sequence, is to start it at tripping by line protection by applying a signal to the input START. Starting signals can be either, General Trip signals or, only the conditions for Differential, Distance protection Zone 1 and Distance protection Aided trip. In some cases also Directional Earth fault function Aided trip can be connected to start an Auto-Reclose attempt.

A number of conditions need to be fulfilled for the start to be accepted and a new auto-reclosing cycle to be started. They are linked to dedicated inputs. The inputs are:

- CBREADY, CB ready for a reclosing cycle, for example, charged operating gear.
- CBPOS to ensure that the CB was closed when the line fault occurred and start was applied.
- No signal at input INHIBIT that is, no blocking or inhibit signal present. After the start has been accepted, it is latched in and an internal signal “Started” is set. It can be interrupted by certain events, like an “Inhibit” signal.

10.2.2.3 Start auto-reclosing from CB open information

If a user wants to initiate auto-reclosing from the "CB open" position instead of from protection trip signals, the function offers such a possibility. This starting mode is selected with the setting parameter *StartByCBOpen* = *On*. It is then necessary to block reclosing for all manual trip operations. Typically *CBAuxContType* = *NormClosed* is also set and a CB auxiliary contact of type NC (normally closed) is connected to inputs CBPOS and START. When the signal changes from “CB closed” to “CB open” an
auto-reclosing start pulse is generated and latched in the function, subject to the usual checks. Then the reclosing sequence continues as usual. One needs to connect signals from manual tripping and other functions, which shall prevent reclosing, to the input INHIBIT.

10.2.2.4 Blocking of the autorecloser

Auto-Reclose attempts are expected to take place only in the event of transient faults on the own line. The Auto-Recloser must be blocked for the following conditions:

- Tripping from Delayed Distance protection zones
- Tripping from Back-up protection functions
- Tripping from Breaker failure function
- Intertrip received from remote end Breaker failure function
- Busbar protection tripping

Depending of the starting principle (General Trip or only Instantaneous trip) adopted above the delayed and back-up zones might not be required. Breaker failure local and remote must however always be connected.

10.2.2.5 Control of the auto-reclosing open time

There are settings for the three-phase auto-reclosing open time, \(t_1 \) 3Ph to \(t_5 \) 3Ph.

10.2.2.6 Long trip signal

In normal circumstances the trip command resets quickly because of fault clearance. The user can set a maximum trip pulse duration \(t_{\text{Trip}} \). A long trip signal interrupts the reclosing sequence in the same way as a signal to input INHIBIT.

10.2.2.7 Maximum number of reclosing shots

The maximum number of reclosing shots in an auto-reclosing cycle is selected by the setting parameter \(\text{NoOfShots} \).

10.2.2.8 3-phase reclosing, one to five shots according to setting \(\text{NoOfShots} \).

A trip operation is made as a three-phase trip at all types of fault. The reclosing is as a three-phase. Here, the auto-reclosing function is assumed to be "On" and "Ready". The breaker is closed and the operation gear ready (operating energy stored). Input START is received and sealed-in. The output READY is reset (set to false). Output ACTIVE is set. The timer for 3-phase auto-reclosing open time is started.

While any of the auto-reclosing open time timers are running, the output INPROGR is activated. When the "open time" timer runs out, the respective internal signal is transmitted to the output module for further checks and to issue a closing command to the circuit breaker.
When issuing a CB closing command a “reclaim” timer $t_{Reclaim}$ is started. If no tripping takes place during that time the auto-reclosing function resets to the “Ready” state and the signal ACTIVE resets. If the first reclosing shot fails, 2nd to 5th reclosing shots will follow, if selected.

10.2.2.9 Reclosing reclaim timer

The reclaim timer $t_{Reclaim}$ defines the time it takes from issue of the reclosing command, until the reclosing function resets. Should a new trip occur during this time, it is treated as a continuation of the first fault. The reclaim timer is started when the CB closing command is given.

10.2.2.10 Transient fault

After the Reclosing command the reclaim timer keeps running for the set time. If no tripping occurs within this time, $t_{Reclaim}$, the Auto-Reclosing will reset. The CB remains closed and the operating gear recharges. The input signals CBPOS and CBREADY will be set.

10.2.2.11 Permanent fault and reclosing unsuccessful signal

If a new trip occurs, and a new input signal START or TRSOTF appears, after the CB closing command, the output UNSUCC (unsuccessful closing) is set high. The timer for the first shot can no longer be started. Depending on the set number of Reclosing shots further shots may be made or the Reclosing sequence is ended. After reclaim timer time-out the Auto-Reclosing function resets, but the CB remains open. The “CB closed” information through the input CBPOS is missing. Thus, the reclosing function is not ready for a new reclosing cycle.

Normally, the signal UNSUCC appears when a new trip and start is received after the last reclosing shot has been made and the auto-reclosing function is blocked. The signal resets after reclaim time. The “unsuccessful” signal can also be made to depend on CB position input. The parameter $UnsuccClByCBChk$ should then be set to CBCheck, and a timer $t_{UnsuccCl}$ should be set too. If the CB does not respond to the closing command and does not close, but remains open, the output UNSUCC is set high after time $t_{UnsuccCl}$. The Unsuccessful output can for example, be used in Multi-Breaker arrangement to cancel the auto-reclosing function for the second breaker, if the first breaker closed onto a persistent fault. It can also be used to generate a Lock-out of manual closing until the operator has reset the Lock-out, see separate section.

10.2.2.12 Lock-out initiation

In many cases there is a requirement that a Lock-out is generated when the auto-reclosing attempt fails. This is done with logic connected to the in- and outputs of the Autoreclose function and connected to Binary IO as required. Many alternative ways of performing the logic exist depending on whether manual closing is interlocked in the IED, whether an external physical Lock-out relay exists and whether the reset is
hardwired, or carried out by means of communication. There are also different
alternatives regarding what shall generate Lock-out. Examples of questions are:

- Shall back-up time delayed trip give Lock-out (normally yes)
- Shall Lock-out be generated when closing onto a fault (mostly)
- Shall Lock-out be generated when the Auto-Reclouser was OFF at the fault
- Shall Lock-out be generated if the Breaker did not have sufficient operating
 power for an auto-reclosing sequence (normally not as no closing attempt has
 been given)

In figures 77 and 78 the logic shows how a closing Lock-out logic can be designed
with the Lock-out relay as an external relay alternatively with the Lock-out created
internally with the manual closing going through the Synchro-check function. An
example of Lock-out logic.

![Diagram of Lock-out logic]

Figure 77: Lock-out arranged with an external Lock-out relay
10.2.2.13 Automatic continuation of the reclosing sequence

SMBRREC function can be programmed to proceed to the following reclosing shots (if multiple shots are selected) even if start signals are not received from the protection functions, but the breaker is still not closed. This is done by setting parameter AutoCont = On and tAutoContWait to the required delay for the function to proceed without a new start.

10.2.2.14 Thermal overload protection holding the auto-reclosing function back

If the input THOLHOLD (thermal overload protection holding reclosing back) is activated, it will keep the reclosing function on a hold until it is reset. There may thus be a considerable delay between start of Auto-Reclosing and reclosing command to the circuit-breaker. An external logic limiting the time and sending an inhibit to the INHIBIT input can be used. The input can also be used to set the Auto-Reclosing on hold for a longer or shorter period.

10.2.3 Setting guidelines

10.2.3.1 Configuration

Use the PCM600 configuration tool to configure signals.

Autorecloser function parameters are set via the local HMI or Parameter Setting Tool (PST). Parameter Setting Tool is a part of PCM600.
Recommendations for input signals

Please see examples in figure 79.

ON and OFF

These inputs can be connected to binary inputs or to a communication interface block for external control.

START

It should be connected to the trip output protection function, which starts the autorecloser for 3-phase operation (SMBRREC) function. It can also be connected to a binary input for start from an external contact. A logical OR-gate can be used to combine the number of start sources.

If StartByCBOpen is used, the CB Open condition shall also be connected to the input START.

INHIBIT

To this input shall be connected signals that interrupt a reclosing cycle or prevent a start from being accepted. Such signals can come from protection for a line connected shunt reactor, from transfer trip receive, from back-up protection functions, busbar protection trip or from breaker failure protection. When the CB open position is set to start SMBRREC, then manual opening must also be connected here. The inhibit is often a combination of signals from external IEDs via the IO and internal functions. An OR gate is then used for the combination.

CBPOS and CBREADY

These should be connected to binary inputs to pick-up information from the CB. The CBPOS input is interpreted as CB Closed, if parameter CBAuxContType is set NormOpen, which is the default setting. At three operating gears in the breaker (single pole operated breakers) the connection should be “All poles closed” (series connection of the NO contacts) or “At least one pole open” (parallel connection of NC contacts) if the CBAuxContType is set to NormClosed. The “CB Ready” is a signal meaning that the CB is ready for a reclosing operation, either Close-Open (CO), or Open-Close-Open (OCO). If the available signal is of type “CB not charged” or “not ready”, an inverter can be inserted in front of the CBREADY input.

SYNC

This is connected to the internal synchrocheck function when required. It can also be connected to a binary input for synchronization from an external device. If neither internal nor external synchronism or energizing check is required, it can be connected to a permanently high source, TRUE. The signal is required for three phase shots 1-5 to proceed.
TRSOTF
This is the signal “Trip by Switch Onto Fault”. It is usually connected to the “switch onto fault” output of line protection if multi-shot Auto-Reclose attempts are used. The input will start the shots 2-5. For single shot applications the input is set to FALSE.

THOLHOLD
Signal “Thermal overload protection holding back Auto-Reclosing”. It is normally set to FALSE. It can be connected to a thermal overload protection trip signal which resets only when the thermal content has gone down to an acceptable level, for example, 70%. As long as the signal is high, indicating that the line is hot, the Auto-Reclosing is held back. When the signal resets, a reclosing cycle will continue. Please observe that this have a considerable delay. Input can also be used for other purposes if for some reason the Auto-Reclose shot is halted.

WAIT
Used to hold back reclosing of the “low priority unit” during sequential reclosing. See “Recommendation for multi-breaker arrangement” below. The signal is activated from output WFMASTER on the second breaker Auto-Recloser in multi-breaker arrangements.

BLKON
Used to block the autorecloser for 3-phase operation (SMBRREC) function for example, when certain special service conditions arise. Input is normally set to FALSE. When used, blocking must be reset with BLOCKOFF.

BLOCKOFF
Used to Unblock SMBRREC function when it has gone to Block due to activating input BLKON or by an unsuccessful Auto-Reclose attempt if the setting BlockByUnsucCl is set to On. Input is normally set to FALSE.

RESET
Used to Reset SMBRREC to start condition. Possible Thermal overload Hold will be reset. Positions, setting On-Off. will be started and checked with set times. Input is normally set to FALSE.

Recommendations for output signals
Please see figure 79.

SETON
Indicates that Autorecloser for 3-phase operation (SMBRREC) function is switched on and operative.

BLOCKED
Indicates that SMRREC function is temporarily or permanently blocked.
ACTIVE
Indicates that SMBRREC is active, from start until end of Reclaim time.

INPROGR
Indicates that a sequence is in progress, from start until reclosing command.

UNSUCCCL
Indicates unsuccessful reclosing.

CLOSECB
Connect to a binary output for circuit-breaker closing command.

READY
Indicates that SMBRREC function is ready for a new and complete reclosing sequence. It can be connected to the zone extension of a line protection should extended zone reach before automatic reclosing be necessary.

3PT1,-3PT2,-3PT3,-3PT4 and -3PT5
Indicates that three-phase automatic reclosing shots 1-5 are in progress. The signals can be used as an indication of progress or for own logic.

WFMASTER
Wait from master is used in high priority units to hold back reclosing of the low priority unit during sequential reclosing.

Other outputs
The other outputs can be connected for indication, disturbance recording, as required.
10.2.3.2 Auto-recloser parameter settings

Operation

The operation of the Autorecloser for 3-phase operation (SMBRREC) function can be switched On and Off. The setting External ctrl makes it possible to switch it On or Off using an external switch via IO or communication ports.

NoOfShots, Number of reclosing shots

In sub-transmission 1 shot is mostly used. In most cases one reclosing shot is sufficient as the majority of arcing faults will cease after the first reclosing shot. In power systems with many other types of faults caused by other phenomena, for example wind, a greater number of reclose attempts (shots) can be motivated.

Auto-reclosing open times, dead times

Three-phase shot 1 delay: For three-phase High-Speed Auto-Reclosing (HSAR) a typical open time is 400ms. Different local phenomena, such as moisture, salt,
pollution etc. can influence the required dead time. Some users apply Delayed Auto-
Reclosing (DAR) with delays of 10s or more. The delay of reclosing shot 2 and
possible later shots are usually set at 30s or more. A check that the CB duty cycle can
manage the selected setting must be done. The setting can in some cases be restricted
by national regulations. For multiple shots the setting of shots 2-5 must be longer than
the circuit breaker duty cycle time.

\textit{tSync}, Maximum wait time for synchronization
check

The time window should be coordinated with the operate time and other settings of the
synchronization check function. Attention should also be paid to the possibility of a
power swing when reclosing after a line fault. Too short a time may prevent a
potentially successful reclosing.

A typical setting may be 2.0 s. In cases where synchronization is used together with
auto-recloser the time must be set to 100-600s to allow operation at minimum
frequency difference.

\textit{tTrip}, Long trip pulse

Usually the trip command and start auto-reclosing signal reset quickly as the fault is
cleared. A prolonged trip command may depend on a CB failing to clear the fault. A
trip signal present when the CB is reclosed will result in a new trip. At a setting
somewhat longer than the auto-reclosing open time, this facility will not influence the
reclosing. A typical setting of \textit{tTrip} could be close to the auto-reclosing open time.

\textit{tInhibit}, Inhibit resetting delay

A typical setting is \textit{tInhibit} = 5.0 s to ensure reliable interruption and temporary
blocking of the function. Function will be blocked during this time after the \textit{tInhibit}
has been activated.

\textit{tReclaim}, Reclaim time

The Reclaim time sets the time for resetting the function to its original state, after
which a line fault and tripping will be treated as an independent new case with a new
reclosing cycle. One may consider a nominal CB duty cycle of for instance, O-0.3sec
CO- 3 min. – CO. However the 3 minute (180 s) recovery time is usually not critical
as fault levels are mostly lower than rated value and the risk of a new fault within a
short time is negligible. A typical time may be \textit{tReclaim} = 60 or 180 s dependent of
the fault level and breaker duty cycle.

\textit{StartByCBOpen}

The normal setting is \textit{Off}. It is used when the function is started by protection trip
signals.

\textit{FollowCB}

The usual setting is \textit{Follow CB} = \textit{Off}. The setting \textit{On} can be used for delayed reclosing
with long delay, to cover the case when a CB is being manually closed during the
“auto-reclosing open time” before the auto-reclosing function has issued its CB
closing command.
tCBClosedMin
A typical setting is 5.0 s. If the CB has not been closed for at least this minimum time, a reclosing start will not be accepted.

CBAuxContType, CB auxiliary contact type
It shall be set to correspond to the CB auxiliary contact used. A NormOpen contact is recommended in order to generate a positive signal when the CB is in the closed position.

CBReadyType, Type of CB ready signal connected
The selection depends on the type of performance available from the CB operating gear. At setting OCO (CB ready for an Open – Close – Open cycle), the condition is checked only at the start of the reclosing cycle. The signal will disappear after tripping, but the CB will still be able to perform the C-O sequence. For the selection CO (CB ready for a Close – Open cycle) the condition is also checked after the set auto-reclosing dead time. This selection has a value first of all at multi-shot reclosing to ensure that the CB is ready for a C-O sequence at shot 2 and further shots. During single-shot reclosing, the OCO selection can be used. A breaker shall according to its duty cycle always have storing energy for a CO operation after the first trip. (IEC 56 duty cycle is O-0.3sec CO-3minCO).

tPulse, Breaker closing command pulse duration
The pulse should be long enough to ensure reliable operation of the CB. A typical setting may be \(t_{Pulse} = 200 \text{ ms} \). A longer pulse setting may facilitate dynamic indication at testing, for example in “Debug” mode of PCM600 Application Configuration Tool (ACT).

BlockByUnsucCl
Setting of whether an unsuccessful auto-reclose attempt shall set the Auto-Reclose in block. If used the inputs BLKOFF must be configured to unblock the function after an unsuccessful Reclosing attempt. Normal setting is Off.

UnsucClByCBCheck, Unsuccessful closing by CB check
The normal setting is NoCBCheck. The “auto-reclosing unsuccessful” event is then decided by a new trip within the reclaim time after the last reclosing shot. If one wants to get the UNSUCCL (Unsuccessful closing) signal in the case the CB does not respond to the closing command, CLOSECB, one can set UnsucClByCBCheck= CB Check and set \(t_{UnsucCl} \) for instance to 1.0 s.

Priority and time tWaitForMaster
In single CB applications, one sets Priority = None. At sequential reclosing the function of the first CB, e.g. near the busbar, is set Priority = High and for the second CB Priority = Low. The maximum waiting time, \(t_{WaitForMaster} \) of the second CB is set longer than the “auto-reclosing open time” and a margin for synchrocheck at the first CB. Typical setting is \(t_{WaitForMaster}=2sec \) at the energizing side and perhaps 15 or 300 seconds at the synchrocheck, synchronizing side.
AutoCont and tAutoContWait, Automatic continuation to the next shot if the CB is not closed within the set time

The normal setting is AutoCont = Off. The tAutoContWait is the length of time SMBRREC waits to see if the breaker is closed when AutoCont is set to On. Normally, the setting can be tAutoContWait = 2 sec.

10.3 Apparatus control

10.3.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch controller</td>
<td>SCSWI</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Circuit breaker</td>
<td>SXCBR</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Circuit switch</td>
<td>SXSWI</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Position evaluation</td>
<td>POS_EVAL</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Select release</td>
<td>SELGGIO</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bay control</td>
<td>QCBAY</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Local remote</td>
<td>LOCREM</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Local remote control</td>
<td>LOCREMCTRL</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

10.3.2 Application

The apparatus control is a function for control and supervising of circuit breakers, disconnectors, and earthing switches within a bay. Permission to operate is given after evaluation of conditions from other functions such as interlocking, synchrocheck, operator place selection and external or internal blockings.

Figure 80 gives an overview from what places the apparatus control function receive commands. Commands to an apparatus can be initiated from the Control Centre (CC), the station HMI or the local HMI on the IED front.
Figure 80: Overview of the apparatus control functions

Features in the apparatus control function:

- Operation of primary apparatuses
- Select-Execute principle to give high security
- Selection function to prevent simultaneous operation
- Selection and supervision of operator place
- Command supervision
- Block/deblock of operation
- Block/deblock of updating of position indications
- Substitution of position indications
- Overriding of interlocking functions
- Overriding of synchrocheck
- Operation counter
- Suppression of Mid position

The apparatus control function is realized by means of a number of function blocks designated:

- Switch controller SCSWI
- Circuit breaker SXCBR
- Circuit switch SXSWI
- Position evaluation POS_EVAL
- Select release SELGGIO
• Bay control QCBAY
• Local remote LOCREM
• Local remote control LOCREMCTRL

SCSWI, SXCBR, QCBAY and SXSWI are logical nodes according to IEC 61850. The signal flow between these function blocks appears in figure 81. The function Logical node Interlocking (SCILO) in the figure 81 is the logical node for interlocking.

Control operation can be performed from the local IED HMI. If the administrator has defined users with the UMT tool, then the local/remote switch is under authority control. If not, the default (factory) user is the SuperUser that can perform control operations from the local IED HMI without LogOn. The default position of the local/remote switch is on remote.

The IEC 61850 communication has always priority over binary inputs, e.g. a block command on binary inputs will not prevent commands over IEC 61850.
Accepted originator categories for PSTO

If the requested command is accepted due to the authority allocation control, the respective value will change. Otherwise the attribute blocked-by-switching-hierarchy is set in the cause signal. If the PSTO value is changed under a command, then the command is reset.

The accepted originator categories for each PSTO value are shown in Table 15

<table>
<thead>
<tr>
<th>PermitToOperate</th>
<th>Originator</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = Off</td>
<td>4,5,6</td>
</tr>
<tr>
<td>1 = Local</td>
<td>1,4,5,6</td>
</tr>
<tr>
<td>2 = Remote</td>
<td>2,3,4,5,6</td>
</tr>
<tr>
<td>3 = Faulty</td>
<td>4,5,6</td>
</tr>
<tr>
<td>4 = Not in use</td>
<td>1,2,3,4,5,6</td>
</tr>
<tr>
<td>5 = All</td>
<td></td>
</tr>
</tbody>
</table>

PSTO = All, then it is no priority between operator places. All operator places are allowed to operate at the same time.

According to IEC61850 standard the orCat attribute in originator category are defined in Table 16

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>not-supported</td>
</tr>
<tr>
<td>1</td>
<td>bay-control</td>
</tr>
<tr>
<td>2</td>
<td>station-control</td>
</tr>
<tr>
<td>3</td>
<td>remote-control</td>
</tr>
<tr>
<td>4</td>
<td>automatic-bay</td>
</tr>
<tr>
<td>5</td>
<td>automatic-station</td>
</tr>
<tr>
<td>6</td>
<td>automatic-remote</td>
</tr>
<tr>
<td>7</td>
<td>maintenance</td>
</tr>
<tr>
<td>8</td>
<td>process</td>
</tr>
</tbody>
</table>

Switch controller (SCSWI)

The Switch controller (SCSWI) initializes and supervises all functions to properly select and operate switching primary apparatuses. The Switch controller may handle and operate on one three-phase device.

After the selection of an apparatus and before the execution, the switch controller performs the following checks and actions:
• A request initiates to reserve other bays to prevent simultaneous operation.
• Actual position inputs for interlocking information are read and evaluated if the operation is permitted.
• The synchrocheck/synchronizing conditions are read and checked, and performs operation upon positive response.
• The blocking conditions are evaluated
• The position indications are evaluated according to given command and its requested direction (open or closed).

The command sequence is supervised regarding the time between:
• Select and execute.
• Select and until the reservation is granted.
• Execute and the final end position of the apparatus.
• Execute and valid close conditions from the synchrocheck.

At error the command sequence is cancelled.

The mid position of apparatuses can be suppressed at SCSWI by setting the Intermediate at (SXCBR/SXSWI) to an appropriate value.

The switch controller is not dependent on the type of switching device SXCBR or SXSWI. The switch controller represents the content of the SCSWI logical node (according to IEC 61850) with mandatory functionality.

Switch (SXCBR/SXSWI)

The Switch is a function used to close and interrupt an ac power circuit under normal conditions, or to interrupt the circuit under fault, or emergency conditions. The intention with this function is to represent the lowest level of a power-switching device with or without short circuit breaking capability, for example, circuit breakers, disconnectors, earthing switches etc.

The purpose of this function is to provide the actual status of positions and to perform the control operations, that is, pass all the commands to the primary apparatus via output boards and to supervise the switching operation and position.

The Switch has this functionality:
• Local/Remote switch intended for the switchyard
• Block/deblock for open/close command respectively
• Update block/deblock of position indication
• Substitution of position indication
• Supervision timer that the primary device starts moving after a command
• Supervision of allowed time for intermediate position
• Definition of pulse duration for open/close command respectively

The realization of this function is performed with SXCBR representing a circuit breaker and with SXSWI representing a circuit switch that is, a disconnector or an earthing switch.
The content of this function is represented by the IEC 61850 definitions for the logical nodes Circuit breaker (SXCBR) and Circuit switch (SXSWI) with mandatory functionality.

Reservation function (SELGGIO)

The purpose of the reservation function is to grant permission to operate only one device at a time in a group, like a bay or a station, thereby preventing double operation.

For interlocking evaluation in a substation, the position information from switching devices, such as circuit breakers, disconnectors and earthing switches can be required from the same bay or from several other bays. When information is needed from other bays, it is exchanged over the serial station bus between the distributed IEDs. The problem that arises, even at a high speed of communication, is a time interval during which the information about the position of the switching devices are uncertain. The interlocking function uses this information for evaluation, which means that also the interlocking conditions will be uncertain.

To ensure that the interlocking information is correct at the time of operation, a reservation method is available in the IEDs. With this reservation method the reserved signal can be used for evaluation of permission to select and operate the apparatus.

This functionality is realized over the station bus by means of the function block SELGGIO.

The SELECTED output signal from the respective SCSWI function block in the own bay is connected to the inputs of the SELGGIO function block. The output signal RESERVED from SELGGIO is connected to the input RES_EXT of the SCSWI function block. If the bay is not currently reserved, the SELGGIO output signal RESERVED is FALSE. Selection for operation on the SCSWI block is now possible. Once any SCSWI block is selected, and if its output SELECTED is connected to the SELGGIO block, then other SCSWI functions as configured are blocked for selection. The RESERVED signal from SELGGIO is also sent to other bay devices.

Due to the design of the plant, some apparatus might need reservation of the own bay as well as reservations from other bays. Received reservation from other bays are handled by a logical OR together with own bay reservation from the SELGGIO function block that checks whether the own bay is currently reserved.
Figure 82: Reservations from own and other bays

The reservation can also be realized with external wiring according to the application example in figure 83. This solution is realized with external auxiliary relays and extra binary inputs and outputs in each IED.

Figure 83: Application principles for reservation with external wiring

The solution in figure 83 can also be realized over the station bus according to the application example in figure 84.
Bay control (QCBAY)

The Bay control (QCBAY) is used to handle the selection of the operator place for the bay. The function gives permission to operate from two types of locations either from Remote (for example, control centre or station HMI) or from Local (local HMI on the IED) or from all (Local and Remote). The Local/Remote switch position can also be set to Off, which means no operator place selected that is, operation is not possible neither from local nor from remote.

QCBAY also provides blocking functions that can be distributed to different apparatuses within the bay. There are two different blocking alternatives:

- Blocking of update of positions
- Blocking of commands

The function does not have a corresponding functionality defined in the IEC 61850 standard, which means that this function is included as a vendor specific logical node.
10.3.3 Interaction between modules

A typical bay with apparatus control function consists of a combination of logical nodes or functions that are described here:

- The Switch controller (SCSWI) initializes all operations for one apparatus and performs the actual switching and is more or less the interface to the drive of one apparatus. It includes the position handling as well as the control of the position.
- The Circuit breaker (SXCBR) is the process interface to the circuit breaker for the apparatus control function.
- The Circuit switch (SXSWI) is the process interface to the disconnector or the earthing switch for the apparatus control function.
- The Bay control (QCBAY) fulfils the bay-level functions for the apparatuses, such as operator place selection and blockings for the complete bay.
- The function (SELGGIO), deals with reservation of the bay.
- The Four step overcurrent protection (OC4PTOC) trips the breaker.
- The Protection trip logic (SMPPTRC) connects the "trip" outputs of one or more protection functions to a common "trip" to be transmitted to SXCBR.
• The Autorecloser (SMBRREC) consists of the facilities to automatically close a tripped breaker with respect to a number of configurable conditions.

• The logical node Interlocking (SCILO) provides the information to SCSWI whether it is permitted to operate due to the switchyard topology. The interlocking conditions are evaluated with separate logic and connected to SCILO.

• The Synchrocheck, energizing check, and synchronizing (SESRSYN) calculates and compares the voltage phasor difference from both sides of an open breaker with predefined switching conditions (synchrocheck). Also the case that one side is dead (energizing-check) is included.

• The logical node Generic Automatic Process Control, GAPC, is an automatic function that reduces the interaction between the operator and the system. With one command, the operator can start a sequence that will end with a connection of a process object (for example a line) to one of the possible busbars.

The overview of the interaction between these functions is shown in figure 86 below.
Figure 86: Example overview of the interactions between functions in a typical bay

10.3.4 Setting guidelines

The setting parameters for the apparatus control function are set via the local HMI or PCM600.
10.3.4.1 Switch controller (SCSWI)

The parameter CtlModel specifies the type of control model according to IEC 61850. For normal control of circuit breakers, disconnectors and earthing switches the control model is set to SBO Enh (Select-Before-Operate) with enhanced security.

When the operation shall be performed in one step, the model direct control with normal security is used.

At control with enhanced security there is an additional supervision of the status value by the control object, which means that each command sequence must be terminated by a termination command.

The parameter PosDependent gives permission to operate depending on the position indication, that is, at Always permitted it is always permitted to operate independent of the value of the position. At Not perm at 00/11 it is not permitted to operate if the position is in bad or intermediate state.

tSelect is the maximum time between the select and the execute command signal, that is, the time the operator has to perform the command execution after the selection of the object to operate. When the time has expired, the selected output signal is set to false and a cause-code is given over IEC 61850.

tSynchrocheck is the allowed time for the synchrocheck function to fulfill the close conditions. When the time has expired, the control function is reset.

The timer tSynchronizing supervises that the signal synchronizing in progress is obtained in SCSWI after start of the synchronizing function. The start signal for the synchronizing is obtained if the synchrocheck conditions are not fulfilled. When the time has expired, the control function is reset. If no synchronizing function is included, the time is set to 0, which means no start of the synchronizing function.

tExecutionFB is the maximum time between the execute command signal and the command termination. When the time has expired, the control function is reset.

10.3.4.2 Switch (SXCBR/SXSWI)

tStartMove is the supervision time for the apparatus to start moving after a command execution. When the time has expired, the switch function is reset.

During the tIntermediate time the position indication is allowed to be in an intermediate (00) state. When the time has expired, the switch function is reset. The indication of the mid-position at SCSWI is suppressed during this time period when the position changes from open to close or vice-versa.

If the parameter AdaptivePulse is set to Adaptive the command output pulse resets when a new correct end position is reached. If the parameter is set to Not adaptive the command output pulse remains active until the timer tOpenPulsetClosePulse has elapsed.
tOpenPulse is the output pulse length for an open command. The default length is set to 200 ms for a circuit breaker (SXCBR) and 200 ms for a disconnector or earthing switch (SXSWI).

tClosePulse is the output pulse length for a close command. The default length is set to 200 ms for a circuit breaker (SXCBR) and 200 ms for a disconnector or earthing switch (SXSWI).

SuppressMidPos when *On* will suppress the mid-position during the time **tIntermediate**.

SwitchType is an enumeration according to IEC 61850-7-4 to indicate the switch type assigned to SXSWI

10.3.4.3 **Bay control (QCBAY)**

If the parameter **AllPSTOValid** is set to *No priority*, all originators from local and remote are accepted without any priority.

10.4 **Interlocking**

10.4.1 **Identification**

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logical node for interlocking</td>
<td>SCILO</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Interlocking for busbar earthing switch</td>
<td>BB_ES</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Interlocking for bus-section breaker</td>
<td>A1A2_BS</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Interlocking for bus-section disconnector</td>
<td>A1A2_DC</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Interlocking for bus-coupler bay</td>
<td>ABC_BC</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Interlocking for 1 1/2 breaker diameter</td>
<td>BH_CONN</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Interlocking for 1 1/2 breaker diameter</td>
<td>BH_LINE_A</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Interlocking for 1 1/2 breaker diameter</td>
<td>BH_LINE_B</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Interlocking for double CB bay</td>
<td>DB_BUS_A</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Interlocking for double CB bay</td>
<td>DB_BUS_B</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Interlocking for double CB bay</td>
<td>DB_LINE</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Interlocking for line bay</td>
<td>ABC_LINE</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Interlocking for transformer bay</td>
<td>AB_TRAFO</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

10.4.2 **Application**

The main purpose of switchgear interlocking is:
• To avoid the dangerous or damaging operation of switchgear
• To enforce restrictions on the operation of the substation for other reasons for example, load configuration. Examples of the latter are to limit the number of parallel transformers to a maximum of two or to ensure that energizing is always from one side, for example, the high voltage side of a transformer.

This section only deals with the first point, and only with restrictions caused by switching devices other than the one to be controlled. This means that switch interlock, because of device alarms, is not included in this section.

Disconectors and earthing switches have a limited switching capacity. Disconectors may therefore only operate:

• With basically zero current. The circuit is open on one side and has a small extension. The capacitive current is small (for example, < 5A) and power transformers with inrush current are not allowed.
• To connect or disconnect a parallel circuit carrying load current. The switching voltage across the open contacts is thus virtually zero, thanks to the parallel circuit (for example, < 1% of rated voltage). Paralleling of power transformers is not allowed.

Earthing switches are allowed to connect and disconnect earthing of isolated points. Due to capacitive or inductive coupling there may be some voltage (for example < 40% of rated voltage) before earthing and some current (for example < 100A) after earthing of a line.

Circuit breakers are usually not interlocked. Closing is only interlocked against running disconnectors in the same bay, and the bus-coupler opening is interlocked during a busbar transfer.

The positions of all switching devices in a bay and from some other bays determine the conditions for operational interlocking. Conditions from other stations are usually not available. Therefore, a line earthing switch is usually not fully interlocked. The operator must be convinced that the line is not energized from the other side before closing the earthing switch. As an option, a voltage indication can be used for interlocking. Take care to avoid a dangerous enable condition at the loss of a VT secondary voltage, for example, because of a blown fuse.

The switch positions used by the operational interlocking logic are obtained from auxiliary contacts or position sensors. For each end position (open or closed) a true indication is needed - thus forming a double indication. The apparatus control function continuously checks its consistency. If neither condition is high (1 or TRUE), the switch may be in an intermediate position, for example, moving. This dynamic state may continue for some time, which in the case of disconnectors may be up to 10 seconds. Should both indications stay low for a longer period, the position indication will be interpreted as unknown. If both indications stay high, something is wrong, and the state is again treated as unknown.
In both cases an alarm is sent to the operator. Indications from position sensors shall be self-checked and system faults indicated by a fault signal. In the interlocking logic, the signals are used to avoid dangerous enable or release conditions. When the switching state of a switching device cannot be determined operation is not permitted.

10.4.3 Configuration guidelines

The following sections describe how the interlocking for a certain switchgear configuration can be realized in the IED by using standard interlocking modules and their interconnections. They also describe the configuration settings. The inputs for delivery specific conditions (Qx_EXy) are set to 1=TRUE if they are not used, except in the following cases:

- QB9_EX2 and QB9_EX4 in modules BH_LINE_A and BH_LINE_B
- QA1_EX3 in module AB_TRAFO

when they are set to 0=FALSE.

10.4.4 Interlocking for busbar earthing switch BB_ES

10.4.4.1 Application

The interlocking for busbar earthing switch (BB_ES) function is used for one busbar earthing switch on any busbar parts according to figure 87.

![Switchyard layout BB_ES](en04000504 enumerate)

Figure 87: Switchyard layout BB_ES

The signals from other bays connected to the module BB_ES are described below.

10.4.4.2 Signals in single breaker arrangement

The busbar earthing switch is only allowed to operate if all disconnectors of the bussection are open.
Figure 88: Busbars divided by bus-section disconnectors (circuit breakers)

The interlocking functionality in 650 series cannot handle the transfer bus (WA7)C.

To derive the signals:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB_DC_OP</td>
<td>All disconnectors on this part of the busbar are open.</td>
</tr>
<tr>
<td>VP_BB_DC</td>
<td>The switch status of all disconnectors on this part of the busbar is valid.</td>
</tr>
<tr>
<td>EXDU_BB</td>
<td>No transmission error from any bay containing the above information.</td>
</tr>
</tbody>
</table>

These signals from each line bay (ABC_LINE), each transformer bay (AB_TRAFO), and each bus-coupler bay (ABC_BC) are needed:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QB1OPTR</td>
<td>QB1 is open.</td>
</tr>
<tr>
<td>QB2OPTR</td>
<td>QB2 is open (AB_TRAFO, ABC_LINE)</td>
</tr>
<tr>
<td>QB220OPTR</td>
<td>QB2 and QB20 are open (ABC_BC)</td>
</tr>
<tr>
<td>QB7OPTR</td>
<td>QB7 is open.</td>
</tr>
<tr>
<td>VPQB1TR</td>
<td>The switch status of QB1 is valid.</td>
</tr>
<tr>
<td>VPQB2TR</td>
<td>The switch status of QB2 is valid.</td>
</tr>
<tr>
<td>VQB220TR</td>
<td>The switch status of QB2 and QB20 is valid.</td>
</tr>
<tr>
<td>VPQB7TR</td>
<td>The switch status of QB7 is valid.</td>
</tr>
<tr>
<td>EXDU_BB</td>
<td>No transmission error from the bay that contains the above information.</td>
</tr>
</tbody>
</table>

These signals from each bus-section disconnector bay (A1A2_DC) are also needed. For B1B2_DC, corresponding signals from busbar B are used. The same type of module (A1A2_DC) is used for different busbars, that is, for both bus-section disconnectors A1A2_DC and B1B2_DC.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCOPTR</td>
<td>The bus-section disconnector is open.</td>
</tr>
<tr>
<td>VPDCTR</td>
<td>The switch status of bus-section disconnector DC is valid.</td>
</tr>
<tr>
<td>EXDU_DC</td>
<td>No transmission error from the bay that contains the above information.</td>
</tr>
</tbody>
</table>
If no bus-section disconnector exists, the signal DCOPTR, VPDCTR and EXDU_DC are set to 1 (TRUE).

If the busbar is divided by bus-section circuit breakers, the signals from the bus-section coupler bay (A1A2_BS) rather than the bus-section disconnector bay (A1A2_DC) must be used. For B1B2_BS, corresponding signals from busbar B are used. The same type of module (A1A2_BS) is used for different busbars, that is, for both bus-section circuit breakers A1A2_BS and B1B2_BS.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QB1OPTR</td>
<td>QB1 is open.</td>
</tr>
<tr>
<td>QB2OPTR</td>
<td>QB2 is open.</td>
</tr>
<tr>
<td>VPQB1TR</td>
<td>The switch status of QB1 is valid.</td>
</tr>
<tr>
<td>VPQB2TR</td>
<td>The switch status of QB2 is valid.</td>
</tr>
<tr>
<td>EXDU_BS</td>
<td>No transmission error from the bay BS (bus-section coupler bay) that contains the above information.</td>
</tr>
</tbody>
</table>

For a busbar earthing switch, these conditions from the A1 busbar section are valid:

```
QB1OPTR (bay 1/sect.A1) & BB_DC_OP
...
QB1OPTR (bay n/sect.A1)
DCOPTR (A1/A2)
...
VPQB1TR (bay 1/sect.A1) & VP_BB_DC
...
VPQB1TR (bay n/sect.A1)
VPDCTR (A1/A2)
...
EXDU_BB (bay 1/sect.A1) & EXDU_BB
...
EXDU_BB (bay n/sect.A1)
EXDU_DC (A1/A2)
```

Figure 89: Signals from any bays in section A1 to a busbar earthing switch in the same section

For a busbar earthing switch, these conditions from the A2 busbar section are valid:
Figure 90: **Signals from any bays in section A2 to a busbar earthing switch in the same section**

For a busbar earthing switch, these conditions from the B1 busbar section are valid:

Figure 91: **Signals from any bays in section B1 to a busbar earthing switch in the same section**

For a busbar earthing switch, these conditions from the B2 busbar section are valid:
10.4.4.3 Signals in double-breaker arrangement

The busbar earthing switch is only allowed to operate if all disconnectors of the bus section are open.
Figure 94: Busbars divided by bus-section disconnectors (circuit breakers)

To derive the signals:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB_DC.OP</td>
<td>All disconnectors of this part of the busbar are open.</td>
</tr>
<tr>
<td>VP_BB_DC</td>
<td>The switch status of all disconnectors on this part of the busbar are valid.</td>
</tr>
<tr>
<td>EXDU_BB</td>
<td>No transmission error from any bay that contains the above information.</td>
</tr>
</tbody>
</table>

These signals from each double-breaker bay (DB_BUS) are needed:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QB1OPTR</td>
<td>QB1 is open.</td>
</tr>
<tr>
<td>QB2OPTR</td>
<td>QB2 is open.</td>
</tr>
<tr>
<td>VPQB1TR</td>
<td>The switch status of QB1 is valid.</td>
</tr>
<tr>
<td>VPQB2TR</td>
<td>The switch status of QB2 is valid.</td>
</tr>
<tr>
<td>EXDU_DB</td>
<td>No transmission error from the bay that contains the above information.</td>
</tr>
</tbody>
</table>

These signals from each bus-section disconnector bay (A1A2_DC) are also needed. For B1B2_DC, corresponding signals from busbar B are used. The same type of module (A1A2_DC) is used for different busbars, that is, for both bus-section disconnectors A1A2_DC and B1B2_DC.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCOPTR</td>
<td>The bus-section disconnector is open.</td>
</tr>
<tr>
<td>VPDCTR</td>
<td>The switch status of bus-section disconnector DC is valid.</td>
</tr>
<tr>
<td>EXDU_DC</td>
<td>No transmission error from the bay that contains the above information.</td>
</tr>
</tbody>
</table>

The logic is identical to the double busbar configuration described in section “Signals in single breaker arrangement”.

10.4.4.4 Signals in 1 1/2 breaker arrangement

The busbar earthing switch is only allowed to operate if all disconnectors of the bus-section are open.
10.4.5 Interlocking for bus-section breaker A1A2_BS

10.4.5.1 Application

The interlocking for bus-section breaker (A1A2_BS) function is used for one bus-section circuit breaker between section 1 and 2 according to figure 96. The function can be used for different busbars, which includes a bus-section circuit breaker.

Figure 95: Busbars divided by bus-section disconnectors (circuit breakers)

The project-specific logic are the same as for the logic for the double busbar configuration described in section “Signals in single breaker arrangement”.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB_DC_OP</td>
<td>All disconnectors on this part of the busbar are open.</td>
</tr>
<tr>
<td>VP_BB_DC</td>
<td>The switch status of all disconnectors on this part of the busbar is valid.</td>
</tr>
<tr>
<td>EXDU_BB</td>
<td>No transmission error from any bay that contains the above information.</td>
</tr>
</tbody>
</table>

Figure 96: Switchyard layout A1A2_BS

The signals from other bays connected to the module A1A2_BS are described below.
10.4.5.2 Signals from all feeders

If the busbar is divided by bus-section circuit breakers into bus-sections and both

circuit breakers are closed, the opening of the circuit breaker must be blocked if a bus-
coupler connection exists between busbars on one bus-section side and if on the other
bus-section side a busbar transfer is in progress:

![Diagram showing busbar connections and sections]

Figure 97: Busbars divided by bus-section circuit breakers

The interlocking functionality in 650 series can not handle the transfer
bus (WA7)C.

To derive the signals:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBTR_OP</td>
<td>No busbar transfer is in progress concerning this bus-section.</td>
</tr>
<tr>
<td>VP_BBTR</td>
<td>The switch status of BBTR is valid.</td>
</tr>
<tr>
<td>EXDU_12</td>
<td>No transmission error from any bay connected to busbar 1(A) and 2(B).</td>
</tr>
</tbody>
</table>

These signals from each line bay (ABC_LINE), each transformer bay (AB_TRAFO),
and bus-coupler bay (ABC_BC) are needed:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QB12OPT</td>
<td>QB1 or QB2 or both are open.</td>
</tr>
<tr>
<td>VPQB12TR</td>
<td>The switch status of QB1 and QB2 are valid.</td>
</tr>
<tr>
<td>EXDU_12</td>
<td>No transmission error from the bay that contains the above information.</td>
</tr>
</tbody>
</table>

These signals from each bus-coupler bay (ABC_BC) are needed:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC12OPT</td>
<td>No bus-coupler connection through the own bus-coupler between busbar WA1 and WA2.</td>
</tr>
<tr>
<td>VPBC12TR</td>
<td>The switch status of BC_12 is valid.</td>
</tr>
<tr>
<td>EXDU_BC</td>
<td>No transmission error from the bay that contains the above information.</td>
</tr>
</tbody>
</table>
These signals from the bus-section circuit breaker bay (A1A2_BS, B1B2_BS) are needed.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1S2OPTR</td>
<td>No bus-section coupler connection between bus-sections 1 and 2.</td>
</tr>
<tr>
<td>VPS1S2TR</td>
<td>The switch status of bus-section coupler BS is valid.</td>
</tr>
<tr>
<td>EXDU_BS</td>
<td>No transmission error from the bay that contains the above information.</td>
</tr>
</tbody>
</table>

For a bus-section circuit breaker between A1 and A2 section busbars, these conditions are valid:

Figure 98: Signals from any bays for a bus-section circuit breaker between sections A1 and A2
For a bus-section circuit breaker between B1 and B2 section busbars, these conditions are valid:

\[
\begin{align*}
S1S2OPTR (A1A2) & \geq 1 \\
BC12OPTR (sect.1) & \& BBTR_OP \\
QB12OPTR (bay 1/sect.2) & \& VP_BBTR \\
QB12OPTR (bay n/sect.2) & \\
QB12OPTR (bay 1/sect.1) & \& EXDU_12 \\
QB12OPTR (bay n/sect.1) & \\
VPS1S2TR (A1A2) & \& VP_BBTR \\
VPBC12TR (sect.1) & \\
VPQB12TR (bay 1/sect.2) & \\
VPQB12TR (bay n/sect.1) & \\
VPBC12TR (sect.2) & \\
VPQB12TR (bay 1/sect.1) & \\
VPQB12TR (bay n/sect.1) & \\
EXDU_BS (A1A2) & \& EXDU_12 \\
EXDU_BC (sect.1) & \\
EXDU_12 (bay 1/sect.2) & \\
EXDU_12 (bay n/sect.2) & \\
EXDU_BC (sect.2) & \\
EXDU_12 (bay 1/sect.1) & \\
EXDU_12 (bay n/sect.1) & \\
\end{align*}
\]

Figure 99: Signals from any bays for a bus-section circuit breaker between sections B1 and B2

10.4.5.3 Configuration setting

If there is no other busbar via the busbar loops that are possible, then either the interlocking for the QA1 open circuit breaker is not used or the state for BBTR is set to open. That is, no busbar transfer is in progress in this bus-section:

- BBTR_OP = 1
- VP_BBTR = 1
10.4.6 Interlocking for bus-section disconnector A1A2_DC

10.4.6.1 Application

The interlocking for bus-section disconnector (A1A2_DC) function is used for one bus-section disconnector between section 1 and 2 according to figure 100. A1A2_DC function can be used for different busbars, which includes a bus-section disconnector.

![Switchyard layout A1A2_DC](en04000492.vsd)

Figure 100: Switchyard layout A1A2_DC

The signals from other bays connected to the module A1A2_DC are described below.

10.4.6.2 Signals in single breaker arrangement

If the busbar is divided by bus-section disconnectors, the condition *no other disconnector connected to the bus-section* must be made by a project-specific logic.

The same type of module (A1A2_DC) is used for different busbars, that is, for both bus-section disconnector A1A2_DC and B1B2_DC. But for B1B2_DC, corresponding signals from busbar B are used.

![Busbars divided by bus-section disconnectors (circuit breakers)](en04000493.vsd)

Figure 101: Busbars divided by bus-section disconnectors (circuit breakers)

The interlocking functionality in 650 series can not handle the transfer bus (WA7)C.
To derive the signals:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1DC_OP</td>
<td>All disconnectors on bus-section 1 are open.</td>
</tr>
<tr>
<td>S2DC_OP</td>
<td>All disconnectors on bus-section 2 are open.</td>
</tr>
<tr>
<td>VPS1_DC</td>
<td>The switch status of disconnectors on bus-section 1 is valid.</td>
</tr>
<tr>
<td>VPS2_DC</td>
<td>The switch status of disconnectors on bus-section 2 is valid.</td>
</tr>
<tr>
<td>EXDU_BB</td>
<td>No transmission error from any bay that contains the above info.</td>
</tr>
</tbody>
</table>

These signals from each line bay (ABC_LINE), each transformer bay (AB_TRAFO), and each bus-coupler bay (ABC_BC) are needed:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QB1OPTR</td>
<td>QB1 is open.</td>
</tr>
<tr>
<td>QB2OPTR</td>
<td>QB2 is open (AB_TRAFO, ABC_LINE).</td>
</tr>
<tr>
<td>QB220TR</td>
<td>QB2 and QB20 are open (ABC_BC).</td>
</tr>
<tr>
<td>VPQB1TR</td>
<td>The switch status of QB1 is valid.</td>
</tr>
<tr>
<td>VPQB2TR</td>
<td>The switch status of QB2 is valid.</td>
</tr>
<tr>
<td>VQB220TR</td>
<td>The switch status of QB2 and QB20 are valid.</td>
</tr>
<tr>
<td>EXDU_BB</td>
<td>No transmission error from the bay that contains the above info.</td>
</tr>
</tbody>
</table>

If there is an additional bus-section disconnector, the signal from the bus-section disconnector bay (A1A2_DC) must be used:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCOPTR</td>
<td>The bus-section disconnector is open.</td>
</tr>
<tr>
<td>VPDCTR</td>
<td>The switch status of bus-section disconnector DC is valid.</td>
</tr>
<tr>
<td>EXDU_DC</td>
<td>No transmission error from the bay that contains the above info.</td>
</tr>
</tbody>
</table>

If there is an additional bus-section circuit breaker rather than an additional bus-section disconnector the signals from the bus-section, circuit-breaker bay (A1A2_BS) rather than the bus-section disconnector bay (A1A2_DC) must be used:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QB1OPTR</td>
<td>QB1 is open.</td>
</tr>
<tr>
<td>QB2OPTR</td>
<td>QB2 is open.</td>
</tr>
<tr>
<td>VPQB1TR</td>
<td>The switch status of QB1 is valid.</td>
</tr>
<tr>
<td>VPQB2TR</td>
<td>The switch status of QB2 is valid.</td>
</tr>
<tr>
<td>EXDU_BS</td>
<td>No transmission error from the bay BS (bus-section coupler bay) that contains the above info.</td>
</tr>
</tbody>
</table>

For a bus-section disconnector, these conditions from the A1 busbar section are valid:
Figure 102: Signals from any bays in section A1 to a bus-section disconnector

For a bus-section disconnector, these conditions from the A2 busbar section are valid:

Figure 103: Signals from any bays in section A2 to a bus-section disconnector

For a bus-section disconnector, these conditions from the B1 busbar section are valid:
Figure 104: Signals from any bays in section B1 to a bus-section disconnector

For a bus-section disconnector, these conditions from the B2 busbar section are valid:

Figure 105: Signals from any bays in section B2 to a bus-section disconnector

10.4.6.3 Signals in double-breaker arrangement

If the busbar is divided by bus-section disconnectors, the condition for the busbar disconnector bay no other disconnector connected to the bus-section must be made by a project-specific logic.

The same type of module (A1A2_DC) is used for different busbars, that is, for both bus-section disconnector A1A2_DC and B1B2_DC. But for B1B2_DC, corresponding signals from busbar B are used.
Figure 106: Busbars divided by bus-section disconnectors (circuit breakers)

To derive the signals:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1DC_OP</td>
<td>All disconnectors on bus-section 1 are open.</td>
</tr>
<tr>
<td>S2DC_OP</td>
<td>All disconnectors on bus-section 2 are open.</td>
</tr>
<tr>
<td>VPS1_DC</td>
<td>The switch status of all disconnectors on bus-section 1 is valid.</td>
</tr>
<tr>
<td>VPS2_DC</td>
<td>The switch status of all disconnectors on bus-section 2 is valid.</td>
</tr>
<tr>
<td>EXDU_BB</td>
<td>No transmission error from double-breaker bay (DB) that contains the above information.</td>
</tr>
</tbody>
</table>

These signals from each double-breaker bay (DB_BUS) are needed:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QB1OPTR</td>
<td>QB1 is open.</td>
</tr>
<tr>
<td>QB2OPTR</td>
<td>QB2 is open.</td>
</tr>
<tr>
<td>VPQB1TR</td>
<td>The switch status of QB1 is valid.</td>
</tr>
<tr>
<td>VPQB2TR</td>
<td>The switch status of QB2 is valid.</td>
</tr>
<tr>
<td>EXDU_DB</td>
<td>No transmission error from the bay that contains the above information.</td>
</tr>
</tbody>
</table>

The logic is identical to the double busbar configuration “Signals in single breaker arrangement”.

For a bus-section disconnector, these conditions from the A1 busbar section are valid:
Figure 107: *Signals from double-breaker bays in section A1 to a bus-section disconnector*

For a bus-section disconnector, these conditions from the A2 busbar section are valid:

Figure 108: *Signals from double-breaker bays in section A2 to a bus-section disconnector*

For a bus-section disconnector, these conditions from the B1 busbar section are valid:
Figure 109: Signals from double-breaker bays in section B1 to a bus-section disconnector

For a bus-section disconnector, these conditions from the B2 busbar section are valid:

Figure 110: Signals from double-breaker bays in section B2 to a bus-section disconnector

10.4.6.4 Signals in 1 1/2 breaker arrangement

If the busbar is divided by bus-section disconnectors, the condition for the busbar disconnector bay no other disconnector connected to the bus-section must be made by a project-specific logic.

The same type of module (A1A2_DC) is used for different busbars, that is, for both bus-section disconnector A1A2_DC and B1B2_DC. But for B1B2_DC, corresponding signals from busbar B are used.
The project-specific logic is the same as for the logic for the double-breaker configuration.

Figure 111: *Busbars divided by bus-section disconnectors (circuit breakers)*

Signal

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1DC_OP</td>
<td>All disconnectors on bus-section 1 are open.</td>
</tr>
<tr>
<td>S2DC_OP</td>
<td>All disconnectors on bus-section 2 are open.</td>
</tr>
<tr>
<td>VPS1_DC</td>
<td>The switch status of disconnectors on bus-section 1 is valid.</td>
</tr>
<tr>
<td>VPS2_DC</td>
<td>The switch status of disconnectors on bus-section 2 is valid.</td>
</tr>
<tr>
<td>EXDU_BB</td>
<td>No transmission error from breaker and a half (BH) that contains the above information.</td>
</tr>
</tbody>
</table>

10.4.7 Interlocking for bus-coupler bay ABC_BC

10.4.7.1 Application

The interlocking for bus-coupler bay (ABC_BC) function is used for a bus-coupler bay connected to a double busbar arrangement according to figure 112. The function can also be used for a single busbar arrangement with transfer busbar or double busbar arrangement without transfer busbar.
The interlocking functionality in 650 series can not handle the transfer bus (WA7)C.

10.4.7.2 Configuration

The signals from the other bays connected to the bus-coupler module ABC_BC are described below.

10.4.7.3 Signals from all feeders

To derive the signals:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBTR_OP</td>
<td>No bus transfer is in progress concerning this bus-coupler.</td>
</tr>
<tr>
<td>VP_BBTR</td>
<td>The switch status is valid for all apparatuses involved in the busbar transfer.</td>
</tr>
<tr>
<td>EXDU_12</td>
<td>No transmission error from any bay connected to the WA1/WA2 busbars.</td>
</tr>
</tbody>
</table>

These signals from each line bay (ABC_LINE), each transformer bay (AB_TRAFO), and bus-coupler bay (ABC_BC), except the own bus-coupler bay are needed:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QB12OPTR</td>
<td>QB1 or QB2 or both are open.</td>
</tr>
<tr>
<td>VPQB12TR</td>
<td>The switch status of QB1 and QB2 are valid.</td>
</tr>
<tr>
<td>EXDU_12</td>
<td>No transmission error from the bay that contains the above information.</td>
</tr>
</tbody>
</table>

For bus-coupler bay n, these conditions are valid:
If the busbar is divided by bus-section disconnectors into bus-sections, the signals BBTR are connected in parallel - if both bus-section disconnectors are closed. So for the basic project-specific logic for BBTR above, add this logic:

Figure 113: Signals from any bays in bus-coupler bay n

The following signals from each bus-section disconnector bay (A1A2_DC) are needed. For B1B2_DC, corresponding signals from busbar B are used. The same type of module (A1A2_DC) is used for different busbars, that is, for both bus-section disconnector A1A2_DC and B1B2_DC.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCOPTR</td>
<td>The bus-section disconnector is open.</td>
</tr>
<tr>
<td>VPDCTR</td>
<td>The switch status of bus-section disconnector DC is valid.</td>
</tr>
<tr>
<td>EXDU_DC</td>
<td>No transmission error from the bay that contains the above information.</td>
</tr>
</tbody>
</table>
If the busbar is divided by bus-section circuit breakers, the signals from the bus-section coupler bay (A1A2_BS), rather than the bus-section disconnector bay (A1A2_DC), have to be used. For B1B2_BS, corresponding signals from busbar B are used. The same type of module (A1A2_BS) is used for different busbars, that is, for both bus-section circuit breakers A1A2_BS and B1B2_BS.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1S2OPTR</td>
<td>No bus-section coupler connection between bus-sections 1 and 2.</td>
</tr>
<tr>
<td>VPS1S2TR</td>
<td>The switch status of bus-section coupler BS is valid.</td>
</tr>
<tr>
<td>EXDU_BS</td>
<td>No transmission error from the bay that contains the above information.</td>
</tr>
</tbody>
</table>

For a bus-coupler bay in section 1, these conditions are valid:

\[
\begin{align*}
BBTR_OP \ (sect.1) & \quad \& \quad BBTR_OP \\
DCOPTR \ (A1A2) & \quad \& \quad \geq 1 \\
DCOPTR \ (B1B2) & \quad \& \\
BBTR_OP \ (sect.2) & \\
VP_BBTR \ (sect.1) & \quad \& \quad VP_BBTR \\
VP_DCTR \ (A1A2) & \quad \& \\
VP_DCTR \ (B1B2) & \quad \& \\
VP_BBTR \ (sect.2) & \\
EXDU_12 \ (sect.1) & \quad \& \quad EXDU_12 \\
EXDU_DC \ (A1A2) & \quad \& \\
EXDU_DC \ (B1B2) & \quad \& \\
EXDU_12 \ (sect.2) & \\
\end{align*}
\]

Figure 115: **Signals to a bus-coupler bay in section 1 from any bays in each section**

For a bus-coupler bay in section 2, the same conditions as above are valid by changing section 1 to section 2 and vice versa.

10.4.7.4 Signals from bus-coupler

If the busbar is divided by bus-section disconnectors into bus-sections, the signals BC_12 from the busbar coupler of the other busbar section must be transmitted to the own busbar coupler if both disconnectors are closed.
The interlocking functionality in 650 series can not handle the transfer bus (WA7)C.

To derive the signals:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC_12_CL</td>
<td>Another bus-coupler connection exists between busbar WA1 and WA2.</td>
</tr>
<tr>
<td>VP_BC_12</td>
<td>The switch status of BC_12 is valid.</td>
</tr>
<tr>
<td>EXDU_BC</td>
<td>No transmission error from any bus-coupler bay (BC).</td>
</tr>
</tbody>
</table>

These signals from each bus-coupler bay (ABC_BC), except the own bay, are needed:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC12CLTR</td>
<td>A bus-coupler connection through the own bus-coupler exists between busbar WA1 and WA2.</td>
</tr>
<tr>
<td>VPBC12TR</td>
<td>The switch status of BC_12 is valid.</td>
</tr>
<tr>
<td>EXDU_BC</td>
<td>No transmission error from the bay that contains the above information.</td>
</tr>
</tbody>
</table>

These signals from each bus-section disconnector bay (A1A2_DC) are also needed. For B1B2_DC, corresponding signals from busbar B are used. The same type of module (A1A2_DC) is used for different busbars, that is, for both bus-section disconnector A1A2_DC and B1B2_DC.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCCLTR</td>
<td>The bus-section disconnector is closed.</td>
</tr>
<tr>
<td>VPDCTR</td>
<td>The switch status of bus-section disconnector DC is valid.</td>
</tr>
<tr>
<td>EXDU_DC</td>
<td>No transmission error from the bay that contains the above information.</td>
</tr>
</tbody>
</table>

If the busbar is divided by bus-section circuit breakers, the signals from the bus-section coupler bay (A1A2_BS), rather than the bus-section disconnector bay (A1A2_DC), must be used. For B1B2_BS, corresponding signals from busbar B are used. The same type of module (A1A2_BS) is used for different busbars, that is, for both bus-section circuit breakers A1A2_BS and B1B2_BS.
For a bus-coupler bay in section 1, these conditions are valid:

\[
\begin{align*}
\text{DCCLTR (A1A2)} & \land \text{BC\textsubscript{12}CL} \\
\text{DCCLTR (B1B2)} & \land \text{VP\textsubscript{BC\textsubscript{12}}} \\
\text{BC12CLTR (sect.2)} & \land \text{EXDU\textsubscript{DC} (A1A2)} \\
\text{VPDCTR (A1A2)} & \land \text{VPDCTR (B1B2)} \\
\text{VPBC12TR (sect.2)} & \land \text{EXDU\textsubscript{DC} (B1B2)} \\
\text{EXDU\textsubscript{BC} (sect.2)} & \land \text{EXDU\textsubscript{BC}}
\end{align*}
\]

Figure 117: Signals to a bus-coupler bay in section 1 from a bus-coupler bay in another section

For a bus-coupler bay in section 2, the same conditions as above are valid by changing section 1 to section 2 and vice versa.

10.4.7.5 Configuration setting

If there is no bypass busbar and therefore no QB2 and QB7 disconnectors, then the interlocking for QB2 and QB7 is not used. The states for QB2, QB7, QC71 are set to open by setting the appropriate module inputs as follows. In the functional block diagram, 0 and 1 are designated 0=FALSE and 1=TRUE:

- QB2\textsubscript{OP} = 1
- QB2\textsubscript{CL} = 0
- QB7\textsubscript{OP} = 1
- QB7\textsubscript{CL} = 0
- QC71\textsubscript{OP} = 1
- QC71\textsubscript{CL} = 0

If there is no second busbar B and therefore no QB2 and QB20 disconnectors, then the interlocking for QB2 and QB20 are not used. The states for QB2, QB20, QC21, BC\textsubscript{12}, BBTR are set to open by setting the appropriate module inputs as follows. In the functional block diagram, 0 and 1 are designated 0=FALSE and 1=TRUE:
10.4.8 Interlocking for 1 1/2 CB BH

10.4.8.1 Application

The interlocking for 1 1/2 breaker diameter (BH_CONN, BH_LINE_A, BH_LINE_B) functions are used for lines connected to a 1 1/2 breaker diameter according to figure 118.
Figure 118: Switchyard layout 1 1/2 breaker

Three types of interlocking modules per diameter are defined. BH_LINE_A and BH_LINE_B are the connections from a line to a busbar. BH_CONN is the connection between the two lines of the diameter in the 1 1/2 breaker switchyard layout.

For a 1 1/2 breaker arrangement, the modules BH_LINE_A, BH_CONN and BH_LINE_B must be used.

10.4.8.2 Configuration setting

For application without QB9 and QC9, just set the appropriate inputs to open state and disregard the outputs. In the functional block diagram, 0 and 1 are designated 0=FALSE and 1=TRUE:

- QB9_OP = 1
- QB9_CL = 0
- QC9_OP = 1
- QC9_CL = 0

If, in this case, line voltage supervision is added, then rather than setting QB9 to open state, specify the state of the voltage supervision:
• QB9_OP = VOLT_OFF
• QB9_CL = VOLT_ON

If there is no voltage supervision, then set the corresponding inputs as follows:
• VOLT_OFF = 1
• VOLT_ON = 0

10.4.9 Interlocking for double CB bay DB

10.4.9.1 Application

The interlocking for a double busbar double circuit breaker bay including DB_BUS_A, DB_BUS_B and DB_LINE functions are used for a line connected to a double busbar arrangement according to figure 119.

Three types of interlocking modules per double circuit breaker bay are defined. DB_BUS_A handles the circuit breaker QA1 that is connected to busbar WA1 and the disconnectors and earthing switches of this section. DB_BUS_B handles the circuit breaker QA2 that is connected to busbar WA2 and the disconnectors and earthing switches of this section.
For a double circuit-breaker bay, the modules DB_BUS_A, DB_LINE and DB_BUS_B must be used.

10.4.9.2 Configuration setting

For application without QB9 and QC9, just set the appropriate inputs to open state and disregard the outputs. In the functional block diagram, 0 and 1 are designated 0=FALSE and 1=TRUE:

- QB9_OP = 1
- QB9_CL = 0
- QC9_OP = 1
- QC9_CL = 0

If, in this case, line voltage supervision is added, then rather than setting QB9 to open state, specify the state of the voltage supervision:

- QB9_OP = VOLT_OFF
- QB9_CL = VOLT_ON

If there is no voltage supervision, then set the corresponding inputs as follows:

- VOLT_OFF = 1
- VOLT_ON = 0

10.4.10 Interlocking for line bay ABC_LINE

10.4.10.1 Application

The interlocking for line bay (ABC_LINE) function is used for a line connected to a double busbar arrangement with a transfer busbar according to figure 120. The function can also be used for a double busbar arrangement without transfer busbar or a single busbar arrangement with/without transfer busbar.
The interlocking functionality in 650 series can not handle the transfer bus (WA7)C.

The signals from other bays connected to the module ABC_LINE are described below.

10.4.10.2 Signals from bypass busbar

To derive the signals:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB7_D_OP</td>
<td>All line disconnectors on bypass WA7 except in the own bay are open.</td>
</tr>
<tr>
<td>VP_BB7_D</td>
<td>The switch status of disconnectors on bypass busbar WA7 are valid.</td>
</tr>
<tr>
<td>EXDU_BPB</td>
<td>No transmission error from any bay containing disconnectors on bypass busbar WA7</td>
</tr>
</tbody>
</table>

These signals from each line bay (ABC_LINE) except that of the own bay are needed:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QB7OPTR</td>
<td>Q7 is open</td>
</tr>
<tr>
<td>VPQB7TR</td>
<td>The switch status for QB7 is valid.</td>
</tr>
<tr>
<td>EXDU_BPB</td>
<td>No transmission error from the bay that contains the above information.</td>
</tr>
</tbody>
</table>

For bay n, these conditions are valid:
10.4.10.3 Signals from bus-coupler

If the busbar is divided by bus-section disconnectors into bus sections, the busbar-busbar connection could exist via the bus-section disconnector and bus-coupler within the other bus section.

The interlocking functionality in 650 series can not handle the transfer bus (WA7)C.

To derive the signals:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC_12_CL</td>
<td>A bus-coupler connection exists between busbar WA1 and WA2.</td>
</tr>
<tr>
<td>BC_17_OP</td>
<td>No bus-coupler connection between busbar WA1 and WA7.</td>
</tr>
<tr>
<td>BC_17_CL</td>
<td>A bus-coupler connection exists between busbar WA1 and WA7.</td>
</tr>
<tr>
<td>BC_27_OP</td>
<td>No bus-coupler connection between busbar WA2 and WA7.</td>
</tr>
</tbody>
</table>

Table continues on next page
A bus-coupler connection exists between busbar WA2 and WA7.
The switch status of BC_12 is valid.
The switch status of BC_17 is valid.
The switch status of BC_27 is valid.
No transmission error from any bus-coupler bay (BC).

These signals from each bus-coupler bay (ABC_BC) are needed:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC27_CL</td>
<td>A bus-coupler connection exists between busbar WA2 and WA7.</td>
</tr>
<tr>
<td>VP_BC_12</td>
<td>The switch status of BC_12 is valid.</td>
</tr>
<tr>
<td>VP_BC_17</td>
<td>The switch status of BC_17 is valid.</td>
</tr>
<tr>
<td>VP_BC_27</td>
<td>The switch status of BC_27 is valid.</td>
</tr>
<tr>
<td>EXDU_BC</td>
<td>No transmission error from any bus-coupler bay (BC).</td>
</tr>
</tbody>
</table>

No transmission error from the bay that contains the above information.

These signals from each bus-section disconnector bay (A1A2_DC) are also needed.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCOPTR</td>
<td>The bus-section disconnector is open.</td>
</tr>
<tr>
<td>DCLTR</td>
<td>The bus-section disconnector is closed.</td>
</tr>
<tr>
<td>VPDCTR</td>
<td>The switch status of bus-section disconnector DC is valid.</td>
</tr>
<tr>
<td>EXDU_DC</td>
<td>No transmission error from the bay that contains the above information.</td>
</tr>
</tbody>
</table>

No transmission error from the bay that contains the above information.

If the busbar is divided by bus-section circuit breakers, the signals from the bus-section coupler bay (A1A2_BS), rather than the bus-section disconnector bay (A1A2_DC) must be used. For B1B2_BS, corresponding signals from busbar B are used. The same type of module (A1A2_BS) is used for different busbars, that is, for both bus-section circuit breakers A1A2_BS and B1B2_BS.
For a line bay in section 1, these conditions are valid:

![Signal Diagram]

Figure 123: Signals to a line bay in section 1 from the bus-coupler bays in each section
For a line bay in section 2, the same conditions as above are valid by changing section 1 to section 2 and vice versa.

10.4.10.4 Configuration setting

If there is no bypass busbar and therefore no QB7 disconnector, then the interlocking for QB7 is not used. The states for QB7, QC71, BB7_D, BC_17, BC_27 are set to open by setting the appropriate module inputs as follows. In the functional block diagram, 0 and 1 are designated 0=False and 1=True:

- QB7_OP = 1
- QB7_CL = 0
- QC71_OP = 1
- QC71_CL = 0
- BB7_D_OP = 1
- BC_17_OP = 1
- BC_17_CL = 0
- BC_27_OP = 1
- BC_27_CL = 0
- EXDU_BPB = 1
- VP_BB7_D = 1
- VP_BC_17 = 1
- VP_BC_27 = 1

If there is no second busbar WA2 and therefore no QB2 disconnector, then the interlocking for QB2 is not used. The state for QB2, QC21, BC_12, BC_27 are set to open by setting the appropriate module inputs as follows. In the functional block diagram, 0 and 1 are designated 0=False and 1=True:

- QB2_OP = 1
- QB2_CL = 0
- QC21_OP = 1
- QC21_CL = 0
- BC_12_CL = 0
- BC_27_OP = 1
- BC_27_CL = 0
- VP_BC_12 = 1
10.4.11 Interlocking for transformer bay AB_TRAFO

10.4.11.1 Application

The interlocking for transformer bay (AB_TRAFO) function is used for a transformer bay connected to a double busbar arrangement according to figure 124. The function is used when there is no disconnector between circuit breaker and transformer. Otherwise, the interlocking for line bay (ABC_LINE) function can be used. This function can also be used in single busbar arrangements.

![Interlocking for transformer bay AB_TRAFO diagram]

Figure 124: Switchyard layout AB_TRAFO

The signals from other bays connected to the module AB_TRAFO are described below.

10.4.11.2 Signals from bus-coupler

If the busbar is divided by bus-section disconnectors into bus-sections, the busbar-busbar connection could exist via the bus-section disconnector and bus-coupler within the other bus-section.
The interlocking functionality in 650 series cannot handle the transfer bus (WA7)C.

The project-specific logic for input signals concerning bus-coupler are the same as the specific logic for the line bay (ABC_LINE):

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC_12_CL</td>
<td>A bus-coupler connection exists between busbar WA1 and WA2.</td>
</tr>
<tr>
<td>VP_BC_12</td>
<td>The switch status of BC_12 is valid.</td>
</tr>
<tr>
<td>EXDU_BC</td>
<td>No transmission error from bus-coupler bay (BC).</td>
</tr>
</tbody>
</table>

The logic is identical to the double busbar configuration “Signals from bus-coupler“.

10.4.11.3 Configuration setting

If there are no second busbar B and therefore no QB2 disconnector, then the interlocking for QB2 is not used. The state for QB2, QC21, BC_12 are set to open by setting the appropriate module inputs as follows. In the functional block diagram, 0 and 1 are designated 0=FALSE and 1=TRUE:

- QB2_OP = 1
- QB2QB2_CL = 0

- QC21_OP = 1
- QC21_CL = 0

- BC_12_CL = 0
- VP_BC_12 = 1

If there is no second busbar B at the other side of the transformer and therefore no QB4 disconnector, then the state for QB4 is set to open by setting the appropriate module inputs as follows:
10.5 Logic rotating switch for function selection and LHMI presentation SLGGIO

10.5.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic rotating switch for function selection and LHMI presentation</td>
<td>SLGGIO</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

10.5.2 Application

The logic rotating switch for function selection and LHMI presentation function (SLGGIO) (or the selector switch function block, as it is also known) is used to get a selector switch functionality similar with the one provided by a hardware multi-position selector switch. Hardware selector switches are used extensively by utilities, in order to have different functions operating on pre-set values. Hardware switches are however sources for maintenance issues, lower system reliability and extended purchase portfolio. The virtual selector switches eliminate all these problems.

SLGGIO function block has two operating inputs (UP and DOWN), one blocking input (BLOCK) and one operator position input (PSTO).

SLGGIO can be activated both from the local HMI and from external sources (switches), via the IED binary inputs. It also allows the operation from remote (like the station computer). SWPOSN is an integer value output, giving the actual output number. Since the number of positions of the switch can be established by settings (see below), one must be careful in coordinating the settings with the configuration (if one sets the number of positions to x in settings – for example, there will be only the first x outputs available from the block in the configuration). Also the frequency of the (UP or DOWN) pulses should be lower than the setting t_{Pulse}.

The operation from local HMI is from select or indication buttons (32 positions). Typical applications are: Select operating modes for e.g. Auto reclose, Energizing check, Earth-fault protection (IN,UN). The output integer can be connected to an Integer to Binary function block to give the position as a boolean for use in the configuration.

10.5.3 Setting guidelines

The following settings are available for the Logic rotating switch for function selection and LHMI presentation (SLGGIO) function:
Operation: Sets the operation of the function *On* or *Off*.

NrPos: Sets the number of positions in the switch (max. 32). This setting influence the behavior of the switch when changes from the last to the first position.

OutType: *Steady* or *Pulsed*.

tPulse: In case of a pulsed output, it gives the length of the pulse (in seconds).

tDelay: The delay between the UP or DOWN activation signal positive front and the output activation.

StopAtExtremes: Sets the behavior of the switch at the end positions – if set to *Disabled*, when pressing UP while on first position, the switch will jump to the last position; when pressing DOWN at the last position, the switch will jump to the first position; when set to *Enabled*, no jump will be allowed.

10.6 Selector mini switch VSGGIO

10.6.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 80617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selector mini switch</td>
<td>VSGGIO</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

10.6.2 Application

Selector mini switch (VSGGIO) function is a multipurpose function used in the configuration tool in PCM600 for a variety of applications, as a general purpose switch. VSGGIO can be used for both acquiring an external switch position (through the IPOS1 and the IPOS2 inputs) and represent it through the single line diagram symbols (or use it in the configuration through the outputs POS1 and POS2) as well as, a command function (controlled by the PSTO input), giving switching commands through the CMDPOS12 and CMDPOS21 outputs.

The output POSITION is an integer output, showing the actual position as an integer number 0 – 3.

An example where VSGGIO is configured to switch Autorecloser on–off from a button symbol on the local HMI is shown in figure 126. The I and O buttons on the local HMI are normally used for on–off operations of the circuit breaker.
10.6.3 Setting guidelines

Selector mini switch (VSGGIO) function can generate pulsed or steady commands (by setting the Mode parameter). When pulsed commands are generated, the length of the pulse can be set using the tPulse parameter. Also, being accessible on the single line diagram (SLD), this function block has two control modes (settable through CtlModel): Dir Norm and SBO Enh.

10.7 IEC61850 generic communication I/O functions DPPGGO

10.7.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60817 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 61850 generic communication I/O functions</td>
<td>DPPGIO</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

10.7.2 Application

The IEC61850 generic communication I/O functions (DPPGGO) function block is used to send three logical outputs to other systems or equipment in the substation. The three inputs are named OPEN, CLOSE and VALID, since this function block is intended to be used as a position indicator block in interlocking and reservation station-wide logics.

10.7.3 Setting guidelines

The function does not have any parameters available in the local HMI or PCM600.
10.8 Single point generic control 8 signals SPC8GGIO

10.8.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single point generic control 8 signals</td>
<td>SPC8GGIO</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

10.8.2 Application

The Single point generic control 8 signals (SPC8GGIO) function block is a collection of 8 single point commands, designed to bring in commands from REMOTE (SCADA) to those parts of the logic configuration that do not need complicated function blocks that have the capability to receive commands (for example SCSWI). In this way, simple commands can be sent directly to the IED outputs, without confirmation. Confirmation (status) of the result of the commands is supposed to be achieved by other means, such as binary inputs and SPGGIO function blocks.

PSTO is the universal operator place selector for all control functions. Even if PSTO can be configured to allow LOCAL or ALL operator positions, the only functional position usable with the SPC8GGIO function block is REMOTE.

10.8.3 Setting guidelines

The parameters for the single point generic control 8 signals (SPC8GGIO) function are set via the local HMI or PCM600.

Operation: turning the function operation *On/Off*.

There are two settings for every command output (totally 8):

Latched: decides if the command signal for output x is *Latched* (steady) or *Pulsed*.

$tPulse$: if *Latched* is set to *Pulsed*, then $tPulse$ will set the length of the pulse (in seconds).
10.9 Automation bits AUTOBITS

10.9.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutomationBits, command function for DNP3</td>
<td>AUTOBITS</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

10.9.2 Application

The AUTOBITS function block (or the automation bits function block) is used within PCM600 in order to get into the configuration the commands coming through the DNP3 protocol. AUTOBITS function block have 32 individual outputs which each can be mapped as a Binary Output point in DNP3. The output is operated by a "Object 12" in DNP3. This object contains parameters for control-code, count, on-time and off-time. To operate an AUTOBITS output point, send a control-code of latch-On, latch-Off, pulse-On, pulse-Off, Trip or Close. The remaining parameters are regarded as appropriate. For example, pulse-On, on-time=100, off-time=300, count=5 would give 5 positive 100 ms pulses, 300 ms apart.

See the communication protocol manual for a detailed description of the DNP3 protocol.

10.9.3 Setting guidelines

AUTOBITS function block has one setting, (Operation: On/Off) enabling or disabling the function. These names will be seen in the DNP communication configuration tool in PCM600.
Section 11 Logic

11.1 Tripping logic common 3-phase output SMPPTRC

11.1.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tripping logic common 3-phase output</td>
<td>SMPPTRC</td>
<td>I->O</td>
<td>94</td>
</tr>
</tbody>
</table>

11.1.2 Application

All trip signals from the different protection functions shall be routed through the trip logic. In its simplest alternative the logic will only link the internal TRIP signals to a binary output and make sure that the pulse length is long enough.

The tripping logic common 3-phase output (SMPPTRC) offers only three-phase tripping. A three-phase trip for all faults offers a simple solution and is often sufficient in well meshed transmission systems and in High Voltage (HV) systems.

One SMPPTRC function block should be used for each breaker, if the object is connected to the system via more than one breaker.

To prevent closing of a circuit breaker after a trip the function can block the closing of the circuit breaker (trip lock-out).

11.1.2.1 Three-phase tripping

A simple application with three-phase tripping from the tripping logic common 3-phase output SMPPTRC utilizes part of the function block. Connect the inputs from the protection function blocks to the input TRIN. If necessary (normally the case) use the trip matrix logic TMAGGIO to combine the different function outputs to this input. Connect the output TRIP to the required binary outputs.

A typical connection is shown below in figure 127.
11.1.2.2 Lock-out

This function block is provided with possibilities to initiate lock-out. The lock-out can be set to only activate the block closing output CLLKOUT or initiate the block closing output and also maintain the trip signal (latched trip).

The lock-out can then be manually reset after checking the primary fault by activating the input reset Lock-Out RSTLKOUT or via the HMI.

If external conditions are required to initiate Lock-out but not initiate trip this can be achieved by activating input SETLKOUT. The setting AutoLock = Off means that the internal trip will not activate lock-out so only initiation of the input SETLKOUT will result in lock-out. This is normally the case for overhead line protection where most faults are transient. Unsuccessful autoreclose and back-up zone tripping can in such cases be connected to initiate Lock-out by activating the input SETLKOUT.

11.1.2.3 Blocking of the function block

Blocking can be initiated internally by logic, or by the operator using a communication channel. Total blockage of Tripping logic (SMPPTRC) function is done by activating the input BLOCK and can be used to block the output of SMPPTRC in the event of internal failures.

11.1.3 Setting guidelines

The parameters for Tripping logic common 3-phase output SMPPTRC are set via the local HMI or through the Protection and Control Manager (PCM600).

The following trip parameters can be set to regulate tripping.
Operation: Sets the mode of operation. Off switches the function off. The normal selection is On.

TripLockout: Sets the scheme for lock-out. Off only activates the lock-out output. On activates the lock-out output and latches the output TRIP. The normal selection is Off.

AutoLock: Sets the scheme for lock-out. Off only activates lock-out through the input SETLKOUT. On additionally allows activation through the trip function itself. The normal selection is Off.

tTripMin: Sets the required minimum duration of the trip pulse. It should be set to ensure that the breaker is tripped correctly. Normal setting is 0.150s.

11.2 Trip matrix logic TMAGGIO

11.2.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trip matrix logic</td>
<td>TMAGGIO</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

11.2.2 Application

The 12 Trip matrix logic TMAGGIO function each with 32 inputs are used to route trip signals and other logical output signals to the tripping logics SMPPTRC and SPTPTRC or to different output contacts on the IED.

TMAGGIO 3 output signals and the physical outputs allows the user to adapt the signals to the physical tripping outputs according to the specific application needs for settable pulse or steady output.

11.2.3 Setting guidelines

Operation: Turns the operation of the function On/Off.

PulseTime: Defines the pulse time duration. When used for direct tripping of circuit breaker(s) the pulse time duration shall be set to approximately 0.150 seconds in order to obtain satisfactory minimum duration of the trip pulse to the circuit breaker trip coils. Used only for ModeOutputx: Pulsed.

OnDelay: Used to prevent output signals to be given for spurious inputs. Normally set to 0 or a low value. Used only for ModeOutputx: Steady.

OffDelay: Defines a minimum on time for the outputs. When used for direct tripping of circuit breaker(s) the off delay time shall be set to approximately 0.150 seconds in...
In order to obtain a satisfactory minimum duration of the trip pulse to the circuit breaker trip coils. Used only for ModeOutputx: Steady.

ModeOutputx: Defines if output signal OUTPUTx (where x=1-3) is Steady or Pulsed. A steady signal follows the status of the input signals, with respect to OnDelay and OffDelay. A pulsed signal will give a pulse once, when the Outputx rises from 0 to 1.

Configurable logic blocks

11.3.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR Function block</td>
<td>OR</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Inverter function block</td>
<td>INVERTER</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PULSETIMER function block</td>
<td>PULSETIMER</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Controllable gate function block</td>
<td>GATE</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Exclusive OR function block</td>
<td>XOR</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Logic loop delay function block</td>
<td>LOOPDELAY</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Timer function block</td>
<td>TIMERSET</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Function description</td>
<td>IEC 61850 identification</td>
<td>IEC 60617 identification</td>
<td>ANSI/IEEE C37.2 device number</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>AND function block</td>
<td>AND</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Set-reset memory function block</td>
<td>SRMEMORY</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Reset-set with memory function block</td>
<td>RSMEMORY</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ORQT function block</td>
<td>ORQT</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>INVERTERQT function block</td>
<td>INVERTERQT</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pulse timer function block</td>
<td>PULSTIMERQT</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>XORQT function block</td>
<td>XORQT</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Settable timer function block</td>
<td>TIMERSETQT</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ANDQT function block</td>
<td>ANDQT</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Set/reset logic component</td>
<td>SRMEMORYQT</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
11.3.2 Application

A set of standard logic blocks, like AND, OR etc, and timers are available for adapting the IED configuration to the specific application needs. Additional logic blocks that, beside the normal logical function, have the capability to propagate timestamp and quality are also available. Those blocks have a designation including the letters QT, like ANDQT, ORQT etc.

There are no settings for AND gates, OR gates, inverters or XOR gates as well as, for ANDQT gates, ORQT gates or XORQT gates.

For normal On/Off delay and pulse timers the time delays and pulse lengths are set from the local HMI or via the PST tool.

Both timers in the same logic block (the one delayed on pick-up and the one delayed on drop-out) always have a common setting value.

For controllable gates, settable timers and SR flip-flops with memory, the setting parameters are accessible via the local HMI or via the PST tool.

11.3.3.1 Configuration

Logic is configured using the ACT configuration tool in PCM600.

Execution of functions as defined by the configurable logic blocks runs according to a fixed sequence with different cycle times.
For each cycle time, the function block is given an serial execution number. This is shown when using the ACT configuration tool with the designation of the function block and the cycle time, see example below.

![Function Block Instance](image1)

Figure 128: Example designation, serial execution number and cycle time for logic function

![Function Block Instance](image2)

Figure 129: Example designation, serial execution number and cycle time for logic function that also propagates timestamp and quality of input signals

The execution of different function blocks within the same cycle is determined by the order of their serial execution numbers. Always remember this when connecting two or more logical function blocks in series.

Always be careful when connecting function blocks with a fast cycle time to function blocks with a slow cycle time. Remember to design the logic circuits carefully and always check the execution sequence for different functions. In other cases, additional time delays must be introduced into the logic schemes to prevent errors, for example, race between functions.

Default value on all four inputs of the AND and ANDQT gate are logical 1 which makes it possible for the user to just use the required number of inputs and leave the rest un-connected. The output OUT
has a default value 0 initially, which will suppress one cycle pulse if the function has been put in the wrong execution order.

11.4 Fixed signals FXDSIGN

11.4.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed signals</td>
<td>FXDSIGN</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

11.4.2 Application

The Fixed signals function FXDSIGN generates nine pre-set (fixed) signals that can be used in the configuration of an IED, either for forcing the unused inputs in other function blocks to a certain level/value, or for creating certain logic. Boolean, integer, floating point, string types of signals are available.

Example for use of GRP_OFF signal in FXDSIGN

The Restricted earth fault function REFPDIF can be used both for auto-transformers and normal transformers.

When used for auto-transformers, information from both windings parts, together with the neutral point current, needs to be available to the function. This means that three inputs are needed.

![REFPDIF function inputs for autotransformer application](IEC09000619_3_en.vsd)

Figure 130: REFPDIF function inputs for autotransformer application

For normal transformers only one winding and the neutral point is available. This means that only two inputs are used. Since all group connections are mandatory to be connected, the third input needs to be connected to something, which is the GRP_OFF signal in FXDSIGN function block.
11.5 Boolean 16 to integer conversion B16I

11.5.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boolean 16 to integer conversion</td>
<td>B16I</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

11.5.2 Application

Boolean 16 to integer conversion function B16I is used to transform a set of 16 binary (logical) signals into an integer. It can be used – for example, to connect logical output signals from a function (like distance protection) to integer inputs from another function (like line differential protection). B16I does not have a logical node mapping.

11.5.3 Setting guidelines

The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600).
11.6 Boolean 16 to integer conversion with logic node representation B16IFCVI

11.6.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 80817 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boolean 16 to integer conversion with logic node rep</td>
<td>B16IFCVI</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

11.6.2 Application

Boolean 16 to integer conversion with logic node representation function B16IFCVI is used to transform a set of 16 binary (logical) signals into an integer. B16IFCVI can receive an integer from a station computer – for example, over IEC 61850–8–1. These functions are very useful when you want to generate logical commands (for selector switches or voltage controllers) by inputting an integer number. B16IFCVI has a logical node mapping in IEC 61850.

11.6.3 Setting guidelines

The function does not have any parameters available in the local HMI or Protection and Control IED Manager (PCM600).

11.7 Integer to boolean 16 conversion IB16A

11.7.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 80817 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer to boolean 16 conversion</td>
<td>IB16A</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

11.7.2 Application

Integer to boolean 16 conversion function (IB16A) is used to transform an integer into a set of 16 binary (logical) signals. It can be used – for example, to connect integer output signals from one function to binary (logical) inputs to another function. IB16A function does not have a logical node mapping.
11.7.3 Setting guidelines

The function does not have any parameters available in the local HMI or Protection and Control IED Manager (PCM600).

11.8 Integer to boolean 16 conversion with logic node representation IB16FCVB

11.8.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer to boolean 16 conversion with logic node representation</td>
<td>IB16FCVB</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

11.8.2 Application

Integer to boolean 16 conversion with logic node representation function (IB16FCVB) is used to transform an integer into a set of 16 binary (logical) signals. IB16FCVB function can receive an integer from a station computer – for example, over IEC 61850–8–1. These functions are very useful when the user wants to generate logical commands (for selector switches or voltage controllers) by inputting an integer number. IB16FCVB function has a logical node mapping in IEC 61850.

11.8.3 Settings

The function does not have any parameters available in the local HMI or Protection and Control IED Manager (PCM600)

11.9 Elapsed time integrator with limit transgression and overflow supervision TEIGGIO

11.9.1 Identification

<table>
<thead>
<tr>
<th>Function Description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elapsed time integrator</td>
<td>TEIGGIO</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
11.9.2 Application

The function TEIGGIO is used for user defined logics and it can also be used for different purposes internally in the IED. An application example is the integration of elapsed time during the measurement of neutral point voltage or neutral current at earth fault conditions.

Settable time limits for warning and alarm are provided. The time limit for overflow indication is fixed.

11.9.3 Setting guidelines

The settings t_{Alarm} and t_{Warning} are user settable limits defined in seconds. The achievable resolution of the settings depends on the level of the values defined.

A resolution of 10 ms can be achieved when the settings are defined within the range

$1.00 \text{ second} \leq t_{\text{Alarm}} \leq 99999.99 \text{ seconds}$

$1.00 \text{ second} \leq t_{\text{Warning}} \leq 99999.99 \text{ seconds}$.

If the values are above this range the resolution becomes lower

$99999.99 \text{ seconds} \leq t_{\text{Alarm}} \leq 999999.9 \text{ seconds}$

$99999.99 \text{ seconds} \leq t_{\text{Warning}} \leq 999999.9 \text{ seconds}$

Note that t_{Alarm} and t_{Warning} are independent settings, that is, there is no check if $t_{\text{Alarm}} > t_{\text{Warning}}$.

t_{Overflow} is for overflow supervision with a default value $t_{\text{Overflow}} = 999999.9$ seconds. The outputs freeze if an overflow occurs.
12.1 IEC61850 generic communication I/O functions SPGGIO

12.1.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 61850 generic communication I/O functions</td>
<td>SPGGIO</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

12.1.2 Application

IEC 61850–8–1 generic communication I/O functions (SPGGIO) function is used to send one single logical output to other systems or equipment in the substation. It has one visible input, that should be connected in ACT tool.

12.1.3 Setting guidelines

The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600).

12.2 IEC61850 generic communication I/O functions 16 inputs SP16GGIO

12.2.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 61850 generic communication I/O functions 16 inputs</td>
<td>SP16GGIO</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

12.2.2 Application

SP16GGIO function block is used to send up to 16 logical signals to other systems or equipment in the substation. Inputs should be connected in ACT tool.
12.2.3 Setting guidelines

The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600).

12.3 IEC61850 generic communication I/O functions MVGGIO

12.3.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC61850 generic communication I/O functions</td>
<td>MVGGIO</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

12.3.2 Application

IEC61850 generic communication I/O functions (MVGGIO) function is used to send the instantaneous value of an analog signal to other systems or equipment in the substation. It can also be used inside the same IED, to attach a RANGE aspect to an analog value and to permit measurement supervision on that value.

12.3.3 Setting guidelines

The settings available for IEC61850 generic communication I/O functions (MVGGIO) function allows the user to choose a deadband and a zero deadband for the monitored signal. Values within the zero deadband are considered as zero.

The high and low limit settings provides limits for the high-high-, high, normal, low and low-low ranges of the measured value. The actual range of the measured value is shown on the range output of MVGGIO function block. When a Measured value expander block (MVEXP) is connected to the range output, the logical outputs of the MVEXP are changed accordingly.
12.4 Measurements

12.4.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 80617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurements</td>
<td>CVMMXN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase current measurement</td>
<td>CMMXU</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>Phase-phase voltage measurement</td>
<td>VMMXU</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Current sequence component measurement</td>
<td>CMSQI</td>
<td>I1, I2, I0</td>
<td></td>
</tr>
<tr>
<td>Voltage sequence measurement</td>
<td>VMSQI</td>
<td>U1, U2, U0</td>
<td></td>
</tr>
<tr>
<td>Phase-neutral voltage measurement</td>
<td>VNMMXU</td>
<td>U</td>
<td></td>
</tr>
</tbody>
</table>

12.4.2 Application

Measurement functions is used for power system measurement, supervision and reporting to the local HMI, monitoring tool within PCM600 or to station level for example, via IEC 61850. The possibility to continuously monitor measured values of active power, reactive power, currents, voltages, frequency, power factor etc. is vital for efficient production, transmission and distribution of electrical energy. It provides to the system operator fast and easy overview of the present status of the power system. Additionally, it can be used during testing and commissioning of protection and control IEDs in order to verify proper operation and connection of instrument transformers (CTs and VTs). During normal service by periodic comparison of the measured value from the IED with other independent meters the proper operation of the IED analog measurement chain can be verified. Finally, it can be used to verify
proper direction orientation for distance or directional overcurrent protection function.

The available measured values of an IED are depending on the actual hardware (TRM) and the logic configuration made in PCM600.

All measured values can be supervised with four settable limits that is, low-low limit, low limit, high limit and high-high limit. A zero clamping reduction is also supported, that is, the measured value below a settable limit is forced to zero which reduces the impact of noise in the inputs. There are no interconnections regarding any settings or parameters, neither between functions nor between signals within each function.

Zero clampings are handled by $ZeroDb$ for each signal separately for each of the functions. For example, the zero clamping of U12 is handled by $ULZeroDb$ in VMMXU, zero clamping of I1 is handled by $ILZeroDb$ in CMMXU.

Dead-band supervision can be used to report measured signal value to station level when change in measured value is above set threshold limit or time integral of all changes since the last time value updating exceeds the threshold limit. Measure value can also be based on periodic reporting.

The measurement function, CVMMXN, provides the following power system quantities:

- P, Q and S: three phase active, reactive and apparent power
- PF: power factor
- U: phase-to-phase voltage amplitude
- I: phase current amplitude
- F: power system frequency

The output values are displayed in the local HMI under Main menu/Tests/Function status/Monitoring/CVMMXN/Outputs

The measuring functions CMMXU, VNMMXU and VMMXU provide physical quantities:

- I: phase currents (amplitude and angle) (CMMXU)
- U: voltages (phase-to-earth and phase-to-phase voltage, amplitude and angle) (VMMXU, VNMMXU)

It is possible to calibrate the measuring function above to get better than class 0.5 presentation. This is accomplished by angle and amplitude compensation at 5, 30 and 100% of rated current and at 100% of rated voltage.

The power system quantities provided, depends on the actual hardware, (TRM) and the logic configuration made in PCM600.
The measuring functions CMSQI and VMSQI provide sequence component quantities:

- I: sequence currents (positive, zero, negative sequence, amplitude and angle)
- U: sequence voltages (positive, zero and negative sequence, amplitude and angle).

The CVMMXN function calculates three-phase power quantities by using fundamental frequency phasors (DFT values) of the measured current respectively voltage signals. The measured power quantities are available either, as instantaneously calculated quantities or, averaged values over a period of time (low pass filtered) depending on the selected settings.

12.4.3 Setting guidelines

The available setting parameters of the measurement function CVMMXN, CMMXU, VMMXU, CMSQI, VMSQI, VNMMXU are depending on the actual hardware (TRM) and the logic configuration made in PCM600.

The parameters for the Measurement functions CVMMXN, CMMXU, VMMXU, CMSQI, VMSQI, VNMMXU are set via the local HMI or PCM600.

GlobalBaseSel: Selects the global base value group used by the function to define (IBase), (UBase) and (SBase).

Operation: Off/On. Every function instance (CVMMXN, CMMXU, VMMXU, CMSQI, VMSQI, VNMMXU) can be taken in operation (On) or out of operation (Off).

The following general settings can be set for the Measurement function (CVMMXN).

PowAmpFact: Amplitude factor to scale power calculations.

PowAngComp: Angle compensation for phase shift between measured I & U.

Mode: Selection of measured current and voltage. There are 9 different ways of calculating monitored three-phase values depending on the available VT inputs connected to the IED. See parameter group setting table.

k: Low pass filter coefficient for power measurement, U and I.

UAmpCompY: Amplitude compensation to calibrate voltage measurements at Y% of Ur, where Y is equal to 5, 30 or 100.

IAmpCompY: Amplitude compensation to calibrate current measurements at Y% of Ir, where Y is equal to 5, 30 or 100.

IAngCompY: Angle compensation to calibrate angle measurements at Y% of Ir, where Y is equal to 5, 30 or 100.
Parameters $IBase$, $Ubase$ and $SBase$ have been implemented as settings instead of a parameters, which means that if the values of the parameters are changed there will be no restart of the application. As restart is required to activate new parameters values, the IED must be restarted in some way. Either manually or by changing some other parameter at the same time.

The following general settings can be set for the **Phase-phase current measurement** (CMMXU).

$IAmpCompY$: Amplitude compensation to calibrate current measurements at $Y\%$ of Ir, where Y is equal to 5, 30 or 100.

$IAngCompY$: Angle compensation to calibrate angle measurements at $Y\%$ of Ir, where Y is equal to 5, 30 or 100.

The following general settings can be set for the **Phase-phase voltage measurement** (VMMXU).

$UAmpCompY$: Amplitude compensation to calibrate voltage measurements at $Y\%$ of Ur, where Y is equal to 5, 30 or 100.

$UAngCompY$: Angle compensation to calibrate angle measurements at $Y\%$ of Ur, where Y is equal to 5, 30 or 100.

The following general settings can be set for all monitored quantities included in the functions ($CVMMXN$, $CMMXU$, $VMMXU$, $CMSQI$, $VMSQI$, $VNMMXU$) X in setting names below equals S, P, Q, PF, U, I, F, $IL1-3$, $UL1-3UL12-31$, $I1$, $I2$, $3I0$, $U1$, $U2$ or $3U0$.

$Xmin$: Minimum value for analog signal X.

$Xmax$: Maximum value for analog signal X.

$XZeroDb$: Zero point clamping. A signal value less than $XZeroDb$ is forced to zero.

$XRepTyp$: Reporting type. Cyclic (Cyclic), amplitude deadband (Dead band) or integral deadband (Int deadband). The reporting interval is controlled by the parameter $XDbRepInt$.

$XDbRepInt$: Reporting deadband setting. Cyclic reporting is the setting value and is reporting interval in seconds. Amplitude deadband is the setting value in % of measuring range. Integral deadband setting is the integral area, that is, measured value in % of measuring range multiplied by the time between two measured values.
Limits are directly set in applicable measuring unit, V, A, and so on, for all measuring functions, except CVMMXN where limits are set in % of the base quantity.

\(X_{HiHiLim} \): High-high limit.

\(X_{HiLim} \): High limit.

\(X_{LowLim} \): Low limit.

\(X_{LowLowLim} \): Low-low limit.

\(X_{LimHyst} \): Hysteresis value in % of range and is common for all limits.

All phase angles are presented in relation to defined reference channel. The parameter \(PhaseAngleRef \) defines the reference, see settings for analog input modules in PCM600.

Calibration curves

It is possible to calibrate the functions (CVMMXN, CMMXU, VNMMXU and VMMXU) to get class 0.5 presentations of currents, voltages and powers. This is accomplished by amplitude and angle compensation at 5, 30 and 100% of rated current and voltage. The compensation curve will have the characteristic for amplitude and angle compensation of currents as shown in figure 132 (example). The first phase will be used as reference channel and compared with the curve for calculation of factors. The factors will then be used for all related channels.
12.4.4 Setting examples

Three setting examples, in connection to Measurement function (CVMMXN), are provided:

- Measurement function (CVMMXN) application for a 110kV OHL
- Measurement function (CVMMXN) application on the secondary side of a transformer
- Measurement function (CVMMXN) application for a generator

For each of them detail explanation and final list of selected setting parameters values will be provided.

The available measured values of an IED are depending on the actual hardware (TRM) and the logic configuration made in PCM600.

12.4.4.1 Measurement function application for a 110kV OHL

Single line diagram for this application is given in figure 133:
In order to monitor, supervise and calibrate the active and reactive power as indicated in figure 133 it is necessary to do the following:

1. Set correctly CT and VT data and phase angle reference channel PhaseAngleRef (see settings for analog input modules in PCM600) using PCM600 for analog input channels.
2. Connect, in PCM600, measurement function to three-phase CT and VT inputs.
3. Set under General settings parameters for the Measurement function:
 - general settings as shown in table 17.
 - level supervision of active power as shown in table 18.
 - calibration parameters as shown in table 19.

Table 17: General settings parameters for the Measurement function

<table>
<thead>
<tr>
<th>Setting</th>
<th>Short Description</th>
<th>Selected value</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation</td>
<td>Operation Off/On</td>
<td>On</td>
<td>Function must be On</td>
</tr>
<tr>
<td>PowAmpFact</td>
<td>Amplitude factor to scale power calculations</td>
<td>1.000</td>
<td>It can be used during commissioning to achieve higher measurement accuracy. Typically no scaling is required</td>
</tr>
<tr>
<td>PowAngComp</td>
<td>Angle compensation for phase shift between measured I & U</td>
<td>0.0</td>
<td>It can be used during commissioning to achieve higher measurement accuracy. Typically no angle compensation is required. As well here required direction of P & Q measurement is towards protected object (as per IED internal default direction)</td>
</tr>
<tr>
<td>Mode</td>
<td>Selection of measured current and voltage</td>
<td>L1, L2, L3</td>
<td>All three phase-to-earth VT inputs are available</td>
</tr>
<tr>
<td>k</td>
<td>Low pass filter coefficient for power measurement, U and I</td>
<td>0.00</td>
<td>Typically no additional filtering is required</td>
</tr>
</tbody>
</table>
Table 18: Settings parameters for level supervision

<table>
<thead>
<tr>
<th>Setting</th>
<th>Short Description</th>
<th>Selected value</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMin</td>
<td>Minimum value</td>
<td>-100</td>
<td>Minimum expected load</td>
</tr>
<tr>
<td>PMax</td>
<td>Minimum value</td>
<td>100</td>
<td>Maximum expected load</td>
</tr>
<tr>
<td>PZeroDb</td>
<td>Zero point clamping in 0.001% of range</td>
<td>3000</td>
<td>Set zero point clamping to 45 MW that is, 3% of 200 MW</td>
</tr>
<tr>
<td>PRepTyp</td>
<td>Reporting type</td>
<td>db</td>
<td>Select amplitude deadband supervision</td>
</tr>
<tr>
<td>PDbReplnt</td>
<td>Cycl: Report interval (s), Db: In % of range, Int Db: In %</td>
<td>2</td>
<td>Set ±Δdb=30 MW that is, 2% (larger changes than 30 MW will be reported)</td>
</tr>
<tr>
<td>PHIHiLim</td>
<td>High High limit (physical value)</td>
<td>60</td>
<td>High alarm limit that is, extreme overload alarm</td>
</tr>
<tr>
<td>PHIlim</td>
<td>High limit (physical value)</td>
<td>50</td>
<td>High warning limit that is, overload warning</td>
</tr>
<tr>
<td>PLowLim</td>
<td>Low limit (physical value)</td>
<td>-50</td>
<td>Low warning limit. Not active</td>
</tr>
<tr>
<td>PLowLowLim</td>
<td>Low Low limit (physical value)</td>
<td>-60</td>
<td>Low alarm limit. Not active</td>
</tr>
<tr>
<td>PLimHyst</td>
<td>Hysteresis value in % of range (common for all limits)</td>
<td>2</td>
<td>Set ±Δ Hysteresis MW that is, 2%</td>
</tr>
</tbody>
</table>

Table 19: Settings for calibration parameters

<table>
<thead>
<tr>
<th>Setting</th>
<th>Short Description</th>
<th>Selected value</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAmpComp5</td>
<td>Amplitude factor to calibrate current at 5% of Ir</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>IAmpComp30</td>
<td>Amplitude factor to calibrate current at 30% of Ir</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>IAmpComp100</td>
<td>Amplitude factor to calibrate current at 100% of Ir</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>UAmpComp5</td>
<td>Amplitude factor to calibrate voltage at 5% of Ur</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>UAmpComp30</td>
<td>Amplitude factor to calibrate voltage at 30% of Ur</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>UAmpComp100</td>
<td>Amplitude factor to calibrate voltage at 100% of Ur</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>IAngComp5</td>
<td>Angle calibration for current at 5% of Ir</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>IAngComp30</td>
<td>Angle pre-calibration for current at 30% of Ir</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>IAngComp100</td>
<td>Angle pre-calibration for current at 100% of Ir</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>
12.5 Event counter CNTGGIO

12.5.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event counter</td>
<td>CNTGGIO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12.5.2 Application

Event counter (CNTGGIO) has six counters which are used for storing the number of times each counter has been activated. CNTGGIO can be used to count how many times a specific function, for example the tripping logic, has issued a trip signal. All six counters have a common blocking and resetting feature.

12.5.3 Setting guidelines

Operation: Sets the operation of Event counter (CNTGGIO) On or Off.

12.6 Limit counter L4UFCNT

12.6.1 Function description

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit counter</td>
<td>L4UFCNT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12.6.2 Application

Limit counter (L4UFCNT) is intended for applications where positive and/or negative flanks on a binary signal need to be counted.

The limit counter provides four independent limits to be checked against the accumulated counted value. The four limit reach indication outputs can be utilized to initiate proceeding actions. The output indicators remain high until the reset of the function.

It is also possible to initiate the counter from a non-zero value by resetting the function to the wanted initial value provided as a setting.
If applicable, the counter can be set to stop or rollover to zero and continue counting after reaching the maximum count value. The steady overflow output flag indicates the next count after reaching the maximum count value. It is also possible to set the counter to rollover and indicate the overflow as a pulse, which lasts up to the first count after rolling over to zero. In this case, periodic pulses will be generated at multiple overflow of the function.

12.6.2.1 Setting guidelines

The parameters for Limit counter L4UFCNT are set in the local HMI or PCM600.

12.7 Disturbance report

12.7.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disturbance report</td>
<td>DRPRDRE</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Analog input signals</td>
<td>A1RADR</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Analog input signals</td>
<td>A2RADR</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Analog input signals</td>
<td>A3RADR</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Analog input signals</td>
<td>A4RADR</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Binary input signals</td>
<td>B1RBDY</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Binary input signals</td>
<td>B2RBDY</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Binary input signals</td>
<td>B3RBDY</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Binary input signals</td>
<td>B4RBDY</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Binary input signals</td>
<td>B5RBDY</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Binary input signals</td>
<td>B6RBDY</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

12.7.2 Application

To get fast, complete and reliable information about disturbances in the primary and/or in the secondary system it is very important to gather information on fault currents, voltages and events. It is also important having a continuous event-logging to be able to monitor in an overview perspective. These tasks are accomplished by the disturbance report function DRPRDRE and facilitate a better understanding of the power system behavior and related primary and secondary equipment during and after a disturbance. An analysis of the recorded data provides valuable information that can be used to explain a disturbance, basis for change of IED setting plan, improve existing equipment, and so on. This information can also be used in a longer perspective when planning for and designing new installations, that is, a disturbance recording could be a part of Functional Analysis (FA).
Disturbance report DRPRDRE, always included in the IED, acquires sampled data of all selected analog and binary signals connected to the function blocks that is,

- maximum 30 external analog signals,
- 10 internal derived analog signals, and
- 96 binary signals.

Disturbance report function is a common name for several functions that is, Indications, Event recorder, Event list, Trip value recorder, Disturbance recorder.

Disturbance report function is characterized by great flexibility as far as configuration, starting conditions, recording times, and large storage capacity are concerned. Thus, disturbance report is not dependent on the operation of protective functions, and it can record disturbances that were not discovered by protective functions for one reason or another. Disturbance report can be used as an advanced stand-alone disturbance recorder.

Every disturbance report recording is saved in the IED. The same applies to all events, which are continuously saved in a ring-buffer. Local HMI can be used to get information about the recordings, and the disturbance report files may be uploaded in the PCM600 using the Disturbance handling tool, for report reading or further analysis (using WaveWin, that can be found on the PCM600 installation CD). The user can also upload disturbance report files using FTP or MMS (over 61850–8–1) clients.

If the IED is connected to a station bus (IEC 61850-8-1), the disturbance recorder (record made and fault number) and the fault locator information are available as GOOSE or Report Control data.

12.7.3 Setting guidelines

The setting parameters for the Disturbance report function DRPRDRE are set via the local HMI or PCM600.

It is possible to handle up to 40 analog and 96 binary signals, either internal signals or signals coming from external inputs. The binary signals are identical in all functions that is, Disturbance recorder, Event recorder, Indication, Trip value recorder and Event list function.

User-defined names of binary and analog input signals is set using PCM600. The analog and binary signals appear with their user-defined names. The name is used in all related functions (Disturbance recorder, Event recorder, Indication, Trip value recorder and Event list).

Figure 134 shows the relations between Disturbance report, included functions and function blocks. Event list, Event recorder and Indication uses information from the binary input function blocks (BxRBDR). Trip value recorder uses analog information from the analog input function blocks (AxRAWR). Disturbance report function acquires information from both AxRAWR and BxRBDR.
For Disturbance report function there are a number of settings which also influences the sub-functions.

Three LED indications placed above the LCD screen makes it possible to get quick status information about the IED.

- **Green LED:**
 - Steady light: In Service
 - Flashing light: Internal failure
 - Dark: No power supply

- **Yellow LED:**
 - Function controlled by SetLEDn setting in Disturbance report function.

- **Red LED:**
 - Function controlled by SetLEDn setting in Disturbance report function.

Operation

The operation of Disturbance report function DRPRDRE has to be set On or Off. If Off is selected, note that no disturbance report is registered, and none sub-function will operate (the only general parameter that influences Event list).

Operation = Off:
Disturbance reports are not stored.

LED information (yellow - start, red - trip) is not stored or changed.

Operation = On:

- Disturbance reports are stored, disturbance data can be read from the local HMI and from a PC using PCM600.
- LED information (yellow - start, red - trip) is stored.

Every recording will get a number (0 to 999) which is used as identifier (local HMI, disturbance handling tool and IEC 61850). An alternative recording identification is date, time and sequence number. The sequence number is automatically increased by one for each new recording and is reset to zero at midnight. The maximum number of recordings stored in the IED is 100. The oldest recording will be overwritten when a new recording arrives (FIFO).

To be able to delete disturbance records, **Operation** parameter has to be **On**.

The maximum number of recordings depend on each recordings total recording time. Long recording time will reduce the number of recordings to less than 100.

The IED flash disk should NOT be used to store any user files. This might cause disturbance recordings to be deleted due to lack of disk space.

Recording times

The different recording times for Disturbance report are set (the pre-fault time, post-fault time, and limit time). These recording times affect all sub-functions more or less but not the Event list function.

Prefault recording time (**PreFaultRecT**) is the recording time before the starting point of the disturbance. The setting should be at least 0.1 s to ensure enough samples for the estimation of pre-fault values in the Trip value recorder function.

Postfault recording time (**PostFaultRecT**) is the maximum recording time after the disappearance of the trig-signal (does not influence the Trip value recorder function).

Recording time limit (**TimeLimit**) is the maximum recording time after trig. The parameter limits the recording time if some trigging condition (fault-time) is very long or permanently set (does not influence the Trip value recorder function).
Post retrigger (PostRetrig) can be set to On or Off. Makes it possible to choose performance of Disturbance report function if a new trig signal appears in the post-fault window.

PostRetrig = Off

The function is insensitive for new trig signals during post fault time.

PostRetrig = On

The function completes current report and starts a new complete report that is, the latter will include:

- new pre-fault- and fault-time (which will overlap previous report)
- events and indications might be saved in the previous report too, due to overlap
- new trip value calculations if installed, in operation and started

Operation in test mode

If the IED is in test mode and OpModeTest = Off. Disturbance report function does not save any recordings and no LED information is displayed.

If the IED is in test mode and OpModeTest = On. Disturbance report function works in normal mode and the status is indicated in the saved recording.

12.7.3.1 Binary input signals

Up to 96 binary signals can be selected among internal logical and binary input signals. The configuration tool is used to configure the signals.

For each of the 96 signals, it is also possible to select if the signal is to be used as a trigger for the start of the Disturbance report and if the trigger should be activated on positive (1) or negative (0) slope.

OperationN: Disturbance report may trig for binary input N (On) or not (Off).

TrigLevelN: Trig on positive (Trig on 1) or negative (Trig on 0) slope for binary input N.

12.7.3.2 Analog input signals

Up to 40 analog signals can be selected among internal analog and analog input signals. PCM600 is used to configure the signals.

The analog trigger of Disturbance report is not affected if analog input M is to be included in the disturbance recording or not (OperationM = On/Off).

If OperationM = Off, no waveform (samples) will be recorded and reported in graph. However, Trip value, pre-fault and fault value will be recorded and reported. The input channel can still be used to trig the disturbance recorder.
If $\text{Operation}_M = \text{On}$, waveform (samples) will also be recorded and reported in graph.

NomValue_M: Nominal value for input M.

$\text{OverTrigOp}_M, \text{UnderTrigOp}_M$: Over or Under trig operation, Disturbance report may trig for high/low level of analog input M (On) or not (Off).

$\text{OverTrigLe}_M, \text{UnderTrigLe}_M$: Over or under trig level, Trig high/low level relative nominal value for analog input M in percent of nominal value.

12.7.3.3 Sub-function parameters

All functions are in operation as long as Disturbance report is in operation.

Indications

Indication_M: Indication mask for binary input N. If set (Show), a status change of that particular input, will be fetched and shown in the disturbance summary on local HMI. If not set (Hide), status change will not be indicated.

SetLED_N: Set yellow Start and red Trip LED on local HMI in front of the IED if binary input N changes status.

Disturbance recorder

Operation_M: Analog channel M is to be recorded by the disturbance recorder (On) or not (Off).

If $\text{Operation}_M = \text{Off}$, no waveform (samples) will be recorded and reported in graph. However, Trip value, pre-fault and fault value will be recorded and reported. The input channel can still be used to trig the disturbance recorder.

If $\text{Operation}_M = \text{On}$, waveform (samples) will also be recorded and reported in graph.

Event recorder

Event recorder function has no dedicated parameters.

Trip value recorder

ZeroAngleRef: The parameter defines which analog signal that will be used as phase angle reference for all other analog input signals. This signal will also be used for frequency measurement and the measured frequency is used when calculating trip values. It is suggested to point out a sampled voltage input signal, for example, a line or busbar phase voltage (channel 1-30).

Event list

Event list function has no dedicated parameters.

12.7.3.4 Consideration

The density of recording equipment in power systems is increasing, since the number of modern IEDs, where recorders are included, is increasing. This leads to a vast number of recordings at every single disturbance and a lot of information has to be
handled if the recording functions do not have proper settings. The goal is to optimize
the settings in each IED to be able to capture just valuable disturbances and to
maximize the number that is possible to save in the IED.

The recording time should not be longer than necessary (PostFaultrecT and
TimeLimit).

• Should the function record faults only for the protected object or cover more?
• How long is the longest expected fault clearing time?
• Is it necessary to include reclosure in the recording or should a persistent fault
generate a second recording (PostRetrig)?

Minimize the number of recordings:

• Binary signals: Use only relevant signals to start the recording that is, protection
 trip, carrier receive and/or start signals.
• Analog signals: The level triggering should be used with great care, since
 unfortunate settings will cause enormously number of recordings. If nevertheless
 analog input triggering is used, chose settings by a sufficient margin from normal
 operation values. Phase voltages are not recommended for trigging.

Remember that values of parameters set elsewhere are linked to the information on a
report. Such parameters are, for example, station and object identifiers, CT and VT
ratios.

12.8 Measured value expander block MVEXP

12.8.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured value expander block</td>
<td>MVEXP</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

12.8.2 Application

The current and voltage measurements functions (CVMMXN, CMMXU, VMMXU
and VNMMUXU), current and voltage sequence measurement functions (CMSQI
and VMSQI) and IEC 61850 generic communication I/O functions (MVGGIO) are
provided with measurement supervision functionality. All measured values can be
supervised with four settable limits, that is low-low limit, low limit, high limit and
high-high limit. The measure value expander block (MVEXP) has been introduced to
be able to translate the integer output signal from the measuring functions to 5 binary
signals, that is below low-low limit, below low limit, normal, above high-high limit or
above high limit. The output signals can be used as conditions in the configurable
logic.
12.8.3 Setting guidelines

The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600).

GlobalBaseSel: Selects the global base value group used by the function to define *(IBase), *(UBase) and *(SBase).*

12.9 Fault locator LMBRFLO

12.9.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault locator</td>
<td>LMBRFLO</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

12.9.2 Application

The main objective of line protection and monitoring IEDs is fast, selective and reliable operation for faults on a protected line section. Besides this, information on distance to fault is very important for those involved in operation and maintenance. Reliable information on the fault location greatly decreases the downtime of the protected lines and increases the total availability of a power system.

The fault locator is started with the input CALCDIST to which trip signals indicating in-line faults are connected, typically distance protection zone 1 and accelerating zone. The disturbance report must also be started for the same faults since the function uses pre- and post-fault information from the trip value recorder function.

Beside this information the function must be informed about faulted phases for correct loop selection. The following loops are used for different types of faults:

- for 3 phase faults: loop L1 - L2.
- for 2 phase faults: the loop between the faulted phases.
- for 2 phase-to-earth faults: the loop between the faulted phases.
- for phase-to-earth faults: the phase-to-earth loop.

LMBRFLO function indicates the distance to fault as a percentage of the line length, in kilometers or miles as selected on the local HMI. *LineLengthUnit* setting is used to select the unit of length either, in *kilometer* or *miles* for the distance to fault. The distance to the fault, which is calculated with a high accuracy, is stored together with the recorded disturbances. This information can be read on the local HMI, uploaded to PCM600 and is available on the station bus according to IEC 61850–8–1.
The fault locator LMBRFLO function, supports kilometer and mile for the line length unit. The fault distance will be presented with the same unit as the line length and is mapped to IEC61850 -8-1 communication protocol, where the fault distance is supposed to be in kilometer (km). Select the line length unit to kilometer for compliance with IEC61850.

The distance to fault can be recalculated on the local HMI by using the measuring algorithm for different fault loops or for changed system parameters.

12.9.3 Setting guidelines

The parameters for the Fault locator function are set via the local HMI or PCM600. The Fault locator algorithm uses phase voltages, phase currents and residual current in observed bay (protected line) and residual current from a parallel bay (line, which is mutual coupled to protected line).

The Fault locator has close connection to the Disturbance report function. All external analog inputs (channel 1-30), connected to the Disturbance report function, are available to the Fault locator and the function uses information calculated by the Trip value recorder. After allocation of analog inputs to the Disturbance report function, the user has to point out which analog inputs to be used by the Fault locator. According to the default settings the first four analog inputs are currents and next three are voltages in the observed bay (no parallel line expected since chosen input is set to zero). Use the Parameter Setting tool within PCM600 for changing analog configuration.

The list of parameters explains the meaning of the abbreviations. Figure 135 also presents these system parameters graphically. Note, that all impedance values relate to their primary values and to the total length of the protected line.

![Simplified network configuration with network data, required for settings of the fault location-measuring function](ANSI05000045_2_en.vsd)

For a single-circuit line (no parallel line), the figures for mutual zero-sequence impedance \(X_{0M}, R_{0M} \) and analog input are set at zero.
Power system specific parameter settings shown in table 2 are not general settings but specific setting included in the setting groups, that is, this makes it possible to change conditions for the Fault locator with short notice by changing setting group.

The source impedance is not constant in the network. However, this has a minor influence on the accuracy of the distance-to-fault calculation, because only the phase angle of the distribution factor has an influence on the accuracy. The phase angle of the distribution factor is normally very low and practically constant, because the positive sequence line impedance, which has an angle close to 90°, dominates it. Always set the source impedance resistance to values other than zero. If the actual values are not known, the values that correspond to the source impedance characteristic angle of 85° give satisfactory results.

12.9.3.1 Connection of analog currents

Connection diagram for analog currents is shown in figure 136.

Figure 136: Example of connection of parallel line IN for Fault locator LMBRFLO
12.10 Station battery supervision SPVNZBAT

12.10.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station battery supervision function</td>
<td>SPVNZBAT</td>
<td>U<></td>
<td>-</td>
</tr>
</tbody>
</table>

12.10.2 Application

Usually, the load on the DC system is a constant resistance load, for example, lamps, LEDs, electronic instruments and electromagnetic contactors in a steady state condition. A transient RL load exists when breakers are tripped or closed.

The battery voltage has to be continuously monitored as the batteries can withstand moderate overvoltage and undervoltage only for a short period of time.

- If the battery is subjected to a prolonged or frequent overvoltage, it leads to the ageing of the battery, which may lead to the earlier failure of the battery. The other occurrences may be the thermal runaway, generation of heat or increased amount of hydrogen gas and the depletion of fluid in case of valve regulated batteries.

- If the value of the charging voltage drops below the minimum recommended float voltage of the battery, the battery does not receive sufficient charging current to offset internal losses, resulting in a gradual loss of capacity.

- If a lead acid battery is subjected to a continuous undervoltage, heavy sulfation occurs on the plates, which leads to the loss of the battery capacity.

12.11 Insulation gas monitoring function SSIMG

12.11.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulation gas monitoring function</td>
<td>SSIMG</td>
<td>-</td>
<td>63</td>
</tr>
</tbody>
</table>

12.11.2 Application

Insulation gas monitoring function (SSIMG) is used for monitoring the circuit breaker condition. Proper arc extinction by the compressed gas in the circuit breaker is very important. When the pressure becomes too low compared to the required value, the
circuit breaker operation gets blocked to minimize the risk of internal failure. Binary information based on the gas pressure in the circuit breaker is used as input signals to the function. In addition to that, the function generates alarms based on received information.

12.12 Insulation liquid monitoring function SSIML

12.12.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulation liquid monitoring function</td>
<td>SSIML</td>
<td>-</td>
<td>71</td>
</tr>
</tbody>
</table>

12.12.2 Application

Insulation liquid monitoring function (SSIML) is used for monitoring the circuit breaker condition. Proper arc extinction by the compressed oil in the circuit breaker is very important. When the level becomes too low, compared to the required value, the circuit breaker operation is blocked to minimize the risk of internal failures. Binary information based on the oil level in the circuit breaker is used as input signals to the function. In addition to that, the function generates alarms based on received information.

12.13 Circuit breaker condition monitoring SSCBR

12.13.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit breaker condition monitoring</td>
<td>SSCBR</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

12.13.2 Application

SSCBR includes different metering and monitoring subfunctions.

Circuit breaker status

Circuit breaker status monitors the position of the circuit breaker, that is, whether the breaker is in an open, closed or intermediate position.
Circuit breaker operation monitoring

The purpose of the circuit breaker operation monitoring is to indicate that the circuit breaker has not been operated for a long time. The function calculates the number of days the circuit breaker has remained inactive, that is, has stayed in the same open or closed state. There is also the possibility to set an initial inactive day.

Breaker contact travel time

High travelling times indicate the need for maintenance of the circuit breaker mechanism. Therefore, detecting excessive travelling time is needed. During the opening cycle operation, the main contact starts opening. The auxiliary contact A opens, the auxiliary contact B closes, and the main contact reaches its opening position. During the closing cycle, the first main contact starts closing. The auxiliary contact B opens, the auxiliary contact A closes, and the main contact reaches its close position. The travel times are calculated based on the state changes of the auxiliary contacts and the adding correction factor to consider the time difference of the main contact's and the auxiliary contact's position change.

Operation counter

Routine maintenance of the breaker like the lubricating breaker mechanism, is generally based on a number of operations. A suitable threshold setting, to raise an alarm when the number of operation cycle exceeds the set limit, helps preventive maintenance. This can also be used to indicate the requirement for oil sampling for dielectric testing in case of an oil circuit breaker.

The change of state can be detected from the binary input of the auxiliary contact. There is a possibility to set an initial value for the counter which can be used to initialize this functionality after a period of operation or in case of refurbished primary equipment.

Accumulation of $I^y t$

Accumulation of $I^y t$ calculates the accumulated energy $\Sigma I^y t$ where the factor y is known as the current exponent. The factor y depends on the type of the circuit breaker. For oil circuit breakers the factor y is normally 2. In case of a high-voltage system, the factor y can be 1.4...1.5.

Remaining life of the breaker

Every time the breaker operates, the life of the circuit breaker reduces due to wearing. The wearing in the breaker depends on the tripping current, and the remaining life of the breaker is estimated from the circuit breaker trip curve provided by the manufacturer.

Example for estimating the remaining life of a circuit breaker
Figure 137: Trip Curves for a typical 12 kV, 630 A, 16 kA vacuum interrupter

Nr the number of closing-opening operations allowed for the circuit breaker
Ia the current at the time of tripping of the circuit breaker

Calculation of Directional Coefficient

The directional coefficient is calculated according to the formula:
Directional Coef = \log\left(\frac{B}{A}\right) = -2.2609
\log\left(\frac{I_f}{I_r}\right)

(Equation 93)

\begin{align*}
I_r & \quad \text{Rated operating current} = 630 \text{ A} \\
I_f & \quad \text{Rated fault current} = 16 \text{ kA} \\
A & \quad \text{Op number rated} = 30000 \\
B & \quad \text{Op number fault} = 20
\end{align*}

Calculation for estimating the remaining life

The equation shows that there are 30,000 possible operations at the rated operating current of 630 A and 20 operations at the rated fault current 16 kA. Therefore, if the tripping current is 10 kA, one operation at 10 kA is equivalent to 30,000/500=60 operations at the rated current. It is also assumed that prior to this tripping, the remaining life of the circuit breaker is 15,000 operations. Therefore, after one operation of 10 kA, the remaining life of the circuit breaker is 15,000-60=14,940 at the rated operating current.

Spring charging time indication

For normal circuit breaker operation, the circuit breaker spring should be charged within a specified time. Therefore, detecting long spring charging time indicates the time for circuit breaker maintenance. The last value of the spring charging time can be given as a service value.

Gas pressure supervision

The gas pressure supervision monitors the gas pressure inside the arc chamber. When the pressure becomes too low compared to the required value, the circuit breaker operations are locked. A binary input is available based on the pressure levels in the function, and alarms are generated based on these inputs.
Section 13 Metering

13.1 Pulse counter PCGGIO

13.1.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 80817 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse counter</td>
<td>PCGGIO</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

13.1.2 Application

Pulse counter (PCGGIO) function counts externally generated binary pulses, for instance pulses coming from an external energy meter, for calculation of energy consumption values. The pulses are captured by the binary input module (BIO), and read by the PCGGIO function. The number of pulses in the counter is then reported via the station bus to the substation automation system or read via the station monitoring system as a service value. When using IEC 61850–8–1, a scaled service value is available over the station bus.

The normal use for this function is the counting of energy pulses from external energy meters. An optional number of inputs from the binary input module in IED can be used for this purpose with a frequency of up to 10 Hz. PCGGIO can also be used as a general purpose counter.

13.1.3 Setting guidelines

From PCM600, these parameters can be set individually for each pulse counter:

- **Operation**: Off/On
- **tReporting**: 0-3600s
- **EventMask**: NoEvents/ReportEvents

The configuration of the inputs and outputs of PCGGIO function block is made with PCM600.

On the binary input output module (BIO), the debounce filter default time is set to 5 ms, that is, the counter suppresses pulses with a pulse length less than 5 ms. The binary
input channels on the binary input output module (BIO) have individual settings for debounce time, oscillation count and oscillation time. The values can be changed in the local HMI and PCM600 under **Main menu/Configuration/I/O modules**

The debounce time should be set to the same value for all channels on the board.

The setting is individual for all input channels on the binary input output module (BIO), that is, if changes of the limits are made for inputs not connected to the pulse counter, it will not influence the inputs used for pulse counting.

13.2 Energy calculation and demand handling ETPMMTR

13.2.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 80617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy calculation and demand handling</td>
<td>ETPMMTR</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

13.2.2 Application

Energy calculation and demand handling function ETPMMTR is intended for statistics of the forward and reverse active and reactive energy. It has a high accuracy basically given by the measurements function (CVMMXN). This function has a site calibration possibility to further increase the total accuracy.

The function is connected to the instantaneous outputs of (CVMMXN) as shown in figure 138.

![Figure 138: Connection of energy calculation and demand handling function ETPMMTR to the measurements function (CVMMXN)](IEC09000106.vsd)
The energy values can be read through communication in MWh and MVarh in monitoring tool of PCM600 and/or alternatively the values can be presented on the local HMI. The local HMI graphical display is configured with PCM600 Graphical display editor tool (GDE) with a measuring value which is selected to the active and reactive component as preferred. All four values can also be presented.

Maximum demand values are presented in MWh or MVarh in the same way.

Alternatively, the values can be presented with use of the pulse counters function (PCGGIO). The output values are scaled with the pulse output setting values \(EAF\text{AccPlsQty}, \ EAR\text{AccPlsQty}, \ ERF\text{AccPlsQty} \) and \(ERR\text{AccPlsQty} \) of the energy metering function and then the pulse counter can be set-up to present the correct values by scaling in this function. Pulse counter values can then be presented on the local HMI in the same way and/or sent to the SA system through communication where the total energy then is calculated by summation of the energy pulses. This principle is good for very high values of energy as the saturation of numbers else will limit energy integration to about one year with 50 kV and 3000 A. After that the accumulation will start on zero again.

13.2.3 Setting guidelines

The parameters are set via the local HMI or PCM600.

The following settings can be done for the energy calculation and demand handling function ETPMMTR:

- **GlobalBaseSel**: Selects the global base value group used by the function to define \((IBase), (UBase) \) and \((SBase) \).

- **Operation**: Off/On

- **tEnergy**: Time interval when energy is measured.

- **StartAcc**: Off/On is used to switch the accumulation of energy on and off.

The input signal STACC is used to start accumulation. Input signal STACC cannot be used to halt accumulation. The energy content is reset every time STACC is activated. STACC can for example, be used when an external clock is used to switch two active energy measuring function blocks on and off to have indication of two tariffs.

- **tEnergyOnPls**: gives the pulse length ON time of the pulse. It should be at least 100 ms when connected to the Pulse counter function block. Typical value can be 100 ms.

- **tEnergyOffPls**: gives the OFF time between pulses. Typical value can be 100 ms.

- **EAF\text{AccPlsQty} and EAR\text{AccPlsQty}**: gives the MWh value in each pulse. It should be selected together with the setting of the Pulse counter (PCGGIO) settings to give the correct total pulse value.
ERFAccPlsQty and ERRAccPlsQty: gives the MVarh value in each pulse. It should be selected together with the setting of the Pulse counter (PCGGIO) settings to give the correct total pulse value.

For the advanced user there are a number of settings for direction, zero clamping, max limit, and so on. Normally, the default values are suitable for these parameters.
Section 14 Station communication

14.1 IEC61850-8-1 communication protocol

14.1.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 61850-8-1 communication protocol</td>
<td>IEC 61850-8-1</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

14.1.2 Application

IEC 61850-8-1 communication protocol allows vertical communication to HSI clients and allows horizontal communication between two or more intelligent electronic devices (IEDs) from one or several vendors to exchange information and to use it in the performance of their functions and for correct co-operation.

GOOSE (Generic Object Oriented Substation Event), which is a part of IEC 61850–8–1 standard, allows the IEDs to communicate state and control information amongst themselves, using a publish-subscribe mechanism. That is, upon detecting an event, the IED(s) use a multi-cast transmission to notify those devices that have registered to receive the data. An IED can, by publishing a GOOSE message, report its status. It can also request a control action to be directed at any device in the network.

Figure 139 shows the topology of an IEC 61850–8–1 configuration. IEC 61850–8–1 specifies only the interface to the substation LAN. The LAN itself is left to the system integrator.
Figure 139: Example of a communication system with IEC 61850–8–1

Figure 140 shows the GOOSE peer-to-peer communication.

Figure 140: Example of a broadcasted GOOSE message
14.1.2.1 Horizontal communication via GOOSE

GOOSE messages are sent in horizontal communication between the IEDs. The information, which is exchanged, is used for station wide interlocking, breaker failure protection, busbar voltage selection and so on.

The simplified principle is shown in Figure 141 and can be described as follows. When IED1 has decided to transmit the data set it forces a transmission via the station bus. All other IEDs receive the data set, but only those who have this data set in their address list will take it and keep it in an input container. It is defined, that the receiving IED will take the content of the received data set and makes it available for the application configuration.

![Figure 141: SMT: GOOSE principle and signal routing with SMT](IEC08000145.vsd)

Special function blocks take the data set and present it via the function block as output signals for application functions in the application configuration. Different GOOSE receive function blocks are available for the specific tasks.

SMT links the different data object attributes (for example stVal or magnitude) to the output signal to make it available for functions in the application configuration. When a matrix cell array is marked red the IEC 61850–8–1 data attribute type does not fit together, even if the GOOSE receive function block is the partner. SMT checks this on the content of the received data set. See Figure 142.
Figure 142: SMT: GOOSE marshalling with SMT

GOOSE receive function blocks extract process information, received by the data set, into single attribute information that can be used within the application configuration. Crosses in the SMT matrix connect received values to the respective function block signal in SMT, see Figure 143.

> The corresponding quality attribute is automatically connected by SMT. This quality attribute is available in ACT, through the outputs of the available GOOSE function blocks.
14.1.3 Setting guidelines

There are two settings related to the IEC 61850–8–1 protocol:

Operation User can set IEC 61850 communication to On or Off.

GOOSE has to be set to the Ethernet link where GOOSE traffic shall be send and received.

IEC 61850–8–1 specific data (logical nodes etc.) per included function in an IED can be found in the communication protocol manual for IEC 61850–8–1.

14.2 DNP3 protocol

DNP3 (Distributed Network Protocol) is a set of communications protocols used to communicate data between components in process automation systems. For a detailed description of the DNP3 protocol, see the DNP3 Communication protocol manual.
14.3 **IEC 60870-5-103 communication protocol**

IEC 60870-5-103 is an unbalanced (master-slave) protocol for coded-bit serial communication exchanging information with a control system, and with a data transfer rate up to 19200 bit/s. In IEC terminology, a primary station is a master and a secondary station is a slave. The communication is based on a point-to-point principle. The master must have software that can interpret IEC 60870-5-103 communication messages.

The Communication protocol manual for IEC 60870-5-103 includes the 650 series vendor specific IEC 60870-5-103 implementation.

IEC 60870-5-103 protocol can be configured to use either the optical serial or RS485 serial communication interface on the COM03 or the COM05 communication module. The functions Operation selection for optical serial OPTICALPROT and Operation selection for RS485 RS485PROT are used to select the communication interface.

See the Engineering manual for IEC103 60870-5-103 engineering procedures in PCM600.

The function IEC60870-5-103 Optical serial communication, OPTICAL103, is used to configure the communication parameters for the optical serial communication interface. The function IEC60870-5-103 serial communication for RS485, RS485103, is used to configure the communication parameters for the RS485 serial communication interface.

14.4 **IEC 61850-8-1 redundant station bus communication**

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850-8-1 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>System component for parallel redundancy protocol</td>
<td>PRPSTATUS</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

14.5 **Application**

Parallel redundancy protocol status (PRPSTATUS) is used to supervise and assure redundant Ethernet communication over two channels. This will secure data transfer even though one communication channel might not be available for some reason. PRPSTATUS provides redundant communication over the station bus running IEC 61850-8-1 protocol. The redundant communication uses port L1_A and L1_B on the COM3 module.
14.6 Setting guidelines

The redundant station bus communication is configured using the local HMI, Main Menu/Configuration/Communication/TCP-IP configuration/ETHLAN1_AB

The settings can be viewed and OperationMode can be set in the Parameter Setting tool in PCM600 under IED Configuration/Communication/TCP-IP configuration/ETHLAN1_AB where

OperationMode can be set to Off, NonRedundant(A) or PRP(A+B). The redundant communication will be activated when this parameter is set to PRP(A+B).
The \textit{ETHLAN1_AB} in the Parameter Setting tool is relevant only when the COM03 module is present.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{IEC1300009-1-en.vsd}
\caption{PRP1 Configured in the Parameter Setting tool}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{IEC1300010-1-en.vsd}
\caption{Lock/Unlock parameter}
\end{figure}
Figure 147: PST screen: OperationMode is set to PRP(A+B)
Section 15 Basic IED functions

15.1 Self supervision with internal event list

15.1.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60870-5-103 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal error signal</td>
<td>INTERRSIG</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Internal event list</td>
<td>SELFSUPEVLST</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

15.1.2 Application

The protection and control IEDs have many functions included. Self supervision with internal event list (SELFSUPEVLST) and internal error signals (INTERRSIG) function provide supervision of the IED. The fault signals make it easier to analyze and locate a fault.

Both hardware and software supervision is included and it is also possible to indicate possible faults through a hardware contact on the power supply module and/or through the software communication.

Internal events are generated by the built-in supervisory functions. The supervisory functions supervise the status of the various modules in the IED and, in case of failure, a corresponding event is generated. Similarly, when the failure is corrected, a corresponding event is generated.

The event list is updated every 10s hence, an event will not be visible in the event list as soon as it is created.

Apart from the built-in supervision of the various modules, events are also generated when the status changes for the:

- built-in real time clock (in operation/out of order).
- external time synchronization (in operation/out of order).
- Change lock (on/off)

Events are also generated:

- whenever any setting in the IED is changed.
The internal events are time tagged with a resolution of 1 ms and stored in a list. The list can store up to 40 events. The list is based on the FIFO principle, that is, when it is full, the oldest event is overwritten. The list can be cleared via the local HMI.

The list of internal events provides valuable information, which can be used during commissioning and fault tracing.

15.2 Time synchronization

15.2.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time synchronization</td>
<td>TIMESYNCHGEN</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time system, summer time begins</td>
<td>DSTBEGIN</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time system, summer time ends</td>
<td>DSTEND</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time synchronization via IRIG-B</td>
<td>IRIG-B</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time synchronization via SNTP</td>
<td>SNTP</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time zone from UTC</td>
<td>TIMEZONE</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

15.2.2 Application

Use a common global source for example GPS time synchronization inside each substation as well as inside the area of the utility responsibility to achieve a common
time base for the IEDs in a protection and control system. This makes comparison and analysis of events and disturbance data between all IEDs in the power system possible.

Time-tagging of internal events and disturbances are an excellent help when evaluating faults. Without time synchronization, only the events within the IED can be compared to one another. With time synchronization, events and disturbances within the entire station, and even between line ends, can be compared during evaluation.

In the IED, the internal time can be synchronized from a number of sources:

• SNTP
• IRIG-B
• DNP
• IEC60870-5-103

Micro SCADA OPC server should not be used as a time synchronization source.

15.2.3 Setting guidelines

System time
The time is only possible to set inside the IED via the local HMI by navigating to Configuration/Time/SYSTEMTIME with year, month, day, hour, minute and second.

Synchronization
With external time synchronization the setting how to synchronize for the real-time clock (TIME) are set via local HMI or PCM600.

TimeSynch
The setting TIMESYNCGEN is used to set the source of the time synchronization. The setting alternatives are:

CoarseSyncSrc which can have the following values:

• Off
• SNTP
• DNP
• IEC60870-5-103

FineSyncSource which can have the following values:
The parameter **SyncMaster** defines if the IED is a master, or not a master for time synchronization in a system of IEDs connected in a communication network (IEC61850-8-1). The **SyncMaster** can have the following values:

- **Off**
- **SNTP -Server**

The time synchronization fine tunes the clock.

IEC 60870-5-103 time synchronization

An IED with IEC 60870-5-103 protocol can be used for time synchronization, but for accuracy reasons, it is not recommended. In some cases, however, this kind of synchronization is needed, for example, when no other synchronization is available.

First, set the IED to be synchronized via IEC 60870-5-103 either from **IED Configuration/Time/Synchronization/TIMESYNCHGEN:1** in PST or from the local HMI.

![Figure 148: Settings under TIMESYNCHGEN:1 in PST](image)

Only **CoarseSyncSrc** can be set to IEC 60870-5-103, not **FineSyncSource**.

After setting up the time synchronization source, the user must check and modify the IEC 60870-5-103 time synchronization specific settings, under **Main menu/Configuration/Communication/Station communication/IEC60870-5-103**.

- **MasterTimeDomain** specifies the format of the time sent by the master. Format can be:
 - Coordinated Universal Time (**UTC**)
 - Local time set in the master (**Local**)
 - Local time set in the master adjusted according to daylight saving time (**Local with DST**)

- **TimeSyncMode** specifies the time sent by the IED. The time synchronization is done using the following ways:
 - **IEDTime**: The IED sends the messages with its own time.
 - **LinMasTime**: The IED measures the offset between its own time and the master time, and applies the same offset for the messages sent as in the...
IEDTimeSkew. But in *LinMasTime* it applies the time changes occurred between two synchronised messages.

- **IEDTimeSkew:** The IED measures the offset in between its own time and the master time and applies the same offset for the messages sent.

- **EvalTimeAccuracy** evaluates time accuracy for invalid time. Specifies the accuracy of the synchronization (5, 10, 20 or 40 ms). If the accuracy is less than the specified value, the “Bad Time” flag is raised. To accommodate those masters that are really bad in time sync, the *EvalTimeAccuracy* can be set to *Off*.

According to the standard, the “Bad Time” flag is reported when synchronization has been omitted in the protection for >23 h.

15.3 Parameter setting group handling

15.3.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting group handling</td>
<td>SETGRPS</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parameter setting groups</td>
<td>ACTVGRP</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

15.3.2 Application

Four different groups of settings are available to optimize IED operation for different power system conditions. By creating and switching between fine tuned setting sets, either from the local HMI or configurable binary inputs, results in a highly adaptable IED that can cope with a variety of power system scenarios.

Different conditions in networks with different voltage levels require highly adaptable protection and control IEDs to best provide for dependability, security and selectivity requirements. Protection IEDs operate with a higher degree of availability, especially, if the setting values of their parameters are continuously optimized according to the conditions in the power system.

Operational departments can plan for different operating conditions in the primary power system equipment. The protection engineer can prepare the necessary optimized and pre-tested settings in advance for different protection functions. Different groups of setting parameters are available in the IED. Any of them can be activated through the different programmable binary inputs by means of external or internal control signals.

The four different groups of setting parameters are available in the IED. Any of them can be activated through different inputs by means of external programmable binary or internal control signals.
15.3.3 Setting guidelines

The setting `ActiveSetGrp`, is used to select which parameter group to be active. The active group can also be selected with configured input to the function block `ACTVGRP`.

The parameter `MaxNoSetGrp` defines the maximum number of setting groups in use to switch between. Only the selected number of setting groups will be available in the Parameter Setting tool (PST) for activation with the `ACTVGRP` function block.

15.4 Test mode functionality TESTMODE

15.4.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60817 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test mode functionality</td>
<td>TESTMODE</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

15.4.2 Application

The protection and control IEDs may have a complex configuration with many included functions. To make the testing procedure easier, the IEDs include the feature that allows individual blocking of all functions except the function(s) the shall be tested.

This means that it is possible to see when a function is activated or trips. It also enables the user to follow the operation of several related functions to check correct functionality and to check parts of the configuration, and so on.

15.4.3 Setting guidelines

There are two possible ways to place the IED in the `TestMode= On` state. This means that if the IED is set to normal operation (`TestMode = Off`), but the functions are still shown being in the test mode, the input signal INPUT on the TESTMODE function block must be activated in the configuration.

Forcing of binary output signals is only possible when the IED is in test mode.
15.5 Change lock CHNGLCK

15.5.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 80817 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change lock function</td>
<td>CHNLCK</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

15.5.2 Application

Change lock function CHNGLCK is used to block further changes to the IED configuration once the commissioning is complete. The purpose is to make it impossible to perform inadvertent IED configuration and setting changes.

However, when activated, CHNGLCK will still allow the following actions that does not involve reconfiguring of the IED:

- Monitoring
- Reading events
- Resetting events
- Reading disturbance data
- Clear disturbances
- Reset LEDs
- Reset counters and other runtime component states
- Control operations
- Set system time
- Enter and exit from test mode
- Change of active setting group

The binary input controlling the function is defined in ACT or SMT. The CHNGLCK function is configured using ACT.

- **LOCK**: Binary input signal that will activate/deactivate the function, defined in ACT or SMT.
- **ACTIVE**: Output status signal
- **OVERRIDE**: Set if function is overridden

When CHNGLCK has a logical one on its input, then all attempts to modify the IED configuration and setting will be denied and the message "Error: Changes blocked" will be displayed on the local HMI; in PCM600 the message will be "Operation denied by active ChangeLock". The CHNGLCK function should be configured so that it is controlled by a signal from a binary input card. This guarantees that by setting that signal to a logical zero, CHNGLCK is deactivated. If any logic is included in the signal path to the CHNGLCK input, that logic must be designed so that it cannot
permanently issue a logical one to the CHNGLCK input. If such a situation would occur in spite of these precautions, then please contact the local ABB representative for remedial action.

15.5.3 Setting guidelines

The Change lock function CHNGLCK does not have any parameters available in the local HMI or PCM600.

15.6 IED identifiers TERMINALID

15.6.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>IED identifiers</td>
<td>TERMINALID</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

15.6.2 Application

15.6.2.1 Customer specific settings

The customer specific settings are used to give the IED a unique name and address. The settings are used by a central control system to communicate with the IED. The customer specific identifiers are found in the local HMI under Configuration/Power system/Identifiers/TERMINALID

The settings can also be made from PCM600. For more information about the available identifiers, see the technical manual.

Use only characters A - Z, a - z and 0 - 9 in station, unit and object names.

15.7 Product information PRODINF

15.7.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product information</td>
<td>PRODINF</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
15.7.2 Application

15.7.2.1 Factory defined settings

The factory defined settings are very useful for identifying a specific version and very helpful in the case of maintenance, repair, interchanging IEDs between different Substation Automation Systems and upgrading. The factory made settings can not be changed by the customer. They can only be viewed. The settings are found in the local HMI under Main menu/Diagnostics/IED status/Product identifiers

The following identifiers are available:

- IEDProdType
 - Describes the type of the IED (like REL, REC or RET). Example: REL650
- ProductVer
 - Describes the product version. Example: 1.2.3

<table>
<thead>
<tr>
<th>Identification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>is the Major version of the manufactured product this means, new platform of the product</td>
</tr>
<tr>
<td>2</td>
<td>is the Minor version of the manufactured product this means, new functions or new hardware added to the product</td>
</tr>
<tr>
<td>3</td>
<td>is the Major revision of the manufactured product this means, functions or hardware is either changed or enhanced in the product</td>
</tr>
</tbody>
</table>

- ProductDef
 - Describes the release number, from the production. Example: 1.2.3.4

<table>
<thead>
<tr>
<th>Identification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>is the Major version of the manufactured product this means, new platform of the product</td>
</tr>
<tr>
<td>2</td>
<td>is the Minor version of the manufactured product this means, new functions or new hardware added to the product</td>
</tr>
<tr>
<td>3</td>
<td>is the Major revision of the manufactured product this means, functions or hardware is either changed or enhanced in the product</td>
</tr>
<tr>
<td>4</td>
<td>is the Minor revision of the manufactured product this means, code is corrected in the product</td>
</tr>
</tbody>
</table>

- SerialNo: the structure of the SerialNo is as follows, for example, T0123456 where

<table>
<thead>
<tr>
<th>Identification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>is the last two digits in the year when the IED was manufactured that is, 2001</td>
</tr>
<tr>
<td>23</td>
<td>is the week number when the IED was manufactured</td>
</tr>
<tr>
<td>456</td>
<td>is the sequential number of the IEDs produced during the production week</td>
</tr>
</tbody>
</table>

- OrderingNo: the structure of the OrderingNo is as follows, for example, 1MRK008526-BA. This alphanumeric string has no specific meaning except, that it is used for internal identification purposes within ABB.
- ProductionDate: states the production date in the “YYYY-MM_DD” format.
15.8 Primary system values PRIMVAL

15.8.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary system values</td>
<td>PRIMVAL</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

15.8.2 Application

The rated system frequency and phasor rotation are set under Main menu/Configuration/Power system/Primary values/PRIMVAL in the local HMI and PCM600 parameter setting tree.

15.9 Signal matrix for analog inputs SMAI

15.9.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal matrix for analog inputs</td>
<td>SMAI_20_x</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

15.9.2 Application

Signal matrix for analog inputs function (SMAI), also known as the preprocessor function, processes the analog signals connected to it and gives information about all aspects of the analog signals connected, like the RMS value, phase angle, frequency, harmonic content, sequence components and so on. This information is then used by the respective functions in ACT (for example protection, measurement or monitoring).

The SMAI function is used within PCM600 in direct relation with the Signal Matrix tool or the Application Configuration tool.

The SMAI function blocks for the 650 series of products are possible to set for two cycle times either 5 or 20ms. The function blocks connected to a SMAI function block shall always have the same cycle time as the SMAI block.
15.9.3 Setting guidelines

The parameters for the signal matrix for analog inputs (SMAI) functions are set via the local HMI or via the PCM600.

Every SMAI function block can receive four analog signals (three phases and one neutral value), either voltage or current. SMAI outputs give information about every aspect of the 3ph analog signals acquired (phase angle, RMS value, frequency and frequency derivates, and so on – 244 values in total). Besides the block “group name”, the analog inputs type (voltage or current) and the analog input names that can be set directly in ACT.

GlobalBaseSel: Selects the global base value group used by the function to define *(IBase), (UBase)* and *(SBase)*.

DFTRefExtOut: Parameter valid only for function block SMAI_20_1:1 and SMAI_20_1:2.

These 2 SMAI blocks can be used as reference blocks for other SMAI blocks; the setting is related to the output signal SPFCOUT, and it defines the source for this output, when the adaptive frequency tracking is used. The possible options are: *InternalDFTRef* (i.e. fixed DFT reference based on set system frequency): it is not used when the adaptive frequency tracking is needed. *DFTRefGrpn* (where n is a number from 1 to 12): it define the SMAI block numbered n, within its task, that is the reference for the adaptive frequency tracking. That reference SMAI shall be voltage type, and shall be connected to a 3-phase voltage transformer which supply voltage in all the needed operating conditions. *ExternalDFTRef*: the reference is based on what is connected to input DFTSPFC.

DFTReference: Reference DFT for the SMAI block.

These DFT reference block settings decide DFT reference for DFT calculations. The settings *InternalDFTRef* will use fixed DFT reference based on set system frequency. The setting *DFTRefGrpn* (where n is a number from 1 to 12) will use the SMAI block numbered n, within its task, as reference for the adaptive frequency tracking. The setting *ExternalDFTRef* will use reference based on what is connected to input DFTSPFC.

The setting *ConnectionType*: Connection type for that specific instance (n) of the SMAI (if it is Ph-N or Ph-Ph). Depending on connection type setting the not connected Ph-N or Ph-Ph outputs will be calculated.

Negation: Negation means rotation with 180° of the vectors. If the user wants to negate the 3ph signal, it is possible to choose to negate only the phase signals *Negate3Ph*, only the neutral signal *NegateN* or both *Negate3Ph+N*.

MinValFreqMeas: The minimum value of the voltage for which the frequency is calculated, expressed as percent of the voltage in the selected Global Base voltage group (n) (for each instance 1<n<6).
Settings `DFTRefExtOut` and `DFTReference` shall be set to default value `InternalDFTRef` if no VT inputs are available.

Even if the user sets the `AnalogInputType` of a SMAI block to “Current”, the `MinValFreqMeas` is still visible. However, using the current channel values as base for frequency measurement is **not recommendable** for a number of reasons, not last among them being the low level of currents that one can have in normal operating conditions.

Example of adaptive frequency tracking

<table>
<thead>
<tr>
<th>Task time group 1</th>
<th>SMAI instance</th>
<th>3 phase group</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMAI 20_1:1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SMAI 20_2:1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>SMAI 20_3:1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SMAI 20_4:1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>SMAI 20_5:1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>SMAI 20_6:1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>SMAI 20_7:1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>SMAI 20_8:1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>SMAI 20_9:1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>SMAI 20_10:1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>SMAI 20_11:1</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>SMAI 20_12:1</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Task time group 2</th>
<th>SMAI instance</th>
<th>3 phase group</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMAI 20_1:2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SMAI 20_2:2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>SMAI 20_3:2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SMAI 20_4:2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>SMAI 20_5:2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>SMAI 20_6:2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>SMAI 20_7:2</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>SMAI 20_8:2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>SMAI 20_9:2</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>SMAI 20_10:2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>SMAI 20_11:2</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>SMAI 20_12:2</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Figure 149: SMAI instances as organized in different task time groups and the corresponding parameter numbers

The example shows a situation with adaptive frequency tracking with one reference selected for all instances. In practice each instance can be adapted to the needs of the actual application. The adaptive frequency tracking is needed in IEDs that belong to the protection system of synchronous machines and that are active during run-up and shut-down of the machine. In other application the usual setting of the parameter `DFTReference` of SMAI is `InternalDFTRef`.
Example 1

Assume instance SMAI_20_7:1 in task time group 1 has been selected in the configuration to control the frequency tracking (For the SMAI_20_x of task time group 1). Observe that the selected reference instance (i.e. frequency tracking master) must be a voltage type. Observe that positive sequence voltage is used for the frequency tracking feature.

For task time group 1 this gives the following settings (see Figure 149 for numbering):

SMAI_20_1:1 \(DFTRefExtOut = DFTRefGrp7 \) to route SMAI_20_7:1 reference to the SPFCOUT output, \(DFTReference = DFTRefGrp7 \) for SMAI_20_7:1 to use SMAI_20_7:1 as reference (see Figure 150).

For task time group 2 this gives the following settings:

SMAI_20_2:2: \(DFTReference = ExternalDFTRef \) to use DFTSPFC input as reference (SMAI_20_7:1); \(DFTRefExtOut = ExternalDFTRef \) (even if the output SPFCOUT is not wired in AC).

SMAI_20_2:2 - SMAI_20_12:2 \(DFTReference = ExternalDFTRef \) to use DFTSPFC input as reference (SMAI_20_7:1)

15.10 Summation block 3 phase 3PHSUM

15.10.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60817 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summation block 3 phase</td>
<td>3PHSUM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
15.10.2 Application

Summation block 3 phase function 3PHSUM is used to get the sum of two sets of three-phase analog signals (of the same type) for those IED functions that might need it.

15.10.3 Setting guidelines

The summation block receives the three-phase signals from SMAI blocks. The summation block has several settings.

GlobalBaseSel: Selects the global base value group used by the function to define (IBase), (UBase) and (SBase).

SummationType: Summation type (Group 1 + Group 2, Group 1 - Group 2, Group 2 - Group 1 or -(Group 1 + Group 2)).

DFTReference: The reference DFT block (InternalDFT Ref, DFTRefGrp1 or External DFT ref).

FreqMeasMinVal: The minimum value of the voltage for which the frequency is calculated, expressed as percent of UBase (for each instance x).

15.11 Global base values GBASVAL

15.11.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global base values</td>
<td>GBASVAL</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

15.11.2 Application

Global base values function (GBASVAL) is used to provide global values, common for all applicable functions within the IED. One set of global values consists of values for current, voltage and apparent power and it is possible to have six different sets.

This is an advantage since all applicable functions in the IED use a single source of base values. This facilitates consistency throughout the IED and also facilitates a single point for updating values when necessary.

Each applicable function in the IED has a parameter, GlobalBaseSel, defining one out of the six sets of GBASVAL functions.
15.11.3 Setting guidelines

*U*Base*: Phase-to-phase voltage value to be used as a base value for applicable functions throughout the IED.

*I*Base*: Phase current value to be used as a base value for applicable functions throughout the IED.

*S*Base*: Standard apparent power value to be used as a base value for applicable functions throughout the IED, typically \(S_{\text{Base}} = \sqrt{3} \cdot U_{\text{Base}} \cdot I_{\text{Base}} \).

15.12 Authority check ATHCHCK

15.12.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60817 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authority check</td>
<td>ATHCHCK</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

15.12.2 Application

To safeguard the interests of our customers, both the IED and the tools that are accessing the IED are protected, by means of authorization handling. The authorization handling of the IED and the PCM600 is implemented at both access points to the IED:

- local, through the local HMI
- remote, through the communication ports

The IED users can be created, deleted and edited only with PCM600 IED user management tool.
15.12.2.1 Authorization handling in the IED

At delivery the default user is the SuperUser. No Log on is required to operate the IED until a user has been created with the IED User Management.

Once a user is created and written to the IED, that user can perform a Log on, using the password assigned in the tool. Then the default user will be Guest.

If there is no user created, an attempt to log on will display a message box: “No user defined!”

If one user leaves the IED without logging off, then after the timeout (set in Main menu/Configuration/HMI/Screen/SCREEN:1) elapses, the IED returns to Guest state, when only reading is possible. By factory default, the display timeout is set to 60 minutes.

If one or more users are created with the IED User Management and written to the IED, then, when a user attempts a Log on by pressing the key or when the user attempts to perform an operation that is password protected, the Log on window opens.
The cursor is focused on the User identity field, so upon pressing the key, one can change the user name, by browsing the list of users, with the “up” and “down” arrows. After choosing the right user name, the user must press the key again. When it comes to password, upon pressing the key, the following characters will show up: “***********”. The user must scroll for every letter in the password. After all the letters are introduced (passwords are case sensitive) choose OK and press the key again.

At successful Log on, the local HMI shows the new user name in the status bar at the bottom of the LCD. If the Log on is OK, when required to change for example a password protected setting, the local HMI returns to the actual setting folder. If the Log on has failed, an "Error Access Denied" message opens. If a user enters an incorrect password three times, that user will be blocked for ten minutes before a new attempt to log in can be performed. The user will be blocked from logging in, both from the local HMI and PCM600. However, other users are to log in during this period.

15.13 Authority status ATHSTAT

15.13.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authority status</td>
<td>ATHSTAT</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

15.13.2 Application

Authority status (ATHSTAT) function is an indication function block, which informs about two events related to the IED and the user authorization:

- the fact that at least one user has tried to log on wrongly into the IED and it was blocked (the output USRBLKED)
- the fact that at least one user is logged on (the output LOGGEDON)

The two outputs of ATHSTAT function can be used in the configuration for different indication and alarming reasons, or can be sent to the station control for the same purpose.
15.14 Denial of service

15.14.1 Identification

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denial of service, frame rate control for front port</td>
<td>DOSFRNT</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function description</th>
<th>IEC 61850 identification</th>
<th>IEC 60617 identification</th>
<th>ANSI/IEEE C37.2 device number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denial of service, frame rate control for LAN1 port</td>
<td>DOSLAN1</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

15.14.2 Application

The denial of service functions (DOSFRNT, DOSLAN1 and DOSSCKT) are designed to limit the CPU load that can be produced by Ethernet network traffic on the IED. The communication facilities must not be allowed to compromise the primary functionality of the device. All inbound network traffic will be quota controlled so that too heavy network loads can be controlled. Heavy network load might for instance be the result of malfunctioning equipment connected to the network.

DOSFRNT, DOSLAN1 and DOSSCKT measures the IED load from communication and, if necessary, limit it for not jeopardizing the IEDs control and protection functionality due to high CPU load. The function has the following outputs:

- LINKUP indicates the Ethernet link status
- WARNING indicates that communication (frame rate) is higher than normal
- ALARM indicates that the IED limits communication

15.14.3 Setting guidelines

The function does not have any parameters available in the local HMI or PCM600.
Section 16 Requirements

16.1 Current transformer requirements

The performance of a protection function will depend on the quality of the measured current signal. Saturation of the current transformer (CT) will cause distortion of the current signal and can result in a failure to operate or cause unwanted operations of some functions. Consequently CT saturation can have an influence on both the dependability and the security of the protection. This protection IED has been designed to permit heavy CT saturation with maintained correct operation.

16.1.1 Current transformer classification

To guarantee correct operation, the current transformers (CTs) must be able to correctly reproduce the current for a minimum time before the CT will begin to saturate. To fulfill the requirement on a specified time to saturation the CTs must fulfill the requirements of a minimum secondary e.m.f. that is specified below.

There are several different ways to specify CTs. Conventional magnetic core CTs are usually specified and manufactured according to some international or national standards, which specify different protection classes as well. There are many different standards and a lot of classes but fundamentally there are three different types of CTs:

- High remanence type CT
- Low remanence type CT
- Non remanence type CT

The high remanence type has no limit for the remanent flux. This CT has a magnetic core without any airgaps and a remanent flux might remain almost infinite time. In this type of transformers the remanence can be up to around 80% of the saturation flux. Typical examples of high remanence type CT are class P, PX, TPX according to IEC, class P, X according to BS (old British Standard) and non gapped class C, K according to ANSI/IEEE.

The low remanence type has a specified limit for the remanent flux. This CT is made with a small air gap to reduce the remanence to a level that does not exceed 10% of the saturation flux. The small air gap has only very limited influences on the other properties of the CT. Class PXR, TPY according to IEC are low remanence type CTs.

The non remanence type CT has practically negligible level of remanent flux. This type of CT has relatively big air gaps in order to reduce the remanence to practically zero level. In the same time, these air gaps reduce the influence of the DC-component from the primary fault current. The air gaps will also decrease the measuring accuracy.
in the non-saturated region of operation. Class TPZ according to IEC is a non remanence type CT.

Different standards and classes specify the saturation e.m.f. in different ways but it is possible to approximately compare values from different classes. The rated equivalent limiting secondary e.m.f. E_{al} according to the IEC 61869–2 standard is used to specify the CT requirements for the IED. The requirements are also specified according to other standards.

16.1.2 Conditions

The requirements are a result of investigations performed in our network simulator. The current transformer models are representative for current transformers of high remanence and low remanence type. The results may not always be valid for non remanence type CTs (TPZ).

The performances of the protection functions have been checked in the range from symmetrical to fully asymmetrical fault currents. Primary time constants of at least 120 ms have been considered at the tests. The current requirements below are thus applicable both for symmetrical and asymmetrical fault currents.

Depending on the protection function phase-to-earth, phase-to-phase and three-phase faults have been tested for different relevant fault positions for example, close in forward and reverse faults, zone 1 reach faults, internal and external faults. The dependability and security of the protection was verified by checking for example, time delays, unwanted operations, directionality, overreach and stability.

The remanence in the current transformer core can cause unwanted operations or minor additional time delays for some protection functions. As unwanted operations are not acceptable at all maximum remanence has been considered for fault cases critical for the security, for example, faults in reverse direction and external faults. Because of the almost negligible risk of additional time delays and the non-existent risk of failure to operate the remanence have not been considered for the dependability cases. The requirements below are therefore fully valid for all normal applications.

It is difficult to give general recommendations for additional margins for remanence to avoid the minor risk of an additional time delay. They depend on the performance and economy requirements. When current transformers of low remanence type (for example, TPY, PR) are used, normally no additional margin is needed. For current transformers of high remanence type (for example, P, PX, TPS, TPX) the small probability of fully asymmetrical faults, together with high remanence in the same direction as the flux generated by the fault, has to be kept in mind at the decision of an additional margin. Fully asymmetrical fault current will be achieved when the fault occurs at approximately zero voltage (0°). Investigations have shown that 95% of the faults in the network will occur when the voltage is between 40° and 90°. In addition fully asymmetrical fault current will not exist in all phases at the same time.

16.1.3 Fault current
The current transformer requirements are based on the maximum fault current for faults in different positions. Maximum fault current will occur for three-phase faults or single phase-to-earth faults. The current for a single phase-to-earth fault will exceed the current for a three-phase fault when the zero sequence impedance in the total fault loop is less than the positive sequence impedance.

When calculating the current transformer requirements, maximum fault current for the relevant fault position should be used and therefore both fault types have to be considered.

16.1.4 Secondary wire resistance and additional load

The voltage at the current transformer secondary terminals directly affects the current transformer saturation. This voltage is developed in a loop containing the secondary wires and the burden of all relays in the circuit. For earth faults the loop includes the phase and neutral wire, normally twice the resistance of the single secondary wire. For three-phase faults the neutral current is zero and it is just necessary to consider the resistance up to the point where the phase wires are connected to the common neutral wire. The most common practice is to use four wires secondary cables so it normally is sufficient to consider just a single secondary wire for the three-phase case.

The conclusion is that the loop resistance, twice the resistance of the single secondary wire, must be used in the calculation for phase-to-earth faults and the phase resistance, the resistance of a single secondary wire, may normally be used in the calculation for three-phase faults.

As the burden can be considerable different for three-phase faults and phase-to-earth faults it is important to consider both cases. Even in a case where the phase-to-earth fault current is smaller than the three-phase fault current the phase-to-earth fault can be dimensioning for the CT depending on the higher burden.

In isolated or high impedance earthed systems the phase-to-earth fault is not the dimensioning case and therefore the resistance of the single secondary wire always can be used in the calculation, for this case.

16.1.5 General current transformer requirements

The current transformer ratio is mainly selected based on power system data for example, maximum load. However, it should be verified that the current to the protection is higher than the minimum operating value for all faults that are to be detected with the selected CT ratio. The minimum operating current is different for different functions and normally settable so each function should be checked.

The current error of the current transformer can limit the possibility to use a very sensitive setting of a sensitive residual overcurrent protection. If a very sensitive setting of this function will be used it is recommended that the current transformer should have an accuracy class which have an current error at rated primary current that is less than ±1% (for example, 5P). If current transformers with less accuracy are used...
it is advisable to check the actual unwanted residual current during the
commissioning.

16.1.6 Rated equivalent secondary e.m.f. requirements

With regard to saturation of the current transformer all current transformers of high
remanence and low remanence type that fulfill the requirements on the rated
equivalent limiting secondary e.m.f. E_{al} below can be used. The characteristic of the
non remanence type CT (TPZ) is not well defined as far as the phase angle error is
concerned. If no explicit recommendation is given for a specific function we therefore
recommend contacting ABB to confirm that the non remanence type can be used.

The CT requirements for the different functions below are specified as a rated
equivalent limiting secondary e.m.f. E_{al} according to the IEC 61869-2 standard.
Requirements for CTs specified according to other classes and standards are given at
the end of this section.

16.1.6.1 Breaker failure protection

The CTs must have a rated equivalent secondary e.m.f. E_{al} that is larger than or equal
to the required secondary e.m.f. E_{alreq} below:

$$E_{al} \geq E_{alreq} = 5 \cdot I_{op} \cdot \frac{I_{in}}{I_{pn}} \left(R_{CT} + R_{L} + \frac{S_{R}}{I_{r}^2} \right)$$

(Equation 94)

where:

- I_{op}: The primary operate value (A)
- I_{pn}: The rated primary CT current (A)
- I_{sn}: The rated secondary CT current (A)
- I_{r}: The rated current of the protection IED (A)
- R_{CT}: The secondary resistance of the CT (Ω)
- R_{L}: The resistance of the secondary cable and additional load (Ω). The loop resistance containing
 the phase and neutral wires, must be used for faults in solidly earthed systems. The resistance
 of a single secondary wire should be used for faults in high impedance earthed systems.
- S_{R}: The burden of an IED current input channel (VA). $S_{R}=0.010 \text{ VA/channel}$ for $I_{r}=1 \text{ A}$ and $S_{R}=0.250 \text{ VA/channel}$ for $I_{r}=5 \text{ A}$

16.1.6.2 Non-directional instantaneous and definitive time, phase and residual
overcurrent protection

The CTs must have a rated equivalent secondary e.m.f. E_{al} that is larger than or equal
to the required secondary e.m.f. E_{alreq} below:
where:

- \(I_{op} \) The primary operate value (A)
- \(I_{pn} \) The rated primary CT current (A)
- \(I_{sn} \) The rated secondary CT current (A)
- \(I_r \) The rated current of the protection IED (A)
- \(R_{CT} \) The secondary resistance of the CT (\(\Omega \))
- \(R_L \) The resistance of the secondary cable and additional load (\(\Omega \)). The loop resistance containing the phase and neutral wires, must be used for faults in solidly earthed systems. The resistance of a single secondary wire should be used for faults in high impedance earthed systems.
- \(S_R \) The burden of an IED current input channel (VA). \(S_R = 0.010 \) VA/channel for \(I_r = 1 \) A and \(S_R = 0.250 \) VA/channel for \(I_r = 5 \) A

16.1.6.3 Non-directional inverse time delayed phase and residual overcurrent protection

The requirement according to Equation 96 and Equation 97 does not need to be fulfilled if the high set instantaneous or definitive time stage is used. In this case Equation 95 is the only necessary requirement.

If the inverse time delayed function is the only used overcurrent protection function the CTs must have a rated equivalent secondary e.m.f. \(E_{al} \) that is larger than or equal to the required secondary e.m.f. \(E_{alreq} \) below:

\[
E_{al} \geq E_{alreq} = \frac{5}{1} \cdot I_{op} \cdot \frac{I_{sn}}{I_{pn}} \left(R_{CT} + R_L + \frac{S_R}{I_r^2} \right)
\]

(Equation 96)

where

- \(I_{op} \) The primary current set value of the inverse time function (A)
- \(I_{pn} \) The rated primary CT current (A)
- \(I_{sn} \) The rated secondary CT current (A)
- \(I_r \) The rated current of the protection IED (A)
- \(R_{CT} \) The secondary resistance of the CT (\(\Omega \))
- \(R_L \) The resistance of the secondary cable and additional load (\(\Omega \)). The loop resistance containing the phase and neutral wires, must be used for faults in solidly earthed systems. The resistance of a single secondary wire should be used for faults in high impedance earthed systems.
- \(S_R \) The burden of an IED current input channel (VA). \(S_R = 0.010 \) VA/channel for \(I_r = 1 \) A and \(S_R = 0.250 \) VA/channel for \(I_r = 5 \) A
Independent of the value of I_{op} the maximum required E_{al} is specified according to the following:

$$E_{al} \geq E_{alreq} \max = I_{kmax} \cdot \frac{I_{sn}}{I_{pn}} \left(R_{CT} + R_{L} + \frac{S_{R}}{I_{r}^2} \right)$$

(Equation 97)

where:

I_{kmax} Maximum primary fundamental frequency current for close-in faults (A)

16.1.6.4 Directional phase and residual overcurrent protection

If the directional overcurrent function is used the CTs must have a rated equivalent secondary e.m.f. E_{al} that is larger than or equal to the required equivalent secondary e.m.f. E_{alreq} below:

$$E_{al} \geq E_{alreq} = I_{kmax} \cdot \frac{I_{sn}}{I_{pn}} \left(R_{CT} + R_{L} + \frac{S_{R}}{I_{r}^2} \right)$$

(Equation 98)

where:

I_{kmax} Maximum primary fundamental frequency current for close-in forward and reverse faults (A)

I_{pn} The rated primary CT current (A)

I_{sn} The rated secondary CT current (A)

I_{r} The rated current of the protection IED (A)

R_{CT} The secondary resistance of the CT (Ω)

R_{L} The resistance of the secondary cable and additional load (Ω). The loop resistance containing the phase and neutral wires, must be used for faults in solidly earthed systems. The resistance of a single secondary wire should be used for faults in high impedance earthed systems.

S_{R} The burden of an IED current input channel (VA). $S_{R}=0.010$ VA/channel for $I_{r}=1$ A and $S_{R}=0.250$ VA/channel for $I_{r}=5$ A

16.1.7 Current transformer requirements for CTs according to other standards

All kinds of conventional magnetic core CTs are possible to use with the IEDs if they fulfill the requirements corresponding to the above specified expressed as the rated equivalent limiting secondary e.m.f. E_{al} according to the IEC 61869-2 standard. From different standards and available data for relaying applications it is possible to approximately calculate a secondary e.m.f. of the CT comparable with E_{al}. By
comparing this with the required rated equivalent limiting secondary e.m.f. \(E_{\text{alreq}} \) it is possible to judge if the CT fulfills the requirements. The requirements according to some other standards are specified below.

16.1.7.1 Current transformers according to IEC 61869-2, class P, PR

A CT according to IEC 61869-2 is specified by the secondary limiting e.m.f. \(E_{\text{alf}} \). The value of the \(E_{\text{alf}} \) is approximately equal to the corresponding \(E_{\text{al}} \). Therefore, the CTs according to class P and PR must have a secondary limiting e.m.f. \(E_{\text{alf}} \) that fulfills the following:

\[
E_{2\max} > \max E_{\text{alreq}}
\]

(Equation 99)

16.1.7.2 Current transformers according to IEC 61869-2, class PX, PXR (and old IEC 60044-6, class TPS and old British Standard, class X)

CTs according to these classes are specified approximately in the same way by a rated knee point e.m.f. \(E_{\text{knee}} \) (\(E_k \) for class PX and PXR, \(E_{\text{kneeBS}} \) for class X and the limiting secondary voltage \(U_{\text{al}} \) for TPS). The value of the \(E_{\text{knee}} \) is lower than the corresponding \(E_{\text{al}} \) according to IEC 61869-2. It is not possible to give a general relation between the \(E_{\text{knee}} \) and the \(E_{\text{al}} \) but normally the \(E_{\text{knee}} \) is approximately 80 \% of the \(E_{\text{al}} \). Therefore, the CTs according to class PX, PXR, X and TPS must have a rated knee point e.m.f. \(E_{\text{knee}} \) that fulfills the following:

\[
E_{\text{knee}} \approx E_k \approx E_{\text{kneeBS}} \approx U_{\text{al}} > 0.8 \times (\text{maximum of } E_{\text{alreq}})
\]

(Equation 100)

16.1.7.3 Current transformers according to ANSI/IEEE

Current transformers according to ANSI/IEEE are partly specified in different ways. A rated secondary terminal voltage \(U_{\text{ANSI}} \) is specified for a CT of class C. \(U_{\text{ANSI}} \) is the secondary terminal voltage the CT will deliver to a standard burden at 20 times rated secondary current without exceeding 10 \% ratio correction. There are a number of standardized \(U_{\text{ANSI}} \) values for example, \(U_{\text{ANSI}} \) is 400 V for a C400 CT. A corresponding rated equivalent limiting secondary e.m.f. \(E_{\text{aANSI}} \) can be estimated as follows:
The impedance (that is, with a complex quantity) of the standard ANSI burden for the specific C class (Z_{ANSI}) is calculated as:

$$E_{\text{alANSI}} = |20 \cdot I_{\text{sn}} \cdot R_{\text{CT}} + U_{\text{ANSI}}| = |20 \cdot I_{\text{sn}} \cdot R_{\text{CT}} + 20 \cdot I_{\text{sn}} \cdot Z_{\text{ANSI}}|$$

(Equation 101)

where:

Z_{ANSI} The impedance (that is, with a complex quantity) of the standard ANSI burden for the specific C class (Ω)

U_{ANSI} The secondary terminal voltage for the specific C class (V)

The CTs according to class C must have a calculated rated equivalent limiting secondary e.m.f. E_{alANSI} that fulfills the following:

$$E_{\text{alANSI}} > \text{maximum of } E_{\text{alreq}}$$

(Equation 102)

A CT according to ANSI/IEEE is also specified by the knee point voltage U_{kneeANSI} that is graphically defined from an excitation curve. The knee point voltage U_{kneeANSI} normally has a lower value than the knee-point e.m.f. according to IEC and BS. U_{kneeANSI} can approximately be estimated to 75% of the corresponding E_{al} according to IEC 61869-2. Therefore, the CTs according to ANSI/IEEE must have a knee point voltage U_{kneeANSI} that fulfills the following:

$$E_{\text{kneeANSI}} > 0.75 \cdot (\text{maximum of } E_{\text{alreq}})$$

(Equation 103)

16.2 Voltage transformer requirements

The performance of a protection function will depend on the quality of the measured input signal. Transients caused by capacitive voltage transformers (CVTs) can affect some protection functions.

Magnetic or capacitive voltage transformers can be used.

The capacitive voltage transformers (CVTs) should fulfill the requirements according to the IEC 61869-5 standard regarding ferro-resonance and transients. The ferro-resonance requirements of the CVTs are specified in chapter 6.502 of the standard.

The transient responses for three different standard transient response classes, T1, T2 and T3 are specified in chapter 6.503 of the standard. CVTs according to all classes can be used.

The protection IED has effective filters for these transients, which gives secure and correct operation with CVTs.
16.3 SNTP server requirements

16.3.1 SNTP server requirements

The SNTP server to be used is connected to the local network, that is not more than 4-5 switches or routers away from the IED. The SNTP server is dedicated for its task, or at least equipped with a real-time operating system, that is not a PC with SNTP server software. The SNTP server should be stable, that is, either synchronized from a stable source like GPS, or local without synchronization. Using a local SNTP server without synchronization as primary or secondary server in a redundant configuration is not recommended.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternating current</td>
</tr>
<tr>
<td>ACC</td>
<td>Actual channel</td>
</tr>
<tr>
<td>ACT</td>
<td>Application configuration tool within PCM600</td>
</tr>
<tr>
<td>A/D converter</td>
<td>Analog-to-digital converter</td>
</tr>
<tr>
<td>ADBS</td>
<td>Amplitude deadband supervision</td>
</tr>
<tr>
<td>AI</td>
<td>Analog input</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>AR</td>
<td>Autoreclosing</td>
</tr>
<tr>
<td>ASCT</td>
<td>Auxiliary summation current transformer</td>
</tr>
<tr>
<td>ASD</td>
<td>Adaptive signal detection</td>
</tr>
<tr>
<td>ASDU</td>
<td>Application service data unit</td>
</tr>
<tr>
<td>AWG</td>
<td>American Wire Gauge standard</td>
</tr>
<tr>
<td>BBP</td>
<td>Busbar protection</td>
</tr>
<tr>
<td>BFOC/2,5</td>
<td>Bayonet fibre optic connector</td>
</tr>
<tr>
<td>BFP</td>
<td>Breaker failure protection</td>
</tr>
<tr>
<td>BI</td>
<td>Binary input</td>
</tr>
<tr>
<td>BOS</td>
<td>Binary outputs status</td>
</tr>
<tr>
<td>BR</td>
<td>External bistable relay</td>
</tr>
<tr>
<td>BS</td>
<td>British Standards</td>
</tr>
<tr>
<td>CB</td>
<td>Circuit breaker</td>
</tr>
<tr>
<td>CCVT</td>
<td>Capacitive Coupled Voltage Transformer</td>
</tr>
<tr>
<td>Class C</td>
<td>Protection Current Transformer class as per IEEE/ ANSI</td>
</tr>
<tr>
<td>CMPPS</td>
<td>Combined megapulses per second</td>
</tr>
<tr>
<td>CMT</td>
<td>Communication Management tool in PCM600</td>
</tr>
<tr>
<td>CO cycle</td>
<td>Close-open cycle</td>
</tr>
<tr>
<td>COMTRADE</td>
<td>Standard format according to IEC 60255-24</td>
</tr>
<tr>
<td>COT</td>
<td>Cause of transmission</td>
</tr>
<tr>
<td>CPU</td>
<td>Central processing unit</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>CR</td>
<td>Carrier receive</td>
</tr>
<tr>
<td>CRC</td>
<td>Cyclic redundancy check</td>
</tr>
<tr>
<td>CROB</td>
<td>Control relay output block</td>
</tr>
<tr>
<td>CS</td>
<td>Carrier send</td>
</tr>
<tr>
<td>CT</td>
<td>Current transformer</td>
</tr>
<tr>
<td>CU</td>
<td>Communication unit</td>
</tr>
<tr>
<td>CVT</td>
<td>Capacitive voltage transformer</td>
</tr>
<tr>
<td>DAR</td>
<td>Delayed autoreclosing</td>
</tr>
<tr>
<td>DARPA</td>
<td>Defense Advanced Research Projects Agency (The US developer of the TCP/IP protocol etc.)</td>
</tr>
<tr>
<td>DBDL</td>
<td>Dead bus dead line</td>
</tr>
<tr>
<td>DBLL</td>
<td>Dead bus live line</td>
</tr>
<tr>
<td>DC</td>
<td>Direct current</td>
</tr>
<tr>
<td>DFC</td>
<td>Data flow control</td>
</tr>
<tr>
<td>DFT</td>
<td>Discrete Fourier transform</td>
</tr>
<tr>
<td>DHCP</td>
<td>Dynamic Host Configuration Protocol</td>
</tr>
<tr>
<td>DI</td>
<td>Digital input</td>
</tr>
<tr>
<td>DLLB</td>
<td>Dead line live bus</td>
</tr>
<tr>
<td>DNP</td>
<td>Distributed Network Protocol as per IEEE Std 1815-2012</td>
</tr>
<tr>
<td>DR</td>
<td>Disturbance recorder</td>
</tr>
<tr>
<td>DRAM</td>
<td>Dynamic random access memory</td>
</tr>
<tr>
<td>DRH</td>
<td>Disturbance report handler</td>
</tr>
<tr>
<td>DTT</td>
<td>Direct transfer trip scheme</td>
</tr>
<tr>
<td>EHV network</td>
<td>Extra high voltage network</td>
</tr>
<tr>
<td>EIA</td>
<td>Electronic Industries Association</td>
</tr>
<tr>
<td>EMC</td>
<td>Electromagnetic compatibility</td>
</tr>
<tr>
<td>EMF</td>
<td>Electromotive force</td>
</tr>
<tr>
<td>EMI</td>
<td>Electromagnetic interference</td>
</tr>
<tr>
<td>EnFP</td>
<td>End fault protection</td>
</tr>
<tr>
<td>EPA</td>
<td>Enhanced performance architecture</td>
</tr>
<tr>
<td>ESD</td>
<td>Electrostatic discharge</td>
</tr>
<tr>
<td>F-SMA</td>
<td>Type of optical fibre connector</td>
</tr>
<tr>
<td>FAN</td>
<td>Fault number</td>
</tr>
<tr>
<td>FCB</td>
<td>Flow control bit; Frame count bit</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>FOX 20</td>
<td>Modular 20 channel telecommunication system for speech, data and protection signals</td>
</tr>
<tr>
<td>FOX 512/515</td>
<td>Access multiplexer</td>
</tr>
<tr>
<td>FOX 6Plus</td>
<td>Compact time-division multiplexer for the transmission of up to seven duplex channels of digital data over optical fibers</td>
</tr>
<tr>
<td>FTP</td>
<td>File Transfer Protocol</td>
</tr>
<tr>
<td>FUN</td>
<td>Function type</td>
</tr>
<tr>
<td>GCM</td>
<td>Communication interface module with carrier of GPS receiver module</td>
</tr>
<tr>
<td>GDE</td>
<td>Graphical display editor within PCM600</td>
</tr>
<tr>
<td>GI</td>
<td>General interrogation command</td>
</tr>
<tr>
<td>GIS</td>
<td>Gas-insulated switchgear</td>
</tr>
<tr>
<td>GOOSE</td>
<td>Generic object-oriented substation event</td>
</tr>
<tr>
<td>GPS</td>
<td>Global positioning system</td>
</tr>
<tr>
<td>GSAL</td>
<td>Generic security application</td>
</tr>
<tr>
<td>GSE</td>
<td>Generic substation event</td>
</tr>
<tr>
<td>HDLC protocol</td>
<td>High-level data link control, protocol based on the HDLC standard</td>
</tr>
<tr>
<td>HFBR connector type</td>
<td>Plastic fiber connector</td>
</tr>
<tr>
<td>HMI</td>
<td>Human-machine interface</td>
</tr>
<tr>
<td>HSAR</td>
<td>High speed autoreclosing</td>
</tr>
<tr>
<td>HV</td>
<td>High-voltage</td>
</tr>
<tr>
<td>HVDC</td>
<td>High-voltage direct current</td>
</tr>
<tr>
<td>IDBS</td>
<td>Integrating deadband supervision</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrical Committee</td>
</tr>
<tr>
<td>IEC 61869-2</td>
<td>IEC Standard, Instrument transformers</td>
</tr>
<tr>
<td>IEC 60870-5-103</td>
<td>Communication standard for protective equipment. A serial master/slave protocol for point-to-point communication</td>
</tr>
<tr>
<td>IEC 61850</td>
<td>Substation automation communication standard</td>
</tr>
<tr>
<td>IEC 61850–8–1</td>
<td>Communication protocol standard</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>IEEE 802.12</td>
<td>A network technology standard that provides 100 Mbits/s on twisted-pair or optical fiber cable</td>
</tr>
<tr>
<td>IEEE P1386.1</td>
<td>PCI Mezzanine Card (PMC) standard for local bus modules. References the CMC (IEEE P1386, also known as Common Mezzanine Card) standard for the mechanics and the PCI</td>
</tr>
</tbody>
</table>
specifications from the PCI SIG (Special Interest Group) for the electrical EMF (Electromotive force).

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 1686</td>
<td>Standard for Substation Intelligent Electronic Devices (IEDs) Cyber Security Capabilities</td>
</tr>
<tr>
<td>IED</td>
<td>Intelligent electronic device</td>
</tr>
<tr>
<td>I-GIS</td>
<td>Intelligent gas-insulated switchgear</td>
</tr>
<tr>
<td>Instance</td>
<td>When several occurrences of the same function are available in the IED, they are referred to as instances of that function. One instance of a function is identical to another of the same kind but has a different number in the IED user interfaces. The word "instance" is sometimes defined as an item of information that is representative of a type. In the same way an instance of a function in the IED is representative of a type of function.</td>
</tr>
<tr>
<td>IP</td>
<td>1. Internet protocol. The network layer for the TCP/IP protocol suite widely used on Ethernet networks. IP is a connectionless, best-effort packet-switching protocol. It provides packet routing, fragmentation and reassembly through the data link layer. 2. Ingression protection, according to IEC standard</td>
</tr>
<tr>
<td>IP 20</td>
<td>Ingression protection, according to IEC standard, level 20</td>
</tr>
<tr>
<td>IP 40</td>
<td>Ingression protection, according to IEC standard, level 40</td>
</tr>
<tr>
<td>IP 54</td>
<td>Ingression protection, according to IEC standard, level 54</td>
</tr>
<tr>
<td>IRF</td>
<td>Internal failure signal</td>
</tr>
<tr>
<td>IRIG-B:</td>
<td>InterRange Instrumentation Group Time code format B, standard 200</td>
</tr>
<tr>
<td>ITU</td>
<td>International Telecommunications Union</td>
</tr>
<tr>
<td>LAN</td>
<td>Local area network</td>
</tr>
<tr>
<td>LCD</td>
<td>Liquid crystal display</td>
</tr>
<tr>
<td>LDD</td>
<td>Local detection device</td>
</tr>
<tr>
<td>LED</td>
<td>Light-emitting diode</td>
</tr>
<tr>
<td>LNT</td>
<td>LON network tool</td>
</tr>
<tr>
<td>MCB</td>
<td>Miniature circuit breaker</td>
</tr>
<tr>
<td>MVAL</td>
<td>Value of measurement</td>
</tr>
<tr>
<td>MVC</td>
<td>Value of measurement</td>
</tr>
<tr>
<td>MVL</td>
<td>Value of measurement</td>
</tr>
<tr>
<td>NCC</td>
<td>National Control Centre</td>
</tr>
<tr>
<td>NOF</td>
<td>Number of grid faults</td>
</tr>
<tr>
<td>NUM</td>
<td>Numerical module</td>
</tr>
<tr>
<td>OCO cycle</td>
<td>Open-close-open cycle</td>
</tr>
<tr>
<td>OCP</td>
<td>Overcurrent protection</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>OLTC</td>
<td>On-load tap changer</td>
</tr>
<tr>
<td>OTEV</td>
<td>Disturbance data recording initiated by other event than start/pick-up</td>
</tr>
<tr>
<td>OV</td>
<td>Over-voltage</td>
</tr>
<tr>
<td>Overreach</td>
<td>A term used to describe how the relay behaves during a fault condition. For example, a distance relay is overreaching when the impedance presented to it is smaller than the apparent impedance to the fault applied to the balance point, that is, the set reach. The relay “sees” the fault but perhaps it should not have seen it.</td>
</tr>
<tr>
<td>PCI</td>
<td>Peripheral component interconnect, a local data bus</td>
</tr>
<tr>
<td>PCM600</td>
<td>Protection and control IED manager</td>
</tr>
<tr>
<td>PC-MIP</td>
<td>Mezzanine card standard</td>
</tr>
<tr>
<td>POR</td>
<td>Permissive overreach</td>
</tr>
<tr>
<td>POTT</td>
<td>Permissive overreach transfer trip</td>
</tr>
<tr>
<td>Process bus</td>
<td>Bus or LAN used at the process level, that is, in near proximity to the measured and/or controlled components</td>
</tr>
<tr>
<td>PSM</td>
<td>Power supply module</td>
</tr>
<tr>
<td>PST</td>
<td>Parameter setting tool within PCM600</td>
</tr>
<tr>
<td>PT ratio</td>
<td>Potential transformer or voltage transformer ratio</td>
</tr>
<tr>
<td>PUTC</td>
<td>Permissive underreach transfer trip</td>
</tr>
<tr>
<td>RCA</td>
<td>Relay characteristic angle</td>
</tr>
<tr>
<td>RISC</td>
<td>Reduced instruction set computer</td>
</tr>
<tr>
<td>RMS value</td>
<td>Root mean square value</td>
</tr>
<tr>
<td>RS422</td>
<td>A balanced serial interface for the transmission of digital data in point-to-point connections</td>
</tr>
<tr>
<td>RS485</td>
<td>Serial link according to EIA standard RS485</td>
</tr>
<tr>
<td>RTC</td>
<td>Real-time clock</td>
</tr>
<tr>
<td>RTU</td>
<td>Remote terminal unit</td>
</tr>
<tr>
<td>SA</td>
<td>Substation Automation</td>
</tr>
<tr>
<td>SBO</td>
<td>Select-before-operate</td>
</tr>
<tr>
<td>SC</td>
<td>Switch or push button to close</td>
</tr>
<tr>
<td>SCL</td>
<td>Short circuit location</td>
</tr>
<tr>
<td>SCS</td>
<td>Station control system</td>
</tr>
<tr>
<td>SCADA</td>
<td>Supervision, control and data acquisition</td>
</tr>
<tr>
<td>SCT</td>
<td>System configuration tool according to standard IEC 61850</td>
</tr>
<tr>
<td>SDU</td>
<td>Service data unit</td>
</tr>
<tr>
<td>SMA connector</td>
<td>Subminiature version A, A threaded connector with constant impedance.</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>SMT</td>
<td>Signal matrix tool within PCM600</td>
</tr>
<tr>
<td>SMS</td>
<td>Station monitoring system</td>
</tr>
<tr>
<td>SNTP</td>
<td>Simple network time protocol – is used to synchronize computer clocks on local area networks. This reduces the requirement to have accurate hardware clocks in every embedded system in a network. Each embedded node can instead synchronize with a remote clock, providing the required accuracy.</td>
</tr>
<tr>
<td>SOF</td>
<td>Status of fault</td>
</tr>
<tr>
<td>SPA</td>
<td>Strömberg protection acquisition, a serial master/slave protocol for point-to-point communication</td>
</tr>
<tr>
<td>SRY</td>
<td>Switch for CB ready condition</td>
</tr>
<tr>
<td>ST</td>
<td>Switch or push button to trip</td>
</tr>
<tr>
<td>Starpoint</td>
<td>Neutral point of transformer or generator</td>
</tr>
<tr>
<td>SVC</td>
<td>Static VAr compensation</td>
</tr>
<tr>
<td>TC</td>
<td>Trip coil</td>
</tr>
<tr>
<td>TCS</td>
<td>Trip circuit supervision</td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission control protocol. The most common transport layer protocol used on Ethernet and the Internet.</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transmission control protocol over Internet Protocol. The de facto standard Ethernet protocols incorporated into 4.2BSD Unix. TCP/IP was developed by DARPA for Internet working and encompasses both network layer and transport layer protocols. While TCP and IP specify two protocols at specific protocol layers, TCP/IP is often used to refer to the entire US Department of Defense protocol suite based upon these, including Telnet, FTP, UDP and RDP.</td>
</tr>
<tr>
<td>TEF</td>
<td>Time delayed earth-fault protection function</td>
</tr>
<tr>
<td>TLS</td>
<td>Transport Layer Security</td>
</tr>
<tr>
<td>TM</td>
<td>Transmit (disturbance data)</td>
</tr>
<tr>
<td>TNC connector</td>
<td>Threaded Neill-Concelman, a threaded constant impedance version of a BNC connector</td>
</tr>
<tr>
<td>TP</td>
<td>Trip (recorded fault)</td>
</tr>
<tr>
<td>TPZ, TPY, TPX, TPS</td>
<td>Current transformer class according to IEC</td>
</tr>
<tr>
<td>TRM</td>
<td>Transformer Module. This module transforms currents and voltages taken from the process into levels suitable for further signal processing.</td>
</tr>
<tr>
<td>TYP</td>
<td>Type identification</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>UMT</td>
<td>User management tool</td>
</tr>
<tr>
<td>Underreach</td>
<td>A term used to describe how the relay behaves during a fault condition. For example, a distance relay is underreaching when the impedance presented to it is greater than the apparent impedance to the fault applied to the balance point, that is, the set reach. The relay does not “see” the fault but perhaps it should have seen it. See also Overreach.</td>
</tr>
<tr>
<td>UTC</td>
<td>Coordinated Universal Time. A coordinated time scale, maintained by the Bureau International des Poids et Mesures (BIPM), which forms the basis of a coordinated dissemination of standard frequencies and time signals. UTC is derived from International Atomic Time (TAI) by the addition of a whole number of "leap seconds" to synchronize it with Universal Time 1 (UT1), thus allowing for the eccentricity of the Earth's orbit, the rotational axis tilt (23.5 degrees), but still showing the Earth's irregular rotation, on which UT1 is based. The Coordinated Universal Time is expressed using a 24-hour clock, and uses the Gregorian calendar. It is used for aeroplane and ship navigation, where it is also sometimes known by the military name, "Zulu time." "Zulu" in the phonetic alphabet stands for "Z", which stands for longitude zero.</td>
</tr>
<tr>
<td>UV</td>
<td>Undervoltage</td>
</tr>
<tr>
<td>WEI</td>
<td>Weak end infeed logic</td>
</tr>
<tr>
<td>VT</td>
<td>Voltage transformer</td>
</tr>
<tr>
<td>$3I_0$</td>
<td>Three times zero-sequence current. Often referred to as the residual or the earth-fault current</td>
</tr>
<tr>
<td>$3U_0$</td>
<td>Three times the zero sequence voltage. Often referred to as the residual voltage or the neutral point voltage</td>
</tr>
</tbody>
</table>
For more information please contact:

ABB AB
Grid Automation Products
SE-721 59 Västerås, Sweden
Phone +46 (0) 21 32 50 00

www.abb.com/protection-control

Note:
We reserve the right to make technical changes or modify the contents of this document without prior notice. ABB AB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document. We reserve all rights in this document and in the subject matter and illustrations contained herein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in part – is forbidden without prior written consent of ABB AB.

© Copyright 2013 ABB.
All rights reserved.

Scan this QR code to visit our website