MEDIUM VOLTAGE PRODUCT

KOKM Cable current instrument transformers
Instruction for installation, use and maintenance
Scope of Contents

1. Service conditions
2. Technical details
3. Instructions for installation
 - General information
 - Safety instructions
 - Mounting
 - Connection of the transformer primary side
 - Connection of the transformer secondary side
4. Instructions for use
 - Routine test report
5. Instructions for maintenance
6. Transport & Storage
7. Disposal
8. Handling
9. Normative references
Appendix 1. Examples of electrical wiring / secondary marking
Instructions for installation, use and maintenance for cable current instrument transformers

These instructions apply for cable current instrument transformers intended for indoor operation, where primary insulation is provided by primary conductor and its insulation. KOKM transformers are designed for $U_{sys} > 1$ kV.

The instructions refer to the following types: KOKM 06, KOKM 072, KOKM 1

1. Service conditions

The transformers need to be installed in dry and indoor conditions where the ambient air is not significantly polluted by dust, smoke, corrosive gases, vapours or salts. The transformers are designed for standard ambient temperatures between -25°C and +40°C (it depends on each type) and altitudes below 1 000 m above sea level. The transformers can also be operated at higher or lower ambient air temperatures and higher installation altitudes if such are agreed with the manufacturer.

2. Technical details

Technical details and specifications of each of the transformers are shown on a rating plate fixed to the transformer body. It is not allowed to operate the transformer at values exceeding the nameplate data. Dimensional drawings of KOKM transformers are defined in the Catalogue. Dimensions of the KOKM transformers are defined by the type marking, see the example:

![Example of cable current instrument transformer rating plate](image)

<table>
<thead>
<tr>
<th>KOKM 1FF6</th>
<th>s. n. 1VLT5120075923</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000/1</td>
<td></td>
</tr>
<tr>
<td>50/60 Hz</td>
<td></td>
</tr>
<tr>
<td>S1-S2</td>
<td></td>
</tr>
<tr>
<td>1000/1A cl.0.5</td>
<td></td>
</tr>
<tr>
<td>IEC 61869-2</td>
<td></td>
</tr>
<tr>
<td>TCM 212/11-4825</td>
<td></td>
</tr>
<tr>
<td>lc.th: 1200 A</td>
<td></td>
</tr>
<tr>
<td>Ith: 60 (1s) kA</td>
<td></td>
</tr>
<tr>
<td>Idyn: 150 kA</td>
<td></td>
</tr>
<tr>
<td>Made by ABB</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
</tr>
</tbody>
</table>

Where:

- 1VLT5120075923 serial number
- KOKM 1FF6 type code of transformer
- 50/60 Hz rated frequency
- S1-S2 terminal marking
- 1000/1A rated transformer ratio
- Ext.120% ratio extension
- 5 VA rated output (burden)
- 0.5 accuracy class
- 0.72/3 kV highest voltage for equipment/power-frequency withstand voltage
- lc.th: 1200 A rated continuous thermal current
- Ith: 60 (1s) kA rated short-time thermal current and duration
- IEC 61869-2 corresponding standard (standards)
- Idyn: 150 kA rated dynamic current
- TCM 212/11-4825 metrological standard
- 2020 year of manufacture
- E insulating temperature class
- -5/40 °C ambient temperature
3. Instructions for installation

General informations

Instrument transformer is an electrical equipment and the electrical installation of the instrument transformer can be done by skilled personnel only. The level of experience, age and eligibility criteria for persons working with, on or near electric installations is governed by national legislation. If no such eligibility legislation is available the corresponding requirements can be found in EN 50110-1 standard.

Safety instructions

1. Always consider the transformer as a part of electric circuit which it is connected to. Don’t touch incoming connectors and terminals, or any other parts of the transformer, except you know for sure these are earthed.

2. Ground always the metallic base of the instrument transformer, if exist.

3. Connect always one terminal of each secondary winding of the transformer to the earth. When the secondary of transformer is interconnected, there should be only one grounded point to prevent accidental paralleling with system grounding wire.

4. Always short-circuit the secondary of the current transformer, which is not currently in use, to prevent secondary voltages, which may be hazardous to personnel or damaging to the transformer’s secondary. The secondary like this must be additionally grounded.

Mounting

The KOKM type transformers are designed for low voltages of 0.72/3 kV KOKM 06 and KOKM 072 or 1.2/6 kV (KOKM 1), without built-in primary conductor. Their use at higher voltage levels needs always the transformers to have combined with primary conductor provided with its own insulation. The primary conductor is not a part of transformer delivery. Therefore, the KOKM transformers are mounted and placed at the option of the customer, based on the application chosen and the insulated conductor used on the primary side. Types of the transformer fixation are visible on Fig. 2 – Fig. 5.
Connection of transformer primary side
The KOKM transformers don’t have their own primary conductor. The primary conductor is designed as a bushing with its own insulation, or insulated cable.

Connection of transformer secondary side
The KOKM transformers have two types of secondary connection according to design.

1) Cables
Length and type of the cable is variable according to the types (see catalogue)

KOKM 072 xA 10 and KOKM 072 xB 10 secondary connection is done by terminal block VTRK 4 GY equipped with M3 screws with highest torque 0.8 Nm and lowest torque 0.6 Nm.

Maximal crosssections of secondary cables are 4 mm² (strand) or 6 mm² (solid conductor).

2) Secondary terminal
Screw the secondary terminal connection by M5 screw with highest torque 3.5 Nm and lowest torque 2.8 Nm. Maximum permissible tightening torque for M3 screws securing plastic terminal cover is 0.5 Nm.

Maximal diameter of cable or conductor connected to one secondary terminal: 2x2.5 mm. There is allowed to use only the screws delivered with transformer into secondary terminals. In case of any need to use different screw be sure that the thread hole and diameter is correct for non original screw. Otherwise there is high risk of damage of the terminal.

4. Instructions for use
Current instrument transformers are used:
• to convert large currents in the primary circuit to an appropriate level for secondary circuit equipment (relays and meters);
• to insulate primary and secondary circuit from each other to protect the secondary equipment from the harmful effects of large current appearing during the operation (short circuits).
The use of current transformer for other purpose then described above is forbidden if not agreed with the producer.

Routine test report
The routine test report of a current instrument transformer includes:

a) verification of terminal markings;
b) inter-turn overvoltage test;
c) determination of errors.

On customer request the following information can be provided free of charge:

- theoretical current/voltage error and phase displacement values;
- theoretical excitation (magnetization) curves.

Additional reports for supplementary charge, made available on request:

- test report on accuracy;
- excitation (magnetization) curves;
- additional nameplates (if more than 2 are required);
- verification tests for measuring cores (classes 0.2; 0.2 S; 0.5; 0.5 S).

5. Instructions for maintenance
Excessive dust sediments or any other type of contamination must be removed from the transformer by a soft brush, in a way not to damage the insulation or cables taken out from the transformer.

6. Transport & Storage
Permitted temperature for transport and storage ranges from -40°C to +70°C. During transport and storage the transformers have to be protected from direct impact of solar radiation. The transformers are delivered in wooden crates or fixed on transport pallets.

7. Disposal
Materials used in instrument transformers are considered as materials without environmental impact and materials are not toxic. Instrument transformers have to be disposed of in accordance with national legislation relevant to domestic waste disposal.

8. Handling
Most of the KOKM transformers weight less than 25 kg and, consequently, they can be handled manually. In case of higher weight it is necessary to use carry belts threaded through the transformer internal opening.

ATTENTION: The process of transformer handling has to comply the occupational health and safety rules. It is forbidden to stay or move below a suspended load. Always make sure the load is safely tied and secured, what makes its loosening or turnover impossible. All transformers has to be carried carefully to prevent any damage to the transformer.

9. Normative references

- IEC 61869-1 Instrument transformers: General requirements
- IEC 61869-2 Instrument transformers: Additional requirements for current transformers
- IEC 60529 Degrees of protection provided by enclosures
- ISO 12100 Machine safety – basic concepts, general principles of design
- EN 50110-1 Operation of electrical installations

Current instrument transformers are designed, tested and manufactured in accordance with international or national standards, the customer requirements, based on an agreement between the customer and the manufacturer. The specific standard is always mentioned on the transformer nameplate.

As an example the following standards can be mentioned:

- IEC 60044-1; IEC 60044-6; IEC 61869-1; IEC 61869-2;
- AS 60044-1; AS 1243-1982;
- ČSN 351301; ČSN 351361;
- ČSN EN 60044-1; ČSN EN 60044-6;
- IEEE Std C57.13-2005;
- ANSI C57.13-1978;
- CSA Std CAN3-C13-M83;
- GOST 1516.3-96; GOST 7746-2001;
- BS 3939:1973; BS EN 60044-1.

When agreed transformers made in accordance with other standards can also be supplied, or in accordance with other release version of the above standards.
Appendix 1.
Examples of electrical wiring /secondary marking

one secondary winding example: 100/1 [A/A]

multi-tap secondary winding example: 50-100/1 [A/A]

two secondary winding example: 800/5/5 [A/A/A]