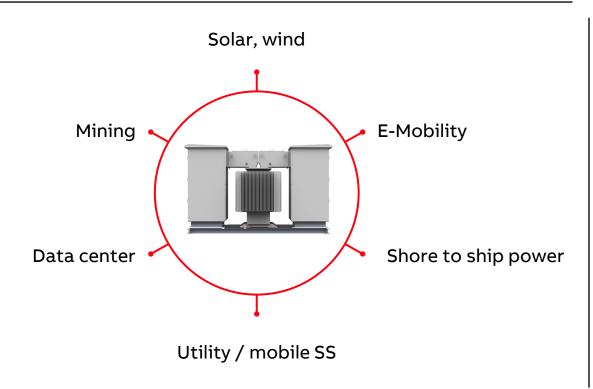


Skid solutions


Product portfolio for Solar Applications

EPDS Modular Systems and Packaging

Skid

Skid can be used in various application

Outdoor skid

Prefabricated unit substation with power distribution components such as medium voltage, transformer, low voltage integrated **on the frame** for outdoor uses with no environmentally controlled.

Indoor skid

Prefabricated unit substation with power distribution components such as medium voltage, transformer, low voltage switchgear, **on the frame**, for installation in a building.

Skid solutions

Solar

- Projects are located in remote locations
- Solar plants are in high radiant places

Segment challenges

Projects tends to be scalable

- Factory assembled and routine tested
- One piece delivery for minimized site works
- Efficient cooling based an open air design with no additional HVAC required
- No exposed live parts
- Easy access for any repairs
- ABB Ability enabled provides predictive maintenance and remote management

Skid components

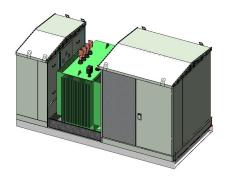
What does a skid consist of?

Overview

Different components

The skid unit generally have these main components:

- MV switchgear up to 40.5 kV
- Transformer up to 7.5 MVA, oil-type
- Low voltage switchgear or panels Up to 1 kV
- Others inverter, bus duct


The equipment is designed and coordinated mechanically and electrically.

Electrical substation mounted on skid which steps down/up to the usable voltage for customer system requirement.

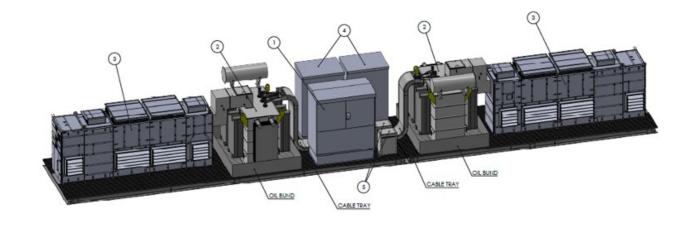
Typical skid

Several configurations possible on LV side

LV switchgear

- Several incoming and outgoing feeder options
 - direct connected, circuit breakers, fused disconnectors or load break switches
- Various number of ratings
- Equipment for metering, measuring and control available
- Voltage up to 800V, current up to 5000 A
- Different width for different applications: 5M, 8M, 12M, 16M,
 20M

Benefit: Flexibility to match customer requirements


Combined Skid

Components

Further reducing the installation work on site while increasing the power of DTR

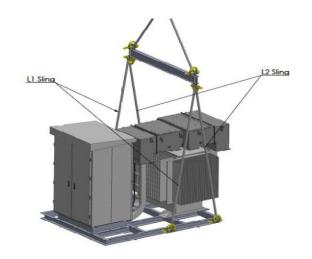
- One common RMU and auxiliary cabinet
- Twin Transformer
- Twin Central inverter
- or LV cabinet for connection to string inverter

Depending on the dimension can be split in two skids for transportation purpose

What does a skid structure consist of?

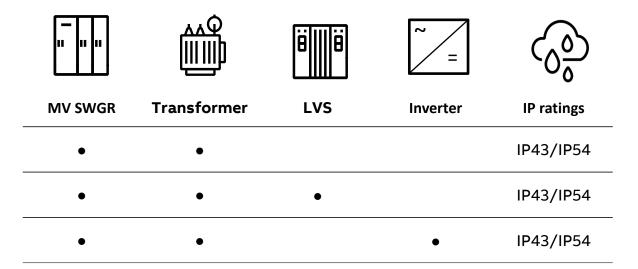
Transportation facility

Different types of transportation


The skid has **two transportation methods**, depending on site operational requirements. The skid must be designed for the specific requirement:

- The skid can be lifted and placed by crane on the concrete foundation. The substation is to be lifted from lifting brackets located as the base frame with the help of spreader and crane. The length of the four part lifting chain/sling is dependent on the actual size of the skid.
- 2. The skid can be dragged by tractor. Dragging is done by attaching the steel holding lines with hooks to the ends of the skids where the anchoring points are, once the lines are attached the tractor is moving the substation in to the other place in the pit. Even the surface is not even and conditioned. It is used in the open pit mining.

Summary of transportation choices

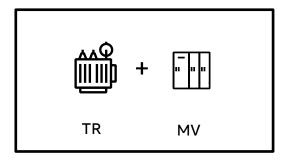

Offering

Offering overview

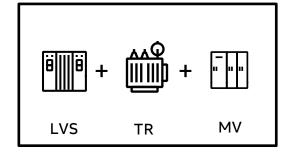
Several electrical combination

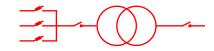
Several combination

- To match site and plant requirements
- For plant with both Central and String inverter
- From smaller to larger installation
 - Combining several equipments on the same skid

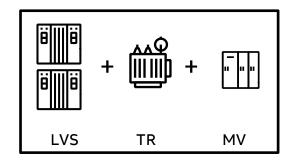


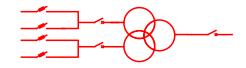
SSU MV station


Detail portfolio and product description


1. SSU MV station

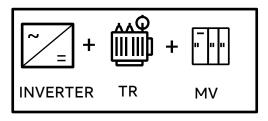
- RMU: 2.4 40.5 kV
- Trafo type: Oil


2. SSU MV+LVS



- RMU: 2.4 40.5 kV
- LVS: 400-800 V up to 20M
- Trafo type: Oil up to 3.6 MVA

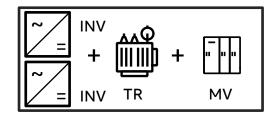
3. MV + 2 LVS

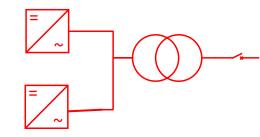


- RMU: 2.4 40.5 kV
- LVS: 400-800 V up to 20M each
- Trafo type: Oil up to 7.5 MVA

SSU MV + INV

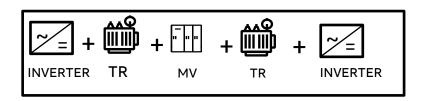
Detail portfolio and product description

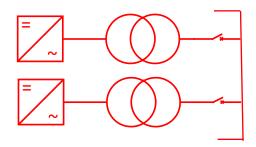

4. MV + INV



- RMU: up to 40.5 kV
- Trafo type: Oil
- Central Inverter

5. MV + 2 INV

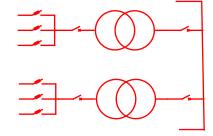



- RMU: up to 40.5 kV
- Trafo type: Oil
- Central Inverter

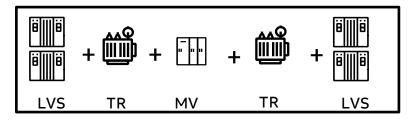
SSU – Combined Skid

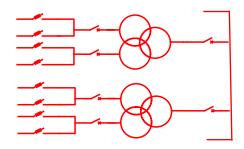
Detail portfolio and product description


6. MV + 2 DTR + 2 INV



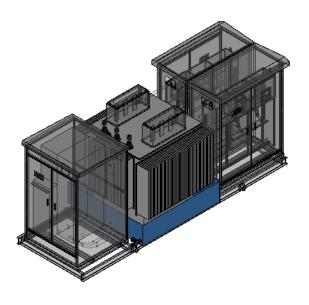
- RMU: up to 40.5 kV
- Trafo type: Oil up
- Central Inverter


7. MV + 2 DTR + 2 LVS



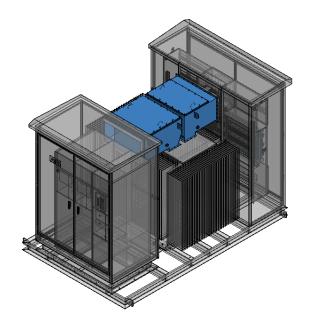
- RMU: up to 40.5 kV
- LVS: 400-800 V up to 20M
- Trafo type: Oil up to 3.5 MVA

8. MV + 2 DTR + 2 LVS

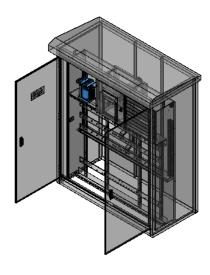

- RMU: up to 40.5 kV
- LVS: 400-800 V up to 20M each
- Trafo type: Oil up to 7.2 MVA

Skid solutions

Options


Oil collect pit

- Embedded in the civil foundation
- Embedded in the skid solution


Cable protection cover

Additional enclosure for MV or LV connections

Control TR

 Supplied in the LVS enclosure or outdoor beside distribution TR

SSU

Values to customers

Units are pre-designed, pre-tested and assembled at the factory, and shipped in one piece so it is simple to drop in place and connect cables. Open-air design allows easy access to equipment for quick installation procedures.
Simple and modular concept with pre-engineered designs to be combined to meet project requirements. Pre-engineered units shorten design time, eliminating design errors.
All electrical equipment installed in 1 frame to minimize site works and maximize pretesting and safety
Open-air design with natural air cooling allows maximum transformer cooling. There is no need to consider derating due to limited ventilation.
Although it is an open-air design, there are no exposed live parts. All live parts are covered to ensure safety against electrical shock.
All electrical equipment contained within the SSU are type tested according to their relevant standards, ensuring quality of sub components.
Open-air design provides easy access for visual inspection of equipment. Trained personnel can open covered parts for service.
ABB Ability provides predictive maintenance and remote management through, smart sensing and communication, internet based management, data historian and connected asset lifecycle management.
Electrical equipment conforms to local regulations.

