2100890-001 (AB)

TOTALFLOW[®] μ**FLO Computer**

User's Manual

Copyright Notice

©2003 by ABB ,Inc., Totalflow Products, Bartlesville, Oklahoma 74006, U.S.A. All rights reserved.

This publication is for information only. The contents are subject to change without notice and should not be construed as a commitment, representation, warranty, or guarantee of any method, product, or device by Totalflow.

Inquiries regarding this manual should be addressed to ABB, Inc., Totalflow Products, Technical Communications, 7051 Industrial Blvd., Bartlesville, Oklahoma 74006, U.S.A.

Table of Contents	

Introduction	ix
About the Manual	ix
Key Symbols	ix
Getting Help	x
Safety Practices and Precautions	x
Chapter 1 System Description	1-1
Overview	
μFLO Computer Hardware	1-6
μ FLO General Specifications	1-9
μFLO 2100767 Board	1-10
Integral Multivariable Transducer (IMV) Specifications	1-10
Functions of the μ FLO	1-11
Log Period Records	1-12
Display Function	1-14
Status and Alarm Conditions	1-15
Chapter 2 Installation	2-1
Chapter 2 Installation	
-	2-1
Overview	2-1 2-2
Overview Unpacking & Inspection	2-1 2-2 2-2
Overview Unpacking & Inspection Meter Run Installation Overview	2-1 2-2 2-2 2-2 2-4
Overview Unpacking & Inspection Meter Run Installation Overview Pipe Mount Installation	2-1 2-2 2-2 2-2 2-4 2-8
Overview Unpacking & Inspection Meter Run Installation Overview Pipe Mount Installation Wall Mount Installation	2-1 2-2 2-2 2-4 2-8 2-10
Overview Unpacking & Inspection Meter Run Installation Overview Pipe Mount Installation Wall Mount Installation Direct Mount Installation	2-1 2-2 2-2 2-4 2-4 2-8 2-10 2-12
Overview Unpacking & Inspection Meter Run Installation Overview Pipe Mount Installation Wall Mount Installation Direct Mount Installation Manifold Input Lines	2-1 2-2 2-2 2-4 2-4 2-8 2-10 2-12 2-13
Overview Unpacking & Inspection Meter Run Installation Overview Pipe Mount Installation Wall Mount Installation Direct Mount Installation Manifold Input Lines RTD Probe Installation	2-1 2-2 2-2 2-4 2-4 2-8 2-10 2-12 2-13 2-16
Overview Unpacking & Inspection Meter Run Installation Overview Pipe Mount Installation Wall Mount Installation Direct Mount Installation Manifold Input Lines RTD Probe Installation Battery Pack Installation	2-1 2-2 2-2 2-2 2-4 2-8 2-10 2-12 2-13 2-16 2-16
Overview Unpacking & Inspection Meter Run Installation Overview Pipe Mount Installation Wall Mount Installation Direct Mount Installation Manifold Input Lines RTD Probe Installation Battery Pack Installation Solar Panel Installation	
Overview Unpacking & Inspection Meter Run Installation Overview Pipe Mount Installation Wall Mount Installation Direct Mount Installation Manifold Input Lines RTD Probe Installation Battery Pack Installation Solar Panel Installation AC Charging Unit Installation	
Overview Unpacking & Inspection Meter Run Installation Overview Pipe Mount Installation Wall Mount Installation Direct Mount Installation Manifold Input Lines RTD Probe Installation Battery Pack Installation Solar Panel Installation AC Charging Unit Installation Chapter 3 µFLO Startup.	

Setting up the μ FLO	3-3
Overview	3-3
Station ID	3-3
Location	3-3
Date/Time	3-3
Security System	3-4
Configuring the μFLO	3-5
Contract Hour	3-5
Volume Calculation Period	3-5
Log Period	3-5
Calculation Type	3-5
Constants	
Super Compressibility Calculation (Fpv)	3-8
Alarm Limits	3-9
Reset Volume	3-9
Startup μFLO	3-11
Put μ FLO On Line	3-11
Volume Reset	3-11
μFLO Standard Displays	
Program Display	3-13
Chapter 4 Maintenance & Troubleshooting	4-1
Overview	4-1
Maintenance	4-3
Backing up Configuration Files	4-3
Changing μ FLO Clock	4-3
Replacing μ FLO Battery Pack	4-4
Replacing Liquid Crystal Display (LCD) Board	
Replacing Integral Multivariable Transducer (IMV)	
Callibration Overview	4-12
Checking Static Pressure (SP)	4-13
Calibrating Static Pressure (SP)	4-13
Checking Differential Pressure (DP)	4-14
Calibrating Differential Pressure (DP)	4-14

Setup RTD4	-14
low to Change Orifice Plate4	-15
Zero Transducer4	-16
Froubleshooting	
/isual Alarm Codes4	
roubleshooting Alarms4	-22
Communications Overview4	-24
RS-232 Communications4	I-24
RS-485 Communications4	-26
RS-422 Communications4	I-28
Vake-Up4	-30
Chapter 5 Totalflow [®] Definitions and Acronyms5	i-1
Chapter 6 Drawing & Diagrams6	i-1

Blank Page

Table of Figures

Figure 1–1 µFLO 6213 Dimensions	1-2
Figure 1–2 μFLO 6210 Dimensions	1-3
Figure 1–3 Bottom View μFLO 6213	1-4
Figure 1–4 Bottom View μFLO 6210	1-4
Figure 1–5 Integral Multivariable Transducer (IMV)	1-5
Figure 1–6 µFLO 2100767 Board, Complete Overview	1-7
Figure 1–7 μFLO Comm Board	1-8
Figure 1–8 Liquid Crystal Display and Indicators	1-15
Figure 2–1 Bottom View of μFLO 6213 with IMV	2-3
Figure 2–2 Bottom View of μ FLO 6210 with IMV	2-3
Figure 2–3 Typical Pipe Installation	2-4
Figure 2–4 Typical Pipe Saddle Installation	2-5
Figure 2–5 μ FLO Pipe Mounted	2-6
Figure 2–6 µFLO 6213 Pipe Mounted	2-7
Figure 2–7 µFLO 6213 Wall Mounted	2-9
Figure 2–8 µFLO 6213 Direct Mounted	2-11
Figure 2–9 μFLO Computer IMV Ports	2-12
Figure 2–10 RTD Probe Wiring	2-13
Figure 2–11 μFLO 2100767 Board Cutout, Installation	2-15
Figure 2–12 Typical Solar Panel Installation	2-18
Figure 2–13 Mounting AC Charger	2-20
Figure 4–1 μFLO 2100767 Board Cutout, Maintenance	4-5
Figure 4–2 μFLO 6210 Component/Cable Locations	4-6
Figure 4–3 µFLO 6213 Component/Cable Locations	4-7
Figure 4–4 Flow Computer with Discrete Manifold	4-10
Figure 4–5 μ FLO 2100767 Board with Communication Configurations	4-19
Figure 4–6 Liquid Crystal Display and Indicators	4-21

Blank Page

List of Tables

Table 1–1 μ FLO 2100767 Board Identifications, Complete Overview	1-7
Table 1–2 Typical μFLO Display Options	1-14
Table 1–3 μ FLO Status and Alarm Description	1-15
Table 2–1 μ FLO 2100767 Board Identifications, Installation	2-15
Table 3–1 Configurable Calculation Factors	3-6
Table 3–2 Gas Orifice Constants	3-7
Table 3–3 Fpv Analysis Data	3-8
Table 3–4 Alarm Limits	3-9
Table 3–5 μ FLO Displayed Items	3-13
Table 4–1 μ FLO 2100767 Board Identifications, Maintenance	4-5
Table 4–2 μFLO 6210/6213 Component Identifications	4-8
Table 4–3 Calibration Configurable Parameters	4-12
Table 4–4 μ FLO 2100767 Board with Communication Configurations	4-20
Table 4–5 Visual Alarm Codes	4-21
Table 4–6 Troubleshooting Alarm Codes	4-22
Table 4–7 Troubleshooting RS-232 Serial Communication	4-24
Table 4–8 Troubleshooting RS-485 Communications	4-26
Table 4–9 Troubleshooting RS-422 Communications	4-28

Blank Page

About the Manual

This manual is written to provide an experienced flow meter technician with the requirements necessary to install, setup and operate a Totalflow Flow Computer System.

Organization & Each of the chapters in this manual presents information in an organized and concise manner. Readers are able to look at the headings and get a broad picture of the content without reading every word. Also, there are overviews at the beginning of each chapter that provides you with an idea of what is in the chapter, and how it fits into the overall manual.

Highlights

This manual provides the following information:

	Chapter	Description
1.	System Description	Provides a description of the Totalflow μ FLO system components, specifications, and description of flow computer computation methods.
2.	Installation	Includes unpacking and detailed procedures for setup and installation.
3.	μ FLO Operation	Provides you with a tutorial on how to get a newly installed μ FLO system up and running.
4.	Maintenance & Troubleshooting	Provides instructions on how to remove and replace major modules, a description of the μ FLO front panel error messages and provides a troubleshooting chart on how to correct most problems.
5.	Definitions & Acronyms	Provides quick access to the majority of terms and acronyms, as well as their definitions.
6.	Drawings	Provides a place to put drawings that accompany a unit.

Key Symbols

The following symbols are used frequently in the manual. These are intended to catch your eye and draw your attention to important information.

TIP

Intended to draw your attention to a statement that might clarify a point made earlier.

Intended to draw your attention to a statement that might keep you from making a mistake, keep you from destroying equipment or parts, or keep you from personal injury.

Intended to draw your attention to a fact that may be useful or helpful.

Getting Help

At Totalflow, we take pride in the on going support we provide our customers. When you purchase a product, you receive documentation which should answer your questions; however, your Totalflow technical support provides you an 800 number as an added source of information.

If you require assistance, call:

USA: (800) 442-3097 or International: 001-918-338-4888

- **Before You Call** Know your Totalflow's serial number. Serial numbers can be found on the escutcheon plate located on the side of each unit.
 - Be prepared to give the customer service representative a detailed description of the problem.
 - Note any alarms or messages as they appear on the PCCU or front panel LCD.
 - Prepare a written description of problem.
 - Know your software version, board and IMV part numbers.

Safety Practices and Precautions

This manual contains information and warnings which have to be followed by the user to ensure safe operation and to retain the product in a safe condition.

Safety First WARNING statements identify conditions or practices that could result in personal injury or loss of life.

CAUTION statements identify conditions or practices that could result in damage to the equipment or other property.

This symbol indicates where applicable safety, cautionary or other information is to be found.

Terms as Marked on Equipment DANGER indicates a personal injury hazard immediately accessible as one reads the markings.

CAUTION indicates a personal injury hazard not immediately accessible as one reads the markings, or a hazard to property, including the equipment itself.

Symbols Marked on Equipment

Protective ground (earth) terminal

Grounding the
ProductIf a grounding conductor is required, it should be connected to the grounding terminal
before any other connections are made.

CorrectBefore switching on the power, check that the operating voltage listed on the
equipment agrees with the power being connected to the equipment.Voltage

Safety Practices and Precautions, Continued

Danger Arising From Loss of Ground	A grounding conductor may or may not be required depending on the hazardous classification. If required, any interruption of the grounding conductor inside or outside the equipment or loose connection of the grounding conductor can result in a dangerous unit. Intentional interruption of the grounding conductor is not permitted.		
Safe Equipment	If it is determined that the equipment cannot be operated safety, it should be taken out of operation and secured against unintentional usage.		
Fuse Replacement	Fuses used on the μ FLO electronic boards are surface mount and field repair should not be attempted. Most fuses automatically reset themselves, but if a know problem exists, the Measurement Unit Assembly should be sent in for repair or replacement.		
Safety Guidelines	DO NOT open the equipment to perform any adjustments, measurements, maintenance, parts replacement or repairs until all external power supplies have been disconnected.		
	Only a properly trained technician should work on any equipment with power still applied.		
	When opening covers or removing parts, exercise extreme care "live parts or connections can be exposed".		
	Capacitors in the equipment can still be charged even after the unit has been disconnected from all power supplies.		

Blank Page

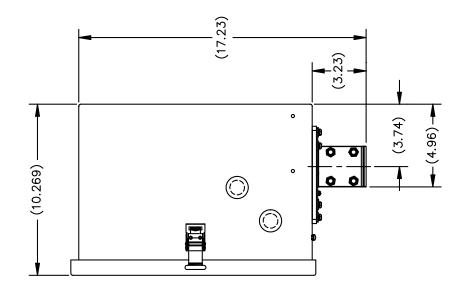
Chapter 1 System Description

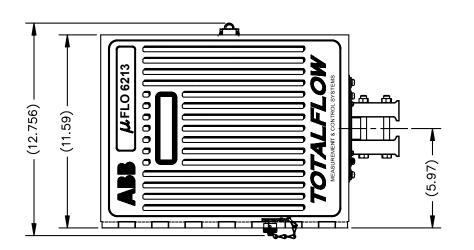
Overview

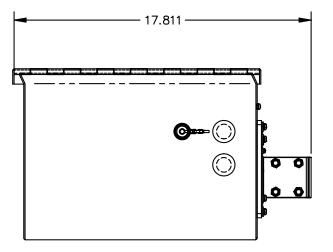
This Chapter introduces you to the TOTALFLOW[®] μ FLO 6200 series flow computers. μ FLO computers are low power, microprocessor based units designed to meet a wide range of measurement, monitor and alarming applications for remote gas systems.

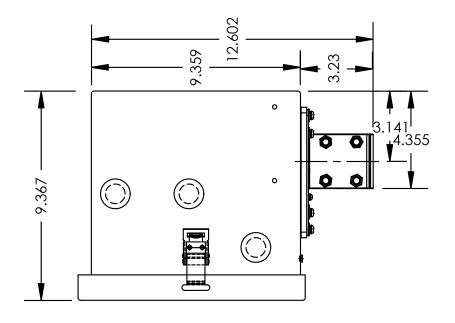
Model μ FLO 6213 is packaged in a light weight enclosure that can accommodate the μ FLO 2100767 Board (main electronic board), a variety of remote communications options and batteries (See Figure 1–1).

Model μ FLO 6210, is also packaged in a small light weight enclosure which can only accommodate the μ FLO 2100767 board. All power supply and radio communication applications must be housed in separate accommodations (See Figure 1–2).


In both models, the μ FLO IMV (Integral Multivariable Transducer) unit and Main Board are a single unit and are mounted underneath (See Figures 1-3 and 1-4) the enclosure with the top portion inserted into the enclosure where all field wiring takes place (See Figure 1-5). This μ FLO IMV unit is factory sealed and is currently not field repairable.


The symbol μ stands for the Greek word meaning micro or mu and the letters FLO is short for flow. As it's name implies, it is a flow computer designed to meet basic needs, eliminating many of the features on our more expandable Flow Computers. Based on ABB Totalflow XSeries technology, it is designed to provide a cost effective alternative to the multi-feature, multi-tube XSeries Flow Computer.


Highlights


This Chapter covers the following topics:

Торіс	See Page
μFLO Computer Hardware	1-6
μFLO General Specifications	1-9
μFLO 2100767 Board	1-10
Integral Multivariable Transducer (IMV) Specifications	1-10
Functions of the μ FLO	1-11
Log Period Records	1-12
Display Function	1-14
Status and Alarm Conditions	1-15

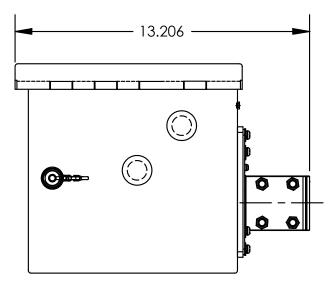


Figure 1–2 μFLO 6210 Dimensions

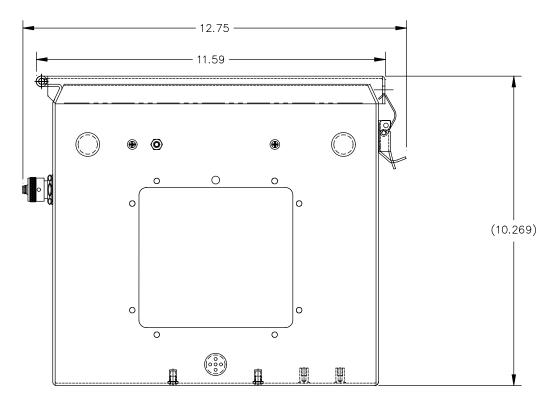


Figure 1–3 Bottom View µFLO 6213

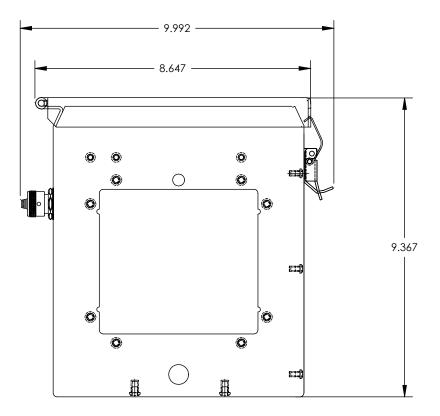


Figure 1–4 Bottom View µFLO 6210

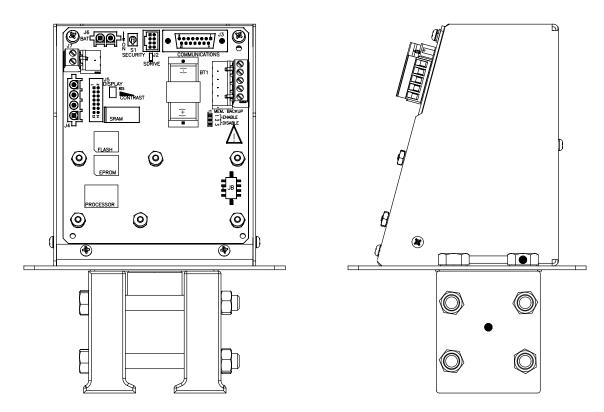


Figure 1–5 Integral Multivariable Transducer (IMV)

Overview, Continued

This model may be used in conjunction with the handheld FS/2 and/or a laptop computer running PCCU32 software. The FS/2 can do basic procedures, but PCCU32 is required for many of the initial setup features of the device.

The μ FLO maintains a history of alarms as well as average differential pressure (DP), average static pressure (SP), average flowing temperature (Tf), accumulated volume and energy and an average extension.

The μ FLO can be programmed to calculate flow rates and volumes in accordance with either AGA 3-85, AGA 3-92.

Supercompressibility calculations can be performed in accordance with either NX-19 or AGA 8-92, gross or detail.

µFLO Computer Hardware

The Totalflow® μFLO 6200 Computers are housed in a lightweight single compartment aluminum case. It's components are:

- Aluminum enclosure
- μFLO 2100767 Board
- Integral Multivariable Transducer
- Liquid Crystal Display (LCD)
- Resistive Temperature Detector (RTD)
- Battery Compartment Shelf (Model 6213 only)
- Communication Area(Model 6213 only)

Charger or Solar Pa	anel(Model 6213 only)
Enclosure	The enclosure consists of hinged-door box. The door provides a watertight, corrosion resistant seal between the outside elements and the μ FLO components. It is NEMA 4X rated. Opening the door's latch allows access to electronics and Integral Multivariable Transducer (IMV) components.
μFLO 2100767 Board	The μ FLO 2100767 Board is mounted directly on the Integral Multivariable Transducer (IMV). All user connections to the board are mounted directly on the face of the board. The μ FLO 2100767 Board uses a low power processor running at 11.0592 MHz with Data stored in 512K SRAM. RAM memory has lithium backup battery. The applications programs are stored in 512K Flash, the flash loader is stored in 512 K PROM, and Registry and Configuration files are stored in 32K E ² PROM. Other circuitry processes the inputs from the IMV and provides interfaces to the LCD and the PCCU. Remote communications are handled by the μ FLO Communications Connector J3 (See Figure 1–6, Item #1 and Table 1-1).
Integral Multivariable Transducer (IMV)	The IMV contains circuitry for processing all measurements and provides the primary measurement capability for the μ FLO (See Figure 1-6). The unit is designed to provide EMI/RFI protection of the low level signals, and to protect the circuitry from other environmental effects.
	Because the IMV is characterized over temperature at the factory the unit is not field repairable. All repairs should be done at an authorized Totalflow depot service center or returned to the factory. The IMV is characterized over temperature so that any changes occurring in the IMV or in the electronics can be compensated.
Resistive Temperature Detector (RTD)	An optional 100-ohm platinum RTD measures real-time flowing temperature of the gas. The standard RTD is provided with a 10-foot cable. Other lengths of cable are available upon request.
Battery Compartment Shelf	The battery compartment shelf (6213 only) will house various optional battery packs that are available for the μ FLO; from 8 ampere hours up to 26 ampere hours. Installation of the battery is discussed in detail in Chapter 4, Maintenance & Troubleshooting.

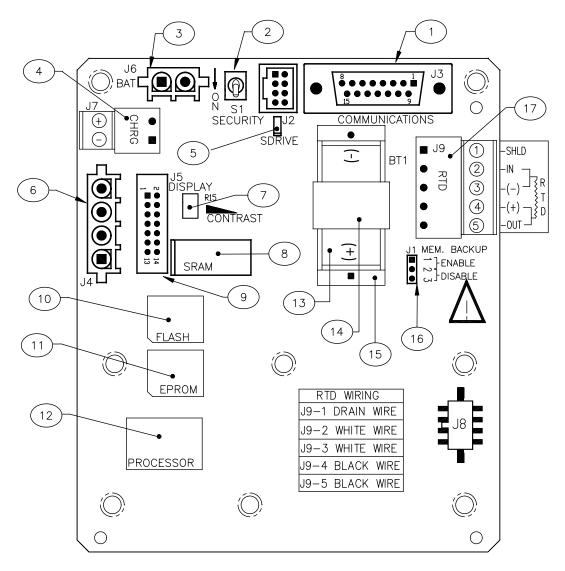


Figure 1–6 µFLO 2100767 Board, Complete Overview

ID Number	Description	ID Number	Description
1	Remote Communication Connector	10	Flash Program Memory
2	Security Switch	11	E Prom Loader and Utilities Memory
3	Battery Connection	12	195 Mhz Processor
4	External Charger	13	Lithium Battery
5	S Drive (Serial E2 Prom)	14	Battery Cover
6	PCCU Interface	15	Battery Mounting Bracket
7	Contrast Potentiometer	16	Memory Backup Enable/Disable
8	SRAM (Lithium backed)	17	RTD Connector
9	LCD Display Interface		

Table 1–1 µFLO 2100767 Board Identifications, C	Complete Overview
---	-------------------

µFLO Computer Hardware, Continued

Solar Panel The μFLO can be configured for a μFLO Watt, 10-Watt, 20-Watt or 30-Watt solar panel. The panel is designed to be mounted on 2–inch extension pipe above μFLO or mounted to the meter house.
 Communication Area Space is provided inside the 6213 enclosure to house a variety of remote communication devices; transceiver, cellular phone, etc.
 If remote communications are specified, a special cable designed for communication from the communication device to the μFLO, must be purchased from Totalflow. Optionally you may purchase a COMM+IO Board (μFLO Comm Board) designed for field wiring by knowledgeable technicians. See Figure 1–7

from Totalflow. Optionally you may purchase a COMM+IO Board (μ FLO Comm Board) designed for field wiring by knowledgeable technicians. See Figure 1–7. In addition to the field terminations for wiring, this board contains one DI and one DO. By including this "Aux Contact Logic", the μ FLO will now drive a sampler. The addition of the DI allows monitoring such as a compressor on/of status.

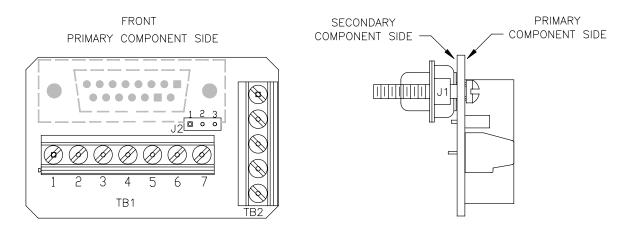


Figure 1–7 µFLO Comm Board

µFLO General Specifications

Certification	Designed to meet CSA/NRTL Class 1, Div. 2, Groups C & D hazardous area classification.			
Dimensions	Model	Width	Height	Depth
	6213	12.76" (324.00mm)	17.81" (452.40mm)	10.27" (260.83mm)
	6210	9.99" (253.80mm)	13.21" (335.43mm)	9.37" (237.92mm)
Installed	Model	Pipe Mounted	Wall Mounted	
Depth	6213	11.58" (294.23mm)	11.02" (279.88mm)	
	6210	10.68" (271.32mm)	10.12" (256.97mm)	
Weight	Model	Pounds	Kilograms	
(w/o battery)	6213	15.10	5.64	
	6210	10.60	3.96	
Mounting	Wall, Pipe o	r Direct		
Op. Temp.	-40°F to 185°F (-40°C to 85°C)			
EMC Requirements	EMMISSIONS:	 European Regions: EN55022 Class A Emissions (Radiated & Conducted) North America Regions: CFR 47, Part 15, Subpart B, Class A, FCC Emissions ICES-003 Issue 2, Rev. 1, Class A ITE Emissions European Regions: EN50082-1:98 Immunity: EN61000-4-2:95, ESD, ± 8 kV Air, ± 4 kV Contact EN61000-4-3:95 RF Immunity, 10 V/m EN61000-4-4:95 EFT, 1 kV EN61000-4-6:95 Conducted Susceptibility, 3 Vrms EN610004-8:93 Power Frequency Magnetic Field 3 A/m EN610004-11:94 Voltage DIP and interrupt 		

μ FLO 2100767 Board

Power	Nominal Batery 12 VDC		
Charger	Solar or 16–18 VDC		
Memory	 512K SRAM (Data Storage). RAM memory has lithium backup battery. 512K Flash (Program Application Storage). 512K PROM (Flash Loader) 32K E²PROM (Registry Configuration files) Transducer factory calibration data stored in separate E²PROM 		
Comm Ports	 1 – dedicated – PCCU 1 – RS232, RS485 or RS 422 (Software Selectable) 		
LCD Interface	Dedicated interface for Liquid Crystal Display (LCD)		
Security Switch	On/Off Bi-level on-board Security (See Chapter 3 for details)		
Scan Rate	1 time per second		
Time Base Stability	± 7.5 ppm (parts per million)		

Integral Multivariable Transducer (IMV) Specifications

Temperature Limits Tap Location Resolution Vibration Perf.	 Operational -40 Storage -40 Upstream only. Pressure is read 16 Bit A/D conversion (0.003% F 	D°F to 140°F (-29°C to 60°C) D°F to 185°F (-40°C to 85°C) D°F to 185°F (-40°C to 85°C) d on the high side of the differential plate. FS) (0.004% FS effective signal resolution) t 1 Hz, decreasing to zero at 1 KHz in straight line	
Mounting Spec.	Change from perpendicular alon	$p_{\rm av}$ axis will be <1.5 [NW]	
wounting Spec.	2	Pressure	
Accuracy		ability combined: ± 0.075% of Calibrated Span	
Ambient Temp.	± 0.15% of URL +0.125% of Rea		
•			
Stability	± .1% of URL (for 12 months)		
		al Pressure	
Accuracy	Linearity, Hysteresis and repeat	ability combined: ± 0.075% of Calibrated Span	
Ambient Temp.	± 0.15% of URL + 0.125% of Reading (Effect per 160°F)		
Stability	± .1% of URL (for 12 months)		
SP Effect	DP Zero per 500 psi: ± 0.03% DP Span per 1500 psi: ± 0.05%	•	
Temperature			
Operating Range	-80°F to 230°F (-80°C to 110°C)		
Accuracy	± 1°F over Operating Range		

Functions of the µFLO

Functions of the μ FLO reflect a design that is practical, straight-forward and efficient. The μ FLO is simple to use and easy to learn - and it saves time usually spent on calculations and report preparation. The μ FLO allows you to perform the following with minimum effort, maximum speed and greater accuracy.

Complete log period flow and operational records reported (hourly, default) including -

- Average static pressure
- Average differential pressure
- Average flowing temperature
- Corrected volume total
- Corrected energy total
- Operating status and alarms

Complete daily flow records including -

- Average static pressure
- Average differential pressure
- Average flowing temperature
- Average Extension
- Corrected volume total
- Corrected energy total
- Operating status and alarms

Complete daily operation statistics including -

- Percent flowing time
- Percent back flow time
- Percent out of limits (programmable) on SP, DP, Tf and Flow Rate
- Minimum and maximum values for SP, DP, Tf and Flow Rate

The records and statistics generated are due to the following capabilities of the μ FLO:

μFLO Capabilities

- Calculation of flow rates, volume and coefficients per AGA-3, AGA-8 Supercompressibility standards
- Calculation of flow extension $\sqrt{\frac{Dp^*Sp}{Tf}}$ once per second
- Extrapolation of flow accumulation during IMV calibration
- Selection of all coefficients for calculation; calculation of dynamic factors (dependent upon DP, SP and Tf) using averages based on one second samples
- Sample set of most recent calculations allowing subsequent verification
- Monitoring of the operational limits, minimums and maximums to insure detection and reporting of malfunctions or abnormal site conditions
- Acceptance and storage of system constants from the PCCU or remote communications protocols.
- Storage of data records and operational events determined by user (based on available SRAM)

Functions of the µFLO, Continued

AdditionalAdditional features of the Totalflow System enabling its flexibility include the
following:

- Programmable differential pressure zero cutoff
- Programmable bi-level security codes to prevent unauthorized communication and configuration of the μ FLO .
- Automatic temperature compensation of electronic measurement circuitry
- Automatic internal calibration of the RTD, with programmable bias adjustment
- Quick, simple calibration procedures for IMV with steps outlined.
- Real time clock providing a highly stable time base for the system
- Battery operation period is determined by the size of battery, location of unit and power consumption for communications. Totalflow Project Engineers can configure your requirements and select the appropriate battery. Battery packs to extend operation for longer periods without power are available.
- Three available charging sources:
 - External solar panel (standard)
 - External AC/DC power
 - External 24/12 VDC power
- LCD (liquid crystal display) programmable to allow monitoring of the μFLO operations and any variable that has a Register (for example, displays voltage level of batteries in μFLO).
- Rugged, aluminum, NEMA 4X enclosure, lockable to prevent internal access.
- Optional ability to allow rapid data collection over communication link.
- 2 Communication ports are available on the μ FLO 2100767 Board: 1 dedicated Local and 1 Remote Communication Interface.

Log Period Records

Each record has entries that contain the following information:

- Average SP (static Pressure)
- Average DP (differential pressure)
- Average Ft (flow temperature)
- Calculated Volume

Log Period Data Entries	Log period data entries are made every 60 minutes by default. You may change this period to one of 6 other choices (1,2,5,10,20,30,60). Choosing a log period of less than 60 minutes will result in additional records being logged, thus requiring more storage space to hold a full day's data. The log period must never be less than the volume calculation period.
Volume Calculation Period Entries	Volume Calculation period entries are made every 60 minutes by default. You may change this period to one of 6 other choices (1,2,5,10,20,30,60). The volume calculation period should never be greater than the log period and should be evenly divisible into the log period.
	Volume calculations are completed, following the top of the current period. (i.e. Top of the hour, top of the minute)

Log Period Records, Continued

Changing \muFLO Clock Changing μ FLO clock could affect the time when next log period entry is made. To protect integrity of accounting audit trail, μ FLO handles these types of clock changes as follows:

Clock Change Not Crossing an Hour Boundary:

When next log period entry is made, clock is not altered.

Example: If present time is 4:15 p.m. and clock is changed to 4:05 p.m. of the same day, the daily flow record is the same. Entry reflects averages accumulated over a 70 minute time period (15 minutes plus 55 minutes).

Forward Clock Change Crossing an Hourly Boundary:

Forces an log period entry for part of hour that has accumulated since last hourly entry. μ FLO then advances to newly defined data flow record boundary and begins maintaining balance of days' data in newly defined boundary.

Example: If present time is 4:55 p.m. and clock is changed to 5:05 p.m. of the same day, the entry reflects only a 55 minute average accumulation. Then a new flow record is written and this period is also based on a 55 minute accumulation.

Backward Clock Change Crossing an Hourly Boundary:

Hourly entry is made for part of hour that has accumulated since making last hourly entry. This is same as for a Forward Clock Change Crossing an Hourly Boundary. μ FLO advances to a new day's data flow record and maintains balance of day's data in new record.

Example: If present time is 5:05 p.m. and clock is changed to 4:55 p.m. of the same day, the log period record entry reflects only a 5 minute average accumulation. Then a new flow record is written and this log period is based on a 60 minute accumulation.

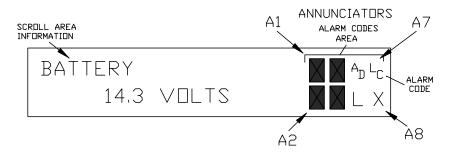
A backward clock change uses two (2) daily flow records to maintain data integrity. This assures that previously recorded data is not overwritten.

If it is necessary to make small backward time changes, less than one (1) hour, user should wait until current hour has progressed far enough to make change that does not cross an hour boundary.

Display Function

During operation, the front panel LCD continuously scrolls through the operating parameters. Table 1–2 shows typical displayed parameters, however any parameter with a Register Address can be displayed. The duration that the parameter is displayed can vary from 1 to 255 seconds (default is 5 seconds); a setting of 0 seconds will set any display to off. See "Program Display" in Chapter 3 (and PCCU32 help files) for more details.

Display	Description
DATE/TIME	Current Date and Time
MM/DD/YY HH:MM:SS	24 hour clock
YEST DP LO	Yesterday's Percent DP Low Limit
NN PERCENT	Percent time below DP Low Set Point
YEST DP HI	Yesterday's Percent DP High Limit
NN PERCENT	Percent time below DP High Set Point
FLOWRATE	Current Flow Rate
NNNNNN.N SCF/HR	Programmable SCF or MCF or MMCF
ACCUM VOL	Total Accumulated Volume
NNNNNN.NN MCF	Programmable SCF or MCF or MMCF
BATTERY	Battery Voltage
NN.N VOLTS	Volts
DIFF PRESS	Differential Pressure
NNN.N IN. H2O	Inches H2O
PRESSURE	Static Pressure Absolute
NNN.N PSIA	PSIA
FLOW TEMP	Flowing Temperature
NN.N DEG. F	°F
YEST VOL	Yesterday's Volume
NNNN.N MCF	Programmable SCFM or MCF or MMCF
PERIOD VOL	Previous Period Volume
NNNN.N SCF	Last volume calculation period volume
CHARGER NN.N VOLTS	Charger Voltage
M_FLOWRATE NNNNNN.N SCF/HR	Minute Average Flow Rate


Table 1–2 Typical µFLO Display Options

Status and Alarm Conditions

Since a primary function of the μ FLO is to provide complete volume and operational records; it is important to indicate unusual or "alarm" conditions as they occur. See Figure 1–8. This is supported on the LCD using indicators, these are listed in Table 1–2 μ FLO Status and Alarm Description. Instructions for using the display as a troubleshooting aid can be found in Chapter 5.

Whenever an alarm is indicated the μ FLO records it in the appropriate log period flow record. These are automatically retrieved when data is collected.

In the μ FLO computers the status and alarm code Indicators are programmable. This allows the user to program each annunciator to reflect custom status information for different application or tube types. As supplied from the factory, a typical device will come with a standard display configuration, but can be modified. Consult the PCCU32 help files for more instruction on programming the display.

Figure 1–8 Liquid Crystal Display and Indicators

Indicator	Description
	I/O Sub-System
L L	<i>Low Lithium Battery Alarm</i> : When ^L _L (low lithium) is displayed, lithium battery voltage is below 2.5 Vdc. A new lithium battery measures approximately 3.6 Vdc.
L C	Low Charger. Displayed if μ FLO battery charging voltage is (+)0.4 Vdc or is less than or equal to battery voltage.
	Communication Protocols
\rightarrow	Transmitting Data: Sending a response
~	Receiving Data: Processing request.
!	Nak. Negative Acknowledgement w/packet list.
+	Ack. Positive Acknowledge of receipt of request.
†	Waiting for Ack. Waiting for response after transmission.
?	Exception Alarm Processing.

Table 1–3 µFLO Status and Alarm Description

Indicator	Description		
	Communication Protocols, Cont.		
Ť	ID Recognized. Recognized and receiving request.		
+	<i>Listen Cycle.</i> Flashes if this remote port is active and running Totalflow Remote Protocol. Flashes in sync with listening cycle that occurs at 1, 2 or 4 second intervals.		
М	MODBUS ASCII: Modbus ASCII protocol selected for the port assigned to this annunciator.		
m	MODBUS RTU: Modbus RTU protocol is selected for the port assigned to this annunciator.		
L	<i>Local Protocol.</i> Displayed when PCCU part is active and running TOTALFLOW Local Protocol.		
¥	ID Recognized. The ID has been recognized but is waiting for "Sync".		
	Measurement Application		
B _F	Back Flow Condition. Visible only when DP variable displayed.		
Z	Zero Flow Condition: Visible only when Flow Rate displayed.		
н	<i>Hold.</i> Displayed when PCCU has entered Calibration Mode on a Measurement Application.		
Α	<i>Alarm Condition.</i> Need to view alarm. You may need to compare application limits to current values to determine where the alarm condition is present.		
A D	A to D Failure. Displayed if A to D Converter Absolute Differential Pressure, Absolute Static Pressure or temperature readings exceed maximum counts or are less than minimum counts.		
	Display Application		
1	A number represents the Display Group number currently being displayed.		
1	The displayed item's value is above the Data High Limit value specified on the display Item Setup screen.		
\downarrow	The displayed item's value is below the Data Low Limit value specified on the display Item Setup screen.		

Table 1–3 μFLO Status and Alarm Description, Continued

Chapter 2 Installation

Overview

This Chapter provides you with the information for installation and setup. By the time you finish this Chapter you will have the μ FLO unpacked, installed, field wired and ready for operation. For safe and trouble free installation follow all instructions and advisories.

Read through this Chapter before you begin the installation, to plan your installation. Also before you begin, refer to the wiring diagrams delivered with the new μ FLO. You may store these under the tab "Drawings" in the back of this manual.

Highlights

This Chapter covers the following topics:

Торіс	See Page
Unpacking & Inspection	2-2
Meter Run Installation Overview	2-2
Pipe Mount Installation	2-4
Wall Mount Installation	2-8
Direct Mount Installation	2-10
Manifold Input Lines	2-12
RTD Probe Installation	2-13
Battery Pack Installation	2-16
Solar Panel Installation	2-16
AC Charging Unit Installation	2-18

Unpacking & Inspection

Unpacking	The μ FLO and RTD are shipped in a specially designed shipping carton which contains the unit, mounting brackets, parts list and wiring and interconnect diagrams. The Solar Panel and the Battery Pack with applicable hardware are shipped in a separate carton.
	Carefully remove the items from each carton.
Inspection	 Inspect the shipping carton for damage. If the shipping carton is damaged, keep it until the contents have been inspected for damage.
	Inspect the unit's exterior for dents, chipped paint, etc.
	Inspect the LCD window for breakage.
	Open the housing by releasing the latches.
	 Visually inspect the Main Electronic Board (μFLO 2100767 Board), cables, and Integral Multivariable Transducer (IMV) for damage.
Damaged Components	If any components have been damaged or if there are noticeable defects, notify your Totalflow representative. Keep all shipping materials for the carrier's inspection. Totalflow will arrange for immediate repair or replacement; see 'Getting Help', page x.

Meter Run Installation Overview

The following procedures, unless otherwise stated, are applicable to all μ FLO Computers. The μ FLO can either be pipe, direct or wall mounted. Use the procedure that fits your installation.

See Figures 2–1 and 2-2 for a bottom view of the μ FLO with IMV installed.

When the μ FLO is pipe or wall mounted it should be located as close as possible to the orifice fittings. This keeps the stainless steel gauge lines as short as applicable.

Instructions

If you want to	THEN use	For Procedure See Page
Install on meter run	Pipe Mounting Procedure	2–4
Install on wall	Wall Mounting Procedure	2–8
Direct Mount	Direct Mounting Procedure	2–10

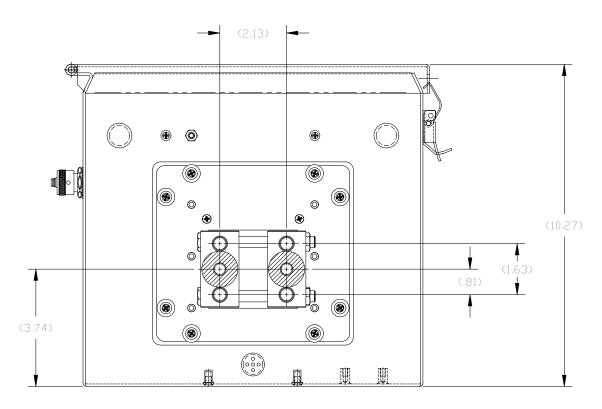
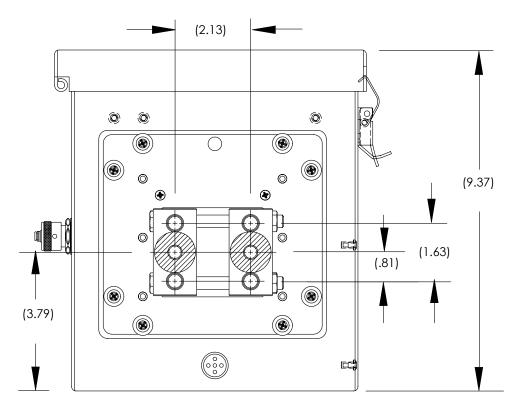
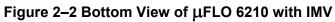




Figure 2–1 Bottom View of μFLO 6213 with IMV

Pipe Mount Installation

•

If you are installing directly to the meter run use this procedure. Before you begin, review the procedure and the materials required for installation.

Materials Supplied • Two U-bolts plus fastening hardware

Supplied

One pipe Saddle

Material Not Supplied

- One 2" x 40" pipe
- Standard 3 or 5 valve manifold

µFLO mounting brackets

Stainless steel tubing

FYI

C C

Optional equipment may be ordered from Totalflow.

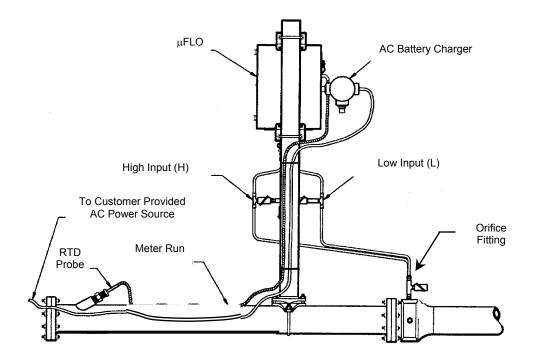


Figure 2–3 Typical Pipe Installation

Instructions

Step	Procedure
1.	Position pipe saddle on meter run. Select a location that allows easy user access and is close to the orifice fittings. Lines should be as short as possible.
2.	Temporarily attach Saddle on meter run pipe using U-bolt and associated hardware. See figure 2–4.
3.	Screw 2" by 40" mounting pipe into Saddle. Place level against pipe and vertically align. Adjust pipe, mounted in saddle, until vertical alignment is achieved.
4.	After vertical alignment, securely tighten 2" by 40" pipe in Saddle then securely tighten Saddle mounting bolts. Be certain pipe is securely installed in Saddle.

The following procedures are to be followed when installing μ FLO on 2" mounting pipe. To install μ FLO it is recommended that two people make the installation. One to hold unit in position and the other to install and tighten mounting brackets. Method of installation must be consistent with customers company policy.

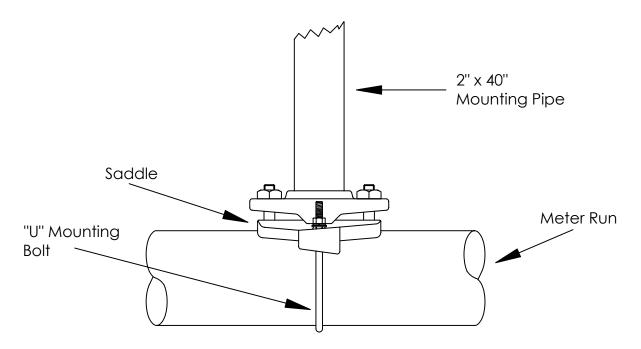
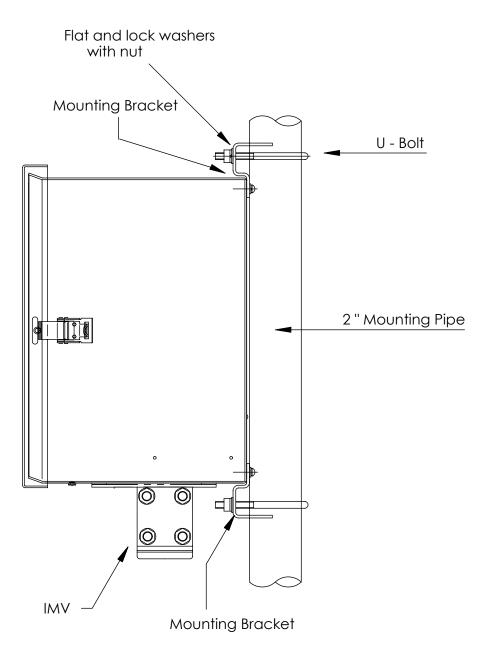
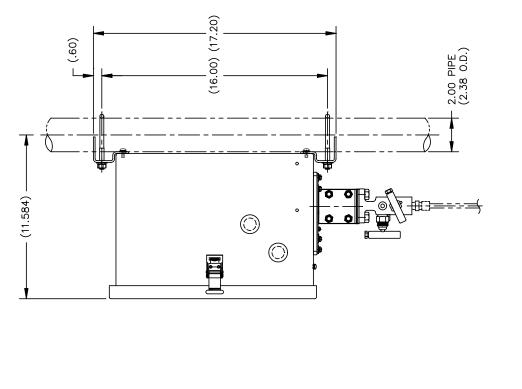
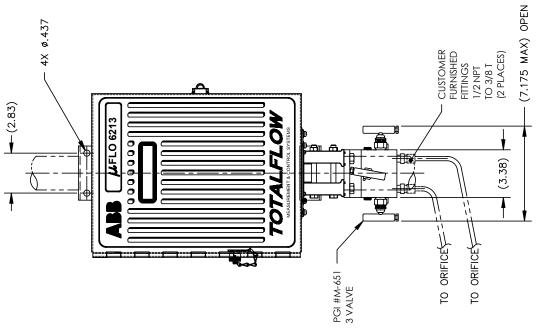


Figure 2–4 Typical Pipe Saddle Installation

Pipe Mount Installation, continued

Step	Procedure, Continued
5.	Position μ FLO in position on 2" mounting pipe and secure in place with two U-bolts, flat washers, lock washers and two bolts. See Figure 2–5.


Figure 2–5 µFLO Pipe Mounted

Position μFLO high enough on pipe to allow slope from externally mounted manifold to tap valves, refer to Figure 2–3.

See Figure 2–6 for Pipe Mounted dimensions.

Figure 2–6 μFLO 6213 Pipe Mounted

Wall Mount Installation

If you are installing to a wall near the meter run or inside a meter shed use this procedure. Before you begin, review the procedure and the materials required for installation. Refer to Figures 2–7for mounting dimensions requirements.

Supplied Materials

Material Not Supplied

- μFLO wall mounting brackets
- Four 1/4" x 1/4" machine bolts
- Standard 3 or 5 valve manifold
- 3/8-inch stainless steel tubing
- 1/4" x 3/8" tubing fittings

If μFLO is to be wall mounted, the wall itself should have sufficient strength to support the hanging weight of the unit.

There should be no obstruction(s) that would prevent the μ FLO door from being opened to access interior installed components or to interfere with installation of the solar panel.

Instructions

Step	Procedure	
1.	Refer to Figures 2–7, drill mounting holes in wall supports.	
2.	Install supplied wall mounting brackets on back of μFLO as shown in figure 2–7.	
3.	Lift and align μFLO wall mounting brackets with mounting holes drilled in wall.	
4.	Insert 1/4" x 1/4" diameter machine bolts through μ FLO mounting brackets into wall. Securely tighten all bolts to secure unit to wall.	

Position μ FLO high enough on wall to allow slope from externally mounted manifold to tap valves.

Continued on Next Page

CAUTION

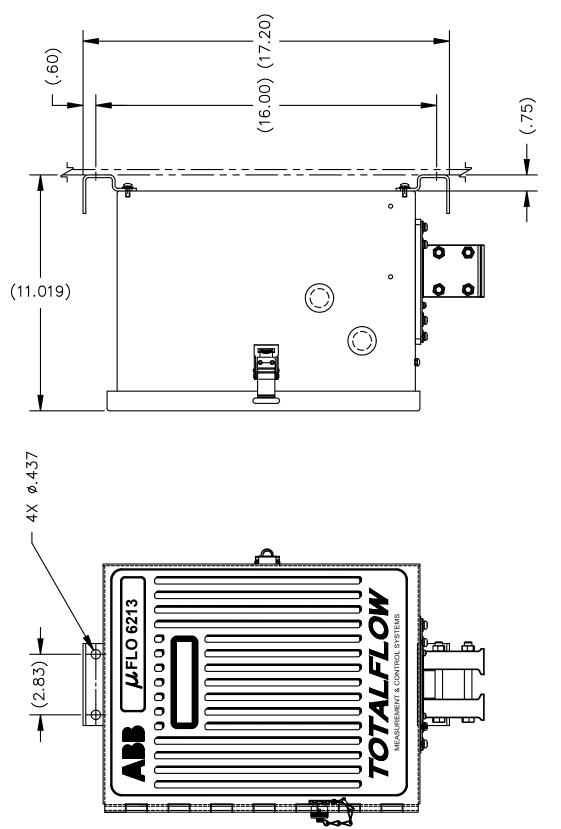


Figure 2–7 μFLO 6213 Wall Mounted

Direct Mount Installation

If you are installing the μ FLO directly to an instrument manifold use this procedure. Before you begin, review the procedure and the Direct Mount Drawing. See figure 2–8.

All required hardware for mounting to the μFLO to the manifold is to be supplied by the customer.

Instructions

Step	Procedure	
1.	Refer to Figure 2–8, attach the Integral Multivariable Transducer (IMV) to the manifold. Before aligning with the manifold ensure that Teflon seal rings are in place around the two process ports.	
2.	Using the four 7/16-inch bolts supplied with the manifold secure the IMV to the manifold.	
3.	Refer to Figure 2–8 and complete installation.	

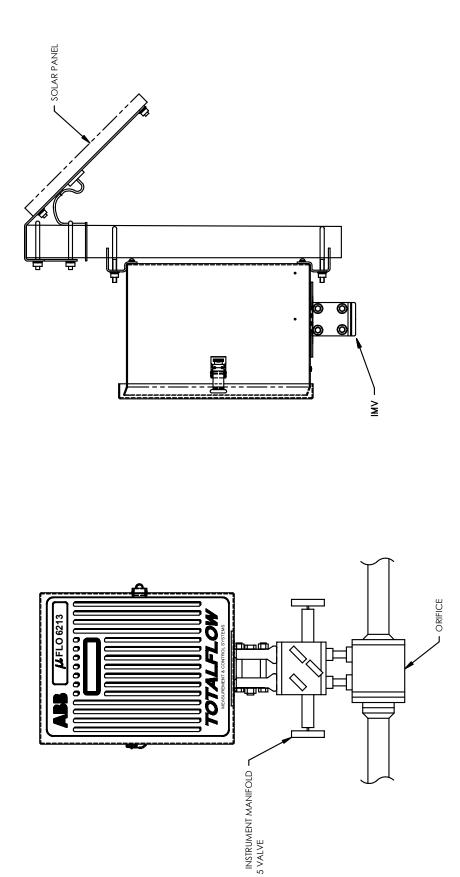


Figure 2–8 μFLO 6213 Direct Mounted

Manifold Input Lines

The following instructions will provide procedural steps to install the manifold. The meter run manifold high (H) and low (L) pressures terminate in μ FLO H and L Differential Port cells. Differential Port cells are located on bottom of μ FLO. See Figure 2–9.

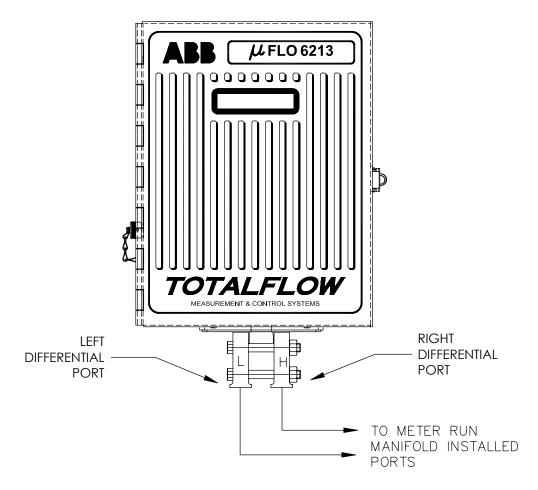


Figure 2–9 µFLO Computer IMV Ports

Installation

Installation is customers responsibility.

Stainless steel tubing

The hardware required to connect to meter run to install manifold to μFLO Differential Ports is as follows:

Material Not Supplied

• Tubing fittings

•

A backup wrench should always be used when working with stainless steel tubing and valves. This prevents fitting from turning and/or putting tension on stainless steel tubing.

Instructions

Step	Procedure	
1.	Install isolation valves on meter run (if using 5 or 3 way manifolds).	
2.	Install manifold and tubing to meter run and μ FLO. (Note: Manifold to μ FLO fittings not supplied with μ FLO).	
3.	Leak check all connections.	

TIP 🗢 🥑

Leaks in the tubing or manifold will introduce errors when calibrating IMVs.

RTD Probe Installation

The RTD measures flowing gas temperature. Procedures, presented in this Chapter, enable the user to install the RTD into the meter run.

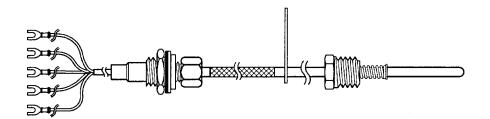
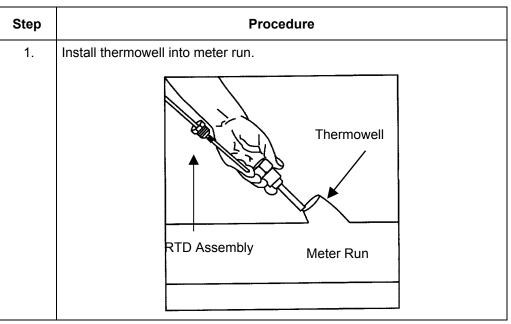


Figure 2–10 RTD Probe Wiring

Optionally Supplied

- RTD probe with 10' of cable. Optional lengths are 15', 25', 30', 40', and 50'.
- One (1) thermowell with 3/4" npt threads; optional threads are 1/2" and 1".


Materials

- Nylon tie wraps.
- Customer must specify Thermowell "U" length.
- Teflon tape

Continued on Next Page

Materials not Supplied

Instructions

To prevent moisture from entering μ FLO after installing RTD cord connector, be certain associated connector, at μ FLO, has a metal backed sealing "O" ring and metal locking nut attached.

Power should be removed from μ FLO before performing any field wiring.

Tower briddle be removed from μ Lo before performing any field witting.		
2.	Using snap ring pliers, adjust probe length so that it is spring loaded against bottom of thermowell.	
3.	Remove nut from water tight cord connector. On μ FLO, remove hole plug from unit and insert wires through the hole. Allow enough RTD cable to extend into μ FLO for connecting wires to RTD termination Block J9 (Figure 2–11 Item 17).	
4.	Secure RTD Probe cable using supplied sealing ring and nut.	
5.	Connect RTD probe to μ FLO RTD connector as follows. Before making connections to terminal block, remove spade lugs if attached and trim wire ends back 1/4" and remove associated terminal block from μ FLO 2100767 Board. Loosen terminal block securing screws, insert wire then retighten. Reinstall terminal block with wires attached. See 2–11	
6.	Following connection of RTD thermowell, secure cable to meter run pipe with plastic tie wraps. Do Not wrap cable around meter run pipe.	

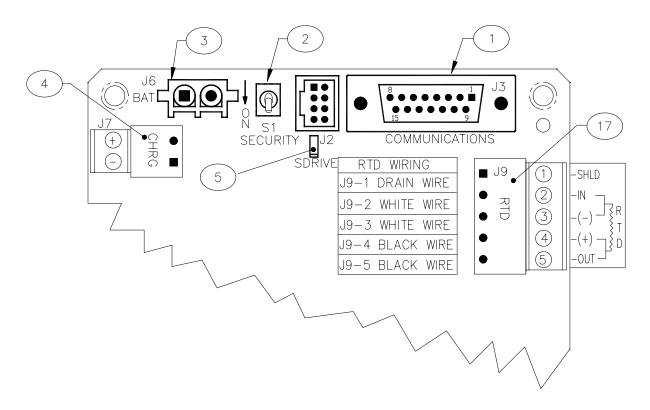
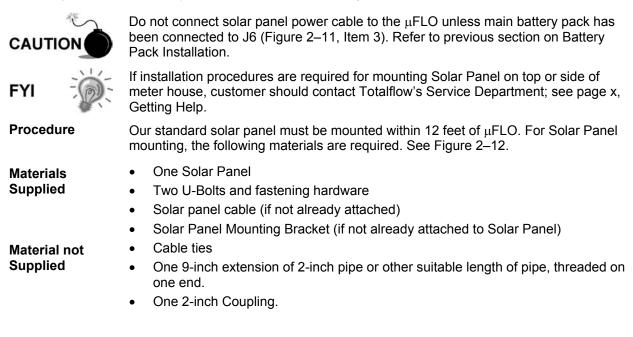


Figure 2–11 μ FLO 2100767 Board Cutout, Installation

ID Number	Description	
1	Remote Communication Connector	
2	Security Switch	
3	Battery Connection	
4	External Charger	
5	S Drive (Serial E ² Prom)	
17	RTD Connector	

Table 2–1 µFLO 2100767 Board Identifications, Installation

Battery Pack Installation

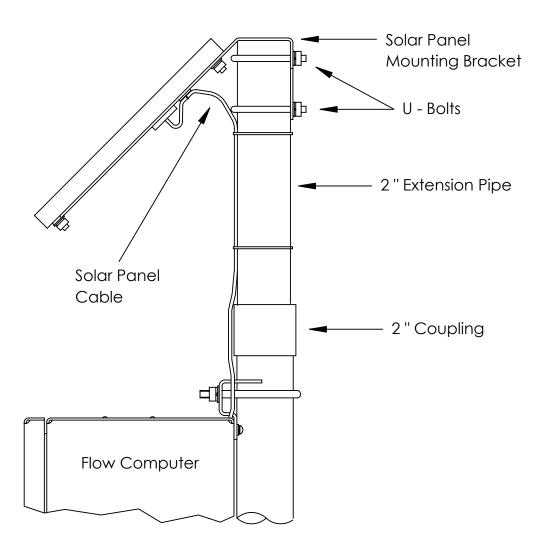

A battery pack provides the μ FLO with it's operating power. The battery is packed and shipped separately. The battery is not installed in μ FLO when shipped. Before installation, inspect power cables, where they terminate on battery pack, and connector for breakage.

Instructions

Step	Description	
1.	Open μ FLO hinged door. Insert battery pack (wires attached by manufacturer) into compartment. Insert battery pack so that it's terminals are not touching either the keeper lip on the shelf or any metal surface inside of the unit.	
2.	Connect battery pack connector to μ FLO 2100767 Board BATTERY CONN J6 (Figure 2–11, Item 3) connector, located in upper left corner of Board.	
3.	Observe LCD, the display should be on and scrolling through the startup diagnostics sequence.	

Solar Panel Installation

The Solar Panel is designed for outdoor mounting on a 2" extension pipe installed on upper end of μ FLO 40" mounting pipe. See Figure 2–12. Solar panel must be mounted within 12 feet of μ FLO (other lengths available). For wall mounted μ FLO it can be mounted on top or side of meter house.


Solar Panel Installation, Continued

Exercise caution when installing Solar Panel, so as not to damage it. When mounted, Solar Panel will face up from horizon at 50° angle.

Instructions

Step	Procedure	
1.	Attach 2" pipe Coupling to top end of μFLO 40" mounting pipe. Securely tighten.	
2.	Install 2" pipe extension into Coupling and securely tighten.	
3.	Check solar panel using digital voltmeter to verify polarity and output voltage. Voltage will vary depending on amount of sun, angle to sun, etc.	

Figure 2–12 Typical Solar Panel Installation

Solar Panel Installation, Continued

Instructions, Continued

Step	Procedure	
4.	Install Solar Panel on mounting bracket, if required, with provided hardware. Install Solar Panel Cable if required.	
5.	Attach Solar Panel mounting plate to top end of 2" extension pipe with U- bolts and associated mounting hardware. Do not tighten U-bolts until Solar Panel has been correctly orientated.	
6.	For northern hemispheres, position Solar Panel facing south. For southern hemispheres, position Solar Panel facing north. For optimum charging, solar panel should not be in shadows for the majority of the day. Panel should be kept clean for maximum charging.	
7.	DO NOT connect other end of cable to μ FLO until instructed to do so.	
8.	Insert Solar Panel power cable through an access hole on side of case. Allow enough power cable to extend into μ FLO for cable connection to EXT CHGR +/- termination's on J7 (Figure 2–11 Item 4).	
9.	Before making connections to terminal block, trim wire ends back 1/4" and remove associated terminal block from μFLO 2100767 Board.	
	Loosen terminal block securing screws, insert wire then retighten. Connect Solar Panel (+) lead to + terminal and (-) wire to - terminal. Verify main battery pack is connected and then reinstall terminal block with wires attached.	
10.	Following connection of Solar Panel power cable, secure cable to 2" extension and mounting pipe cable with plastic tie-wraps provided.	

AC Charging Unit Installation

The AC Power Charging Unit maintains a constant voltage charge on installed battery pack. See Figure 2–13.

Installation Materials

Materials Not

Supplied

Supplied

- AC Charging Unit
- Coupling nipple
- Plastic cable ties
 - AC wiring, conduit (rigid or flexible)

To maintain system certification, all wiring must comply with NEC 501 code and applicable ABB certification drawings.

The following hardware is required to mount the AC power charging unit to μ FLO.

To prevent injury only a licensed electrician should install AC power wiring to customer supplied primary AC power source.

Instructions

Step	Procedure	
1.	The AC Charging Unit is shipped separately. When unit is received, unpack and inspect all components for evidence of damage. Report damage to shipping carrier and to Totalflow's Service Department.	
2.	Remove one of the plugs from the side of μ FLO so that AC charging unit can be mounted without obstruction; see Figure 2–13.	
3.	Feed AC Charger DC power lines into μ FLO. Allow enough cable to extend into unit for connection to EXT CHGR +/- terminals J7 (See figure 2–11 item 4).	
4.	Connect AC Battery Pack Charger unit to μFLO using supplied sealing ring and nut.	
	To prevent moisture from entering μ FLO after installing AC Battery Pack Charger unit, be certain associated connector, at Charger unit has a metal backed sealing "O" ring and metal locking nut attached.	
5.	Before connecting Charger wiring, trim wire ends back 1/4" and remove associated EXT CHGR terminal block J7 (Figure 2–11 Item 4) from μ FLO 2100767 Board.	
	Loosen terminal block securing screws, insert red wire into plus (+) terminal (top) and black wire in negative (-) terminal (bottom). Retighten screws and reinstall terminal block with wires attached.	
6.	Plumb the conduit and associated AC wiring into the AC Charger conduit box. The AC Charger is rated at either 120 VAC 60 Hz or 240 VAC 50 Hz. Connect the 120 V hot and neutral or the two hot wires for 240 V to TB1 of the AC Charger. Connect the ground wire to the green screw T1.	
7.	Verify that the DC power wires are terminated properly inside the flow computer cabinet and verify that the main battery pack is plugged into J6 (Figure 2–11 Item 3). Apply AC power to the AC Charger.	
8.	Monitor DC charging voltage by observing the μFLO display. LCD should indicate CHARGER 13.0 - 13.5 VOLTS.	

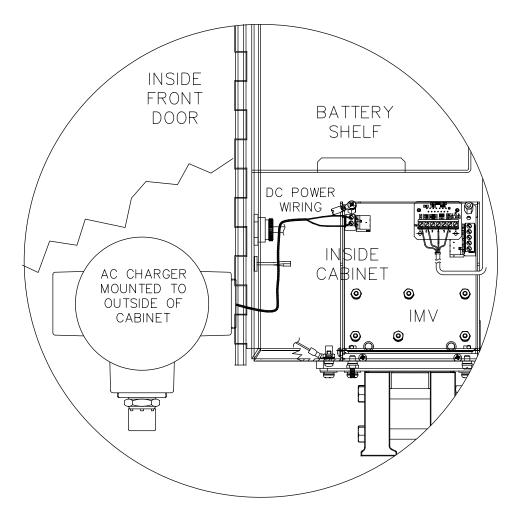


Figure 2–13 Mounting AC Charger

Chapter 3 μ FLO Startup

Overview

This Chapter generally describes the steps required get a newly installed μ FLO system up and running. Specific information required to complete each step (depending on your equipment choice) is discussed in the PCCU32 help files, or the Operations manual for the FS/2 Portable Calibration and Collection Unit.

Highlights

In this Chapter you will learn about:

Topics	See Page
Laptop Computer running PCCU32	3-2
FS/2 Handheld PCCU	3-2
Setting up the μ FLO	3-3
Overview	3-3
Station ID	3-3
Location	3-3
Date/Time	3-3
Security System	3-4
Configuring the μFLO	3-5
Contract Hour	3-5
Volume Calculation Period	3-5
Log Period	3-5
Calculation Type	3-5
Constants	3-7
Super Compressibility Calculation (Fpv)	3-8
Alarm Limits	3-9
Reset Volume	3-9
Startup μFLO	3-11
Put µFLO On Line	3-11
Volume Reset	3-11
μFLO Standard Displays	3-13
Program Display	3-13

Overview, Continued

Before you begin you should complete the tasks outlined in the Chapter 2.0, Installation.

All references in older materials to AP, absolute pressure, have been converted to SP, Static Pressure. This reflects the difference of including barometric pressure during calibration.

Options The two equipment options for programming the μFLO are the Windows based PCCU32 Software and the DOS based FS/2 device, these are discussed in more detail below.

Laptop Computer running PCCU32

PCCU32 Software running in a laptop Windows environment offers you the most capabilities for programming the μ FLO. Many of the features designed into the μ FLO cannot be accessed by the FS/2 due to it's limited capabilities. The Windows environment features user friendly help files and easy to follow menus. Having help files readily accessible to the user is comparable to having a virtual teacher on location. Easy to follow menus and icons, step the user through many required choices.

The laptop computer connects via the cable directly to the connector on the side of the μ FLO.

Once this physical connection has been made, you may begin the communicating through the software.

FS/2 Handheld PCCU

The FS/2 Portable Calibration & Collection Unit (PCCU) is a hand held devices running the DOS version of PCCU. This equipment allows the user to perform only the most basic of operations and program the minimal features of the μ FLO. Because the device functions in the DOS environment, help files, icons and drop down menus are not available. Therefore this device is more limited.

The FS/2 PCCU connects via the cable directly to the connector on the side of the μ FLO.

Overview

Once physically connected to the μ FLO, you must then instruct the software of the programming device to connect. At this time, the software will actually read the device default values programmed at the factory. These preset values are based on the type of product you ordered and programmed for the most widely used configuration.

Depending on the programming device you are using, the following are the minimum required entries. Specific information required to complete each step (depending on your equipment choice) is discussed in the PCCU32 help files, or the Operations manual for the FS/2 Portable Calibration and Collection Unit.

Station ID

The station identifier code should uniquely identify one μ FLO from that of others.

Description	Format	Note
Station ID	XXXXXXXXXX	10 digit alphanumeric

Location

In WINCCU, the host software used to communicate remotely with the μ FLO, the location field can hold up to 24 alphanumeric characters to describe its location. An example would be the county name or road number.

Description	Format	Note
Location	xxxxxxxxxxxxxxxxxxxxxxx	24 digit alphanumeric

FYI

There are additional fields stored in WINCCU for uniquely identifying the meter including fields for entering the lease holder, producer, operator and buyer. These fields reside on the host computer in the ID Manager, not in the μ FLO.

Date/Time

The μ FLO date and time must be set correctly and should agree with the Collection Equipment. If the date and time stored in the computer you are programming with are correct, you may simply instruct the μ FLO to set it's time to match.

Description	Format Note	
Date	MM/DD/YY	Must enter 2 digits each
Time	HH:MM:SS	24 hour clock

Security System

The μ FLO 2100767 Board has a bi-level security system built in. For the purpose of this manual, we will refer to this as the Hardware Security. When the μ FLO is accessed through PCCU32 or WINCCU Host software packages, this will have a third level of security included. We will refer to this as the Software Security.

The Software Security System is designed to have a Password Administrator who sets up the accounts and privileges for himself as well as the other PCCU users. This privilege includes being able to instantiate applications and make changes to the functionality of the μ FLO. See the help files in the host software package for more information.

The Hardware Security System is designed to have two levels of user access, Application Editing and Downloading Files to a device. User access by default is restricted from modifying and downloading the Application Table or from downloading files to the device's R: and S: drives, but has all other user type privileges. These default privileges can be edited by the Administrator.

In order to program a user code into the µFLO the Security Switch S1 on the digital board must be OFF.

Also note that μ FLO does not send an error message when you have breeched the security level, it simply does not accept value changes.

If the Security Switch S1 located on the μ FLO 2100767 Board is in the OFF position, no security code has to be entered to access the operating parameters even if there is one programmed into the device.

Description	Description Format Note	
Security Code	XXXX	4 digit numeric

Configuring the μFLO

Contract Hour

You can program the μ FLO to begin the contract day based on your contract or company standards. When a μ FLO first powers up the contract is preset to begin at midnight.

FYI

Midnight is 00 o'clock. If any value entered is greater than 23, you will record an error message and the μ FLO forces the value to 00 (midnight).

Volume Calculation Period

Volume Calculation Period is the specified length of time between volume calculations. The Volume Calculation Period must be equally divisible into the Log Period. The default is 60 minutes.

Description	Options
Volume Calculation Period	1,2,5,10,20,30,60

Log Period

Log period is the specified length of time between writing the calculated accumulated volume to record. You may record volumes as often as every minute and as seldom as every hour. The default is 60 minutes. The μ FLO can normally store 960 log periods (40 days x 24 logs). A 5 minute log period will consume available memory in 8 days.

Description	Options
Log Period	1,2,5,10,20,30,60

Calculation Type

When the μ FLO is powered up initially, the calculation type must be set. You have the option of setting the calculation method to AGA-3 1985 or AGA-3 1992. Once you have determined the calculation type, you may toggle specific factors on or off depending upon their availability. Once you have selected the Calculation type, only those applicable parameters shown in Table 3–1 will be visible.

Calculation type, and many of the factors involved with setting up the calculations, are usually dictated by your sales contract or by company policy.

	Configurable		
Calculation Parameter	AGA-3 1985	AGA-3 1992	
Fpb (Pressure Base Factor)	Yes	N/A	
Ftb (Temperature Base Factor)	Yes	N/A	
Fg (Specific Gravity Factor)	Yes	N/A	
Fb (Orifice Factor)	Yes	N/A	
Ftf (Flowing Temperature Factor)	Yes	N/A	
Y (Expansion Factor)	Yes	Yes	
Fr (Reynolds Number)	Yes	N/A	
Fa (Orifice Thermal Expansion Factor)	Yes	N/A	
Fpv (Supercompressibility Factor) ¹	Yes	Yes	
Fw (Water Vapor Factor) ²	Yes	Yes	
Faux (Full Well Stream Factor) ³	Yes	Yes	
Cd (Coefficient of Discharge)	N/A	Yes	
Fp (for Fpv method = NX19 Fixed)	Yes	Yes	
Ft (for Fpv method = NX19 Fixed)	Yes	Yes	

Table 3–1 Configurable Calculation Factors

A complete description can be found in the AGA Report No. 3.

¹ NX19 GCN, NX19 GCNM, AGA-8 1992 Gross and AGA-8 1992 Detail

² Not an AGA factor. Fw is a factor which compensates for water vapor in the gas stream and its affect on volume measurements.

³ Not an AGA factor. Faux is a user set multiplier to compensate for liquids in the gas stream, defaults to 1.

Constants

On a single tube gas orifice meter, there are certain constants or parameters that may need to be entered or changed from the default values. Depending upon the calculation type you have selected, only the applicable constants shown in Table 3–2 will be visible.

			Configurable	
Parameter	Default Value	Units	AGA-3 1985	AGA-3 1992
Auxiliary Factor (Faux)	1.0		Yes	Yes
Barometric Pressure		PSIA	Yes	Yes
DP zero cutoff	0.0000	inches H2O	Yes	Yes
Meter Factor (Fb Basic Orifice Factor)	210.2300		Yes	N/A
Orifice Coefficient of Expansion	9.2500	Inches per Deg. F	No	Yes
Orifice diameter	1.0000		Yes	Yes
Orifice Material	Stainless		Yes	No
Pipe Coefficient of Expansion	6.2000	Inches per Deg. F	N/A	Yes
Pipe diameter	2.0670		Yes	Yes
Pressure Base (Contract)	14.7300	PSIA	Yes	Yes
Specific Heat Ratio	1.3000		Yes	Yes
Tap Location	Upstream		No	No
Тар Туре	Flange Taps		Yes	No
Temperature Base (Tb)	60.0000	Degrees F	Yes	Yes
Viscosity	0.0103	Centipoise	Yes	Yes
Z of air at base condition	0.9996		N/A	Yes
Fixed Cd	.6		N/A	Yes

Table 3–2 Gas Orifice Constants

Super Compressibility Calculation (Fpv)

When the μ FLO is powered up, the calculation is preset to NX-19 GCN or GCNM. You have the option of changing the formula method to any of several other choices: NX19 Fixed, AGA8 Gross 92 or AGA8 Detail 92. Depending upon the method you have selected, only the applicable constants shown in Table 3–3 will be visible. You may enter specific values for each item depending upon whether you would like to use fixed or live analysis data.

Many decisions involved with setting up the Fpv are dictated by your sales contract or based on company policy.

				Configurab	le
Analysis Data	Default Value	Units	All Others ⁴	NX19 Fixed FtFp	AGA-8 1992 Detail
Fp (for Fpv method NX19 Fixed)	1.000		No	Yes	No
Ft (for Fpv method NX19 Fixed)	1.000		No	Yes	No
Heating value ⁵	1000.0000	BTU/SCF	Yes	Yes	Yes
Argon	0.0000	mol %	No	No	Yes
Carbon dioxide CO2	0.0000	mol %	Yes	Yes	Yes
Carbon Monoxide	0.0000	mol %	No	No	Yes
Ethane	0.0000	mol %	No	No	Yes
H2S	0.0000	mol %	No	No	Yes
Helium	0.0000	mol %	No	No	Yes
Hydrogen	0.0000	mol %	No	No	Yes
iButane	0.0000	mol %	No	No	Yes
iPentane	0.0000	mol %	No	No	Yes
Methane	100.000	mol %	Yes	No	Yes
nButane	0.0000	mol %	No	No	Yes
nDecane	0.0000	mol %	No	No	Yes
nHeptane	0.0000	mol %	No	No	Yes
nHexane	0.0000	mol %	No	No	Yes
nitrogen N2	0.0000	mol %	Yes	Yes	Yes
nNonane	0.0000	mol %	No	No	Yes
nOctane	0.0000	mol %	No	No	Yes
nPentane	0.0000	mol %	No	No	Yes
Oxygen	0.0000	mol %	No	No	Yes
Propane	0.0000	mol %	No	No	Yes
Water H2O	0.0000	mol %	No	No	Yes
Specific Gravity	0.6000	N/A	Yes	Yes	Yes

Table 3–3 Fpv Analysis Data

⁴ NX19 GCN, NX19 GCNM, AGA-8 1992 Gross

⁵ Enter the Heating Value in Btu per SCF. Not used in volume calculations. Only used for calculating MMBTU for reports.

Alarm Limits

You have the ability to set μ FLO Alarm Limits for the parameters listed in table 3–4. There are many purposes for setting these limits. i.e. Controlling well output, or sending digital signals.

		Configurable		
Parameter	Default Value	Units	AGA-3 1985	AGA-3 1992
DP High Limit	2047.9688	In H2O	Yes	Yes
DP Low Limit	0	In H2O	Yes	Yes
Flow Rate High Limit	1,000,000	SCF/Hr	Yes	Yes
Flow Rate Low Limit	0	SCF/Hr	Yes	Yes
RTD High Limit	420	Degrees F	Yes	Yes
RTD Low Limit	0	Degrees F	Yes	Yes
SP High Limit	2047.9688	PSIA	Yes	Yes
SP Low Limit	0	PSIA	Yes	Yes

Table 3–4 Alarm Limits

Reset Volume

When you Reset the volume accumulator the μ FLO will:

- Store time, date and previous accumulated partial calc periods volume into the historical record file
- Zero the remaining partial calc periods accumulations.
- Complete all computations for the present flow file daily record.
- Begin a new flow file daily record.
- Zero total volume accumulator and log the event with an accumulator value before zeroing out accumulator.

Since the μ FLO volume calculations are made each vol calc period, any changes you make during the period would affect the volume calculations (such as changing the orifice plate size) and be introduced into the calculations. To avoid introduced errors, it is recommended that Reset Volume command be used. This command forces the μ FLO to perform volume calculations for the elapsed time since a previous volume calculation was made. A new partial period volume is added to the volume accumulator, which is logged as an event before it is reset to zero (0).

Blank Page

Startup µFLO

Put µFLO On Line

To avoid a calibration shift, carefully follow these instructions.

Instructions

Open both bypass valves and close the vent to atmosphere valve, this stabilizes the pressure on both sides of the cell. Then begin to SLOWLY open the high side orifice tap valve from the meter run. Then SLOWLY open the low side valve. Once both the high and low sides are completely open, you may close both bypass valves.

Volume Reset

Since the μ FLO volume calculations are made each vol calc period, any changes you make during the period would affect the volume calculations (such as changing the orifice plate size) and be introduced into the calculations. To avoid introduced errors, it is recommended that Reset Volume command be used. This command forces the μ FLO to perform volume calculations for the elapsed time since a previous volume calculation was made. A new partial period volume is added to the volume accumulator, which is logged as an event before it is reset to zero (0).

Description When you reset the volume accumulator the µFLO will:

- Store time, date and previous accumulated partial calc period volume into the historical record file.
- Zero the remaining partial calc period accumulation.
- Complete all computations for the present flow file daily record.
- Begin a new flow file daily record.
- Zero total volume accumulator and log the event with an accumulator value before zeroing out accumulator.

Blank Page

μFLO Standard Displays

Program Display

The single tube μ FLO comes from the factory with a set default displays as shown below. By default, each display item remains on the display for 5 seconds. You have the ability to change this default to zero (item not displayed) or any value from 1 to 255 seconds. You are also able to change the engineering units, and data format for display purposes. Further instructions on programming the display system can be found in the PCCU32 Help Files. All display items and item groups are programmable and may be displayed by user defined parameters.

Description	Format	Note
DATE/TIME	MM/DD/YY HH:MM:SS	24 hour clock
YEST DP LO	NN PERCENT	Yesterday's Percent DP Low Limit Percent time below DP Low Set Point
YEST DP HI	NN PERCENT	Yesterday's Percent DP High Limit Percent time below DP High Set Point
FLOWRATE	NNNNNN.N SCF/HR	Current Flow Rate Programmable SCF or MCF or MMCF
ACCUM VOL	NNNNNN.NN MCF	Total Accumulated Volume Programmable SCF or MCF or MMCF
BATTERY	NN.N VOLTS	Battery Voltage Volts
DIFF PRESS	NNN.N IN. H2O	Differential Pressure Inches H2O
STATIC PRESSURE	NNN.N PSIA	Static Pressure Static PSIA
FLOW TEMP	NN.N DEG. F	Flowing Temperature °F
YEST VOL	NNNN.N MCF	Yesterday's Volume Programmable MCF or MMCF
PERIOD VOL	NNNN.N SCF	Previous Period Volume Last volume calculation period volume
CHARGER	NN.N VOLTS	Charger Voltage
STATION ID	XXXXXXXXXX	10 Character alphanumeric identifier
DEVICE ID	XXXXXXXXXX	10 Character alphanumeric application or tube identifier

Table 3–5 µFLO Displayed Items

Blank Page

Chapter 4 Maintenance & Troubleshooting

Overview

This Chapter provides you with standard Maintenance & Troubleshooting information and instructions on how to remove and install components of the μ FLO.

Maintenance Highlights

In this section you will learn how to:

Торіс	See Page
Backing up Configuration Files	4-3
Changing µFLO Clock	4-3
Replacing µFLO Battery Pack	4-4
Replacing Liquid Crystal Display (LCD) Board	4-8
Replacing Integral Multivariable Transducer (IMV)	4-9
Callibration Overview	4-12
Checking Static Pressure (SP)	4-13
Calibrating Static Pressure (SP)	4-13
Checking Differential Pressure (DP)	4-14
Calibrating Differential Pressure (DP)	4-14
Setup RTD	4-14
How to Change Orifice Plate	4-15
Zero Transducer	4-16

Highlights

Troubleshooting This section covers the following topics:

Торіс	See Page
Reset Procedures	4-17
Visual Alarm Codes	4-21
Troubleshooting Alarms	4-22
Communications Overview	4-24
RS-232 Communications	4-24
RS-485 Communications	4-26
RS-422 Communications	4-28
Wake-Up	4-30

Maintenance Support

If installation, calibration and maintenance assistance is required, user can contact the Totalflow Service Department.

USA: (800) 442-3097 or International: 001-918-338-4888

Overview, Continued

How to Use This Chapter	We recommend that you develop regularly scheduled maintenance program. By establishing a maintenance program, μFLO downtime can be minimized.
	Record all items within this Chapter, in the maintenance practice procedures. Practical experience permits updating this schedule over a period of time. This results in many maintenance items being handled on a routine basis before potential problem(s) result in a failure.
Maintaining Cleanliness of μFLO	Because an μ FLO installation is primarily exposed to external environmental conditions, it is important that it be regularly inspected for cleanliness, both externally and internally. Foreign contaminants can cause damage to interior mounted components rendering μ FLO inoperable.
Front Mounted LCD	The user is informed of operational problems and operational limit violations by observing the alarm codes on the right side of the LCD display. μ FLO alarm troubleshooting procedures are presented in the Troubleshooting Chapter.
Returning Part(s) for Repair	If a TOTALFLOW component is to be returned to Totalflow for repair, securely wrap it in protective anti-static packaging. Before returning a component, call us for a Return for Authorization Number (RA). Affix this number to the outside of return package.
	Parts shipments must be prepaid by customer. Any part, not covered by original SYSTEM WARRANTY, will be shipped to customer, F.O.B.
Trouble- shooting	The Troubleshooting section contains troubleshooting tables to correct most μ FLO alarm code condition(s). The alarm codes flag you that an operational problem exists, and are visible on the front door LCD.
	The Troubleshooting Tables are designed to match an alarm code with its probable cause(s) and the corrective procedure(s). Besides these tables, this Chapter contains procedures for troubleshooting with an installed radio communication unit.

Backing up Configuration Files

Before you begin any maintenance on your μ FLO, you should collect the data and back up all configuration files to your laptop's hard drive or a floppy disk. This safeguards your data and allows you to re-start the unit without the hassle of re-configuring the μ FLO should any problem arise.

Although there are "Save" buttons in the Entry Mode screens which allows the user to backup "Entry" mode data items, a complete system backup is only accomplished by using the "Save and Restore Utility". When using this utility to backup files, the user should also download the files to the S: drive in case of a "Cold" start.

 While in PCCU, use the Save and Restore Utility found under File Utilities in the Operate drop down menu.

Changing µFLO Clock

When any measurement applications are instantiated on the μ FLO, changing the clock could affect the time when log period entries are made. To protect integrity of accounting audit trails, the μ FLO handles these types of clock changes as follows:

Clock Change	When next log period entry is made, clock is not altered.	
Not Crossing an Hour Boundary:	Example: If present time is 4:15 p.m. and clock is changed to 4:05 p.m. of the same day, the daily flow record is the same. Entry reflects averages accumulated over a 70 minute time period (15 minutes plus 55 minutes).	
Forward Clock Change Crossing an	Forces an log period entry for part of hour that has accumulated since last hourly entry. μ FLO then advances to newly defined data flow record boundary and begins maintaining balance of days' data in newly defined boundary.	
Hourly Boundary:	Example: If present time is 4:55 p.m. and clock is changed to 5:05 p.m. of the same day, the entry reflects only a 55 minute average accumulation. Then a new flow record is written and this period is also based on a 55 minute accumulation.	
Backward Clock Change Crossing an Hourly Boundary:	Hourly entry is made for part of the hour that has accumulated since the last hourly entry. This is same as for a Forward Clock Change Crossing an Hourly Boundary. μ FLO advances to a new day's data flow record and maintains balance of day's data in new record.	
boundary.	Example: If present time is 5:05 p.m. and clock is changed to 4:55 p.m. of the same day, the log period record entry reflects only a 5 minute average accumulation. Then a new flow record is written and this log period is based on a 60 minute accumulation.	
FYI	A backward clock change uses two (2) records to maintain data integrity. This assures that previously recorded data is not overwritten.	
	If it is necessary to make small backward time changes, less than one (1) hour, user should wait until current hour has progressed far enough to make change that	

does not cross an hour boundary.

Replacing µFLO Battery Pack

This section presents the procedures for removal and installation of μ FLO battery pack. To access the battery pack, open μ FLO door. Battery pack is located in the upper portion of the chamber, on top of the battery shelf.

When removing battery pack, DO NOT remove Lithium battery from μFLO 2100767 Board. This prevents any data stored in Board RAM, from being lost.

Procedures

In the following procedure, the common name for a component or it's jumper number if available (abbreviated J) or part is followed by a number in parentheses. This refers to the call out item number referenced on each drawing.

Instructions

Step	Procedure
1.	Make sure the J1 (Figure 4–1, Item 16) memory backup jumper covers the top two pins. This enables the memory backup.
2.	Either make sure "LL" battery alarm is not being displayed on μ FLO or measure lithium battery and make sure it is > 3.0V.
3.	Disconnect the battery charger from μFLO 2100767 Board terminals EXT CHGR +/- J7 (Figure 4–1, Item 4).
4.	Before removing battery pack, disconnect the Battery Cable from the μ FLO 2100767 Board connector J6 (Figure 4–1, Item 3).
5.	Remove battery pack from battery compartment.
6.	Insert battery pack (wires attached by manufacturer) into compartment. Insert battery pack so that it's terminals are not touching either the keeper lip on the shelf or any metal surface inside of the unit.
7.	Reconnect battery pack cable to μFLO 2100767 Board connector J6 (Figure 4–1, Item 3).
8.	Reconnect battery charger to μ FLO 2100767 Board terminals EXT CHGR +/- terminals J7 (Figure 4–1, Item 4).
9.	After closing μFLO door, check door mounted LCD for normal operational readings.

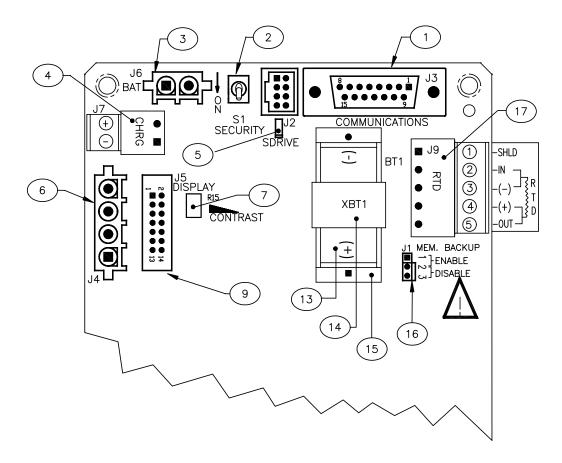
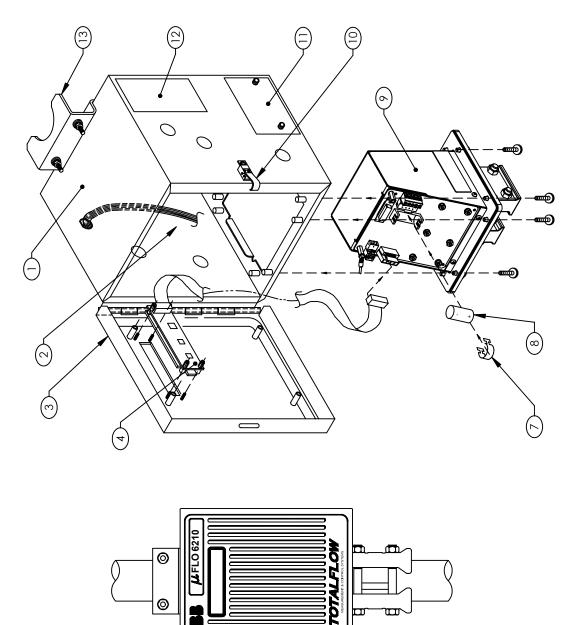



Figure 4–1 μFLO 2100767 Board Cutout, Maintenance

ID Number	Description
1	Remote Communication Connector
2	Security Switch
3	Battery Connection
4	External Charger
6	PCCU Interface
7	Contrast Potentiometer
9	LCD Display Interface
13	Lithium Battery
14	Battery Cover
15	Battery Mounting Bracket
16	Memory Backup Enable/Disable
17	RTD Connector

Table 4–1	µFLO 2100767	Board Identifications	Maintenance
-----------	--------------	------------------------------	-------------

Ħ

E

Figure 4–2 μFLO 6210 Component/Cable Locations

Ś

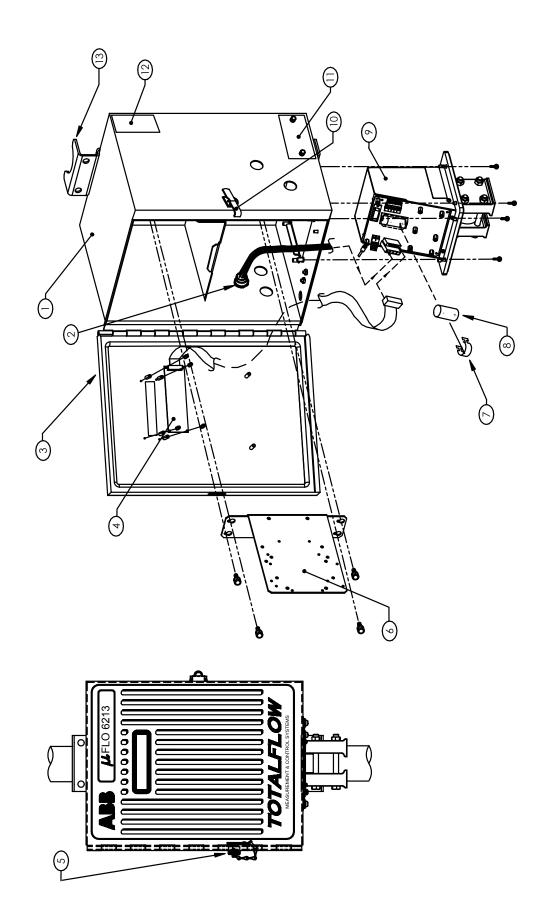


Figure 4–3 μFLO 6213 Component/Cable Locations

ID Number	Description
1	6213 Enclosure
2	PCCU Internal Cable
3	Door
4	LCD Display
5	External PCCU Connector
6	Radio Mounting Bracket (6213 only)
7	Battery Cover
8	Lithium Battery
9	IMV (Integral Multivariable Transducer)
10	Door Latch
11	Model & Serial Number Plate
12	Field ID Tag
13	Pipe Mounting Bracket

Table 4–2 µFLO 6210/6213 Component Identifications

Replacing Liquid Crystal Display (LCD) Board

The LCD Board is mounted on the backside of hinged doors. To access and remove Display Board, perform the following procedures.

Procedures

In the following procedure, the common name for a component or it's jumper number if available (abbreviated J) or part is followed by a number in parentheses. This refers to the call out item number referenced on each drawing.

DO NOT remove the μ FLO 2100767 Board mounted Lithium battery since it provides power to RAM. It is recommended that historical flow data be downloaded before accessing and removing LCD Board to prevent potential loss of stored data.

Instructions

Step	Procedure
1.	Make sure the J1 (Figure 4–1, Item 16) memory backup jumper covers the top two pins. This enables the memory backup.
2.	Back up configuration files following the instructions listed previously in this chapter titled: Backing Up Configuration Files.
3.	To access the LCD Board, open the μ FLO unit door. Board is located on the inside of the door (Figure 4–2 or 4–3, Item 4).
4.	Disconnect the external charging unit J7 (Figure 4–1, Item 4) from the μ FLO 2100767 Board.
5.	Disconnect the Battery Pack connector J6 (Figure 4–1, Item 3) from the board mounted connector.

Replacing Liquid Crystal Display (LCD) Board, Continued

Instructions, Continued

Step	Procedure
6.	Disconnect LCD Board cable connector from μ FLO 2100767 Board Display Port connector J5 (Figure 4–1, Item 9).
7.	Using a 3/16" nut driver, remove four Display Board hexagonal mounting standoffs. Lift Board from door mounted standoffs.
	If Board is being returned to Totalflow for service, it is recommended that attached ribbon cable be left connected and returned with Display Board.
8.	To reinstall Display Board, perform procedures 1 to 7 in reverse order. DO NOT over tighten screws. Once Display Board is reinstalled, apply power to μ FLO and verify information displayed on LCD is correct. Adjust contrast potentiometer R15 (Figure 4–1, Item 7) for optimum display.

To adjust display contrast, use an extra small screw driver to turn potentiometer R15 (Figure 4–1, Item 7) completely clockwise, then move screw back counter clockwise until screen is readable.

Replacing Integral Multivariable Transducer (IMV)

Under no circumstances shall the μ FLO IMV cover be removed. Removal of this cover, and entry into interior of IMV, **voids IMV warranty**. If the IMV requires servicing, the entire assembly must be removed from μ FLO, securely packaged for shipping and returned to Totalflow.

Procedures

In the following procedure, the common name for a component or it's jumper number if available (abbreviated J) or part is followed by a number in parentheses. This refers to the call out item number referenced on each drawing.

Instructions

Step	Procedure
1.	Make sure the J1 (Figure 4–1, Item 16) memory backup jumper covers the top two pins. This enables the memory backup.
2.	Using meter run installed Manifold high/low control valves, equalize pressure to IMV. See Figure 4–4.
3.	Using μFLO high/low tap valves, close off both lines. These two valves connect Meter Run high/low output lines to $\mu FLO.$
4.	Vent manifold to atmosphere using vent valve.
5.	Completely disconnect high/low Manifold lines from IMV.

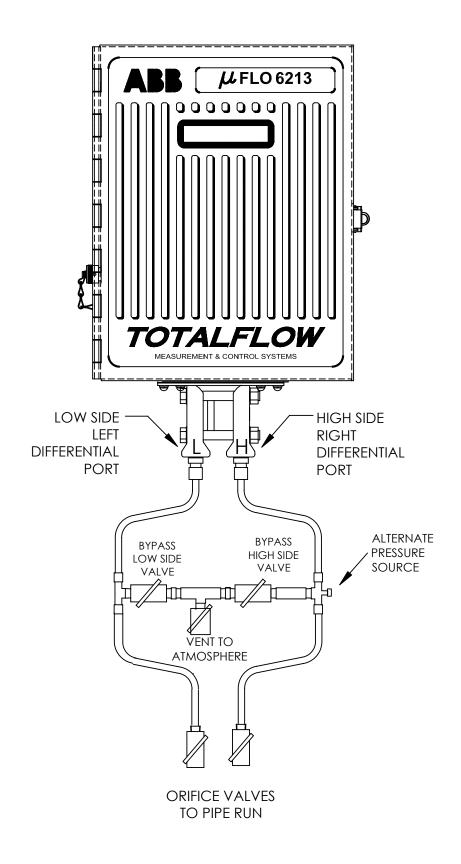


Figure 4–4 Flow Computer with Discrete Manifold

Replacing Integral Multivariable Transducer (IMV), Continued

Instructions, Continued

Step	Procedure	
6.	Disconnect the following associated connectors (if used) in this order.	
	• External charger connected to J7 (Figure 4–1, Item 4)	
	Battery Pack connected to J6 (Figure 4–1, Item 3)	
	Communication equipment connected to J2 (Figure 4–1, Item 1)	
	RTD connected to J9 (Figure 4–1, Item 17)	
	PCCU port connector to J4 (Figure 4–1, Item 6)	
	LCD Port connector J5 (Figure 4–1, Item 9)	
7.	Loosen μ FLO 2" mounting post clamps and rotate μ FLO a sufficient distance to allow removal of IMV. Clearance of approximately 11" is required for removal. After rotation, tighten clamps to hold μ FLO in place before removing IMV.	
8.	Using a Phillips screwdriver, remove eight mounting screws, washers and lock washers securing IMV to μ FLO cabinet (see Figure 4–2 or 4–3, Item 9). Access mounting hardware from underside of μ FLO, being careful when removing the final screws.	
9.	IMV will slide down through the access hole. Be cautious to not damage the weather sealing gasket.	
-	reinstallation of IMV, weather sealing gasket must be reinstalled between the d bottom of μ FLO to keep out moisture and dust.	
10.	Insert top of the replacement IMV into the access hole. Using a Phillips	
	screwdriver, insert the eight mounting screws, washers and lock washers securing IMV to μ FLO cabinet, and tighten.	
11.		
	securing IMV to μFLO cabinet, and tighten. Reinstall connectors, removed in Step 6, to their associated Board	
	securing IMV to μFLO cabinet, and tighten. Reinstall connectors, removed in Step 6, to their associated Board mounted connectors in the following order.	
	 securing IMV to μFLO cabinet, and tighten. Reinstall connectors, removed in Step 6, to their associated Board mounted connectors in the following order. LCD Connector J5 (Figure 4–1, Item 9) 	
	 securing IMV to μFLO cabinet, and tighten. Reinstall connectors, removed in Step 6, to their associated Board mounted connectors in the following order. LCD Connector J5 (Figure 4–1, Item 9) PCCU Connector J4 (Figure 4–1, Item 6) 	
	 securing IMV to μFLO cabinet, and tighten. Reinstall connectors, removed in Step 6, to their associated Board mounted connectors in the following order. LCD Connector J5 (Figure 4–1, Item 9) PCCU Connector J4 (Figure 4–1, Item 6) RTD J9 (Figure 4–1, Item 17) 	
	 securing IMV to μFLO cabinet, and tighten. Reinstall connectors, removed in Step 6, to their associated Board mounted connectors in the following order. LCD Connector J5 (Figure 4–1, Item 9) PCCU Connector J4 (Figure 4–1, Item 6) RTD J9 (Figure 4–1, Item 17) Battery Pack J6 (Figure 4–1, Item 3) 	

FYI

Before placing IMV back into operation, the μFLO MUST be calibrated. Refer to Calibration Procedure; Chapter 3 for detailed procedures.

Callibration Overview

The calibration mode allows you to calibrate, check and zero the static and differential pressure. In addition, this mode allows you to set the installation parameter if an RTD is installed, set the (bias) for the Resistance Temperature Detector (RTD) if needed, or set a default flow temperature. During the initial setup and calibration, the parameters shown in table 3–5 will need to be determined.

Parameter	Default Value	Units
RTD installed	No	
RTD Bias	0.00	Degrees F
Use Fixed Temperature (TF)	No	
Fixed Temperature (TF)	60.0000	Degrees F

Table 4–3 Calibration Configurable Parameters

Required Test Equipment The following test equipment is required to calibrate the μFLO Integral Multivariable Transducer (IMV):

- PCCU (either laptop with PCCU32 software or FS/2)
- Deadweight tester or equivalent calibration standard
- Test Gauge capable of dual range measurement (PSIG and Inches)
- Barometer or another means which can determine barometric pressure
- Nitrogen or compressed air source

If a method other than the 'compressed nitrogen / deadweight tester' method is used to calibrate Static Pressure cell, you must ensure that the prescribed Flange Tap valves are blocked to prevent false differential pressure from being applied to DP cell. Also ensure that both high and low sides are pressured up during SP calibration.

Hold Mode

When calibrating the IMV or setting up a fixed temperature, the PCCU will instruct the μ FLO to ignore live values for the flow calculations for the period of time the μ FLO is being calibrated. This prevents real time μ FLO flow calculations from being affected during the calibration. During this time the μ FLO uses SP, DP and temperature captured at the time calibration mode was entered. (This is called the "HOLD" mode.)

To exit the Hold mode:

- 1. Exit Calibration mode
- 2. Unplug DATA cable at µFLO connector

Totalflow recommends performing a five point check before and after calibration. During normal operation, either cell could be knocked out of calibration (typically due to a slug of liquid). WinCCU, the host software, is capable of recalculating the volume based on the differences between the previous five point check and the current five point check.

After a secure audit trail is archived, WinCCU recalculates the flow volumes based on the previous and current markers, this allows more accurate results of the flow volume.

Checking Static Pressure (SP)

The μ FLO allows you to check the Static Pressure Calibration and log the pressure marker check points. It is recommended that checks of the Static Pressure (SP) be done prior to and directly following the calibration.

During normal operation of the μ FLO, the display provides continuous SP readouts. However during this procedure the μ FLO is placed in a temporary hold mode.

You can enter as many SP pressure markers as you desire. Recording too many markers could cause the μ FLO to overwrite existing older events. Only the last five checks are used by the WINCCU editor for calibration adjustment. Enter a low, mid-low, mid, mid-high and high value.

During this procedure, you will pressure both sides of the cell by closing both the high and low side orifice valves, open the vent to atmosphere, then closing the atmosphere vent and opening both high and low bypass valves.

The resulting comparison pressure must not be greater than the static pressure cell's maximum pressure.

Calibrating Static Pressure (SP)

A three or five point pressure method is used to calibrate the μ FLO Static Pressure cell. These different pressures are applied to the cell from a known traceable source with resultant pressure values entered into the μ FLO using PCCU software.

When calibrating, wait for the readings to stabilize before entering new values.

The μ FLO uses an absolute Static Pressure (SP) Cell. Absolute pressure measures the pressure referenced to a vacuum or sealed chamber. This is different than a gauge cell which measures the pressure referenced to the atmosphere.

It is recommended that the initial calibration point be at vented conditions and when doing so that the barometric pressure reading (in psi) be used as the initial point.

Since the static pressure cell is an absolute device, it always measures the true pressure relative to a vacuum or sealed chamber. Thus when vented, it measures true barometric pressure.

For other points of calibration, add reading of PSI and barometric pressure to arrive at psia, then enter this reading.

To convert barometric pressure measured from inches of mercury to Barometric Pressure (psi), perform the following calculation:

Barometric pressure, in inches of mercury x .4912 or (\div 2.036) equals Barometric Pressure in psi.

Checking Differential Pressure (DP)

As discussed above under "Checking Static Pressure (SP) Calibration", it is recommended that checks of the Differential Pressure (DP) be done prior to and directly following calibration.

You can enter as many DP pressure markers as you desire. Recording too many markers may cause the μ FLO to overwrite existing older events. Only the last five checks are used by the WINCCU editor for calibration adjustment. Enter a low, mid-low, mid, mid-high and high value.

During this procedure, you will pressure the high side of the cell by closing both the high and low side orifice valves, open the vent to atmosphere and the low side bypass valve, and closing the high side bypass valve.

Calibrating Differential Pressure (DP)

A three or five point pressure method is used to calibrate the μ FLO Differential Pressure cell. These different pressures are applied to the cell from a known traceable source with resultant pressure values entered into the μ FLO using PCCU software.

During factory calibration, the Differential Pressure (DP) is set to zero to compensate for any leaks that may be detected. After field calibration of the unit, the correction made at the factory remains as is. This ensures that the readings received in the field are accurate. The user may not change the factory set shift. If readings appear incorrect, you may need to check for leaks and then re-calibrate the DP.

When calibrating, wait for the readings to stabilize before entering new values.

Setup RTD

Although the RTD (Resistive Temperature Detector) temperature is accurately self-calibrating, you can match it to another reference source. This is accomplished by entering temperature bias, which shifts the RTD probe curve either positive or negative.

Setting µFLO Temperature Calculation The μ FLO temperature calculations can be set to the following conditions:

Selection of "Fixed Temperature" Used in Calculations—causes fixed temperature to be used in flow calculations.

- Selection of "Fixed Temperature" and "RTD Installed"—will record RTD temperature while using fixed temperature in calculations.
- Selection of "RTD Installed" and not use "Fixed Temperature—measures and uses RTD temperature in calculations. However, if a temperature error occurs such as an A/D error, the "Fixed Temperature" will be used for calculations.

Selecting "RTD Installed" only, does not force the unit to use the flowing temperature in its calculations. You must turn off the "Fixed Temperature" selection.

How to Change Orifice Plate

Use one of the following procedures when changing an orifice plate.

Taking Run Out-of-Service Procedure	(Simplex Fitting)
-------------------------------------	-------------------

Step	Procedure
1.	Take meter run out of service.
2.	Replace the orifice plate.
3.	If you would like to record a Volume Calculation, go to the Entry screen, select the measurement tube, and move to the Commands tab. Change the value for the Reset Log Period to Yes. This forces a new record to be written based on the old orifice plate size. If you would also like to simultaneously zero the accumulated volume, you may use the Reset Volume command instead.
	While seemingly unnecessary, if the Volume Calculation Period is set to anything less than 60 minutes, Totalflow recommends performing either the Reset Log Period or the Reset Volume command to enhance the audit trail created by the event.
4.	In PCCU, enter the new orifice plate diameter.
5.	Return meter to service.

Leaving Run In-Service Procedure (Senior Fitting)

Step	Procedure
1.	Place μ FLO in HOLD, by entering the calibration mode, so constant SP, DP and Temperature values are used, while the orifice plate is being changed.
2.	Replace the orifice plate.
3.	Exit the Calibration mode, releasing the Hold of the SP, DP and Temperature.
4.	If you would like to record a Volume Calculation, go to the Entry screen, select the measurement tube, and move to the Commands tab. Change the value for the Reset Log Period to Yes. This forces a new record to be written based on the old orifice plate size. If you would also like to simultaneously zero the accumulated volume, you may use the Reset Volume command instead.
	While seemingly unnecessary, if the Volume Calculation Period is set to anything less than 60 minutes, Totalflow recommends performing either the Reset Log Period or the Reset Volume command to enhance the audit trail created by the event.
5.	In PCCU, enter the new orifice plate diameter.

At top of next Volume Calculation Period, the μFLO will do calculations based on new orifice plate diameter for the part of the period after the log was reset.

Zero Transducer

During the process of setting pressure markers to determine the need for a calibration of either the Static Pressure (SP) or the Differential Pressure (DP), you may conclude that the SP or the DP pressures are out of alignment exactly the same amount at each pressure marker (linear shift). When this occurs, you may either re-calibrate the μ FLO or you may set the Transducer to zero. The preferred method is to re-calibrate the μ FLO. This maintains the μ FLO records in a manner that is assures accountability and continuity when other measurement issues arise. By using the Zero Transducer command, all references to previous pressure markers are non-existent, eliminating the ability to adjust volumes based on previous markers.

Using the Zero Transducer capability assumes that the shift is Linear, meaning that at different levels of pressure that the IMV is off by exactly the same amount. If this is not the case, you need to re-calibrate the IMV instead.

Static Pressure The SP can be zeroed without re-calibrating. If the SP shifts, user can enter a new barometric pressure value. This shifts the SP IMV curve. After the HOLD state begins, select Zero Transducer.

Troubleshooting

Reset Procedures

After closing μ FLO door, check door mounted LCD for normal operational readings.

Cold Start	A cold start clears all the data that is stored in RAM as well as resetting all entered variables to their factory default values. A cold start should be used for new μ FLO installations. This will ensure that all memory is clear and the operating program is at its default settings. Discretionary use of this procedure is advised.
Procedures (Hardware)	In the following procedure, the common name for a component or it's jumper number if available (abbreviated J) or part is followed by a number in parentheses.

This refers to the call out item number referenced on each drawing.

Instructions

Step	Procedure
1.	If an external charging source is connected, it must be disconnected. Slide external charger terminal block J7 (Figure 4–5, Item 4) from the board.
2.	Disconnect battery pack connector from the Main Board BAT CONN connector J6 (Figure 4–5, Item 3).
3.	Disable Memory Backup J1 (Figure 4–5, Item 16), by moving the pin jumper to pins 2 and 3.
4.	To return to service reconnect 12 Vdc battery pack connector to board BAT CONN connector J6 (Figure 4–5, Item 3) and observe LCD .
5.	If removed, reconnect external charging source to EXT CHGR connector J7 (Figure 4–5, Item 4).
6.	Enter all necessary parameters or send a saved setup file and calibrate μ FLO. See chapter 3.0, μ FLO Startup.
7.	When μ FLO has been cold started, the 24 hour clock will be reset to 00:00:00.
8.	Enable Memory Backup J1 (Figure 4–5, Item 16), by moving the pin jumper to pins 1 and 2.

Cold Start (Software)

Instructions

Step	Procedure
1.	Using PCCU, in the terminal mode, type this command exactly as shown:
	boot=COLD

Reset Procedures, Continued

Warm Start	A warm start occurs when the charging source and main power is removed, then re-applied while memory backup is enabled. This does not clear the data stored in RAM. The warm start will only reset the μ FLO microprocessor and not disturb any data that has been stored in RAM. A warm start should be used when taking an μ FLO out service to perform maintenance or troubleshooting. A warm start can be used when a power or communication interruption caused the μ FLO microprocessor to lock-up.
Procedures	In the following procedure, the common name for a component or it's jumper number if available (abbreviated J) or part is followed by a number in parentheses. This refers to the call out item number referenced on each drawing.

Instructions

Step	Procedure
1.	If an external charging source is connected, it must be disconnected. Slide external charger terminal block J7 (Figure 4–5, Item 4) from the main board.
2.	Enable Memory Backup J1 (Figure 4–5, Item 16), by moving the pin jumper to pins 1 and 2.
3.	Disconnect battery pack connector from Main Board BAT CONN connector J6 (Figure 4–5, Item 3). The μ FLO is now out of service.
4.	To place μFLO in service, connect battery pack connector J6 (Figure 4–5, Item 3).
5.	Connect the EXT CHGR terminal block J7 (Figure 4–5, Item 4).

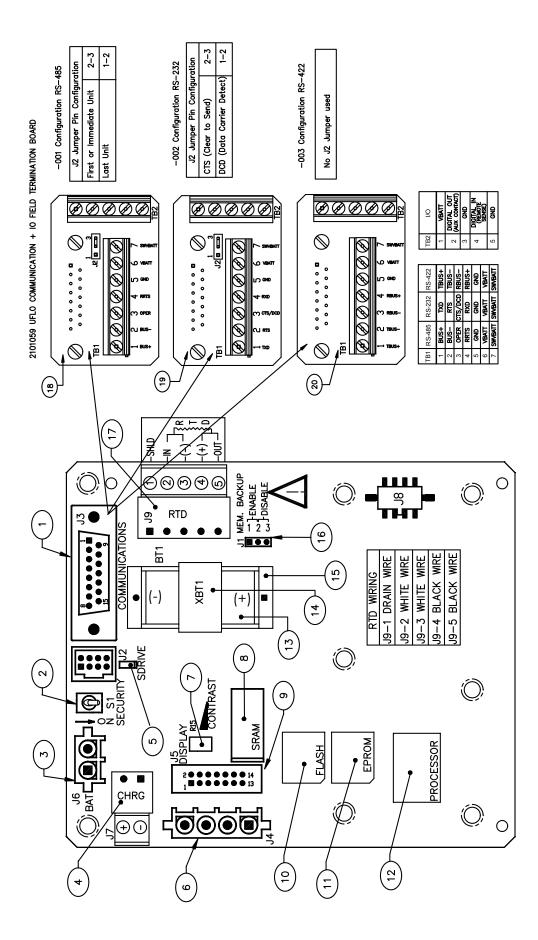


Figure 4–5 μ FLO 2100767 Board with Communication Configurations

ID Number	Description
1	Remote Communication Connector
2	Security Switch
3	Battery Connection
4	External Charger
5	S Drive
6	PCCU Interface
7	Contrast Potentiometer
8	Static Ram (R Drive)
9	LCD Display Interface
10	Flash
11	EPROM
12	Processor
13	Lithium Battery
14	Battery Cover
15	Battery Mounting Bracket
16	Memory Backup Enable/Disable
17	RTD Connector
18	2101059-001 COMM+IO RS-485 Board
19	2101059-002 COMM+IO RS-232 Board
20	2101059-003 COMM+IO RS-422 Board

Table 4–4 μFLO 2100767 Board with Communication Configurations

Visual Alarm Codes

After the μ FLO completes recording hourly flow and operational records the LCD will show any alarm conditions that have occurred (see Figure 4–6). Also, the date, hour and type of alarm conditions are stored in the μ FLO memory. An alarm can be a word, character, letter or symbol. The entire list of Status and Alarm codes may be found in Chapter 1, Table 1–2. For the purpose of troubleshooting, only those codes considered to be as alarms are discussed here. A description of each μ FLO alarm code, is described in Table 4–5.

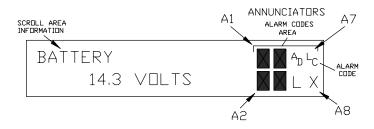


Figure 4–6 Liquid Crystal Display and Indicators

	Table	4–5	Visual	Alarm	Codes
--	-------	-----	--------	-------	-------

Indicator	Description		
	I/O Sub-System		
L	<i>Low Lithium Battery Alarm</i> : When $^{L}_{L}$ (low lithium) is displayed, lithium battery voltage is below 2.5 Vdc. A new lithium battery measures approximately 3.6 Vdc.		
L C	Low Charger. Displayed if μFLO battery charging voltage is less than 0.4 Vdc above the battery voltage.		
A D	A to D Failure. Displayed if A to D Converter Absolute Differential Pressure, Absolute Static Pressure or temperature readings exceed maximum counts or are less than minimum counts.		

Troubleshooting Alarms

Alarm conditions and their probable cause, and procedure(s) for correcting the problem, are presented below in Table 4–6.

	In the following procedure, the common name for a component or it's jumper number if available (abbreviated J) or part is followed by a number in parentheses. This refers to the call out item number referenced on each drawing.	
Alarm Condition	Probable Cause	Procedure
SLEEP	Battery Voltage Below 10.9 VDC	 Make a local connection with the μFLO. This wakes up the unit so that you may check all alarm conditions and determine the problem. Check battery pack cable. It must make a good secure electrical connection with the main board BAT CONN connector J6 (Figure 4–5, Item 3). If battery pack cable is securely connected, check battery pack voltage. If voltage is low, replace with another battery pack.
L _C	Charging Source Below 0.4 Vdc Plus Battery Pack Voltage	Check battery pack charging source with PCCU Monitor Mode. This is for either Solar or externally connected charging sources.
C	Solar Power Charging Unit	 In low sun light conditions, the display normally shows ^L_C. Check solar panel angle and direction. In northern hemisphere, panel should face due south and in southern hemisphere, due north. Check solar panel for any physical damage or obstructions to sunlight. Sunlight obstruction prevents solar panel from receiving enough sunlight to charge installed battery pack. Solar panel should be positioned so it receives the most sunlight. Do not place it in a shaded area. Check solar panel wiring to be certain it is correctly connected to associated μFLO 2100767 Board termination block J7 (Figure 4–5, Item 4). Solar panel should be checked under load, using a diagnostic test kit. If solar panel wiring is correct, sunlight is not obstructed and voltage does not increase above 0.4 VDC under bright sunlight, replace Solar Panel.
L _C	AC Power Unit	 Check AC charger wiring to μFLO termination block connector J7 (Figure 4–5, Item 4). Be certain wiring is correct. Check input AC voltage to external AC charging unit. Be certain primary AC voltage is correct. If input primary AC voltage level is correct, wiring to μFLO μFLO 2100767 Board terminal is correct and there is no DC output from the charger, replace charger fuse. If fuse is not faulty or there is no charger DC output voltage after replacing fuse, replace AC charging unit.
AD	A/D Converter is Over or Under Range	 This alarm condition can be caused by differential pressure, static pressure or the temperature being out of measurement range. Check SP, DP and temperature to determine which measurement channel is causing the alarm. In the PCCU Entry screen, enter the Monitor mode by clicking on the I/O subsystem.

Table 4–6 Troubleshooting Alarm Codes

Alarm Condition	Probable Cause	Procedure
AD	Temperature Measurement Causing Alarm	 A faulty RTD Probe, or loose wiring connection(s), can cause an AD alarm code. Check RTD wiring on board terminal connector J9 (Figure 4–5, Item 17). To determine if problem is with the RTD Probe or main board, disconnect RTD wiring connector from board connector J9 (Figure 4–5, Item 17). Perform either of the following two procedures: A) Substituting RTD Probe with Resistor: These procedures are performed on the µFLO 2100767 Board. Connect a 100-ohm resistor across connector J9 (Figure 4–5, Item 17) RTD terminals 3 and 4. Connect a jumper wire from J9 (Figure 4–5, Item 17) terminals 2 and 3. Connect a jumper wire from J9 (Figure 4–5, Item 17) terminals 4 and 5. The µFLO LCD should read approximately 32°F with the 100 ohm resistor connected. If temperature is approximately 32°F and error goes away, RTD probe is faulty and should be replaced. If temperature is not 32°F, µFLO 2100767 Board or IMV is faulty and should be replaced. B) RTD Probe Resistive Impedance Check: Immerse RTD Probe in ice bath. Perform a continuity check between any two similar colored wires. Measured resistance should be approximately 100 ohms. Perform a continuity check between any two dissimilarity colored wires. Measured resistance should be in the megohm range.

Table 4–6 Troubleshooting Alarm Codes, continued

Communications Overview

These troubleshooting procedures are applicable only to a μ FLO with an installed radio communication unit. The three basic types of radio communications that can be used between the μ FLO and a radio receiver, are:

- RS-232 Communications
- RS-485 Communications
- RS-422 Communications

For specific wiring and pin configurations, please see Figure 4-5.

Before removal or installation of either the communication interface cables or the Field Termination card, it is important that you disconnect the external battery charger and main μ FLO battery pack cable connectors from main electronics board. Refer to Figure 4–5.

Setting Up Communication After installation of communication equipment and before placing the communication system into operation, the user should note the following:

- Verify cables, radio and Termination Board if used are correctly installed.
- Check µFLO identifier (ID). Log the ID for future reference.
- Log μFLO access security code, baud rate, listen cycle, protocol and interface for future reference.

The following helpful hints aid the user after communication equipment has been installed and setup:

- When communication equipment is powered on, μFLO displays the \rightarrow after it recognizes the μFLO ID and is responding.
- Check baud rate of μFLO transmission and LISTEN time settings. The baud rate and time settings can be changed when PCCU is in ENTRY mode. Default settings are 1200 baud and listening time is 4 seconds and communications interface is turned off.

RS-232 Communications

The following RS-232 Serial Communication troubleshooting procedures will assist the user in what may be the possible cause for indicated error message. Refer to Table 4–7.

Error Condition	Possible Cause
μFLO Will Not Respond to Communication Message	 If using manufactured cable, verify Radio cable is connected fully If using Field Termination Board, verify wiring is correct. If using Field Termination Board, verify jumper setting is correct. Verify battery pack voltage is greater than 11.9 Vdc. Verify ID number and security code are correct.

Table 4–7 Troubleshooting RS-232 Serial Communication

Table 4–7 Troubleshooting RS-232 Serial Communication, Cont.

Power to transceiver can be provided from the μ FLO's power supply. This allows μ FLO to switch external power to transceiver. Switching is accomplished using a 12VDC switch line connected to the 2100888-002 field termination board TB1-7 SWVBATT (WHT). Refer to Measuring SWVBATT Transceiver Supply Switch Voltage. If this option is used, TB1-6 (V-BATT) is not used.

Procedure	Instructions	
In the following procedure, the common name for a component or it's jumper number if available (abbreviated J) or part is followed by a number in parentheses. This refers to the call out item number referenced on each drawing.		
Measuring SWVBATT Transceiver Supply	Check μ FLO transceiver SWVBATT supply voltage. Refer to the following Measuring SWVBATT Transceiver Supply voltage for procedures:	
Voltage	Using a digital voltmeter, measure transceiver SWVBATT DC supply voltage between the 2100888-002 field termination board TB1 (Figure 4–5, Item 19) connector terminals. Voltage should be greater than 11.9 Vdc.	
	TB1-5 (GDN [BLK]) and TB1-7 (SWVBATT [WHT])	
	The SWVBATT voltage should pulse once every four (4) seconds for a time duration of approximately 350 milliseconds (Baud rate dependent 350 ms @ 1200 Baud). Voltage must be at least 11.9 Vdc.	
Measuring Battery Pack Voltage (V- BATT)	Using a digital voltmeter, measure transceiver V-BATT power supply voltage between the 2100888-002 field termination board TB1 (Figure 4–5, Item 19) connector terminals. Switched voltage should be greater than 11.9 Vdc.	
	TB1-5 (GND [BLK]) and TB1-6 (V-BATT)	

FYI

Voltage may be difficult to see using a digital voltmeter. It can be seen using an oscilloscope.

Verify voltage by continuously polling µFLO from CCU.

toniy tonago	
Measuring Receiving Data [RXD] Voltage	Using an oscilloscope or digital voltmeter, connect it to the 2100888-002 field termination board TB1 (Figure 4–5, Item 19) connector across the following terminals.
	TB1-5 (GND [BLK] and TB1-4 (RXD [BRN])
	When communication data is being transmitted from CCU to $\mu\text{FLO},$ voltage should vary between +5 Vdc and -5 Vdc.
Measuring Request To Send (RTS) Voltage	Using an oscilloscope or digital voltmeter, connect it to the 2100888-002 field termination board TB1 (Figure 4–5, Item 19) green connector across the following terminals. When μ FLO is sending communication data to CCU, voltage should be +5 Vdc.
	TB1-5 (GND) and TB1-2 (RTS)

Procedure	Instructions	
Measuring Transmitting Data (TXD+) Voltage	Using an oscilloscope or digital voltmeter, connect it to the 2100888-002 field termination board TB1 (Figure 4–5, Item 19) green connector across the following terminals. When communication data is being transmitted from the μ FLO, voltage should vary between +5 Vdc and -5 Vdc.	
	TB1-5 (GND) and TB1-1 (TXD)	
If Communication Problems Still Exists	• Using two (2) hand-held transceivers, check communication path between Master and Remote sites. If available, voice activated interface can be used.	
	• Using a wattmeter, check transceiver output power. Refer to manufacturer's documentation for measuring instructions.	
	 Verify that transceiver is on correct frequency. Refer to manufacturer's documentation for checking frequency instructions. 	
	Verify orientation of antenna if directional.	

Table 4–7 Troubleshooting RS-232 Serial Communication, continued

RS-485 Communications

The following RS-485 Communications troubleshooting procedures will assist the user in what may be the possible cause for indicated error message. Refer to Table 4–8.

Table 4–8 Troubleshooting RS-485 Communications

Error Message	Possible Cause
μFLO Will Not Respond To Communication Message	 If using manufactured cable, verify Radio cable is connected fully If using Field Termination Board, verify wiring is correct. If using Field Termination Board, verify jumper setting is correct. Verify battery pack voltage is at least 11.9 Vdc. Verify that ID number and security code are correct.

FYI

Power to transceiver can be provided from the μ FLO's power supply. This allows μ FLO to switch external power to transceiver. Switching is accomplished using a 12VDC switch line connected to the 2100888-001 field termination board TB1-7 SWVBATT (WHT). Refer to Measuring SWVBATT Transceiver Supply Switch Voltage. If this option is used, TB1-6 (V-BATT) is not used.

	Procedure	Instructions		
	In the following procedure, the common name for a component or it's jumper number if available (abbreviated J) or part is followed by a number in parentheses. This refers to the call out item number referenced on each drawing.			
	Measuring SWVBATT Transceiver Supply	Check μ FLO transceiver SWVBATT supply voltage. Refer to the following Measuring SWVBATT Transceiver Supply voltage for procedures:		
	Switch Voltage	Using a digital voltmeter, measure transceiver SWVBATT DC supply voltage between the 2100888-001 field termination board TB1 (Figure 4–5, Item 18) connector terminals. Voltage should be greater than 11.9 Vdc.		
		TB1-5 (GND [BLK]) and TB1-7 (SWVBATT [WHT])		
		The transceiver SWVBATT measured DC voltage should pulse every four (4) seconds for a time duration of approximately 350 milliseconds. Voltage must be at least 11.9 Vdc. (Baud rate dependent 350 max = 1200 Baud.)		
		Voltage may be difficult to measure because of the short 350 millisecond time duration.		
	Measuring Battery Pack Voltage (V- BATT)	Using a digital voltmeter, measure transceiver V-BATT power supply voltage between the 2100888-001 field termination board TB1 (Figure 4–5, Item 18) connector terminals. Switched voltage should be greater than 11.9 Vdc.		
		TB1-5 (GND [BLK]) and TB1-6 (V-BATT)		
FYI 🤾	oscilloscope.	e difficult to see using a digital voltmeter. It can be seen using an		
		py continuously polling μFLO from CCU.		
	Measuring RS-485 Line Driver voltage	Using an oscilloscope or digital voltmeter, connect it to the 2100888-001 field termination board TB1 (Figure 4–5, Item 19) connector between the following terminals. Voltage should vary between +5 Vdc and 0 Vdc when communication data is being transmitted from CCU to μ FLO.		
		TB1-1 (BUS+) and TB1-2 (BUS-)		
	Measuring Request to Send (RTS) Voltage	Using an oscilloscope or digital voltmeter, connect it to the 2100888-001 field termination board TB1 (Figure 4–5, Item 19) connector across the following terminals. Voltage should be +5 Vdc when sending data to CCU. 0V when not transmitting.		
		TB1-5 (GND) and TB1-4 (RRTS)		
		When RTS is high, transmitter must be keyed and transmitting data.		
	Communication Problem(s) Still Exit	Using two hand-held transceivers, check communication path between Master and Remote sites. If available, voice activated interface can be used.		
		Using a wattmeter, check transceiver output power. Refer to wattmeter manufacturers documentation for operating instructions.		
		Verify that transceiver is on correct frequency. Refer to transceiver manufacturer's documentation for procedures to check frequency.		
		Verify transceiver settings.		

Table 4-8 Troubleshooting RS-485 Communications, Cont.

RS-422 Communications

The following RS-422 Communications troubleshooting procedures will assist the user in what may be the possible cause for indicated error message. Refer to Table 4–9.

Error Message	Possible Cause		
μFLO Will Not Respond To Communication Message	 If using manufactured cable, verify Radio cable is connected fully If using Field Termination Board, verify wiring is correct. Verify battery pack voltage is at least 11.9 Vdc. Verify that ID number and security code are correct. 		
Power to transceiver can be provided from the μFLO's power supply. This allows μFLO to switch external power to transceiver. Switching is accomplished using a 12VDC switch line connected to the 2100888-003 field termination board TB1-7 SWVBATT (WHT). Refer to Measuring SWVBATT Transceiver Supply Switch Voltage. If this option is used, TB1-6 (V-BATT) is not used.			
Procedure	Instructions		
In the following procedure, the common name for a component or it's jumper number if available (abbreviated J) or part is followed by a number in parentheses. This refers to the call out item number referenced on each drawing.			
Measuring SWVBATT	Check μ FLO transceiver SWVBATT supply voltage. Refer to the following Measuring SWVBATT Transceiver Supply voltage for procedures:		
Transceiver Supply Switch Voltage	Using a digital voltmeter, measure transceiver SWVBATT DC supply voltage between the 2100888-003 field termination board TB1 (Figure 4–5, Item 20)		

connector terminals. Voltage should be greater than 11.9 Vdc.

be at least 11.9 Vdc. (Baud rate dependent 350 max = 1200 Baud.)

TB1-5 (GND [BLK]) and TB1-7 (SWVBATT [WHT]) The transceiver SWVBATT measured DC voltage should pulse every four (4) seconds for a time duration of approximately 350 milliseconds. Voltage must

Voltage may be difficult to measure because of the short 350 millisecond time

Using a digital voltmeter, measure transceiver V-BATT power supply voltage between the 2100888-003 field termination board TB1 (Figure 4–5, Item 20)

TB1-5 (GND [BLK]) and TB1-6 (V-BATT)

connector terminals. Switched voltage should be greater than 11.9 Vdc.

Table 4–9 Troubleshooting RS-422 Communications

-				
F	. \	1	L	

Voltage may be difficult to see using a digital voltmeter. It can be seen using an oscilloscope.

Verify voltage by continuously polling μ FLO from CCU.

duration.

Measuring Battery

Pack Voltage (V-

BATT)

Continued on Next Page

FYI

Procedure	Instructions
Measuring Transmit Data Voltage	Using an oscilloscope or digital voltmeter, connect it to the 2100888-003 field termination board TB1 (Figure 4–5, Item 20) connector between the following terminals. Voltage should vary between +5 Vdc and 0 Vdc when communication data is being transmitted from μ FLO to CCU. TB1-1 (TBUS+) and TB1-2 (TBUS-)
Magguring Resolve	
Measuring Receive Data Voltage	Using an oscilloscope or digital voltmeter, connect it to the 2100888-003 field termination board TB1 (Figure 4–5, Item 20) connector between the following terminals. Voltage should vary between +5 Vdc and 0 Vdc when communication data is being received from CCU to µFLO.
	TB1-4 (RBUS+) and TB1-3 (RBUS-)
Communication Problem(s) Still Exit	Using two hand-held transceivers, check communication path between Master and Remote sites. If available, voice activated interface can be used.
	Using a wattmeter, check transceiver output power. Refer to wattmeter manufacturers documentation for operating instructions.
	 Verify that transceiver is on correct frequency. Refer to transceiver manufacturer's documentation for procedures to check frequency.
	Verify transceiver settings.

Table 4-9 RS-422 Communications, continued

Wake-Up

The SLEEP mode is a safety feature which maintains the flow records but discontinues flow measurement calculations. When the μ FLO is in the SLEEP mode the word SLEEP is displayed on the μ FLO along with the date and time the unit went to sleep. If μ FLO battery voltage falls below 11VDC, μ FLO enters SLEEP mode after 2 minutes. If the voltage coming in to the board, through an AC adapter perhaps, is too high, this will also cause the unit to enter the SLEEP mode.

If battery voltage is still below 10.9 VDC, when you disconnect locally, the μ FLO returns to SLEEP mode after 2 minutes. If battery voltage is above 11VDC, μ FLO remains awake.

The μ FLO has a "real time clock" which maintains time and date during the SLEEP mode and writes an event record when entering and leaving the SLEEP mode.

Upon wake-up, the μ FLO performs the following functions:

- Stores present calculation periods accumulations in historical record,
- Zeros present calculation periods accumulations and
- End current daily record and start new daily record.

Instructions

Step	Procedure		
number i	In the following procedure, the common name for a component or it's jumper number if available (abbreviated J) or part is followed by a number in parentheses. This refers to the call out item number referenced on each drawing.		
1.	Connect locally to the $\mu\text{FLO}.$ This should WAKE-UP the unit for you to determine the cause.		
2.	Check external charging source, to ensure it is providing the proper voltage to μ FLO. If the external charging source is a solar panel, you may need to clean the solar cell surface.		
3.	Check battery pack cable. It must make a good secure electrical connection with μ FLO 2100767 Board BAT CONN connector J6 (Figure 4–5, Item 3).		
4.	If battery pack cable is securely connected, check battery pack voltage. If voltage is low, replace with another battery pack.		

Chapter 5 Totalflow[®] Definitions and Acronyms

Term	Definition
μ	Greek letter for "mu". Often used in math and engineering as the symbol for "micro". Pronounced as a long u.
μFLO	Totalflow's Micro Flow Computer is a low power, microprocessor based units designed to meet a wide range of measurement, monitor and alarming applications for remote gas systems, while being a cost effective alternative.
μFLO IMV	μ FLO's measurement and operational features are housed in this single unit assembly. The main electronic board (μ FLO 2100767 Board), communication connection, power, SP, DP and Temperature readings are all housed in this unit.
μFLO 2100767 Board	Main Electronic Board used in the μ FLO Computers. It is housed on the IMV and operates at 195 MHz while drawing minimal power.
A/D	Analog-to-digital.
Absolute Pressure	Gauge pressure plus barometric pressure. Absolute pressure is used by most Totalflow devices for flow calculations.
Absolute Zero	The zero point on the absolute temperature scale. It is equal to -273.16 degrees C, or 0 degrees K (Kelvin), or -459.69 degrees F, or 0 degrees R (Rankine).
AC	See Alternating Current.
ACK	See Acknowledgment
Acknowledgment	This refers to a response over a remote communication device to a request such as a PING. Basically, saying, "I'm here, and I saw your request!"
ACM	See Analyzer Control Module.
Active Mode	An operational mode used by the LevelMaster for measuring dual float levels by applying a signal to the primary windings, reading the voltage level on the secondary windings and using an algorithm to determine the oil and water levels.
ADC	See Analog-to-Digital Converter.
Address	A unique memory designation for location of data or the identity of a peripheral device; allows each device on a single communications line to respond to its own message.
Aerial	A length of wire designed to transmit or receive radio waves. (See also Antenna)
AGA	American Gas Association. Trade group representing natural gas distributors and pipelines.
AGA-3	American Gas Association Report No. 3, method of calculating gas volume across an Orifice Plate.

Term	Definition
AGA-5	American Gas Association Report No. 5, methods (Volume, Mass or Energy) for calculating BTUs without knowing the composition of the gas.
AGA-7	American Gas Association Report No. 7, method of calculating gas volume using a Pulse Meter.
AGA-8	American Gas Association Report No. 8, method of calculating the Super Compressibility Factor, Fpv.
АН	See Ampere-Hour.
Alkane	The simplest homologous series of saturated aliphatic hydrocarbons, consisting of methane, ethane, propane, butane; also know as olefins.
Alternating Current	An electric current whose direction changes with a frequency independent of circuit components.
Amp	See Ampere.
Ampere	The unit of electrical current. Also milliamp (one thousandth of an amp) and microamp (one millionth of an amp). One amp corresponds to the flow of about 6×10^{18} electrons per second.
Ampere-Hour	The quantity of electricity measured in ampere-hours (Ah) which may be delivered by a cell or battery under specified conditions. A current of one ampere flowing for one hour.
Ampere-Hour Efficiency	The ratio of the output of a secondary cell or battery, measured in ampere- hours, to the input required to restore the initial state of charge, under specified conditions.
Amplitude	The highest value reached by voltage, current or power during a complete cycle.
Amplitude Modulation	Where audio signals increase and decrease the amplitude of the "carrier wave".
AMU	See Analog Measurement Unit.
AMU/IMV	Generic reference to the Measurement unit. See (Integral) Multivariable Transducer for more definition.
Analog	A system in which data is represented as a continuously varying voltage/current.
Analog Measurement Unit	A device for converting energy from one form to another. (e.g. Static and Differential pressure to electrical signals)
Analog Trigger	A trigger that occurs at a user-selected point on an incoming analog signal. Triggering can be set to occur at a specific level on either an increasing or a decreasing signal (positive or negative slope).
Analog-to-Digital Converter	An electronic device, often an integrated circuit, that converts an analog voltage to a number.
Analyzer Control Module	Consists of various electronic components used for analysis.
Annunciator	Display of a status on a screen.

Term	Definition
ANSI	American National Standards Institute.
Antenna	A length of wire or similar that radiates (such as a transmitting antenna) or absorbs (such as a radio antenna) radio waves. The two basic types are: Yagi (directional) or Omni (bi-directional).
AP	See Absolute Pressure.
API 14.3	American Petroleum Institute Report No. 14.3 addresses the 1992 equation regarding the AGA-3 method for calculating gas volume across an Orifice Plate.
API 21.1	American Petroleum Institute Report No. 21.1 addresses the equation regarding AGA-8 Fpv or Supercompressibility Factor and the energy content of the gas.
Archive	A file containing historical records in a compressed format for more efficient long term storage and transfer. Totalflow archive records are non- editable, meaning that when they are stored they may not be changed. These records are used during an audit of data.
ASCII	American Standard Code for Information Interchange. A very popular standard method of encoding alphanumeric characters into 7 or 8 binary bits.
Asynchronous	A communications protocol where information can be transmitted at an arbitrary, unsynchronized point in time, without synchronization to a reference time or "clock".
Atmospheric Pressure	The pressure due to the weight of the atmosphere (air and water vapor) on the earth's surface. The average atmospheric pressure at sea level (for scientific purposes) has been defined at 14.696 pounds per square inch absolute.
Audit	To examine or verify data for accuracy. Totalflow's DB1 and DB2 records may be edited to generate a more accurate representation of data information.
Audit Trail	Using the Long Term Archive files to justify changes made to records that more accurately reflects the correct data. Peripheral information used to edit data is recorded without exception, to justify the accuracy of the edited data records.
Audio Frequency	Generally in the range 20 Hz to 20 KHz.
Automatic Frequency Control	Similar to Automatic Fine Tune (AFT). A circuit that keeps a receiver in tune with the wanted transmission.
Back Pressure	Pressure against which a fluid is flowing. May be composed of friction in pipes, restrictions in pipes, valves, pressure in vessels to which fluid is flowing, hydrostatic head, or other resistance to fluid flow.
Background Acquisition	Data is acquired by a DAQ system while another program or processing routine is running without apparent interruption.
Bandwidth	The range of frequencies available for signaling; the difference between the highest and lowest frequencies of a band expressed in Hertz.

Term	Definition
Barometer	An instrument which measures atmospheric pressure.
Barrel	The unit of volume measurement used for petroleum and it's products; 1 barrel = 42 US gallons.
Base Pressure	The pressure used as a standard in determining gas volume. Volumes are measured at operating pressures and then corrected to base pressure volume. Base pressure is normally defined in any gas measurement contract. The standard value for natural gas in the United States is 14.73 psia, established by the American National Standards Institute as standard Z-132.1 in 1969.
Battery	Two or more electrochemical cells electrically interconnected in an appropriate series/parallel arrangement to provide the required operating voltage and current levels.
Baud	Unit of signaling speed. The speed in baud is the number of discrete conditions or events per second. If each event represents only one bit condition, baud rate equals bits per second (bps).
Baud Rate	Serial communications data transmission rate expressed in bits per second (b/s).
Bias	Term used when calibrating. Amounts to offset the actual measurement taken. On a LevelMaster, it refers to adjusting the measurement of the float level to agree with a calibrated measurement. On an RTD (Resistant Thermal Detector), it refers to adjusting the measurement of the temperature to agree with a calibrated temperature. This figure maybe either a positive or negative figure.
BIAS Current	A very low-level DC current generated by the panel meter and superimposed on the signal. This current may introduce a measurable offset across a very high source impedance.
Binary Number	System based on the number 2. The binary digits are 0 and 1.
Binary-Coded Decimal	A code for representing decimal digits in a binary format.
BIOS	Basic Input/Output System. A program, usually stored in ROM, which provides the fundamental services required for the operation of the computer. These services range from peripheral control to updating the time of day.
Bipolar	A signal range that includes both positive and negative values.
Bipolar Transistor	The most common form of transistor.
Bit	Binary Digit - the smallest unit of binary data. One binary digit, either 0 or 1. See also byte.
Bits Per Second	Unit of data transmission rate.
Board	Common name used to identify the Main Electronic Board. Also called Motherboard, Engine Card and Circuit Board.
Bottom Solids and Water	Refers to materials that settle to the bottom of an oil tank, including the heavy water.

Term	Definition
Bounce	Bouncing is the tendency of any two metal contacts in an electronic device to generate multiple signals as the contacts close or open. When you press a key on your computer keyboard, you expect a single contact to be recorded by your computer. In fact, however, there is an initial contact, a slight bounce or lightening up of the contact, then another contact as the bounce ends, yet another bounce back, and so forth. A similar effect takes place when a switch made using a metal contact is opened.
BPS	See Bits Per Second.
Bridge	Generally a short-circuit on a PC board caused by solder joining two adjacent tracks.
British Thermal Unit	Energy required to raise one pound of water one degree Fahrenheit. One pound of water at 32 F° requires the transfer of 144 BTUs to freeze into solid ice.
Browser	Software which formats Web pages for viewing; the Web client
BS&W	See Bottom Solids (or sediment) and Water.
BTU	See British Thermal Unit.
Btu Method	A method of allocating costs between different operations or between different products based upon the heat content of products produced in the various operations or of the various produced products.
Btu per Cubic Foot	A measure of the heat available or released when one cubic foot of gas is burned.
Btu, Dry	Heating value contained in cubic foot of natural gas measured and calculated free of moisture content. Contractually, dry may be defined as less than or equal to seven pounds of water per Mcf.
Btu, Saturated	The number of Btu's contained in a cubic foot of natural gas fully saturated with water under actual delivery pressure, temperature and gravity conditions. See BTU, DRY.
Btu/CV	Used to express the heating content of gas. See British Thermal Units or Calorific Value.
BtuMMI	Refers to the interface program or software that operates the Btu Analyzer.
Buffer	(1) A temporary storage device used to compensate for a difference in data rate and data flow between two devices (typically a computer and a printer); also called a spooler; (2) An amplifier to increase the drive capability, current or distance, of an analog or digital signal.
BUS	A data path shared by many devices (e.g., multipoint line) with one or more conductors for transmitting signals, data, or power.
Bus Master	A type of controller with the ability to read and write to devices on the computer bus.
Busbar	A heavy, rigid conductor used for high voltage feeders.

Term	Definition
Butane (C4H10)	A saturated hydrocarbon (alkane) with four carbon atoms in it's molecule (C_4H_{10}) . A gas at atmospheric pressure and normal temperature, but easily liquefied by pressure. Generally stored and delivered in liquefied form and used as a fuel in gaseous form, obtained by processing natural gas as produced and also from a process in petroleum refining. Contains approximately 3,260 Btu per cubic foot.
Byte	A group of binary digits that combine to make a word. Generally 8 bits. Half byte is called a nibble. Large computers use 16 bits and 32 bits. Also used to denote the amount of memory required to store one byte of data.
Cache Memory	Fast memory used to improve the performance of a CPU. Instructions that will soon be executed are placed in cache memory shortly before they are needed. This process speeds up the operation of the CPU.
Calibrate	To ascertain, usually by comparison with a standard, the locations at which scale or chart graduations should be placed to correspond to a series of values of the quantity which the instrument is to measure, receive or transmit. Also, to adjust the output of a device, to bring it to a desired value, within a specified tolerance for a particular value of the input. Also, to ascertain the error in the output of a device by checking it against a standard.
Capacitor	An electronic component that stores electrical charge.
Capacity	The total number of ampere-hours (or watt-hours) that can be withdrawn from a cell/battery under specified conditions of discharge.
Carbon	Base of all hydrocarbons and is capable of combining with hydrogen in many proportions, resulting in numberless hydrocarbon compounds.
Carbon Dioxide	Colorless, odorless and slightly acid-tasting gas, consisting of one atom of carbon joined to two atoms of oxygen. C02. Produced by combustion or oxidation of materials containing carbon.
Catalytic	The process of altering, accelerating or instigating a chemical reaction.
Cathode	An electrode through which current leaves any nonmetallic conductor. An electrolytic cathode is an electrode at which positive ions are discharged, or negative ions are formed, or at which other reducing reactions occur. The negative electrode of a galvanic cell; of an electrolytic capacitor.
CCU	See Dos CCU, WINCCU or PCCU.
CCV	See Closed Circuit Voltage.
Cd	Coefficient of Discharge factor.
CE	European Certification Bureau.
Cell	The basic electrochemical unit used to generate or store electrical energy.
Cenelec	European Committee for Electro-technical Standardization. Also known as the European Standards Organization.

Term	Definition
Central Processing Unit	The central part of a computer system that performs operations on data. In a personal computer the CPU is typically a single microprocessor integrated circuit.
Certification	The process of submitting equipment to specific tests to determine that the equipment meets the specifications or safety standards.
Characteristics	Detailed information pertaining to it's description. The XFC stores this information in the PROM chip. A feature or quality that makes somebody or something recognizable.
Charge	The conversion of electrical energy, provided in the form of a current from an external source, into chemical energy within a cell or battery.
Chip	Another name for integrated circuit or the piece of silicon on which semiconductors are created.
Chromatograph	An instrument used in chemical analysis, to determine the make-up of various substances, and often used to determine the Btu content of natural gas. Chromatography- A method of separating gas compounds by allowing it to seep through an adsorbent so that each compound is adsorbed in a separate layer.
CIM	Communication Interface Module. Totalflow's version is called TFIO Communication Interface Module.
Circuit	1. The complete path between two terminals over which one-way or two- way communications may be provided. 2. An electronic path between two or more points, capable of providing a number of channels. 3. A number of conductors connected together for the purpose of carrying an electrical current. 4. An electronic closed-loop path among two or more points used for signal transfer. 5. A number of electrical components, such as resistors, inductances, capacitors, transistors, and power sources connected together in one or more closed loops.
Circuit board	Sometimes abbreviated PCB. Printed circuit boards are also called cards. A thin plate on which chips and other electronic components are placed. They fall into the following categories:
	• Motherboard: Typically, the mother board contains the CPU, memory and basic controllers for the system. Sometimes call the system board or main board.
	• Expansion board: Any board that plugs into one of the computer's expansion slots, including controller boards, LAN cards, and video adapters.
	 Daughter Card: Any board that attaches directly to another board. Controller board: A special type of expansion board that contains a
	 controller for a peripheral device. Network Interface Card (NIC): An expansion board that enables a PC to be connected to a local-area network (LAN).
	Video Adapter: An expansion board that contains a controller for a graphics monitor.

Term	Definition
Class 1, Division 1	Class 1 refers to the presence of hazardous gas. Division 1 refers to the conditions at the location: meaning that there is not sufficient airflow around the equipment to dissipate any gases that are accumulating in the vicinity. i.e. An enclosed space.
Class 1, Division 2	Class 1 refers to the presence of hazardous gas. Division 2 refers to the conditions at the location: meaning that there is sufficient airflow around the equipment to dissipate any gases that are accumulating in the vicinity.
Clock	The source(s) of timing signals for sequencing electronic events (e.g. synchronous data transfer).
Closed Circuit Voltage	The difference in potential between the terminals of a cell/battery when it is discharging (on- load condition).
CMOS	See Complimentary Metal-Oxide-Semiconductor.
CNG	See Compressed Natural Gas
Coil	A conductor wound in a series of turns.
Collector	The semiconductor region in a bipolar junction transistor through which a flow of charge carriers leaves the base region.
Communication Port	Comm. Port (abbreviation) refers to the host computer's physical communication's port being used to communicate with the equipment. Used by Totalflow when discussing local or remote communication with various equipment including the XFC, FCU, XRC and RTU etc.
Complimentary Metal- Oxide-Semiconductor	Family of logic devices that uses p-type and n-type channel devices on the same integrated circuit. It has the advantage of offering medium speed and very low power requirements.
Component	(1) A small object or program that performs a specific function and is designed in such a way to easily operate with other components and applications. Increasingly, the term is being used interchangeably with applet. (2) A part of a device.
Compressed Natural Gas	Natural gas in high-pressure surface containers that is highly compressed (though not to the point of liquefaction). CNG is used extensively as a transportation fuel for automobiles, trucks and buses in some parts of the world. Small amounts of natural gas are also transported overland in high-pressure containers.
Compressibility	The property of a material which permits it to decrease in volume when subjected to an increase in pressure. In gas-measurement usage, the compressibility factor "Z" is the deviation from the ideal Boyle and Charles' law behavior. See SUPERCOMPRESSIBILITY FACTOR.
Compressibility Factor	See Supercompressibility Factor.
Concurrent	Performing more than one task at a time.
Console Mode	A local user interface typically used with custom applications that are not supported through any other mechanism. Also referred to as Printer Console Mode.

Term	Definition
Contact	Current carrying part of a switch, relay or connector.
Conversion Time	The time required, in an analog input or output system, from the moment a channel is interrogated (such as with a read instruction) to the moment that accurate data is available. This could include switching time, settling time, acquisition time, A/D conversion time, etc.
Coprocessor	Another computer processor unit that operates in conjunction with the standard CPU. Can be used to enhance execution speed. For example, the 8087 is designed to perform floating point arithmetic.
Cosine	The sine of the complement of an arc or angle.
CPU	See Central Processing Unit.
CPUC	California Public Utilities Commission
CRC	See Cyclic Redundancy Check.
CSA	CSA International, Inc. is a certification agency.
CTS	Communication abbreviation for Clear To Send.
Cubic Foot	The most common unit of measurement of gas volume in the US. It is the amount of gas required to fill a volume of one cubic foot under stated conditions of temperature, pressure, and water vapor.
Cubic Foot Metered	The quantity of gas that occupies one cubic foot under pressure and temperature conditions in the meter.
Cubic Foot, Standard	That quantity of gas which under a pressure of 14.73 psia and at a temperature of 60 degrees occupies a volume of one cubic foot without adjustment for water vapor content.
Cumulative Capacity	The total number of ampere-hours (or watt hours) that can be withdrawn from a cell/battery under specified conditions of discharge over a predetermined number of cycles or the cycle life.
Current	Current is measured in amps (milliamps and microamps). It is the passage of electrons. Conventional current flows from positive to negative. Electrons flow from negative to positive - called "electron flow".
Cursor	Dots used to indicate the location of the next character or symbol to be entered.
Custody Transfer	The legal and commercial transfer of a commodity such as natural gas, LNG, etc. from one party to another.
Custody Transfer Transaction	The Custody Transfer Transaction is the hand-off of the physical commodity from one operator to another.
Cut-Off Voltage	The cell/battery voltage at which the discharge is terminated.
CV	Calorific Value. European value of heating content.

Term	Definition
Cycle	One complete sequence of events. One complete alteration of an AC current or Volt. The discharge and subsequent charge of a rechargeable cell/battery is called a cycle.
Cycle Life	The number of cycles under specified conditions which were available from a rechargeable cell/battery before it fails to meet specified criteria as to performance.
Cyclic Redundancy Check	An ongoing verification of the validity of transmitted and received data providing assurance that the message conforms to a pre-agreed upon convention of communications.
D/A	See Digital-to-analog.
DB1	Acronym for Data Base 1. This refers to the previous data base structure used to store data in Totalflow products.
DB2	Acronym for Data Base 2. This refers to the current data base structure used to store data in Totalflow products.
D/I	See Digital Input.
D/O	See Digital Output.
DAC	See Digital to Analog Converter.
Data Acquisition	Gathering information from sources such as sensors and AMUs in an accurate, timely and organized manner. Modern systems convert this information to digital data, which can be stored and processed by a computer.
Data Collect	Physically, locally or remotely, retrieving data stored with a Totalflow unit. This data is typically stored in records located in a data base format.
DC	See Direct Current
DCD	Communication abbreviation for Data Carrier Detect
DCS/PLC	Distribution Control System/Programmable Logic Controller
DDE	See Digital Data Exchange. Also called Dynamic Data Exchange. May refer to Totalflow's DDE Server TDS32.
Dead Weight Tester	Portable pressure tester used to check calibration and to calibrate AMU's utilizing a system of calibrated weights.
De-bounce	De-bouncing is any kind of hardware device or software that ensures that only a single signal will be acted upon for a single opening or closing of a contact. When you press a key on your computer keyboard, you expect a single contact to be recorded by your computer. In fact, however, there is an initial contact, a slight bounce or lightening up of the contact, then another contact as the bounce ends, yet another bounce back, and so forth. A similar effect takes place when a switch made using a metal contact is opened. The usual solution is a de-bouncing device or software that ensures that only one digital signal can be registered within the space of a given time (usually milliseconds)

Term	Definition
Decibel	A logarithmic measure of the ratio of two signal levels. A practical unit of gain.
Default	A value assigned or an action taken automatically unless another is specified.
Delivery Point	Point at which gas leaves a transporter's system completing a sale or transportation service transaction between the pipeline company and a sale or transportation service customer.
Demand Day	That 24-hour period specified by a supplier-user contract for purposes of determining the purchaser's daily quantity of gas used (e.g., 8 AM to 8 AM, etc.). This term is primarily used in pipeline-distribution company agreements. It is similar to, and usually coincides with, the distribution company "contract day".
Demand Load	The rate of flow of gas required by a consumer or a group of consumers, often an average over a specified short time interval (cf/hr or Mcf/hr). Demand is the cause; load is the effect.
Demand Meters	A device which indicates or records the instantaneous, maximum or integrated (over a specified period) demand.
Demand, Average	The demand on a system or any of its parts over an interval of time, determined by dividing the total volume in therms by the number of units of time in the interval.
Diaphragm	A bellows inside a displacement type gas meter. Also, a membrane separating two different pressure areas within a control valve or regulator.
Differential Pressure	The pressure difference between two points in a system. For example, the difference in pressure between the upstream and downstream taps of an orifice plate, used to measure volume passing through the orifice.
Digital	A signal which has distinct states, either on or off (0 or 1). Digital computers process data as binary information having either true of false states.
Digital Data	Information transmitted in a coded form (from a computer), represented by discrete signal elements.
Digital Data Exchange or Dynamic Data Exchange	A Microsoft data exchange format generally used to transfer data from one program to another. It is a very simple format to use and Totalflow customers often use TDS to acquire data from Totalflow devices and then transfer the data to an Excel spreadsheet using DDE. The Totalflow Driver, TDS32, supports DDE and its network version, NetDDE.
Digital Electronics	The branch of electronics dealing with information in binary form.
Digital Input	Refers to the signal received in binary format.
Digital Output	Refers to the signal emitted in binary format.
Digital to Analog Conversion	The process of translating discrete data into a continuously varying signal. Common uses are to present the output of a digital computer as a graphic display or as a test stimulus.

Term	Definition
Digital-to-Analog Converter	An electronic device, often an integrated circuit, that converts a digital number into a corresponding analog voltage or current.
DIN Rail	Rail on which modules are mounted. Allows modules to snap on and slide right and left.
Diode	A semiconductor that allows current to flow in one direction only.
DIP Switches	A bank of switches typically used in setting the hardware configuration and base address of an option card.
Direct Current	A current that does not change in direction.
Direct Memory Access	A method by which information can be transferred from the computer memory to a device on the bus without using the processor.
Discharge	The conversion of chemical energy of a cell/battery into electrical energy and withdrawal of the electrical energy into a load.
Discharge Rate	The rate, usually expressed in amperes, at which electrical current is taken from the cell/battery.
Discrete Manifold	Also called Tubing Manifold. Used in instances when the XFC is not mounted directly on the Orifice, usually pipe mount or wall mount.
Distribution	The act or process of distributing gas from the city gas or plant that portion of utility plant used for the purpose of delivering gas from the city gate or plant to the consumers, or to expenses relating to the operating and maintenance of distribution plant.
Distribution Company	Gas Company which obtains the major portion of its gas operating revenues from the operation of a retail gas distribution system, and which operates no transmission system other than incidental connections within its own system or to the system of another company. For purposes of A.G.A. statistics, a distribution company obtains at least 90 percent of its gas operating revenues from sales to ultimate customers, and classifies at least 90 percent of mains (other than service pipe) as distribution. Compare INTEGRATED COMPANY; TRANSMISSION COMPANY, GAS.
DOS	Disk Operating System.
DOS CCU	Refers to the DOS version of the Calibration and Collection Unit. Also known as FS/2, hand held or Dog Bone.
DOT Matrix	A group of dots/pixels forming a character or symbol, usually five dots across and seven dots down.
DOT/Pixel	An active element that forms a character or symbol when combined in a matrix.
Down-Load	The copying of information from one computer to another.
Downstream	Any point in the direction of flow of a liquid or gas from the reference point. Compare UPSTREAM.
Downstream Pipeline	The pipeline receiving natural gas at a pipeline inter-connect point.
DP	See Differential Pressure.

Term	Definition
DRAM	See Dynamic Random Access memory.
Driver (Hardware)	An electronic circuit that provides input to another electronic circuit.
Driver (Software)	A program that exercises a system or system component by simulating the activity of a higher level component.
Drivers	Software that controls a specific hardware device, such as interface boards, PLCs, RTUs, and other I/O devices.
Dry Contact	Contacts which neither break nor make a circuit. 0 Ohms.
Dual-Access Memory	Memory that can be sequentially accessed by more than one controller or processor but not simultaneously accessed. Also known as shared memory.
Duplex	The ability to both send and receive data simultaneously over the same communications line.
DVI	The Port Manager and communication engine of the iVision SCADA System. This software can multiplex among several communication formats and thus supporting several vendor's equipment over a single radio frequency. It "pushes" new data to the iVision database, saving time and network resources by not transmitting redundant data. The DVI includes the Totalflow WinCPC code and thus supports all Totalflow software and functions – including WinCCU, TDS, PCCU, Report by exception, cryout, etc.
Dynamic Random Access memory	This is the most common form of computer memory It needs to be continually refreshed in order to properly hold data, thus the term "dynamic."
E ² Prom	See Electrically Erasable Programmable Read-Only Memory. Also called EEProm.
Earth	Can mean a connection to the earth itself or the negative lead to the chassis or any point to zero voltage.
Edit	Making changes to information, data or configuration files.
EEPROM	See Electrically Erasable Programmable Read-Only Memory. Also called E ² Prom.
EFI	Electromechanical Frequency Interface.
EFR	Enhance Feature Release.
Electrically Erasable Programmable Read- Only Memory	ROM that can be erased with an electrical signal and reprogrammed. Also referred to as the S Drive. It is a persistent drive that will not loose it's memory unless manually reprogrammed.
Electrode	The site, area, or location at which electrochemical processes take place.

Term	Definition
Electromagnetic Interference	Any electromagnetic disturbance that interrupts, obstructs, or otherwise degrades or limits the effective performance of electronics/electrical equipment. It can be induced intentionally, as in some forms of electronic warfare, or unintentionally, as a result of spurious emissions and responses, intermodulation products, and the like.
EMI	See Electromagnetic Interference.
Emitter	One terminal of a transistor.
Enagas	Spain's Certification Board
Encoder	A device that converts linear or rotary displacement into digital or pulse signals. The most popular type of encoder is the optical encoder, which uses a rotating disk with alternating opaque areas, a light source, and a photodetector.
Environmental Conditions	All conditions in which a transducer may be exposed during shipping, storage, handling, and operation.
EPROM	See Erasable Programmable Read-Only Memory.
Erasable Programmable Read-Only Memory	ROM that can be erased (usually by ultraviolet light exposure) and reprogrammed.
Ethane (C2H6)	A colorless hydrocarbon gas of slight odor having a gross heating value of 1,773 Btu per cubic foot and a specific gravity of 1.0488. It is a normal constituent of natural gas.
Ethylene (C2H4)	A colorless hydrocarbon gas of slight odor having a gross heating value of 1,604 Btu per cubic foot and a specific gravity of 0.9740. It is usually present in manufactured gas, constituting one of its elements.
Event	Important incident: an occurrence, especially one that is particularly significant.
Event File	Stored records specifying a notable change. The XFC stores up to 200 records, containing: Time, Day, Description, Old Value, New Value.
Events	Signals or interrupts generated by a device to notify another device of an asynchronous event. The contents of events are device-dependent.
Exp Enclosure	Explosion Proof Enclosure for Class 1 Division 1 locations
Expansion Board	A plug-in circuit board that adds features or capabilities beyond those basic to a computer, such as a data acquisition system expansion board.
Expansion Slots	The spaces provided in a computer for expansion boards than enhance the basic operation of the computer.
Extended Binary Coded Decimal Interchange Code	EBCDIC. An eight-bit character code used primarily in IBM equipment. The code allows for 256 different bit patterns.
External Multivariable Transducer	Multivariable Transducer located outside of the Flow Computer enclosure. Used in multi-tube configurations and on systems where the actual Flow Computer is located at a distance from the flowing tube.

Term	Definition
F.O.B.	Abbreviation of free on board with the cost of delivery to a port and loading onto a ship included.
Fa	Orifice Thermal Expansion factor.
Faux	Full Well Stream Factor.
Fb	Basic Orifice factor.
FCC	Federal Communications Commission.
Feed Points	Connections between gas feeder lines and distribution networks.
Feedback	Occurs when some or all of the output of the device (such as an amplifier) is taken back to the input. This may be accidental (such as the acoustic feedback from a speaker to microphone) or intentional , to reduce distortion.
Feeder (Main)	A gas main or supply line that delivers gas from a city gate station or other source of supply to the distribution networks.
FET	Field-effect transistor. Transistor with electric field controlling output: a transistor, with three or more electrodes, in which the output current is controlled by a variable electric field.
Fg	Specific Gravity factor.
Field Pressure	The pressure of natural gas as it is found in the underground formations from which it is produced.
Firmware	A computer program or software stored permanently in PROM or ROM or semi-permanently in EPROM.
Firmware Version	This refers to the version of firmware contained in the equipment.
Fixed-Point	A format for processing or storing numbers as digital integers.
Flange	For pipe, a metal collar drilled with bolt holes and attached to the pipe with its flat surface at right angles to the pipe axis so that it can be securely bolted to a mating flange on a valve, another pipe section, etc.
Flash ADC	An Analog to Digital Converter whose output code is determined in a single step by a bank of comparators and encoding logic.
Flow Computer, X Series	A device placed on location to measure SP, DP and temperature (to calculate flow) of gases or liquids being transferred, for remote unattended operation.
Flow Formulas	In the gas industry, formulas used to determine gas flow rates or pressure drops in pipelines, regulators, valves, meters, etc.
Font	The style of lettering used to display information.
Footprint	The surface space required for an object.
Fpb	Pressure Base factor.
Fpv	See Supercompressibility Factor.

Term	Definition
Fr	Reynolds Number factor.
Frequency	The number of cycles per second for any periodic waveform - measured in cycles per second - now called Hertz.
Frequency Modulation	Modulation where the frequency of the sinewave carrier alters with the amplitude of the modulating signal.
FRP	Fiberglass Reinforced Polyurethane. A non-flexible material used for LevelMaster sensors.
FS/2	Ruggadized handheld computer device for programming and collecting data from an XFC. Also referred to a Husky or Dog Bone.
Ftb	Temperature Base factor.
Ftf	Flowing Temperature factor.
Full Duplex	Simultaneous, two-way (transmit and receive), transmission.
Function	A set of software instructions executed by a single line of code that may have input and/or output parameters and returns a value when executed.
Fuse	A short length of wire that will easily burn out when excessive current flows.
Fw	Water Vapor factor.
G	The symbol used for giga or gigabyte.
Gain	The factor by which a signal is amplified, sometimes expressed in dB.
Gain Accuracy	A measure of deviation of the gain of an amplifier from the ideal gain.
Gas	That state of matter which has neither independent shape nor volume. It expands to fill the entire container in which it is held. It is one of the three forms of matter, the other two being solid and liquid.
Gas Chromatograph	An analytical instrument that separates mixtures of gas into identifiable components by means of chromatography.
Gas Chromatograph Module	Software module used in conjunction with PCCU32 and WINCCU to interact with Btu Chromatograph equipment and software.
Gas Chromatograph Module Coefficient	A co-efficient generated by the factory allowing user to start calibration on location without having a calibration gas available.
Gas Field	A district or area from which natural gas is produced.
Gas, Associated	Gas produced in association with oil, or from a gas cap overlying and in contact with the crude oil in the reservoir. In general, most states restrict associated gas production since its indiscriminate production could reduce the ultimate oil recovery. Also, since some wells producing associated gas cannot be shut-in without also shutting-in the oil production, natural gas pipelines are generally required to take associated gas produced from oil wells on a priority basis.
Gas, C1	Methane.

Term	Definition
Gas, C2	Ethane.
Gas, C3	Propane.
Gas, C6+	Hexanes Plus (C6, C7, C8, C9, C10, C11, etc.).
Gas, CO2	Carbon Dioxide.
Gas, Dry	Gas whose water content has been reduced by a dehydration process. Gas containing little or no hydrocarbons commercially recoverable as liquid product. Specified small quantities of liquids are permitted by varying statutory definitions in certain states.
Gas, IC4	Iso-Butane.
Gas, IC5	Iso-Pentane.
Gas, Liquefied Petroleum (LPG)	A gas containing certain specific hydrocarbons which are gaseous under normal atmospheric conditions but can be liquefied under moderate pressure at normal temperatures. Propane and butane are the principal examples.
Gas, Low Btu	Gas with a heating value of less than 250 Btu's per cubic foot. Typically heating values fall between 120 and 180 Btu's per cubic foot.
Gas, Manufactured	A gas obtained by destructive distillation of coal, or by the thermal decomposition of oil, or by the reaction of steam passing through a bed of heated coal or coke, or catalyst beds. Examples are coal gases, coke oven gases, producer gas, blast furnace gas, blue (water) gas, and carbureted water gas. Btu content varies widely.
Gas, Natural	A naturally occurring mixture of hydrocarbon and nonhydrocarbon gases found in porous geologic formations beneath the earth's surface, often in association with petroleum. The principal constituent is methane.
Gas, NC4	Normal Butane.
Gas, NC5	Normal Pentane.
Gas, NeoC5	Neo-Pentane.
Gas, Non-associated	Free natural gas not in contact with, nor dissolved in, crude oil in the reservoir.
Gas, Oil	A gas resulting from the thermal decomposition of petroleum oils, composed mainly of volatile hydrocarbons and hydrogen. The true heating value of oil gas may vary between 800 and 1600 Btu per cubic foot depending on operating conditions and feedstock properties.
Gas, Sour	Gas found in its natural state, containing such amounts of compounds of sulfur as to make it impractical to use, without purifying, because of its corrosive effect on piping and equipment.
Gas, Sweet	Gas found in its natural state, containing such small amounts of compounds of sulfur that it can be used without purifying, with no deleterious effect on piping and equipment.

Term	Definition
Gas, Unconventional	Gas that can not be economically produced using current technology.
Gas, Wet	Wet natural gas is unprocessed natural gas or partially processed natural gas produced from strata containing condensable hydrocarbons. The term is subject to varying legal definitions as specified by certain state statutes.
Gate Station	Generally a location at which gas changes ownership, from one party to another, neither of which is the ultimate consumer. It should be noted, however, that the gas may change from one system to another at this point without changing ownership. Also referred to as city gate station, town border station, or delivery point.
Gathering	The act of operating extensive low-pressure gas lines which aggregate the production of several separate gas wells into one larger receipt point into an interstate pipeline.
Gathering Agreement	Agreement between a producer and a gathering system operator specifying the terms and conditions for entry of the producer's gas into the gathering system.
Gathering Line	A pipeline, usually of small diameter, used in gathering gas from the field to a central point.
Gathering Station	A compressor station at which gas is gathered from wells by means of suction because pressure is not sufficient to produce the desired rate of flow into a transmission or distribution system.
Gathering System	The gathering pipelines plus any pumps, tanks, or additional equipment used to move oil or gas from the wellhead to the main pipeline for delivery to a processing facility or consumer.
Gauge, Pressure	Instrument for measuring the relative pressure of a fluid. Types include gauge, absolute, and differential.
Gauging Tape Measurements	This refers to a manual method of measuring the level of a liquid in a tank.
GC	See Gas Chromatograph.
GCM	See Gas Chromatograph Module
GCMC	See Gas Chromatograph Module Coefficient.
GCN	Gravity, Carbon Dioxide and Nitrogen compounds. Used in NX-19 GCN Supercompressibility Factor.
GCNM	Gravity, Carbon Dioxide, Nitrogen and Methane compounds. Used in NX- 19 GCNM Supercompressibility Factor.
GDF	Gasde of France
GND	See Ground.
GOST	Russian Certification
GPA 2145	Gas Processors Association standard for values of gas components.
GPM	Gallons of liquid per million cubic feet.

GRDSerGround1) / sur saf cor circGrounding StrapA g bet potHalf DuplexCoHandshakingExit corHardwareThe boa on.HarmonicA s fun funHazardous Area ClassificationAnyHeating ValueThe	e Gas Processors Standard 2261. e Ground.
Ground1)SursursafcorGrounding StrapA gbetpotHalf DuplexCorHandshakingExitCorHardwareTheHarmonicA sHazardous AreaAnClassificationAnHeating ValueThe	
Sur saf cor circGrounding StrapA g 	An electronically neutral circuit beying the same potential on the
bet potHalf DuplexCoHandshakingExit corHardwareThe boa on.HarmonicA s fun funHazardous Area ClassificationAny classification	An electronically neutral circuit having the same potential as the rounding earth. Normally, a non-current carrying circuit intended for the fety purposes. A reference point for an electrical system. 2) A large inducting body (as the earth) used as a common return for an electric cuit and as an arbitrary zero of potential.
HandshakingExiconHardwareThe boaHardwareThe boaHarmonicA s fun funHazardous AreaAn ClassificationHeating ValueThe	grounding strap is a conductive device used to make connection tween the person handling the board, and a high quality ground tential.
corHardwareThe boaHardwareThe boaHarmonicA s fun funHazardous AreaAny ClassificationHeating ValueThe	mmunication transmission in one direction at a time.
Harmonic A s fun fun fun fun fun fun fun fun fun fun	change of predetermined signals between two devices establishing a nnection. Usually part of a communications protocol.
funHazardous AreaAnClassificationTheHeating ValueThe	e physical components of a computer system, such as the circuit ards, plug-in boards, chassis, enclosures, peripherals, cables, and so . It does not include data or computer programs.
Classification	sinusoidal component of a waveform that is a whole multiple of the idamental frequency. An oscillation that is an integral sub-multiple of the idamental is called a sub-harmonic.
	y area likely to have an explosive combination of oxygen and fuel.
	e amount of heat developed by the complete combustion of a unit antity of a material.
Hertz Cy	cles per second. A measure of frequency or bandwidth.
Hexadecimal A r	numbering system to the base 16, 0 through F.
	saturated hydrocarbon (alkane) with two carbon atoms in it's molecule ${}_{2}H_{6}$). A liquid under normal conditions.
	nethod of organizing computer programs with a series of levels, each h further subdivisions, as in a pyramid or tree structure.
	erm used to designate fuel gases having heating values of pipeline ecification, i.e., greater than about 900 Btu's per standard cubic foot.
and	st Console via Local Port uses the PCCU cable between the computer d the device's Local PCCU port but running Remote Protocol. Host nsole via Remote Port uses the remote protocol
poi am	narket or supply area pooling/delivery where gas supply transaction int occur that serve to facilitate the movement of gas between and long interstate pipelines. Transactions can include a change in title, a lange in transporter, or other similar items.
HV Se	e Heating Value.

Term	Definition
Hydrocarbon	A chemical compound composed solely of carbon and hydrogen. The compounds having a small number of carbon and hydrogen atoms in their molecules are usually gaseous; those with a larger number of atoms are liquid, and the compounds with the largest number of atoms are solid.
Hyperterm	Terminal emulation program provided with Windows.
Hysteresis	The maximum difference between output readings for the same measured point, one point obtained while increasing from zero and the other while decreasing from full scale. The points are taken on the same continuous cycle. The deviation is expressed as a percent of full scale.
I/O	See Input/Output.
I/O Address	A method that allows the CPU to distinguish between the different boards in a system. All boards must have different addresses.
IC	See Integrated Circuit
IEC	Programming Language used by Totalflow for user applications.
IMV	See Integrated Multivariable Transducer.
Inch of Mercury	A pressure unit representing the pressure required to support a column of mercury one inch high at a specified temperature; 2.036 inches of mercury (at 32 degrees F and standard gravity of 32.174 ft/sec2) is equal to a gauge pressure of one pound per square inch.
Inch of Water	A pressure unit representing the pressure required to support a column of water one inch high. Usually reported as inches W.C. (water column) at a specified temperature; 27.707 inches of water (at 600 and standard gravity of 32.174 ft/sec2) is equal to a gauge pressure of one pound per square inch.
Industry Canada	Canadian Certification.
Inert	A material not acted upon chemically by the surrounding environment. Nitrogen and carbon dioxide are examples of inert constituents of natural gases; they dilute the gas and do not burn, and thus add no heating value.
Input	That part of a circuit that accepts a signal for processing.
Input Sense	To examine or determine the status of the input.
Input/Output	The transfer of data to/from a computer system involving communications channels, operator interface devices, and/or data acquisition and control interfaces.
Instantiate	Starting an instance of an object.
Instrument Manifold	Manifold type used when XFC is mounted directly on the Orifice.
Insulator	Any material that resists the flow of electrical current.
Integral Multivariable Transducer	A Multivariable Transducer that is a part of the flow computer enclosure.

Term	Definition
Integrated Circuit	A circuit component consisting of a piece of semiconductor material containing up to thousands of transistor and diodes. A chip.
Integrating ADC	An ADC whose output code represents the average value of the input voltage over a given time interval.
Interface (computer)	Usually refers to the hardware that provides communication between various items of equipment.
Interface (liquid)	The area between two liquids that are not easily mixed, i.e. oil and water.
Interference	A disturbance to the signal in any communications system.
Inverter	A circuit in both analogue and digital systems that provides an output that is inverse to the input.
Inverter, DC to AC	Converts DC to AC at a high frequency.
ioINT	Interrupt signal from the I/O modules.
ioVBB	i/o Battery Voltage- Unregulated 13.8 volts. Host supplies 2.5 amps to the I/O modules.
ioVDD	Unregulated 5.6 volts from the host for I/O modules.
ISO	International Standards Organization.
Isobutane (C4H10)	A hydrocarbon of the same chemical formula as butane but different molecular structure, resulting in different physical properties, notably lower boiling point. Gross heating value 3261 Btu/cu. ft. gas.
IVision	SCADA system designed for oil and gas applications
К	Kilo. 1) In referring to computers, a "kilo" is 1024 or 2 to the 10th power (Note that it is actually slightly more than an even 1000.). 2) the standard metric prefix for 1,000, or 10 ³ , used with units of measure such as volts, hertz, and meters.
kbytes/s	A unit for data transfer that means 1,000 or 10 ³ bytes/s.
Kerosene	An oily liquid obtained in the distilling of gasoline in a temperature range from 174-288 degree C. A hydrocarbon of specific gravity of 0.747 to 0.775. Used as fuel for some internal combustion engines, heating equipment, and illuminating purposes. A heavy grade known as range oil is used for cooking and heating.
KHz	Electronic abbreviation for Kilohertz.
Kilobyte	1024 bytes.
Kilowatt-hour kWh	A unit of energy when one kilowatt of power is expended for one hour. Example A radiator bar is usually rated at 1,000 watts and this switched on for one hour consumes one kilowatt-hour of electricity.
КРа	Kilopascal-Measure of Pressure
LACT	Lease Automatic Custody Transfer.

Term	Definition
LCD	Liquid Crystal Display.
LevelMaster	Intelligent Digital Level Sensor and is designed for custody transfer accuracy in demanding level measurement applications in tanks. LevelMaster is the name of the Totalflow's Tank Gauging System.
Life	For rechargeable batteries, the duration of satisfactory performance, measured in years (float life) or in the number of charge/discharge cycles (cycle life).
Linearity	The maximum deviation of the calibration curve from a straight line between zero and full scale, expressed as a percent of full scale output and measured on increasing measurement only.
Liquefied Natural Gas	Natural gas which has been liquefied by reducing its temperature to minus 260 degrees Fahrenheit at atmospheric pressure. It remains a liquid at - 116 degrees Fahrenheit and 673 psig. In volume, it occupies 1/600 of that of the vapor at standard conditions.
Liquefied Petroleum Gas	A gas containing certain specific hydrocarbons which are gaseous under normal atmospheric conditions, but can be liquefied under moderate pressure at normal temperatures. Propane and butane are the principal examples.
Liquid Crystal Display	A reflective display that requires very low power for operation.
Liquids, Natural Gas	Those liquid hydrocarbon mixtures which are gaseous at reservoir temperatures and pressures but are recoverable by condensation or absorption. Natural gasoline and liquefied petroleum gases fall in this category.
Load (electrical)	A load is an energy consuming device. The device can be an actual device such as a bulb of a flash light, radio, cassette player, motor, etc., a resistor or a constant current load.
Load (units)	The amount of gas delivered or required at any specified point or points on a system; load originates primarily at the gas consuming equipment of the customers. Also, to load a pressure regulator is to set the regulator to maintain a given pressure as the rate of gas flow through the regulator varies. Compare DEMAND.
Log Period	In a XFC, the specified length between writing the calculated accumulated volume to record. You may record volumes as often as every minute and as seldom as every hour. More frequent recording reduces the number of days of records possible between collection.
Long Term	For Totalflow's purpose, the application of this term refers to storing data over a period of time that is greater than a minimal time. Such as data collected weekly versus data collected weekly but stored indefinitely.
М	Mega, the prefix for 1,048,576, or 2 ²⁰ , when used with byte to quantify data or computer memory. Also 1000, as in MCF or 1000 Cubic Ft.
Manifold	The conduit of an appliance which supplies gas to the individual burners. Also, a pipe to which two or more outlet pipes are connected.

Term	Definition
Man-Machine Interface	Software program that converts machine instructions and commands into a user interface.
MasterLink	MasterLink is the name of the software program used to communicate with the LevelMaster for purposes of doing setup, calibration, troubleshooting, generating site files, monitoring levels and collecting data.
Mbytes/s	A unit for data transfer that means 1 million or 10 ⁶ bytes/s.
Mcf	The quantity of natural gas occupying a volume of 1000 cubic feet at a temperature of 60° Fahrenheit and at a pressure of 14.73 psia.
Measurement Unit Assembly	μ FLO's measurement and operational features are housed in this single unit assembly. The main electronic board (μ FLO 2100767 Board), communication connection, power, SP, DP and Temperature readings are all housed in this unit.
Меда	Multiplier indicating that a quantity should be multiplied by 1,000,000.
Memory	Electronic devices that enable a computer to store and recall information. In its broadest sense, memory refers to any hardware capable of serving that end, e.g., disk, tape, or semiconductor storage.
Menu	The list of available functions for selection by the operator, usually displayed on the computer screen once a program has been entered.
Meter Manifold	Gas piping between gas service line and meter. Also, gas piping supplying two or more meters.
Meter, Orifice	A meter using the differential pressure across an orifice plate as a basis for determining volume flowing through the meter. Ordinarily, the differential pressure is charted.
Meter, PD	See Meter, Positive Displacement.
Meter, Positive Displacement	An instrument which measures volume on the basis of filling and discharging gas in a chamber.
Meter, Turbine	1) Pulse meter. 2)A velocity measuring device in which the flow is parallel to the rotor axis and the speed of rotation is proportional to the rate of flow. The volume of gas measured is determined by the revolutions of the rotor and converting them to a continuously totalized volumetric reading.
Methane (CH4)	A hydrocarbon (alkane)with the lightest molecule. A gas under normal conditions. The first of the paraffin series of hydrocarbons. The chief constituent of natural gas. Pure methane has a heating value of 1012 Btu per cubic foot.
Micro Flow Computer	See μFLO.
Microprocessor	This term is commonly used to describe the CPU. More specifically, it refers to the part of the CPU that actually does the work, since many CPUs now contain L1 and L2 caches on-chip.
Milli	One thousandth e.g. one milli-watt - 1mW. one milli-amp - 1mA. one milli-volt -1mV.

Term	Definition
MIPS	Million instructions per second. The unit for expressing the speed of processor machine code instructions.
MMBtu	A thermal unit of energy equal to 1,000,000 Btu's, that is, the equivalent of 1,000 cubic feet of gas having a heating content of 1,000 BTUs per cubic foot, as provided by contract measurement terms.
MMcf	A million cubic feet. See CUBIC FOOT. (1,000,000 CF)
ММІ	See Man-Machine Interface.
Modbus	Messaging structure developed and used to establish master-slave/client- server communication between intelligent devices.
Modem	Modulator-Demodulator. A device used to convert serial digital data from a transmitting terminal to a signal suitable for transmission over a common carrier, or to reconvert the transmitted signal to digital data for acceptance by a receiving terminal.
Module	Typically a board assembly and its associated mechanical parts, front panel, optional shields, and so on. A module contains everything required to occupy one or more slots in a mainframe.
Multitasking	A property of an operating system in which several processes can be run simultaneously.
Multivariable Transducer	Transducer supplying more than 1 variable. Totalflow uses this term to encompass units that read Static Pressure, Differential Pressure and Temperature. Historically these units were coined AMU for Analog Measurement Unit. As a result of advanced technology, the unit no longer functions as only an analog measurement unit. Therefore the newer terminology, Multivariable Transducer (IMV), more aptly describes the functionality of this design.
MVX	See Multivariable Transducer.
MV	Acronym for Molecular Weight.
N.C.	See Normally Closed.
N.O.	See Normally Open.
N2	Nitrogen
NAK	See Negative Acknowledgement
Natural Gas Distillate	Material removed from natural gas at the "heavy end" portion; that is, aliphatic compounds ranging from C4 to C8 (butanes and heavier).
Natural Gas Liquids	The hydrocarbon components: propane, butanes, and pentanes (also referred to as condensate), or a combination of them that are subject to recovery from raw gas liquids by processing in field separators, scrubbers, gas processing and reprocessing plants, or cycling plants. The propane and butane components are often referred to as liquefied petroleum gases or LPG.

Term	Definition
Negative Acknowledgment	This refers to a response over a remote communication device, such as a PING. Basically, saying, "I don't acknowledge your request!" This is the opposite of ACK. NAK is a slang term that means that you disagree or do not acknowledge something.
NEMA	National Electrical Manufacturers Association.
Noise	An undesirable electrical signal. Noise comes from external sources such as the AC power line, motors, generators, transformers, fluorescent lights, soldering irons, CRT displays, computers, electrical storms, welders, radio transmitters, and internal sources such as semiconductors, resistors, and capacitors. Unwanted disturbances superimposed upon a useful signal that tends to obscure its information content.
Normally Closed	Designation which states that the contacts of a switch or relay are closed or connected when at rest. When activated, the contacts open or separated.
Normally Open	Designation which states that the contacts of a switch or relay are normally open or not connected. When activated the contacts close or become connected.
Norsok	Norwegian Certification Bureau
NPT	National Pipe Thread.
NRTL	Nationally Recognized Testing Laboratory.
NX-19	American Gas Association Report referring to a specific method to calculate the Supercompressibility factor.
OCV	See Open Circuit Voltage.
ODBC	See Open Database Connectivity.
ОНМ	The unit of resistance usually shown as the symbol "R". One thousand ohms is written "k" and one million ohms is written "M". Resistance is measured with a multimeter, set to the "ohms range".
OLE	Object Linking and Embedding. A set of system services that provides a means for applications to interact and interoperate. Based on the underlying Component Object Model, OLE is object-enabling system software. Through OLE Automation, an application can dynamically identify and use the services of other applications, to build powerful solutions using packaged software. OLE also makes it possible to create compound documents consisting of multiple sources of information from different applications.
Ole for Process Control	This is a data interchange format and supporting software. Typically, vendors (such as ABB) write OPC server drivers which can talk to their devices. SCADA system vendors (again like ABB) write OPC clients that can gather data from OPC Servers. The idea is to provide a universal way to collect data into a SCADA system regardless of the equipment vendor. This standard was developed and is maintained by the OPC Foundation. The Totalflow Driver, TDS32, supports OPC.

Term	Definition
Ole for Process Control Database	A programming interface to databases. IVision supports the OLEDB interface.
OLEDB	See Ole for Process Control Database.
OPC	See Ole for Process Control.
Open Circuit	A complete break in a metal conductor path.
Open Circuit Voltage	The difference in potential between the terminals of a cell/battery when the circuit is open (no-load condition).
Open Collector	A single NPN transistor with the base connected to the logic driving circuitry and with the emitter grounded. The collector is the output pin of the gate.
Open Database Connectivity	A widely accepted application-programming interface (API) for database access. It is based on the Call-Level Interface (CLI) specifications from X/Open and ISO/IEC for database APIs and uses Structured Query Language (SQL) as its database access language. Using ODBC, you can create database applications with access to any database for which your end-user has an ODBC driver. This allows access for authorized users to databases over any network, including the Internet. The iVision SCADA system provides an ODBC driver, making the database accessible to authorized users anywhere on a corporate network, or even over the Internet if the network is properly configured.
Operating System	Base-level software that controls a computer, runs programs, interacts with users, and communicates with installed hardware or peripheral devices.
Orifice Meter	Device to record differential pressure measurement which uses a steel plate with a calibrated hole or orifice to generate a drop in pressure between the two sides of the plate. Also the primary element of the meter run.
Orifice Plate	A plate of non-corrosive material which can be fastened between flanges or in a special fitting perpendicular to the axis of flow and having a concentric circular hole. The primary use is for the measurement of gas flow.
Output	That part of a circuit where the processed signal is available.
P/I	See Pulse Input.
Parameter	(1) Characteristic. For example, <i>specifying parameters</i> means defining the characteristics of something. In general, parameters are used to customize a program. For example, file names, page lengths, and font specifications could all be considered parameters. (2) In programming, the term <i>parameter</i> is synonymous with argument, a value that is passed to a routine.
PCCU	Portable Collection and Calibration Unit.
PCCU32	Windows version of PCCU software to process, archive and collect data from the Totalflow equipment.

Term	Definition
Pentane (C5H12)	A saturated hydrocarbon (alkane) with five carbon atoms in it's molecule (C_5H_{12}) . A liquid under normal conditions.
Peripheral	The input/output and data storage devices attached to a computer such as disk drives, printers, keyboards, displays, data acquisition systems, etc.
PEX	A flexible material used for LevelMaster sensors.
PLC	See Programmable logic controller
Plunger Lift	A technique used to optimize gas production. A Steel plunger is inserted into the production tubing in the well. The flow is turned off and this shut-in causes plunger to fall allowing fluid to collect above plunger. Different techniques are used to decide how long to shut in and flow the well.
Polling	A snapshot view of the readings taken by the Totalflow equipment.
Port	A communications connection on a computer or a remote controller. A place of access to a device or network, used for input/output of digital and analog signals.
Positive Temperature Co-efficient fuse	Opens circuit when high current condition occurs. Closes when condition no longer exists. Replaces typical fuses, which require replacement when blown.
Pressure Differential	Difference in pressure between any two points in a continuous system.
Pressure Markers	Pressure testing at different levels of pressure. Used for comparison purposes.
Pressure, Absolute	See PSIA.
Pressure, Atmospheric	See Atmospheric Pressure.
Pressure, Gas	In the natural gas industry pressure is measured by the force applied to a designated area. PSI and OSI refer to how much pressure (pound or ounce) is applied to one square inch. Inches Water Column (In.W.C.) is also used to express gas pressure and is measured using a manometer for lower pressure readings. 1 PSIG=27.21 Inches Water Column.
Pressure, Gauge	See PSIG.
Primary Cell (or Battery)	A cell or battery which is not intended to be recharged and is discarded when the cell or battery has delivered all its electrical energy.
PRM	Acronym for Pressure Regulator Module.
Process Gas	Gas use for which alternate fuels are not technically feasible, such as in applications requiring precise temperature controls and precise flame characteristics.
Programmable Logic Controller	A highly reliable special-purpose computer used in industrial monitoring and control applications. PLCs typically have proprietary programming and networking protocols, and special-purpose digital and analog I/O ports.

Term	Definition
Programmable Read Only Memory	Computer memory in which data can be routinely read and written to. ROM is used for storing data or programs (e.g. operating systems) and characteristic files on a semi-permanent basis.
Programmed I/O	The standard method a CPU uses to access an I/O device each byte of data is read or written by the CPU.
PROM	See Programmable Read Only Memory
Propane (C3H8)	A saturated hydrocarbon (alkane) gas, the molecule of which is composed of three carbon and eight hydrogen atoms. Propane is present in most natural gas and is the first product refined from crude petroleum. It has many industrial uses and may be used for heating and lighting. Contains approximately 2,500 Btu per cubic foot.
Protocol	A formal set of conventions governing the formatting and relative timing of message exchange between two communicating systems.
PSI	Pounds per Square Inch.
PSIA	Pounds per Square Inch Absolute. Absolute pressure uses a perfect vacuum as the zero point. A perfect vacuum is 0 PSIA. PSIA=PSIG + Atmospheric Pressure.
PSIG	Pounds per Square Inch Gauge. Gauge pressure uses the actual atmospheric pressure as the zero point.
РТВ	Physikalisch Technische Bundesanstalt (German for Physically Technical Federal Institution) or German Technical Institute for Certification.
PTC	See Positive Temperature Co-efficient Fuse.
Pulse Input	An digital input to a meter (usually a turbine) that is used to measure pulses over a time period. This calculates volume and flow rate for each period of time.
Pulse Mode	An operational mode used by the LevelMaster for measuring single float levels by transmitting a pulse to the primary windings, reading the voltage level on both the primary and secondary windings and using a calculation whereby one is subtracted from another to determine the single fluid level.
Radio Frequency	RF for short. That part of the spectrum from approx. 50kHz to gigahertz.
Radio Frequency Interference	Electromagnetic radiation which is emitted by electrical circuits carrying rapidly changing signals, as a by-product of their normal operation, and which causes unwanted signals (interference or noise) to be induced in other circuits.
RAM	See Random Access Memory. Also referred to as RAM Disk.
RAM Disk	A lithium backed storage chip. Also see Random Access Memory.
Random Access Memory	Semiconductor read/write volatile memory. Data stored is lost if power is removed.
Rated Capacity	The number of ampere-hours a cell/battery can deliver under specific conditions (rate of discharge, cut-off voltage, temperature).

Term	Definition
RBUS	Communication abbreviation for Results Bus.
RCV	Communication abbreviation for Received.
Read Only Memory	Computer memory in which data can be routinely read but written to only once using special means when the ROM is manufactured. ROM is used for storing data or programs (e.g. operating systems) on a permanent basis.
Real Time	Data acted upon immediately instead of being accumulated and processed at a later time.
Real Time Data Base	The iVision SCADA system has an in-memory RTDB for the data it collects from various devices. Real-time generally means that the data is acquired often enough that the user can make operational changes to the process while it is still useful to do so. On a factory floor, this can be in milliseconds. For remote devices which may require a couple of hours of drive time to reach, real-time can be thought of in tens of minutes or even hours. The iVision data base can meet either of these requirements.
Recharge/Charge	The conversion of electrical energy, provided in the form of a current from an external source (charger), into chemical energy within a cell/battery.
Recommended Standard 232	This is the standard interface for full-duplex data communication conducted with two way independent channels. It employs unbalanced signaling and refers to point-to-point communications between one driver and one receiver in a 4-wire bus system.
	The RS-232 (single-ended) transmits at a relatively slow data rate (up to 20K bits per second) and short distances (up to 50 Ft. @ the maximum data rate).
Recommended Standard 422	This is the standard interface for half-duplex communications conducted with a dual-state driver. It employs balanced signaling and refers to multi- drop communications between one driver and up to ten receivers, known as "straight-through" cabling in a 4-wire bus system.
	The RS-422 (Differential) transmits a much faster data rate (up to 100K bits per second) and longer distances (up to 4000 Ft. @ the maximum data rate).
Recommended Standard 485	This is the standard interface for half-duplex communications conducted in the tri-state or common mode. It employs balanced signaling and refers to true multi-point communications between up to 32 drivers and 32 receivers, in 2-wire bus system.
	The RS-485 (Differential) transmits a much faster data rate (up to 100K bits per second) and longer distances (up to 4000 Ft. @ the maximum data rate). It also supports more nodes per line because it uses lower impedance drivers and receivers.
Relay	Electromechanical device containing a coil and set of contacts. The contacts close when the coil is activated.
RD	Acronym for Relative Density.

Term	Definition
Remote Controller, X Series.	Totalflow's X series Remote Controller is a low power, microprocessor based unit designed to meet a wide range of automation, monitor, control, alarming and measurement applications.
Remote Terminal Unit	An industrial data collection device similar to a PLC, designed for location at a remote site, that communicates data to a host system by using telemetry (such as radio, dial-up telephone, or leased lines).
Resistance	The measure of the ability of a material to pass a current.
Resistant Thermal Detector	A metallic probe that measures temperature based upon its coefficient of resistivity.
Resistor	Passive component with a known resistance. The value of resistance is usually shown by a set of colored bands on the body of the component.
Resolution	The smallest significant number to which a measurement can be determined. For example, a converter with 12-bit resolution can resolve 1 part in 4096.
RFI	See Radio Frequency Interference.
Ribbon Cable	A flat cable in which the conductors are side by side rather than in a bundle.
ROM	See Read Only Memory
RRTS	Communication abbreviation for Remote Ready To Send.
RS-232	See Recommended Standard 232.
RS-422	See Recommended Standard 422.
RS-485	See Recommended Standard 485.
RTD	See Resistant Thermal Device.
RTDB	See Real Time Data Base.
RTS	Communication abbreviation for Ready To Send.
RTU	See Remote Terminal Unit
RXD	Communication abbreviation for Receive Data.
Saddle	A fitted plate held in place by clamps, straps, heat fusion, or welding over a hole punched or drilled in a gas main to which a branch line or service line connection is made. The saddle also may serve as a reinforcing member for repair.
Savitsky-Golay Smoothing	Digital Signal Smoothing. A special class of a digital signal processing filter. Specifically determines the coefficients that are used for signal processing.
SCADA	See Supervisory Control and Data Acquisition
Schematic	Another name for a circuit diagram.
SCM	Acronym for Sample Conditioning Module.

Term	Definition
SDRIVE	Serial E ² Prom.
Self-Calibrating	A property of a DAQ board that has an extremely stable onboard reference and calibrates its own A/D and D/A circuits without manual adjustments by the user.
Semiconductor	Material that is nether a conductor nor insulator. Its properties can be altered by a control voltage.
Sensor	A device that responds to a physical stimulus (heat, light, sound, pressure, motion, flow, and so on), and produces a corresponding electrical signal.
Serial I/O	A common form of data transmission, in which the bits of each character are sent one at a time over the line.
Serial Port	A communications interface that uses one data line to transfer data bits sequentially. On the IBM PC the serial port refers to a standard asynchronous serial interface which uses the 8250/16450/16550 family of UART's.
Service Life	The period of useful life (usually in hours or minutes) of a primary cell/battery before a predetermined cut-off voltage is reached.
Set-Point	A "level" or control point in a feedback system.
SG	Acronym for Specific Gravity.
Short Circuit	A connection of comparatively low resistance accidentally or intentionally made between points on a circuit between which the resistance is normally much greater. Also called a "bridge" or "short" such as when solder from two tracks touch on a PC board.
SIG	See Signal.
Signal	Any communication between message-based devices consisting of a write to a signal register.
Signal Generator	A circuit that produces a variable and controllable signal.
Sink	Device such as a load that consumes power or conducts away heat.
Skip Days	Extra Daily records for recording events that require the start of a new day. i.e. Volume Reset, Backward Time change over the hour, and Contract Hour change.
SNAM	Italy's Certification Board
Software	The non-physical parts of a computer system that include computer programs such as the operating system, high-level languages, applications programs, etc.
Solar cell	A cell that produces current under sunlight.
Solenoid	A coil of wire that is long compared to its diameter, through which a current will flow and produce a magnetic flux to push or pull a rod (called an armature).
Source	Device that provides signal power or energy to a load.

Term	Definition
SP	See Static Pressure
Specific Gravity	The ratio of the mass of a solid or liquid to the mass of an equal volume of distilled water at 4°C (39°F) or of a gas to an equal volume of air or hydrogen under prescribed conditions of temperature and pressure. Also called <i>relative density</i> .
SQL	See Structured Query Language.
SRAM	See Static Random Access Memory
SSM	Acronym for Stream Selector Module.
Static Pressure	Equals PSIA or PSIG. Referenced to atmospheric pressure versus absolute pressure in a vacuum. It is defined as the pressure exerted by a non-moving liquid or gas. In the case of a gas well this would be the natural PSI of the gas inside of the well.
Static Random Access Memory	The place in your computer that programs reside when running. You can access any part of the memory, and it can easily be overwritten with new values. SRAM is much more expensive and physically larger than DRAM but much faster.
STP	Standard Temperature and Pressure
Structured Query Language	IBM developed this language in the 60's as a way of accessing data from a relational database. It has a very simple syntax for simple functions but can become complex for sophisticated applications. This language is standardized by international standards bodies, and is almost universal in application. Almost all databases support SQL. The iVision RTDB supports SQL and this makes it extremely flexible within a corporate network. Authorized users throughout the organization can write SQL statements to acquire data from this database that they need for Marketing, Accounting, Engineering, or other functions.
Supercompressibility Factor	A factor used to account for the following effect: Boyle's law for gases states that the specific weight of a gas is directly proportional to the absolute pressure, the temperature remaining constant. All gases deviate from this law by varying amounts, and within the range of conditions ordinarily encountered in the natural gas industry, the actual specific weight under the higher pressure is usually greater than the theoretical. The factor used to reflect this deviation from the ideal gas law in gas measurement with an orifice meter is called the "Supercompressibility factor Fpv". The factor is used to calculate corrected from volumes at standard temperatures and pressures. The factor is of increasing importance at high pressures and low temperatures.
Supervisory Control and Data Acquisition	A common PC function in process control applications, where programmable logic controllers (PLCs) perform control functions but are monitored and supervised by a PC.
Surge	A sudden change (usually an increase) in the voltage on a power line. A surge is similar to a spike, but is of longer duration.
SW VBATT	Switched Battery Voltage. Cycles power to equipment to save power.

Term	Definition
Switch	An electrical device for connecting and disconnecting power to a circuit, having two states, on (closed) or off (open). Ideally having zero impedance when closed and infinite impedance when open.
Synchronous	(1) Hardware - A property of an event that is synchronized to a reference clock. (2) Software - A property of a function that begins an operation and returns only when the operation is complete.
Syntax	Comparable to the grammar of a human language, syntax is the set of rules used for forming statements in a particular programming language.
System Noise	A measure of the amount of noise seen by an analog circuit or an ADC when the analog inputs are grounded.
TankMaster	Totalflow Control System for LevelMaster Tank Units.
Тар	To cut threads in a round hole so that other fittings or equipment can be screwed into the hole. Also to make an opening in a vessel or pipe.
TBUS	Communication abbreviation for Transmit Bus.
TCP/IP	TCP/IP – This is the basic communication format for the Internet, and for much of what happens on a corporate network. Virtually all networked PCs and other computers have an "IP address" having the format xxx.xxx.xxx (xxx can range from 0 to 255 in most cases). You can see the ip address of your PC by going to the start menu, selecting run, and entering cmd. A "DOS Box" will be displayed on your screen. Type ipconfig to get the ip address. When you enter a URL (e.g., www.TotalFlow.com) in a browser, a DNS server (on the network) resolves this into an IP address and directs your request to the machine with that address.
TDS32	Totalflow DDE Server that allows Microsoft Windows applications with DDE capabilities to communicate with Totalflow's equipment. For example data can be retrieved and placed in an Excel spreadsheet.
Temperature Coefficient	An experimental number used to modify the calibration of a device (Totalflow transducer) to account for changes in environmental temperature.
Temperature, Ambient	The temperature of the air, atmosphere or other fluid that completely surrounds the apparatus, equipment or the work piece under consideration. For devices which do not generate heat, this temperature is the same as the temperature of the medium at the point of device location when the device is not present. For devices which do generate heat, this temperature is the temperature of the medium surrounding the device when the device is present and generating heat. Allowable ambient- temperature limits are based on the assumption that the device in question is not exposed to significant radiant-energy sources such as sunlight or heated surfaces.
Temperature, Flowing	Temperature of the flowing fluid. Usually gas and measured by an RTD.
Terminal Mode	Man-Machine interface tool used as and engineering interface with equipment.
Termination	Placement of a connector on a cable.
Termination Panel	A circuit board with screw terminals or other connector system that allows convenient connection of field signals to a data acquisition or communication system.

Term	Definition
TF.NET	Totalflow network used to access iVision/web data.
Thermocouple	A temperature sensor created by joining two dissimilar metals. The junction produces a small voltage as a function of the temperature.
Thermowell	A closed-end tube designed to protect temperature sensors from harsh environments, high pressure, and flows. They can be installed into a system by pipe thread or welded flange and are usually made of corrosion-resistant metal or ceramic material depending upon the application.
Therms Master	Totalflow application for Gas Analyzer.
Tolerance	The allowable percentage variation of any component from that stated on its body.
Transducer	A device for converting energy from one form to another, specifically the measurement of pressure differential in natural gas gate stations. i.e. Pressure to voltage or current.
Transfer Rate	The rate, measured in bytes/s, at which data is moved from source to destination after software initialization and set up operations; the maximum rate at which the hardware can operate.
Transient	An abrupt change in voltage, of short duration (e.g. a brief pulse caused by the operation of a switch).
Transistor	A three leaded device (Collector, Base, Emitter) used for amplifying or switching. Also called a bi-polar transistor to distinguish it from Field Effect Transistor etc.
Transmitter	A device that converts audio, video or coded signals into modulated radio frequency signals which can be propagated by electromagnetic waves (radio waves).
Tranzorb	Transient Voltage Suppression device.
Tube	Cylinder for transporting or storing liquids: any long hollow cylinder used to transport or store liquids.
Tuned Radio Frequency	An amplitude modulated (AM) receiver with one or more stages of radio frequency before the detector.
TXD	Communication abbreviation for Transmit Data.
UPS	Un-interruptible power supply. A power conditioning unit placed between the commercial power service and the protected device. The UPS uses line power to charge batteries, which, in the case of a power failure, can drive electronic circuitry to produce the appropriate AC requirements for some time period.
Upstream	From a reference point, any point located nearer the origin of flow, that is, before the reference point is reached.
Upstream Pipeline	The first pipeline to transport natural gas en route to an inter-connect point for delivery to another pipeline. See DOWNSTREAM PIPELINE.
VAC	Volts of alternating current.
Vacuum	A pressure less than atmospheric pressure, measured either from the base of zero pressure or from the base of atmospheric pressure (PSIA).
Valve	A mechanical device for controlling the flow of fluids and gases; types such as gate, ball, globe, needle, and plug valves are used.

Term	Definition
Valve Control	This feature provides automatic feedback control of Differential Pressure (DP), Static Pressure (SP), and Flow Rate for the purpose of positioning a flow valve to maintain a desired value of DP, SP, or Flow Rate.
VAS32	Totalflow's Voice Alarm System. A software program that receives and transmits alarm notifications via cell, telephone or pager systems.
VBATT	Battery Voltage. The voltage output from the battery source.
VDC	Volts of direct current.
Vent	A normally sealed mechanism which allows for the controlled escape of gases from within a cell.
Virtual Memory	A method of making disk storage appear like RAM memory to the CPU, thus allowing programs that need more RAM memory than is installed to run in the system. This technique is slow compared to "real" memory.
Volatile Memory	A storage medium that loses all data when power is removed.
Volt	The unit of voltage or potential difference One thousand volts = 1kV.
Voltage	Electrical pressure, the force, which causes current to flow through a conductor. Voltage must be expressed as a difference of potential between two points since it is a relational term. Connecting both voltmeter leads to the same point will show no voltage present although the voltage between that point and ground may be hundred or thousands of volts.
Voltmeter	A meter for reading voltage. It is one of the ranges in a multimeter.
Volume Calculation Period	The specified length between reading and calculating volume data.
Watt	Symbol W. The unit of power. One watt is the product of one volt and one amp. Power (W) = Current (I) X Energy (E). (E = Volts)
Wavelength	The distance between two points of corresponding phase in consecutive cycles
Web Page	All the text, graphics, and sound visible with a single access to a Web site; what you see when you request a particular URL.
Web Server	The hardware and software required to make Web pages available for delivery to others on networks connected with yours.
Web Site	A collection of electronic "pages" of information on a Web server
Well, Development	A well drilled in order to obtain production of gas or oil known to exist.
Well, Disposal	A deep well in which to inject waste chemicals, etc., such as a well to dispose of salt brine from the solution mining of salt dome gas storage caverns.
Well, Exploratory	A well drilled to a previously untested geologic structure to determine the presence of oil or gas.
Well, Gas	A well which produces at surface conditions the contents of a gas reservoir; legal definitions vary among the states.
Well, Marginal	A well which is producing oil or gas at such a low rate that it may not pay for the drilling.
Well, Stripper	Non-associated gas well capable of producing no more than 90 Mcf/day at its maximum rate of flow.
Well, Wildcat	An exploratory well being drilled in unproven territory, that is, in a horizon from which there is no production in the general area.

Term	Definition
Wellhead	The assembly of fittings, valves, and controls located at the surface and connected to the flow lines, tubing, and Casing of the well so as to control the flow from the reservoir.
WINCCU	Windows Central Collection Unit. Windows version of software to process, archive and manipulate data collected from the Totalflow products.
Witness	In the field, where hydrocarbons are changing hands and actual cash register transactions being performed, it is not uncommon for one party or the other to request / require a representative or company employee be present during calibrations and or routine maintenance. Often this arrangement is contractually linked.
Wobbe Index	Calculated from the energy content, or a higher heating value of the gas, and the relative density of the gas (Btu/RD ^{1/2}).
Working Voltage	The highest voltage that should be applied to a product in normal use, normally well under the breakdown voltage for safety margin. See also Breakdown Voltage.
World Wide Web	An Internet service facilitating access to electronic information - also known as the Web, WWW, or W3.
X Series	Extendable equipment series featuring technology that is expandable and flexible for ever changing needs.
XFC	See Flow Computer, X Series.
XFC-2100767 Board	The main electronic board used in X Series flow computers. The XFC- 2100767 Board mounts on the inside of the enclosure's front door.
XMV	External Multivariable Transducer.
XRC	See Remote Controller, X Series.
Y	Expansion factor
Zero Gas	Gas at atmospheric pressure.

Chapter 6 Drawing & Diagrams

This Chapter of the manual has been provided as a location for the user to place drawings that accompanies their new Totalflow units.

Totalflow recommends that a complete set of all drawings that accompany a Flow Computer be placed in this Chapter. This would ensure that the user have only drawings applicable to their units and drawings that are at the latest revision level. Blank Page