Contents

1 Introduction ... 5
 1.1 Declaration of Conformity 5
 1.2 Validity ... 5

2 Safety considerations 6

3 Handling ... 7
 3.1 Reception ... 7
 3.2 Transportation and storage 7
 3.3 Lifting .. 8
 3.4 Motor weight 8

4 Installation and commissioning 9
 4.1 General .. 9
 4.2 Motors with other than deep groove ball bearings 9
 4.3 Insulation resistance check 10
 4.4 Foundation ... 10
 4.5 Balancing and fitting coupling halves and pulleys 11
 4.6 Mounting and alignment of the motor 11
 4.7 Radial forces and belt drives 11
 4.8 Motors with drain plugs for condensation 12
 4.9 Cabling and electrical connections 12
 4.9.1 Connections for different starting methods 13
 4.9.2 Connections of auxiliaries 13
 4.10 Terminals and direction of rotation 13

5 Operation ... 14
 5.1 General .. 14

6 Low voltage motors in variable speed operation 15
 6.1 Introduction 15
 6.2 Winding insulation 15
 6.2.1 Selection of winding insulation for ABB converters 15
 6.2.2 Selection of winding insulation with all other converters 15
 6.3 Thermal protection 15
 6.4 Bearing currents 16
 6.4.1 Elimination of bearing currents with ABB converters 16
 6.4.2 Elimination of bearing currents with all other converters 16
 6.5 Cabling, grounding and EMC 17
 6.6 Operating speed 17
 6.7 Motors in variable speed applications 17
 6.7.1 General ... 17
 6.7.2 Motor loadability with AC_8_ Series of converters with DTC control 17
 6.7.3 Motor loadability with AC_5_ Series of converters 18
 6.7.4 Motor loadability with other voltage source PWM-type converters 18
 6.7.5 Short time overloads 18
 6.8 Rating plates 18
 6.9 Commissioning the variable speed application 18
7 Maintenance ... 19
 7.1 General inspection .. 19
 7.1.1 Standby motors ... 19
 7.2 Lubrication .. 20
 7.2.1 Motors with permanently greased bearings 20
 7.2.2 Motors with regreaseable bearings 20
 7.2.3 Lubrication intervals and amounts 21
 7.2.4 Lubricants .. 22

8 After Sales Support .. 23
 8.1 Spare parts .. 23
 8.2 Dismantling, re-assembly and rewinding 23
 8.3 Bearings ... 23

9 Environmental requirements ... 24

10 Troubleshooting ... 25

11 Figures ... 27
1 Introduction

These instructions must be followed to ensure safe and proper installation, operation and maintenance of the motor. They should be brought to the attention of anyone who installs, operates or maintains the motor or associated equipment. The motor is intended for installation and use by qualified personnel, familiar with health and safety requirements and national legislation. Ignoring these instructions may invalidate all applicable warranties.

1.1 Declaration of Conformity

The conformity of the end product according to Directive 2006/42/EC (Machinery) has to be established by the commissioning party when the motor is fitted to the machinery.

1.2 Validity

These instructions are valid for the following ABB electrical machine types, in both motor and generator operation:

- series MT*, MXMA,
- in IEC frame sizes 56-500
- in NEMA frame sizes 58*, 50**

Additional information is required for some machine types due to special application and/or design considerations.

There is a separate manual for e.g. Ex motors ‘Low voltage motors for explosive atmospheres: Installation, operation and maintenance and safety manual (3GZF500730-47).

Additional manual is available for the following motors:

- roller table motors
- water cooled motors
- smoke extraction motors
- brake motors
- motors for high ambient temperatures
- motors in marine applications for mounting on open deck
- of ships or offshore units
The motor is intended for installation and use by qualified personnel, familiar with health and safety requirements and national legislation. Safety equipment necessary for the prevention of accidents at the installation and operating site must be provided in accordance with local regulations.

WARNING

Emergency stop controls must be equipped with restart lockouts. After emergency stop a new start command can take effect only after the restart lockout has been intentionally reset.

Points to be observed:
1. Do not step on the motor.
2. The temperature of the outer casing of the motor may be hot to the touch during normal operation and especially after shut-down.
3. Some special motor applications may require additional instructions (e.g. when supplied by frequency converter).
4. Observe rotating parts of the motor.
5. Do not open terminal boxes while energized.
3 Handling

3.1 Reception

Immediately upon receipt, check the motor for external damage (e.g. shaft-ends, flanges and painted surfaces) and, if found, inform the forwarding agent without delay.

Check all rating plate data, especially voltage and winding connections (star or delta). The type of bearing is specified on the rating plate of all motors except the smallest frame sizes.

In the case of a variable speed drive application check the maximum loadability allowed according to frequency stamped on the motor’s second rating plate.

3.2 Transportation and storage

The motor should always be stored indoors (above –20 °C), in dry, vibration-free and dust-free conditions. During transportation, shocks, falls and humidity should be avoided. In other conditions, please contact ABB.

Unprotected machined surfaces (shaft-ends and flanges) should be treated against corrosion.

It is recommended that shafts are rotated periodically (once per quarter) by hand to prevent grease migration.

Anti-condensation heaters, if fitted, are recommended to be used to avoid water condensing in the motor.

The motor must not be subject to any external vibrations at standstill so as to avoid causing damage to the bearings.

Motors fitted with cylindrical-roller and/or angular contact bearings must be fitted with locking devices during transport.
3.3 Lifting

All ABB motors above 25 kg are equipped with lifting lugs or eyebolts.

Only the main lifting lugs or eyebolts of the motor should be used for lifting the motor. They must not be used to lift the motor when it is attached to other equipment.

Lifting lugs for auxiliaries (e.g. brakes, separate cooling fans) or terminal boxes must not be used for lifting the motor. Because of different output, mounting arrangements and auxiliary equipment, motors with the same frame may have a different center of gravity.

Damaged lifting lugs must not be used. Check that eyebolts or integrated lifting lugs are undamaged before lifting.

Lifting eyebolts must be tightened before lifting. If needed, the position of the eyebolt can be adjusted using suitable washers as spacers.

Ensure that proper lifting equipment is used and that the sizes of the hooks are suitable for the lifting lugs.

Care must be taken not to damage auxiliary equipment and cables connected to the motor.

Remove eventual transport jigs fixing the motor to the pallet.

Specific lifting instructions are available from ABB.

WARNING
During lifting, mounting or maintenance work, all necessary safety considerations shall be in place and special attention to be taken that nobody will be subject to lifted load.

3.4 Motor weight

The total motor weight can vary within the same frame size (center height) depending on different output, mounting arrangement and auxiliaries.

The following table shows estimated maximum weights for machines in their basic versions as a function of frame material.

<table>
<thead>
<tr>
<th>Frame size</th>
<th>Aluminum, Weight kg</th>
<th>Cast iron, Weight kg</th>
<th>Add. for brake</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>4.5</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>63</td>
<td>6</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>71</td>
<td>8</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>80</td>
<td>14</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>90</td>
<td>20</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>32</td>
<td>40</td>
<td>16</td>
</tr>
<tr>
<td>112</td>
<td>36</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>132</td>
<td>93</td>
<td>90</td>
<td>30</td>
</tr>
<tr>
<td>160</td>
<td>149</td>
<td>130</td>
<td>30</td>
</tr>
<tr>
<td>180</td>
<td>162</td>
<td>190</td>
<td>45</td>
</tr>
<tr>
<td>200</td>
<td>245</td>
<td>275</td>
<td>55</td>
</tr>
<tr>
<td>225</td>
<td>300</td>
<td>360</td>
<td>75</td>
</tr>
<tr>
<td>250</td>
<td>386</td>
<td>405</td>
<td>75</td>
</tr>
<tr>
<td>280</td>
<td>425</td>
<td>800</td>
<td>–</td>
</tr>
<tr>
<td>315</td>
<td>–</td>
<td>1 700</td>
<td>–</td>
</tr>
<tr>
<td>355</td>
<td>–</td>
<td>2 700</td>
<td>–</td>
</tr>
<tr>
<td>400</td>
<td>–</td>
<td>3 500</td>
<td>–</td>
</tr>
<tr>
<td>450</td>
<td>–</td>
<td>4 500</td>
<td>–</td>
</tr>
<tr>
<td>5000</td>
<td>–</td>
<td>2 800</td>
<td>–</td>
</tr>
</tbody>
</table>

If the motor is equipped with a separate fan, contact ABB for the weight.
4 Installation and commissioning

4.1 General

All rating plate values must be carefully checked to ensure that the motor protection and connection will be properly done.

When starting the motor for the first time or after it has been in storage more than 6 months, apply the specified quantity of grease.

See section “7.2.2 Motors with re-greasable bearings” for more details.

When fitted in a vertical position with the shaft pointing downwards, the motor must have a protective cover to prevent foreign objects and fluid from falling into the ventilation openings. This task can also be achieved by a separate cover not fixed to the motor. In this case, the motor must have a warning label.

4.2 Motors with other than deep groove ball bearings

Remove transport locking if employed. Turn the shaft of the motor by hand to check free rotation, if possible.

Motors equipped with cylindrical roller bearings: Running the motor with no radial force applied to the shaft may damage the roller bearing due to “sliding”.

Motors equipped with angular contact ball bearing: Running the motor with no axial force applied in the right direction in relation to the shaft may damage the angular contact bearing.

WARNING

Disconnect and lock out before working on the motor or the driven equipment.

WARNING

For motors with angular contact bearings the axial force must not by any means change direction.

The type of bearing is specified on the rating plate.
4.3 Insulation resistance check

Measure insulation resistance (IR) before commissioning, after long periods of standstill or storage when winding dampness may be suspected. IR shall be measured directly on the motor terminals with the supply cables disconnected in order to avoid them affecting the result.

Insulation resistance should be used as a trend indicator to determine changes in the insulation system. In new machines the IR is usually thousands of Mohms and thus following the change of IR is important so as to know the condition of the insulation system. Typically, the IR should not be below 10 MΩ and in no case below 1 MΩ (measured with 500 or 1000 VDC and corrected to 25 °C). The insulation resistance value is halved for each 20 °C increase in temperature.

Figure 1, in chapter 11, can be used for the insulation correction to the desired temperature.

WARNING
To avoid risk of electrical shock, the motor frame must be grounded and the windings should be discharged against the frame immediately after each measurement.

If the reference resistance value is not attained, the winding is too damp and must be oven dried. The oven temperature should be 90 °C for 12-16 hours followed by 105 °C for 6-8 hours.

If fitted drain hole plugs must be removed and closing valves must be opened during heating. After heating, make sure the plugs are refitted. Even if the drain plugs are fitted, it is recommended to disassemble the end shields and terminal box covers for the drying process.

Windings drenched in seawater normally need to be rewound.

4.4 Foundation

The end user has full responsibility for preparation of the foundation.

Metal foundations should be painted to avoid corrosion.

Foundations must be even and sufficiently rigid to withstand possible short circuit forces. They must be designed and dimensioned to avoid the transfer of vibration to the motor and vibration caused by resonance. See figure below.

Note! Height difference shall not exceed ±0,1mm referred to any other motor foot.
4.5 Balancing and fitting coupling halves and pulleys

As standard, balancing of the motor has been carried out using half key.
Coupling halves or pulleys must be balanced after machining the keyways. Balancing must be done in accordance with the balancing method specified for the motor.

Coupling halves and pulleys must be fitted on the shaft by using suitable equipment and tools which do not damage the bearings and seals.
Never fit a coupling half or pulley by hammering or removing it by using a lever pressed against the body of the motor.

4.6 Mounting and alignment of the motor

Ensure that there is enough space for free airflow around the motor. It is recommended to have a clearance between the fan cover and the wall etc. of at least ½ of the air intake of the fan cover. Additional information may be found from the product catalog or from the dimension drawings available on our web pages: www.abb.com/motors&generators.
Correct alignment is essential to avoid bearing, vibration and possible shaft failures.
Mount the motor on the foundation using the appropriate bolts or studs and place shim plates between the foundation and the feet.
Align the motor using appropriate methods.
If applicable, drill locating holes and fix the locating pins into position.
Mounting accuracy of coupling half: check that clearance b is less than 0.05 mm and that the difference a1 to a2 is also less than 0.05 mm. See figure 2.
Re-check the alignment after final tightening of the bolts or studs.
Do not exceed permissible loading values for bearings as stated in the product catalogs.
Check that the motor has sufficient airflow.
Ensure that no nearby objects or direct sunshine radiate additional heat to the motor.
For flange mounted motors (e.g. B5, B35, V1), make sure that the construction allows sufficient air flow on the outer surface of the flange.

4.7 Radial forces and belt drives

Belts must be tightened according to the instructions of the supplier of the driven equipment. However, do not exceed the maximum belt forces (i.e. radial bearing loading) stated in the relevant product catalogs.

Excessive belt tension will damage bearings and can cause shaft damage.
4.8 Motors with drain plugs for condensation

Check that drain holes and plugs face downwards. In vertical position mounted motors, the drain plugs may be in horizontal position. Motors with sealable plastic drain plugs are delivered in an open position. In very dusty environments, all drain holes should be closed.

4.9 Cabling and electrical connections

The terminal box on standard single speed motors normally contains six winding terminals and at least one earth terminal.

In addition to the main winding and earthing terminals, the terminal box can also contain connections for thermistors, heating elements or other auxiliary devices.

Suitable cable lugs must be used for the connection of all main cables. Cables for auxiliaries can be connected into their terminal blocks as such.

Motors are intended for fixed installation only. Unless otherwise specified, cable entry threads are metric. The IP class of the cable gland must be at least the same as those of the terminal boxes.

Certified conduit hub or cable connector has to be used at the time of installation.

WARNING

Use appropriate cable glands and seals in the cable entries according to the type and diameter of the cable.

Earthing must be carried out according to local regulations before the motor is connected to the supply voltage.

The earth terminal on the frame has to be connected to PE (protective earth) with a cable as shown in Table 5 of IEC/EN 60034-1:

<table>
<thead>
<tr>
<th>Cross-sectional area of phase conductors</th>
<th>Minimum cross-sectional area of the corresponding protective conductor, S_{ph} [mm2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>35</td>
<td>25</td>
</tr>
<tr>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>70</td>
<td>35</td>
</tr>
<tr>
<td>95</td>
<td>50</td>
</tr>
<tr>
<td>120</td>
<td>70</td>
</tr>
<tr>
<td>150</td>
<td>70</td>
</tr>
<tr>
<td>185</td>
<td>95</td>
</tr>
<tr>
<td>240</td>
<td>120</td>
</tr>
<tr>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td>400</td>
<td>185</td>
</tr>
</tbody>
</table>

In addition, earthing or bonding connection facilities on the outside of electrical apparatus must provide effective connection of a conductor with a cross-sectional area of at least 4 mm2.

The cable connection between the network and motor terminals must meet the requirements stated in the national standards for installation or in the standard IEC/EN 60204-1 according to the rated current indicated on the rating plate.
When the ambient temperature exceeds +50 °C, cables having permissible operating temperature of +90 °C as minimum shall be used. Also all other conversion factors depending on the installation conditions shall be taken into account while sizing the cables.

Ensure that the motor protection corresponds to the environment and weather conditions. For example, make sure that water cannot enter the motor or the terminal boxes.

The seals of terminal boxes must be placed correctly in the slots provided to ensure the correct IP class. A leak could lead to penetration of dust or water, creating a risk of flashover to live elements.

4.9.1 Connections for different starting methods

The terminal box on standard single speed motors normally contains six winding terminals and at least one earth terminal. This enables the use of DOL- or Y/D-starting.

For two-speed and special motors, the supply connection must follow the instructions inside the terminal box or in the motor manual.

The voltage and connection are stamped on the rating plate.

Direct-on-line starting (DOL):

Y or D winding connections may be used.

For example, 690 VY, 400 VD indicates Y-connection for 690 V and D-connection for 400 V.

Star/Delta (Wye/Delta) starting (Y/D):

The supply voltage must be equal to the rated voltage of the motor when using a D-connection.

Remove all connection links from the terminal block.

Other starting methods and severe starting conditions:

In cases where other starting methods e.g. converter or soft starter will be used in the duty types of S1 and S2, it is considered that the device is “isolated from the power system when the electrical machine is running” as in the standard IEC 60079-0 and thermal protection is optional.

4.9.2 Connections of auxiliaries

If a motor is equipped with thermistors or other RTDs (Pt100, thermal relays, etc.) and auxiliary devices, it is recommended they be used and connected by appropriate means. For certain applications, it is mandatory to use thermal protection. More detailed information can be found in the documents delivered with the motor. Connection diagrams for auxiliary elements and connection parts can be found inside the terminal box.

The maximum measuring voltage for the thermistors is 2.5 V. The maximum measuring current for Pt100 is 5 mA. Using a higher measuring voltage or current may cause errors in readings or a damaged temperature detector.

The insulation of thermal sensors fulfills the requirements of basic insulation.

4.10 Terminals and direction of rotation

The shaft rotates clockwise when viewing the shaft face at the motor drive end, and the line phase sequence – L1, L2, L3 – is connected to the terminals as shown in figure 3.

To alter the direction of rotation, interchange any two connections on the supply cables.

If the motor has a unidirectional fan, ensure that it rotates in the same direction as the arrow marked on the motor.
5 Operation

5.1 General

The motors are designed for the following conditions unless otherwise stated on the rating plate:

- Motors are to be installed in fixed installations only.
- Normal ambient temperature range is from –20 °C to +40 °C.
- Maximum altitude is 1000 m above sea level.
- The variation of the supply voltage and frequency may not exceed the limits mentioned in relevant standards. Tolerance for supply voltage is ±5 %, and for frequency ±2 % according to the figure 4 (EN / IEC 60034-1, paragraph 7.3, Zone A). Both extreme values are not supposed to occur at the same time.

The motor can only be used in applications for which it is intended. The rated nominal values and operation conditions are shown on the motor rating plates. In addition, all requirements of this manual and other related instructions and standards must be followed.

If these limits are exceeded, motor data and construction data must be checked. Please contact ABB for further information.

WARNING

Ignoring any instructions or maintenance of the apparatus may jeopardize safety and thus prevent the use of the motor.
6 Low voltage motors in variable speed operation

6.1 Introduction

This part of the manual provides additional instructions for motors used in frequency converter supplies. The motor is intended to operate from a single frequency converter supply and not motors running in parallel from one frequency converter. Instructions given by the converter manufacturer shall be followed.

Additional information may be required by ABB to decide on the suitability for some motor types used in special applications or with special design modifications.

6.2 Winding insulation

Variable speed drives create higher voltage stresses than the sinusoidal supply on the winding of the motor. Therefore, the winding insulation of the motor as well as the filter at the converter output must be dimensioned according following instructions.

6.2.1 Selection of winding insulation for ABB converters
In the case of ABB e.g. AC_8_-series and AC_5_-series single drives with a diode supply unit (uncontrolled DC voltage), the selection of winding insulation and filters can be made according to table 6.1.

6.2.2 Selection of winding insulation with all other converters
The voltage stresses must be limited below accepted limits. Please contact the system supplier to ensure the safety of the application. The influence of possible filters must be taken into account while dimensioning the motor.

6.3 Thermal protection

Most of the motors covered by this manual are equipped with PTC thermistors or other type of RTD’s in the stator windings. It is recommended to connect those to the frequency converter. Read more in chapter 4.9.2.
6.4 Bearing currents

Insulated bearings or bearing constructions, common mode filters and suitable cabling and grounding methods must be used according to the following instructions and using table 6.1.

<table>
<thead>
<tr>
<th>PN < 100 kW</th>
<th>PN ≥ 100 kW or IEC315 ≤ Frame size ≤ IEC355</th>
<th>PN ≥ 350 kW or IEC400 ≤ Frame size ≤ IEC450</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_n ≤ 500 V</td>
<td>Standard motor</td>
<td>Standard motor + Insulated N-bearing</td>
</tr>
<tr>
<td>500V > U_n ≤ 600V (cable length > 150 m)</td>
<td>Standard motor + Insulated N-bearing</td>
<td>Standard motor + Insulated N-bearing + dU/dt –filter (reactor) OR Common mode filter + Insulated N-bearing + Common mode filter</td>
</tr>
<tr>
<td>600V > U_n ≤ 690V</td>
<td>Reinforced insulation + dU/dt –filter (reactor) OR Insulated N-bearing</td>
<td>Reinforced insulation + dU/dt –filter (reactor) OR Insulated N-bearing</td>
</tr>
<tr>
<td>600V > U_n ≤ 690V (cable length > 150 m)</td>
<td>Reinforced insulation + Insulated N-bearing</td>
<td>Reinforced insulation + Insulated N-bearing + dU/dt –filter (reactor) OR Common mode filter + Insulated N-bearing + Common mode filter</td>
</tr>
</tbody>
</table>

6.4.1 Elimination of bearing currents with ABB converters

In case of ABB frequency converter e.g. AC_8_ _- and AC_5_ _-series with a diode supply unit, the methods according to table 6.1 must be used to avoid harmful bearing currents in motors.

Insulated bearings which have aluminum oxide coated inner and/or outer bores or ceramic rolling elements are recommended. Aluminum oxide coatings shall also be treated with a sealant to prevent dirt and humidity penetrating into the porous coating. For the exact type of bearing insulation, see the motor’s rating plate. Changing the bearing type or insulation method without ABB’s permission is prohibited.

6.4.2 Elimination of bearing currents with all other converters

The user is responsible for protecting the motor and driven equipment from harmful bearing currents. Instructions described in chapter 6.4.1 can be used as guideline, but their effectiveness cannot be guaranteed in all cases.
6.5 Cabling, grounding and EMC

To provide proper grounding and to ensure compliance with any applicable EMC requirements, motors above 30 kW shall be cabled by shielded symmetrical cables and EMC glands, i.e. cable glands providing 360° bonding.

Symmetrical and shielded cables are highly recommended also for smaller motors. Make the 360° grounding arrangement at all the cable entries as described in the instructions for the glands. Twist the cable shields into bundles and connect to the nearest ground terminal/bus bar inside the terminal box, converter cabinet, etc.

For motors of frame size IEC 280 and above, additional potential equalization between the motor frame and the driven equipment is needed, unless both are mounted on a common steel base. In this case, the high frequency conductivity of the connection provided by the steel base should be checked by, for example, measuring the potential difference between the components.

More information about grounding and cabling of variable speed drives can be found in the manual “Grounding and cabling of the drive system” (Code: 3AFY 61201998).

Proper cable glands providing 360° bonding must be used at all termination points such as motor, converter, possible safety switch, etc.

6.6 Operating speed

For speeds higher than the nominal speed stated on the motor’s rating plate or in the respective product catalog, ensure that either the highest permissible rotational speed of the motor or the critical speed of the whole application is not exceeded.

6.7 Motors in variable speed applications

6.7.1 General
With ABB’s frequency converters, the motors can be dimensioned by using ABB’s DriveSize dimensioning program. The tool is downloadable from the ABB website (www.abb.com/motors&generators).

For application supplied by other converters, the motors must be dimensioned manually.

For more information, please contact ABB.

The loadability curves (or load capacity curves) are based on nominal supply voltage. Operation in under or over voltage conditions may influence on the performance of the application.

6.7.2 Motor loadability with AC_8_—Series of converters with DTC control
The loadability curves presented in Figures 5a – 5d are valid for ABB AC_8_—series converters with uncontrolled DC-voltage and DTC-control. The figures show the approximate maximum continuous output torque of the motors as a function of supply frequency. The output torque is given as a percentage of the nominal torque of the motor. The values are indicative and exact values are available on request.
6.7.3 Motor loadability with AC_5_ _ – series of converter

The loadability curves presented in Figures 6a – 6d are valid for AC_5_ _ -series converters. The figures show the approximate maximum continuous output torque of the motors as a function of supply frequency. The output torque is given as a percentage of the nominal torque of the motor. The values are indicative and exact values are available on request.

6.7.4 Motor loadability with other voltage source PWM-type converters

For other converters, with uncontrolled DC voltage and minimum switching frequency of 3 kHz (200…500 V), the dimensioning instructions as mentioned in chapter 6.7.3 can be used as guidelines. However, it shall be noted that the actual thermal loadability can also be lower. Please contact the manufacturer of the converter or the system supplier.

6.7.5 Short time overloads

ABB motors can usually be temporarily overloaded as well as used in intermittent duties. The most convenient method to dimension such applications is to use the DriveSize tool.

6.8 Rating plates

The usage of ABB’s motors in variable speed applications do not usually require additional rating plates. The parameters required for commissioning the converter can be found from the main rating plate. In some special applications, however, the motors can be equipped with additional rating plates for variable speed applications.

Those include the following information:
- speed range
- power range
- voltage and current range
- type of torque (constant or quadratic)
- and converter type and required minimum switching frequency.

6.9 Commissioning the variable speed application

The commissioning of the variable speed application must be done according to the instructions of the frequency converter and local laws and regulations. The requirements and limitations set by the application must also be taken into account.

All parameters needed for setting the converter must be taken from the motor rating plates. The most often needed parameters are:
- nominal voltage
- nominal current
- nominal frequency
- nominal speed
- nominal power

ABB recommends using all the suitable protective features provided by the converter to improve the safety of the application. Converters usually provide features such as (names and availability of features depend on manufacturer and model of the converter):
- minimum speed
- maximum speed
- acceleration and deceleration times
- maximum current
- maximum torque
- stall protection

In case of missing or inaccurate information, do not operate the motor before ensuring correct settings!
7 Maintenance

7.1 General inspection

1. Inspect the motor at regular intervals, at least once a year. The frequency of checks depends on, for example, the humidity level of the ambient air and on the local weather conditions. This can initially be determined experimentally and must then be strictly adhered to.

2. Keep the motor clean and ensure free ventilation airflow. If the motor is used in a dusty environment, the ventilation system must be regularly checked and cleaned.

3. Check the condition of shaft seals (e.g. V-ring or radial seal) and replace if necessary.

4. Check the condition of connections and mounting and assembly bolts.

5. Check the bearing condition by listening for any unusual noise, vibration measurement, bearing temperature, inspection of spent grease or SPM bearing monitoring. Pay special attention to bearings when their calculated rated life time is coming to an end.

When signs of wear are noticed, dismantle the motor, check the parts and replace if necessary. When bearings are changed, replacement bearings must be of the same type as those originally fitted. The shaft seals have to be replaced with seals of the same quality and characteristics as the originals when changing bearings.

In the case of the IP 55 motor and when the motor has been delivered with a plug closed, it is advisable to periodically open the drain plugs in order to ensure that the way out for condensation is not blocked and allows condensation to escape from the motor. This operation must be done when the motor is at a standstill and has been made safe to work on.

7.1.1 Standby motors

If the motor is in standby for a longer period of time on a ship or in other vibrating environment the following measures have to be taken:

1. The shaft must be rotated regularly every 2 weeks (to be reported) by means of starting up of the system. In case a start-up is not possible, for any reason, at least the shaft has to be turned by hand in order to achieve a different position once a week. Vibrations caused by other vessel's equipment will cause bearing pitting which should be minimized by regular operation/hand turning.

2. The bearing must be greased while rotating the shaft every year (to be reported). If the motor has been provided with roller bearing at the driven end, the transport lock must be removed before rotating the shaft. The transport locking must be remounted in case of transportation.

3. All vibrations must be avoided to prevent a bearing from failing. All instructions in the motor instruction manual for commissioning and maintenance have to be followed. The warranty will not cover the winding and bearing damages if these instructions have not been followed.
7.2 Lubrication

7.2.2 Motors with regreasable bearings

Lubrication information plate and general lubrication advice.

If the motor is equipped with a lubrication information plate, follow the given values.

Greasing intervals regarding mounting, ambient temperature and rotational speed are defined on the lubrication information plate.

During the first start or after a bearing lubrication a temporary temperature rise may appear, approximately 10 to 20 hours.

Some motors may be equipped with a collector for old grease. Follow the special instructions given for the equipment.

A. Manual lubrication

Regreasing while the motor is running
• Remove grease outlet plug or open closing valve if fitted.
• Be sure that the lubrication channel is open.
• Inject the specified amount of grease into the bearing.
• Let the motor run for 1-2 hours to ensure that all excess grease is forced out of the bearing.
• Close the grease outlet plug or closing valve, if fitted.

Regreasing while the motor is at a standstill
If it is not possible to re-grease the bearings while the motors are running, lubrication can be carried out while the motor is at a standstill.
• In this case, use only half the amount of grease and then run the motor for a few minutes at full speed.
• When the motor has stopped, apply the rest of the specified amount of grease to the bearing.
• After 1-2 running hours, close the grease outlet plug or closing valve, if fitted.

B. Automatic lubrication

The grease outlet plug must be removed permanently with automatic lubrication or open closing valve, if fitted.

ABB recommends only the use of electromechanical systems.

The amount of grease per lubrication interval stated in the table should be multiplied by three if a central lubrication system is used. When using a smaller automatic re-grease unit (one or two cartridges per motor) the normal amount of grease can be used.

<table>
<thead>
<tr>
<th>Frame size</th>
<th>Poles</th>
<th>Duty hours at 25 °C</th>
<th>Duty hours at 40 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>2</td>
<td>52 000</td>
<td>33 000</td>
</tr>
<tr>
<td>56</td>
<td>4–8</td>
<td>65 000</td>
<td>41 000</td>
</tr>
<tr>
<td>63</td>
<td>2</td>
<td>49 000</td>
<td>31 000</td>
</tr>
<tr>
<td>63</td>
<td>4–8</td>
<td>63 000</td>
<td>40 000</td>
</tr>
<tr>
<td>71</td>
<td>2</td>
<td>67 000</td>
<td>42 000</td>
</tr>
<tr>
<td>71</td>
<td>4–8</td>
<td>100 000</td>
<td>56 000</td>
</tr>
<tr>
<td>80–90</td>
<td>2</td>
<td>100 000</td>
<td>65 000</td>
</tr>
<tr>
<td>80–90</td>
<td>4–8</td>
<td>100 000</td>
<td>96 000</td>
</tr>
<tr>
<td>100–112</td>
<td>2</td>
<td>89 000</td>
<td>56 000</td>
</tr>
<tr>
<td>100–112</td>
<td>4–8</td>
<td>100 000</td>
<td>89 000</td>
</tr>
<tr>
<td>132</td>
<td>2</td>
<td>67 000</td>
<td>42 000</td>
</tr>
<tr>
<td>132</td>
<td>4–8</td>
<td>100 000</td>
<td>77 000</td>
</tr>
<tr>
<td>160</td>
<td>2</td>
<td>60 000</td>
<td>38 000</td>
</tr>
<tr>
<td>160</td>
<td>4–8</td>
<td>100 000</td>
<td>74 000</td>
</tr>
<tr>
<td>180</td>
<td>2</td>
<td>55 000</td>
<td>34 000</td>
</tr>
<tr>
<td>180</td>
<td>4–8</td>
<td>100 000</td>
<td>70 000</td>
</tr>
<tr>
<td>200</td>
<td>2</td>
<td>41 000</td>
<td>25 000</td>
</tr>
<tr>
<td>200</td>
<td>4–8</td>
<td>95 000</td>
<td>60 000</td>
</tr>
<tr>
<td>225</td>
<td>2</td>
<td>36 000</td>
<td>23 000</td>
</tr>
<tr>
<td>225</td>
<td>4–8</td>
<td>88 000</td>
<td>56 000</td>
</tr>
<tr>
<td>250</td>
<td>2</td>
<td>31 000</td>
<td>20 000</td>
</tr>
<tr>
<td>250</td>
<td>4–8</td>
<td>80 000</td>
<td>50 000</td>
</tr>
</tbody>
</table>

Data is valid up to 60 Hz.
When 2-pole motors are automatically re-greased, the note concerning lubricant recommendations for 2-pole motors in the Lubricants chapter should be followed.

The used grease should be suitable for automatic lubrication. The automatic lubrication system deliverer and the grease manufacturer’s recommendations should check.

Calculation example of amount of grease for automatic lubrication system

Central lubrication system: Motor IEC M3_P 315_4-pole in 50 Hz network, re-lubrication interval according to Table is 7600 h/55 g (DE) and 7600 h/40 g (NDE):

(DE) RLI = 55 g/7600 h*3*24 = 0,52 g/day

(NDE) RLI = 40 g/7600 h*3*24 = 0,38 g/day

Calculation example of amount of grease for single automation lubrication unit (cartridge)

(DE) RLI = 55 g/7600 h*24 = 0,17 g/day

(NDE) RLI = 40 g/7600 h*24 = 0,13 g/day

RLI = Re-lubrication interval, DE = Drive end, NDE = Non drive end

Table 7.2

<table>
<thead>
<tr>
<th>Frame size</th>
<th>Amount of grease g/bearing</th>
<th>kW 3600 r/min</th>
<th>kW 3000 r/min</th>
<th>kW 1800 r/min</th>
<th>kW 1500 r/min</th>
<th>kW 1000 r/min</th>
<th>kW 500-900 r/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>10</td>
<td>10 000</td>
<td>13 000</td>
<td></td>
<td>18 000</td>
<td>21 000</td>
<td>2 500</td>
</tr>
<tr>
<td>132</td>
<td>15</td>
<td>9 000</td>
<td>11 000</td>
<td></td>
<td>17 000</td>
<td>19 000</td>
<td>23 000</td>
</tr>
<tr>
<td>160</td>
<td>25</td>
<td>9 000</td>
<td>12 000</td>
<td>15 000</td>
<td>18 000</td>
<td>21 000</td>
<td>24 000</td>
</tr>
<tr>
<td>160</td>
<td>25</td>
<td>7 500</td>
<td>1 000</td>
<td></td>
<td>15 000</td>
<td>18 000</td>
<td>22 500</td>
</tr>
<tr>
<td>180</td>
<td>30</td>
<td>7 000</td>
<td>9 000</td>
<td>15 500</td>
<td>18 500</td>
<td>24 000</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>30</td>
<td>6 000</td>
<td>8 500</td>
<td>14 000</td>
<td>17 000</td>
<td>21 000</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>5 500</td>
<td>8 000</td>
<td>14 500</td>
<td>17 500</td>
<td>23 000</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>3 000</td>
<td>4 500</td>
<td>10 000</td>
<td>12 000</td>
<td>16 000</td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>50</td>
<td>4 000</td>
<td>6 500</td>
<td>13 000</td>
<td>16 500</td>
<td>22 000</td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>50</td>
<td>1 500</td>
<td>2 500</td>
<td>5 000</td>
<td>6 000</td>
<td>8 000</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>60</td>
<td>2 500</td>
<td>4 000</td>
<td>9 000</td>
<td>11 500</td>
<td>15 000</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>60</td>
<td>1 000</td>
<td>1 500</td>
<td>3 500</td>
<td>4 500</td>
<td>6 000</td>
<td></td>
</tr>
<tr>
<td>280(1)</td>
<td>60</td>
<td>2 000</td>
<td>3 500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>280(1)</td>
<td>60</td>
<td></td>
<td></td>
<td>8 000</td>
<td>10 500</td>
<td>14 000</td>
<td></td>
</tr>
<tr>
<td>280(1)</td>
<td>35</td>
<td>1 900</td>
<td>3 200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>280(1)</td>
<td>35</td>
<td></td>
<td></td>
<td>7 800</td>
<td>9 600</td>
<td>13 900</td>
<td></td>
</tr>
<tr>
<td>315</td>
<td>35</td>
<td>1 900</td>
<td>3 200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>315</td>
<td>55</td>
<td></td>
<td></td>
<td>5 900</td>
<td>7 600</td>
<td>11 800</td>
<td></td>
</tr>
<tr>
<td>355</td>
<td>35</td>
<td>1 900</td>
<td>3 200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>355</td>
<td>70</td>
<td></td>
<td></td>
<td>4 000</td>
<td>5 600</td>
<td>9 600</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>40</td>
<td>1 500</td>
<td>2 700</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>85</td>
<td>3 200</td>
<td>4 700</td>
<td></td>
<td>8 600</td>
<td>9 700</td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>40</td>
<td>1 500</td>
<td>2 700</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>95</td>
<td>2 500</td>
<td>3 900</td>
<td></td>
<td>7 700</td>
<td>8 700</td>
<td></td>
</tr>
<tr>
<td>500(8)</td>
<td>40</td>
<td>3 000</td>
<td>5 300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500(8)</td>
<td>85</td>
<td>6 400</td>
<td>9 500</td>
<td></td>
<td>17 200</td>
<td>19 400</td>
<td></td>
</tr>
<tr>
<td>5010</td>
<td>40</td>
<td>1 300</td>
<td>2 400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5010</td>
<td>85</td>
<td>4 900</td>
<td>7 200</td>
<td></td>
<td>13 200</td>
<td>14 800</td>
<td></td>
</tr>
<tr>
<td>5012</td>
<td>85</td>
<td></td>
<td></td>
<td>2 700</td>
<td>3 900</td>
<td>7 100</td>
<td></td>
</tr>
</tbody>
</table>

7.2.3 **Lubrication intervals and amounts**

Lubrication intervals for vertical motors are half of the values shown in the table below.

As a guide, adequate lubrication can be achieved for the following duration, according to L1. For duties with higher ambient temperatures please contact ABB. The informative formula to change the L1 values roughly to L10 values is L10 = 2.0 x L1, with manual lubrication.

The lubrication intervals are based on a bearing operating temperature of 80 °C (ambient temperature +25 °C).

An increase in the ambient temperature raises the temperature of the bearings correspondingly. The interval values should be halved for a 15 °C increase in bearing temperature and may be doubled for a 15 °C decrease in bearing temperature.

Higher speed operation, e.g. in frequency converter applications, or lower speed with heavy load will require shorter lubrication intervals.

WARNING

The maximum operating temperature of the grease and bearings, +110 °C, must not be exceeded. The designed maximum speed of the motor must not be exceeded.
7.2.4 Lubricants

WARNING

Do not mix different types of grease. Incompatible lubricants may cause bearing damage.

When re-greasing, use only special ball bearing grease with the following properties:

- good quality grease with lithium complex soap and with mineral- or PAO-oil
- base oil viscosity 100-160 cSt at 40 °C
- consistency NLGI grade 1.5 - 3 *)
- temperature range –30 °C - +120 °C, continuously operated
- factor is higher than 480,000 (calculated as Dm x n where Dm = average bearing diameter, mm; n = rotational speed, r/min).

The above mentioned grease specification is valid if the ambient temperature is above –30 °C or below +55 °C, and the bearing temperature is below 110 °C; otherwise, consult ABB regarding suitable grease.

Grease with the correct properties is available from all major lubricant manufacturers.

Admixtures are recommended, but a written guarantee must be obtained from the lubricant manufacturer, especially concerning EP admixtures, that admixtures do not damage bearings or the properties of lubricants at the operating temperature range.

The following high performance greases can be used:

- **Mobil** Unirex N2 or N3 (lithium complex base)
- **Mobil** Mobilith SHC 100 (lithium complex base)
- **Shell** Gadus S5 V 100 2 (lithium complex base)
- **Klüber** Klüberplex BEM 41-132 (special lithium base)
- **FAG** Arcanol TEMP110 (special lithium base)
- **Mobil** Unirex (lithium complex base)
- **Total** Multis Complex S2 A (lithium complex base)

WARNING

In general, lubricants containing EP admixtures are not recommended. In some cases it can cause harm in the bearing, therefore its use has to be evaluated case by case together with lubricant suppliers.

Always use high speed grease for high speed 2-pole motors where the speed factor is higher than 480,000 (calculated as Dm x n where Dm = average bearing diameter, mm; n = rotational speed, r/min).

The following greases can be used for high speed cast iron motors but not mixed with lithium complex greases:

- **Klüber** Klüber Quiet BQH 72-102 (polyurea base)
- **Lubcon** Turmogrease P703 (polyurea base)

If other lubricants are used, check with the manufacturer that the qualities correspond to those of the above mentioned lubricants. The lubrication intervals are based on the listed high performance greases above. Using other greases can reduce the interval.
8 After Sales Support

8.1 Spare parts

Unless otherwise stated, spare parts must be original parts or approved by ABB.

When ordering spare parts, the motor serial number, full type designation and product code, as stated on the rating plate, must be specified.

8.2 Dismantling, re-assembly and rewinding

Rewinding should always be carried out by qualified repair shops.

Smoke venting and other special motors should not be rewound without first contacting ABB.

8.3 Bearings

Special care should be taken with the bearings.

These must be removed using pullers and fitted by heating or using special tools.

Bearing replacement is described in detail in a separate instruction leaflet available from the ABB Sales Office.

Any directions placed on the motor, such as labels, must be followed. The bearing types indicated on the rating plate must not be changed.
Most of ABB’s motors have a sound pressure level not exceeding 82 dB (A) (± 3 dB) at 50 Hz. Values for specific motors can be found in the relevant product catalogs. At 60 Hz sinusoidal supply, the values are approximately 4 dB(A) higher compared to 50 Hz values stated in the product catalogs.

For sound pressure levels at frequency converter supplies, please contact ABB. When motor(s) need to be scrapped or recycled, appropriate means, local regulations and laws must be followed.
These instructions do not cover all details or variations in equipment nor provide information for every possible condition to be met in connection with installation, operation or maintenance. Should additional information be required, please contact the nearest ABB Sales Office.

Motor troubleshooting chart

Your motor service and any troubleshooting must be handled by qualified persons who have the proper tools and equipment.

Table 10.1: Troubleshooting

<table>
<thead>
<tr>
<th>TROUBLE</th>
<th>CAUSE</th>
<th>WHAT TO DO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor fails to start</td>
<td>Blown fuses</td>
<td>Replace fuses with proper type and rating.</td>
</tr>
<tr>
<td></td>
<td>Overload trips</td>
<td>Check and reset overload in starter.</td>
</tr>
<tr>
<td></td>
<td>Improper power supply</td>
<td>Check to see that power supplied agrees with motor rating plate and load factor.</td>
</tr>
<tr>
<td></td>
<td>Improper line connections</td>
<td>Check connections against diagram supplied with motor.</td>
</tr>
<tr>
<td></td>
<td>Open circuit in winding or control switch</td>
<td>Indicated by humming sound when switch is closed. Check for loose wiring connections and ensure that all control contacts are closing.</td>
</tr>
<tr>
<td></td>
<td>Mechanical failure</td>
<td>Check to see if motor and drive turn freely. Check bearings and lubrication.</td>
</tr>
<tr>
<td></td>
<td>Short circuited stator</td>
<td>Contact ABB or ensure that the supply is disconnected and grounding for work done, disconnect the cables and measure the insulation resistance.</td>
</tr>
<tr>
<td></td>
<td>Poor stator coil connection</td>
<td>Indicated by blown fuses. Motor must be rewound. Remove end shields and locate fault.</td>
</tr>
<tr>
<td></td>
<td>Motor may be overloaded</td>
<td>Reduce load.</td>
</tr>
<tr>
<td>Motor stalls</td>
<td>One phase may be open</td>
<td>Check lines for open phase.</td>
</tr>
<tr>
<td></td>
<td>Wrong application</td>
<td>Change type or size. Consult equipment supplier.</td>
</tr>
<tr>
<td></td>
<td>Overload</td>
<td>Reduce load.</td>
</tr>
<tr>
<td></td>
<td>Low voltage</td>
<td>Ensure the rating plate voltage is maintained. Check connection.</td>
</tr>
<tr>
<td></td>
<td>Open circuit</td>
<td>Fuses blown. Check overload relay, stator and push buttons.</td>
</tr>
<tr>
<td>Motor runs and then dies down</td>
<td>Power failure</td>
<td>Check for loose connections to line, fuses and control.</td>
</tr>
<tr>
<td>Motor does not accelerate up to nominal speed</td>
<td>Not applied properly</td>
<td>Consult equipment supplier for proper type.</td>
</tr>
<tr>
<td></td>
<td>Voltage too low at motor terminals because of line drop</td>
<td>Use higher voltage or transformer terminals or reduce load. Check connections. Check conductors for proper size.</td>
</tr>
<tr>
<td></td>
<td>Starting load too high</td>
<td>Check the motor’s starts against “no load”.</td>
</tr>
<tr>
<td></td>
<td>Broken rotor bars or loose rotor</td>
<td>Look for cracks near the rings. A new rotor may be required, as repairs are usually temporary.</td>
</tr>
<tr>
<td></td>
<td>Open primary circuit</td>
<td>Locate fault with testing device and repair.</td>
</tr>
<tr>
<td>TROUBLE</td>
<td>CAUSE</td>
<td>WHAT TO DO</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Motor takes too long to accelerate and/or draws high current</td>
<td>Excessive load</td>
<td>Reduce load.</td>
</tr>
<tr>
<td></td>
<td>Low voltage during start</td>
<td>Check for high resistance. Make sure that an adequate cable size is used.</td>
</tr>
<tr>
<td></td>
<td>Defective squirrel cage rotor</td>
<td>Replace with new rotor.</td>
</tr>
<tr>
<td></td>
<td>Applied voltage too low</td>
<td>Correct power supply.</td>
</tr>
<tr>
<td>Wrong rotation direction</td>
<td>Wrong sequence of phases</td>
<td>Reverse connections at motor or at switchboard.</td>
</tr>
<tr>
<td>Motor overheats while running</td>
<td>Overload</td>
<td>Reduce load.</td>
</tr>
<tr>
<td></td>
<td>Frame or ventilation openings may be full of dirt and prevent proper ventilation of motor</td>
<td>Open vent holes and check for a continuous stream of air from the motor.</td>
</tr>
<tr>
<td></td>
<td>Motor may have one phase open</td>
<td>Check to make sure that all leads and cables are well connected.</td>
</tr>
<tr>
<td></td>
<td>Grounded coil</td>
<td>Motor must be rewound.</td>
</tr>
<tr>
<td></td>
<td>Unbalanced terminal voltage</td>
<td>Check for faulty leads, connections and transformers.</td>
</tr>
<tr>
<td>Motor vibrates</td>
<td>Motor misaligned</td>
<td>Realign.</td>
</tr>
<tr>
<td></td>
<td>Weak support</td>
<td>Strengthen base.</td>
</tr>
<tr>
<td></td>
<td>Coupling out of balance</td>
<td>Balance coupling.</td>
</tr>
<tr>
<td></td>
<td>Driven equipment unbalanced</td>
<td>Rebalance driven equipment.</td>
</tr>
<tr>
<td></td>
<td>Defective bearings</td>
<td>Replace bearings.</td>
</tr>
<tr>
<td></td>
<td>Bearings not in line</td>
<td>Repair motor.</td>
</tr>
<tr>
<td></td>
<td>Balancing weights shifted</td>
<td>Rebalance rotor.</td>
</tr>
<tr>
<td></td>
<td>Contradiction between balancing of rotor and coupling (half key - full key)</td>
<td>Rebalance coupling or rotor.</td>
</tr>
<tr>
<td></td>
<td>Poly phase motor running single phase</td>
<td>Check for open circuit.</td>
</tr>
<tr>
<td></td>
<td>Excessive end play</td>
<td>Adjust bearing or add shim.</td>
</tr>
<tr>
<td>Scrapping noise</td>
<td>Fan rubbing end shield or fan cover</td>
<td>Correct fan mounting.</td>
</tr>
<tr>
<td></td>
<td>Loose on bedplate</td>
<td>Tighten holding bolts.</td>
</tr>
<tr>
<td>Noisy operation</td>
<td>Air gap not uniform</td>
<td>Check and correct end shield fits or bearing fits.</td>
</tr>
<tr>
<td></td>
<td>Rotor unbalance</td>
<td>Rebalance rotor.</td>
</tr>
<tr>
<td>Hot bearings</td>
<td>Bent or sprung shaft</td>
<td>Straighten or replace shaft.</td>
</tr>
<tr>
<td></td>
<td>Excessive belt pull</td>
<td>Decrease belt tension.</td>
</tr>
<tr>
<td></td>
<td>Pulleys too far away from shaft shoulder</td>
<td>Move pulley closer to motor bearing.</td>
</tr>
<tr>
<td></td>
<td>Pulley diameter too small</td>
<td>Use larger pulleys.</td>
</tr>
<tr>
<td></td>
<td>Misalignment</td>
<td>Correct by realignment of the drive.</td>
</tr>
<tr>
<td></td>
<td>Insufficient grease</td>
<td>Maintain proper quality and amount of grease in bearing.</td>
</tr>
<tr>
<td></td>
<td>Deterioration of grease or lubricant</td>
<td>Remove old grease, wash bearings thoroughly in kerosene and replace with new grease.</td>
</tr>
<tr>
<td></td>
<td>contaminated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Excess lubricant</td>
<td>Reduce quantity of grease, bearing should not be more than half full.</td>
</tr>
<tr>
<td></td>
<td>Overloaded bearing</td>
<td>Check alignment, side and end thrust.</td>
</tr>
<tr>
<td></td>
<td>Broken ball or rough races</td>
<td>Replace bearing, clean housing thoroughly first.</td>
</tr>
</tbody>
</table>

11 Figures

Figure 1. Diagram illustrating the insulation resistance dependence from the temperature and how to correct the measured insulation resistance to the temperature of 40 °C.

Figure 2. Mounting of half-coupling or pulley

Key
- X-axis: Winding temperature, Celsius Degrees
- Y-axis: Insulation Resistance Temperature Coefficient, ktc

1) To correct observed insulation resistance, R_i, to 40 °C multiply it by the temperature coefficient k_{tc}. $R_{40° C} = R_i \times ktc$
Figure 3. Connection of terminals for main supply.

Figure 4. Voltage and frequency deviation in zones A and B.

Key

1. zone A
2. zone B (outside zone A)
3. rating point

Diagram:

- **X axis:** frequency p.u.
- **Y axis:** voltage p.u.
Guideline loadability curves with converters with DTC control

- Figure 5a. Converter with DTC control, 50 Hz, temperature rise B
- Figure 5b. Converter with DTC control, 60 Hz, temperature rise B
- Figure 5c. Converter with DTC control, 50 Hz, temperature rise F
- Figure 5d. Converter with DTC control, 60 Hz, temperature rise F

![Figure 5a](image1)
![Figure 5b](image2)
![Figure 5c](image3)
![Figure 5d](image4)

1. Self ventilated, EC frame sizes 56-132
2. Self ventilated, EC frame sizes 160-450
3. Separate motor cooling (force ventilated)
Guideline loadability curves with other voltage source PWM type

Figure 6a. Other voltage source PWM type converter, 50 Hz, temperature rise B

Figure 6b. Other voltage source PWM type converter, 60 Hz, temperature rise B

Figure 6c. Other voltage source PWM type converter, 50 Hz, temperature rise F

Figure 6d. Other voltage source PWM type converter, 60 Hz, temperature rise F
Inhalte

1 Einführung ... 35
 1.1 Konformitätserklärung .. 35
 1.2 Gültigkeit .. 35

2 Sicherheitshinweise ... 36

3 Handhabung ... 37
 3.1 Einleitung ... 37
 3.2 Transport und Lagerung .. 37
 3.3 Heben ... 38
 3.4 Motorgewicht .. 38

4 Installation und Inbetriebnahme ... 39
 4.1 Allgemeines ... 39
 4.2 Motoren mit anderen als Rillenkugellagern ... 39
 4.3 Isolationswiderstandsprüfung ... 40
 4.4 Fundament .. 40
 4.5 Auswuchten und Anbau von Kupplungshälften und Riemenscheiben 41
 4.6 Einbau und Ausrichtung des Motors ... 41
 4.7 Radialkräfte und Riementriebe ... 41
 4.8 Motoren mit Kondenswasser-Ablaufstopfen .. 42
 4.9 Verkabelung und elektrische Anschlüsse ... 42
 4.9.1 Anschlüsse für unterschiedliche Startmethoden 43
 4.9.2 Anschlüsse von Zubehör .. 43
 4.10 Anschlussklemmen und Drehrichtung .. 43

5 Bedienung ... 44
 5.1 Allgemeines .. 44

6 Niederspannungsmotoren bei drehzahlgeregelter Anwendung 45
 6.1 Einführung ... 45
 6.2 Wicklungsisolierung ... 45
 6.2.1 Auswahl der Wicklungsisolierung für ABB-Umrichter 45
 6.2.2 Auswahl der Wicklungsisolierung für alle anderen Umrichter 45
 6.3 Thermoschutz .. 45
 6.4 Lagerströme .. 46
 6.4.1 Beseitigung von Lagerströmen bei ABB-Umrichtern 46
 6.4.2 Beseitigung von Lagerströmen bei allen anderen Umrichtern 46
 6.5 Verkabelung, Erdung und EMV .. 47
 6.6 Betriebsgeschwindigkeit .. 47
 6.7 Motoren bei drehzahlgeregelter Anwendungen .. 47
 6.7.1 Allgemeines ... 47
 6.7.2 Motorbelastbarkeit mit AC_8___-Umrichterreihen mit DTC-Steuerung . 47
 6.7.3 Motorbelastbarkeit mit AC_5___-Umrichterreihen 48
 6.7.4 Belastbarkeit des Motors mit anderen PWM-Umrichtern 48
 6.7.5 Kurzzeitige Überlast .. 48
 6.8 Leistungsschilder .. 48
 6.9 Inbetriebnahme des drehzahlgeregulierten Antriebs 48

6.4.2. Beseitigung von Lagerströmen bei allen anderen Umrichtern 46
6.4.1 Beseitigung von Lagerströmen bei ABB-Umrichtern 46
6.5 Verkabelung, Erdung und EMV .. 47
6.6 Betriebsgeschwindigkeit .. 47
6.7 Motoren bei drehzahlgeregelter Anwendungen .. 47
 6.7.1 Allgemeines ... 47
 6.7.2 Motorbelastbarkeit mit AC_8___-Umrichterreihen mit DTC-Steuerung . 47
 6.7.3 Motorbelastbarkeit mit AC_5___-Umrichterreihen 48
 6.7.4 Belastbarkeit des Motors mit anderen PWM-Umrichtern 48
 6.7.5 Kurzzeitige Überlast .. 48
6.8 Leistungsschilder .. 48
6.9 Inbetriebnahme des drehzahlgeregulierten Antriebs 48

6.4.1 Beseitigung von Lagerströmen bei ABB-Umrichtern 46
6.5 Verkabelung, Erdung und EMV .. 47
6.6 Betriebsgeschwindigkeit .. 47
6.7 Motoren bei drehzahlgeregelter Anwendungen .. 47
 6.7.1 Allgemeines ... 47
 6.7.2 Motorbelastbarkeit mit AC_8___-Umrichterreihen mit DTC-Steuerung . 47
 6.7.3 Motorbelastbarkeit mit AC_5___-Umrichterreihen 48
 6.7.4 Belastbarkeit des Motors mit anderen PWM-Umrichtern 48
 6.7.5 Kurzzeitige Überlast .. 48
6.8 Leistungsschilder .. 48
6.9 Inbetriebnahme des drehzahlgeregulierten Antriebs 48
1 Einführung

Die Konformität des Endprodukts gemäß der Richtlinie 2006/42/EG (Maschinen) ist vom Auftraggeber beim Einbau des Motors in die Maschine nachzuweisen.

1.1 Konformitätserklärung

Die Konformität des Endprodukts gemäß der Richtlinie 2006/42/EG (Maschinen) ist vom Auftraggeber beim Einbau des Motors in die Maschine nachzuweisen.

1.2 Gültigkeit

Diese Anleitung gilt für die folgenden elektrischen Maschinentypen von ABB, sowohl im Motor- als auch im Generatorbetrieb:

- Reihe MT*, MXMA,
- in den IEC-Baugrößen 56–500
- in den NEMA-Baugrößen 58*, 50**

Für liegt ein separates Handbuch vor, z. B. für Ex-Motoren „Niederspannungsmotoren für explosionsfähige Atmosphären: Montage-, Betriebs-, Wartungs- und Sicherheitshandbuch (3GZF500730-47)."

Aufgrund spezieller Anwendungs- und/oder Konstruktionshinweise können für manche Maschinen zusätzliche Informationen erforderlich sein.

Für die folgende Motoren liegt ein zusätzliches Handbuch vor:

- Rollgangsmotoren
- Wassergekühlte Motoren
- Entrauchungsmotoren
- Bremsmotoren
- Motoren für Hochtemperaturanwendungen
- Motoren für Anwendungen für die Schifffahrt für die offene Montage auf Decks
- von Schiffen oder Offshore-Anlagen
2 Sicherheitshinweise

Die Montage und der Betrieb des Motors dürfen nur durch hierfür qualifiziertes Fachpersonal, das mit den Arbeitsschutz- und Sicherheitsvorschriften und den gesetzlichen Bestimmungen des jeweiligen Landes vertraut ist, erfolgen.

Zur Unfallverhütung sind entsprechend den im betreffenden Land geltenden Gesetzen und Bestimmungen bei der Montage und beim Betrieb des Motors geeignete Sicherheitseinrichtungen zu verwenden.

WARNUNG

Notstopp-Bedienelemente müssen mit Wiedereinschaltsperren versehen sein.

Nach einem Notstopp kann ein Wiedereinschaltsbefehl nur ausgeführt werden, nachdem die Wiedereinschaltsperre vorsätzlich zurückgesetzt wurde.

Die folgenden Warnhinweise sind zu beachten:

2. Vorsicht: Auch im normalen Betrieb und besonders nach dem Ausschalten können an der Oberfläche des Motors hohe Temperaturen auftreten!
4. Auf rotierende Teile des Motors achten.
5. Unter Spannung stehende Klemmenkästen nicht öffnen.
3 Handhabung

3.1 Einleitung

Bei Drehzahlregelung die maximal zulässige Belastbarkeit entsprechend der auf dem zweiten Leistungsschild des Motors angegebenen Frequenz überprüfen.

3.2 Transport und Lagerung

Der Motor muss in einem Gebäude (über -20 °C) trocken sowie schwingungs- und staubfrei gelagert werden. Beim Transport sind Erschütterungen, Stürze und Feuchtigkeit zu vermeiden. Wenn andere Bedingungen vorliegen, wenden Sie sich bitte an ABB.

Ungeschützte bearbeitete Oberflächen (Wellenenden und Flansche) sollten mit einem Korrosionsschutzmittel behandelt werden.

Für eine gleichmäßige Schmierung wird empfohlen, die Wellen (einmal pro Quartal) regelmäßig von Hand zu drehen.

Falls vorhanden, sollten Anti-Kondensationsheizungen verwendet werden, um Kondensation im Motor zu verhindern.

Der Motor darf im Stillstand keinen äußeren Vibrationen ausgesetzt sein, um Schäden an den Lagern zu vermeiden.

Motoren mit Zylinderrollen- oder Schräkgugellagern müssen beim Transport mit Sperrvorrichtungen gesichert werden.
3.3 Heben

WARNUNG
Beim Heben, der Montage oder Wartung müssen alle erforderlichen Sicherheitsvorrichtungen vorhanden sein. Besondere Aufmerksamkeit ist darauf zu richten, dass sich niemand unter einer angehobenen Last aufhält.

3.4 Motorgewicht

<table>
<thead>
<tr>
<th>Baugröße</th>
<th>Aluminium, Gewicht kg</th>
<th>Grauguss, Gewicht kg</th>
<th>Zus. für Bremse</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>4,5</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>63</td>
<td>6</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>71</td>
<td>8</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>80</td>
<td>14</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>90</td>
<td>20</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>32</td>
<td>40</td>
<td>16</td>
</tr>
<tr>
<td>112</td>
<td>36</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>132</td>
<td>93</td>
<td>90</td>
<td>30</td>
</tr>
<tr>
<td>160</td>
<td>149</td>
<td>130</td>
<td>30</td>
</tr>
<tr>
<td>180</td>
<td>162</td>
<td>190</td>
<td>45</td>
</tr>
<tr>
<td>200</td>
<td>245</td>
<td>275</td>
<td>55</td>
</tr>
<tr>
<td>225</td>
<td>300</td>
<td>360</td>
<td>75</td>
</tr>
<tr>
<td>250</td>
<td>386</td>
<td>405</td>
<td>75</td>
</tr>
<tr>
<td>280</td>
<td>425</td>
<td>800</td>
<td>–</td>
</tr>
<tr>
<td>315</td>
<td>–</td>
<td>1700</td>
<td>–</td>
</tr>
<tr>
<td>355</td>
<td>–</td>
<td>2700</td>
<td>–</td>
</tr>
<tr>
<td>400</td>
<td>–</td>
<td>3500</td>
<td>–</td>
</tr>
<tr>
<td>450</td>
<td>–</td>
<td>4500</td>
<td>–</td>
</tr>
<tr>
<td>5000</td>
<td>–</td>
<td>2800</td>
<td>–</td>
</tr>
</tbody>
</table>

Falls der Motor mit separatem Lüfter ausgestattet ist, bitten Sie ABB um die Gewichtsangaben.
4 Installation und Inbetriebnahme

4.1 Allgemeines

Alle Typenschildwerte müssen sorgfältig überprüft werden, um sicherzustellen, dass der Motorschutz und der Anschluss ordnungsgemäß durchgeführt werden kann.

Bei Inbetriebnahme des Motors oder nach einer längeren Lagerung (über sechs Monate) ist die angegebene Fettmenge aufzufüllen.

Näheres hierzu siehe Abschnitt „7.2.2 Motoren mit Nippeln zum Nachschmieren“.

Bei Motoren mit Zylinderrollenlagern:
Der Betrieb der Motoren ohne ausreichende Radialkraft auf die Welle führt aufgrund eines „Rutscheffekts“ zur Beschädigung des Rollenlagers.

Motoren mit Schrägkugellagern:
Der Betrieb des Motors ohne ausreichende Axialkraft auf die Welle führt zur Beschädigung des Schrägkugellagers.

4.2 Motoren mit anderen als Rillenkugellagern

Die Transportverriegelung, falls vorhanden, entfernen. Falls möglich, drehen Sie die Welle des Motors mit der Hand und überprüfen Sie sie auf freies Rotieren.

Motoren mit Zylinderrollenlagern:
Der Betrieb der Motoren ohne ausreichende Radialkraft auf die Welle führt aufgrund eines „Rutscheffekts“ zur Beschädigung des Rollenlagers.

Motoren mit Schrägkugellagern:
Der Betrieb des Motors ohne ausreichende Axialkraft auf die Welle führt zur Beschädigung des Schrägkugellagers.

WARNUNG
Bei Motoren mit Schrägkontaktlagern darf die Axialkraft niemals die Richtung ändern.

Die Art des verwendeten Lagers ist auf dem Typenschild angegeben.
4.3 Isolationswiderstandsprüfung

Den Isolationswiderstand (IR) vor der Inbetriebnahme, nach langem Stillstand oder Lagerung oder wenn die Gefahr besteht, dass sich Feuchtigkeit an den Wicklungen aufbaut, messen. IR ist direkt an den Motorklemmen bei abgeklemmten Versorgungsleitungen zu messen, um eine Beeinträchtigung des Ergebnisses zu vermeiden.

Der Isolationswiderstand sollte als Trendindikator verwendet werden, um Veränderungen im Isolationssystem zu bestimmen. Bei neuen Maschinen beträgt der Isolationswiderstand in der Regel Tausende von MOhm und deshalb ist es wichtig, Änderungen des IRs zu verfolgen, um den Zustand des Isolationssystems zu kennen. Typischerweise sollen die Werte des IR nicht unter 10 MΩ und auf keinen Fall unter 1 MΩ liegen (gemessen mit 500 oder 1000 VDC und korrigiert auf 25 °C). Der Wert des IR ist zu halbieren, für jeden Temperaturanstieg um 20 °C.

Abbildung 1, in Kapitel 11, kann für die Isolationskorrektur auf die gewünschte Temperatur verwendet werden.

4.4 Fundament

Der Betreiber trägt die volle Verantwortung für die Bereitstellung des Fundaments.

Metallfundamente müssen einen Korrosionsschutz anstrich erhalten.

WARNUNG
Um die Gefahr eines elektrischen Schlages auszuschließen, ist das Motorgehäuse zu erden und die Wicklungen sind unmittelbar nach der Messung gegen das Gehäuse zu entladen.

Wenn der Bezugswert nicht erreicht wird, ist die Feuchte innerhalb der Wicklung zu groß und eine Ofentrocknung wird erforderlich. Die Ofentemperatur sollte für 12–16 Stunden bei 90 °C liegen, danach für 6–8 Stunden bei 105 °C.

Salzwassergetränkte Wicklungen müssen in der Regel erneuert werden.
4.5 Auswuchten und Anbau von Kupplungshälften und Riemenscheiben

Kupplungshälften und Riemenscheiben dürfen nur mit geeigneter Ausrüstung und Werkzeug auf der Welle montiert werden, damit Lager und Dichtungen nicht beschädigt werden.

Niemals eine Kupplungshälfte oder Riemenscheibe durch Hämmern oder Entfernen mit einem Hebel entfernen, der gegen das Gehäuse des Motors gedrückt wird.

4.6 Einbau und Ausrichtung des Motors

Eine sorgfältige Ausrichtung ist von entscheidender Bedeutung für das Vermeiden von Lagerschäden, Schwingungen und möglichen Brüchen der Wellenenden.

Den Motor mit geeigneten Bolzen oder Ankerschrauben montieren und zwischen Fundament und Füßen Distanzscheiben einsetzen.

Den Motor mit geeigneten Methoden ausrichten. Gegebenenfalls die Positionsbohrungen durchführen und die Positionsbolzen an ihren Positionen befestigen.

Einbaugenaugkeit der Kupplungshälfte: prüfen, ob das Spiel b kleiner als 0,05 mm und die Differenz a1 zu a2 ebenfalls kleiner als 0,05 mm ist. Siehe Abbildung 2.

Ausrichtung nach endgültigem Festziehen der Bolzen oder Ankerschrauben erneut prüfen.

Es ist zu überprüfen, ob am Motor eine ausreichende Luftströmung vorhanden ist. Außerdem muss sichergestellt werden, dass in der Nähe befindliche Anlagen, Oberflächen oder direkte Sonneneinstrahlung keine zusätzliche Wärmebelastung für den Motor darstellen.

Bei Motoren mit Flanschanbau (z. B. B5, B35, V1) sicherstellen, dass die Konstruktion eine ausreichende Luftströmung an der Außenfläche des Flansches zulässt.

4.7 Radialkräfte und Riementriebe

WARNUNG

Das übermäßige Spannen des Antriebsriemens führt zur Beschädigung der Lager und kann den Bruch der Welle zur Folge haben.
4.8 Motoren mit Kondenswasser-Ablaufstopfen

Motoren mit abdichtbaren Kunststoffablaufstopfen werden in geöffneter Position geliefert. In sehr staubhaltigen Umgebungen müssen alle Ablauföffnungen verschlossen sein.

4.9 Verkabelung und elektrische Anschlüsse

Der Verteilerkasten von eintourigen Standardmotoren enthält in der Regel sechs Anschlussklemmen und zumindest eine Erdungsklemme.

Zusätzlich zu den Klemmen der Hauptwicklung und der Erdung kann der Klemmkasten auch Anschlüsse für Kaltleiter, Heizelemente oder anderes Zubehör enthalten.

Für die Anschlüsse aller Hauptkabel sind geeignete Kabelschuhe zu verwenden. Kabel für Zubehör können ohne weitere Vorrichtungen an den entsprechenden Klemmenleisten angeschlossen werden.

Die Motoren sind nur für ortsfeste Installation vorgesehen. Sofern nicht anders angegeben, ist die Kabeleinführung mit Metrischem Gewinde ausgeführt. Die IP-Schutzart der Kabelverschraubung muss mit jenen der Klemmenkästen identisch sein.

Während der Installation kann eine zertifizierte Buchse oder ein Leitungsstecker verwendet werden.

Die Erdung muss gemäß den örtlichen Vorschriften durchgeführt werden, bevor der Motor an die Versorgungsspannung angeschlossen wird.

Die Erdungsklemme am Gehäuse muss mit einem Kabel gemäß Tabelle 5 von IEC/EN 60034-1 an die PE (Schutzerde) angeschlossen werden.

Tabelle 4.1: Minimale Querschnittsfläche der Schutzleiter

<table>
<thead>
<tr>
<th>Querschnittsfläche der Phasenleiter der Anlage S, [mm²]</th>
<th>Mindestquerschnitt des entsprechenden Schutzleiters, S, [mm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>35</td>
<td>25</td>
</tr>
<tr>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>70</td>
<td>35</td>
</tr>
<tr>
<td>95</td>
<td>50</td>
</tr>
<tr>
<td>120</td>
<td>70</td>
</tr>
<tr>
<td>150</td>
<td>70</td>
</tr>
<tr>
<td>185</td>
<td>95</td>
</tr>
<tr>
<td>240</td>
<td>120</td>
</tr>
<tr>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td>400</td>
<td>185</td>
</tr>
</tbody>
</table>

Zusätzlich müssen die Erdungs- oder Masseanschlüsse an der Außenseite des elektrischen Geräts über Klemmen für einen Leiteranschluss mit einem Querschnitt von mindestens 4 mm² verfügen.

Im Hinblick auf die Einhaltung von IEC/EN 60079-0 sowie nationaler Montagenormen sind die Kabel nahe dem Klemmkasten mit einem mechanischen Schutz und mit einer Zugentlastungsvorrichtung zu versehen.

Nicht benutzte Kabeleinführungen sind entsprechend IP-Schutzart des Klemmkastens mit Verschlußelementen zu versehen.

Schutzart und Durchmesser sind in den Unterlagen zur Kabelverschraubung spezifiziert.

WARNUNG

Geeignete Kabelverschraubungen und Dichtungen in den Kabeleinführungen entsprechend Typ und Durchmesser des Kabels verwenden.
Wenn die Umgebungstemperatur +50 °C übersteigt, müssen Kabel mit einer zulässigen Betriebstemperatur von mindestens +90 °C verwendet werden. Gemäß der Einbaubedingungen müssen bei der Dimensionierung der Kabel auch alle anderen Umrechnungsfaktoren berücksichtigt werden.

Stellen Sie sicher, dass der Motorschutz den jeweiligen Umgebungs- und Witterungsbedingungen entspricht. Stellen Sie zum Beispiel sicher, dass kein Wasser in den Motor oder in die Klemmenkästen eindringen kann.

4.9.1 Anschlüsse für unterschiedliche Startmethoden
Der Verteilerkasten von eintourigen Standardmotoren enthält in der Regel sechs Anschlussklemmen und zumindest eine Erdungsklemme. Dies ermöglicht Starts mit Netzbetrieb oder Stern-/Dreieckanlauf.

Bei polumschaltbaren und Spezialmotoren sind die entsprechenden Angaben im Klemmenkasten oder im Motorhandbuch zu beachten.

Spannung und Anschlussart sind auf dem Typenschild angegeben.

Direktanlauf (DOL):
Y- oder D-Wicklungsanschlüsse können benutzt werden.

Zum Beispiel 690 VY, 400 VD bedeutet ein Y-Anschluss für 690 V und ein D-Anschluss für 400 V.

Stern-/Dreieckanlauf (Y/D):

Andere Startverfahren und widrige Startbedingungen:
Wenn andere Startverfahren (z. B. Wandler oder Sanftstarter) in den Betriebsarten S1 und S2 verwendet werden, wird angenommen, dass das Gerät gemäß dem Standard IEC 60079-0 „vom Netz isoliert ist, wenn die elektrische Maschine läuft“, und Wärmeschutz ist optional.

4.9.2 Anschlüsse von Zubehör

Die maximale Messspannung für die Kaltleiter beträgt 2,5 V. Der maximale Messstrom für Pt100 beträgt 5 mA. Die Verwendung einer höheren Messspannung oder eines höheren Messstroms kann zu beschädigten Temperaturfühlern führen.

Die Isolierung der Wärmesensoren erfüllt die Anforderungen einer Grundisolierung.

4.10 Anschlussklemmen und Drehrichtung

Von der Wellenstirnfläche auf das Antriebsende des Motors gesehen dreht die Welle im Uhrzeigersinn, und die Schaltphasenfolge – L1, L2, L3 – wird, wie in Abb. 3 gezeigt, an die Klemmen angeschlossen.

Durch Umpolen zwei der Zuleitungskabel kann die Drehrichtung geändert werden.

Falls der Motor einen Ein-Weg-Lüfter hat, sicherstellen, dass er in Pfeilrichtung dreht (Pfeil am Motor angebracht).
5 Bedienung

5.1 Allgemeines

Sofern auf dem Leistungsschild nicht anders angegeben, sind die Motoren für folgende Bedingungen ausgelegt.

• Die Motoren sind nur für ortsfeste Installation vorgesehen.
• Die Umgebungstemperatur liegt im Bereich von -20 °C bis +40 °C.
• Die maximal zulässige Aufstellungshöhe liegt bei 1.000 m über Normal Null.
• Die Variation von Netzspannung und Frequenz, darf die in einschlägigen Normen genannten Grenzwerte nicht überschreiten. Die Toleranz für die Versorgungsspannung beträgt ±5 % und für die Frequenz ±2 %, gemäß der Abbildung 4 (EN / IEC 60034-1, Absatz 7.3, Zone A). Beide Extremwerte sollten nicht zur gleichen Zeit auftreten.

Werden diese Grenzen überschritten, müssen Motor- und Konstruktionsdaten überprüft werden. Für weitere Informationen wenden Sie sich bitte an ABB.

WARNUNG

Die Nichtbeachtung von Anweisungen oder Wartungsarbeiten am Gerät kann die Sicherheit gefährden und somit die Verwendung des Motors verhindern.
6 Niederspannungsmotoren bei drehzahlgeregelter Anwendung

6.1 Einführung

6.2 Wicklungsisolierung

Drehzahlgeregelte Antriebe erzeugen höhere Spannungsbelastungen als die sinusförmige Versorgung an der Wicklung des Motors. Daher muss bei Bedarf der Filter am Umrichterausgang entsprechend den folgenden Anweisungen bemessen werden.

6.2.1 Auswahl der Wicklungsisolierung für ABB-Umrichter
Bei z.B. ABB AC_8__-Baureihen und AC_5__-Baureihe Einzelantriebe mit Diodenversorgungseinheit (ungeregelt Gleichspannung), kann die Auswahl der Filter nach Tabelle 6.1 erfolgen.

6.2.2 Auswahl der Wicklungsisolierung für alle anderen Umrichter

6.3 Thermoschutz

6.4 Lagerströme

Isolierte Lager oder Lagerkonstruktionen, Gleichaktfilter und geeignete Verkabelungs- und Erdungsverfahren sind gemäß den folgenden Anweisungen und unter Verwendung der Tabelle 6.1 zu verwenden.

Tabelle 6.1 Auswahl der Wicklungsisolierung für ABB-Umrichter

<table>
<thead>
<tr>
<th>P_n < 100 kW</th>
<th>P_n ≥ 100 kW oder IEC315 ≤ Baugröße ≤ IEC355</th>
<th>P_n ≥ 350 kW oder IEC400 ≤ Baugröße ≤ IEC450</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_N ≤ 500 V</td>
<td>Standardmotor + Isoliertes N-Lager</td>
<td>Standardmotor + Isoliertes N-Lager</td>
</tr>
<tr>
<td>500V > U_N ≤ 600 V</td>
<td>Standardmotor + dU/dt –Filter (Reaktor) ODER Verstärkte Isolierung</td>
<td>Standardmotor + Isoliertes N-Lager ODER Verstärkte Isolierung + Isoliertes N-Lager</td>
</tr>
<tr>
<td>500V > U_N ≤ 600 V (Kabellänge > 150 m)</td>
<td>Standardmotor + Isoliertes N-Lager</td>
<td>Standardmotor + Isoliertes N-Lager</td>
</tr>
<tr>
<td>600V > U_N ≤ 690 V</td>
<td>Verstärkte Isolierung + dU/dt –Filter (Reaktor)</td>
<td>Verstärkte Isolierung + dU/dt –Filter (Reaktor) + Isoliertes N-Lager</td>
</tr>
<tr>
<td>600V > U_N ≤ 690 V (Kabellänge > 150 m)</td>
<td>Verstärkte Isolierung + Isoliertes N-Lager</td>
<td>Verstärkte Isolierung + Isoliertes N-Lager + Gleichaktfilter</td>
</tr>
</tbody>
</table>

6.4.1 Beseitigung von Lagerströmen bei ABB-Umrichtern

Bei ABB-Frequenzumrichtern, z. B. AC_8_ _- und AC_5_ _, Baureihe mit Diodenversorgungseinheit, sind die Verfahren nach Tabelle 6.1 zur Vermeidung schädlicher Lagerströme in Motoren anzuwenden.

Empfohlen werden isolierte Lager mit aluminiumoxidbeschichteten Innen- und/oder Außenbohrungen oder keramischen Wälzkörpern.
Aluminiumoxidbeschichtungen sollten ebenfalls mit Dichtmittel behandelt werden, um das Eindringen von Schmutz und Feuchtigkeit in die poröse Beschichtung zu vermeiden. Genaue Angaben zum Typ der Lagerisolierung finden Sie auf dem Leistungschild des Motors. Das Ändern des Lagertyps oder der Isolierungsmethode ohne die Genehmigung von ABB ist untersagt.

6.4.2 Beseitigung von Lagerströmen bei allen anderen Umrichtern

Der Benutzer ist dafür verantwortlich, den Motor und die angetriebenen Geräte vor schädlichen Lagerströmen zu schützen. Die in Kapitel 6.4.1 beschriebenen Anweisungen können als Richtlinie verwendet werden, aber ihre Wirksamkeit kann nicht in allen Fällen garantiert werden.
Um eine korrekte Erdung und Übereinstimmung mit allen EMV-Richtlinien zu gewährleisten, müssen an Motoren mit mehr als 30 kW abgeschirmte symmetrische Kabel angeschlossen und EMV-Kabelverschraubungen, d. h. Verschraubungen mit 360°-Schirmkontaktierung, verwendet werden.

6.6 Betriebsgeschwindigkeit

Bei Drehzahlen über der auf dem Typenschild des Motors oder im jeweiligen Produktkatalog angegebenen Nenndrehzahl ist darauf zu achten, dass entweder die höchstzulässige Drehzahl des Motors oder die kritische Drehzahl der gesamten Anwendung nicht überschritten wird.

6.7 Motoren bei drehzahlgeregelten Anwendungen

6.7.1 Allgemeines

Bei Anwendungen, die mit anderen Umrichtern geliefert werden, müssen die Motoren manuell bemessen werden. Für weitere Informationen wenden Sie sich bitte an ABB.

Die Belastbarkeitskurven (oder Lastkurven) basieren auf der nominalen Versorgungsspannung. Der Betrieb unter Unter- oder Überspannungsbedingungen kann die Leistung der Anwendung beeinträchtigen.

6.7.2 Motorbelastbarkeit mit AC_8__ - Umrichterreihen mit DTC-Steuerung

6.7.3 Motorbelastbarkeit mit AC-5-Umrichterreihe

6.8 Leistungsschilder
Der Einsatz der Motoren von ABB in Anwendungen mit variabler Drehzahl erfordert in der Regel keine zusätzlichen Typenschilder. Die für die Inbetriebnahme des Umrichters erforderlichen Parameter finden Sie auf dem Hauptschild. In einigen speziellen Anwendungen können die Motoren für Anwendungen mit variabler Drehzahl jedoch mit zusätzlichen Typenschildern ausgestattet sein.

6.9 Inbetriebnahme des drehzahlgeregelten Antriebs

ABB empfiehlt, alle geeigneten Schutzvorrichtungen des Umrichters zu verwenden, um die Sicherheit der Anwendung zu erhöhen. Umrichter bieten in der Regel Funktionen wie (Namen und Verfügbarkeit von Funktionen hängen vom Hersteller und Modell des Umrichters ab):
• Mindestgeschwindigkeit
• Höchstgeschwindigkeit
• Zeit für Beschleunigung und Abbremsung
• Maximaler Strom
• Maximales Drehmoment
• Blockierschutz
7 Wartung

7.1 Allgemeine Kontrolle

3. Den Zustand der Wellendichtungen untersuchen (z. B. V-Ring oder Radialdichtung); bei Bedarf neue Dichtungen einsetzen.

4. Überprüfen Sie den Zustand aller Verbindungen und Verbindungselemente (z. B. Schrauben).

Wenn Anzeichen von Abnutzung festgestellt werden, den Motor demontieren, die Teile kontrollieren und erforderlichenfalls auswechseln. Die Originallager dürfen nur durch Lager gleichen Typs ersetzt werden. Desgleichen müssen neue Wellendichtungen von derselben Qualität sein und die gleichen Eigenschaften wie die Originaldichtungen aufweisen.

Wenn ein IP 55-Motor mit geschlossenem Stopfen geliefert wurde, sollten die Stopfen in regelmäßigen Ablassstopfen in Abständen geöffnet werden, um sicherzustellen, dass der Kondensatwasserabfluss nicht blockiert ist und das Kondensat aus dem Motor entweichen kann. Dieser Vorgang muss bei Stillstand des Motors durchgeführt werden und ein sicheres Arbeiten muss gewährleistet sein.

7.1.1 Standby-Motoren

Befindet sich der Motor über einen längeren Zeitraum in Standby und auf einem Schiff oder in einer anderen vibrierenden Umgebung, müssen die folgenden Maßnahmen ergriffen werden:

2. Das Lager muss einmal pro Jahr während des Drehens der Welle geschmiert werden (berichtspflichtig). Verfügt der Motor am angetriebenen Ende über ein Zylinderrollenlager, muss vor dem Drehen der Welle die Transportverriegelung entfernt werden. Im Falle eines Transports muss die Transportverriegelung wieder angebracht werden.

7.2 Schmierung

 WARNUNG Vorsicht bei allen rotierenden Teilen!

Lagertypen sind in den entsprechenden Produktkatalogen spezifiziert und auf dem Leistungsschild aller unserer Motoren mit Ausnahme der Motoren bei kleineren Baugrößen angegeben. Für Lagerschmierintervalle ist Zuverlässigkeit von entscheidender Bedeutung. ABB verwendet für die Schmierung das L1-Prinzip (d.h. dass 99 % der Motoren die Nennlebensdauer erreichen).

7.2.1 Motoren mit dauergeschmierten Lagern
Lager sind im Allgemein in ausreichender Menge von Typ 1Z, 2Z, 2RS oder eines äquivalenten Typs. Als Faustregel kann eine angemessene Schmierung für Größen bis zu 250 gemäß L1 für die folgende Dauer erreicht werden.

Betriebsstunden für dauergeschmierte Lager bei einer Umgebungstemperatur von 25 °C und 40 °C:

<table>
<thead>
<tr>
<th>Baugröße Pole</th>
<th>Betriebsstunden bei 25 °C</th>
<th>Betriebsstunden bei 40 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 2</td>
<td>52 000</td>
<td>33 000</td>
</tr>
<tr>
<td>56 4-8</td>
<td>65 000</td>
<td>41 000</td>
</tr>
<tr>
<td>63 2</td>
<td>49 000</td>
<td>31 000</td>
</tr>
<tr>
<td>63 4-8</td>
<td>63 000</td>
<td>40 000</td>
</tr>
<tr>
<td>71 2</td>
<td>67 000</td>
<td>42 000</td>
</tr>
<tr>
<td>71 4-8</td>
<td>100 000</td>
<td>56 000</td>
</tr>
<tr>
<td>80-90 2</td>
<td>100 000</td>
<td>65 000</td>
</tr>
<tr>
<td>80-90 4-8</td>
<td>100 000</td>
<td>96 000</td>
</tr>
<tr>
<td>100-112 2</td>
<td>89 000</td>
<td>56 000</td>
</tr>
<tr>
<td>100-112 4-8</td>
<td>100 000</td>
<td>89 000</td>
</tr>
<tr>
<td>132 2</td>
<td>67 000</td>
<td>42 000</td>
</tr>
<tr>
<td>132 4-8</td>
<td>100 000</td>
<td>77 000</td>
</tr>
<tr>
<td>160 2</td>
<td>60 000</td>
<td>38 000</td>
</tr>
<tr>
<td>160 4-8</td>
<td>100 000</td>
<td>74 000</td>
</tr>
<tr>
<td>180 2</td>
<td>55 000</td>
<td>34 000</td>
</tr>
<tr>
<td>180 4-8</td>
<td>100 000</td>
<td>70 000</td>
</tr>
<tr>
<td>200 2</td>
<td>41 000</td>
<td>25 000</td>
</tr>
<tr>
<td>200 4-8</td>
<td>95 000</td>
<td>60 000</td>
</tr>
<tr>
<td>225 2</td>
<td>36 000</td>
<td>23 000</td>
</tr>
<tr>
<td>225 4-8</td>
<td>88 000</td>
<td>56 000</td>
</tr>
<tr>
<td>250 2</td>
<td>31 000</td>
<td>20 000</td>
</tr>
<tr>
<td>250 4-8</td>
<td>80 000</td>
<td>50 000</td>
</tr>
</tbody>
</table>

Die Daten gelten für Werte von bis zu 60 Hz.

7.2.2 Motoren mit nachschmierbaren Lagern
Informationsschild für Schmierung und allgemeiner Ratgeber zur Schmierung.

Ist der Motor mit einem Informationsschild für Schmierung versehen, sind die dort angegebenen Werte zu befolgen.

Auf dem Schild können die Schmierintervalle bezüglich Einbau, Umgebungstemperatur und Drehzahl bestimmt sein.

Beim ersten Start oder nach einer Lagerschmierung kann für ca. 10 bis 20 Stunden ein temporärer Temperaturanstieg auftreten.

Einige Motoren sind mit einem Sammler für Altfett ausgerüstet. Entsprechende Anweisungen für diese Option befolgen.

A. Manuelle Schmierung
Nachschmieren bei laufendem Motor
- Den Stopfen der Schmiermittel-Auslassöffnung abnehmen oder das Sperrventil öffnen, falls vorhanden.
- Sicherstellen, dass der Schmierkanal offen ist.
- Die vorgesehene Menge Schmiermittel in das Lager einspritzen.
- Den Motor 1–2 Stunden laufen lassen, um sicherzustellen, dass sämtliches überschüssige Schmiermittel in das Lager eingeschlossen ist.
- Den Motor 1–2 Stunden laufen lassen, um sicherzustellen, dass sämtliches überschüssige Schmiermittel in das Lager eingeschlossen ist.
- Den Stopfen der Fett-Auslassöffnung, ggf. Sperrventil, schließen.

Nachschmieren bei stillstehendem Motor
Falls es nicht möglich ist, die Lager bei laufendem Motor nachzuschmieren, kann auch bei stillstehendem Motor geschmiert werden.
- In diesem Fall nur die Hälfte der Fettmenge benutzen, anschließend den Motor für einige Minuten bei voller Drehzahl laufen lassen.
- Nach dem Start oder nach einer Lagerschmierung kann für ca. 10 bis 20 Stunden ein temporärer Temperaturanstieg auftreten.
- Den Motor 1–2 Stunden laufen lassen, um sicherzustellen, dass sämtliches überschüssige Schmiermittel in das Lager eingeschlossen ist.
- Nach 1–2 Stunden Durchlaufen die Fett-Auslassöffnung verschließen oder das Sperrventil, falls vorhanden, schließen.

B. Automatische Schmierung
Bei automatischer Schmierung muss die Fett-Auslassöffnung beständig offen bzw. das Sperrventil, falls vorhanden, geöffnet sein.

ABB empfiehlt dringend den Einsatz elektromechanischer Anlagen.

Bei Benutzung eines zentralen Schmiersystems sind die in der Tabelle angegebenen Werte für Schmierfett pro Schmierintervall zu verdreifachen. Im Falle eines kleineren automatischen Nachschmiersystems (eine oder zwei Patronen pro Motor), kann die normale Fettmenge verwendet werden.

Wenn 2-polige Motoren automatisch nachgeschmiert werden, befolgen Sie bitte die
entsprechenden Schmierempfehlungen für 2-polige Motoren im Kapitel über Schmiermittel.
Das verwendete Schmierfett sollte für automatische Schmierung geeignet sein.
Der Lieferant des automatischen Schmierungssystems und die Empfehlungen des Schmierrichterherstellers sollten überprüft werden.

Berechnungsbeispiel für die benötigte Menge an Schmierfett für ein automatisches Schmierungssystem

Zentrales Schmierungssystem: Motor IEC M3_P 315, 4-polig in 50-Hz-Netzwerk, Schmierintervall entsprechend der folgenden Tabelle ist 7600 h/55 g (DE) und 7600 h/40 g (NDE):

(DE) RLI = 55 g/7600 h*24 = 0,17 g/Tag
(NDE) RLI = 40 g/7600 h*24 = 0,38 g/Tag

Berechnungsbeispiel für die benötigte Menge an Schmierfett für eine automatisch Schmierungseinheit (Patrone)

(DE) RLI = 55 g/7600 h*24 = 0,17 g/Tag
(NDE) RLI = 40 g/7600 h*24 = 0,13 g/Tag

7.2.3 Schmierintervalle und -mengen

Für vertikal montierte Motoren sind die Nachschmierintervalle in der folgenden Tabelle zu halbieren.

Ein Anstieg der Umgebungstemperatur lässt die Temperatur der Lager entsprechend ansteigen. Bei einem Anstieg der Lager-Temperatur um 15 °C sollten die Werte halbiert, bei einem Absinken um 15 °C können sie verdoppelt werden.

Höhere Drehzahlen, z. B. bei Frequenzumrichterbetrieb, oder niedrige Drehzahlen unter hoher Belastung erfordern kürzere Nachschmierintervalle.

WARNUNG

Die zulässige Höchsttemperatur für Lager und Schmierfett von +110 °C darf nicht überschritten werden. Die Höchstdrehzahl, für die der Motor ausgelegt ist, darf nicht überschritten werden.

Tabelle 7.2

<table>
<thead>
<tr>
<th>Bau-größe</th>
<th>Fett-</th>
<th>kW</th>
<th>3600</th>
<th>3000</th>
<th>kW</th>
<th>1800</th>
<th>1500</th>
<th>kW</th>
<th>1000</th>
<th>kW</th>
<th>500-900</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>menge</td>
<td></td>
<td>U/min</td>
<td>U/min</td>
<td></td>
<td>U/min</td>
<td>U/min</td>
<td></td>
<td>U/min</td>
<td></td>
<td>U/min</td>
</tr>
<tr>
<td>112</td>
<td>10</td>
<td>Alle</td>
<td>10</td>
<td>Alle</td>
<td>3</td>
<td>Alle</td>
<td>5</td>
<td>Alle</td>
<td>8</td>
<td>Alle</td>
<td>2000</td>
</tr>
<tr>
<td>132</td>
<td>15</td>
<td>Alle</td>
<td>9</td>
<td>Alle</td>
<td>9</td>
<td>Alle</td>
<td>17</td>
<td>Alle</td>
<td>23</td>
<td>Alle</td>
<td>2400</td>
</tr>
<tr>
<td>160</td>
<td>25</td>
<td>Alle</td>
<td>12</td>
<td>Alle</td>
<td>18</td>
<td>Alle</td>
<td>18</td>
<td>Alle</td>
<td>24</td>
<td>Alle</td>
<td>2650</td>
</tr>
<tr>
<td>160</td>
<td>25</td>
<td>Alle</td>
<td>15</td>
<td>Alle</td>
<td>15</td>
<td>Alle</td>
<td>18</td>
<td>Alle</td>
<td>22</td>
<td>Alle</td>
<td>2450</td>
</tr>
<tr>
<td>180</td>
<td>30</td>
<td>Alle</td>
<td>9</td>
<td>Alle</td>
<td>27</td>
<td>Alle</td>
<td>15</td>
<td>Alle</td>
<td>24</td>
<td>Alle</td>
<td>2400</td>
</tr>
<tr>
<td>180</td>
<td>30</td>
<td>Alle</td>
<td>6</td>
<td>Alle</td>
<td>8</td>
<td>Alle</td>
<td>14</td>
<td>Alle</td>
<td>21</td>
<td>Alle</td>
<td>2400</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>Alle</td>
<td>7</td>
<td>Alle</td>
<td>8</td>
<td>Alle</td>
<td>14</td>
<td>Alle</td>
<td>23</td>
<td>Alle</td>
<td>2400</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>Alle</td>
<td>3</td>
<td>Alle</td>
<td>5</td>
<td>Alle</td>
<td>14</td>
<td>Alle</td>
<td>16</td>
<td>Alle</td>
<td>2000</td>
</tr>
<tr>
<td>225</td>
<td>50</td>
<td>Alle</td>
<td>4</td>
<td>Alle</td>
<td>4</td>
<td>Alle</td>
<td>13</td>
<td>Alle</td>
<td>22</td>
<td>Alle</td>
<td>2400</td>
</tr>
<tr>
<td>225</td>
<td>50</td>
<td>Alle</td>
<td>1</td>
<td>Alle</td>
<td>2</td>
<td>Alle</td>
<td>5</td>
<td>Alle</td>
<td>8</td>
<td>Alle</td>
<td>10000</td>
</tr>
<tr>
<td>250</td>
<td>60</td>
<td>Alle</td>
<td>8</td>
<td>Alle</td>
<td>5</td>
<td>Alle</td>
<td>9</td>
<td>Alle</td>
<td>15</td>
<td>Alle</td>
<td>18000</td>
</tr>
<tr>
<td>250</td>
<td>60</td>
<td>Alle</td>
<td>1</td>
<td>Alle</td>
<td>1</td>
<td>Alle</td>
<td>3</td>
<td>Alle</td>
<td>7</td>
<td>Alle</td>
<td>7000</td>
</tr>
<tr>
<td>280</td>
<td>60</td>
<td>Alle</td>
<td>2</td>
<td>Alle</td>
<td>3</td>
<td>Alle</td>
<td>8</td>
<td>Alle</td>
<td>14</td>
<td>Alle</td>
<td>17000</td>
</tr>
<tr>
<td>280</td>
<td>60</td>
<td>Alle</td>
<td>8</td>
<td>Alle</td>
<td>10</td>
<td>Alle</td>
<td>14</td>
<td>Alle</td>
<td>17</td>
<td>Alle</td>
<td>17000</td>
</tr>
<tr>
<td>280</td>
<td>35</td>
<td>Alle</td>
<td>1</td>
<td>Alle</td>
<td>2</td>
<td>Alle</td>
<td>8</td>
<td>Alle</td>
<td>14</td>
<td>Alle</td>
<td>17000</td>
</tr>
<tr>
<td>280</td>
<td>40</td>
<td>Alle</td>
<td>4</td>
<td>Alle</td>
<td>9</td>
<td>Alle</td>
<td>13</td>
<td>Alle</td>
<td>15</td>
<td>Alle</td>
<td>15000</td>
</tr>
<tr>
<td>315</td>
<td>35</td>
<td>Alle</td>
<td>3</td>
<td>Alle</td>
<td>3</td>
<td>Alle</td>
<td>1</td>
<td>Alle</td>
<td>11</td>
<td>Alle</td>
<td>12900</td>
</tr>
<tr>
<td>315</td>
<td>55</td>
<td>Alle</td>
<td>1</td>
<td>Alle</td>
<td>5</td>
<td>Alle</td>
<td>11</td>
<td>Alle</td>
<td>12</td>
<td>Alle</td>
<td>12900</td>
</tr>
<tr>
<td>355</td>
<td>35</td>
<td>Alle</td>
<td>1</td>
<td>Alle</td>
<td>3</td>
<td>Alle</td>
<td>9</td>
<td>Alle</td>
<td>10</td>
<td>Alle</td>
<td>10700</td>
</tr>
<tr>
<td>355</td>
<td>70</td>
<td>Alle</td>
<td>4</td>
<td>Alle</td>
<td>5</td>
<td>Alle</td>
<td>9</td>
<td>Alle</td>
<td>10</td>
<td>Alle</td>
<td>10700</td>
</tr>
<tr>
<td>400</td>
<td>40</td>
<td>Alle</td>
<td>1</td>
<td>Alle</td>
<td>2</td>
<td>Alle</td>
<td>8</td>
<td>Alle</td>
<td>9</td>
<td>Alle</td>
<td>97000</td>
</tr>
<tr>
<td>400</td>
<td>85</td>
<td>Alle</td>
<td>3</td>
<td>Alle</td>
<td>4</td>
<td>Alle</td>
<td>8</td>
<td>Alle</td>
<td>9</td>
<td>Alle</td>
<td>97000</td>
</tr>
<tr>
<td>450</td>
<td>40</td>
<td>Alle</td>
<td>1</td>
<td>Alle</td>
<td>2</td>
<td>Alle</td>
<td>7</td>
<td>Alle</td>
<td>8</td>
<td>Alle</td>
<td>87000</td>
</tr>
<tr>
<td>450</td>
<td>95</td>
<td>Alle</td>
<td>2</td>
<td>Alle</td>
<td>3</td>
<td>Alle</td>
<td>7</td>
<td>Alle</td>
<td>8</td>
<td>Alle</td>
<td>87000</td>
</tr>
<tr>
<td>5008</td>
<td>40</td>
<td>Alle</td>
<td>3</td>
<td>Alle</td>
<td>5</td>
<td>Alle</td>
<td>17</td>
<td>Alle</td>
<td>19</td>
<td>Alle</td>
<td>19400</td>
</tr>
<tr>
<td>5008</td>
<td>85</td>
<td>Alle</td>
<td>6</td>
<td>Alle</td>
<td>9</td>
<td>Alle</td>
<td>17</td>
<td>Alle</td>
<td>19</td>
<td>Alle</td>
<td>19400</td>
</tr>
<tr>
<td>5010</td>
<td>40</td>
<td>Alle</td>
<td>1</td>
<td>Alle</td>
<td>2</td>
<td>Alle</td>
<td>13</td>
<td>Alle</td>
<td>14</td>
<td>Alle</td>
<td>14800</td>
</tr>
<tr>
<td>5010</td>
<td>85</td>
<td>Alle</td>
<td>4</td>
<td>Alle</td>
<td>7</td>
<td>Alle</td>
<td>13</td>
<td>Alle</td>
<td>14</td>
<td>Alle</td>
<td>14800</td>
</tr>
<tr>
<td>5012</td>
<td>85</td>
<td>Alle</td>
<td>2</td>
<td>Alle</td>
<td>3</td>
<td>Alle</td>
<td>7</td>
<td>Alle</td>
<td>8</td>
<td>Alle</td>
<td>8000</td>
</tr>
</tbody>
</table>
7.2.4 Schmiermittel

Für die Nachschmierung darf nur ein speziell auf die Schmierung von Kugellagern abgestimmtes Fett mit den folgenden Eigenschaften verwendet werden:

- Hochwertiges Fett mit Lithiumkomplexseife und Mineral- oder PAO-Öl
- Viskosität des Grundöls 100–160 cSt bei 40 °C
- Konsistenz NLGI Grad 1.5 - 3 *)
- Temperaturbereich, dauerhaft: –30 °C bis +120 °C.

*) Für vertikal montierte Motoren und unter heißen Betriebsbedingungen ist ein strengerer NLGI-Grad zu empfehlen.

Die oben angegebene Schmierfettspezifikation gilt für Umgebungstemperaturen über -30 °C oder unter +55 °C und Temperaturen der Lager unter 110 °C. Wenden Sie sich andernfalls an ABB für Informationen über geeignetes Schmierfett.

Folgende hochwertigen Schmierfette können benutzt werden:

- **Mobil Unirex N2 oder N3** (Lithiumkomplex-Basis)
- **Mobil Mobilith SHC 100** (Lithiumkomplex-Basis)
- **Shell Gadus S5 V 100 2** (Lithiumkomplex-Basis)
- **Klüber Klüberplex BEM 41-132 (spezielle Lithiumbasis)**
- **FAG Arcanol TEMP110** (Lithiumkomplex-Basis)
- **Mobil Mobilith SHC 100** (Lithiumkomplex-Basis)
- **Total Multis Complex S2 A (Lithiumkomplex-Basis)**

Folgende hochwertigen Schmierfette können mit Graugussmotoren mit hoher Drehzahl verwendet werden, dürfen jedoch nicht mit Schmierfetten auf Lithiumkomplex-Basis gemischt werden:

- **Klüber Klüber Quiet BQH 72-102 (Polyurea-Basis)**
- **Mobil Mobogrease PU703 (Polyurea-Basis)**

Bei Verwendung anderer Schmiermittel erkennt er sich bitte an, dass die Qualität derjenigen der oben aufgeführten Fette entspricht. Die Schmierintervalle werden auf den oben aufgeführten hochwertigen Schmierfetten basieren. Bei Verwendung anderer Schmierfette können sich die Intervalle verringern.
8 Kundendienst

8.1 Ersatzteile

Wenn nicht anders angegeben, dürfen als Ersatzteile nur von ABB gelieferte und geprüfte Teile eingesetzt werden.

Bei der Bestellung von Ersatzteilen sollte die Motorseriennummer, die vollständige Typenbezeichnung und der Produktcode (siehe Leistungsschild) angegeben werden.

8.2 Demontage und Neueinbau sowie Neuwicklung

Neuwicklungen sollten immer von qualifizierten Werkstätten durchgeführt werden.

Rauchabzugs- und andere Spezialmotoren sollten nicht neu gewickelt werden, ohne vorher mit ABB Kontakt aufzunehmen.

8.3 Lager

Die Lager sind mit besonderer Sorgfalt zu behandeln.

Die Lager dürfen nur mit Hilfe von Abziehwerkzeugen demontiert und in erwärmtem Zustand oder unter Verwendung von Spezialwerkzeug eingebaut werden.

Der Austausch von Lagern wird in einer eigenen Hinweisschrift von ABB ausführlich beschrieben.

Die meisten ABB Motoren haben einen Schalldruckpegel, der 82 dB(A) (±3 dB) bei 50 Hz nicht überschreitet. Konkrete Werte für die einzelnen Motoren sind dem jeweiligen Produktkatalog zu entnehmen. Bei 60 Hz sinusförmiger Versorgung sind die Werte ca. 4 dB(A) höher als die in den Produktkatalogen angegebenen 50 Hz-Werte.

Bezüglich des Schalldruckpegels bei Frequenzumrichterbetrieb setzen Sie sich bitte mit ABB in Verbindung.

Wenn Motoren verschrottet oder recycelt werden müssen, sind geeignete Maßnahmen anzuwenden und lokale Vorschriften und Gesetze zu beachten.
10 Störungssuche

In den folgenden Anleitungen kann nicht auf sämtliche technischen Einzelheiten bzw. Unterschiede zwischen den verschiedenen Motoren oder auf alle bei Installation, Betrieb oder Wartung möglicherweise auftretenden Situationen eingegangen werden. Anfragen bezüglich weitergehender Informationen richten Sie bitte an die nächstgelegene ABB-Vertriebsstelle.

Motor-Fehlersuchetable

Wartungs- und etwaige Fehlersuchmaßnahmen am Motor dürfen nur von hierfür qualifiziertem Personal und mit geeigneten Werkzeugen und Hilfsmitteln durchgeführt werden.

Tabelle 10.1: Motor-Störungssuchtable

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>URSACHE</th>
<th>MASSNAHMEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor startet nicht</td>
<td>Sicherungen durchgebrannt</td>
<td>Neue Sicherungen des richtigen Typs und mit entsprechenden Bemessungsdaten einsetzen.</td>
</tr>
<tr>
<td>Überlastauslösung</td>
<td>Überlast in Anlasser prüfen und zurücksetzen.</td>
<td></td>
</tr>
<tr>
<td>Fehlerhafte Stromversorgung</td>
<td>Überprüfen, ob die Stromversorgung den Angaben auf dem Motorleistungsschild entspricht und für den jeweiligen Lastfaktor geeignet ist.</td>
<td></td>
</tr>
<tr>
<td>Fehlerhafte Netzanschlüsse</td>
<td>Anschlüsse anhand des mit dem Motor gelieferten Schaltplans überprüfen.</td>
<td></td>
</tr>
<tr>
<td>Stromkreisunterbrechung in Wicklung oder Steuerschalter</td>
<td>Erkennbar an einem Summen bei Einschalten des Schalters. Überprüfen Sie, ob lose Kabelverbindingen vorhanden sind, und stellen Sie sicher, dass alle Steuerkontakte schließen.</td>
<td></td>
</tr>
<tr>
<td>Ständerkurzschluss</td>
<td>Kontakt ABB oder Stellen Sie sicher, dass die Versorgung und Erdung getrennt ist. Trennen Sie die Kabel und messen Sie den Isolationswiderstand.</td>
<td></td>
</tr>
<tr>
<td>Schlechter Anschluss an Ständerwicklung</td>
<td>Erkennbar an durchgebrannten Sicherungen. Motor muss neu gewickelt werden. Lagerschilde abnehmen; Fehler lokalisieren.</td>
<td></td>
</tr>
<tr>
<td>Motor überlastet</td>
<td>Last reduzieren.</td>
<td></td>
</tr>
<tr>
<td>Motor läuft nicht</td>
<td>Phasenausfall</td>
<td>Leitungen auf offene Phase kontrollieren.</td>
</tr>
<tr>
<td></td>
<td>Falsche Anwendung</td>
<td>Nach Rücksprache mit dem Anbieter des Geräts geeigneten Typ bzw. geeignete Baugröße verwenden.</td>
</tr>
<tr>
<td></td>
<td>Überlast</td>
<td>Last reduzieren.</td>
</tr>
<tr>
<td></td>
<td>Unterspannung</td>
<td>Kontrollieren, ob die auf dem Leistungsschild angegebene Spannung eingehalten wird. Anschluss überprüfen.</td>
</tr>
<tr>
<td></td>
<td>Offener Stromkreis</td>
<td>Durchgebrannte Sicherungen. Überlastrelais, Ständer und Drucktasten prüfen.</td>
</tr>
<tr>
<td>Motor läuft nur für kurzen Zeitraum</td>
<td>Netzausfall</td>
<td>Auf lose Anschlüsse zum Netz, zu den Sicherungen und zur Steuerung überprüfen.</td>
</tr>
<tr>
<td>Motor läuft nicht hoch</td>
<td>Falsche Anwendung</td>
<td>Durch Rücksprache mit dem Lieferanten des Geräts geeigneten Typ bestimmen.</td>
</tr>
<tr>
<td></td>
<td>Unterspannung an Motorklemmen durch Netzschanpunsabfall</td>
<td>Höhere Spannung oder höhere Transformatorstufe verwenden. Anschlüsse überprüfen. Leitungen auf angemessenen Querschnitt überprüfen.</td>
</tr>
<tr>
<td></td>
<td>Anlauflast zu hoch</td>
<td>Auslegung des Motors bezüglich Leerlauf überprüfen.</td>
</tr>
<tr>
<td></td>
<td>Gebrochene Rotorstäbe oder lockerer Rotor</td>
<td>Kontrollieren, ob in der Nähe der Ringe Risse vorhanden sind. Möglicherweise wird ein neuer Rotor benötigt, da eine dauerhafte Reparatur in diesem Fall meist nicht möglich ist.</td>
</tr>
<tr>
<td></td>
<td>Offener Primärkreis</td>
<td>Fehler mit Prüfgerät lokalisieren und beheben.</td>
</tr>
<tr>
<td>PROBLEM</td>
<td>URSACHE</td>
<td>MASSNAHMEN</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>Motor läuft zu langsam hoch und/oder zieht zu starken Strom</td>
<td>Last zu hoch</td>
<td>Last reduzieren.</td>
</tr>
<tr>
<td></td>
<td>Spannung beim Anlauf zu niedrig</td>
<td>Auf zu hohen Widerstand überprüfen. Angemessenen Leitungsquerschnitt verwenden.</td>
</tr>
<tr>
<td></td>
<td>Defekter Käfigrotor</td>
<td>Rotor durch neuen ersetzen.</td>
</tr>
<tr>
<td></td>
<td>Netzspannung zu niedrig</td>
<td>Spannungsversorgung klären.</td>
</tr>
<tr>
<td>Falsche Drehrichtung</td>
<td>Falsche Phasenfolge</td>
<td>Anschlüsse am Motor bzw. an der Schalttafel vertauschen.</td>
</tr>
<tr>
<td>Motor überhitzt bei Betrieb unter Last</td>
<td>Überlast</td>
<td>Last reduzieren.</td>
</tr>
<tr>
<td></td>
<td>Belüftungsöffnungen sind möglicherweise durch Schmutz verstopft und verhindern eine ordnungsgemäße Kühlung des Motors</td>
<td>Belüftungsöffnungen säubern und kontrollieren, ob ein kontinuierlicher Luftstrom den Motor kühlt.</td>
</tr>
<tr>
<td></td>
<td>Eine Morphemse ist möglicherweise ausgefallen</td>
<td>Prüfen, ob alle Kabel und Leitungen richtig angeschlossen sind.</td>
</tr>
<tr>
<td></td>
<td>Erdsschluss</td>
<td>Motor muss neu gewickelt werden.</td>
</tr>
<tr>
<td></td>
<td>Unsymmetrische Klemmennspannung</td>
<td>Anschlusseitungen, Anschlüsse und Transformatoren auf Fehler überprüfen.</td>
</tr>
<tr>
<td>Motorschwingungen</td>
<td>Motor schlecht ausgerichtet</td>
<td>Motor neu ausrichten.</td>
</tr>
<tr>
<td></td>
<td>Mangelnde Stabilität des Unterbaus</td>
<td>Unterbau verstärken.</td>
</tr>
<tr>
<td></td>
<td>Unwucht in Kupplung</td>
<td>Kupplung auswuchten.</td>
</tr>
<tr>
<td></td>
<td>Unwucht in getriebener Anlage</td>
<td>Getriebene Anlage neu auswuchten.</td>
</tr>
<tr>
<td></td>
<td>Defekte Lager</td>
<td>Lager austauschen.</td>
</tr>
<tr>
<td></td>
<td>Lager schlecht ausgerichtet</td>
<td>Motor reparieren.</td>
</tr>
<tr>
<td></td>
<td>Auswuchtgewichte verschoben</td>
<td>Rotor neu auswuchten.</td>
</tr>
<tr>
<td></td>
<td>Mehrphasenmotor läuft einphasig</td>
<td>Auf offenen Stromkreis überprüfen.</td>
</tr>
<tr>
<td></td>
<td>Axialspiel zu groß</td>
<td>Lager nachstellen oder Feder-Ausgleichsscheibe einlegen.</td>
</tr>
<tr>
<td>Geräusche</td>
<td>Lüfter reibt an Lüfterkappe</td>
<td>Lüftermontage korrigieren.</td>
</tr>
<tr>
<td></td>
<td>Lockerer Sitz auf Grundplatte</td>
<td>Fußschrauben anziehen.</td>
</tr>
<tr>
<td>Betriebsgeräusch zu laut</td>
<td>Luftspalt nicht gleichmäßig</td>
<td>Lagerschildbefestigung bzw. Lager überprüfen und entsprechend korrigieren.</td>
</tr>
<tr>
<td></td>
<td>Unwucht im Rotor</td>
<td>Rotor neu auswuchten.</td>
</tr>
<tr>
<td>Lagertemperatur zu hoch</td>
<td>Welle verbogen oder beschädigt</td>
<td>Welle richten oder austauschen.</td>
</tr>
<tr>
<td></td>
<td>Riemenzug zu stark</td>
<td>Riemenspannung reduzieren.</td>
</tr>
<tr>
<td></td>
<td>Riemenscheiben zu weit von Wellenschulter entfernt</td>
<td>Riemenscheibe näher am Motorlager anordnen.</td>
</tr>
<tr>
<td></td>
<td>Durchmesser der Riemenscheiben zu klein</td>
<td>Größere Riemenscheiben verwenden.</td>
</tr>
<tr>
<td></td>
<td>Schlechte Ausrichtung</td>
<td>Ausrichtung des Antriebs korrigieren.</td>
</tr>
<tr>
<td></td>
<td>Unzureichendes Schmierfett</td>
<td>Angemessene Qualität des Lager vorhandenen Schmierfetts sicherstellen.</td>
</tr>
<tr>
<td></td>
<td>Qualität des Schmierfetts beeinträchtigt oder Schmiermittel verschmutzt</td>
<td>Altes Schmierfett entfernen. Lager gründlich in Kerosin waschen und mit neuem Fett schmieren.</td>
</tr>
<tr>
<td></td>
<td>Überschüssiges Schmiermittel</td>
<td>Schmiermittelmenge verringern; das Lager sollte maximal zur Hälfte gefüllt sein.</td>
</tr>
<tr>
<td></td>
<td>Lager überlastet</td>
<td>Ausrichtung, Radial- und Axialschub überprüfen.</td>
</tr>
<tr>
<td></td>
<td>Defekte Kugel oder raue Laufbahnen</td>
<td>Lager austauschen, das Gehäuse zuerst sorgfältig reinigen.</td>
</tr>
</tbody>
</table>
11 Abbildungen

Abb. 1. Das Diagramm zeigt die Abhängigkeit des Isolationswiderstands von der Temperatur und wie der gemessene Isolationswiderstand auf die Temperatur von 40 °C korrigiert werden kann.

Abb. 2. Montage von Kupplungshälften und Riemscheiben

x-Achse: Wicklungstemperatur, Grad Celsius
y-Achse: Temperaturkoeffizient des Isolationswiderstandes, ktc

1) Zur Korrektur des gefundenen Isolationswiderstandes, R_i, auf 40 °C multiplizieren Sie ihn mit dem Temperaturkoeffizienten k_{tc}: $R_{i 40°C} = R_i \times k_{tc}$
Abb. 3. Anschluss der Klemmen für die Hauptversorgung
Abb. 4. Spannungs- und Frequenzabweichung in den Zonen A und B

<p>| x-Achse | Frequenz p.u. |</p>
<table>
<thead>
<tr>
<th>y-Achse</th>
<th>Spannung p.u.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Zone A</td>
</tr>
<tr>
<td>2</td>
<td>Zone B (außerhalb von Zone A)</td>
</tr>
<tr>
<td>3</td>
<td>Bewertungspunkt</td>
</tr>
</tbody>
</table>

Abb. 3.
Abb. 4.
Leitlinie Belastbarkeitskurve bei Umrichtern mit DTC-Steuerung

Abbildung 5a. Umrichter mit DTC-Steuerung, 50 Hz, Temperaturerhöhung B
Abbildung 5b. Umrichter mit DTC-Steuerung, 60 Hz, Temperaturerhöhung B
Abbildung 5c. Umrichter mit DTC-Steuerung, 50 Hz, Temperaturerhöhung F
Abbildung 5d. Umrichter mit DTC-Steuerung, 60 Hz, Temperaturerhöhung F

Abbildung 5a.
Abbildung 5b.
Abbildung 5c.
Abbildung 5d.

1) Self ventilated, E plan frame size 56-132
2) Self ventilated, E plan frame size 160-450
3) Separate motor cooling (force ventilated)
Belastbarkeitskurven als Richtlinie für spannungsgespeiste PWM-Frequenzumrichter

Abbildung 6a. Andere Spannungsquelle PWM-Umrichter, 50 Hz, Temperaturerhöhung B
Abbildung 6b. Andere Spannungsquelle PWM-Umrichter, 60 Hz, Temperaturerhöhung B
Abbildung 6c. Andere Spannungsquelle PWM-Umrichter, 50 Hz, Temperaturerhöhung F
Abbildung 6d. Andere Spannungsquelle PWM-Umrichter, 60 Hz, Temperaturerhöhung F

1) Self ventilated, IEC frame sizes 56-132
2) Self ventilated, IEC frame sizes 160-450
3) Separate motor cooling (forced ventilated)

Abbildung 6a.
Abbildung 6b.
Abbildung 6c.
Abbildung 6d.
Table des matières

<table>
<thead>
<tr>
<th>Table des matières</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Présentation</td>
<td>65</td>
</tr>
<tr>
<td>1.1 Déclaration de conformité</td>
<td>65</td>
</tr>
<tr>
<td>1.2 Validité</td>
<td>65</td>
</tr>
<tr>
<td>2 Sécurité</td>
<td>66</td>
</tr>
<tr>
<td>3 Manipulation</td>
<td>67</td>
</tr>
<tr>
<td>3.1 Réception</td>
<td>67</td>
</tr>
<tr>
<td>3.2 Transport et stockage</td>
<td>67</td>
</tr>
<tr>
<td>3.3 Levage</td>
<td>68</td>
</tr>
<tr>
<td>3.4 Poids du moteur</td>
<td>68</td>
</tr>
<tr>
<td>4 Installation et mise en service</td>
<td>69</td>
</tr>
<tr>
<td>4.1 Généralités</td>
<td>69</td>
</tr>
<tr>
<td>4.2 Moteurs dotés de roulements autres qu’à billes à gorge profonde</td>
<td>69</td>
</tr>
<tr>
<td>4.3 Mesure de la résistance de l'isolation</td>
<td>70</td>
</tr>
<tr>
<td>4.4 Fondations</td>
<td>70</td>
</tr>
<tr>
<td>4.5 Équilibrage et mise en place des demi-accouplements et des poulies</td>
<td>71</td>
</tr>
<tr>
<td>4.6 Montage et alignement du moteur</td>
<td>71</td>
</tr>
<tr>
<td>4.7 Forces radiales et entraînements à courroie</td>
<td>71</td>
</tr>
<tr>
<td>4.8 Moteurs avec trous de purge pour eaux de condensation</td>
<td>72</td>
</tr>
<tr>
<td>4.9 Câblage et raccordements électriques</td>
<td>72</td>
</tr>
<tr>
<td>4.9.1 Couplages pour les différentes méthodes de démarrage</td>
<td>73</td>
</tr>
<tr>
<td>4.9.2 Raccordement des dispositifs auxiliaires</td>
<td>73</td>
</tr>
<tr>
<td>4.10 Bornes et sens de rotation</td>
<td>73</td>
</tr>
<tr>
<td>5 Fonctionnement</td>
<td>74</td>
</tr>
<tr>
<td>5.1 Généralités</td>
<td>74</td>
</tr>
<tr>
<td>6 Moteurs basse tension en fonctionnement à vitesse variable</td>
<td>75</td>
</tr>
<tr>
<td>6.1 Présentation</td>
<td>75</td>
</tr>
<tr>
<td>6.2 Isolation du bobinage</td>
<td>75</td>
</tr>
<tr>
<td>6.2.1 Sélection de l'isolation du bobinage avec les convertisseurs de fréquence ABB</td>
<td>75</td>
</tr>
<tr>
<td>6.2.2 Sélection de l'isolation du bobinage avec les autres convertisseurs</td>
<td>75</td>
</tr>
<tr>
<td>6.3 Protection thermique</td>
<td>75</td>
</tr>
<tr>
<td>6.4 Courants des roulements</td>
<td>76</td>
</tr>
<tr>
<td>6.4.1 Élimination des courants de roulement avec les convertisseurs ABB</td>
<td>76</td>
</tr>
<tr>
<td>6.4.2 Élimination des courants de roulement avec tous les autres convertisseurs</td>
<td>76</td>
</tr>
<tr>
<td>6.5 Câblage, mise à la terre et CEM</td>
<td>77</td>
</tr>
<tr>
<td>6.6 Vitesse de fonctionnement</td>
<td>77</td>
</tr>
<tr>
<td>6.7 Moteurs pour applications à vitesse variable</td>
<td>77</td>
</tr>
<tr>
<td>6.7.1 Généralités</td>
<td>77</td>
</tr>
<tr>
<td>6.7.2 Capacité de charge des moteurs équipés de convertisseurs de la série AC_8_ avec commande DTC</td>
<td>77</td>
</tr>
<tr>
<td>6.7.3 Capacité de charge des moteurs équipés de convertisseurs de la série AC_5_ avec commande DTC</td>
<td>78</td>
</tr>
<tr>
<td>6.7.4 Capacité de charge des moteurs équipés d'autres convertisseurs de tension de type PWM</td>
<td>78</td>
</tr>
<tr>
<td>6.7.5 Surcharges de courte durée</td>
<td>78</td>
</tr>
<tr>
<td>6.8 Plaques signalétiques</td>
<td>78</td>
</tr>
</tbody>
</table>
6.9 Mise en service de l’application avec variateur ... 78
7 Maintenance ... 79
 7.1 Entretien ... 79
 7.1.1 Moteurs en veille ... 79
 7.2 Lubrification ... 80
 7.2.1 Moteurs avec roulements graissés à vie .. 80
 7.2.2 Moteurs avec roulements regraissables .. 80
 7.2.3 Intervales de lubrification et quantités ... 81
 7.2.4 Lubrifiants .. 82
8 Service après-vente ... 83
 8.1 Pièces détachées ... 83
 8.2 Démontage, remontage et rembobinage .. 83
 8.3 Roulements .. 83
9 Exigences environnementales .. 84
10 Dépannage ... 85
11 Figures .. 87
1 Présentation

La conformité du produit final à la Directive 2006/42/CE (machines) doit être établie par la partie chargée de la mise en service lorsque le moteur est monté dans la machine.

1.1 Déclaration de conformité

La conformité du produit final à la Directive 2006/42/CE (machines) doit être établie par la partie chargée de la mise en service lorsque le moteur est monté dans la machine.

1.2 Validité

Ces instructions s’appliquent aux machines électriques ABB de types suivants, aussi bien pour le fonctionnement du moteur que du générateur :

- série MT*, MXMA,
- pour les hauteurs d’axe CEI 56-500
- pour les hauteurs d’axe NEMA 58*, 50**

Il existe un manuel séparé pour les moteurs Ex « Moteurs basse tension pour atmosphères explosives : Manuel d’installation, d’exploitation, de maintenance et de sécurité (3GZF500730-47)

Des informations supplémentaires sont requises pour certaines machines en raison d’applications et/ou de conceptions spécifiques.

Un manuel supplémentaire est disponible pour les moteurs suivants :
- moteurs de table à rouleaux
- moteurs refroidis par eau
- moteurs d’extraction de fumée
- moteurs de frein
- moteurs pour haute températures ambiantes
- moteurs dans les applications marines pour le montage sur un pont ouvert
- de navires ou d’unités offshore
2 Sécurité

Le moteur doit être installé et exploité par un personnel qualifié, connaissant les règles de protection et de sécurité, ainsi que la réglementation en vigueur.

Les dispositifs de sécurité obligatoires pour la prévention des accidents sur les sites d’installation et d’exploitation doivent être mis à disposition, conformément à la réglementation en vigueur.

Points à observer :

1. Ne marchez pas sur le moteur.
3. Certaines applications de moteur spéciales peuvent nécessiter des instructions supplémentaires (par exemple, lorsque les moteurs sont alimentés par convertisseur de fréquence).
4. Observer les pièces rotatives du moteur.
5. N’ouvrez pas les boîtes à bornes lorsqu’elles sont sous tension.

3 Manipulation

3.1 Réception

À la réception, vérifiez l'état du moteur (bouts d'arbre, brides et surfaces peintes) ; tout dommage doit être signalé immédiatement au transporteur.

Vérifiez toutes les données de la plaque signalétique, en particulier les raccordements de tension et de bobinage (en étoile ou en triangle). Le type de roulement est spécifié sur la plaque signalétique des moteurs, à l'exception de ceux de faible hauteur d'axe.

En cas d'utilisation d'un variateur de vitesse, vérifiez la capacité de charge maximale autorisée en fonction de la fréquence indiquée sur la plaque signalétique auxiliaire du moteur.

3.2 Transport et stockage

Le moteur doit toujours être stocké à l'intérieur (température ambiante supérieure à -20 °C), dans un endroit sec, exempt de vibrations et de poussière. Lors du transport, les chocs, les chutes et la présence d'humidité doivent être évités. En présence d'autres conditions, prière de contacter ABB.

Les surfaces usinées non protégées (bouts d'arbre et brides) doivent être recouvertes d'une protection anticorrosion.

Nous préconisons de tourner l'arbre à la main (une fois par trimestre) à intervalles réguliers pour prévenir tout écoulement de graisse.

La mise en fonctionnement des résistances de réchauffage éventuellement installées est recommandée afin d'éviter toute condensation d'eau dans le moteur.

Le moteur ne doit pas être soumis à des vibrations extérieures à l'arrêt afin d'éviter tout endommagement des roulements.

Pendant le transport ou tout déplacement, le rotor des moteurs dotés de roulements à rouleaux cylindriques et/ou à contact oblique doit être immobilisé par un dispositif adéquat.
3.3 Levage

Tous les moteurs ABB dont le poids est supérieur à 25 kg sont équipés d’anneaux de levage ou de boulons à œil.

Seuls les anneaux de levage ou boulons à œil principaux du moteur doivent être utilisés pour son levage. Ils ne doivent en aucun cas servir à soulever le moteur lorsque celui-ci est fixé à un autre équipement.

Les anneaux de levage pour éléments auxiliaires (freins, ventilateurs de refroidissement séparés) ou boîtes à bornes ne doivent pas être utilisés pour lever le moteur. En raison des différences en termes de sortie, de position de montage et d’équipements auxiliaires, les moteurs dotés d’un même châssis peuvent présenter un centre de gravité distinct.

Les anneaux de levage endommagés ne doivent pas être utilisés. Vérifiez que les boulons à œil ou anneaux de levage intégrés ne sont pas endommagés avant le levage.

Les boulons à œil de levage doivent être serrés avant le levage. Au besoin, la position de chaque boulon sera ajustée au moyen de rondelles (entretoises) appropriées.

Vérifiez la compatibilité de l’équipement de levage et de la taille des crochets avec les anneaux de levage.

Veillez à ne pas endommager les équipements auxiliaires et les câbles raccordés au moteur.

Retirez les éventuelles broches de transport fixant le moteur à la palette.

Des instructions particulières relatives au levage sont disponibles auprès d’ABB.

AVERTISSEMENT
Pendant les opérations de levage, de montage ou de maintenance, appliquez toutes les précautions de sécurité nécessaires et soyez particulièrement vigilant à ce qu’aucune personne ne soit exposée à la charge suspendue.

3.4 Poids du moteur

La masse totale des moteurs de même hauteur d’axe peut varier selon leur puissance, leur disposition de montage et les auxiliaires montés.

Le tableau suivant indique les poids maximaux estimés pour les machines dans leur version de base en fonction du matériau du châssis.

Tableau 3.1 : Section minimale des conducteurs de protection

<table>
<thead>
<tr>
<th>Hauteur d’axe</th>
<th>Aluminium, poids kg</th>
<th>Fonte, poids kg</th>
<th>Supp. pour frein</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>4,5</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>63</td>
<td>6</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>71</td>
<td>8</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>80</td>
<td>14</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>90</td>
<td>20</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>32</td>
<td>40</td>
<td>16</td>
</tr>
<tr>
<td>112</td>
<td>36</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>132</td>
<td>93</td>
<td>90</td>
<td>30</td>
</tr>
<tr>
<td>160</td>
<td>149</td>
<td>130</td>
<td>30</td>
</tr>
<tr>
<td>180</td>
<td>162</td>
<td>190</td>
<td>45</td>
</tr>
<tr>
<td>200</td>
<td>245</td>
<td>275</td>
<td>55</td>
</tr>
<tr>
<td>225</td>
<td>300</td>
<td>360</td>
<td>75</td>
</tr>
<tr>
<td>250</td>
<td>386</td>
<td>405</td>
<td>75</td>
</tr>
<tr>
<td>280</td>
<td>425</td>
<td>800</td>
<td>–</td>
</tr>
<tr>
<td>315</td>
<td>–</td>
<td>1 700</td>
<td>–</td>
</tr>
<tr>
<td>355</td>
<td>–</td>
<td>2 700</td>
<td>–</td>
</tr>
<tr>
<td>400</td>
<td>–</td>
<td>3 500</td>
<td>–</td>
</tr>
<tr>
<td>450</td>
<td>–</td>
<td>4 500</td>
<td>–</td>
</tr>
<tr>
<td>5000</td>
<td>–</td>
<td>2 800</td>
<td>–</td>
</tr>
</tbody>
</table>

Si le moteur est équipé d’un frein et/ou d’un ventilateur séparé, demandez-en le poids à ABB.
4 Installation et mise en service

4.1 Généralités

Toutes les valeurs indiquées sur la plaque signalétique doivent être soigneusement vérifiées, pour s'assurer que la protection et le raccordement du moteur seront correctement effectués.

Lors du démarrage du moteur pour la première fois ou après un long entreposage de plus de 6 mois, appliquez la quantité de graisse indiquée.

Cf. section « 7.2.2 Moteurs avec roulements regraissables » pour plus d’informations.

Un moteur monté en position verticale avec l’arbre dirigé vers le bas doit être doté d’un capot de protection contre la chute de corps étrangers et la pénétration de fluides via les ouvertures de ventilation. Cette mesure de protection peut également être assurée par l’emploi d’un capot séparé, non fixé au moteur. Dans ce cas, le moteur doit porter une étiquette d’avertissement.

4.2 Moteurs dotés de roulements autres qu’à billes à gorge profonde

Le cas échéant, retirez le dispositif d’immobilisation utilisé pour le transport. Tournez l’arbre du moteur à la main pour vérifier que sa rotation s’effectue sans entrave.

Moteurs dotés de roulements à rouleaux cylindriques :
La rotation du moteur sans charge radiale appliquée à l’arbre est susceptible d’endommager le roulement à rouleaux par un « glissement ».

Moteurs dotés de roulements à contact oblique :
La rotation du moteur, sans charge axiale appliquée sur l’arbre dans la direction adéquate, est susceptible d’endommager le roulement à contact oblique.

Pour les moteurs avec roulements à contact oblique, la force axiale ne doit en aucun cas changer de direction.
4.3 Mesure de la résistance de l’isolation

Mesurez la résistance de l’isolation (RI) avant la mise en service ou après de longues périodes d’arrêt ou de stockage s’il y a un risque d’humidité du bobinage. La RI doit être mesurée directement sur les bornes du moteur avec les câbles d’alimentation débranchés afin d’éviter qu’ils n’affectent le résultat.

La résistance de l’isolation doit être utilisée comme indicateur de tendance pour déterminer les changements dans le système d’isolation. Dans les machines neuves, la RI se mesure habituellement en milliers de MΩ et il est donc important de suivre les variations de RI afin de connaître l’état du système d’isolation. En règle générale, la RI ne doit pas être inférieure à 10 MΩ et en aucun cas inférieure à 1 MΩ (mesurée avec 500 ou 1000 VDC et corrigée à 25 °C). La valeur de la résistance de l’isolation est réduite de moitié chaque fois que la température augmente de 20 °C.

La figure 1 du chapitre 11 peut être utilisée pour la correction de l’isolation à la température désirée.

4.4 Fondations

La préparation des fondations incombe entièrement à l’utilisateur final.

Les supports métalliques doivent être traités contre la corrosion.

Les fondations doivent être à niveau et suffisamment rigides pour encaisser les effets de courts-circuits. Elles doivent être d’une conception et de dimensions permettant d’éviter tout transfert de vibration au moteur, ainsi que toute vibration provoquée par résonance. Cf. figure ci-dessous.

Remarque ! La différence de niveau maximale entre les emplacements des pieds du moteur ne doit pas dépasser ± 0,1mm.
4.5 Équilibrage et mise en place des demi-accouplements et des poulies

En configuration standard, l’équilibrage du moteur est réalisé à l’aide d’une demi-clavette.

Les demi-accouplements et poulies doivent être équilibrés après usinage de rainure de clavette. L’équilibrage doit être effectué conformément aux instructions d’équilibrage du moteur.

Les demi-accouplements et les poulies doivent être montés sur l’arbre à l’aide de dispositifs et d’outils adaptés pour ne pas endommager les roulements et les éléments d’étanchéité.

N’utilisez jamais de marteau pour mettre en place un demi-accouplement ou une poulie et ne les démontez jamais en utilisant un levier appuyé sur le châssis du moteur.

4.6 Montage et alignement du moteur

L’alignement doit être parfait pour éviter toute détérioration des roulements, les vibrations et les ruptures éventuelles des arbres.

Montez le moteur sur ses fondations à l’aide des boulons et goujons appropriés, et placez des cales entre les fondations et les pieds.

Alignez le moteur à l’aide de la méthode appropriée. Le cas échéant, forez des trous de positionnement et fixez des goupilles de positionnement.

Précision de montage de demi-accouplement : vérifiez que le jeu b est inférieur à 0,05 mm et que l’écart entre a1 et a2 est également inférieur à 0,05 mm. Consultez la figure 2.

Vérifiez à nouveau l’alignement après le serrage final des boulons et goujons.

Ne dépassez pas les valeurs de charge admissibles des roulements spécifiées dans les catalogues de produits.

Vérifiez que le moteur est correctement refroidi. Assurez-vous qu’aucun objet ne se trouve à proximité ou qu’aucun rayonnement direct du soleil ne chauffe le moteur.

Pour les moteurs montés sur bride (par ex., B5, B35, V1), assurez-vous que la structure permet un passage d’air suffisant au niveau de la surface extérieure de la bride.

4.7 Forces radiales et entraînements à courroie

Les courroies doivent être serrées conformément aux instructions du fournisseur ou de l’équipement d’entraînement. Ne dépassez cependant pas les valeurs de tension maximales des courroies (c’est-à-dire, les efforts radiaux maximaux admissibles par les roulements) figurant dans les catalogues de produits correspondants.

AVERTISSEMENT
Une courroie trop tendue peut endommager les roulements et l’arbre.
4.8 Moteurs avec trous de purge pour eaux de condensation

Vérifiez que les trous et bouchons de purge sont orientés vers le bas. Dans les moteurs montés en position verticale, les bouchons de purge peuvent se trouver en position horizontale.

Les moteurs équipés de bouchons de purge à obturateurs sont livrés avec ces obturateurs ouverts. Dans les environnements très poussiéreux, tous les trous de purge doivent être fermés.

4.9 Câblage et raccordements électriques

La boîte à bornes des moteurs monovitesse standard comporte normalement six bornes pour le bobinage et au moins une borne de terre. Outre les bornes des bobinages principaux et de mise à la terre, la boîte à bornes peut également contenir des raccordements pour des thermistances, des éléments de réchauffage ou des équipements auxiliaires.

Des anneaux de câble appropriés doivent être utilisés pour le raccordement de tous les câbles principaux. Les câbles des éléments auxiliaires peuvent être connectés tels quel dans leurs boîtes à bornes.

Les moteurs sont uniquement destinés à une installation fixe. Sauf indication contraire, les filetages des entrées de câble sont définis selon le système métrique. La classe IP du presse-étoupe doit être au moins identique à celle de la boîte à bornes.

Le conduit ou le raccordement de câbles certifié doit être utilisé au moment de l’installation.

Les câbles doivent être protégés mécaniquement et fixés au plus près de la boîte à bornes pour satisfaire aux exigences appropriées de la norme CEI/EN 60079-0 et aux règles d’installation des normes nationales.

Les entrées de câble inutilisées doivent être fermées à l’aide d’éléments étanches conformes aux classes IP de la boîte à bornes.

L’indice de protection et le diamètre sont spécifiés dans la documentation technique du presse-étoupe.

La borne de masse du châssis doit être raccordée à la terre de protection (PE) par un câble, comme indiqué dans le tableau 5 de la norme CEI/EN 60034-1 :

Tableau 4.1 : Section minimale des conducteurs de protection

<table>
<thead>
<tr>
<th>Section transversale des conducteurs de phase de l’installation, S, [mm2]</th>
<th>Section minimale du conducteur de protection correspondant, S, [mm2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>185</td>
<td>185</td>
</tr>
<tr>
<td>240</td>
<td>120</td>
</tr>
<tr>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td>400</td>
<td>185</td>
</tr>
</tbody>
</table>

De plus, les connexions à la terre ou de raccordement à l’extérieur de l’appareil électrique peuvent représenter une connexion efficace pour un conducteur doté d’une section d’au moins 4 mm2.

Le raccordement des câbles entre le réseau et les bornes du moteur doit satisfaire aux règles d’installation des normes nationales ou de la norme CEI/EN 60204-1 pour ce qui concerne le courant nominal figurant sur la plaque signalétique.
4.10 Bornes et sens de rotation

L'arbre tourne dans le sens des aiguilles d'une montre, vu du côté accouplement du moteur, pour un ordre de phases - L1, L2, L3 - aux bornes, comme le montre la figure 3.

Pour inverser le sens de rotation, permutez les deux raccordements des câbles d'alimentation, au choix.

Si le moteur est doté d'un ventilateur unidirectionnel, vérifiez que celui-ci tourne effectivement dans le sens indiqué par la flèche figurant sur le moteur.

Démarrage étoile/triangle (Y/D) :
La tension d'alimentation doit être égale à la tension nominale du moteur en cas d'utilisation d'un couplage D.
Retirez tous les câbles de raccordement de la boîte à bornes.

Autres modes de démarrage et démarrages en conditions difficiles :
Dans les cas où d'autres méthodes de démarrage (par exemple, convertisseur ou démarreur souple) seront utilisées dans les types d'applications S1 et S2, on considère que le dispositif est « isolé du réseau électrique lorsque la machine électrique est en fonctionnement », c'est-à-dire que la norme CEI 60079-0 et la protection thermique sont optionnelles.

4.9.2 Raccordement des dispositifs auxiliaires
Si un moteur est équipé de thermistances ou autres RTD (Pt100, relais thermiques, etc.) et équipement auxiliaires, il est recommandé de les utiliser et de les connecter selon des moyens appropriés. Pour certaines applications, l'utilisation d'une protection thermique est obligatoire. De plus amples informations sont accessibles via la documentation accompagnant le moteur. Les schémas de raccordement des dispositifs auxiliaires et pièces de raccordement se trouvent dans la boîte à bornes.
La tension de mesure maximale pour les thermistances est de 2,5 V. La tension de mesure maximale pour le Pt100 est de 5 mA. L'application d'une tension ou d'un courant de mesure supérieur(e) peut provoquer des erreurs de lecture ou endommager le capteur de température.
L'isolation des capteurs thermiques répond aux exigences de base en matière d’isolation.

Vérifiez que la protection du moteur correspond à l’environnement et aux conditions climatiques. Par exemple, assurez-vous que l’eau ne peut pas pénétrer dans le moteur ou les boîtes à bornes. Les joints d’étanchéité de la boîte à bornes doivent être placés correctement dans les fentes prévues à cet effet afin de respecter la classe IP.
Tout interstice est susceptible de favoriser la pénétration de poussières ou d’eau, avec risque d’amosmage des éléments sous tension.

4.9.1 Couplages pour les différentes méthodes de démarrage
La boîte à bornes des moteurs monovitesse standard comporte normalement six bornes pour le bobinage et au moins une borne de terre. Cela permet d’utiliser le démarrage DOL ou Y/D.
Pour les moteurs bivitesse et les moteurs spéciaux, les raccordements des bornes doivent être effectués selon les instructions figurant à l’intérieur de la boîte à bornes ou dans le manuel d’utilisation du moteur.
La tension et le mode de couplage sont indiqués sur la plaque signalétique du moteur.

Démarrage direct sur le réseau :
Possibilité de couplage des bobinages Y ou D.
Ex., 690 VY, 400 VD désigne un couplage Y pour 690 V et un couplage D pour 400 V.

Démarrage étoile/triangle (Y/D) :
La tension d'alimentation doit être égale à la tension nominale du moteur en cas d'utilisation d’un couplage D.
Retirez tous les câbles de raccordement de la boîte à bornes.

Autres modes de démarrage et démarrages en conditions difficiles :
Dans les cas où d’autres méthodes de démarrage (par exemple, convertisseur ou démarreur souple) seront utilisées dans les types d’applications S1 et S2, on considère que le dispositif est « isolé du réseau électrique lorsque la machine électrique est en fonctionnement », c’est-à-dire que la norme CEI 60079-0 et la protection thermique sont optionnelles.

4.9.2 Raccordement des dispositifs auxiliaires
Si un moteur est équipé de thermistances ou autres RTD (Pt100, relais thermiques, etc.) et équipement auxiliaires, il est recommandé de les utiliser et de les connecter selon des moyens appropriés. Pour certaines applications, l’utilisation d’une protection thermique est obligatoire. De plus amples informations sont accessibles via la documentation accompagnant le moteur. Les schémas de raccordement des dispositifs auxiliaires et pièces de raccordement se trouvent dans la boîte à bornes.
La tension de mesure maximale pour les thermistances est de 2,5 V. La tension de mesure maximale pour le Pt100 est de 5 mA. L’application d’une tension ou d’un courant de mesure supérieur(e) peut provoquer des erreurs de lecture ou endommager le capteur de température.
L’isolation des capteurs thermiques répond aux exigences de base en matière d’isolation.
5 Fonctionnement

5.1 Généralités

Les moteurs sont conçus pour les conditions d'utilisation suivantes, sauf indication contraire sur la plaque signalétique :

- Les moteurs sont uniquement destinés à une installation fixe.
- La plage normale de températures ambiantes est de –20 °C à +40 °C.
- L’altitude maximale est de 1 000 m au-dessus du niveau de la mer.
- La variation de la tension d'alimentation et de la fréquence ne doit pas dépasser les limites stipulées dans les normes pertinentes.

La tolérance pour la tension d'alimentation est de ±5 % et de ±2 % pour la fréquence, conformément à la figure 4 (EN/CEI 60034-1, paragraphe 7.3, zone A). Ces deux valeurs extrêmes ne sont pas censées apparaître en même temps.

Le moteur ne peut être utilisé que dans les applications prévues à cet effet. Les valeurs nominales et conditions d'utilisation sont indiquées sur les plaques signalétiques du moteur. En outre, toutes les exigences du présent manuel, autres instructions et normes annexes doivent être respectées.

En cas de non-respect de ces limitations, les données du moteur et de la structure doivent être vérifiées. Veuillez contacter ABB pour de plus ampliés informations.

AVERTISSEMENT

Le fait d’ignorer toute instruction ou maintenance de l’appareil peut en compromettre la sécurité, empêchant l’utilisation du moteur.
6 Moteurs basse tension en fonctionnement à vitesse variable

6.1 Présentation

Cette partie du manuel fournit des instructions supplémentaires pour les moteurs utilisés avec une alimentation par convertisseur de fréquence. Le moteur est destiné à une alimentation avec un seul convertisseur de fréquence, plusieurs moteurs ne doivent pas fonctionner en parallèle sur un seul convertisseur de fréquence. Les instructions données par le fabricant du convertisseur doivent être suivies.

6.2 Isolation du bobinage

Les variateurs de vitesse créent des tensions plus élevées que l'alimentation sinusoïdale du bobinage du moteur. Par conséquent, l'isolation du bobinage du moteur ainsi que le filtre à la sortie du convertisseur doivent être dimensionnés conformément aux instructions suivantes.

6.2.1 Sélection de l'isolation du bobinage avec les convertisseurs de fréquence ABB
Dans le cas, par exemple, des variateurs simples de la série ABB AC_8_ _ et AC_5_ _ avec alimentation par diode (tension continue non contrôlée), le choix de l'isolation du bobinage et des filtres se fait comme indiqué dans le tableau 6.1.

6.2.2 Sélection de l'isolation du bobinage avec les autres convertisseurs
Les contraintes de tension doivent se situer en dessous des limites autorisées. Contactez le fournisseur du système pour garantir la sécurité de l'application. L'influence d'éventuels filtres doit être prise en compte lors du dimensionnement du moteur.

6.3 Protection thermique

La plupart des moteurs couverts par ce manuel sont équipés de thermistances PTC ou d'autres types de RTD dans les bobinages du stator. Il est recommandé de connecter ceux-ci au convertisseur de fréquence. En savoir plus au chapitre 4.9.2.
6.4 Courants des roulements

Les roulements et structures de roulement isolées, les filtres de mode commun et les méthodes de câblage et de mise à la terre adéquates doivent être utilisés conformément aux instructions suivantes et en utilisant le tableau 6.1.

Tableau 6.1 Choix de l’isolation du bobinage pour les convertisseurs ABB

<table>
<thead>
<tr>
<th>Pu ≤ 100 kW</th>
<th>Pn ≥ 100 kW ou CEI 315 ≤ Hauteur d’axe ≤ CEI 355</th>
<th>Pn ≥ 350 kW ou CEI 400 ≤ Hauteur d’axe ≤ CEI 450</th>
</tr>
</thead>
<tbody>
<tr>
<td>Un ≤ 500 V</td>
<td>Moteur standard</td>
<td>Moteur standard</td>
</tr>
<tr>
<td></td>
<td>+ Roulement N isolé</td>
<td>+ Roulement N isolé</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ Filtre mode commun</td>
</tr>
<tr>
<td>500 V > Un ≤ 600 V</td>
<td>Moteur standard + dU/dt -filter (réacteur) OU</td>
<td>Moteur standard + dU/dt -filter (réacteur) OU</td>
</tr>
<tr>
<td></td>
<td>Isolation renforcée</td>
<td>Isolation renforcée</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ Roulement N isolé</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ Filtre mode commun</td>
</tr>
<tr>
<td>500 V > Un ≤ 600 V (longueur de câble > 150 m)</td>
<td>Moteur standard + Roulement N isolé</td>
<td>Moteur standard + Roulement N isolé</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ Filtre mode commun</td>
</tr>
<tr>
<td>600 V > Un ≤ 690 V</td>
<td>Isolation renforcée + dU/dt -filter (réacteur)</td>
<td>Isolation renforcée + dU/dt -filter (réacteur)</td>
</tr>
<tr>
<td></td>
<td>Isolation renforcée</td>
<td>Isolation renforcée</td>
</tr>
<tr>
<td></td>
<td>+ Roulement N isolé</td>
<td>+ Roulement N isolé</td>
</tr>
<tr>
<td></td>
<td>+ Filtre mode commun</td>
<td>+ Filtre mode commun</td>
</tr>
<tr>
<td>600 V > Un ≤ 690 V (longueur de câble > 150 m)</td>
<td>Isolation renforcée + Roulement N isolé</td>
<td>Isolation renforcée + Roulement N isolé</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ Filtre mode commun</td>
</tr>
</tbody>
</table>

6.4.1 Élimination des courants de roulement avec les convertisseurs ABB

Pour les convertisseurs de fréquence ABB, par ex. les séries AC_8_- et AC_5_- avec alimentation par diode, les méthodes décrites dans le tableau 6.1 doivent être utilisées pour éviter des courants de palier préjudiciables pour les moteurs.

Les roulements isolés qui ont des alésages intérieurs et/ou extérieurs revêtus d’oxyde d’aluminium ou des éléments roulants en céramique sont recommandés. Les revêtements en oxyde d’aluminium doivent également être traités avec un produit d’étanchéité afin d’éviter la pénétration de saleté et d’humidité dans le revêtement poreux. Pour connaître le type exact d’isolation de roulement, reportez-vous à la plaque signalétique du moteur. Il est interdit de modifier le type de roulement ou la méthode d’isolation sans l’autorisation préalable d’ABB.

6.4.2 Élimination des courants des roulement avec tous les autres convertisseurs

L’utilisateur est responsable de la protection du moteur et de l’équipement motorisé contre les courants porteurs nocifs. Les instructions décrites au chapitre 6.4.1 peuvent être utilisées à titre indicatif, mais leur efficacité ne peut être garantie dans tous les cas.
6.5 Câblage, mise à la terre et CEM

Pour assurer une mise à la terre correcte et garantir la conformité avec toutes les normes CEM applicables, les moteurs d’une puissance supérieure à 30 kW doivent être câblés à l’aide de câbles symétriques blindés et de presse-étoupe CEM assurant une continuité de masse sur 360°. Les câbles symétriques et blindés sont fortement recommandés pour les moteurs plus petits. Effectuez la mise à la terre à 360° sur toutes les entrées de câbles en suivant les instructions relatives aux presse-étoupes. Torsadez les blindages des câbles en faisceaux et connecter à la borne de terre / barre omnibus la plus proche à l’intérieur du boîtier de raccordement, de l’armoire de conversion, etc.

Pour les moteurs d’une hauteur d’axe supérieure ou égale à CEI 280, il est nécessaire de procéder à une égalisation supplémentaire du potentiel entre le châssis du moteur et l’équipement entraîné, sauf si le moteur et l’équipement sont montés sur un même socle d’acier. Dans ce cas, la conductivité haute fréquence de la connexion fournie par le socle en acier doit être vérifiée, par exemple, en mesurant la différence de potentiel entre les composants. De plus amples informations concernant la mise à la terre et le câblage des variateurs de vitesse peuvent être consultées dans le manuel « Mise à la terre et câblage du système d’entraînement » (code : 3AFY 61201998).

6.6 Vitesse de fonctionnement

Pour des vitesses supérieures à la vitesse nominale indiquée sur la plaque signalétique du moteur ou dans le catalogue de produits correspondant, veillez à ne pas dépasser soit la vitesse de rotation maximale admissible du moteur, soit la vitesse critique de l’application.

6.7 Moteurs pour applications à vitesse variable

6.7.1 Généralités

Avec les convertisseurs de fréquence d’ABB, les moteurs peuvent être dimensionnés à l’aide du programme de dimensionnement DriveSize d’ABB. L’outil peut être téléchargé sur le site Web d’ABB (www.abb.com/motors&generators).

Pour les applications fournies avec d’autres convertisseurs, les moteurs doivent être dimensionnés manuellement. Pour plus d’informations, contactez ABB.

Les courbes de capacité de charge sont basées sur la tension d’alimentation nominale. Le fonctionnement dans des conditions de sous-tension ou de surtension peut influencer les performances de l’application.

6.7.2 Capacité de charge des moteurs équipés de convertisseurs de la série AC_8_ _avec commande DTC

Les courbes de capacité de charge présentées sur les figures 5a à 5d sont valables pour les convertisseurs de la série ABB AC_8_ _avec tension continue non contrôlée et commande DTC. Les figures montrent le couple de sortie continu maximum approximatif des moteurs en fonction de la fréquence d’alimentation. Le couple de sortie est fourni en tant que pourcentage du couple nominal du moteur. Les valeurs sont indicatives et les valeurs exactes sont disponibles sur demande.

Des presse-étoupes appropriés assurant une continuité de masse sur 360° doivent être utilisés au niveau de tous les points de raccordement, par exemple au niveau du moteur, du convertisseur, de l’éventuel commutateur de sécurité, etc.
La vitesse maximale du moteur et de l’application ne doit pas être dépassée !

6.7.3 Capacité de charge des moteurs équipés de convertisseurs de la série AC_5_
Les courbes de capacité de charge présentées dans les figures 6a à 6d sont valables pour les convertisseurs de la série AC_5_. Les figures montrent le couple de sortie continu maximum approximatif des moteurs en fonction de la fréquence d’alimentation. Le couple de sortie est fourni en tant que pourcentage du couple nominal du moteur. Les valeurs sont indicatives et les valeurs exactes sont disponibles sur demande.

La vitesse maximale du moteur et de l’application ne doit pas être dépassée !

6.7.4 Capacité de charge des moteurs équipés d’autres convertisseurs de tension de type PWM
Pour les autres convertisseurs, avec une tension continue non contrôlée et une fréquence de commutation minimale de 3 kHz (200…500 V), les instructions de dimensionnement mentionnées au chapitre 6.7.3 peuvent être utilisées comme repère. Il est toutefois à noter que la charge thermique réelle peut également être inférieure. Contactez le fabricant du convertisseur ou le fournisseur du système.

La charge thermique réelle d’un moteur peut être inférieure à celle indiquée dans les courbes indicatives.

6.7.5 Surcharges de courte durée
Les moteurs ABB peuvent généralement être temporairement surchargés ou utilisés de façon intermittente. La méthode la plus pratique pour dimensionner de telles applications est d’utiliser l’outil DriveSize.

6.8 Plaques signalétiques
L’utilisation des moteurs ABB dans les applications à vitesse variable ne nécessite généralement pas de plaques signalétiques supplémentaires. Les paramètres nécessaires à la mise en service du convertisseur sont indiqués sur la plaque signalétique principale. Toutefois, dans certaines applications spéciales, les moteurs peuvent être équipés de plaques signalétiques supplémentaires pour les applications à vitesse variable.

Il s’agit des informations suivantes :
- plage de vitesse
- plage de puissance
- plage de tension et de courant
- type de couple (constant ou quadratique)
- et type de convertisseur et fréquence de commutation minimale requise.

6.9 Mise en service de l’application avec variateur
La mise en service de l’application avec variateur doit être réalisée conformément aux instructions du variateur de fréquence et aux lois et réglementations locales. Les exigences et limitations associées à l’application doivent également être prises en compte.

Tous les paramètres nécessaires au réglage du convertisseur doivent être issus de la plaque signalétique du moteur. Les paramètres les plus souvent nécessaires sont :
- tension nominale
- courant nominal
- fréquence nominale
- vitesse nominale
- puissance nominale

En cas d’absence d’information ou d’imprécision, n’utilisez le moteur qu’une fois vérifiée l’exactitude des paramètres !

ABB recommande d’utiliser les dispositifs de protection adéquats fournis par le convertisseur afin d’améliorer la sécurité de l’application. Les convertisseurs proposent généralement des fonctions telles que (les noms et la disponibilité des fonctions dépendent du fabricant et du modèle du convertisseur) :
- vitesse minimale
- vitesse maximale
- temps d’accélération et de décelération
- courant maximal
- couple maximal
- protection contre les calages
7 Maintenance

7.1 Entretien

1. Contrôlez le moteur à intervalles réguliers, au moins une fois par an. La fréquence des contrôles dépend, par exemple, du degré d’humidité de l’air ambiant et des conditions climatiques spécifiques. La périodicité devra donc être établie de manière empirique, pour ensuite être respectée rigoureusement.

2. Le moteur doit toujours être propre et correctement ventilé. En cas d’utilisation dans un environnement poussiéreux, le système de ventilation doit être vérifié et nettoyé à intervalles réguliers.

4. Vérifiez l’état des raccordements et du montage ainsi que les vis de fixation.

En cas de signes d’usure, démontez le moteur, vérifiez l’état des pièces et remplacez les pièces défectueuses. Lors du remplacement des roulements, les roulements de rechange doivent être d’un type identique à celui des roulements placés à l’origine. Les joints de l’arbre doivent être remplacés par des joints de qualité et caractéristiques identiques aux roulements d’origine lors du remplacement de ceux-ci.

Dans le cas du moteur IP 55 et lorsque ce dernier a été livré avec un bouchon fermé, il est conseillé d’ouvrir périodiquement les bouchons de purge afin de s’assurer que le passage pour la condensation n’est pas bloqué et que la condensation est libre de s’échapper du moteur. Cette opération doit être effectuée lorsque le moteur est à l’arrêt et a été préparé pour pouvoir y effectuer le travail en toute sécurité.

7.1.1 Moteurs en veille
Si le moteur reste en veille sur une longue période, à bord d’un bateau ou de tout autre environnement en vibration, il convient de prendre les mesures suivantes :

1. L’arbre doit être tourné régulièrement, toutes les 2 semaines (à rapporter), en effectuant un démarrage du système. Au cas où il ne soit pas possible d’effectuer de démarrage pour une raison quelconque, il faudra au moins tourner l’arbre à la main afin de lui faire adopter une position différente une fois par semaine.

Les vibrations causées par le reste de l’équipement du vaisseau entraînent une usure en cratères au niveau des roulements, que cette mise en marche ou ce déplacement manuel peut limiter.

2. Le roulement doit être graissé chaque année, à un moment où l’on fait tourner l’arbre (à rapporter). Si le moteur a été équipé d’un roulement à rouleaux côté entraînement, il convient de retirer le verrou de transport avant de faire tourner l’arbre. Le dispositif d’immobilisation utilisé pour le transport doit être remonté en cas de transport.

3. Toute vibration doit être évitée, pour éviter qu’un roulement ne s’endommage. Toutes les instructions données dans le manuel d’instructions du moteur, tant celles concernant la mise en service que celles de la maintenance, doivent être suivies. La garantie ne couvrira pas les dommages subis par les bobinages et les roulements si ces instructions n’ont pas été suivies.
7.2 Lubrification

AVERTISSEMENT
Attention à toutes les pièces en rotation !

Le lubrifiant peut provoquer une irritation de la peau et une inflammation des yeux. Respectez les précautions d’utilisation du fabricant de la graisse.

Les types de roulements sont spécifiés dans les catalogues produits correspondants et sur la plaque signalétique des moteurs, à l’exception de ceux de faibles hauteurs d’axe.

Le respect des intervalles de lubrification est un point crucial pour la fiabilité des roulements ABB. Ils utilisent principalement le principe L1 (99% des moteurs sont donc garantis en termes de durée de vie optimale) pour la lubrification.

7.2.1 Moteurs avec roulements graissés à vie
Les roulements sont généralement des roulements graissés à vie de types 1Z, 2Z, 2RS ou équivalents.

En règle générale, une lubrification adéquate pour les tailles allant jusqu’à 250 peut être obtenue pour la durée suivante, conformément à L1. Pour des applications à des températures ambiantes supérieures, prière de contacter ABB. La formule d’information brute de conversion des valeurs L1 en L10 est : L10 = 2,0 x L1.

Les heures de fonctionnement pour les roulements graissés à vie à des températures de 25 °C et 40 °C sont :

Tableau 7.1

<table>
<thead>
<tr>
<th>Hauteur d’axe</th>
<th>Pôles</th>
<th>Heures de service à 25 °C</th>
<th>Heures de service à 40 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>2</td>
<td>52 000</td>
<td>33 000</td>
</tr>
<tr>
<td>56</td>
<td>4–8</td>
<td>65 000</td>
<td>41 000</td>
</tr>
<tr>
<td>63</td>
<td>2</td>
<td>49 000</td>
<td>31 000</td>
</tr>
<tr>
<td>63</td>
<td>4–8</td>
<td>63 000</td>
<td>40 000</td>
</tr>
<tr>
<td>71</td>
<td>2</td>
<td>67 000</td>
<td>42 000</td>
</tr>
<tr>
<td>71</td>
<td>4–8</td>
<td>100 000</td>
<td>56 000</td>
</tr>
<tr>
<td>80–90</td>
<td>2</td>
<td>100 000</td>
<td>65 000</td>
</tr>
<tr>
<td>80–90</td>
<td>4–8</td>
<td>100 000</td>
<td>76 000</td>
</tr>
<tr>
<td>100–112</td>
<td>2</td>
<td>89 000</td>
<td>56 000</td>
</tr>
<tr>
<td>100–112</td>
<td>4–8</td>
<td>100 000</td>
<td>89 000</td>
</tr>
<tr>
<td>132</td>
<td>2</td>
<td>67 000</td>
<td>42 000</td>
</tr>
<tr>
<td>132</td>
<td>4–8</td>
<td>100 000</td>
<td>77 000</td>
</tr>
<tr>
<td>160</td>
<td>2</td>
<td>60 000</td>
<td>38 000</td>
</tr>
<tr>
<td>160</td>
<td>4–8</td>
<td>100 000</td>
<td>74 000</td>
</tr>
<tr>
<td>180</td>
<td>2</td>
<td>55 000</td>
<td>34 000</td>
</tr>
<tr>
<td>180</td>
<td>4–8</td>
<td>100 000</td>
<td>70 000</td>
</tr>
<tr>
<td>200</td>
<td>2</td>
<td>41 000</td>
<td>25 000</td>
</tr>
<tr>
<td>200</td>
<td>4–8</td>
<td>95 000</td>
<td>60 000</td>
</tr>
<tr>
<td>225</td>
<td>2</td>
<td>36 000</td>
<td>23 000</td>
</tr>
<tr>
<td>225</td>
<td>4–8</td>
<td>88 000</td>
<td>56 000</td>
</tr>
<tr>
<td>250</td>
<td>2</td>
<td>31 000</td>
<td>20 000</td>
</tr>
<tr>
<td>250</td>
<td>4–8</td>
<td>80 000</td>
<td>50 000</td>
</tr>
</tbody>
</table>

Les données sont valides jusqu’à 60 Hz.

7.2.2 Moteurs avec roulements regraissables

Plaque de lubrification et procédure générale de lubrification
Si le moteur est équipé d’une plaque de lubrification, respectez les valeurs indiquées.

Les intervalles de graissage concernant le montage, la température ambiante et la vitesse de rotation sont définis sur la plaque de lubrification.

Lors du premier démarrage ou après une lubrification de roulement, une hausse de température temporaire peut se produire pendant environ 10 à 20 heures.

Certains moteurs peuvent être équipés d’un collecteur de graisse usagée. Consultez les consignes spéciales fournies avec l’équipement.

A. Lubrification manuelle

Regraissage avec le moteur en marche
- Ôtez le bouchon de l’orifice d’évacuation de la graisse ou ouvrez la valve de fermeture si le moteur en est doté.
- Assurez-vous que le conduit de lubrification est ouvert.
- Injectez la quantité spécifiée de graisse dans le roulement.
- Faites tourner le moteur pendant 1 à 2 heures pour évacuer le trop-plein de graisse du roulement. Refermez les orifices d’évacuation de la graisse si le moteur en est doté.

Regraissage avec le moteur à l’arrêt
Il est impossible de regraisser les roulements si les moteurs ne tournent pas ; quant à la lubrification, elle peut être opérée lorsque le moteur est à l’arrêt.
- Dans ce cas, commencez en injectant la moitié de la quantité de graisse et faites tourner le moteur à vitesse maximale pendant quelques minutes.
- Après avoir arrêté le moteur, injectez le reste de graisse dans le roulement.
- Après avoir fait tourner le moteur pendant 1 à 2 heures, refermez le bouchon de l’orifice d’évacuation de la graisse ou la valve de fermeture si le moteur en est doté.

B. Lubrification automatique
En cas de lubrification automatique, le bouchon de l’orifice d’évacuation de la graisse doit être retiré ou la valve de fermeture doit être ouverte, si le moteur en est doté.

ABB recommande l’utilisation de systèmes électromécaniques uniquement.

La quantité de graisse par intervalle de lubrification indiquée dans le tableau doit être multipliée par trois si un système de lubrification centralisé est utilisé. En cas d’utilisation d’une unité de regraissage automatique plus petite (une ou deux cartouches par moteur), la quantité normale de graisse peut être utilisée.

Pour les moteurs à 2 pôles avec regraissage
automatique, la note relative aux recommandations de lubrification des moteurs à 2 pôles figurant au paragraphe « Lubrifiants » doit être observée. La graisse utilisée doit convenir à la lubrification automatique. Les recommandations du fournisseur du système de lubrification automatique et celles du fabricant de la graisse doivent être respectées.

Exemple de calcul de la quantité de graisse pour le système de lubrification automatique

Système de lubrification centralisé : L'intervalle de regraissage du moteur CEI M3_P 315_ à 4 pôles dans un réseau 50 Hz selon le tableau ci-dessous est de 7 600 h / 55 g (DE) et 7 600 h / 40 g (NDE) :

(DE) RLI = 55 g / 7600 h * 3 * 24 = 0,52 g/jour
(NDE) RLI = 40 g / 7600 h * 3 * 24 = 0,38 g/jour

Exemple de calcul de la quantité de graisse pour l'unité de lubrification automatique unique

(cartouche)
(DE) RLI = 55 g / 7600 h * 24 = 0,17 g/jour
(NDE) RLI = 40 g / 7600 h * 24 = 0,13 g/jour
RLI = Intervalle de relubrification, DE = Côté entraînement, NDE = Côté non-entraînement

7.2.3 Intervalles de lubrification et quantités

Pour les intervalles de lubrification des moteurs verticaux, les valeurs du tableau ci-dessous doivent être divisées par deux.

<table>
<thead>
<tr>
<th>Hauteur d’axe</th>
<th>Quantité de graisse g/roulement</th>
<th>kW</th>
<th>3600 tr/min</th>
<th>3000 tr/min</th>
<th>kW</th>
<th>1800 tr/min</th>
<th>1500 tr/min</th>
<th>kW</th>
<th>1000 tr/min</th>
<th>kW</th>
<th>500-900 tr/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>10</td>
<td>tout</td>
<td>10 000</td>
<td>13 000</td>
<td>tout</td>
<td>18 000</td>
<td>21 000</td>
<td>tout</td>
<td>2 500</td>
<td>tout</td>
<td>28 000</td>
</tr>
<tr>
<td>132</td>
<td>15</td>
<td>tout</td>
<td>9 000</td>
<td>11 000</td>
<td>tout</td>
<td>17 000</td>
<td>19 000</td>
<td>tout</td>
<td>23 000</td>
<td>tout</td>
<td>26 500</td>
</tr>
<tr>
<td>160</td>
<td>25</td>
<td>≤ 18,5</td>
<td>9 000</td>
<td>12 000</td>
<td>≤ 15</td>
<td>18 000</td>
<td>21 500</td>
<td>≤ 11</td>
<td>24 000</td>
<td>tout</td>
<td>24 000</td>
</tr>
<tr>
<td>160</td>
<td>25</td>
<td>> 18,5</td>
<td>7 500</td>
<td>1 000</td>
<td>> 15</td>
<td>15 000</td>
<td>18 000</td>
<td>> 11</td>
<td>22 500</td>
<td>tout</td>
<td>24 000</td>
</tr>
<tr>
<td>180</td>
<td>30</td>
<td>≤ 22</td>
<td>7 000</td>
<td>9 000</td>
<td>≤ 22</td>
<td>15 500</td>
<td>18 500</td>
<td>≤ 15</td>
<td>24 000</td>
<td>tout</td>
<td>24 000</td>
</tr>
<tr>
<td>180</td>
<td>30</td>
<td>> 22</td>
<td>6 000</td>
<td>8 500</td>
<td>> 22</td>
<td>14 000</td>
<td>17 000</td>
<td>> 15</td>
<td>21 000</td>
<td>tout</td>
<td>24 000</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>≤ 37</td>
<td>5 500</td>
<td>8 000</td>
<td>≤ 30</td>
<td>14 500</td>
<td>17 500</td>
<td>≤ 22</td>
<td>23 000</td>
<td>tout</td>
<td>24 000</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>> 37</td>
<td>3 000</td>
<td>5 500</td>
<td>> 30</td>
<td>10 000</td>
<td>12 000</td>
<td>> 22</td>
<td>16 000</td>
<td>tout</td>
<td>20 000</td>
</tr>
<tr>
<td>225</td>
<td>50</td>
<td>≤ 45</td>
<td>4 000</td>
<td>6 500</td>
<td>≤ 45</td>
<td>13 000</td>
<td>16 500</td>
<td>≤ 30</td>
<td>22 000</td>
<td>tout</td>
<td>24 000</td>
</tr>
<tr>
<td>225</td>
<td>50</td>
<td>> 45</td>
<td>1 500</td>
<td>2 500</td>
<td>> 45</td>
<td>5 000</td>
<td>6 000</td>
<td>> 30</td>
<td>8 000</td>
<td>tout</td>
<td>10 000</td>
</tr>
<tr>
<td>250</td>
<td>60</td>
<td>≤ 55</td>
<td>2 500</td>
<td>4 000</td>
<td>≤ 55</td>
<td>9 000</td>
<td>11 500</td>
<td>≤ 37</td>
<td>15 000</td>
<td>tout</td>
<td>18 000</td>
</tr>
<tr>
<td>250</td>
<td>60</td>
<td>> 55</td>
<td>1 000</td>
<td>1 500</td>
<td>> 55</td>
<td>3 500</td>
<td>4 500</td>
<td>> 37</td>
<td>6 000</td>
<td>tout</td>
<td>7 000</td>
</tr>
<tr>
<td>280</td>
<td>60</td>
<td>tout</td>
<td>2 000</td>
<td>3 500</td>
<td></td>
<td></td>
<td></td>
<td>tout</td>
<td>3 000</td>
<td>tout</td>
<td>17 000</td>
</tr>
<tr>
<td>280</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td>tout</td>
<td>8 000</td>
<td>10 500</td>
<td>tout</td>
<td>14 000</td>
<td>tout</td>
<td>17 000</td>
</tr>
<tr>
<td>280</td>
<td>35</td>
<td>tout</td>
<td>1 900</td>
<td>3 200</td>
<td></td>
<td></td>
<td></td>
<td>tout</td>
<td>1 300</td>
<td>tout</td>
<td>15 000</td>
</tr>
<tr>
<td>315</td>
<td>35</td>
<td>tout</td>
<td>1 900</td>
<td>3 200</td>
<td></td>
<td></td>
<td></td>
<td>tout</td>
<td>5 900</td>
<td>tout</td>
<td>12 900</td>
</tr>
<tr>
<td>355</td>
<td>35</td>
<td>tout</td>
<td>1 900</td>
<td>3 200</td>
<td></td>
<td></td>
<td></td>
<td>tout</td>
<td>4 000</td>
<td>tout</td>
<td>10 700</td>
</tr>
<tr>
<td>355</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td>tout</td>
<td>4 000</td>
<td>5 600</td>
<td>tout</td>
<td>9 600</td>
<td>tout</td>
<td>9 700</td>
</tr>
<tr>
<td>400</td>
<td>40</td>
<td>tout</td>
<td>1 500</td>
<td>2 700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tout</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td>tout</td>
<td>3 200</td>
<td>4 700</td>
<td>tout</td>
<td>8 600</td>
<td>tout</td>
<td>9 700</td>
</tr>
<tr>
<td>450</td>
<td>40</td>
<td>tout</td>
<td>1 500</td>
<td>2 700</td>
<td></td>
<td></td>
<td></td>
<td>tot</td>
<td></td>
<td>tout</td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td>tout</td>
<td>2 500</td>
<td>3 900</td>
<td>tout</td>
<td>7 700</td>
<td>tout</td>
<td>8 700</td>
</tr>
<tr>
<td>500/8</td>
<td>40</td>
<td>tout</td>
<td>3 000</td>
<td>5 300</td>
<td></td>
<td></td>
<td></td>
<td>tot</td>
<td></td>
<td>tout</td>
<td></td>
</tr>
<tr>
<td>500/8</td>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td>tout</td>
<td>6 400</td>
<td>9 500</td>
<td>tout</td>
<td>17 200</td>
<td>tout</td>
<td>19 400</td>
</tr>
<tr>
<td>5010</td>
<td>40</td>
<td>tout</td>
<td>1 300</td>
<td>2 400</td>
<td></td>
<td></td>
<td></td>
<td>tot</td>
<td></td>
<td>tout</td>
<td></td>
</tr>
<tr>
<td>5010</td>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td>tout</td>
<td>4 900</td>
<td>7 200</td>
<td>tout</td>
<td>13 200</td>
<td>tout</td>
<td>14 800</td>
</tr>
<tr>
<td>5012</td>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td>tout</td>
<td>2 700</td>
<td>3 900</td>
<td>tout</td>
<td>7 100</td>
<td>tout</td>
<td>8 000</td>
</tr>
</tbody>
</table>

En règle générale, une lubrification adéquate peut être obtenue pour la durée suivante, conformément à L₁. Pour des applications à des températures ambiante supérieures, prière de contacter ABB.

La formule brute de conversion des valeurs L₁ en L₀ est L₀ = 2,0 x L₁ avec lubrification manuelle.

Les intervalles de lubrification s'entendent pour une température de fonctionnement des roulements de 80 °C (température ambiante de +25 °C).

AVERTISSEMENT

Toute augmentation de la température ambiante augmente d’autant la tempéra-ture des roulements. Les intervalles seront réduits de moitié pour chaque augmentation de 15 °C de la température des roulements et doublés pour chaque réduction de 15 °C de la température des roulements.

Un fonctionnement à grande vitesse (ex., alimentation par convertisseur de fréquence) ou à petite vitesse avec une charge élevée impose des intervalles de lubrification plus rapprochés.

La température maximale de fonctionnement de la graisse et des roulements ne doit pas être dépassée (+110 °C). La vitesse maximale assignée au moteur ne doit pas être dépassée.
Des additifs sont recommandés, mais une garantie par les principaux fabricants de lubrifiants. Des graisses aux propriétés énoncées sont proposées plus concernant la graisse applicable. Elles sont différentes, prière de consulter ABB pour en savoir plus.

La température du roulement doit être maintenue comprise entre -30 °C et +55 °C et la température ambiante ci-dessus sont applicables si la température ambiante est comprise entre -30 °C et +120 °C et la température ambiante chaude.

Des lubrifiants non miscibles peuvent endommager les roulements. Des graisses à haute température peuvent être utilisées pour les moteurs et roulements à grande vitesse. Dans certains cas, cela peut endommager le roulement. Par conséquent, son utilisation doit être évaluée au cas par cas avec les fournisseurs de lubrifiant.

Les graisses suivantes peuvent être utilisées pour les mouvants à deux pôles tournant à grande vitesse, sans être mélangées à des graisses au lithium complexe :

- Klüber Klüberplex BEM 41-132 (base polycarbamide)
- Klüber Klüber Quiet BQH 72-102 (base polyol ester)
- Lubcon Turmogrease L 802 EP PLUS (base au lithium complexe)
- Total Multiplex S2 A (base au lithium complexe)

Les graisses suivantes peuvent être utilisées pour les moteurs et roulements à grande vitesse pour lesquelles le facteur de vitesse est supérieur à 480 000 (calcul du facteur de vitesse : Dm x n, où Dm est le diamètre moyen du roulement en mm et n la vitesse de rotation en tr/min), vous devez toujours utiliser des graisses dite grande vitesse.

<table>
<thead>
<tr>
<th>Hauteur d’axe</th>
<th>Quantité de graisse g/roulement</th>
<th>kW 3600 tr/min</th>
<th>kW 3000 tr/min</th>
<th>kW 1800 tr/min</th>
<th>kW 1500 tr/min</th>
<th>kW 1000 tr/min</th>
<th>kW 500-900 tr/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>25</td>
<td>≤ 18,5</td>
<td>4 500</td>
<td>6 000</td>
<td>≤ 15</td>
<td>9 000</td>
<td>10 500 ≤ 11</td>
</tr>
<tr>
<td>160</td>
<td>25</td>
<td>> 18,5</td>
<td>3 500</td>
<td>5 000</td>
<td>> 15</td>
<td>7 500</td>
<td>9 000 > 11</td>
</tr>
<tr>
<td>180</td>
<td>30</td>
<td>≤ 22</td>
<td>3 500</td>
<td>4 500</td>
<td>≤ 22</td>
<td>7 500</td>
<td>9 000 ≤ 15</td>
</tr>
<tr>
<td>180</td>
<td>30</td>
<td>> 22</td>
<td>3 000</td>
<td>4 000</td>
<td>> 22</td>
<td>7 000</td>
<td>8 500 ≤ 15</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>≤ 37</td>
<td>2 750</td>
<td>4 000</td>
<td>≤ 30</td>
<td>7 000</td>
<td>8 500 ≤ 15</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>> 37</td>
<td>1 500</td>
<td>2 500</td>
<td>> 30</td>
<td>5 000</td>
<td>6 000 > 15</td>
</tr>
<tr>
<td>225</td>
<td>50</td>
<td>≤ 45</td>
<td>2 000</td>
<td>3 000</td>
<td>≤ 45</td>
<td>6 500</td>
<td>8 000 ≤ 30</td>
</tr>
<tr>
<td>225</td>
<td>50</td>
<td>> 45</td>
<td>750</td>
<td>1 250</td>
<td>> 45</td>
<td>2 500</td>
<td>3 000 > 30</td>
</tr>
<tr>
<td>250</td>
<td>60</td>
<td>≤ 55</td>
<td>1 000</td>
<td>2 000</td>
<td>≤ 55</td>
<td>4 500</td>
<td>5 500 ≤ 37</td>
</tr>
<tr>
<td>250</td>
<td>60</td>
<td>> 55</td>
<td>500</td>
<td>750</td>
<td>> 55</td>
<td>1 500</td>
<td>2 000 > 37</td>
</tr>
<tr>
<td>280</td>
<td>60</td>
<td>tout</td>
<td>1 000</td>
<td>1 750</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>280</td>
<td>70</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>280</td>
<td>70</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>280</td>
<td>40</td>
<td>tout</td>
<td>900</td>
<td>1 600</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>280</td>
<td>40</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>315</td>
<td>35</td>
<td>tout</td>
<td>900</td>
<td>1 600</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>315</td>
<td>35</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>315</td>
<td>35</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>315</td>
<td>55</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>355</td>
<td>35</td>
<td>tout</td>
<td>900</td>
<td>1 600</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>355</td>
<td>35</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>355</td>
<td>70</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>400</td>
<td>40</td>
<td>tout</td>
<td>1 300</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>400</td>
<td>40</td>
<td>tout</td>
<td>1 300</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>400</td>
<td>85</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>400</td>
<td>85</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>450</td>
<td>40</td>
<td>tout</td>
<td>1 300</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>450</td>
<td>40</td>
<td>tout</td>
<td>1 300</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>450</td>
<td>95</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>5008</td>
<td>40</td>
<td>tout</td>
<td>2 700</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>5008</td>
<td>40</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>5010</td>
<td>40</td>
<td>tout</td>
<td>1 200</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>5010</td>
<td>40</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>5012</td>
<td>85</td>
<td>tout</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>5012</td>
<td>85</td>
<td>tout</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

AVERTISSEMENT

Ne mélangez pas différents types de graisse. Des lubrifiants non miscibles peuvent endommager les roulements.

Pour le graissage, seules les graisses spéciales pour roulements à billes présentant les propriétés suivantes doivent être utilisées :

- graisse de qualité supérieure à base de savon lithium complexe et d’huile minérale ou huile synthétique (ex., PAO)
- viscosité de l’huile de base entre 100 et 160 cSt à 40 °C
- consistance (échelle NLGI 1,5 à 3*)
- plage de température de -30 °C à +120 °C, en continu *) Une consistance supérieure est préconisée pour les roulements à rouleaux présentant les propriétés suivantes :
 - cône d’arbre
 - hauteur
 - surface de contact
 - diamètre du roulement
 - vitesse de rotation
 - facteur de vitesse
 - température de fonctionnement
 - pression de fonctionnement

Les caractéristiques de la graisse mentionnées ci-dessus sont applicables si la température ambiante est comprise entre -30 °C et +55 °C et la température des roulements inférieure à 110 °C ; si les conditions sont différentes, prière de consulter ABB pour en savoir plus concernant la graisse applicable.

Des graisses aux propriétés énoncées sont proposées par les principaux fabricants de lubrifiants. Des additifs sont recommandés, mais une garantie écrite doit être obtenue auprès du fabricant de lubrifiants, tout particulièrement pour ce qui concerne les additifs EP, stipulant que les additifs n’endommagent pas les roulements ou les propriétés des lubrifiants à la températures de fonctionnement.

Les graisses suivantes peuvent être utilisées pour les moteurs et roulements à grande vitesse, sans être mélangées à des graisses au lithium complexe :

- Klüber Klüber Quiet BQH 72-102 (base polyol ester)
- Lubcon Turmogrease PU703 (base polyol ester)

Si d’autres lubrifiants sont utilisés, vérifiez auprès du fabricant que la qualité correspond aux lubrifiants mentionnés précédemment. Les intervalles de lubrification sont basés sur les graisses à haute performances présentées ci-dessus. L’utilisation d’autres graisses peut réduire l’intervalle.
8 Service après-vente

8.1 Pièces détachées

Sauf indication contraire, les pièces de rechange doivent être des pièces d'origine approuvées par ABB.

Lors de toute commande de pièces de rechange, vous devez fournir le numéro de série, la référence complète et toutes les spécifications du moteur figurant sur sa plaque signalétique.

8.2 Démontage, remontage et rembobinage

Le rembobinage doit toujours être effectué par des ateliers de réparation qualifiés.

Les purges de fumée et autres moteurs spéciaux ne doivent pas être rembinnés sans avoir préalablement contacté ABB.

8.3 Roulements

Les roulements doivent faire l'objet d'une attention particulière.

Ils doivent être démontés avec un extracteur et remontés à chaud ou avec des outils appropriés.

Le remplacement des roulements fait l'objet d'une notice à part, disponible auprès d'ABB.

Toute consigne particulière figurant sur le moteur (ex., étiquette) doit être respectée. Les types de roulements indiqués sur la plaque signalétique doivent être respectés.
9 Exigences environnementales

La plupart des moteurs ABB présentent un niveau de pression acoustique n'excédant pas 82 dB(A) (± 3 dB) à 50 Hz.
Les valeurs spécifiques aux moteurs figurent dans les catalogues de produits correspondants.
Lorsqu’une alimentation sinusoïdale de 60 Hz est appliquée, les valeurs sont supérieures d’environ 4 dB(A) aux valeurs associées à une alimentation de 50 Hz indiquées dans les catalogues de produits.
Pour les niveaux de pression acoustique au niveau de l’alimentation des convertisseurs de fréquence, veuillez contacter ABB.
Quand les moteurs doivent être mis au rebut ou recyclés, les moyens appropriés doivent être utilisés, et les lois et réglementations locales doivent être respectées.
10 Dépannage

Ces instructions ne couvrent pas toutes les variantes ou exécutions des machines et ne fournissent pas d’informations pour résoudre tous les problèmes d’installation, d’exploitation ou de maintenance. Pour toute information complémentaire, nous vous invitons à contacter votre bureau de vente ABB le plus proche.

Tableau 10.1 : Dépannage

<table>
<thead>
<tr>
<th>PROBLÈME</th>
<th>ORIGINE</th>
<th>INTERVENTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Le moteur ne démarre pas</td>
<td>Fusibles fondus</td>
<td>Remplacez les fusibles par des éléments de mêmes type et calibre</td>
</tr>
<tr>
<td></td>
<td>Déclenchements de surcharge</td>
<td>Vérifiez et réinitialisez la surcharge dans le démarreur.</td>
</tr>
<tr>
<td></td>
<td>Alimentation électrique inappropriée</td>
<td>Vérifiez que l’alimentation fournie correspond aux indications de la plaque signalétique et du facteur de charge du moteur.</td>
</tr>
<tr>
<td></td>
<td>Raccordements inappropriés</td>
<td>Vérifiez les raccordements en vous reportant au schéma qui accompagne le moteur.</td>
</tr>
<tr>
<td></td>
<td>Circuit ouvert dans le bobinage ou l’interrupteur de commande</td>
<td>Indiqué par un bourdonnement lorsque l’interrupteur est fermé. Vérifiez l’absence de raccords desserrés des câbles et vérifiez également que tous les contacts de commande se ferment.</td>
</tr>
<tr>
<td></td>
<td>Dysfonctionnement mécanique</td>
<td>Vérifiez que le moteur et l’entraînement tournent librement. Vérifiez les roulements et la lubrification.</td>
</tr>
<tr>
<td></td>
<td>Court-circuit au niveau du stator</td>
<td>Contacter ABB ou Assurez-vous que l’alimentation est déconnectée et que la mise à la terre est effectuée, débranchez les câbles et mesurez la résistance d’isolation.</td>
</tr>
<tr>
<td></td>
<td>Mauvais raccordement de la bobine du stator</td>
<td>Indiqué par des fusibles fondus. Le moteur doit être rembobiné. Retirez les flasques et localisez la défaillance.</td>
</tr>
<tr>
<td></td>
<td>Il se peut que le moteur soit surchargé</td>
<td>Réduisez la charge.</td>
</tr>
<tr>
<td>Calage du moteur</td>
<td>Il se peut qu’une phase soit ouverte</td>
<td>Vérifiez l’absence de phase ouverte au niveau des lignes.</td>
</tr>
<tr>
<td></td>
<td>Application erronée</td>
<td>Modifiez le type ou la taille. Consultez le fabricant de l’équipement.</td>
</tr>
<tr>
<td></td>
<td>Surcharge</td>
<td>Réduisez la charge.</td>
</tr>
<tr>
<td></td>
<td>Basse tension</td>
<td>Assurez-vous que la tension de la plaque signalétique est respectée. Vérifiez le raccordement.</td>
</tr>
<tr>
<td></td>
<td>Circuit ouvert</td>
<td>Fusibles fondus. Vérifiez le relais de surcharge, le stator et les boutons poussoirs.</td>
</tr>
<tr>
<td>Le moteur tourne, puis ralentit et s’arrête</td>
<td>Alimentation défectueuse</td>
<td>Vérifiez l’absence de raccords desserrés au niveau de la ligne, des fusibles et de la commande.</td>
</tr>
<tr>
<td></td>
<td>Application incorrecte</td>
<td>Consultez le fabricant de l’équipement pour le type adéquat.</td>
</tr>
<tr>
<td></td>
<td>Tension trop basse au niveau des bornes du moteur du fait d’une perte de ligne</td>
<td>Utilisez une tension plus élevée au niveau des bornes du transformateur ou réduisez la charge. Vérifiez les raccordements. Vérifiez que la taille des conducteurs est correcte.</td>
</tr>
<tr>
<td></td>
<td>Charge de démarrage trop élevée</td>
<td>Vérifiez que le moteur démarre au niveau de « pas de charge ».</td>
</tr>
<tr>
<td></td>
<td>Barres de rotor fissurées ou rotor desserré</td>
<td>Vérifiez l’absence de fissures à proximité des anneau. Si se peut qu’un nouveau rotor soit nécessaire, les réparations étant généralement provisoires.</td>
</tr>
<tr>
<td></td>
<td>Circuit primaire ouvert</td>
<td>Identifiez le dysfonctionnement à l’aide d’un appareil d’essai et opérez la réparation.</td>
</tr>
</tbody>
</table>

Tableau de dépannage du moteur

L’entretien et la maintenance du moteur doivent être réalisés par un personnel qualifié disposant des outils et des instruments adéquats.
<table>
<thead>
<tr>
<th>PROBLÈME</th>
<th>ORIGINE</th>
<th>INTERVENTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Le moteur prend trop de temps à accélérer et/ou présente un courant trop élevé</td>
<td>Charge excessive</td>
<td>Réduisez la charge.</td>
</tr>
<tr>
<td></td>
<td>Basse tension lors du démarrage</td>
<td>Vérifiez la présence de résistance élevée. Assurez que la taille du câble utilisé est correcte.</td>
</tr>
<tr>
<td></td>
<td>Rotor à cage d'écureuil défectueux</td>
<td>Remplacez par un nouveau rotor.</td>
</tr>
<tr>
<td></td>
<td>Application d'une tension trop basse</td>
<td>Corrigez l'alimentation.</td>
</tr>
<tr>
<td>Sens de rotation erroné</td>
<td>Séquence de phases erronée</td>
<td>Inversez les raccordements au niveau du moteur et du tableau de commande.</td>
</tr>
<tr>
<td>Surchauffe du moteur lorsqu'il tourne</td>
<td>Surcharge</td>
<td>Réduisez la charge.</td>
</tr>
<tr>
<td></td>
<td>il se peut que les ouvertures du châssis ou de ventilation soit obstruées par des impuretés, ce qui rend impossible la ventilation adéquate du moteur</td>
<td>Ouvrez les trous de ventilation et vérifiez que l'air passe de façon continue depuis le moteur.</td>
</tr>
<tr>
<td></td>
<td>Possibilité de phase ouverte au niveau du moteur</td>
<td>Vérifiez que tous les fils et câbles sont correctement connectés.</td>
</tr>
<tr>
<td></td>
<td>Bobine mise à la terre</td>
<td>Le moteur doit être rembobiné.</td>
</tr>
<tr>
<td></td>
<td>Déséquilibre de tension de borne</td>
<td>Vérifiez la présence de câbles, raccordements et transformateurs défaillants.</td>
</tr>
<tr>
<td>Le moteur vibre</td>
<td>Désalignement du moteur</td>
<td>Réalignez-le.</td>
</tr>
<tr>
<td></td>
<td>Support faible</td>
<td>Renforcez la base.</td>
</tr>
<tr>
<td></td>
<td>Couplage déséquilibré</td>
<td>Équilibrez le couplage.</td>
</tr>
<tr>
<td></td>
<td>Équipement entraîné déséquilibré</td>
<td>Rééquilibrez l'équipement entraîné.</td>
</tr>
<tr>
<td></td>
<td>Roulements défectueux</td>
<td>Remplacez les roulements.</td>
</tr>
<tr>
<td></td>
<td>Roulements désalignés</td>
<td>Réparez le moteur.</td>
</tr>
<tr>
<td></td>
<td>Poids d'équilibrage mal positionnés</td>
<td>Rééquilibrez le rotor.</td>
</tr>
<tr>
<td></td>
<td>Contradiction entre l'équilibrage du rotor et le couplage (demi-clavette - clavette)</td>
<td>Rééquilibrez le couplage ou le rotor.</td>
</tr>
<tr>
<td></td>
<td>Moteur polyphasé tournant en phase unique</td>
<td>Vérifiez l'absence de circuit ouvert.</td>
</tr>
<tr>
<td></td>
<td>Jeu axial excessif</td>
<td>Ajustez le roulement ou ajoutez une cale.</td>
</tr>
<tr>
<td>Bruit de raclement</td>
<td>Flasque frottant contre le ventilateur ou le couvercle du ventilateur</td>
<td>Corrigez le positionnement du ventilateur.</td>
</tr>
<tr>
<td></td>
<td>Plaque de base desserrée</td>
<td>Serrez les boulons de maintien.</td>
</tr>
<tr>
<td>Fonctionnement bruyant</td>
<td>Passage d'air non uniforme</td>
<td>Vérifiez et corrigez les fixations des flasques et des roulements.</td>
</tr>
<tr>
<td></td>
<td>Rotor déséquilibré</td>
<td>Rééquilibrez le rotor.</td>
</tr>
<tr>
<td>Roulements chauds</td>
<td>Arbre plié ou détendu</td>
<td>Redressez ou remplacez l'arbre.</td>
</tr>
<tr>
<td></td>
<td>Tension de courroie excessive</td>
<td>Réduisez la tension de la courroie.</td>
</tr>
<tr>
<td></td>
<td>Poulies trop éloignées de l'épaulement d'arbre</td>
<td>Rapprochez la poulie du roulement du moteur.</td>
</tr>
<tr>
<td></td>
<td>Diamètre de poulie trop petit</td>
<td>Utilisez des poulies plus larges.</td>
</tr>
<tr>
<td></td>
<td>Désalignement</td>
<td>Corrigez l'alignement de l'entraînement.</td>
</tr>
<tr>
<td></td>
<td>Quantité de graisse insuffisante</td>
<td>Veillez à maintenir la qualité et la quantité de graisse appropriées dans le roulement.</td>
</tr>
<tr>
<td></td>
<td>Détérioration de la graisse ou lubrifiant contaminé</td>
<td>Videz la graisse usagée, nettoyez à fond les roulements au kérosène et appliquez de la graisse neuve.</td>
</tr>
<tr>
<td></td>
<td>Excès de lubrifiant</td>
<td>Réduisez la quantité de graisse ; le roulement ne doit être rempli qu'à moitié.</td>
</tr>
<tr>
<td></td>
<td>Roulement surchargé</td>
<td>Vérifiez l'alignement, la poussée latérale et la poussée axiale</td>
</tr>
<tr>
<td></td>
<td>Bille fissurée ou courses fissurées</td>
<td>Remplacez le roulement, nettoyez soigneusement le boultier.</td>
</tr>
</tbody>
</table>
11 Figures

Figure 1. Diagramme illustrant la dépendance de la résistance de l'isolation à la température et comment corriger la résistance d'isolation mesurée à la température de 40 °C.

Figure 2. Montage d'un demi-accouplement ou d'une poulie.

Axe X : Température de bobine en degrés Celsius
Axe Y : Coefficient de température de la résistance de l'isolation, ktc

1) Pour corriger la résistance de l'isolation observée, R_i, à 40 °C multiplié par le coefficient de température k_{tc}, $R_{i_{40°C}} = R_i \times k_{tc}$
Figure 3. Raccordement des bornes pour l’alimentation principale

Figure 4. Déviation de tension et de fréquence dans les zones A et B

<table>
<thead>
<tr>
<th>Clé</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>zone A</td>
</tr>
<tr>
<td>2</td>
<td>zone B (à l’extérieur de la zone A)</td>
</tr>
<tr>
<td>3</td>
<td>point de mesure</td>
</tr>
</tbody>
</table>

Axe X fréquence p.u.
Axe Y tension p.u.
Courbes de capacité de charge de référence avec convertisseurs avec commande DTC

Figure 5a. Convertisseur avec commande DTC, 50 Hz, élévation de température B

Figure 5b. Convertisseur avec commande DTC, 60 Hz, élévation de température B

Figure 5c. Convertisseur avec commande DTC, 50 Hz, élévation de température B

Figure 5d. Convertisseur avec commande DTC, 60 Hz, élévation de température B

1 Self ventilated, IEC frame sizes 56-132
2 Self ventilated, IEC frame sizes 160-450
3 Separate motor cooling (forced ventilation)
Courbes de capacité de charge de référence avec d'autres convertisseurs PWM de source de tension

Figure 6a. Autre convertisseur PWM de source de tension, 50 Hz, élévation de température B

Figure 6b. Autre convertisseur PWM de source de tension, 60 Hz, élévation de température B

Figure 6c. Autre convertisseur PWM de source de tension, 50 Hz, élévation de température F

Figure 6d. Autre convertisseur PWM de source de tension, 60 Hz, élévation de température F
Contenido

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introducción</td>
<td>95</td>
</tr>
<tr>
<td>1.1</td>
<td>Declaración de conformidad</td>
<td>95</td>
</tr>
<tr>
<td>1.2</td>
<td>Vigencia.</td>
<td>95</td>
</tr>
<tr>
<td>2</td>
<td>Consideraciones de seguridad</td>
<td>96</td>
</tr>
<tr>
<td>3</td>
<td>Manipulación</td>
<td>97</td>
</tr>
<tr>
<td>3.1</td>
<td>Recepción</td>
<td>97</td>
</tr>
<tr>
<td>3.2</td>
<td>Transporte y almacenamiento</td>
<td>97</td>
</tr>
<tr>
<td>3.3</td>
<td>Elevación</td>
<td>98</td>
</tr>
<tr>
<td>3.4</td>
<td>Peso de motor</td>
<td>98</td>
</tr>
<tr>
<td>4</td>
<td>Instalación y puesta en servicio</td>
<td>99</td>
</tr>
<tr>
<td>4.1</td>
<td>Generalidades</td>
<td>99</td>
</tr>
<tr>
<td>4.2</td>
<td>Motores con rodamientos distintos de los de bolas de ranura profunda</td>
<td>99</td>
</tr>
<tr>
<td>4.3</td>
<td>Comprobación de la resistencia de aislamiento</td>
<td>100</td>
</tr>
<tr>
<td>4.4</td>
<td>Anclajes</td>
<td>100</td>
</tr>
<tr>
<td>4.5</td>
<td>Equilibrado y montaje de acoplamientos y poleas</td>
<td>101</td>
</tr>
<tr>
<td>4.6</td>
<td>Montaje y alineación del motor</td>
<td>101</td>
</tr>
<tr>
<td>4.7</td>
<td>Fuerzas radiales y accionamientos por correas</td>
<td>101</td>
</tr>
<tr>
<td>4.8</td>
<td>Motores con tapones de drenaje para condensación</td>
<td>102</td>
</tr>
<tr>
<td>4.9</td>
<td>Cableado y conexiones eléctricas</td>
<td>102</td>
</tr>
<tr>
<td>4.9.1</td>
<td>Conexiones para distintos métodos de arranque</td>
<td>103</td>
</tr>
<tr>
<td>4.9.2</td>
<td>Conexión de elementos auxiliares</td>
<td>103</td>
</tr>
<tr>
<td>4.10</td>
<td>Bornes y sentido de giro</td>
<td>103</td>
</tr>
<tr>
<td>5</td>
<td>Funcionamiento</td>
<td>104</td>
</tr>
<tr>
<td>5.1</td>
<td>Generalidades</td>
<td>104</td>
</tr>
<tr>
<td>6</td>
<td>Motores de baja tensión en funcionamiento con velocidad variable</td>
<td>105</td>
</tr>
<tr>
<td>6.1</td>
<td>Introducción</td>
<td>105</td>
</tr>
<tr>
<td>6.2</td>
<td>Aislamiento del devanado</td>
<td>105</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Selección del aislamiento del devanado con convertidores ABB</td>
<td>105</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Selección del aislamiento del devanado con los demás convertidores</td>
<td>105</td>
</tr>
<tr>
<td>6.3</td>
<td>Protección por temperatura</td>
<td>105</td>
</tr>
<tr>
<td>6.4</td>
<td>Corrientes en los rodamientos</td>
<td>105</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Eliminación de corrientes en los rodamientos con convertidores ABB</td>
<td>106</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Eliminación de corrientes en los rodamientos con el resto de convertidores</td>
<td>106</td>
</tr>
<tr>
<td>6.5</td>
<td>Cableado, conexión a tierra y compatibilidad electromagnética</td>
<td>107</td>
</tr>
<tr>
<td>6.6</td>
<td>Velocidad de funcionamiento</td>
<td>107</td>
</tr>
<tr>
<td>6.7</td>
<td>Motores en aplicaciones de velocidad variable</td>
<td>107</td>
</tr>
<tr>
<td>6.7.1</td>
<td>Generalidades</td>
<td>107</td>
</tr>
<tr>
<td>6.7.2</td>
<td>Capacidad de carga del motor con la serie de convertidores AC_B__ con control DTC</td>
<td>107</td>
</tr>
<tr>
<td>6.7.3</td>
<td>Capacidad de carga del motor con la serie de convertidores AC_5__</td>
<td>108</td>
</tr>
<tr>
<td>6.7.4</td>
<td>Capacidad de carga del motor con otros convertidores de tipo PWM de fuente de tensión</td>
<td>108</td>
</tr>
<tr>
<td>6.7.5</td>
<td>Sobrecargas breves</td>
<td>108</td>
</tr>
<tr>
<td>6.8</td>
<td>Placas de características</td>
<td>108</td>
</tr>
<tr>
<td>6.9</td>
<td>Puesta en funcionamiento de la aplicación de velocidad variable</td>
<td>108</td>
</tr>
</tbody>
</table>
7 Mantenimiento ... 109
 7.1 Inspección general .. 109
 7.1.1 Motores en reposo .. 109
 7.2 Lubricación .. 110
 7.2.1 Motores con rodamientos lubricados de por vida .. 110
 7.2.2 Motores con rodamientos re-engrasables .. 110
 7.2.3 Intervalos de lubricación y cantidades de grasa ... 111
 7.2.4 Lubricantes .. 112
8 Servicio postventa ... 113
 8.1 Piezas de repuesto .. 113
 8.2 Desmontaje, ensamblaje y rebobinado .. 113
 8.3 Rodamientos .. 113
9 Requisitos medioambientales ... 114
10 Resolución de problemas .. 115
11 Figuras .. 117
1 Introducción

Debe seguir estas instrucciones para garantizar una instalación, un funcionamiento y un mantenimiento seguros y correctos del motor. Cualquiera que instale, maneje o realice el mantenimiento del motor o los equipos asociados debe tenerlas en cuenta. El motor debe ser instalado y utilizado por personal cualificado y familiarizado con los requisitos de salud y seguridad y la legislación nacional. No tener en cuenta estas instrucciones puede suponer la anulación de todas las garantías aplicables.

1.1 Declaración de conformidad

La conformidad del producto final con la Directiva 2006/42/CE (Máquinas) debe ser determinada por la parte encargada de la puesta en servicio en el momento del montaje del motor en la maquinaria.

1.2 Vigencia

Estas instrucciones son válidas para los siguientes tipos de máquinas eléctricas de ABB, en modo de funcionamiento de motor y generador:

- serie MT*, MXMA,
- en tamaños de carcasa IEC de 56-500
- en tamaños de carcasa NEMA de 58*, 50**

Existen un manual independiente para, por ejemplo, los motores Ex "Motores de baja tensión para atmósferas explosivas": Manual de instalación, funcionamiento y mantenimiento y seguridad (3GZF500730-47).

Es posible que algunas máquinas requieran información adicional debido a sus consideraciones especiales de aplicación y/o diseño.

Existe un manual adicional para los siguientes motores:

- motores para mesas de rodillos
- motores refrigerados por agua
- motores de extracción de humos
- motores de freno
- motores para altas temperaturas ambientales
- motores en aplicaciones marinas para montaje en cubierta abierta
- de buques o unidades offshore
2 Consideraciones de seguridad

El motor debe ser instalado y utilizado por personal cualificado y familiarizado con los requisitos de salud y seguridad y la legislación nacional.

Deben existir los equipos de seguridad necesarios para la prevención de accidentes en el lugar de la instalación, y el lugar de funcionamiento debe respetar la normativa local.

ADVERTENCIA

Los controles de parada de emergencia deben estar dotados de elementos de bloqueo del rearranque. Tras una parada de emergencia, un comando de rearranque solo puede funcionar tras el restablecimiento intencionado del bloqueo de rearranque.

Puntos que deben respetarse:

1. No pise el motor.
2. La temperatura de la cubierta externa del motor puede llegar a ser caliente al tacto durante su funcionamiento normal y, especialmente, tras una parada.
3. Algunas aplicaciones especiales del motor pueden requerir instrucciones adicionales (p. ej., cuando son alimentadas con un convertidor de frecuencia).
4. Tenga en cuenta las partes giratorias del motor.
5. No abra las cajas de bornes mientras haya tensión aplicada.
3 Manipulación

3.1 Recepción

A su recepción, verifique inmediatamente si el motor presenta daños externos (por ejemplo, en las salidas de eje, las bridas y las superficies pintadas) y, en tal caso, informe inmediatamente al agente de ventas correspondiente.

Compruebe los datos de la placa de características, especialmente la tensión y las conexiones del devanado (estrella o triángulo). El tipo de rodamiento se especifica en la placa de características de todos los motores, excepto en los tamaños de carcasa más pequeños.

En el caso de las aplicaciones con convertidor de frecuencia, compruebe la capacidad máxima de carga permitida de acuerdo con la frecuencia marcada en la segunda placa de características del motor.

3.2 Transporte y almacenamiento

El motor se debe almacenar siempre en interior (por encima de los -20 °C), en ambientes secos, sin vibraciones y sin polvo. Durante el transporte, deben evitarse los golpes, las caídas y la humedad. En presencia de cualquier otra situación, póngase en contacto con ABB.

Las superficies mecanizadas sin protección (salidas de eje y bridas) deben ser tratadas con un anticorrosivo.

Se recomienda hacer girar los ejes periódicamente (una vez cada tres meses) con la mano para evitar la dispersión de la grasa.

Se recomienda usar resistencias anti condensación, si las hay, para evitar que el agua condense en el motor.

El motor no debe ser sometido a vibraciones externas en reposo, para evitar daños en los rodamientos.

Los motores equipados con rodamientos de rodillos cilíndricos y/o de bolas de contacto angular deben llevar dispositivos de bloqueo durante el transporte.
3.3 Elevación

Todos los motores ABB con peso superior a los 25 kg están equipados con cáncamos o argollas de elevación.

A la hora de elevar el motor solo deben usarse los cáncamo o las argollas de elevación principales del propio motor. No deben usarse para elevar el motor si este está unido a otros equipos.

No deben usarse los cáncamos de elevación de los elementos auxiliares (por ejemplo frenos, ventiladores de refrigeración separados) ni de las cajas de bornes para elevar el motor. Debido a las distintas salidas, disposiciones de montaje y equipos auxiliares, motores con la misma carcasa pueden tener centros de gravedad diferentes.

No deben utilizarse cáncamos de elevación defectuosos. Antes de la elevación, compruebe que las argollas o los cáncamos de elevación integrados no presenten ningún daño.

Debe apretar las argollas antes de la elevación. Si es necesario, puede ajustar la posición de la argolla, usando arandelas adecuadas como espaciadores.

Asegúrese de que utiliza el equipo de elevación adecuado y de que los tamaños de los ganchos son los adecuados para los cáncamos de elevación.

Tenga cuidado para no dañar los equipos auxiliares ni los cables que estén conectados al motor.

Retire las posibles fijaciones de transporte que sujeten el motor al palé.

ABB puede proporcionarle instrucciones de elevación específicas.

ADVERTENCIA Durante los trabajos de elevación, montaje o mantenimiento, se deben tener en cuenta todas las consideraciones de seguridad necesarias y se debe prestar especial atención para que nadie esté expuesto a una carga elevada.

3.4 Peso de motor

El peso total del motor puede variar dentro de un mismo tamaño de carcasa (altura de eje), en función de la potencia, la disposición de montaje y los elementos auxiliares.

La tabla siguiente muestra los pesos máximos estimados para las máquinas en su versión básica, en función del material de la carcasa.

El peso real de todos los motores ABB, excepto el de los tamaños de bastidor más pequeños (56 y 63), se indica en la placa de características.

<table>
<thead>
<tr>
<th>Tamaño de carcasa</th>
<th>Aluminio, Peso kg</th>
<th>Hierro fundido, Peso kg</th>
<th>Añadir para el freno</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>4,5</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>63</td>
<td>6</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>71</td>
<td>8</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>80</td>
<td>14</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>90</td>
<td>20</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>32</td>
<td>40</td>
<td>16</td>
</tr>
<tr>
<td>112</td>
<td>36</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>132</td>
<td>93</td>
<td>90</td>
<td>30</td>
</tr>
<tr>
<td>160</td>
<td>149</td>
<td>130</td>
<td>30</td>
</tr>
<tr>
<td>180</td>
<td>162</td>
<td>190</td>
<td>45</td>
</tr>
<tr>
<td>200</td>
<td>245</td>
<td>275</td>
<td>55</td>
</tr>
<tr>
<td>225</td>
<td>300</td>
<td>360</td>
<td>75</td>
</tr>
<tr>
<td>250</td>
<td>386</td>
<td>405</td>
<td>75</td>
</tr>
<tr>
<td>280</td>
<td>425</td>
<td>800</td>
<td>–</td>
</tr>
<tr>
<td>315</td>
<td>–</td>
<td>1 700</td>
<td>–</td>
</tr>
<tr>
<td>355</td>
<td>–</td>
<td>2 700</td>
<td>–</td>
</tr>
<tr>
<td>400</td>
<td>–</td>
<td>3 500</td>
<td>–</td>
</tr>
<tr>
<td>450</td>
<td>–</td>
<td>4 500</td>
<td>–</td>
</tr>
<tr>
<td>500</td>
<td>–</td>
<td>2 800</td>
<td>–</td>
</tr>
</tbody>
</table>

Si el motor está equipado con un freno, póngase en contacto con ABB para conocer el peso.
4 Instalación y puesta en servicio

4.1 Generalidades

Es necesario comprobar cuidadosamente todos los valores de la placa de características, a fin de asegurar que la protección de motor y la conexión se realicen correctamente.

Cuando ponga en marcha el motor por primera vez o después de que haya estado almacenado más de 6 meses, aplique la cantidad de grasa especificada.

Para obtener más detalles, consulte la sección “7.2.2 Motores con rodamientos re-engrasables”.

En el caso de montaje vertical con el eje hacia abajo, el motor debe contar con una cubierta protectora para impedir la caída de objetos extraños y fluidos en el interior de las aberturas de ventilación. Este objetivo también puede conseguirse con una cubierta separada no unida al motor. En este caso, el motor debe contar con una etiqueta de advertencia.

4.2 Motores con rodamientos distintos de los de bolas de ranura profunda

Retire el bloqueo para transporte si está presente. Gire el eje del motor con la mano para comprobar que gira sin dificultad.

Motores con rodamientos de rodillos cilíndricos:
Arrancar el motor sin fuerza radial aplicada al eje puede dañar el rodamiento de rodillos debido al efecto de “deslizamiento”. En el caso de motores con rodamientos de contacto angular, la fuerza axial no debe cambiar de dirección en ningún caso.

Motores con rodamientos de bolas de contacto angular:
Arrancar el motor sin fuerza axial aplicada en la dirección correcta respecto del eje puede dañar los rodamientos de contacto angular.

El tipo de rodamiento utilizado se especifica en la placa de características.
4.3 Comprobación de la resistencia de aislamiento

Mida la resistencia del aislamiento (IR) antes de la puesta en servicio, después de largos periodos de inactividad o de almacenamiento cuando se pueda sospechar que hay humedad en el devanado. La resistencia de aislamiento debe medirse directamente en los bornes del motor con los cables de suministro de alimentación desconectados para evitar que afecten al resultado.

La resistencia de aislamiento debe servir como un indicador de tendencia para determinar cambios en el sistema de aislamiento. En máquinas nuevas, la resistencia de aislamiento normalmente tiene un valor del orden de miles de Mohm y, en consecuencia, es importante conocer el estado del sistema de aislamiento tras un cambio de la IR. Normalmente, la resistencia de aislamiento no debe estar por debajo de 10 MΩ y, bajo ninguna circunstancia debe tener un valor inferior a 1 MΩ (medido con 500 o 1000 VCC y corregido a 25 °C). El valor de la resistencia de aislamiento se reduce a la mitad por cada incremento de 20 °C en la temperatura ambiente.

La Figura 1, en el capítulo 11, puede utilizarse para la corrección del aislamiento a la temperatura deseada.

ADVERTENCIA
Para evitar riesgos de descarga eléctrica, la carcasa del motor debe estar conectada a tierra y los devanados deben ser descargados a la carcasa inmediatamente después de cada medición.

Si no se alcanza el valor de resistencia indicado, el devanado está demasiado húmedo y debe secarse al horno. La temperatura del horno debe ser de 90 °C durante un periodo de 12-16 horas y, posteriormente, 105 °C durante un periodo de 6-8 horas.

Durante el calentamiento, los tapones de los orificios de drenaje, si los hay, deben ser retirados y las válvulas de cierre deben estar abiertas. Tras el calentamiento, asegúrese de volver a colocar los tapones. Incluso si existen tapones de drenaje, se recomienda desmontar los escudos y las tapas de las cajas de bornes para el proceso de secado. Normalmente, si la humedad es causada por agua marina, debe bobinarse de nuevo el motor.

4.4 Anclajes

El usuario final es el único responsable de la preparación de los anclajes.

Los anclajes de metal deben pintarse para evitar la corrosión.

Los anclajes deben ser lisos y lo suficientemente firmes para resistir las posibles fuerzas causadas por cortocircuitos. Deben diseñarse y dimensionarse adecuadamente para evitar la transferencia de vibraciones al motor y la aparición de vibraciones por resonancia. Consulte la figura que aparece.

¡Atención! La diferencia de altura no debe superar los ±0,1mm con respecto a ninguna otra pata del motor.
4.5 Equilibrado y montaje de acoplamientos y poleas

De serie, el equilibrado del motor ha sido realizado con media chaveta.
Los acoplamientos o las poleas deben ser equilibrados tras mecanizar los chaveteros.
El equilibrado debe ser realizado de acuerdo con el método de equilibrado especificado para el motor.

Los acoplamientos y las poleas deben fijarse al eje con ayuda de equipos y herramientas adecuados que no dañen ni los rodamientos, ni las juntas, ni los retenes.
No monte en ningún caso un acoplamiento o una polea con ayuda de un martillo ni los retire haciendo fuerza con una palanca contra el cuerpo del motor.

4.6 Montaje y alineación del motor

Asegúrese de que haya suficiente espacio para que el aire pueda circular libremente alrededor del motor.
Se recomienda tener una separación entre la cubierta del ventilador y la pared, etc. de al menos ½ de la entrada de aire de la cubierta del ventilador.
Encontrará información adicional en el catálogo de productos o en los planos de dimensiones disponibles en nuestras páginas web: www.abb.com/motors&generators.

Una alineación correcta resulta esencial para evitar vibraciones y averías en los rodamientos y los ejes.
Sujete el motor a los anclajes con los tornillos o pernos adecuados y utilice calces entre los anclajes y las patas.
Alinee el motor con los métodos adecuados.
Si corresponde, perfore orificios de posicionamiento y sujeté los pasadores de posicionamiento en su lugar.

Exactitud de montaje del acoplamiento: compruebe que la separación b sea inferior a 0,05 mm y que la diferencia entre a1 y a2 sea también inferior a 0,05 mm. Consulte la Figura 2.
Vuelva a comprobar la alineación tras el apriete final de los tornillos o pernos.
No sobrepase los valores de carga permitidos para los rodamientos que se indican en los catálogos de productos.

Compruebe que el motor cuenta con un flujo de aire suficiente. Asegúrese de que ningún objeto cercano ni la luz solar directa radie calor adicional al motor.
En el caso de los motores montado en brida (por ejemplo B5, B35, V1), asegúrese de que la construcción permita un flujo de aire suficiente en la superficie exterior de la brida.

4.7 Fuerzas radiales y accionamientos por correas

Debe tensar las correas de acuerdo con las instrucciones del proveedor del equipo accionado.
Sin embargo, no sobrepase las fuerzas máximas de la correa (es decir, la carga radial del rodamiento) indicadas en los catálogos de producto pertinentes.

Advertencia: Una tensión excesiva de la correa dañará los rodamientos y puede dañar el eje.
4.8 Motores con tapones de drenaje para condensación

Compruebe que los orificios y tapones de drenaje queden orientados hacia abajo. En los motores con montaje vertical, los tapones de drenaje estarán en posición horizontal.

Los motores con tapones de drenaje de plástico sellables se entregan en posición abierta. En ambientes muy polvorientos, todos los orificios de drenaje deben permanecer cerrados.

4.9 Cableado y conexiones eléctricas

La caja de bornes de los motores estándar de una sola velocidad tiene normalmente seis bornes de conexión del devanado y como mínimo un borne de conexión a tierra.

Además del devanado principal y los bornes de conexión a tierra, la caja de bornes también puede contener conexiones para termistores, resistencias calefactoras u otros dispositivos auxiliares.

Para la conexión de todos los cables principales deben usarse terminales de cable adecuados. Los cables de los elementos auxiliares pueden conectarse tal cual a sus placas de bornes.

Estos motores son solo para instalación fija. A no ser que se especifique lo contrario, las roscas de las entradas de cables son métricas. La clase IP del prensaestopas debe coincidir al menos con las de las cajas de bornes.

En el momento de la instalación hay que utilizar un conector de conductos o de cables certificado.

Los cables deben estar protegidos mecánicamente y sujetos cerca de la caja de bornes, para cumplir los requisitos adecuados de la norma IEC/EN 60079-0 y las normas de instalación locales.

Las entradas de cable no utilizadas deben cerrarse con tapones de acuerdo con la clase IP de la caja de bornes.

El grado de protección y el diámetro se especifican en los documentos relativos al prensaestopas.

Además, los medios de conexión a tierra o conexión equipotencial del exterior del aparato eléctrico deben permitir la conexión efectiva de un conductor con una sección transversal de al menos 4 mm².

La conexión de cable entre la red y los bornes del motor debe cumplir los requisitos establecidos en las normas nacionales sobre instalación, o cumplir con la norma IEC/EN 60204-1, según la intensidad nominal indicada en la placa de características.

La conexión a tierra debe llevarse a cabo según la normativa local antes de conectar el motor a la tensión de suministro.
Si la temperatura ambiente supera los +50 °C, deben utilizarse cables con una temperatura de funcionamiento permitida de +90 °C como mínimo. Al medir los cables, también deben tenerse en cuenta todos los demás factores de conversión en función de las condiciones de instalación.

Asegúrese de que la protección del motor se corresponda con las condiciones ambientales y climáticas. Por ejemplo, asegúrese de que el agua no pueda entrar en el motor o en las cajas de bornes. Las juntas de las cajas de bornes deben estar colocadas correctamente en las ranuras correspondientes para garantizar una clase IP correcta. Un escape podría conducir a una penetración de polvo o de agua, creando un riesgo de descarga eléctrica entre las partes con tensión.

4.9.1 Conexiones para distintos métodos de arranque

La caja de bornes de los motores estándar de una sola velocidad tiene normalmente seis bornes de conexión del devanado y como mínimo un borne de conexión a tierra. Con ello se permite el uso de los arranques directo o Y/D.

En el caso de los motores especiales o de dos velocidades, en la conexión de alimentación deben seguirse las instrucciones indicadas dentro de la caja de bornes o en el manual del motor.

La tensión y la conexión están indicadas en la placa de características.

Arranque directo (DOL):

Pueden utilizarse conexiones al devanado en estrella o triángulo.

Por ejemplo, 690 VY, 400 VD indica una conexión en Y para 690 V y una conexión en D para 400 V.

Arranque en estrella/triángulo (Y/D):

La tensión de alimentación debe ser igual a la tensión nominal del motor si se usa una conexión en triángulo.

Retire todos los enlaces de conexión de la placa de bornes.

Otros métodos de arranque y condiciones de arranque difíciles:

En los casos en los que se utilicen otros métodos de arranque (como un convertidor o un arrancador suave) en los tipos de carga de S1 y S2, se considera que el dispositivo está “aislado de la red eléctrica cuando la máquina eléctrica está en funcionamiento”, según la norma IEC 60079-0, y la protección por temperatura es opcional.

4.9.2 Conexión de elementos auxiliares

Si un motor está equipado con termistores u otros RTD (Pt100, relés térmicos, etc.) y dispositivos auxiliares, se recomienda usarlos y conectarlos de la forma adecuada. En determinadas aplicaciones es obligatorio usar una protección por temperatura. Encontrará información más detallada en los documentos suministrados con el motor. Encontrará los diagramas de conexión para elementos auxiliares y piezas de conexión en el interior de la caja de bornes.

La tensión de medida máxima para los termistores es de 2,5 V. La intensidad de medida máxima para el Pt100 es de 5 mA. El uso de una tensión o una intensidad de medida superiores puede dar lugar a errores en las lecturas o daños en un detector de temperatura.

El aislamiento de los sensores térmicos satisface los requisitos de aislamiento básico.

4.10 Bornes y sentido de giro

El eje gira en el sentido de las agujas del reloj, visto desde el lado de acople del motor, si la secuencia de fases de línea a los bornes es L1, L2, L3, como se muestra en la figura 3.

Para modificar el sentido de giro, intercambie dos conexiones cualesquiera de los cables de suministro.

Si el motor tiene un ventilador unidireccional, asegúrese de que gire en el mismo sentido que el indicado por la flecha dibujada en el motor.
5 Funcionamiento

5.1 Generalidades

Estos motores han sido diseñados para las condiciones siguientes, a no ser que se indique lo contrario en la placa de características:

- Los motores deben instalarse únicamente en instalaciones fijas.
- El intervalo normal de temperaturas ambiente es de –20 a +40 °C.
- La altitud máxima es de 1000 m sobre el nivel del mar.
- La variación de la tensión de suministro y la frecuencia no deben exceder los límites mencionados en las normas correspondientes. La tolerancia de la tensión de suministro es de ±5% y la de la frecuencia es de ±2%, de acuerdo con la Figura 4 (EN / IEC 60034-1, párrafo 7.3, Zona A). Se supone que ambos valores extremos no deben producirse al mismo tiempo.

El motor solo puede ser usado en las aplicaciones a las que está destinado. Los valores nominales y las condiciones de funcionamiento se indican en las placas de características del motor. Además, se deben respetar todos los requisitos de este manual y demás instrucciones relacionadas, además de respetar las normas.

Si se sobrepasan estos límites, se deben comprobar los datos del motor y los de su diseño. Póngase en contacto con ABB para más información.

ADVERTENCIA
No tener en cuenta las instrucciones o el mantenimiento del aparato puede poner en peligro la seguridad y con ello impedir el uso del motor.
6 Motores de baja tensión en funcionamiento con velocidad variable

6.1 Introducción

Esta parte del manual proporciona instrucciones adicionales para los motores utilizados en suministros de alimentación a través de un convertidor de frecuencia. El motor ha sido concebido para su alimentación con un solo convertidor de frecuencia y no para su uso con otros motores funcionando en paralelo desde un solo convertidor de frecuencia. Deben respetarse las instrucciones proporcionadas por el fabricante del convertidor.

(ABB puede necesitar información adicional a la hora de decidir la idoneidad de tipos de motores concretos utilizados en aplicaciones especiales o con modificaciones de diseño especiales.)

6.2 Aislamiento del devanado

Los convertidores de velocidad variable crean esfuerzos de tensión más altos que el suministro sinusoidal sobre el devanado del motor. Por lo tanto, el aislamiento del devanado del motor, así como el filtro en la salida del convertidor, deben ser dimensionados según las siguientes instrucciones.

6.2.1 Selección del aislamiento del devanado con convertidores ABB
En el caso de, por ejemplo, convertidores individuales de las series ABB AC_8_ _ y AC_5_ _ con una unidad de alimentación con diodo (tensión CC no controlada), la selección del aislamiento de devanado y de los filtros puede realizarse de acuerdo con la tabla 6.1.

6.2.2 Selección del aislamiento del devanado con todos los demás convertidores
Los esfuerzos de tensión deben limitarse por debajo de los límites aceptables. Póngase en contacto con el suministrador del sistema para garantizar la seguridad de la aplicación. La influencia de posibles filtros debe considerarse cuando se dimensione el motor.

6.3 Protección por temperatura

La mayoría de los motores cubiertos por este manual están equipados con termostores PTC u otro tipo de RTD en los devanados del estator. Se recomienda conectarlos al convertidor de frecuencia. Obtenga más información en el capítulo 4.9.2.
Deben utilizarse rodamientos o construcciones de rodamientos aislados, filtros de modo común y métodos de cableado y conexión a tierra adecuados, de acuerdo con las siguientes instrucciones y utilizando la tabla 6.1.

<table>
<thead>
<tr>
<th>Pₙ < 100 kW</th>
<th>Pₙ ≥ 100 kW o IEC315 ≤ Tamaño de la carcasa ≤ IEC355</th>
<th>Pₙ ≥ 350 kW o IEC400 ≤ Tamaño de la carcasa ≤ IEC450</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uₙ ≤ 500 V</td>
<td>Motor estándar</td>
<td>Motor estándar</td>
</tr>
<tr>
<td>500V > Uₙ ≤ 600V</td>
<td>Motor estándar + dU/dt –filtro (reactor) O Aislamiento reforzado</td>
<td>Motor estándar + Rodamiento N aislado + Filtro de modo común</td>
</tr>
<tr>
<td>500V > Uₙ ≤ 600V (longitud de cable > 150 m)</td>
<td>Motor estándar + Rodamiento N aislado</td>
<td>Motor estándar + Aislamiento reforzado + Rodamiento N aislado + Filtro de modo común</td>
</tr>
<tr>
<td>600V > Uₙ ≤ 690V</td>
<td>Aislamiento reforzado + dU/dt –filtro (reactor)</td>
<td>Aislamiento reforzado + dU/dt –filtro (reactor) + Rodamiento N aislado</td>
</tr>
<tr>
<td>600V > Uₙ ≤ 690V (longitud de cable > 150 m)</td>
<td>Aislamiento reforzado + Rodamiento N aislado</td>
<td>Aislamiento reforzado + Rodamiento N aislado + Filtro de modo común</td>
</tr>
</tbody>
</table>

6.4.1 Eliminación de corrientes en los rodamientos con convertidores ABB
En caso de convertidor de frecuencia de ABB, por ejemplo las series AC_8_ _ y AC_5_ _, con una unidad de alimentación con diodo, deben utilizarse los métodos que se describen en la tabla 6.1 para evitar corrientes perjudiciales en los rodamientos en los motores.

Se recomiendan los rodamientos aislados que tengan los orificios interiores y/o exteriores recubiertos de óxido de aluminio o elementos rodantes de cerámica. Los revestimientos de óxido de aluminio también se tratarán con un sellador para evitar que la suciedad y la humedad penetren en el revestimiento poroso. Para conocer el tipo exacto de aislamiento de los rodamientos, consulte la placa de características del motor. Se prohíbe cambiar el tipo de rodamiento o el método de aislamiento sin la autorización de ABB.

6.4.2 Eliminación de corrientes en los rodamientos con el resto de convertidores
El usuario es responsable de la protección del motor y los equipos accionados frente a corrientes perjudiciales en los rodamientos. Las instrucciones que se describen en el capítulo 6.4.1 pueden utilizarse como guía, aunque no puede garantizarse su eficacia en todos los casos.
6.5 Cableado, conexión a tierra y compatibilidad electromagnética

Para ofrecer una conexión a tierra adecuada y garantizar el cumplimiento de los requisitos de compatibilidad electromagnética aplicables, los motores de más de 30 kW deben estar cableados con cables apantallados simétricos y prensaestopas de compatibilidad electromagnética, es decir, que proporcionen una conexión equipotencial en los 360°. Los cables simétricos y apantallados son muy recomendables también para los motores más pequeños. Efectúe la conexión a tierra de 360° en todas las entradas de cables, de la forma descrita en las instrucciones relativas a los prensaestopas. Entrelace los apantallamientos de los cables en haces y conéctelos al borne o barra de bus de conexión a tierra del interior de la caja de bornes, el armario del convertidor, etc.

En el caso de los motores con tamaño de carcasa IEC 280 y mayores, se requiere una conexión equipotencial adicional entre la carcasa del motor y el equipo accionado, a no ser que los dos estén montados sobre una base común de acero. En este caso, es necesario comprobar la conductividad de alta frecuencia de la conexión ofrecida por la base de acero, por ejemplo midiendo la diferencia de potencial existente entre los componentes. Encontrará más información sobre la conexión a tierra y el cableado de los convertidores de frecuencia en el manual “Grounding and cabling of the drive system” (Conexión a tierra y cableado de un convertidor de frecuencia, código: 3AFY 61201998).

6.6 Velocidad de funcionamiento

Para velocidades más altas que la velocidad nominal indicada en la placa de características del motor o en el catálogo de productos correspondiente, asegúrese de que no se supere la velocidad de giro máxima permitida del motor ni la velocidad crítica de la aplicación completa.

6.7 Motores en aplicaciones de velocidad variable

6.7.1 Generalidades
Con convertidores de frecuencia de ABB, los motores pueden dimensionarse mediante el uso del programa de dimensionamiento DriveSize de ABB. La herramienta puede descargarse desde el sitio web de ABB (www.abb.com/motors&generators). Para aplicaciones suministradas con otros convertidores, el dimensionamiento de los motores debe realizarse manualmente. Para más información, póngase en contacto con ABB.

Las curvas de capacidad de carga se basan en la tensión de alimentación nominal. El funcionamiento bajo condiciones de subtensión o sobretensión puede afectar al rendimiento de la aplicación.

6.7.2 Capacidad de carga del motor con la serie de convertidores AC_8__ con control DTC
Las curvas de capacidad de carga que se presentan en las Figuras 5a – 5d son válidas para los convertidores de la serie AC_8__ de ABB con tensión CC no controlada y control DTC. Las cifras muestran el máximo par de salida continuo aproximado de los motores en función de la frecuencia de suministro. El par de salida se indica como un porcentaje del par nominal del motor. Los valores son indicativos y los valores exactos están disponibles si se solicitan.
6.8 Placas de características

El uso de motores ABB en aplicaciones de velocidad variable no requiere normalmente placas de características adicionales. Los parámetros requeridos para la puesta en servicio del convertidor pueden consultarse en la placa de características principal. Sin embargo, en algunas aplicaciones especiales, los motores pueden estar equipados con placas de características adicionales para aplicaciones de velocidad variable.

Estos incluyen la siguiente información:
- rango de velocidades
- rango de potencia
- rango de tensión y corriente
- tipo de par (constante o cuadrático)
- y tipo de convertidor y mínima frecuencia de conmutación.

6.9 Puesta en funcionamiento de la aplicación de velocidad variable

La puesta en servicio de la aplicación de velocidad variable debe realizarse de acuerdo con las instrucciones del convertidor de frecuencia y la normativa y los reglamentos locales. También deben tenerse en cuenta los requisitos y las limitaciones establecidos por la aplicación.

Todos los parámetros necesarios para configurar el convertidor pueden obtenerse de las placas de características del motor. Los parámetros necesarios con más frecuencia son:
- tensión nominal
- corriente nominal
- frecuencia nominal
- velocidad nominal
- potencia nominal

¡Si falta información o es inexacta, no utilice el motor antes de garantizar que los valores sean los correctos!

ABB recomienda utilizar todas las características de protección adecuadas que ofrezca el convertidor para aumentar la seguridad de la aplicación. Los convertidores suelen contar con características como las siguientes (los nombres y la disponibilidad de las características dependen del fabricante y del modelo de convertidor):
- velocidad mínima
- velocidad máxima
- tiempos de aceleración y deceleración
- corriente máxima
- par máximo
- protección contra pérdida de velocidad
7 Mantenimiento

7.1 Inspección general

1. Inspeccione el motor a intervalos regulares, al menos una vez al año. La frecuencia de las comprobaciones depende, por ejemplo, del nivel de humedad del aire y de las condiciones climatológicas locales. Puede determinarse inicialmente de forma experimental y debe ser respetada estrictamente a partir de ese momento.

2. Mantenga el motor limpio y asegúrese de que el aire puede fluir libremente. Si se utiliza el motor en un ambiente polvoriento, es necesario verificar y limpiar periódicamente el sistema de ventilación.

3. Compruebe el estado de los retenes de eje (por ejemplo, anillo en V o retén radial) y reemplácelos si es necesario.

4. Compruebe el estado de las conexiones y de los tornillos de montaje y ensamblaje.

5. Compruebe el estado de los rodamientos. Para ello, escuche para detectar cualquier ruido inusual, mida las vibraciones, mida la temperatura del rodamiento, inspeccione la cantidad de grasa consumida o monitoree los rodamientos mediante un medidor SPM. Preste una atención especial a los rodamientos si están cerca del fin de su vida útil nominal calculada.

Cuando aparezcan señales de desgaste, desmonte el motor, compruebe las piezas y cambie las que sean necesarias. Al sustituir los rodamientos, los de repuesto deben ser del mismo tipo que los montados originalmente. Al sustituir los rodamientos, los retenes de eje deben ser sustituidos con retenes que presenten la misma calidad y las mismas características que los originales.

En el caso del motor IP 55 y si el motor ha sido suministrado con un tapón cerrado, es recomendable abrir periódicamente los tapones de drenaje para asegurarse de que la salida de condensación no está bloqueada y permitir así que la condensación escape del motor. Esta operación debe hacerse cuando el motor esté parado y se encuentre en un estado que permita trabajar en él con seguridad.

7.1.1 Motores en reposo
Si el motor permanece en reposo durante periodos prolongados en un buque o en otro entorno con vibraciones, se deben tomar las siguientes medidas:

1. El eje debe ser girado regularmente cada 2 semanas (deberá documentarse) mediante una puesta en marcha del sistema. En el caso de que la puesta en marcha no sea posible por algún motivo, como mínimo es necesario girar el eje con la mano para conseguir una posición diferente una vez por semana. Las vibraciones causadas por los demás equipos del buque pueden provocar el picado de los rodamientos, que debe minimizarse con un funcionamiento regular o el giro manual.

2. El rodamiento debe engrasarse una vez al año mientras se hace girar el eje (deberá documentarse). Si el motor ha sido suministrado con rodamiento de rodillos en el lado de acople, el bloqueo para transporte debe retirarse antes de girar el eje. El bloqueo para transporte debe volver a montarse en caso de transporte.

3. Se deben evitar todas las vibraciones para evitar la avería del rodamiento. Deben seguirse todas las instrucciones del manual de instrucciones del motor en lo relativo a la puesta en servicio y el mantenimiento. La garantía no cubrirá los daños en devanados o rodamientos si no se han seguido estas instrucciones.
7.2. Lubricación

ADVERTENCIA

Tenga cuidado con todas las partes giratorias.

ADVERTENCIA

La grasa puede causar irritación de la piel e inflamación de los ojos. Siga todas las precauciones de seguridad especificadas por el fabricante de la grasa.

Los tipos de rodamientos se especifican en los catálogos de producto correspondiente y en la placa de características de todos los motores, excepto los que tienen los tamaños de carcasa más pequeños.

La fiabilidad es un asunto vital en cuanto a los intervalos de lubricación de los rodamientos. ABB sigue fundamentalmente el principio L1 (es decir, que el 99% de los motores alcanzarán con certeza su vida útil) para la lubricación.

7.2.1 Motores con rodamientos lubricados de por vida

Los rodamientos son normalmente rodamientos lubricados de por vida y son de los tipos 1Z, 2Z, 2RS o equivalentes.

Como guía, es posible conseguir una lubricación suficiente en los tamaños hasta 250 para la duración que se indica posteriormente, de acuerdo con el principio L1. Para entornos con temperaturas ambiente mayores, póngase en contacto con ABB. La fórmula informativa para cambiar los valores L1 aproximadamente a valores L10 es: L10 = 2,0 x L1.

Las horas de funcionamiento para los rodamientos lubricados de por vida con temperaturas ambiente de 25 y 40 °C son:

<table>
<thead>
<tr>
<th>Tamaño de carcasa</th>
<th>Polos</th>
<th>Horas de funcionamiento a 25 °C</th>
<th>Horas de funcionamiento a 40 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>2</td>
<td>52 000</td>
<td>33 000</td>
</tr>
<tr>
<td>56</td>
<td>4-8</td>
<td>65 000</td>
<td>41 000</td>
</tr>
<tr>
<td>63</td>
<td>2</td>
<td>49 000</td>
<td>31 000</td>
</tr>
<tr>
<td>63</td>
<td>4-8</td>
<td>63 000</td>
<td>40 000</td>
</tr>
<tr>
<td>71</td>
<td>2</td>
<td>67 000</td>
<td>42 000</td>
</tr>
<tr>
<td>71</td>
<td>4-8</td>
<td>100 000</td>
<td>56 000</td>
</tr>
<tr>
<td>80-90</td>
<td>2</td>
<td>100 000</td>
<td>65 000</td>
</tr>
<tr>
<td>80-90</td>
<td>4-8</td>
<td>100 000</td>
<td>96 000</td>
</tr>
<tr>
<td>100-112</td>
<td>2</td>
<td>89 000</td>
<td>56 000</td>
</tr>
<tr>
<td>100-112</td>
<td>4-8</td>
<td>100 000</td>
<td>89 000</td>
</tr>
<tr>
<td>132</td>
<td>2</td>
<td>67 000</td>
<td>42 000</td>
</tr>
<tr>
<td>132</td>
<td>4-8</td>
<td>100 000</td>
<td>77 000</td>
</tr>
<tr>
<td>160</td>
<td>2</td>
<td>60 000</td>
<td>38 000</td>
</tr>
<tr>
<td>160</td>
<td>4-8</td>
<td>100 000</td>
<td>74 000</td>
</tr>
<tr>
<td>180</td>
<td>2</td>
<td>55 000</td>
<td>34 000</td>
</tr>
<tr>
<td>180</td>
<td>4-8</td>
<td>100 000</td>
<td>70 000</td>
</tr>
<tr>
<td>200</td>
<td>2</td>
<td>41 000</td>
<td>25 000</td>
</tr>
<tr>
<td>200</td>
<td>4-8</td>
<td>95 000</td>
<td>60 000</td>
</tr>
<tr>
<td>225</td>
<td>2</td>
<td>36 000</td>
<td>23 000</td>
</tr>
<tr>
<td>225</td>
<td>4-8</td>
<td>88 000</td>
<td>56 000</td>
</tr>
<tr>
<td>250</td>
<td>2</td>
<td>31 000</td>
<td>20 000</td>
</tr>
<tr>
<td>250</td>
<td>4-8</td>
<td>80 000</td>
<td>50 000</td>
</tr>
</tbody>
</table>

Estos datos son válidos hasta los 60 Hz.

7.2.2 Motores con rodamientos re-engrasables

Placa de información de lubricación e indicaciones generales de lubricación

Si el motor cuenta con una placa de información de lubricación, siga los valores indicados.

En la placa de información de lubricación se indican los intervalos de engrase en relación con el tipo de montaje, la temperatura ambiente y la velocidad de giro.

Durante la primera puesta en marcha o después de la lubricación de los rodamientos, puede producirse un incremento temporal de la temperatura durante un periodo de 10 a 20 horas aproximadamente.

Algunos motores pueden contar con un colector para la grasa utilizada. Siga las instrucciones especiales entregadas junto con el equipo.

A. Lubricación manual

Reengrase mientras el motor está en funcionamiento

* Retire el tapón de salida de grasa o abra la válvula de cierre si dispone de una.
* Asegúrese de que el canal de lubricación esté abierto.
* Inyecte la cantidad especificada de grasa hacia el interior del rodamiento.
* Haga funcionar el motor 1-2 horas para garantizar que el exceso de grasa sea expulsado del rodamiento. Cierre el tapón de salida de grasa o la válvula de cierre si dispone de una.

Reengrase mientras el motor está en reposo

Si no es posible engrasar los rodamientos con los motores en funcionamiento, la lubricación puede ser realizada mientras la máquina está parada.

* En este caso, utilice solo la mitad de la cantidad de grasa y haga funcionar el motor durante unos minutos a máxima velocidad.
* Cuando el motor se haya detenido, aplique el resto de la cantidad especificada de grasa al rodamiento.
* Tras 1 o 2 horas de funcionamiento, cierre el tapón de salida de grasa o la válvula de cierre, si dispone de una.

B. Lubricación automática

El tapón de salida de grasa debe estar quitado de forma permanente si se utiliza la lubricación automática o si se deja abierta permanentemente la válvula de cierre, si cuenta con una.

ABB recomienda únicamente el uso de sistemas electromecánicos.

La cantidad de grasa por intervalo de lubricación indicada en la tabla debe multiplicarse por tres si se utiliza un sistema de lubricación central. Si se utiliza una unidad de re-engraso automático más pequeña (uno o dos cartuchos en cada motor), puede usarse la cantidad normal de grasa.

Si un motor de 2 polos se re-engrasa automáticamente, debe seguir la nota acerca de las recomendaciones de lubricantes indicadas para los motores de 2 polos en el capítulo Lubricantes.
La grasa utilizada debe ser adecuada para la lubricación automática. Deben comprobarse las recomendaciones del proveedor del sistema de lubricación automática y el fabricante de grasa.

Ejemplo de cálculo para la cantidad de grasa del sistema de lubricación automática
Sistema de lubricación central: Motor IEC M3_P 315_4 polos en una red a 50 Hz; el intervalo de re-lubricación según la tabla que aparece a continuación es 7600 h/55 g (LA) y 7600 h/40 g (LOA):

| (LA) RLI | 55 g/7600 h*3*24 = 0,52 g/día |
| (LOA) RLI | 40 g/7600 h*3*24 = 0,38 g/día |

Ejemplo de cálculo de cantidad de grasa de una unidad de lubricación automática individual (cartucho)

| (LA) RLI | 55 g/7600 h*24 = 0,17 g/día |
| (LOA) RLI | 40 g/7600 h*24 = 0,13 g/día |

RLI = Intervalo de relubricación, LA = Lado de acople, LOA = Lado opuesto al acople.

7.2.3 Intervalos de lubricación y cantidades de grasa
En los motores verticales, los intervalos de lubricación deben reducirse a la mitad de los indicados en la tabla siguiente.

Como guía, es posible conseguir una lubricación suficiente para la duración que se indica posteriormente, de acuerdo con el principio L1. Para entornos con temperaturas ambiente mayores, póngase en contacto con ABB. La fórmula informativa para cambiar los valores L1 aproximadamente a valores L10 es L10 = 2.0 x L1, con lubricación manual.

Los intervalos de lubricación se basan en una temperatura de funcionamiento de los rodamientos de 80 °C (temperatura ambiente de +25 °C).

Un aumento de la temperatura ambiente eleva correspondientemente la temperatura de los rodamientos. Los valores de los intervalos deben reducirse a la mitad en caso de un aumento de 15 °C en la temperatura de los rodamientos, y pueden doblarse en caso de una reducción de 15 °C en la temperatura de los rodamientos.

En caso de funcionamiento a mayor velocidad, por ejemplo en las aplicaciones con convertidor de frecuencia, o velocidades más bajas debidas a la carga elevada, se necesitarán intervalos de lubricación más cortos.

ADVERTENCIA No debe sobrepasarse la temperatura máxima de funcionamiento de la grasa y de los rodamientos, que es de +110 °C. No se debe superar la velocidad máxima de diseño del motor.

<table>
<thead>
<tr>
<th>Tabla 7.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carcasa</td>
</tr>
<tr>
<td>tamaño</td>
</tr>
<tr>
<td>112</td>
</tr>
<tr>
<td>132</td>
</tr>
<tr>
<td>160</td>
</tr>
<tr>
<td>160</td>
</tr>
<tr>
<td>180</td>
</tr>
<tr>
<td>180</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>225</td>
</tr>
<tr>
<td>225</td>
</tr>
<tr>
<td>250</td>
</tr>
<tr>
<td>250</td>
</tr>
<tr>
<td>280</td>
</tr>
<tr>
<td>280</td>
</tr>
<tr>
<td>280</td>
</tr>
<tr>
<td>315</td>
</tr>
<tr>
<td>315</td>
</tr>
<tr>
<td>315</td>
</tr>
<tr>
<td>355</td>
</tr>
<tr>
<td>355</td>
</tr>
<tr>
<td>400</td>
</tr>
<tr>
<td>400</td>
</tr>
<tr>
<td>400</td>
</tr>
<tr>
<td>450</td>
</tr>
<tr>
<td>450</td>
</tr>
<tr>
<td>500</td>
</tr>
<tr>
<td>500</td>
</tr>
<tr>
<td>5010</td>
</tr>
<tr>
<td>5010</td>
</tr>
<tr>
<td>5012</td>
</tr>
</tbody>
</table>
dentro del rango de temperaturas ni afectarán a las propiedades de los lubricantes, especialmente en el caso de los
obtenerse una garantía por escrito del fabricante
Los aditivos están recomendados, pero debe
*) En los motores con montaje vertical o en condiciones con temperaturas elevadas, se recomienda utilizar el extremo más alto de la escala.
Las especificaciones mencionadas arriba para la grasa son válidas si la temperatura ambiente está por encima de los -30 °C o por debajo de los +55 °C, y la temperatura del rodamiento está por debajo de los 110 °C. De lo contrario, consulte a ABB acerca de la grasa adecuada.
Los principales fabricantes de lubricantes ofrecen grasas con las propiedades adecuadas.
Los aditivos están recomendados, pero debe obtenerse una garantía por escrito del fabricante de lubricantes, especialmente en el caso de los aditivos EP, de que estos no dañarán los rodamientos ni afectarán a las propiedades de los lubricantes dentro del rango de temperaturas de funcionamiento.

7.2.4 Lubricantes

ADVERTENCIA
No mezcle diferentes tipos de grasa. El uso de lubricantes incompatibles puede provocar daños irreparables en los rodamientos.

<table>
<thead>
<tr>
<th>Carcasa tamaño</th>
<th>Cantidad de grasa/rodamiento</th>
<th>Rodamientos de rodamientos, intervalos de lubricación por horas de funcionamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>25</td>
<td>≤ 18,5</td>
</tr>
<tr>
<td>160</td>
<td>25</td>
<td>> 18,5</td>
</tr>
<tr>
<td>180</td>
<td>30</td>
<td>≤ 22</td>
</tr>
<tr>
<td>180</td>
<td>30</td>
<td>> 22</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>≤ 37</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>> 37</td>
</tr>
<tr>
<td>225</td>
<td>50</td>
<td>≤ 45</td>
</tr>
<tr>
<td>225</td>
<td>50</td>
<td>> 45</td>
</tr>
<tr>
<td>250</td>
<td>60</td>
<td>≤ 55</td>
</tr>
<tr>
<td>250</td>
<td>60</td>
<td>> 55</td>
</tr>
<tr>
<td>280(*) 60</td>
<td>todo</td>
<td>1 000 ≤ 1 750</td>
</tr>
<tr>
<td>280(*) 70</td>
<td>todo</td>
<td>900 ≤ 1 600</td>
</tr>
<tr>
<td>280</td>
<td>40</td>
<td>todo</td>
</tr>
<tr>
<td>315</td>
<td>35</td>
<td>todo</td>
</tr>
<tr>
<td>315</td>
<td>55</td>
<td>todo</td>
</tr>
<tr>
<td>355</td>
<td>35</td>
<td>todo</td>
</tr>
<tr>
<td>355</td>
<td>70</td>
<td>todo</td>
</tr>
<tr>
<td>400</td>
<td>40</td>
<td>todo</td>
</tr>
<tr>
<td>400</td>
<td>85</td>
<td>todo</td>
</tr>
<tr>
<td>450</td>
<td>40</td>
<td>todo</td>
</tr>
<tr>
<td>450</td>
<td>95</td>
<td>todo</td>
</tr>
<tr>
<td>5008</td>
<td>40</td>
<td>todo</td>
</tr>
<tr>
<td>5008</td>
<td>85</td>
<td>todo</td>
</tr>
<tr>
<td>5010</td>
<td>40</td>
<td>todo</td>
</tr>
<tr>
<td>5010</td>
<td>85</td>
<td>todo</td>
</tr>
<tr>
<td>5012</td>
<td>85</td>
<td>todo</td>
</tr>
</tbody>
</table>

(*) M3AA

ADVERTENCIA
En general, no se recomiendan los lubricantes que contienen aditivos EP. En algunas circunstancias puede causar daños en el rodamiento, por lo que su uso debe ser evaluado caso por caso junto con los proveedores de lubricantes.

Pueden usarse las siguientes grasas de alto rendimiento:
- **Mobil** Unirex N2 o N3 (base con complejo de litio)
- **Mobil** Mobilith SHC 100 (base con complejo de litio)
- **Shell** Gadus S5 V 100 2 (base con complejo de litio)
- **Klüber** Klüberplex BEM 41-132 (base especial de litio)
- **FAG** Arcanol TEMP110 (base con complejo de litio)
- **Lubcon** Turmogrease L 802 EP PLUS (base especial de litio)
- **Total** Multis Complex S2 A (base con complejo de litio)

ADVERTENCIA
Utilícese siempre grasa de alta velocidad para los motores de 2 polos a alta velocidad cuyos coeficientes de velocidad sea superior a 480 000 (calculated como Dm x n, donde Dm = diámetro del rodamiento en mm; n = velocidad de giro en rpm).

Puede usar las grases siguientes en los motores de hierro fundido a alta velocidad, pero no puede mezclarlas con grasas de complejo de litio:
- **Klüber** Klüber Quiet BQH 72-102 (base de poliurea)
- **Lubcon** Turmogrease PU703 (base de poliurea)
Si se utilizan otros lubricantes, confírme con el fabricante que las calidades se corresponden con las de los lubricantes mencionados arriba. Los intervalos de lubricación se basan en los de las grasas de alto rendimiento mencionadas arriba. El uso de otras grasas puede reducir el intervalo.
8 Servicio postventa

8.1 Piezas de repuesto

A no ser que se indique lo contrario, las piezas de repuesto deben ser piezas originales o deben ser autorizadas por ABB.

A la hora de pedir piezas de repuesto, es necesario indicar el número de serie del motor, la designación de tipo completa y el código de producto, indicados en la placa de características.

8.2 Desmontaje, ensamblaje y rebobinado

El rebobinado debe ser realizado siempre por talleres de reparación cualificados.

Los motores con salida de humos y otros motores especiales no deben rebobinarse sin antes ponerse en contacto con ABB.

8.3 Rodamientos

Se debe prestar una atención especial a los rodamientos.

Deben ser retirados con ayuda de extractores y montarse con calentamiento o con herramientas especiales.

La sustitución de los rodamientos se describe en detalle en un folleto de instrucciones separado disponible a través de las oficinas comerciales de ABB.

Debe seguir todas las indicaciones presentes en el motor, por ejemplo en las etiquetas. Los tipos de rodamientos indicados en la placa de características no deben ser cambiados.
9 Requisitos medioambientales

La mayoría de los motores ABB presentan un nivel de presión sonora que no sobrepasa los 82 dB(A) (± 3 dB) a 50 Hz.

Los valores de los distintos motores aparecen en los catálogos de producto pertinentes. Con un suministro sinusoidal a 60 Hz, los valores son aproximadamente 4 dB(A) superiores respecto de los valores de los catálogos de producto, que corresponden a 50 Hz.

En cuanto a los niveles de presión sonora con alimentaciones con convertidor de frecuencia, póngase en contacto con ABB.

Si es necesario deschar o reciclar los motores, debe hacerse de la forma adecuada y según los reglamentos y legislación locales.
10 Resolución de problemas

Estas instrucciones no cubren todos los detalles o variaciones del equipo ni proporcionan información acerca de todas y cada una de las condiciones posibles que pueden darse en relación con la instalación, el manejo o el mantenimiento. Si fuera necesaria información adicional, póngase en contacto con la oficina comercial de ABB más cercana.

Tabla de solución de problemas del motor

El servicio técnico y cualquier actividad de solución de problemas del motor deben ser realizados por personas cualificadas y dotadas de los equipos y herramientas adecuados.

<table>
<thead>
<tr>
<th>PROBLEMA</th>
<th>CAUSA</th>
<th>ACCIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>El motor no arranca</td>
<td>Fusibles fundidos</td>
<td>Sustituya los fusibles con otros del tipo y los valores nominales adecuados.</td>
</tr>
<tr>
<td></td>
<td>La protección de sobrecarga se dispara</td>
<td>Compruebe y rearme la protección de sobrecarga en el arrancador.</td>
</tr>
<tr>
<td></td>
<td>Alimentación de suministro inadecuada</td>
<td>Compruebe si la alimentación de suministro concuerda con la placa de características y el factor de carga del motor.</td>
</tr>
<tr>
<td></td>
<td>Conexiones de línea incorrectas</td>
<td>Contrastar las conexiones con el diagrama suministrado con el motor.</td>
</tr>
<tr>
<td></td>
<td>Circuito abierto en el devanado o el interruptor de control</td>
<td>Se detecta por un zumbido cuando el interruptor está cerrado. Compruebe si hay cables mal conectados y asegúrese de que todos los contactos de control se cierran.</td>
</tr>
<tr>
<td>Avería mecánica</td>
<td>Compruebe si el motor y el accionamiento giran libremente. Compruebe los rodamientos y la lubricación.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Circuito abierto en el estator</td>
<td>Póngase en contacto con ABB o asegúrese de que la alimentación está desconectada y desconecte los cables y mida la resistencia del aislamiento.</td>
</tr>
<tr>
<td></td>
<td>Mala conexión de las bobinas del estator</td>
<td>Se detecta porque se funden los fusibles. Se debe rebobinar el motor. Retire los escudos y localice el fallo.</td>
</tr>
<tr>
<td></td>
<td>Posible sobrecarga del motor</td>
<td>Reduzca la carga.</td>
</tr>
<tr>
<td>El motor pierde velocidad</td>
<td>Una fase puede estar abierta</td>
<td>Compruebe las líneas para detectar la fase abierta.</td>
</tr>
<tr>
<td></td>
<td>Aplicación incorrecta</td>
<td>Cambie el tipo o el tamaño de motor. Pregunte al proveedor del equipo.</td>
</tr>
<tr>
<td></td>
<td>Sobrecarga</td>
<td>Reduzca la carga.</td>
</tr>
<tr>
<td></td>
<td>Baja tensión</td>
<td>Compruebe que se mantenga la tensión indicada en la placa de características.</td>
</tr>
<tr>
<td></td>
<td>Circuito abierto</td>
<td>Fusibles fundidos. Compruebe el relé de sobrecarga, el estator y los pulsadores.</td>
</tr>
<tr>
<td>El motor arranca pero pierde velocidad hasta pararse</td>
<td>Interrupción del servicio eléctrico</td>
<td>Busque conexiones defectuosas a la línea, los fusibles y el control.</td>
</tr>
<tr>
<td>El motor no acelera hasta la velocidad nominal</td>
<td>Aplicación incorrecta</td>
<td>Consulte el tipo adecuado al proveedor del equipo.</td>
</tr>
<tr>
<td></td>
<td>Tensión insuficiente en los bornes del motor a causa de una caída de la línea</td>
<td>Utilice una tensión mayor o un transformador o reduzca la carga. Compruebe las conexiones. Compruebe que los conductores sean del tamaño correcto.</td>
</tr>
<tr>
<td></td>
<td>Carga de arranque excesiva</td>
<td>Compruebe los arranques de los motores frente a “sin carga”.</td>
</tr>
<tr>
<td></td>
<td>Barras de rotor rotas o rotor suelto</td>
<td>Busque fisuras cerca de los anillos. Es posible que requiera un nuevo rotor, dado que las reparaciones solo duran un tiempo.</td>
</tr>
<tr>
<td></td>
<td>Circuito primario abierto</td>
<td>Busque la avería con un tester y repárela.</td>
</tr>
<tr>
<td>PROBLEMA</td>
<td>CAUSA</td>
<td>ACCIONES</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>El motor tarda demasiado en acelerar y/o requiere una intensidad excesiva</td>
<td>Carga excesiva</td>
<td>Reduzca la carga.</td>
</tr>
<tr>
<td></td>
<td>Tensión insuficiente durante el arranque</td>
<td>Compruebe si la resistencia es excesiva. Asegúrese de utilizar un cable de una sección adecuada.</td>
</tr>
<tr>
<td></td>
<td>Rotor de jaula de ardilla defectuoso</td>
<td>Reemplace el rotor por uno nuevo.</td>
</tr>
<tr>
<td></td>
<td>Tensión aplicada insuficiente</td>
<td>Corrija la alimentación de suministro.</td>
</tr>
<tr>
<td>Sensitivo de rotación incorrecto</td>
<td>Secuencia de fases incorrecta</td>
<td>Invierta las conexiones en el motor o en el panel de interruptores.</td>
</tr>
<tr>
<td>El motor se sobrecalienta mientras funciona</td>
<td>Sobre carga</td>
<td>Reduzca la carga.</td>
</tr>
<tr>
<td></td>
<td>La carcasa o las aberturas de ventilación pueden estar obstruidas con suciedad e impedir una ventilación correcta del motor.</td>
<td>Abra los orificios de ventilación y compruebe que se produzca un flujo de aire continuo desde el motor.</td>
</tr>
<tr>
<td></td>
<td>El motor puede tener abierta una fase</td>
<td>Compruebe que todos los conductores y cables están bien conectados.</td>
</tr>
<tr>
<td></td>
<td>Bobina conectada a masa</td>
<td>Se debe rebobinar el motor.</td>
</tr>
<tr>
<td></td>
<td>Tensión desequilibrada en los bornes</td>
<td>Busque cables, conexiones y transformadores defectuosos.</td>
</tr>
<tr>
<td>El motor vibra</td>
<td>Motor mal alineado</td>
<td>Corrija la alineación.</td>
</tr>
<tr>
<td></td>
<td>Apoyo poco resistente</td>
<td>Refuerce la base.</td>
</tr>
<tr>
<td></td>
<td>Desequilibrio en el acoplamiento</td>
<td>Equilibre el acoplamiento.</td>
</tr>
<tr>
<td></td>
<td>Desequilibrio en el equipo accionado</td>
<td>Corrija el equilibrio del equipo accionado.</td>
</tr>
<tr>
<td></td>
<td>Rodamientos en mal estado</td>
<td>Sustituya los rodamientos.</td>
</tr>
<tr>
<td></td>
<td>Rodamientos mal alineados</td>
<td>Repare el motor.</td>
</tr>
<tr>
<td></td>
<td>Pesos de equilibrado desplazados</td>
<td>Corrija el equilibrio del rotor.</td>
</tr>
<tr>
<td></td>
<td>Contradicción entre el equilibrado del rotor y el del acoplamiento (medio chaveta – chaveta entera)</td>
<td>Reequilibre el acoplamiento o el rotor.</td>
</tr>
<tr>
<td></td>
<td>Motor polifásico funcionando como monofásico</td>
<td>Compruebe si existe algún circuito abierto.</td>
</tr>
<tr>
<td></td>
<td>Juego axial excesivo</td>
<td>Ajuste el rodamiento o añada suplementos.</td>
</tr>
<tr>
<td>Ruido de rozaduras</td>
<td>Rozamiento del ventilador contra el escudo o la cubierta de ventilador</td>
<td>Corrija el montaje del ventilador.</td>
</tr>
<tr>
<td></td>
<td>Sujeción incorrecta a la placa de base</td>
<td>Apriete los pernos de anclaje.</td>
</tr>
<tr>
<td>Funcionamiento ruidoso</td>
<td>Entrehierro no uniforme</td>
<td>Compruebe y corrija el ajuste de los escudos o del rodamiento.</td>
</tr>
<tr>
<td></td>
<td>Desequilibrio del rotor</td>
<td>Corrija el equilibrio del rotor.</td>
</tr>
<tr>
<td>Rodamientos a alta temperatura</td>
<td>Eje doblado o deformado</td>
<td>Enderece o sustituya el eje.</td>
</tr>
<tr>
<td></td>
<td>Tensión excesiva de la correa</td>
<td>Reduzca la tensión de la correa.</td>
</tr>
<tr>
<td></td>
<td>Poleas demasiado alejadas del apoyo del eje</td>
<td>Sitúe la polea más cerca del rodamiento del motor.</td>
</tr>
<tr>
<td></td>
<td>Diámetro de polea demasiado reducido</td>
<td>Utilice poleas más grandes.</td>
</tr>
<tr>
<td></td>
<td>Mala alineación</td>
<td>Corrija el problema realineando el accionamiento.</td>
</tr>
<tr>
<td></td>
<td>Lubricación inadecuada</td>
<td>Utilice siempre grasa de la calidad y en la cantidad adecuadas en el rodamiento.</td>
</tr>
<tr>
<td></td>
<td>Deterioro de la grasa o lubricante contaminado</td>
<td>Elimine la grasa antigua, lave meticulosamente los rodamientos con queroseno y rellene con grasa nueva.</td>
</tr>
<tr>
<td></td>
<td>Exceso de lubricante</td>
<td>Reduzca la cantidad de grasa: el rodamiento no debe llenarse por encima de la mitad de su capacidad.</td>
</tr>
<tr>
<td></td>
<td>Rodamiento sobrecargado</td>
<td>Compruebe la alineación y el empuje lateral y axial.</td>
</tr>
<tr>
<td></td>
<td>Bola rota o caminos de rodadura rugosos</td>
<td>Sustituya el rodamiento, limpiando primero a fondo la carcasa.</td>
</tr>
</tbody>
</table>
11 Figuras

Figura 1. Diagrama que ilustra la dependencia de la resistencia de aislamiento respecto a la temperatura y cómo corregir la resistencia de aislamiento medida a la temperatura de 40 °C.

Figura 2. Montaje de acoplamiento o polea.

Figura 1.

Eje X: Temperatura de devanado, grados centígrados
Eje Y: Coeficiente de temperatura de resistencia de aislamiento, ktc

1) Para corregir una resistencia de aislamiento observada, \(R_i \) a 40 °C, multiplíquela por el coeficiente de temperatura \(ktc \): \(R_{corr} = R_i \times ktc \)

Clave

a1

Eje X: Temperatura de devanado, grados centígrados
Eje Y: Coeficiente de temperatura de resistencia de aislamiento, ktc

1) Para corregir una resistencia de aislamiento observada, \(R_i \) a 40 °C, multiplíquela por el coeficiente de temperatura \(ktc \): \(R_{corr} = R_i \times ktc \)
Figura 3. Conexión de terminales de la alimentación principal.

Figura 4. Desviación de tensión y frecuencia en zonas A y B.

<table>
<thead>
<tr>
<th>Clave</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>zona A</td>
</tr>
<tr>
<td>2</td>
<td>zona B (fuera de la zona A)</td>
</tr>
<tr>
<td>3</td>
<td>punto nominal</td>
</tr>
</tbody>
</table>

Eje X frecuencia p.u.
Eje Y tensión p.u.
Curvas de capacidad de carga de referencia con convertidores con control DTC

Figura 5a. Convertidor con control DTC, 50 Hz, aumento de temperatura B
Figura 5b. Convertidor con control DTC, 60 Hz, aumento de temperatura B
Figura 5c. Convertidor con control DTC, 50 Hz, aumento de temperatura F
Figura 5d. Convertidor con control DTC, 60 Hz, aumento de temperatura F

1) Self-ventilated, IEC frame sizes 56-132
2) Self-ventilated, IEC frame sizes 160-450
3) Separate motor cooling (force ventilated)

Figura 5a.
Figura 5b.
Figura 5c.
Figura 5d.
Curvas orientativas de cargabilidad con otro tipo de fuente de tensión PWM

Figura 6a. Otro convertidor de fuente de tensión tipo PWM, 50 Hz, aumento de temperatura B

Figura 6b. Otro convertidor de fuente de tensión tipo PWM, 60 Hz, aumento de temperatura B

Figura 6c. Otro convertidor de fuente de tensión tipo PWM, 50 Hz, aumento de temperatura F

Figura 6d. Otro convertidor de fuente de tensión tipo PWM, 60 Hz, aumento de temperatura F

1) Self ventilated, IEC frame sizes 56-132
2) Self ventilated, IEC frame sizes 160-450
3) Separate motor cooling (force ventilated)
Indice

1 Introduzione .. 125
 1.1 Dichiarazione di conformità 125
 1.2 Validità .. 125

2 Considerazioni in materia di sicurezza 126

3 Gestione e movimentazione 127
 3.1 Consegna .. 127
 3.2 Trasporto e immagazzinaggio 127
 3.3 Sollevamento .. 128
 3.4 Peso del motore .. 128

4 Installazione e messa in servizio 129
 4.1 Informazioni generali 129
 4.2 Motori con cuscinetti diversi da quelli radiali a sfere 129
 4.3 Controllo della resistenza di isolamento 130
 4.4 Fondazione .. 130
 4.5 Bilanciatura e montaggio di semigiunti e pulegge 131
 4.6 Montaggio e allineamento del motore 131
 4.7 Forze radiali e accoppiamenti a cinghia 131
 4.8 Motori con tappi di scarico della condensa 132
 4.9 Cablaggio e collegamenti elettrici 132
 4.9.1 Collegamenti per diversi metodi di avviamento 133
 4.9.2 Collegamenti di dispositivi ausiliari 133
 4.10 Morsetti e senso di rotazione 133

5 Funzionamento ... 134
 5.1 Informazioni generali 134

6 Motori a bassa tensione con funzionamento a velocità variabile 135
 6.1 Introduzione ... 135
 6.2 Isolamento dell’avvolgimento 135
 6.2.1 Selezione dell’isolamento dell’avvolgimento per convertitori ABB 135
 6.2.2 Selezione dell’isolamento dell’avvolgimento per tutti gli altri convertitori 135
 6.3 Protezione termica 135
 6.4 Correnti d’albero .. 136
 6.4.1 Eliminazione delle correnti d’albero con i convertitori ABB 136
 6.4.2 Eliminazione delle correnti d’albero con tutti gli altri convertitori 136
 6.5 Cablaggio, messa a terra ed EMC 137
 6.6 Velocità di funzionamento 137

6.7 Motori in applicazioni a velocità variabile 137
 6.7.1 Informazioni generali 137
 6.7.2 Caricabilità del motore con convertitori serie AC_8_ ... 137
 6.7.3 Caricabilità del motore con convertitori serie AC_5_ ... 138
 6.7.4 Caricabilità del motore con convertitori tipo PWM come fonte di tensione 138
 6.7.5 Sovraccarichi di breve periodo 138

6.8 Dati nominali riportati sulle targhette 138
 6.9 Messa in servizio per applicazioni a velocità variabile 138
7 Manutenzione ... 139
 7.1 Ispezione generale ... 139
 7.1.1 Motori non in attività 139
 7.2 Lubrificazione ... 140
 7.2.1 Motori con cuscinetti a lubrificazione permanente 140
 7.2.2 Motori con cuscinetti rilubrificabili 140
 7.2.3 Intervalli e quantità di lubrificazione 141
 7.2.4 Lubrificanti .. 142

8 Assistenza post-vendita 143
 8.1 Parti di ricambio ... 143
 8.2 Smontaggio, riassemblaggio e riavvolgimento 143
 8.3 Cuscinetti ... 143

9 Requisiti ambientali .. 144

10 Risoluzione dei problemi 145

11 Figure .. 147
1 Introduzione

Seguire attentamente le seguenti istruzioni, atte ad assicurare un'appropriata e sicura installazione, funzionamento e manutenzione del motore. Tutto il personale addetto all'installazione, al funzionamento e alla manutenzione del motore o delle apparecchiature associate deve essere a conoscenza di tali istruzioni. Il motore deve essere installato e utilizzato da personale qualificato che sia a conoscenza dei requisiti di sicurezza indicati dalle normative nazionali vigenti. L'inosservanza di queste istruzioni rende nulle tutte le garanzie applicabili.

1.1 Dichiarazione di conformità

La conformità del prodotto finale alla Direttiva 2006/42/CE (Direttiva Macchine) deve essere confermata dalla parte responsabile della messa in opera quando il motore viene collegato al macchinario.

1.2 Validità

Queste istruzioni sono valide per i seguenti tipi di macchine elettriche ABB, quando utilizzati sia come motori che come generatori:

- serie MT*, MXMA,
- nelle grandezze IEC 56-500
- nelle grandezze NEMA 58*, 50*

Per i motori Ex, ad esempio, esiste un manuale separato "Motori a bassa tensione per atmosfere esplosive": Manuale di installazione, funzionamento, manutenzione e sicurezza (3GZF500730-47).

Per alcuni tipi di macchine con applicazioni e/o design particolari, potrebbero essere necessarie informazioni aggiuntive.

Un manuale aggiuntivo è disponibile per i seguenti motori:

- motori per vie a rulli
- motori raffreddati ad acqua
- motori per aspirazione fumi
- motori autofrenanti
- motori per temperature ambiente elevate
- motori in applicazioni marine per installazione su ponte aperto
- di navi o unità offshore
Considerazioni in materia di sicurezza

Il motore deve essere installato e utilizzato da personale qualificato che sia a conoscenza dei requisiti di sicurezza indicati dalle normative nazionali vigenti.

Le attrezzature antinfortunistiche necessarie alla prevenzione di incidenti durante l’installazione e il funzionamento del motore sull’impianto, devono essere conformi alle normative nazionali vigenti.

Istruzioni da osservare:
1. Non salire sul motore.
2. La temperatura della carcassa del motore può risultare estremamente calda al contatto della mano durante il normale funzionamento e in particolare dopo lo spegnimento.
3. Alcune applicazioni per motori speciali possono richiedere istruzioni aggiuntive (ad es. quando sono forniti con un convertitore di frequenza).
4. Prestare attenzione a tutte le parti in rotazione del motore.
5. Non aprire le scatole morsetti mentre l’alimentazione è attiva.
3 Gestione e movimentazione

3.1 Consegna

Ispezionare immediatamente il motore alla consegna per accertarsi che non abbia subito danni durante il trasporto (ad es. alle estremità e alle flange dell’albero e sulle superfici verniciate). Se vengono rilevati danni, contestarli subito allo spedizioniere.

Controllare tutti i dati nominali riportati sulla targhetta del motore, in particolare tensione e tipo di collegamenti (a stella o a triangolo).

Ad eccezione delle grandezze più piccole, il tipo di cuscinetto è specificato sulla targhetta con i dati nominali dei motori.

Nel caso di applicazioni con azionamento a velocità variabile, verificare la caricoabilità massima ammessa in funzione della frequenza indicata nella seconda targhetta del motore.

3.2 Trasporto e immagazzinaggio

Il motore dovrà sempre essere immagazzinato in luogo coperto (temperatura superiore a -20 °C), asciutto, privo di vibrazioni e di polvere. Durante il trasporto evitare urti, cadute e umidità.

In condizioni diverse, rivolgersi ad ABB.

Le superfici lavorate non protette (flange ed estremità dell’albero) devono essere trattate con prodotti anticorrosivi.

L’albero deve essere ruotato a mano periodicamente (ogni tre mesi) per prevenire perdite di lubrificante.

Si consiglia di usare le scaldiglie anticongelanti, se disponibili, per evitare formazione di condensa nel motore.

Per evitare danni ai cuscinetti, il motore da fermo non deve essere sottoposto ad alcuna vibrazione esterna.

I motori provvisti di cuscinetti a rulli cilindrici e/o obliqui devono essere bloccati durante il trasporto.
3.3 Sollevamento

Tutti i motori ABB pesanti più di 25 kg sono dotati di golfari di sollevamento.

Per sollevare il motore devono essere utilizzati solo i golfari di sollevamento principali, che non devono essere utilizzati per sollevare il motore quando è agganciato ad altre apparecchiature o strutture.

I golfari per le apparecchiature ausiliarie, quali freni e ventole di raffreddamento separate, o scatole morsetti, non devono essere utilizzati per sollevare il motore. Il baricentro di motori della stessa grandezza può variare in funzione della potenza, delle predisposizioni per il montaggio e delle apparecchiature ausiliarie.

I golfari danneggiati non devono essere utilizzati. Prima di sollevare il motore assicurarsi che i golfari di sollevamento non siano danneggiati. I golfari di sollevamento devono essere serrati prima dell’utilizzo. Se necessario, la posizione dei golfari di sollevamento può essere regolata utilizzando rondelle idonee.

Assicurarsi che vengano utilizzate apparecchiature di sollevamento appropriate e che le dimensioni dei ganci di sollevamento siano adatte ai golfari.

Fare attenzione a non danneggiare le apparecchiature ausiliarie e i cavi collegati al motore.

Rimuovere eventuali attrezzature utilizzate per fissare il motore al pallet durante il trasporto. ABB può fornire istruzioni per il sollevamento specifiche.

AVVERTENZA

Durante le operazioni di sollevamento, montaggio o manutenzione, è necessario mettere in pratica tutte le considerazioni per la sicurezza necessarie e prestare particolare attenzione affinché nessuno sia in pericolo per i carichi sospesi.

3.4 Peso del motore

Il peso complessivo di motori con la stessa grandezza (altezza d’asse) può variare in funzione della potenza, della disposizione di montaggio e delle apparecchiature ausiliarie.

La seguente tabella indica i pesi massimi stimati per motori standard in funzione del materiale della carcassa.

Il peso effettivo dei motori ABB, fatta eccezione per le grandezze più piccole (56 e 63), è specificato sulla targhetta con le caratteristiche nominali.

<table>
<thead>
<tr>
<th>Tabella 3.1: Sezione minima dei conduttori protettivi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grandezza</td>
</tr>
<tr>
<td>56</td>
</tr>
<tr>
<td>63</td>
</tr>
<tr>
<td>71</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>112</td>
</tr>
<tr>
<td>132</td>
</tr>
<tr>
<td>160</td>
</tr>
<tr>
<td>180</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>225</td>
</tr>
<tr>
<td>250</td>
</tr>
<tr>
<td>280</td>
</tr>
<tr>
<td>315</td>
</tr>
<tr>
<td>355</td>
</tr>
<tr>
<td>400</td>
</tr>
<tr>
<td>450</td>
</tr>
<tr>
<td>5.000</td>
</tr>
</tbody>
</table>

Se il motore è dotato di una ventola separata, richiedere il peso ad ABB.
4 Installazione e messa in servizio

4.1 Informazioni generali

Tutti i dati nominali devono essere controllati accuratamente per garantire che la protezione del motore e i collegamenti siano eseguiti correttamente.

Al primo avviamento del motore, oppure dopo un periodo di stoccaggio superiore a 6 mesi, applicare la quantità di grasso specificata.

Per ulteriori informazioni, vedere la sezione “7.2.2 Motori con cuscinetti ingrassabili”.

 Quando il motore è installato in posizione verticale con l’albero rivolto verso il basso, il motore deve essere dotato di tettuccio per evitare l’introduzione di oggetti estranei o liquidi provenienti dall’alto nelle aperture di ventilazione. Lo stesso risultato può essere ottenuto con un tettuccio separato non fissato al motore, ma, in questo caso, sul motore deve essere applicata un’etichetta di avviso.

Rimuovere eventuali blocchi per il trasporto.
Ruotare a mano l’albero del motore per verificare che ruoti liberamente.

Motori dotati di cuscinetti a rulli cilindrici:
Il funzionamento del motore in assenza di spinte radiali applicate all’albero potrebbe danneggiare il cuscinetto a rulli a causa di un effetto di “scorrimento”.

Motori dotati di cuscinetti obliqui a sfere:
Il funzionamento del motore in assenza di spinte assiali applicate all’albero nella direzione corretta potrebbe danneggiare il cuscinetto obliquo.

4.2 Motori con cuscinetti diversi da quelli radiali a sfere

AVVERTENZA

Per i motori con cuscinetti obliqui a sfere, la forza assiale non deve in alcun modo cambiare direzione.

Il tipo di cuscinetto usato è specificato sulla targhetta con i dati nominali.
4.3 Controllo della resistenza di isolamento

Controllare la resistenza d'isolamento (IR) prima della messa in servizio, dopo lunghi periodi di fermo o di immagazzinaggio nel caso si sospetti una formazione di umidità negli avvolgimenti. L'IR deve essere misurata direttamente sui morsetti del motore con i cavi di alimentazione scollegati per evitare che questi influiscano sul risultato.

La resistenza di isolamento deve essere utilizzata come indicatore di tendenza per individuare eventuali variazioni del sistema di isolamento. Nelle macchine nuove, l'IR è di solito di migliaia di Mohm e quindi è importante seguire i cambiamenti dell'IR per conoscere le condizioni del sistema di isolamento. In genere, l'IR non deve essere inferiore a 10 MΩ e in nessun caso deve essere inferiore a 1 MΩ (misurato con 500 o 1000 VDC e corretto a 25 °C). Il valore della resistenza d'isolamento viene dimezzato ogni 20 °C di aumento della temperatura.

La Figura 1 nel Capitolo 11 può essere utilizzata per correggere l'isolamento secondo la temperatura desiderata.

4.4 Fondazione

L'utente finale è totalmente responsabile della preparazione del basamento.

I basamenti metallici devono essere verniciati per evitare la corrosione.

Le fondazioni devono essere in piano e sufficientemente rigide per supportare eventuali sollecitazioni da corto circuito. Devono essere progettate e dimensionate in modo da evitare il trasferimento di vibrazioni al motore e l'insorgere di vibrazioni dovute a risonanza. Vedere la figura seguente.

Nota La differenza di altezza tra i piedi del motore non deve essere superiore a ± 0,1mm.
4.5 Bilanciatura e montaggio di semigiunti e pulegge

Come standard, la bilanciatura del motore viene effettuata utilizzando una mezza chiavetta.

Semigiunti o pulegge devono essere bilanciati dopo la lavorazione delle sedi delle chiavette. La bilanciatura deve essere eseguita con lo stesso metodo di bilanciatura utilizzato per il motore.

Semigiunti e pulegge devono essere montati sull’albero utilizzando esclusivamente attrezzature e utensili che non danneggino i cuscinetti e le tenute. Non montare mai semigiunti o pulegge utilizzando un martello, né rimuoverli con una leva infilcra tra contro il corpo del motore.

4.6 Montaggio e allineamento del motore

Assicurarsi che attorno al motore vi sia spazio sufficiente a garantire la circolazione dell’aria. Si raccomanda di lasciare tra il coperchio della ventola e il muro uno spazio pari almeno alla metà della presa d’aria del coperchio della ventola. Per ulteriori informazioni, consultare il catalogo prodotti o i disegni con quote reperibili nelle nostre pagine Web: www.abb.com/motors&generators.

Un corretto allineamento è indispensabile per prevenire guasti ai cuscinetti, vibrazioni e possibili rotture dell’albero.

Montare il motore sulla fondazione utilizzando bulloni o prigionieri idonei e inserire degli spessori tra la fondazione e i piedi.

Allineare il motore utilizzando metodi idonei. Se possibile, praticare dei fori per le spine di centraggio e fissare le spine nella posizione corretta.

Per montare accuratamente il semigiunto controllare che il gioco b sia inferiore a 0,05 mm e che la differenza tra a1 e a2 sia anch’essa inferiore a 0,05 mm. Vedere la Figura 2.

Dopo il serraggio finale dei bulloni o dei prigionieri, controllare nuovamente l’allineamento.

Non superare i valori di carico ammessi per i cuscinetti e riportati sui cataloghi dei prodotti.

Controllare che il motore sia sufficientemente aerato. Assicurarsi che oggetti vicini o l’azione diretta del sole non irradiano calore aggiuntivo al motore.

Per i motori montati su flangia (ad esempio B5, B35, V1), assicurarsi che la costruzione sia tale da consentire un flusso di aria sufficiente sulla superficie esterna della flangia.

4.7 Forze radiali e accoppiamenti a cinghia

Mettere in tensione le cinghie secondo le istruzioni del fornitore dell’apparecchiatura condotta. Non superare le tensioni di cinghia massime (ovvero i carichi radiali sui cuscinetti) indicate nei relativi cataloghi prodotto.

AVVERTENZA
Un’eccessiva tensione delle cinghie danneggia i cuscinetti e può danneggiare l’albero.
4.8 Motori con tappi di scarico della condensa

Controllare che i fori di scarico e i tappi siano rivolti verso il basso. Nei motori montati in verticale, i fori di scarico possono essere in posizione orizzontale.

I motori con tappi di scarico in plastica sigillabili vengono forniti in posizione aperta. In ambienti polverosi tutti i fori di scarico devono essere chiusi.

4.9 Cablaggio e collegamenti elettrici

La scatola morsetti dei motori standard a velocità singola contiene normalmente 6 terminali dell'avvolgimento e almeno un morsetto di terra.

Oltre ai terminali dell'avvolgimento principale e ai morsetti di terra, la scatola morsetti può contenere i collegamenti per termistori, scaldiglie o altri dispositivi ausiliari.

Per il collegamento di tutti i cavi principali devono essere utilizzati capicorda idonei. I cavi per i dispositivi ausiliari possono essere collegati direttamente alle relative morsettiere.

I motori sono destinati solo a installazioni fisse. Salvo diversa indicazione, le filettature di ingresso dei cavi sono espresse in unità metriche.

Il grado di protezione IP del pressacavo deve essere almeno pari a quello delle morsettiere.

Al momento dell'installazione è necessario utilizzare un raccordo per canaline o un connettore per cavi certificato.

I cavi devono essere meccanicamente protetti e fissati vicino alla morsettiera, in conformità alla normativa IEC/EN 60079-0 e alle normative locali in merito alle installazioni.

I passacavi inutilizzati devono essere chiusi con appositi tappi aventi la stessa classe IP della morsettiera.

Il grado di protezione e il diametro sono specificati nella documentazione relativa ai pressacavi.

Per gli ingressi cavi, utilizzare pressacavi e tenute conformi al tipo e al diametro del cavo.

La messa a terra deve essere eseguita nel rispetto delle normative locali prima di collegare il motore all'alimentazione di rete.

Il morsetto di terra posto sulla carcassa deve essere collegato al sistema di terra con cavo come illustrato nella tabella 5 della normativa IEC/EN 60034-1.

Tabella 4.1: Sezione minima dei conduttori protettivi

<table>
<thead>
<tr>
<th>Sezione dei conduttori di fase dell'installazione, S, [mm²]</th>
<th>Sezione minima del corrispondente conduttore protettivo, S, [mm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>35</td>
<td>25</td>
</tr>
<tr>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td>95</td>
<td>25</td>
</tr>
<tr>
<td>120</td>
<td>25</td>
</tr>
<tr>
<td>150</td>
<td>25</td>
</tr>
<tr>
<td>185</td>
<td>25</td>
</tr>
<tr>
<td>240</td>
<td>25</td>
</tr>
<tr>
<td>300</td>
<td>25</td>
</tr>
<tr>
<td>400</td>
<td>25</td>
</tr>
</tbody>
</table>

Inoltre, la messa a terra o gli impianti di collegamento equipotenziale sul lato esterno dell'apparecchiatura elettrica devono garantire un collegamento efficace di un conduttore con sezione di almeno 4 mm².

I cavi di collegamento tra la rete e i morsetti del motore devono soddisfare i requisiti indicati dalle normative nazionali per l'installazione o essere conformi alla norma IEC/EN 60204-1, in base al valore di corrente nominale indicato sulla targhetta del motore.
Se la temperatura ambiente supera i +50 °C, utilizzare cavi che supportano una temperatura operativa minima di +90 °C. Quando si dimensionano i cavi, è necessario tenere in considerazione anche tutti gli altri fattori di conversione dipendenti dalle condizioni di installazione.

Assicurarsi che il grado di protezione del motore sia adatto alle condizioni ambientali e climatiche. Ad esempio, assicurarsi che l'acqua non possa penetrare nel motore o nelle morsettiere. Per garantire il grado di protezione IP corretto, le guarnizioni delle morsettiere devono essere applicate correttamente nelle rispettive feritoie. Una discontinuità potrebbe causare l'ingresso di polvere o acqua con il rischio di flash sulle parti attive.

4.9.1 Collegamenti per diversi metodi di avviamento
La scatola morsetti dei motori standard a velocità singola contiene normalmente 6 terminali dell'avvolgimento e almeno un morsetto di terra. In questo modo è possibile eseguire l'avviamento DOL o Y/D.
Per i motori speciali o a doppia velocità, seguire attentamente le istruzioni presenti all'interno della morsettiera o nel manuale del motore. La tensione e il tipo di collegamento sono indicati sulla targhetta del motore.

Avviamento diretto da rete (DOL):
È possibile utilizzare una connessione avvolgimento a stella (Y) o a triangolo (D).
Ad esempio, 690 VY, 400 VD indica un collegamento a stella (Y) per 690 V e a triangolo (D) per 400 V.

Avviamento a stella/triangolo (Y/D):
Quando si utilizza un collegamento a triangolo (D), la tensione di alimentazione del motore deve essere uguale alla tensione nominale.
Rimuovere tutte le barrette di collegamento dal blocco terminali.

Altri metodi di avviamento e condizioni di avviamento difficili:
Nei casi in cui vengono utilizzati altri metodi di avviamento (ad es. convertitore o soft starter) nei tipi S1 e S2, si considera che il dispositivo è “isolato dal sistema di alimentazione quando la macchina elettrica è in funzione” secondo la norma IEC 60079-0 e la protezione termica è facoltativa.

4.9.2 Collegamenti di dispositivi ausiliari
Se un motore è dotato di termistori o altri RTD (Pt100, relè termici e così via) e dispositivi ausiliari, è consigliabile che vengano utilizzati e collegati nei modi appropriati. Per determinate applicazioni è obbligatorio utilizzare una protezione termica. Per ulteriori informazioni, vedere la documentazione in dotazione con il motore. Gli schemi di collegamento per gli elementi ausiliari e i componenti di collegamento si trovano all'interno della scatola morsetti.
La tensione di misurazione massima per i termistori è 2,5 V. La corrente di misurazione massima per Pt100 è 5 mA. L’utilizzo di tensione o corrente di misurazione maggiore può determinare errori nella lettura o danneggiare il rilevatore della temperatura.
L’isolamento dei sensori termici soddisfa i requisiti di isolamento base.

4.10 Morsetti e senso di rotazione
L’albero ruota in senso orario visto dal lato di accoppiamento quando la sequenza di fase L1, L2, L3 è collegata ai terminali come illustrato nella Figura 3.

Se il motore ha una ventola unidirezionale, controllare che ruoti nello stesso senso indicato dalla freccia posta sul motore.

Per invertire il senso di rotazione, scambiare tra loro i collegamenti di due cavi di alimentazione qualsiasi.
5 Funzionamento

5.1 Informazioni generali

Salvo diversa indicazione nella targhetta dei dati nominali, i motori sono progettati per le condizioni ambientali seguenti:
- I motori devono essere installati solo in installazioni fisse.
- Intervallo di temperatura ambiente: tra -20 °C e +40 °C.
- Altitudine massima: 1000 m sul livello del mare.
- La variazione di tensione e frequenza dell’alimentazione non possono superare i limiti definiti nelle norme pertinenti. La tolleranza per la tensione di alimentazione è di ±5% e per la frequenza di ±2% in accordo con la Figura 4 (EN / IEC 60034-1, paragrafo 7.3, Zona A).
Si presume che entrambi i valori estremi non si presentino contemporaneamente.

Il motore può essere utilizzato solo nelle applicazioni per le quali è stato progettato. I valori nominali e le condizioni operative sono indicati sulle targhette del motore. Inoltre, devono essere rispettati tutti i requisiti indicati nel presente manuale e in altre istruzioni e norme correlate.
Se tali limiti vengono superati, è necessario controllare i dati del motore e le caratteristiche di costruzione. Per ulteriori informazioni, contattare ABB.

AVVERTENZA
L’inosservanza delle istruzioni o la mancata manutenzione dell’apparecchiatura può compromettere la sicurezza e quindi impedire l’utilizzo del motore.
6 Motori a bassa tensione con funzionamento a velocità variabile

6.1 Introduzione

In questa sezione del manuale vengono fornite istruzioni aggiuntive per i motori utilizzati con alimentazioni con convertitore di frequenza. Il motore è progettato per funzionare da una singola alimentazione proveniente da un convertitore di frequenza e non con motori funzionanti in parallelo da un singolo convertitore di frequenza. Seguire le istruzioni fornite dal produttore del convertitore.

6.2 Isolamento dell’avvolgimento

Gli azionamenti a velocità variabile creano sollecitazioni di tensione superiori all’alimentazione sinusoidale sull’avvolgimento del motore. Pertanto, occorre dimensionare l’isolamento dell’avvolgimento del motore e il filtro sull’uscita del convertitore in base alle seguenti istruzioni.

6.2.1 Selezione dell’isolamento dell’avvolgimento per convertitori ABB
In caso, ad esempio, di azionamenti singoli delle serie ABB AC_8_ _ ed AC_5_ _ con un’unità di alimentazione a diodi (tensione DC controllata), per scegliere l’isolamento dell’avvolgimento e i filtri fare riferimento alla tabella 6.1.

6.2.2 Selezione dell’isolamento dell’avvolgimento per tutti gli altri convertitori
Le sollecitazioni di tensione devono essere tenute al di sotto dei limiti accettati. Contattare il fornitore del sistema per garantire la sicurezza dell’applicazione. Al momento di dimensionare il motore occorre prendere in considerazione l’influenza di eventuali filtri.

6.3 Protezione termica

La maggior parte dei motori oggetto del presente manuale è dotata di termistori PTC o di altri tipi di RTD negli avvolgimenti dello statore. Si consiglia di collegarli al convertitore di frequenza. Per maggiori informazioni fare riferimento al capitolo 4.9.2.
6.4 Correnti d'albero

È necessario utilizzare cuscinetti o costruzioni di cuscinetti isolati, filtri di modo comune e metodi di cablaggio e messa a terra idonei, in base alle seguenti istruzioni e facendo riferimento alla tabella 6.1.

Tabella 6.1 Selezione dell’isolamento dell’avvolgimento per convertitori ABB

<table>
<thead>
<tr>
<th>$P_N < 100$ kW</th>
<th>$P_N \geq 100$ kW o $IEC315 \leq$ Grandezza \leq $IEC355$</th>
<th>$P_N \geq 350$ kW o $IEC400 \leq$ Grandezza \leq $IEC450$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U_N \leq 500$ V</td>
<td>Motore standard</td>
<td>Motore standard</td>
</tr>
<tr>
<td>$500V > U_N \leq 600V$</td>
<td>Motore standard + filtro dU/dt (reattore) OPPURE Isolamento rinforzato</td>
<td>Motore standard + filtro dU/dt (reattore) OPPURE Isolamento rinforzato + cuscinetto N isolato</td>
</tr>
<tr>
<td>$500V > U_N \leq 600V$ (lunghezza cavo >150 m)</td>
<td>Motore standard + cuscinetto N isolato</td>
<td>Motore standard + filtro di modo comune</td>
</tr>
<tr>
<td>$600V > U_N \leq 690V$</td>
<td>Isolamento rinforzato + filtro dU/dt (reattore)</td>
<td>Isolamento rinforzato + filtro dU/dt (reattore) + cuscinetto N isolato</td>
</tr>
<tr>
<td>$600V > U_N \leq 690V$ (lunghezza cavo >150 m)</td>
<td>Isolamento rinforzato + cuscinetto N isolato</td>
<td>Isolamento rinforzato + cuscinetto N isolato + filtro di modo comune</td>
</tr>
</tbody>
</table>

6.4.1 Eliminazione delle correnti d’albero con i convertitori ABB

Nel caso di convertitori di frequenza ABB, ad es. delle serie AC_8_ e AC_5_ con un’unità di alimentazione a diodi, occorre usare i metodi indicati nella tabella 6.1 per evitare correnti d’albero pericolose nei motori.

Si consigliano cuscinetti isolati con fori interni e/o esterni rivestiti di ossido di alluminio o elementi volventi in ceramica. I rivestimenti in ossido di alluminio devono essere trattati con un sigillante per evitare che lo sporco e l’umidità penetrino nel rivestimento poroso. Per l’esatto tipo di isolamento dei cuscinetti, vedere la targhetta del motore. Non è consentito cambiare il tipo di cuscinetti o il metodo di isolamento senza l’autorizzazione di ABB.

6.4.2 Eliminazione delle correnti d’albero con tutti gli altri convertitori

L’utente è responsabile della protezione del motore e dell’apparecchiatura condotta da correnti d’albero pericolose. Le istruzioni descritte nel capitolo 6.4.1 possono essere utilizzate come linee guida, ma non è possibile garantirne l’efficacia in tutti i casi.
6.5 Cablaggio, messa a terra ed EMC

Per fornire la messa a terra appropriata e garantire la conformità a tutti i requisiti EMC applicabili, i motori superiori a 30 kW devono essere cablati utilizzando cavi simmetrici schermati e pressacavi EMC, ovvero pressacavi che forniscono aderenza a 360°.

I cavi simmetrici e schermati sono altamente raccomandati anche per i motori più piccoli. Eseguire la disposizione a terra a 360° per tutti gli ingressi cavo come descritto nelle istruzioni per i pressacavi. Attorcigliare in fasci le schermature dei cavi e collegare al terminale di terra/busbar più vicino all’interno della scatola morsettiera, dell’armadietto del convertitore e così via.

È necessario utilizzare pressacavi con aderenza a 360° in tutti i punti terminali, ad esempio su motore, convertitore, eventuali interruttori di sicurezza e così via.

6.6 Velocità di funzionamento

Per velocità superiori a quella nominale indicata sulla targhetta con i dati nominali del motore o nel rispettivo catalogo prodotti, assicurarsi che non venga superata la velocità di rotazione massima consentita del motore o la velocità critica dell’intera applicazione.

6.7 Motori in applicazioni a velocità variabile

6.7.1 Informazioni generali

Con i convertitori di frequenza ABB, i motori possono essere dimensionati utilizzando l’apposito programma DriveSize di ABB. Lo strumento può essere scaricato dal sito Web di ABB (www.abb.com/motors&generators).

Per le applicazioni dotate di altri convertitori, i motori devono essere dimensionati manualmente. Per ulteriori informazioni, contattare ABB.

Le curve di carica (o le curve della capacità di carico) si basano sulla tensione di alimentazione nominale. Il funzionamento in condizioni di sottotensione o di sovratensione può influire sulle prestazioni dell’applicazione.

6.7.2 Caricabilità del motore con convertitori serie AC_8__ con controllo DTC

Le curve di caricabilità presentate nelle Figure 5a - 5d sono valide per i convertitori della serie ABB AC_8__ con tensione DC non controllata e controllo DTC. Le figure mostrano la coppia di uscita continua massima approssimativa dei motori in funzione della frequenza dell’alimentazione. La coppia di uscita è fornita come percentuale della coppia nominale del motore. I valori sono indicativi; i valori esatti sono disponibili su richiesta.
6.7.3 Caricabilità del motore con convertitori serie AC_5_
Le curve di caricabilità presentate nelle Figure 6a - 6d sono valide per i convertitori della serie AC_5_. Le figure mostrano la coppia di uscita continua massima approssimativa dei motori in funzione della frequenza dell'alimentazione. La coppia di uscita è fornita come percentuale della coppia nominale del motore. I valori sono indicativi; i valori esatti sono disponibili su richiesta.

6.7.4 Caricabilità del motore con convertitori tipo PWM come fonte di tensione
Per altri convertitori, con tensione DC non controllata e frequenza minima di commutazione di 3 kHz (200 ... 500 V), come linee guida possono essere utilizzate le istruzioni di dimensionamento riportate nel capitolo 6.7.3. Tenere tuttavia presente che la caricabilità termica effettiva può anche essere inferiore. Si prega di contattare il produttore del convertitore o il fornitore del sistema.

6.7.5 Sovraccarichi di breve periodo
I motori ABB possono essere temporaneamente sovraccaricati e utilizzati per compiti intermittenti. Il metodo più comodo per dimensionare tali applicazioni è utilizzare lo strumento DriveSize.

6.8 Dati nominali riportati sulle targhette
L'utilizzo dei motori ABB nelle applicazioni a velocità variabile di solito non richiede altre targhette con i dati nominali. I parametri richiesti per la messa in servizio del convertitore sono riportati sulla targhetta principale dei dati nominali. In alcune applicazioni speciali, tuttavia, i motori possono essere dotati di targhette aggiuntive per applicazioni a velocità variabile.

Queste targhette includono le seguenti informazioni:
• gamma di velocità
• gamma di potenza
• gamma di tensione e corrente
• tipo di coppia (costante o quadratico)
• e tipo di convertitore e frequenza di commutazione minima richiesta

6.9 Messa in servizio per applicazioni a velocità variabile
La messa in servizio per applicazioni a velocità variabile deve essere eseguita attenendosi alle istruzioni relative al convertitore di frequenza utilizzato e alle leggi e normative nazionali. Devono inoltre essere tenuti in considerazione i requisiti e le limitazioni imposti dall'applicazione.

Tutti i parametri richiesti per l'impostazione del convertitore devono essere presi dalle targhette dei dati nominali dei motori. I parametri richiesti più spesso sono:
• tensione nominale
• corrente nominale
• frequenza nominale
• velocità nominale
• potenza nominale

Nel caso di informazioni mancanti o imprecise, non azionare il motore senza aver prima verificato le impostazioni corrette.

ABB consiglia di sfruttare tutte le caratteristiche di protezione idonee offerte dal convertitore per migliorare la sicurezza dell'applicazione. I convertitori in genere offrono funzionalità come (nomi e disponibilità delle funzionalità dipendono dal produttore e dal modello del convertitore):
• velocità minima
• velocità massima
• tempi di accelerazione e decelerazione
• corrente massima
• coppia massima
• protezione da arresti accidentali
7 Manutenzione

7.1 Ispezione generale

1. Ispezionare il motore a intervalli regolari, almeno una volta all'anno. La frequenza dei controlli dipende, ad esempio, dal livello di umidità presente nell'ambiente e dalle specifiche condizioni climatiche e, determinata inizialmente in modo sperimentale, deve essere poi rispettata con estrema precisione.

2. Mantenere il motore pulito e assicurare una buona ventilazione. Se il motore è utilizzato in un ambiente polveroso, il sistema di ventilazione deve essere regolarmente pulito e controllato.

3. Controllare le condizioni delle tenute dell'albero (es. V-ring o tenuta radiale) e se necessario sostituirle.

4. Controllare le condizioni dei collegamenti e dei bulloni di montaggio e di fissaggio.

5. Controllare le condizioni dei cuscinetti prestando attenzione ai rumori anomali, alle vibrazioni, alla temperatura, analizzando il grasso consumato o effettuando monitoraggi con rilevatori SPM dove esistenti. Prestare particolare attenzione ai cuscinetti quando la durata prevista è prossima al termine. Quando si rilevano segni di usura, smontare il motore, controllarne le parti ed effettuare le necessarie sostituzioni. Quando i cuscinetti vengono sostituiti, è necessario utilizzare cuscinetti identici a quelli montati originariamente. Contemporaneamente alla sostituzione del cuscinetto dovranno essere sostituite le tenute dell'albero, che dovranno avere la stessa qualità e le stesse caratteristiche di quelle originali.

Nel caso di motori IP 55 e quando il motore viene fornito con un tappo chiuso, è consigliabile aprire periodicamente i tappi di scarico per verificare che la via di uscita della condensa non sia ostruita e per consentire la fuoriuscita della condensa dal motore. Questa operazione deve essere eseguita a motore fermo e in condizioni di sicurezza.

7.1.1 Motori non in attività

Se il motore rimane in standby per un lungo periodo di tempo su una nave o in altri ambienti con vibrazioni, è necessario adottare le seguenti precauzioni:

1. L'albero deve essere fatto ruotare periodicamente ogni 2 settimane (riportare gli interventi) eseguendo un avvio del sistema. Se, per un qualsiasi motivo, l'avvio non è possibile, ruotare l'albero a mano una volta alla settimana per cambiarne la posizione. Le vibrazioni causate da altre apparecchiature della nave causeranno la vaiolatura dei cuscinetti che può essere ridotta al minimo con il funzionamento normale o la rotazione manuale.

2. È necessario ingrassare i cuscinetti ogni anno mentre si ruota l'albero (annotare gli interventi). Se il motore è stato fornito con un cuscinetto a rulli lato azionamento, rimuovere il blocco per il trasporto prima di ruotare l'albero. In caso di trasporto, rimontare il blocco.

3. Per prevenire danni ai cuscinetti, è opportuno evitare le vibrazioni. È necessario seguire tutte le istruzioni fornite nel manuale per la messa in servizio e la manutenzione del motore. Se tali istruzioni non vengono seguite, la garanzia non coprirà eventuali danni all'avvolgimento e ai cuscinetti.
7.2 Lubrificazione

AVVERTENZA

Prestare attenzione a tutte le parti in movimento!

AVVERTENZA

I lubrificanti possono causare irritazioni alla pelle e infiammazioni agli occhi. Seguire tutte le precauzioni di sicurezza indicate dal produttore del grasso.

Il tipo dei cuscinetti è specificato nel relativo catalogo prodotti e sulla targhetta con i dati nominali, ecetto che per le grandezze minori. Intervalli di lubrificazione corretti sono essenziali per garantire l'affidabilità dei cuscinetti. Per la lubrificazione, ABB segue principalmente il principio L1, secondo il quale il 99% dei motori avrà la durata prevista.

7.2.1 Motori con cuscinetti a lubrificazione permanente

I cuscinetti sono, di solito, lubrificati in modo permanente e di tipo 1Z, 2Z, 2RS o equivalente. A titolo indicativo, nella tabella seguente sono illustrate le durate che possono essere ottenute in conformità a L1 per grandezze fino a 250. Per applicazioni con temperature ambiente più elevate, contattare ABB. Formula per passare dai valori L1 a valori approssimativamente corrispondenti a L10: L10 = 2,0 x L1.

<table>
<thead>
<tr>
<th>Grandezza Poli</th>
<th>Ore di servizio a 25 °C</th>
<th>Ore di servizio a 40 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>2</td>
<td>52.000</td>
</tr>
<tr>
<td>56</td>
<td>4-8</td>
<td>65.000</td>
</tr>
<tr>
<td>63</td>
<td>2</td>
<td>49.000</td>
</tr>
<tr>
<td>63</td>
<td>4-8</td>
<td>63.000</td>
</tr>
<tr>
<td>71</td>
<td>2</td>
<td>67.000</td>
</tr>
<tr>
<td>71</td>
<td>4-8</td>
<td>100.000</td>
</tr>
<tr>
<td>80-90</td>
<td>2</td>
<td>100.000</td>
</tr>
<tr>
<td>80-90</td>
<td>4-8</td>
<td>100.000</td>
</tr>
<tr>
<td>100-112</td>
<td>2</td>
<td>89.000</td>
</tr>
<tr>
<td>100-112</td>
<td>4-8</td>
<td>100.000</td>
</tr>
<tr>
<td>132</td>
<td>2</td>
<td>67.000</td>
</tr>
<tr>
<td>132</td>
<td>4-8</td>
<td>100.000</td>
</tr>
<tr>
<td>160</td>
<td>2</td>
<td>60.000</td>
</tr>
<tr>
<td>160</td>
<td>4-8</td>
<td>100.000</td>
</tr>
<tr>
<td>180</td>
<td>2</td>
<td>55.000</td>
</tr>
<tr>
<td>180</td>
<td>4-8</td>
<td>100.000</td>
</tr>
<tr>
<td>200</td>
<td>2</td>
<td>41.000</td>
</tr>
<tr>
<td>200</td>
<td>4-8</td>
<td>95.000</td>
</tr>
<tr>
<td>225</td>
<td>2</td>
<td>36.000</td>
</tr>
<tr>
<td>225</td>
<td>4-8</td>
<td>88.000</td>
</tr>
<tr>
<td>250</td>
<td>2</td>
<td>31.000</td>
</tr>
<tr>
<td>250</td>
<td>4-8</td>
<td>80.000</td>
</tr>
</tbody>
</table>

Dati validi fino a 60 Hz.

7.2.2 Motori con cuscinetti rilubrificabili

Targhetta con i dati di lubrificazione e suggerimenti generali di lubrificazione.

Se il motore è dotato di targhetta con i dati di lubrificazione, seguire i valori indicati. Sulla targhetta con i dati di lubrificazione sono riportati gli intervalli di ingrassaggio relativamente a montaggio, temperatura ambiente e velocità di rotazione.

Durante il primo avviamento o dopo la lubrificazione di un cuscinetto, è possibile che si manifesti temporaneamente un aumento di temperatura, per circa 10-20 ore. È possibile che alcuni motori siano dotati di un raccoglitore per il grasso usato. Seguire le istruzioni specifiche fornite per l’attrezzatura.

A. Lubrificazione manuale

Reingrassaggio con motore in funzione

- Rimuovere il tappo di scarico del grasso o aprire la valvola di chiusura se montata.
- Controllare che il canale di lubrificazione sia aperto.
- Iniettare nel cuscinetto la quantità di grasso specificata.
- Far funzionare il motore per 1-2 ore per assicurarsi che tutto il grasso in eccesso venga spinto fuori dai cuscinetti. Chiedere il tappo di scarico del grasso o la valvola di chiusura se montata.

Reingrassaggio con motore fermo

Se non è possibile eseguire l’ingrassaggio dei cuscinetti con il motore in funzione, la lubrificazione può essere eseguita a motore fermo.

- In questo caso, adoperare solo la metà della quantità di grasso richiesta, quindi mettere in funzione il motore per alcuni minuti alla massima velocità.
- Quando il motore si ferma, applicare al cuscinetto la rimanente quantità di grasso specificata.
- Dopo 1-2 ore di funzionamento, chiedere il tappo di scarico del grasso o la valvola di chiusura se montata.

B. Lubrificazione automatica

In caso di lubrificazione automatica, rimuovere permanentemente il tappo di scarico del grasso o aprire la valvola di chiusura, se presente. Si raccomanda di utilizzare esclusivamente sistemi elettromeccanici.

La quantità di grasso necessario per ogni intervallo di lubrificazione riportata nella tabella deve essere triplicata quando si utilizza un sistema di lubrificazione centrale. Quando si utilizzano unità di ingrassaggio automatico più piccole (una o due cartucce per motore), è possibile utilizzare la quantità normale di vgrasso.
Per l'ingrassaggio automatico dei motori a due poli, seguire la nota sui lubrificanti per i motori a due poli nella sezione relativa ai lubrificanti.

Il grasso utilizzato deve essere idoneo per la lubrificazione automatica. Controllare il distributore del sistema di lubrificazione automatica e le raccomandazioni del produttore del grasso.

Tabella 7.2

<table>
<thead>
<tr>
<th>Grandezza</th>
<th>Quantità di grasso (g/min) kW</th>
<th>3600 g/min</th>
<th>3000 g/min</th>
<th>kW</th>
<th>1800 g/min</th>
<th>1500 g/min</th>
<th>kW</th>
<th>1000 g/min</th>
<th>kW</th>
<th>500-900 g/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>10</td>
<td>tutti</td>
<td>10.000</td>
<td>13.000</td>
<td>tutti</td>
<td>18.000</td>
<td>21.000</td>
<td>tutti</td>
<td>25.000</td>
<td>tutti</td>
</tr>
<tr>
<td>132</td>
<td>15</td>
<td>tutti</td>
<td>9.000</td>
<td>11.000</td>
<td>tutti</td>
<td>17.000</td>
<td>19.000</td>
<td>tutti</td>
<td>23.000</td>
<td>tutti</td>
</tr>
<tr>
<td>160</td>
<td>25</td>
<td>≤ 18,5</td>
<td>9.000</td>
<td>12.000</td>
<td>≤ 15</td>
<td>18.000</td>
<td>21.500</td>
<td>≤ 11</td>
<td>24.000</td>
<td>tutti</td>
</tr>
<tr>
<td>160</td>
<td>25</td>
<td>> 18,5</td>
<td>7.500</td>
<td>10.000</td>
<td>> 15</td>
<td>15.000</td>
<td>18.000</td>
<td>> 11</td>
<td>22.500</td>
<td>tutti</td>
</tr>
<tr>
<td>180</td>
<td>30</td>
<td>≤ 22</td>
<td>7.000</td>
<td>9.000</td>
<td>≤ 22</td>
<td>15.000</td>
<td>18.500</td>
<td>≤ 15</td>
<td>24.000</td>
<td>tutti</td>
</tr>
<tr>
<td>180</td>
<td>30</td>
<td>> 22</td>
<td>6.000</td>
<td>8.500</td>
<td>> 22</td>
<td>14.000</td>
<td>17.000</td>
<td>> 15</td>
<td>21.000</td>
<td>tutti</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>≤ 37</td>
<td>5.500</td>
<td>8.000</td>
<td>≤ 30</td>
<td>14.500</td>
<td>17.500</td>
<td>≤ 22</td>
<td>23.000</td>
<td>tutti</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>> 37</td>
<td>3.000</td>
<td>5.500</td>
<td>> 30</td>
<td>10.000</td>
<td>12.000</td>
<td>> 22</td>
<td>16.000</td>
<td>tutti</td>
</tr>
<tr>
<td>225</td>
<td>50</td>
<td>≤ 45</td>
<td>4.000</td>
<td>6.500</td>
<td>≤ 45</td>
<td>13.000</td>
<td>16.500</td>
<td>≤ 30</td>
<td>22.000</td>
<td>tutti</td>
</tr>
<tr>
<td>225</td>
<td>50</td>
<td>> 45</td>
<td>1.500</td>
<td>2.500</td>
<td>> 45</td>
<td>5.000</td>
<td>6.000</td>
<td>> 30</td>
<td>8.000</td>
<td>tutti</td>
</tr>
<tr>
<td>250</td>
<td>60</td>
<td>≤ 55</td>
<td>2.500</td>
<td>4.000</td>
<td>≤ 55</td>
<td>9.000</td>
<td>11.500</td>
<td>≤ 37</td>
<td>15.000</td>
<td>tutti</td>
</tr>
<tr>
<td>250</td>
<td>60</td>
<td>> 55</td>
<td>1.000</td>
<td>1.500</td>
<td>> 55</td>
<td>3.500</td>
<td>4.500</td>
<td>> 37</td>
<td>6.000</td>
<td>tutti</td>
</tr>
<tr>
<td>2801</td>
<td>60</td>
<td>tutti</td>
<td>2.000</td>
<td>3.500</td>
<td>tutti</td>
<td>8.000</td>
<td>10.500</td>
<td>tutti</td>
<td>14.000</td>
<td>tutti</td>
</tr>
<tr>
<td>280</td>
<td>35</td>
<td>tutti</td>
<td>1.900</td>
<td>3.200</td>
<td>tutti</td>
<td>7.800</td>
<td>9.600</td>
<td>tutti</td>
<td>13.900</td>
<td>tutti</td>
</tr>
<tr>
<td>315</td>
<td>35</td>
<td>tutti</td>
<td>1.900</td>
<td>3.200</td>
<td>tutti</td>
<td>7.800</td>
<td>9.600</td>
<td>tutti</td>
<td>13.900</td>
<td>tutti</td>
</tr>
<tr>
<td>315</td>
<td>55</td>
<td>tutti</td>
<td>1.900</td>
<td>3.200</td>
<td>tutti</td>
<td>7.800</td>
<td>9.600</td>
<td>tutti</td>
<td>13.900</td>
<td>tutti</td>
</tr>
<tr>
<td>355</td>
<td>35</td>
<td>tutti</td>
<td>1.900</td>
<td>3.200</td>
<td>tutti</td>
<td>7.800</td>
<td>9.600</td>
<td>tutti</td>
<td>13.900</td>
<td>tutti</td>
</tr>
<tr>
<td>355</td>
<td>70</td>
<td>tutti</td>
<td>1.900</td>
<td>3.200</td>
<td>tutti</td>
<td>7.800</td>
<td>9.600</td>
<td>tutti</td>
<td>13.900</td>
<td>tutti</td>
</tr>
<tr>
<td>400</td>
<td>40</td>
<td>tutti</td>
<td>1.500</td>
<td>2.700</td>
<td>tutti</td>
<td>4.000</td>
<td>5.600</td>
<td>tutti</td>
<td>9.600</td>
<td>tutti</td>
</tr>
<tr>
<td>400</td>
<td>85</td>
<td>tutti</td>
<td>1.500</td>
<td>2.700</td>
<td>tutti</td>
<td>4.000</td>
<td>5.600</td>
<td>tutti</td>
<td>9.600</td>
<td>tutti</td>
</tr>
<tr>
<td>450</td>
<td>40</td>
<td>tutti</td>
<td>1.500</td>
<td>2.700</td>
<td>tutti</td>
<td>4.000</td>
<td>5.600</td>
<td>tutti</td>
<td>9.600</td>
<td>tutti</td>
</tr>
<tr>
<td>450</td>
<td>85</td>
<td>tutti</td>
<td>1.500</td>
<td>2.700</td>
<td>tutti</td>
<td>4.000</td>
<td>5.600</td>
<td>tutti</td>
<td>9.600</td>
<td>tutti</td>
</tr>
<tr>
<td>500</td>
<td>95</td>
<td>tutti</td>
<td>1.500</td>
<td>2.700</td>
<td>tutti</td>
<td>4.000</td>
<td>5.600</td>
<td>tutti</td>
<td>9.600</td>
<td>tutti</td>
</tr>
<tr>
<td>500</td>
<td>500</td>
<td>tutti</td>
<td>3.000</td>
<td>5.300</td>
<td>tutti</td>
<td>6.400</td>
<td>9.500</td>
<td>tutti</td>
<td>17.200</td>
<td>tutti</td>
</tr>
<tr>
<td>500</td>
<td>500</td>
<td>tutti</td>
<td>3.000</td>
<td>5.300</td>
<td>tutti</td>
<td>6.400</td>
<td>9.500</td>
<td>tutti</td>
<td>17.200</td>
<td>tutti</td>
</tr>
<tr>
<td>500</td>
<td>5012</td>
<td>tutti</td>
<td>1.300</td>
<td>2.400</td>
<td>tutti</td>
<td>4.900</td>
<td>7.200</td>
<td>tutti</td>
<td>13.200</td>
<td>tutti</td>
</tr>
<tr>
<td>500</td>
<td>5012</td>
<td>tutti</td>
<td>1.300</td>
<td>2.400</td>
<td>tutti</td>
<td>4.900</td>
<td>7.200</td>
<td>tutti</td>
<td>13.200</td>
<td>tutti</td>
</tr>
</tbody>
</table>

AVVERTENZA

La temperatura massima di esercizio del grasso e dei cuscinetti, +110 °C, non deve essere superata. La velocità massima nominale del motore non deve essere superata.

A titolo indicativo, è possibile ottenere una lubrificazione adeguata per la durata seguente, conforme a L1. Per applicazioni con temperature ambiente più elevate, contattare ABB.

Con la lubrificazione manuale, la formula per la conversione approssimativa dei valori L1 in valori L10 è L10 = 2,0 x L1.

Gli intervalli di lubrificazione si basano su una temperatura di 80 °C (temperatura ambiente +25 °C).

Un aumento della temperatura ambiente determina un pari aumento della temperatura dei cuscinetti. I valori degli intervalli devono essere dimezzati ogni 15 °C di aumento della temperatura dei cuscinetti e possono essere raddoppiati ogni 15 °C di diminuzione della temperatura dei cuscinetti.

In caso di funzionamento a velocità superiori, ad esempio in applicazioni con convertitori di frequenza, o a velocità inferiori con carichi pesanti, sarà necessario ridurre gli intervalli di lubrificazione.

AVVERTENZA

La temperatura massima di esercizio del grasso e dei cuscinetti, +110 °C, non deve essere superata. La velocità massima nominale del motore non deve essere superata.

ATTENZIONE

La velocità massima di lavoro del motore non deve essere superata. La velocità massima nominale del motore non deve essere superata.
Lubrificanti

Per la riulubrificazione utilizzare solo lubrificanti specifici per cuscinetti a sfere che abbiano le seguenti caratteristiche:
- grasso di buona qualità con composto al sapone di litio e con olio PAO o minerale
- viscosità dell’olio di base 100-160 cST a 40 °C
- consistenza NLGI grado 1.5 – 3
- intervallo di temperatura da -30 °C a +120 °C, consistenza NLGI grado 1.5 – 3

È possibile utilizzare i seguenti tipi di grasso ad alto rendimento:
- **Mobil Unirex N2** (base con composto al litio)
- **Mobil Unirex**
- **Shell Gadus S5 V 100 2**
- **Klüber Klüberplex BEM 41-132**
- **FAG Arcanol TEMP110**
- **Lubcon Turmogrease L 802 EP PLUS** (base al litio speciale)
- **Total Multis Complex S2 A** (base con composto al litio)

I grassi seguenti possono essere utilizzati per motori in ghisa ad alta velocità ma non miscelati con grassi ad alto compiessso:
- **Klüber Klüber Quiet BQH 72-102** (base di poliurea)
- **Lubcon Turmogrease PU703** (base di poliurea)

Se si utilizzano altri lubrificanti, controllare con il produttore che le caratteristiche corrispondano a quelle dei lubrificanti riportati sopra. Gli intervalli di lubrificazione si basano sui grassi ad alte prestazioni elencati sopra. L’utilizzo di altri tipi di grasso può ridurre l’intervallo.
8 Assistenza post-vendita

8.1 Parti di ricambio

Se non diversamente specificato, le parti di ricambio devono essere originali o approvate da ABB.

Nell’ordinare le parti di ricambio di un motore, indicare il numero di serie, la designazione completa del tipo e il codice prodotto, come riportato sulla targhetta del motore stesso.

8.2 Smontaggio, riassemblaggio e riavvolgimento

Il rifacimento degli avvolgimenti deve essere effettuato sempre da una officina qualificata.

Per il rifacimento degli avvolgimenti dei motori per aspirazione fumi e altri motori speciali, occorre sempre rivolgersi prima ad ABB.

8.3 Cuscinetti

I cuscinetti richiedono cure particolari.

Devono essere rimossi tramite estrattori e montati a caldo o con l’uso di strumenti adatti.

La sostituzione dei cuscinetti è descritta in dettaglio in un opuscolo separato che può essere richiesto all’ufficio commerciale ABB.

Devono essere seguite eventuali indicazioni riportate sul motore, ad esempio con etichette. Il tipo dei cuscinetti riportato sulla targhetta non deve essere cambiato.
Nella maggior parte dei motori ABB il livello di rumorosità non è superiore a 82 dB(A) (± 3 dB) a 50 Hz.

I valori per motori specifici sono indicati nei relativi cataloghi dei prodotti. Per alimentazione sinusoidale a 60 Hz aggiungere circa 4 dB(A) ai valori a 50 Hz indicati nei cataloghi dei prodotti.

Per il livello di rumorosità con alimentazione con convertitore di frequenza, contattare ABB.

Quando è necessario sostituire o riciclare i motori, utilizzare i metodi appropriati e seguire le normative e le leggi vigenti.
10 Risoluzione dei problemi

Le istruzioni seguenti non coprono tutti i particolari o varianti nelle apparecchiature, né prendono in considerazione tutte le possibili condizioni che potrebbero verificarsi durante l’installazione, il funzionamento e la manutenzione. Per ulteriori informazioni, contattare l’ufficio commerciale ABB di zona.

Risoluzione dei problemi del motore

La manutenzione e la riparazione dei guasti dei motori devono essere effettuate da personale qualificato dotato di apparecchiature e utensili appositi.

Tabella 10.1: Soluzione dei problemi

<table>
<thead>
<tr>
<th>PROBLEMA</th>
<th>CAUSA</th>
<th>AZIONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Il motore non si avvia</td>
<td>Fusibili bruciati</td>
<td>Sostituire con fusibili adeguati per tipo e capacità.</td>
</tr>
<tr>
<td></td>
<td>Il sovraccarico scatta</td>
<td>Controllare e ripristinare il sovraccarico nel motore o del comando.</td>
</tr>
<tr>
<td></td>
<td>Alimentazione non corretta</td>
<td>Controllare che l'alimentazione corrisponda ai requisiti del motore e del carico.</td>
</tr>
<tr>
<td></td>
<td>Collegamenti della linea non corretti</td>
<td>Controllare i collegamenti in base allo schema fornito con il motore.</td>
</tr>
<tr>
<td></td>
<td>Circuito aperto nell'avvolgimento o nell'interruttore di controllo</td>
<td>Indicato da un sonoro quando l'interruttore viene chiuso. Controllare che non vi siano collegamenti allentati e sensibilità che tutti i contatti di controllo siano chiusi.</td>
</tr>
<tr>
<td></td>
<td>Guasto meccanico</td>
<td>Verificare se il motore e l'azionamento ruotano liberamente. Controllare cuscinetti e lubrificazione.</td>
</tr>
<tr>
<td></td>
<td>Statore in corto circuito</td>
<td>Contattare ABB oppure Assicurarsi che l'alimentazione sia collegata e che sia stata predisposta la messa a terra, scollegare i cavi e misurare la resistenza di isolamento.</td>
</tr>
<tr>
<td></td>
<td>Collegamento dell'avvolgimento statore inefficienente</td>
<td>Indicato dai fusibili bruciati. Eseguire il riavvolgimento del motore. Rimuovere gli scudi e individuare il guasto.</td>
</tr>
<tr>
<td></td>
<td>Motore sovraccarico</td>
<td>Ridurre il carico.</td>
</tr>
<tr>
<td>Motore in stallo</td>
<td>Potrebbe essere aperta una fase</td>
<td>Controllare che non vi siano fasi aperte.</td>
</tr>
<tr>
<td></td>
<td>Applicazione non corretta</td>
<td>Cambiare tipo o grandezza. Consultare il fornitore dell'apparecchiatura.</td>
</tr>
<tr>
<td></td>
<td>Sovraccarico</td>
<td>Ridurre il carico.</td>
</tr>
<tr>
<td></td>
<td>Bassa tensione</td>
<td>Assicurarsi che sia mantenuta la tensione nominale.</td>
</tr>
<tr>
<td></td>
<td>Circuito aperto</td>
<td>Fusibili bruciati. Controllare il relé di sovraccarico, lo statore e i pulsanti.</td>
</tr>
<tr>
<td>Il motore funziona, quindi si spegne</td>
<td>Alimentazione interrotta</td>
<td>Controllare che non vi siano collegamenti interrotti alla linea, ai fusibili e al comando.</td>
</tr>
<tr>
<td>Il motore non raggiunge la velocità nominale</td>
<td>Applicato non correttamente</td>
<td>Consultare il fornitore dell'apparecchiatura in merito al tipo corretto.</td>
</tr>
<tr>
<td></td>
<td>Tensione troppo bassa ai terminali del motore a causa di caduta di linea</td>
<td>Utilizzare terminali dei trasformatori con tensioni più elevate o ridurre il carico. Controllare i collegamenti. Controllare la sezione dei cavi.</td>
</tr>
<tr>
<td></td>
<td>Carico eccessivo all'avviamento</td>
<td>Controllare che il motore si avvii senza carico.</td>
</tr>
<tr>
<td></td>
<td>Barre del rotore rotte o rotore allentato</td>
<td>Verificare che non vi siano rotture vicino agli anelli. Potrebbe essere necessario un nuovo rotore in quanto le riparazioni sono in genere provvisorie.</td>
</tr>
<tr>
<td></td>
<td>Circuito primario aperto</td>
<td>Individuare il guasto con il tester e riparare.</td>
</tr>
<tr>
<td>PROBLEMA</td>
<td>CAUSA</td>
<td>AZIONE</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Il motore accelera troppo lentamente e/o consuma molta corrente</td>
<td>Carico eccessivo</td>
<td>Ridurre il carico.</td>
</tr>
<tr>
<td></td>
<td>Bassa tensione all'avviamento</td>
<td>Controllare che la resistenza non sia eccessiva. Assicurarsi che la sezione dei cavi sia adeguata.</td>
</tr>
<tr>
<td></td>
<td>Rotore a gabbia di scolattolo difettoso</td>
<td>Sostituire con un rotore nuovo.</td>
</tr>
<tr>
<td></td>
<td>Tensione applicata troppo bassa</td>
<td>Correggere l'alimentazione.</td>
</tr>
<tr>
<td>Senso di rotazione errato</td>
<td>Sequenza delle fasi non corretta</td>
<td>Invertire i collegamenti sul motore o sul quadro di comando.</td>
</tr>
<tr>
<td>Il motore si surriscalda durante il funzionamento</td>
<td>Sovraccarico</td>
<td>Ridurre il carico.</td>
</tr>
<tr>
<td></td>
<td>La carcassa o le aperture per il passaggio d'aria potrebbero essere intasate e impedire la ventilazione del motore.</td>
<td>Aprire i fori di ventilazione e controllare che vi sia un flusso d'aria continuo dal motore.</td>
</tr>
<tr>
<td></td>
<td>il motore potrebbe avere una fase aperta</td>
<td>Controllare che tutti i conduttori e i cavi siano collegati correttamente.</td>
</tr>
<tr>
<td></td>
<td>Avvolgimento a terra</td>
<td>Eseguire il riavvolgimento del motore.</td>
</tr>
<tr>
<td></td>
<td>Tensione ai morsetti non bilanciata</td>
<td>Controllare che non vi siano conduttori, collegamenti o trasformatori guasti.</td>
</tr>
<tr>
<td>Il motore vibra</td>
<td>Motore non allineato</td>
<td>Riallineare.</td>
</tr>
<tr>
<td></td>
<td>Supporto debole</td>
<td>Rinforzare la base.</td>
</tr>
<tr>
<td></td>
<td>Giunti non bilanciati</td>
<td>Bilanciare i giunti.</td>
</tr>
<tr>
<td></td>
<td>Apparecchiatura azionata non bilanciata</td>
<td>Bilanciare l'apparecchiatura azionata.</td>
</tr>
<tr>
<td></td>
<td>Cuscinetti difettosi</td>
<td>Sostituire i cuscinetti.</td>
</tr>
<tr>
<td></td>
<td>Cuscinetti non in linea</td>
<td>Riparare il motore.</td>
</tr>
<tr>
<td></td>
<td>Pesi di bilanciamento spostati</td>
<td>Bilanciare il rotore.</td>
</tr>
<tr>
<td></td>
<td>Bilanciatura del rotore e del giunto diverso (mezza chiavetta - chiavetta intera)</td>
<td>Bilanciare il giunto o il rotore.</td>
</tr>
<tr>
<td></td>
<td>Motore polifase funzionante in monofase</td>
<td>Controllare che non vi siano circuiti aperti.</td>
</tr>
<tr>
<td></td>
<td>Gioco eccessivo</td>
<td>Regolare il cuscinetto o aggiungere uno spessore.</td>
</tr>
<tr>
<td>Rumore di sfregamento</td>
<td>Ventola che sfrega sullo scudo o sul copriventola</td>
<td>Correggere il montaggio della ventola.</td>
</tr>
<tr>
<td></td>
<td>Basamento allentato</td>
<td>Serrare i bulloni di fissaggio.</td>
</tr>
<tr>
<td>Funzionamento rumoroso</td>
<td>Trafiero non uniforme</td>
<td>Controllare e regolare il montaggio dello scudo o dei cuscinetti.</td>
</tr>
<tr>
<td></td>
<td>Rotore sbilanciato</td>
<td>Bilanciare il rotore.</td>
</tr>
<tr>
<td>Cuscinetti caldi</td>
<td>Albero piegato</td>
<td>Raddrizzare o sostituire l'albero.</td>
</tr>
<tr>
<td></td>
<td>Cinghia eccessivamente tesa</td>
<td>Ridurre la tensione della cinghia.</td>
</tr>
<tr>
<td></td>
<td>Pulegge troppo lontane dalla spalla dell'albero</td>
<td>Avvicinare le pulegge al cuscinetto del motore.</td>
</tr>
<tr>
<td></td>
<td>Diametro delle pulegge troppo piccolo</td>
<td>Utilizzare pulegge più grandi.</td>
</tr>
<tr>
<td></td>
<td>Disallineamento</td>
<td>Correggere riallineando l'azionamento.</td>
</tr>
<tr>
<td></td>
<td>Grasso insufficiente</td>
<td>Mantenere la qualità e la quantità di grasso corrette nel cuscinetto.</td>
</tr>
<tr>
<td></td>
<td>Deterioramento del grasso o contaminazione del lubrificante</td>
<td>Rimuovere il grasso vecchio, lavare a fondo i cuscinetti con cherosene e sostituire con grasso nuovo.</td>
</tr>
<tr>
<td></td>
<td>Lubrificante in eccesso</td>
<td>Rimuovere la quantità di grasso, il cuscinetto deve essere pieno solo fino a metà.</td>
</tr>
<tr>
<td></td>
<td>Cuscinetto sovraccarico</td>
<td>Controllare allineamento e spinta laterale e finale.</td>
</tr>
<tr>
<td></td>
<td>Sfere rotte o piste danneggiate</td>
<td>Sostituire il cuscinetto, pulendo prima accuratamente l'alloggiamento.</td>
</tr>
</tbody>
</table>
1.1 Figure

Figura 1. Diagramma che illustra la dipendenza della resistenza di isolamento dalla temperatura e come correggere la resistenza di isolamento misurata per 40 °C.

Figura 2. Montaggio di semigliunto o puleggia.

Asse X: Temperatura dell’avvolgimento, gradi Celsius
Asse Y: Coefficiente di resistenza della temperatura d’isolamento, ktc

Legenda

1) Per correggere la resistenza di isolamento osservata, R_i di 40 °C moltiplicarla per il coefficiente di temperatura $k_{tc} \cdot R_{i,40°C} = R_x$
Figura 3. Connessione dei terminali per l'alimentazione di rete.

Figura 4. Deviazione di tensione e frequenza nelle zone A e B.

Asse X frequenza p.u.
Asse Y tensione p.u.

Legenda
1 zona A
2 zona B (al di fuori della zona A)
3 punto di valutazione

Figura 3.

Figura 4.
Linee guida sulle curve di caricabilità con convertitori con controllo DTC

Figura 5a. Convertitore con controllo DTC, 50 Hz, aumento di temperatura B

Figura 5b. Convertitore con controllo DTC, 60 Hz, aumento di temperatura B

Figura 5c. Convertitore con controllo DTC, 50 Hz, aumento di temperatura F

Figura 5d. Convertitore con controllo DTC, 60 Hz, aumento di temperatura F

(Disegno con diagrammi di curve)

1. Self-ventilated, IEC frame size 56-132
2. Self-ventilated, IEC frame size 160-450
3. Separate motor cooling (forced ventilated)

Linee guida curve di caricabilità con altro tipo PWM come fonte di tensione

Figura 6a. Altro convertitore tipo PWM come fonte di tensione, 50 Hz, aumento di temperatura B

Figura 6b. Altro convertitore tipo PWM come fonte di tensione, 50 Hz, aumento di temperatura F

Figura 6c. Altro convertitore tipo PWM come fonte di tensione, 60 Hz, aumento di temperatura F

Figura 6d. Altro convertitore tipo PWM come fonte di tensione, 60 Hz, aumento di temperatura F
Índice

Índice .. 153
1 Introdução .. 155
 1.1 Declaração de Conformidade .. 155
 1.2 Validade ... 155
2 Considerações relativas à segurança .. 156
3 Manuseamento ... 157
 3.1 Receção ... 157
 3.2 Transporte e armazenamento .. 157
 3.3 Elevação ... 158
 3.4 Peso do motor ... 158
4 Instalação e colocação em serviço .. 159
 4.1 Geral .. 159
 4.2 Motores não equipados com rolamentos de esferas de ranhura profunda .. 159
 4.3 Verificação da resistência de isolamento .. 160
 4.4 Fundação .. 160
 4.5 Equilibrar e instalar os meios-acoplamentos e polias 161
 4.6 Montagem e alinhamento do motor .. 161
 4.7 Forças radiais e correias de transmissão ... 161
 4.8 Motores com bujões de drenagem para condensação 162
 4.9 Cablagem e ligações elétricas .. 162
 4.9.1 Ligações para diferentes métodos de arranque 163
 4.9.2 Ligações de equipamentos auxiliares ... 163
 4.10 Terminals e sentido de rotação .. 163
5 Operação .. 164
 5.1 Geral .. 164
6 Motores de baixa tensão em funcionamento a velocidade variável 165
 6.1 Introdução .. 165
 6.2 Isolamento dos enrolamentos .. 165
 6.2.1 Seleção do isolamento do enrolamento para conversores ABB 165
 6.2.2 Seleção do isolamento dos enrolamentos com todos os conversores 165
 6.3 Proteção térmica ... 165
 6.4 Correntes nos rolamentos .. 166
 6.4.1 Eliminação de correntes nos rolamentos com conversores ABB 166
 6.4.2 Eliminação de correntes nos rolamentos com todos os outros conversores 166
 6.5 Cablagem, ligação à terra e CEM ... 167
 6.6 Velocidade de funcionamento .. 167
 6.7 Motores em aplicações de velocidade variável .. 167
 6.7.1 Geral .. 167
 6.7.2 A curva de capacidade do motor com conversores da série AC_8__ com controlo de DTC ... 167
 6.7.3 A curva de capacidade do motor com o conversor da série AC_5__ 167
 6.7.4 Capacidade de carga do motor com outros conversores do tipo PWM de fonte de tensão ... 168
 6.7.5 Sobrecargas de curta duração .. 168
 6.8 Chapas de características .. 168
6.9 Colocação em serviço da aplicação de velocidade variável. 168

7 Manutenção .. 169
 7.1 Inspeção geral ... 169
 7.1.1 Motores de reserva ... 169
 7.2 Lubrificação .. 170
 7.2.1 Motores com rolamentos permanentemente lubrificados 170
 7.2.2 Motores com rolamentos que necessitam de lubrificação 170
 7.2.3 Intervalos de lubrificação e quantidades ... 171
 7.2.4 Lubrificantes ... 172

8 Apoio pós-venda ... 173
 8.1 Peças sobresselentes ... 173
 8.2 Desmontar, voltar a montar e rebobinar ... 173
 8.3 Rolamentos .. 173

9 Requisitos ambientais ... 174

10 Resolução de problemas .. 175

11 Figuras ... 177
1 Introdução

1.1 Declaração de Conformidade

A conformidade do produto final com a Diretiva 2006/42/CE (Maquinaria) tem de ser estabelecida pela parte responsável pela colocação em serviço, quando o motor é instalado na máquina.

1.2 Validade

Estas instruções são válidas para os seguintes tipos de máquinas elétricas ABB, na operação do seu motor ou gerador.

- séries MT*, MXMA,
- em tamanhos de estrutura CEI 56 - 500
- em tamanhos de estrutura NEMA 58*, 50**

Está disponível um manual adicional para os seguintes motores:
- motores de mesas de rolos
- motores de refrigeração a água
- motores de extração de fumo
- motores de travão
- motores para temperaturas ambiente altas
- motores para aplicações marítimas para montagem no convés aberto
- de embarcações ou unidades costeiras

Existe um manual separado para por ex. motores de baixa tensão para atmosferas explosivas: Manual de instalação, operação, manutenção e segurança (3GZF500730-47).

São necessárias informações adicionais para alguns tipos de máquina devido a aplicação especial e/ou considerações de design.

Estas instruções devem ser seguidas para assegurar uma correta e segura instalação, operação e manutenção do motor. Devem ser disponibilizadas e seguidas pelo pessoal encarregue da instalação, operação e manutenção deste motor ou do equipamento associado. O motor destina-se a ser instalado e utilizado por pessoal qualificado, familiarizado com os requisitos de segurança e saúde relevantes e com a legislação nacional. Ignorar estas instruções poderá invalidar todas as garantias aplicáveis.
2 Considerações relativas à segurança

O motor destina-se a ser instalado e utilizado por pessoal qualificado, familiarizado com os requisitos de segurança e saúde relevantes e com a legislação nacional.

Os equipamentos de segurança necessários para a prevenção de acidentes no local de montagem e funcionamento devem ser fornecidos de acordo com regulamentos locais.

Pontos a observar:
1. Não subir para cima do motor.
2. A temperatura da carcaça exterior do motor pode ser mais quente ao tato durante o funcionamento normal e, especialmente, depois da paragem.
3. Algumas aplicações especiais do motor podem requerer instruções adicionais (por exemplo, quando fornecido pelo conversor de frequência).
4. Tenha atenção às peças rotativas do motor.
5. Não abrir as caixas de terminais enquanto estiverem com energia.

<table>
<thead>
<tr>
<th>AVISO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Os controlos de paragem de emergência têm de ser equipados com bloqueios de reinício. Após a paragem de emergência, um novo comando de início pode ter efeito apenas depois de o bloqueio de reinício ter sido intencionalmente reposto.</td>
</tr>
</tbody>
</table>
3 Manuseamento

3.1 Receção

Imediatamente após a receção, verifique o motor para identificar danos exteriores (por exemplo, extremidades dos veios, flanges e superfícies pintadas) e, se forem encontrados danos, informe sem demora o transitário.

Verifique todos os dados da chapa identificativa, especialmente tensão e ligações de enrolamento (em estrela ou triângulo). O tipo de rolamentos é especificado na chapa de características para todos os motores, exceto para os motores de tamanhos mais reduzidos.

No caso de uma aplicação de transmissão de velocidade variável, verificar a capacidade de carga máxima permitida de acordo com a frequência que se encontra gravada na segunda chapa de características do motor.

3.2 Transporte e armazenamento

O motor deve ser sempre armazenado no interior (com temperaturas acima de -20 °C), em ambientes secos, não sujeitos a vibrações e sem poeiras. Durante o transporte, devem ser evitados choques, quedas e humidade. Para outras situações, contactar a ABB.

As superfícies maquinadas não protegidas (extremidades dos veios e flanges) devem ser tratadas contra a corrosão.

Recomenda-se que os veios sejam rodados periodicamente (uma vez por quarto) à mão para impedir a migração da massa lubrificante.

Recomenda-se que os aquecedores anti-condensação sejam utilizados, se instalados, para evitar a condensação de água no motor.

O motor não pode estar sujeito a quaisquer vibrações externas quando parado para evitar danificar os rolamentos.

Durante o transporte, os motores equipados com rolamentos de rolos e/ou angulares devem ser equipados com dispositivos de travamento.
3.3 Elevação

Todos os motores ABB acima dos 25 kg estão equipados com olhais de elevação. Apenas as patilhas ou olhais de elevação principais do motor devem ser utilizados para elevar o motor. Não devem ser utilizados para elevar o motor quando este estiver ligado a outros equipamentos. As patilhas de elevação dos equipamentos auxiliares (por exemplo, travões, ventiladores de arrefecimento separados) ou caixas de terminais não devem ser utilizadas para elevar o motor. Devido à diferente potência, disposições de montagem e equipamentos auxiliares, os motores com a mesma estrutura podem ter um centro de gravidade diferente. Não se devem utilizar patilhas de elevação danificadas. Verifique se as patilhas de elevação ou os olhais integrados não estão danificados, antes de proceder à elevação. Os parafusos dos olhais de elevação deverão ser apertados antes de iniciar a elevação. Se necessário, a posição do parafuso deve ser ajustada utilizando anilhas adequadas como espaçadores. Certifique-se de que é utilizado o equipamento de elevação adequado e que os tamanhos dos ganchos são adequados para as patilhas de elevação. Devem ser tomados os cuidados necessários para não danificar o equipamento auxiliar e os cabos ligados ao motor. Remova os dispositivos instalados para transporte e que fixam o motor à palete. A ABB disponibiliza instruções de elevação específicas.

AVISO

Durante os trabalhos de elevação, montagem ou manutenção, devem ser implementadas todas as considerações necessárias sobre segurança, devendo ser prestada especial atenção para que ninguém corra o risco de ser atingido pela carga elevada.

3.4 Peso do motor

O peso total do motor varia dentro do mesmo tamanho (altura do centro), consoante as diferentes potências, as diferentes disposições de montagem e os diferentes equipamentos auxiliares. A tabela seguinte apresenta os pesos máximos estimados para máquinas nas suas versões básicas em função do material da estrutura. O peso real de todos os motores ABB, exceto os de dimensão estrutural mais pequena (56 e 63) é indicado na chapa identificativa.

<table>
<thead>
<tr>
<th>Tamanho da estrutura</th>
<th>Alumínio, peso kg</th>
<th>Ferro fundido, peso kg</th>
<th>Adic. para travões</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>4,5</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>63</td>
<td>6</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>71</td>
<td>8</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>80</td>
<td>14</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>90</td>
<td>20</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>32</td>
<td>40</td>
<td>16</td>
</tr>
<tr>
<td>112</td>
<td>36</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>132</td>
<td>93</td>
<td>90</td>
<td>30</td>
</tr>
<tr>
<td>160</td>
<td>149</td>
<td>130</td>
<td>30</td>
</tr>
<tr>
<td>180</td>
<td>162</td>
<td>190</td>
<td>45</td>
</tr>
<tr>
<td>200</td>
<td>245</td>
<td>275</td>
<td>55</td>
</tr>
<tr>
<td>225</td>
<td>300</td>
<td>360</td>
<td>75</td>
</tr>
<tr>
<td>250</td>
<td>386</td>
<td>405</td>
<td>75</td>
</tr>
<tr>
<td>280</td>
<td>425</td>
<td>800</td>
<td>–</td>
</tr>
<tr>
<td>315</td>
<td>–</td>
<td>1 700</td>
<td>–</td>
</tr>
<tr>
<td>355</td>
<td>–</td>
<td>2 700</td>
<td>–</td>
</tr>
<tr>
<td>400</td>
<td>–</td>
<td>3 500</td>
<td>–</td>
</tr>
<tr>
<td>450</td>
<td>–</td>
<td>4 500</td>
<td>–</td>
</tr>
<tr>
<td>5000</td>
<td>–</td>
<td>2 800</td>
<td>–</td>
</tr>
</tbody>
</table>

Se o motor estiver equipado com uma ventoinha em separado, contacte a ABB para obter o respetivo peso.
4 Instalação e colocação em serviço

4.1 Geral

Devem ser verificados com cuidado todos os valores indicados nas chapas de características para garantir que a proteção e as ligações do motor são feitas adequadamente.

Ao fazer o arranque do motor pela primeira vez ou após uma paragem superior a 6 meses, aplique a quantidade especificada de massa lubrificante.

Para mais detalhes, consulte a secção “7.2.2 Motores com rolamentos relubrificáveis”.

Quando colocado numa posição vertical com o veio a apontar para baixo, o motor tem de ter uma cobertura protetora para evitar que objetos estranhos e fluidos caiam nas aberturas da ventilação. Isto também pode ser conseguido através de uma cobertura protetora não fixada ao motor. Neste caso, o motor tem de ter uma etiqueta de aviso.

Remova o travamento para o transporte, caso tenha sido aplicado. Rode o veio do motor à mão para comprovar que roda livremente, se possível.

Motores equipados com rolamentos de rolos cilíndricos:
Colocar o motor em funcionamento sem a aplicação de uma força radial ao veio pode danificar o rolamento de rolos devido a “deslizamento”.

Motores equipados com rolamentos esféricos de contacto angular:
Colocar o motor em funcionamento sem a aplicação de uma força axial ao veio na direção certa pode danificar o rolamento de contacto angular.

AVISO

Desligue e bloqueie todo o sistema antes de realizar trabalhos no motor ou no equipamento acionado.

AVISO

Para motores com rolamentos de contacto angulares, a força axial não pode de forma alguma mudar a direção.

O tipo de rolamentos é especificado na chapa identificativa.
4.3 Verificação da resistência de isolamento

Meça a resistência do isolamento (RI) antes da colocação em funcionamento, após longos períodos de inatividade ou armazenamento sempre que for suspeitada humidade no enrolamento. A RI deve ser medida diretamente nos terminais do motor com os cabos de alimentação desligados de maneira a evitar que afetem o resultado.

A resistência do isolamento deverá ser utilizada como um indicador de tendência para determinar alterações no sistema de isolamento. Em máquinas novas a RI situa-se normalmente nos milhares de Mohms e como tal o acompanhamento da mudança de RI é importante para conhecer as condições do sistema de isolamento. Tipicamente, a RI não deverá ser inferior a 10 MΩ e nunca inferior a 1 MΩ (medida com 500 ou 1000 V CC e corrigida a 25 °C). O valor da resistência de isolamento é reduzido para metade por cada aumento de 20 °C da temperatura.

A Figura 1, no capítulo 11, pode ser utilizada para a correção do isolamento para a temperatura desejada.

AVISOS

Para evitar o risco de choque elétrico, a estrutura do motor tem e ser ligada à terra e os enrolamentos deverão ser descarregados contra a estrutura imediatamente após cada medição.

Se não for atingido o valor de referência da resistência de isolamento, isso indica que o enrolamento está muito húmido, devendo por isso ser seco numa estufa. A temperatura da estufa deve ser de 90 °C durante 12 a 16 horas, seguindo-se de 105 °C durante 6 a 8 horas.

Se instalados, os bujões dos orifícios de drenagem devem ser removidos e as válvulas de fecho devem estar abertas durante o aquecimento. Após o aquecimento, certifique-se de que os bujões são novamente instalados. Mesmo que os bujões de drenagem estejam instalados, recomenda-se a desmontagem das tampas e das coberturas das caixas de terminais durante o processo de secagem. Normalmente, os enrolamentos molhados com água salgada devem ser rebobinados.

4.4 Fundação

O utilizador final é o único responsável pela preparação das fundações.

As fundações metálicas devem ser pintadas para evitar a ocorrência de corrosão.

As fundações devem ser uniformes e suficientemente rígidas para resistir a eventuais forças de curto-circuito. Têm de ser concebidas e dimensionadas de forma a evitar a transferência de vibrações para o motor e vibrações provocadas pela ressonância. Ver figura abaixo.
4.5 Equilibrar e instalar os meios-acoplamentos e polias

Por norma, a equilibragem do motor foi feita utilizando meias chavetas.
Os meios-acoplamentos ou polias devem ser equilibrados depois maquinados os escatéis. A equilibragem deve ser efetuada de acordo com o método de equilibragem especificado para o motor.

Os meios-acoplamentos e as polias devem ser instalados no veio utilizando ferramentas e equipamentos apropriados que não danifiquem os rolamentos e os vedantes.
Nunca se deve instalar um meio-acoplamento ou uma polia utilizando um martelo nem removê-los utilizando uma alavanca apoiada na carcaça do motor.

4.6 Montagem e alinhamento do motor

Certificar-se de que há espaço suficiente para a livre circulação de ar em torno do motor. É aconselhável ter uma folga entre a tampa do ventilador e a parede, etc, de pelo menos ½ da entrada de ar da tampa do ventilador. Poderá encontrar informações adicionais no catálogo do produto ou nos desenhos das dimensões disponíveis no nosso site na Internet: www.abb.com/motors&generators.

O alinhamento correto é fundamental para evitar avarias nos rolamentos, vibrações e possíveis falhas nos veios.
Montar o motor na fundação utilizando os parafusos ou pernos adequados e colocando calços entre a fundação e os pés.
Alinhe o motor utilizando os métodos adequados.
Se aplicável, fazer furos de posicionamento e fixar os pernos de posicionamento no lugar.

Precisão de montagem de um meio acoplamento: verifique se a folga b é inferior a 0,05 mm e se a diferença entre a1 e a2 é também inferior a 0,05 mm. Ver figura 2.
Voltar a verificar o alinhamento após o último aperto dos parafusos ou caviâlias.
Não exceder os valores de carga permitidos para rolamentos, como indicado nos catálogos do produto.
Verificar se o motor tem um fluxo de ar suficiente.
Certificar-se de que nem os objetos próximos nem a luz solar direta irradiam calor adicional sobre motor.
Para motores montados com flanges (por exemplo, B5, B35, V1), certificar-se de que a construção permite um fluxo de ar suficiente na superfície exterior da flange.

4.7 Forças radiais e correias de transmissão

As correias têm de ser apertadas de acordo com as instruções do fornecedor do equipamento acionado. Contudo, nunca devem ser excedidas as forças máximas da correia (ou seja, as forças radiais exercidas sobre os rolamentos) que se encontram indicadas nos respectivos catálogos de produtos.

AVISO
Uma tensão excessiva da correia irá danificar os rolamentos e pode provocar danos ao veio.
4.8 Motores com bujões de drenagem para condensação

Verificar se os bujões e os furos de drenagem estão voltados para baixo. Em motores montados verticalmente, os bujões de drenagem podem estar na posição horizontal.

Os motores com bujões de drenagem de plástico vedável são entregues na posição aberta. Em ambientes com uma ocorrência elevada de pó, todos os furos de drenagem devem ser fechados.

4.9 Cablagem e ligações elétricas

As caixas de terminais dos motores normais com uma única velocidade têm normalmente seis terminais para os enrolamentos e, pelo menos, um terminal para ligação à terra.

Para além dos terminais para os enrolamentos principais e para ligação à terra, a caixa de terminais pode também ter ligações para os termístores, elementos de aquecimento ou outros dispositivos auxiliares.

Têm de ser utilizados terminais de condutores adequados para a ligação de todos os cabos principais. Os cabos para os equipamentos auxiliares podem ser ligados diretamente aos blocos e terminais sem necessidade de terminais.

Os motores destinam-se apenas à instalação fixa. Salvo especificação em contrário, as rosca das entradas de cabos são métricas. A classe IP do bucim do cabo deve ser, pelo menos, a mesma das caixas de terminais.

Tem de ser utilizado um hub de conduta certificado ou ficheiro de cabo no momento da instalação.

Os cabos têm de ser mecanicamente protegidos e fixados junto da caixa de terminais para cumprir os requisitos adequados da IEC/EN 60079-0 e as normas locais de instalação.

As entradas de cabos não utilizadas têm de ser fechadas com elementos de bloqueio de acordo com a classe IP da caixa de terminais.

O grau de proteção e o diâmetro estão especificados nos documentos relacionados com o bucim do cabo.

AVISO

Utilize bucins de cabo e vedantes adequados nas entradas do cabo de acordo com o tipo e o tipo e diâmetro do cabo.

A ligação à terra deve ser efetuada de acordo com as normas locais, antes de ligar a máquina à alimentação.

O terminal de terra na estrutura tem de ser ligado ao terminal PE com um cabo, conforme indicado na Tabela 5 da CEI/EN 60034-1:

<table>
<thead>
<tr>
<th>Área de secção transversal de condutores de fase da instalação, S, [mm2]</th>
<th>Área de secção transversal mínima do condutor de proteção correspondente, S_c, [mm2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>35</td>
<td>25</td>
</tr>
<tr>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>70</td>
<td>35</td>
</tr>
<tr>
<td>95</td>
<td>50</td>
</tr>
<tr>
<td>120</td>
<td>70</td>
</tr>
<tr>
<td>150</td>
<td>70</td>
</tr>
<tr>
<td>185</td>
<td>95</td>
</tr>
<tr>
<td>240</td>
<td>120</td>
</tr>
<tr>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td>400</td>
<td>185</td>
</tr>
</tbody>
</table>

Para além disto, a ligação à terra ou soldadura de recursos de ligação no exterior de aparelhos elétricos tem de fornecer uma ligação eficaz de um condutor com uma área de secção transversal de, pelo menos, 4 mm2.

A ligação de cabos entre a rede e os terminais do motor tem de cumprir os requisitos indicados nas normas nacionais para a instalação ou na norma CEI/EN 60204-1, de acordo com a corrente nominal indicada na chapa de características.
Quando a temperatura ambiente excede +50 °C, devem ser utilizados cabos com uma temperatura de funcionamento admissível de +90 °C, no mínimo. Além disso, todos os outros fatores de conversão, em função das condições de instalação, devem ser tomados em consideração no dimensionamento dos cabos.

Certifique-se de que a proteção do motor corresponde às condições ambientais e climatéricas. Por exemplo, garanta que a água não é capaz de entrar no motor ou nas caixas de terminais. Os vedantes das caixas de terminais devem de ser colocados corretamente nas ranhuras previstas para garantir a classe IP correta. Uma fuga pode levar à penetração de poeira ou água, provocando um risco de descarga nos elementos vivos.

4.9.1 Ligações para diferentes métodos de arranque

As caixas de terminais dos motores normais com uma única velocidade têm normalmente seis terminais para os enrolamentos e, pelo menos, um terminal para ligação à terra. Isto permite a utilização de arranque DOL (arranque direto) ou Y/D (estrela-triângulo).

Para motores de duas velocidades e especiais, a ligação de alimentação deve ser efetuada em conformidade com as instruções que se encontram no interior da caixa de terminais ou no manual do motor.

A tensão de alimentação e o modo de ligação encontram-se gravados na chapa de características.

Arranque direto (DOL):

Podem ser empregues ligações dos enrolamentos do tipo Y ou D.

Por exemplo, 690 VY, 400 VD indica uma ligação Y para 690 V e uma ligação D para 400 V.

Arranque Estrela-Triângulo (Y/D):

A tensão de alimentação do motor deve ser idêntica à tensão indicada do motor numa ligação D.

Remova todos os elos de ligação da caixa de terminais.

Outros métodos de arranque e condições de arranque severas:

Caso sejam utilizados outros métodos de arranque, tais como conversor ou arrancador suave, nos tipos de serviço S1 e S2, considera-se que o dispositivo está “isolado do sistema de potência quando o equipamento elétrico está em funcionamento”, de acordo com a norma CEI 60079-0, e o isolamento térmico é opcional.

4.9.2 Ligações de equipamentos auxiliares

Se um motor estiver equipado com termistores ou outros RTD (Pt100, relés térmicos, etc.) e dispositivos auxiliares, recomenda-se que sejam utilizados e ligados de forma adequada. Para certas aplicações, é obrigatória a utilização de proteção térmica. Estão disponíveis informações mais pormenorizadas na documentação entregue com o motor. Os diagramas de ligação de elementos auxiliares e peças de ligação encontram-se no interior da caixa de terminais.

A tensão de medição máxima para termistores é de 2,5 V. A corrente de medição máxima para Pt100 é 5 mA. A utilização de uma tensão de medição ou corrente superior pode originar erros de leituras ou danos num detetor de temperatura.

O isolamento dos sensores térmicos cumpre os requisitos de isolamento básico.

4.10 Terminais e sentido de rotação

O veio roda no sentido dos ponteiros do relógio quando visto do lado do veio de acionamento do motor e a sequência das fases de linha - L1, L2, L3 - está ligada aos terminais, de acordo com a figura 3.

Para alterar o sentido de rotação, troque quaisquer duas ligações dos cabos de alimentação.

Se o motor tiver um ventilador com um sentido de rotação definido, certifique-se de que roda na vdireção da seta marcada no motor.
5 Operação

5.1 Geral

Os motores foram concebidos para as seguintes condições, salvo indicação em contrário na chapa de características:

- Os motores só devem ser utilizados em instalações fixas.
- O intervalo normal de temperatura ambiente é entre -20 °C e +40 °C.
- A altitude máxima é de 1.000 m acima do nível do mar.
- A variação da tensão de alimentação e da frequência não pode exceder os limites mencionados nas normas relevantes. A tolerância da tensão de alimentação é de ±5 % e da frequência é de ±2 %, de acordo com a figura 4 (EN / CEI 60034-1, parágrafo 7.3, Zona A). Não devem ocorrer simultaneamente ambos os valores extremos.

O motor só pode ser utilizado para as aplicações às quais se destina. Os valores nominais e condições de funcionamento estão indicados nas chapas de características dos motores. Para além disto, têm de ser seguidos todos os requisitos deste manual e outras instruções e normas relacionadas. Se estes limites forem ultrapassados, as características do motor e os dados de construção devem ser verificados. Contacte a ABB para mais informações.

AVISO

Ignorar quaisquer instruções ou manutenção do aparelho pode colocar a segurança em risco e, assim, impedir a utilização do motor.
6 Motores de baixa tensão em funcionamento a velocidade variável

6.1 Introdução

Esta parte do manual contém instruções adicionais manuais para motores utilizados em alimentação com conversor de frequência. O motor destina-se a ser utilizado apenas com alimentação de um único conversor de frequência, e não motores a funcionar em paralelo a partir de um conversor de frequência. As instruções apresentadas pelo fabricante do conversor devem ser seguidas.

A ABB pode requerer informações adicionais para decidir a adequação a determinados tipos de motor utilizados em aplicações especiais ou com modificações de conceção especiais.

6.2 Isolamento dos enrolamentos

As transmissões de velocidade variável criam tensões superiores à da alimentação sinusoidal no enrolamento do motor. Como tal, o isolamento do enrolamento do motor assim como o filtro na saída do conversor devem ser dimensionados de acordo com as seguintes instruções.

6.2.1 Seleção do isolamento do enrolamento para conversores ABB

No caso do ABB por ex. drives únicos da série AC_8_ _ e série AC_5_ _ com uma unidade de fornecimento de diodo (tensão de CC não controlada), a seleção do isolamento de enrolamento e filtros podem ser efetuados de acordo com a tabela 6.1.

6.2.2 Seleção do isolamento dos enrolamentos com todos os conversores

Os stresses da tensão devem ser limitados a níveis inferiores aos limites aceites. Contacte o fornecedor do sistema para assegurar a segurança da aplicação. A influência de possíveis filtros deve ser tida em consideração ao dimensionar o motor.

6.3 Proteção térmica

A maioria dos motores abrangidos por este manual está equipada com termistores PTC ou outros tipos de RTD nos enrolamentos do estator. É recomendado a sua ligação ao conversor de frequência. Leia mais no capítulo 4.9.2.
6.4 Correntes nos rolamentos

Os rolamentos isolados ou construções de rolamentos, filtros de modo comum e cablagem adequados e métodos de ligação à terra devem ser utilizados de acordo com as seguintes instruções e usar a tabela 6.1.

Tabela 6.1 Seleção do isolamento do enrolamento para conversores ABB

<table>
<thead>
<tr>
<th>PN < 100 kW</th>
<th>PN ≥ 100 kW ou IEC315 ≤ Tamanho da estrutura ≤ IEC355</th>
<th>PN ≥ 350 kW ou IEC400 ≤ Tamanho da estrutura ≤ IEC450</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_N ≤ 500 V</td>
<td>Motor padrão</td>
<td>Motor padrão</td>
</tr>
<tr>
<td></td>
<td>+ Rolamento N de isolamento</td>
<td>+ Rolamento N de isolamento</td>
</tr>
<tr>
<td>500 V > U_N ≤ 600 V</td>
<td></td>
<td>Motor padrão</td>
</tr>
<tr>
<td></td>
<td>+ filtro dU/dt (reator) ou Isolamento reforçado</td>
<td>+ filtro dU/dt (reator) ou Isolamento reforçado</td>
</tr>
<tr>
<td>500 V > U_N ≤ 600 V (comprimento do cabo > 150 m)</td>
<td>Motor padrão</td>
<td>Motor padrão</td>
</tr>
<tr>
<td></td>
<td>+ Rolamento N de isolamento</td>
<td>+ Rolamento N de isolamento</td>
</tr>
<tr>
<td>600 V > U_N ≤ 690 V</td>
<td></td>
<td>Isolamento reforçado</td>
</tr>
<tr>
<td></td>
<td>+ filtro dU/dt (reator)</td>
<td>+ Rolamento N de isolamento</td>
</tr>
<tr>
<td>600 V > U_N ≤ 690 V (comprimento do cabo > 150 m)</td>
<td>Isolamento reforçado</td>
<td>Isolamento reforçado</td>
</tr>
<tr>
<td></td>
<td>+ Rolamento N de isolamento</td>
<td>+ Rolamento N de isolamento</td>
</tr>
</tbody>
</table>

6.4.1 Eliminação de correntes nos rolamentos com conversores ABB

No caso do conversor de frequência por ex. das séries AC_6__ _ e AC_5__ _ com uma unidade de alimentação de diodo, os métodos de acordo com a tabela 6.1 devem ser usados para evitar correntes de rolamentos prejudiciais nos motores.

Os rolamentos isolados com orifícios exteriores e/ou interiores revestidos a óxido de alumínio ou elementos de rolamentos cerâmicos são recomendados. Os revestimentos de óxido de alumínio serão também tratados com um selante para impedir a penetração de sujidade e humidade no revestimento poroso. Para saber o tipo exato do isolamento dos rolamentos, ver a chapa de características do motor. É proibido alterar o tipo de rolamentos ou o método de isolamento sem autorização da ABB.

6.4.2 Eliminação de correntes nos rolamentos com todos os outros conversores

O utilizador é responsável pela proteção do motor e do equipamento com transmissão contra correntes de rolamentos prejudiciais. As instruções descritas no capítulo 6.4.1 podem ser utilizadas como diretriz, mas a sua eficácia não pode ser sempre garantida.
6.5 Cablagem, ligação à terra e CEM

Para proporcionarem uma ligação à terra adequada e para garantirem a conformidade com quaisquer requisitos CEM aplicáveis, os motores acima dos 30 kW têm de ser cablados utilizando cabos simétricos blindados e bucins CEM, ou seja, bucins de cabo que fornecem uma ligação a 360°.

Cabos simétricos e blindados são altamente recomendados para motores mais pequenos. Realize a ligação à terra em 360° em todas as entradas dos cabos da forma descrita nas instruções para os bucins. Enrolar as blindagens do cabo em feixes e ligar ao terminal terra/barra condutora mais próximo dentro da caixa de terminais, cavidade do conversor, etc.

Devem ser utilizados bucins para cabos adequados que permitam fazer uma ligação a 360° em todos os pontos de conexão, por exemplo, no motor, no conversor, no possível interruptor de segurança, etc.

6.6 Velocidade de funcionamento

Para velocidades superiores à velocidade nominal declarada na chapa identificativa do motor ou no respetivo catálogo de produtos, assegure-se de que a mais elevada velocidade rotativa permitida do motor ou a velocidade crítica de toda a aplicação não são ultrapassadas.

6.7 Motores em aplicações de velocidade variável

6.7.1 Geral
Com os conversores de frequência da ABB, os motores podem ser dimensionados através do programa de dimensionamento DriveSize da ABB. A ferramenta pode ser descarregada a partir do website da ABB (www.abb.com/motors&generators).

Para uma aplicação fornecida por outros conversores, os motores devem ser manualmente dimensionados. Para obter mais informação, contacte a ABB.

As curvas de capacidade (ou curvas de capacidade de carga) baseiam-se na tensão de alimentação nominal. O funcionamento abaixo ou acima das condições de tensão poderá influenciar o desempenho da aplicação.

6.7.2 A curva de capacidade do motor com conversores da série AC_8__ com controlo de DTC
As curvas de capacidade apresentadas nas Figuras 5a - 5d são válidas para os conversores da série ACC_8__ com tensão de CC não controlada e controlo de DTC. As figuras apresentam o binário de saída contínuo máximo aproximado dos motores como função de alimentação de frequência. O binário de saída é indicado como uma percentagem do binário nominal do motor. Os valores indicativos e os valores exatos são disponibilizados sob pedido.
6.7.3 A curva de capacidade do motor com o conversor da série AC_5_ _
As curvas de capacidade apresentadas nas Figuras 6a – 6d são válidas para conversores da série AC_5_ _. As figuras apresentam o binário de saída contínuo máximo aproximado dos motores como função de alimentação de frequência. O binário de saída é indicado como uma percentagem do binário nominal do motor. Os valores indicativos e os valores exatos são disponibilizados sob pedido.

6.7.4 Capacidade de carga do motor com outros conversores do tipo PWM de fonte de tensão
Para outros conversores com tensão CC não controlada e frequência de comutação mínima de 3 kHz (200...500 V), as instruções de dimensionamento conforme mencionadas no capítulo 6.7.3 podem ser utilizadas como diretrizes. No entanto, deve notar-se que a curva de capacidade térmica atual pode também ser inferior. Contacte o fabricante do conversor ou o fornecedor do sistema.

6.7.5 Sobrecargas de curta duração
Os motores ABB podem ser temporariamente sobrecarregados assim como utilizados em deveres intermitentes. O método mais conveniente para dimensional tais aplicações consiste em utilizar a ferramenta DriveSize.

6.8 Chapas de características
A utilização de motores ABB em aplicações de velocidade variável não necessitam normalmente de placas identificativas adicionais. Os parâmetros necessários para a colocação em funcionamento do conversor podem ser encontrados na placa identificativa principal. Em algumas aplicações especiais, no entanto, os motores podem ser equipados com placas identificativas adicionais para aplicações de velocidade variável.

Estas incluem as seguintes informações:
- intervalo de velocidade
- intervalo de alimentação
- intervalo de tensão e corrente
- tipo de binário (constante ou quadrático)
- e tipo de conversor assim como a frequência de comutação mínima necessária.

6.9 Colocação em serviço da aplicação de velocidade variável
A colocação em funcionamento da aplicação de velocidade variável tem de ser efetuada seguindo as instruções do conversor de frequência e das leis e regulamentos locais. Também devem ser tidos em consideração os requisitos e limitações definidos pela aplicação.

Todos os parâmetros necessários para a definição do conversor devem ser obtidos a partir das placas identificativas do motor. Os parâmetros frequentemente mais necessários são:
- tensão nominal
- corrente nominal
- frequência nominal
- velocidade nominal
- potência nominal

No caso de informações em falta ou pouco precisas, não coloque o motor a funcionar antes de comprovar que as configurações estão corretas!

A ABB recomenda o uso de todas as funcionalidades protetoras adequadas fornecidas pelo conversor para melhorar a segurança da aplicação. Os conversores normalmente disponibilizam funções tais como (nomes e disponibilidade das funções dependem do fabricante e modelo do conversor):
- velocidade mínima
- velocidade máxima
- tempos de aceleração e desaceleração
- corrente máxima
- binário máximo
- proteção contra estrangulamento
7 Manutenção

7.1 Inspeção geral

2. Manter o motor limpo e certificar-se de que o ar de ventilação circula livremente. Se o motor for utilizado em ambientes com muitas poeiras, o sistema de ventilação deve ser verificado e limpo regularmente.

3. Verifique o estado dos vedantes do veio (por exemplo, anel em V ou vedante radial) e substitua-os, se necessário.

4. Verifique o estado das ligações, do sistema de fixação e dos parafusos de montagem.

5. Controle o estado dos rolamentos tentando detectar quaisquer ruídos não habituais, medindo as vibrações, medindo a temperatura dos rolamentos, inspecionando a massa lubrificante gasta ou fazendo um controlo SPM dos rolamentos. Preste especial atenção aos rolamentos quando a sua vida útil nominal estiver a chegar ao fim. Quando surgirem sinais de desgaste, desmonte o motor, verifique as peças e substitua-as, se necessário. Ao substituir os rolamentos, os rolamentos de substituição devem ser do mesmo tipo dos originalmente instalados. Quando se mudarem os rolamentos, os vedantes do veio têm de ser substituídos por vedantes da mesma qualidade e características dos originais.

No caso de motores com uma classe de proteção IP 55, e quando o motor tiver sido entregue com os tampões fechados, é aconselhável abrir os bujões de drenagem periodicamente para garantir que a saída da condensação não está bloqueada e permitir que a condensação saia do motor. Esta operação tem de ser efetuada quando o motor estiver parado e for seguro trabalhar nele.

7.1.1 Motores de reserva
Se um motor estiver numa situação de reserva durante um longo período de tempo num navio ou noutro ambiente sujeito a vibrações, devem ser tomadas as seguintes medidas:

1. O veio tem de ser rodado regularmente a cada 2 semanas (deve ser criado um registo) pondo o sistema em funcionamento. Caso não seja possível pôr o motor em funcionamento por qualquer razão, o veio deverá pelo menos ser rodado à mão de modo a que fique numa posição de repouso diferente, uma vez por semana. As vibrações provocadas pelos outros equipamentos do navio causam picadas (pitting) nos rolamentos, situação esta que deve ser evitada através da colocação em funcionamento/ rotação manual regular.

2. Os rolamentos devem ser lubrificados ao mesmo tempo que o veio é rodado, uma vez por ano (deve ser feito um registo). Se o motor estiver equipado com rolamentos de rolos no lado do veio motriz, o dispositivo de bloqueio para transporte tem de ser removido antes de se rodar o veio. O dispositivo de bloqueio para transporte deve ser novamente instalado se o motor for transportado.

3. Devem ser evitadas todas as vibrações para evitar danos e falhas dos rolamentos. Devem ser seguidas todas as instruções contidas no manual de instruções do motor, referentes à sua manutenção e o comissionamento. A garantia não cobrirá danos causados aos enrolamentos e aos rolamentos se estas instruções não tiverem sido seguidas.
7.2 Lubrificação

AVISO
Cuidado com todas as peças rotativas!

AVISO
Muitas massas podem provocar irritações da pele e inflamação dos olhos. Seguir todas as precauções de segurança especificadas pelo fabricante da massa.

Os tipos dos rolamentos encontram-se especificados nos catálogos dos produtos em questão e na chapa de características de todos os motores, exceto para os motores de menores dimensões.

A fiabilidade é uma questão fundamental para os intervalos de lubrificação dos rolamentos. A ABB utiliza acima de tudo o princípio L1 (ou seja, que 99% dos motores cumprem o seu tempo útil de vida) para a lubrificação.

7.2.1 Motores com rolamentos permanentemente lubrificados
Os rolamentos que não necessitam de lubrificação são dos tipos 1Z, 2Z, 2RS ou equivalentes.

Por norma, a lubrificação adequada para tamanhos até 250 pode ser atingida com os seguintes intervalos de lubrificação, de acordo com L1. Para condições de funcionamento com temperaturas ambiente superiores, contactar a ABB. A fórmula para mudar os valores L1 aproximadamente para valores L10 é: L10 = 2,0 x L1.

As horas de funcionamento para rolamentos que não necessitam de lubrificação a temperaturas ambiente de 25 °C e 40 °C são:

<table>
<thead>
<tr>
<th>Tamanho da estrutura</th>
<th>Polos</th>
<th>Horas de serviço a 25 °C</th>
<th>Horas de serviço a 40 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>2</td>
<td>52 000</td>
<td>33 000</td>
</tr>
<tr>
<td>56</td>
<td>4-8</td>
<td>65 000</td>
<td>41 000</td>
</tr>
<tr>
<td>63</td>
<td>2</td>
<td>49 000</td>
<td>31 000</td>
</tr>
<tr>
<td>63</td>
<td>4-8</td>
<td>63 000</td>
<td>40 000</td>
</tr>
<tr>
<td>71</td>
<td>2</td>
<td>67 000</td>
<td>42 000</td>
</tr>
<tr>
<td>71</td>
<td>4-8</td>
<td>100 000</td>
<td>56 000</td>
</tr>
<tr>
<td>80-90</td>
<td>2</td>
<td>100 000</td>
<td>65 000</td>
</tr>
<tr>
<td>80-90</td>
<td>4-8</td>
<td>100 000</td>
<td>96 000</td>
</tr>
<tr>
<td>100-112</td>
<td>2</td>
<td>89 000</td>
<td>56 000</td>
</tr>
<tr>
<td>100-112</td>
<td>4-8</td>
<td>100 000</td>
<td>89 000</td>
</tr>
<tr>
<td>132</td>
<td>2</td>
<td>67 000</td>
<td>42 000</td>
</tr>
<tr>
<td>132</td>
<td>4-8</td>
<td>100 000</td>
<td>77 000</td>
</tr>
<tr>
<td>160</td>
<td>2</td>
<td>60 000</td>
<td>38 000</td>
</tr>
<tr>
<td>160</td>
<td>4-8</td>
<td>100 000</td>
<td>74 000</td>
</tr>
<tr>
<td>180</td>
<td>2</td>
<td>55 000</td>
<td>34 000</td>
</tr>
<tr>
<td>180</td>
<td>4-8</td>
<td>100 000</td>
<td>70 000</td>
</tr>
<tr>
<td>200</td>
<td>2</td>
<td>41 000</td>
<td>25 000</td>
</tr>
<tr>
<td>200</td>
<td>4-8</td>
<td>95 000</td>
<td>60 000</td>
</tr>
<tr>
<td>225</td>
<td>2</td>
<td>36 000</td>
<td>23 000</td>
</tr>
<tr>
<td>225</td>
<td>4-8</td>
<td>88 000</td>
<td>56 000</td>
</tr>
<tr>
<td>250</td>
<td>2</td>
<td>31 000</td>
<td>20 000</td>
</tr>
<tr>
<td>250</td>
<td>4-8</td>
<td>80 000</td>
<td>50 000</td>
</tr>
</tbody>
</table>

Os dados são válidos até 60 Hz.

7.2.2 Motores com rolamentos que necessitam de lubrificação
Chapa de informações sobre lubrificação e conselhos gerais sobre lubrificação.

Se o motor estiver equipado com uma chapa de informações sobre lubrificação, respeite os valores indicados.

Na chapa de informações sobre lubrificação, estão definidos os intervalos de lubrificação no que diz respeito à montagem, à temperatura ambiente e à velocidade de rotação.

Após o primeiro arranque ou após uma lubrificação dos rolamentos, pode surgir um aumento temporário da temperatura, durante aproximadamente 10 a 20 horas de funcionamento.

Alguns motores poderão estar equipados com um coletor para massas lubrificantes usadas. Siga as instruções especiais dadas para o equipamento.

A. Lubrificação manual
Renovar a lubrificação com o motor em funcionamento

- Remova o tampão de saída da massa ou abra a válvula de fecho, se instalada.
- Certifique-se de que o canal de lubrificação está aberto.
- Injete o montante especificado de massa no rolamento.
- Deixe o motor a funcionar durante 1 a 2 horas para assegurar que todo o excesso de massa é forçado a sair do rolamento. Feche o tampão de entrada da massa ou a válvula de fecho, se instalada.

Renovar a lubrificação com o motor parado
Se não for possível efetuar a lubrificação dos rolamentos com os motores em funcionamento, a lubrificação pode ser efetuada com o motor parado.

- Neste caso, utilize apenas metade da quantidade de massa lubrificante e, em seguida, coloque o motor em funcionamento durante alguns minutos à velocidade máxima.
- Quando o motor parar, aplique o resto da quantidade de massa lubrificante especificada para o rolamento.
- Após 1 a 2 horas de funcionamento, feche o tampão de saída da massa ou a válvula de fecho, se instalada.

B. Lubrificação automática
Quando é utilizada a lubrificação automática, o tampão de saída de massa lubrificante deve ser removido permanentemente ou a válvula de fecho, se instalada, deve ser deixada aberta.

A ABB recomenda apenas a utilização de sistemas eletromecânicos.

Se for utilizado um sistema de lubrificação central, deve ser utilizado o triplo da quantidade de massa por intervalo de lubrificação indicada no quadro.

No caso de uma unidade mais pequena de renovação da lubrificação (um ou dois cartuchos por motor), pode ser utilizada a quantidade normal de massa.
O aviso do ramo de metalurgia faz referência à validação do seu uso em motores de 80 °C. O aviso diz que, em aplicações de conversores de frequência, ou a velocidade inferior com carga pesada, serão necessários intervalos de lubrificação mais reduzidos.

Por norma, a lubrificação adequada pode ser atingida com o seguinte intervalo de lubrificação, de acordo com L1. Para condições de funcionamento com temperaturas ambiente superiores, contactar a ABB. A fórmula para mudar os valores L1 aproximadamente para valores L10 é L10 = 2,0 x L1, com lubrificação manual.

Os intervalos de lubrificação baseiam-se na temperatura de funcionamento dos rolamentos de 80 °C (temperatura ambiente de +25 °C).

Um aumento na temperatura ambiente aumenta respetivamente a temperatura dos rolamentos. Os valores para os intervalos deverão ser reduzidos em metade para um aumento de 15 °C na temperatura dos rolamentos e deverão ser duplicados para um decréscimo de 15 °C na temperatura dos rolamentos.

Para um funcionamento a velocidade superior, ou seja, em aplicações de conversores de frequência, ou a velocidade inferior com carga pesada, serão necessários intervalos de lubrificação mais reduzidos.

A temperatura máxima de funcionamento do lubrificante e dos rolamentos, +110 °C, não deve ser excedida. A velocidade máxima de conceção do motor não deve ser excedida.

Tabela 7.2

<table>
<thead>
<tr>
<th>Tamanho do estrutura</th>
<th>Quantidade de massa lubrificante rolamento</th>
<th>kW 3600 r/min</th>
<th>kW 3000 r/min</th>
<th>kW 1800 r/min</th>
<th>kW 1500 r/min</th>
<th>kW 1000 r/min</th>
<th>kW 500-900 r/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
</tr>
<tr>
<td>132</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
</tr>
<tr>
<td>160</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
</tr>
<tr>
<td>200</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
</tr>
<tr>
<td>250</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
</tr>
<tr>
<td>280</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
</tr>
<tr>
<td>315</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
</tr>
<tr>
<td>355</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
</tr>
<tr>
<td>400</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
</tr>
<tr>
<td>450</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
</tr>
<tr>
<td>500</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
</tr>
<tr>
<td>555</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
</tr>
<tr>
<td>600</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
<td>todos</td>
</tr>
</tbody>
</table>

Intervalos de lubrificação

Os intervalos de lubrificação para motores verticais são metade dos valores indicados na tabela abaixo.
7.2.4 Lubrificantes

AVISO

Não misturar diferentes tipos de massas lubrificantes. Lubrificantes incompatíveis poderão provocar danos nos rolagens.

Ao renovar a lubrificação, utilizar unicamente massa especial para rolagens de esferas com as seguintes características:
- massa de boa qualidade com sabão de complexo de lítio e com óleos PAO ou mineral
- viscosidade do óleo de base 100-160 cSt a 40 °C
- consistência NLGI de grau 1,5 – 3 (*)
- intervalo de temperatura entre -30 °C e +120 °C, continuamente

(*) Para motores montados verticalmente ou em condições de alta temperatura, recomenda-se um valor superior mais elevado.

A especificação para massas lubrificantes acima referida é válida se a temperatura ambiente for superior a -30 °C ou inferior a +55 °C e se a temperatura do rolagem for inferior a +110 °C; caso contrário, consultar a ABB relativamente à massa lubrificante adequada.

As massas com as características corretas podem ser adquiridas junto de todos os principais fabricantes de lubrificantes.

Recomendam-se que sejam usados aditivos, mas deve ser obtida uma garantia por escrito por parte do fabricante, especialmente no que respeita a aditivos EP, de que não danificam os rolagens nem alteram as propriedades dos lubrificantes às temperaturas de funcionamento previstas.

#### Tamanho da estrutura	Quantidade de massa lubrificante rolamento	kW	3600 r/min	3000 r/min	kW	1800 r/min	1500 r/min	kW	1000 r/min	kW	500-900 r/min
25 | ≤ 18,5 | 4 500 | 6 000 | ≤ 15 | 9 000 | 10 500 | ≤ 11 | 12 000 | todos | 12 000 | todos | 12 000 | todos | 12 000
25 | > 18,5 | 3 500 | 5 000 | > 15 | 7 500 | 9 000 | > 11 | 11 000 | todos | 12 000 | todos | 12 000 | todos | 12 000
30 | ≤ 22 | 3 500 | 4 500 | ≤ 22 | 7 500 | 9 000 | ≤ 15 | 12 000 | todos | 12 000 | todos | 12 000 | todos | 12 000
30 | > 22 | 3 000 | 4 000 | > 22 | 7 000 | 8 500 | > 15 | 10 500 | todos | 12 000 | todos | 12 000 | todos | 12 000
40 | ≤ 37 | 2 750 | 4 000 | ≤ 30 | 7 000 | 8 500 | ≤ 22 | 11 500 | todos | 12 000 | todos | 12 000 | todos | 12 000
40 | > 37 | 1 500 | 2 500 | > 30 | 5 000 | 6 000 | > 22 | 8 000 | todos | 10 000 | todos | 10 000 | todos | 10 000
50 | ≤ 45 | 2 000 | 3 000 | ≤ 45 | 6 500 | 8 000 | ≤ 30 | 11 000 | todos | 12 000 | todos | 12 000 | todos | 12 000
50 | > 45 | 750 | 1 250 | > 45 | 2 500 | 3 000 | > 30 | 4 000 | todos | 5 000 | todos | 5 000 | todos | 5 000
60 | ≤ 55 | 1 000 | 2 000 | ≤ 55 | 4 500 | 5 500 | ≤ 37 | 7 500 | todos | 9 000 | todos | 9 000 | todos | 9 000
60 | > 55 | 500 | 750 | > 55 | 1 500 | 2 000 | > 37 | 3 000 | todos | 3 500 | todos | 3 500 | todos | 3 500
280 | todos | 1 000 | 1 750 | – – – – – | todos | 4 000 | 5 250 | todos | 7 000 | todos | 8 500 | todos | 8 500 | todos | 8 500
280 | todos | 900 | 1 600 | – | – | – | – | – | – | – | – | – | – | – | –
280 | todos | 900 | 1 600 | – | – | – | – | – | – | – | – | – | – | – | –
315 | todos | 900 | 1 600 | – | – | – | – | – | – | – | – | – | – | – | –
315 | todos | 900 | 1 600 | – | – | – | – | – | – | – | – | – | – | – | –
315 | todos | 900 | 1 600 | – | – | – | – | – | – | – | – | – | – | – | –
355 | todos | 900 | 1 600 | – | – | – | – | – | – | – | – | – | – | – | –
355 | todos | 900 | 1 600 | – | – | – | – | – | – | – | – | – | – | – | –
400 | todos | 900 | 1 600 | – | – | – | – | – | – | – | – | – | – | – | –
400 | todos | 900 | 1 600 | – | – | – | – | – | – | – | – | – | – | – | –
400 | todos | 900 | 1 600 | – | – | – | – | – | – | – | – | – | – | – | –
400 | todos | 900 | 1 600 | – | – | – | – | – | – | – | – | – | – | – | –
450 | todos | 900 | 1 600 | – | – | – | – | – | – | – | – | – | – | – | –
450 | todos | 900 | 1 600 | – | – | – | – | – | – | – | – | – | – | – | –
450 | todos | 900 | 1 600 | – | – | – | – | – | – | – | – | – | – | – | –
500 | todos | 900 | 1 600 | – | – | – | – | – | – | – | – | – | – | – | –
500 | todos | 900 | 1 600 | – | – | – | – | – | – | – | – | – | – | – | –
500 | todos | 900 | 1 600 | – | – | – | – | – | – | – | – | – | – | – | –
5010 | todos | 900 | 1 600 | – | – | – | – | – | – | – | – | – | – | – | –
5010 | todos | 900 | 1 600 | – | – | – | – | – | – | – | – | – | – | – | –
5012 | todos | 900 | 1 600 | – | – | – | – | – | – | – | – | – | – | – | –

AVISO

No geral, os lubrificantes contêm aditivos EP que não são recomendados. Em alguns casos poderá provocar danos ao rolamento, como tal o seu uso deve ser avaliado caso a caso juntamente com os fornecedores dos lubrificantes.

Podem ser utilizadas as seguintes massas lubrificantes de elevado desempenho:
- Mobil Unirex N2 ou N3 (base de complexo de lítio)
- Klüber Klüberplex BEM 41-132 (base de lítio especial)
- FAG Arcanol TEMP110 (base de complexo de lítio)
- Lubcon Turmogrease L 802 EP PLUS (base de lítio especial)
- Total Multis Complex S2 A (base de complexo de lítio)

Utilize sempre massa lubrificante para altas velocidades em motores com 2 polos de alta velocidade em que o fator de velocidade é superior a 480 000 (calculado como Dm x n, em que Dm = diâmetro médio do rolagem, mm; n = velocidade de rotação, r/min).

As seguintes massas lubrificantes podem ser utilizadas em motores de ferro fundido de alta velocidade, mas não podem ser misturadas com massas de complexo de lítio:
- Klüber Klüber Quiet BQH 72-102 (base de poliureia)
- Lubcon Turmogrease PU703 (base de poliureia)

Se forem utilizados outros lubrificantes, confirme com o fabricante que as qualidades correspondem às dos lubrificantes acima mencionados. Os intervalos de lubrificação baseiam-se nas massas lubrificantes de elevados desempenhos acima indicadas. A utilização de outras massas lubrificantes poderá reduzir esses intervalos.
8 Apoio pós-venda

8.1 Peças sobresselentes

As peças sobresselentes têm de ser peças originais ou aprovadas pela ABB, salvo especificação em contrário.

Para encomendar peças sobresselentes, é necessário indicar o número de série do motor, a designação completa do tipo e o código do produto, de acordo com as indicações na chapa de características.

8.2 Desmontar, voltar a montar e rebobinar

A rebobinagem apenas deve ser feita em oficinas de reparações qualificadas.

A ventilação de fumos e outros motores especiais não deverão ser rebobinados sem contactar primeiro a ABB.

8.3 Rolamentos

Os rolamentos exigem cuidados especiais.

Devem ser removidos com ferramentas de extração e devem ser instalados depois de aquecidos ou utilizando ferramentas especiais.

A substituição dos rolamentos encontra-se descrita em pormenor num folheto de instruções suplementar que pode ser pedido à ABB.

Quaisquer indicações colocadas no motor, como por exemplo etiquetas, têm de ser seguidas. Os tipos de rolamentos indicados na chapa de características não podem ser alterados.
9 Requisitos ambientais

A maior parte dos motores ABB tem um nível de pressão sonora que não excede os 82 dB (A) (± 3 dB) a 50 Hz.

Os valores para motores específicos encontram-se indicados nos respetivos catálogos de produtos. Para uma alimentação sinusoidal a 60 Hz, os valores são aproximadamente 4 dB (A) mais elevados em comparação com valores indicados para 50 Hz, nos catálogos dos produtos.

Para obter os níveis de pressão sonora para os sistemas com alimentação com conversor de frequência, contacte a ABB.

Quando os motores ficam inutilizados ou vão para reciclagem, devem ser respeitados os métodos apropriados e a regulamentação e legislação local.
10 Resolução de problemas

Estas instruções não abrangem todos os pormenores ou variações nos equipamentos nem incluem informações sobre todas as possíveis situações relacionadas com a instalação, funcionamento ou manutenção. Caso necessite de informações adicionais, contacte o Departamento de Vendas da ABB mais próximo.

Quadro para resolução de problemas nos motores
A manutenção do motor e qualquer resolução de problemas deverão ser levadas a cabo por pessoas qualificadas que disponham das ferramentas e equipamento adequados.

Tabela 10.1: Resolução de problemas

<table>
<thead>
<tr>
<th>PROBLEMA</th>
<th>CAUSA</th>
<th>O QUE FAZER</th>
</tr>
</thead>
<tbody>
<tr>
<td>O motor não arranca</td>
<td>Fusíveis queimados</td>
<td>Substituir os fusíveis por outros do mesmo tipo e classificação.</td>
</tr>
<tr>
<td></td>
<td>Disparos por sobrecarga</td>
<td>Verificar e rearmar o limitador de sobrecarga do arrancador.</td>
</tr>
<tr>
<td></td>
<td>Alimentação de energia inadequada</td>
<td>Verificar se alimentação elétrica está de acordo com a chapa de características do motor e com o fator de carga.</td>
</tr>
<tr>
<td></td>
<td>Ligação de linha inadequadas</td>
<td>Verificar se as ligações estão em conformidade com o diagrama fornecido com o motor.</td>
</tr>
<tr>
<td></td>
<td>Circuito aberto no enrolamento ou no interruptor de controlo</td>
<td>Indicado por um zumbido quando o interruptor é fechado. Verificar se existem ligações soltas e se todos os contactos de controlo fecham corretamente.</td>
</tr>
<tr>
<td></td>
<td>Avaria mecânica</td>
<td>Verificar se o motor e a transmissão giram livremente. Verificar os rolamentos e a lubrificação.</td>
</tr>
<tr>
<td></td>
<td>Estator em curto-circuito</td>
<td>Contacto ABB ou Assegure-se de que a alimentação está desligada e a ligação à terra está concluída, desligue os cabos e meça a resistência de isolamento.</td>
</tr>
<tr>
<td></td>
<td>Ligação da bobina do estator fraca</td>
<td>Indicado por fusíveis queimados. O motor tem de ser rebobinado. Retirar as tampas dos topos do motor e localizar a avaria.</td>
</tr>
<tr>
<td>O motor poderá estar em sobrecarga</td>
<td></td>
<td>Reduzir a carga.</td>
</tr>
<tr>
<td>O motor para em carga</td>
<td>Uma fase poderá estar aberta</td>
<td>Verificar as linhas para identificar a fase aberta.</td>
</tr>
<tr>
<td></td>
<td>Aplicação errada</td>
<td>Mudar de tipo ou tamanho do motor. Consulte o fornecedor do equipamento.</td>
</tr>
<tr>
<td></td>
<td>Sobrecarga</td>
<td>Reduzir a carga.</td>
</tr>
<tr>
<td></td>
<td>Baixa tensão</td>
<td>Certificar-se de que é mantida a tensão indicada na chapa de características Verificar a ligação.</td>
</tr>
<tr>
<td></td>
<td>Circuito aberto</td>
<td>Fusíveis queimados. Verifique o relé de sobrecarga, o estator e os botões de pressão.</td>
</tr>
<tr>
<td>O motor arranca e, depois, vai-se abaixo</td>
<td>Falha de alimentação</td>
<td>Verifique a existência de ligações soltas na linha, fusíveis e controlo.</td>
</tr>
<tr>
<td>O motor não acelera até a velocidade nominal</td>
<td>Motor mal selecionado</td>
<td>Consulte o fornecedor para ver qual o tipo correto a utilizar.</td>
</tr>
<tr>
<td></td>
<td>Tensão demasiado baixa nos terminais do motor devido a queda de tensão na linha</td>
<td>Utilize uma tensão mais elevada, ligue o motor mais perto dos terminais do transformador ou reduza a carga. Verifique as ligações. Verifique se os condutores têm o tamanho adequado.</td>
</tr>
<tr>
<td></td>
<td>Carga inicial demasiado elevada</td>
<td>Verificar o arranque do motor “sem carga”.</td>
</tr>
<tr>
<td></td>
<td>Barras do rotor partidas ou rotor solto</td>
<td>Procure fissuras junto dos anéis. Poderá ser necessário um novo rotor, uma vez que as reparações são, normalmente, apenas temporárias.</td>
</tr>
<tr>
<td></td>
<td>Circuito principal aberto</td>
<td>Localize a falha com um dispositivo de teste e repare-a.</td>
</tr>
<tr>
<td>PROBLEMA</td>
<td>CAUSA</td>
<td>O QUE FAZER</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>O motor demora demasiado tempo a acelerar e/ou tem um consumo muito elevado</td>
<td>Carga excessiva</td>
<td>Reduzir a carga.</td>
</tr>
<tr>
<td></td>
<td>Baixa tensão durante o arranque</td>
<td>Verificar se existe uma resistência elevada. Certificar-se de que é utilizado um cabo de tamanho adequado.</td>
</tr>
<tr>
<td></td>
<td>Rotor em curto-circuito (gaiola de esquilo) com defeito</td>
<td>Substitua por um motor novo.</td>
</tr>
<tr>
<td></td>
<td>Tensão aplicada demasiado baixa</td>
<td>Corrigir a alimentação elétrica.</td>
</tr>
<tr>
<td>Sentido de rotação errado</td>
<td>Sequência de fases errada</td>
<td>Inverta as ligações no motor ou no quadro elétrico.</td>
</tr>
<tr>
<td>O motor entra em sobreaquecimento durante o funcionamento</td>
<td>Sobrecarga</td>
<td>Reduzir a carga.</td>
</tr>
<tr>
<td></td>
<td>As aberturas da estrutura ou da ventilação podem estar entupidas ou sujas e impedir a ventilação adequada do motor</td>
<td>Abrir os furos de ventilação e verificar se existe um fluxo de ar contínuo na saída de ar do motor.</td>
</tr>
<tr>
<td></td>
<td>O motor poderá ter uma fase aberta</td>
<td>Verificar se todos os cabos estão bem ligados.</td>
</tr>
<tr>
<td></td>
<td>Bobina com passagem à massa</td>
<td>O motor tem de ser rebobinado.</td>
</tr>
<tr>
<td></td>
<td>Tensão desequilibrada nos terminais.</td>
<td>Verificar se existem avarias nos cabos, nas ligações ou nos transformadores.</td>
</tr>
<tr>
<td>O motor vibra</td>
<td>Motor desalinhado</td>
<td>Alinhar novamente.</td>
</tr>
<tr>
<td></td>
<td>Suporte fraco</td>
<td>Reforçar a base.</td>
</tr>
<tr>
<td></td>
<td>Acoplamento desequilibrado</td>
<td>Equilibrar o acoplamento.</td>
</tr>
<tr>
<td></td>
<td>Equipamento acionado desequilibrado</td>
<td>Voltar a equilibrar o equipamento acionado.</td>
</tr>
<tr>
<td></td>
<td>Rolamentos avariados</td>
<td>Substituir os rolamentos.</td>
</tr>
<tr>
<td></td>
<td>Rolamentos desalinhados</td>
<td>Reparar o motor</td>
</tr>
<tr>
<td></td>
<td>Massas de equilibragem deslocadas</td>
<td>Voltar a equilibrar o rotor.</td>
</tr>
<tr>
<td></td>
<td>Contração entre o equilíbrio do rotor e o acoplamento (meia chaveta – chaveta completa)</td>
<td>Voltar a equilibrar o acoplamento ou o rotor</td>
</tr>
<tr>
<td></td>
<td>Motor polifásico a funcionar com uma única fase</td>
<td>Verificar a existência de um circuito aberto.</td>
</tr>
<tr>
<td></td>
<td>Folga axial excessiva</td>
<td>Ajustar o rolamento ou adicionar um calço.</td>
</tr>
<tr>
<td>Ruídos de interferências mecânicas</td>
<td>Ventilador a roçar na tampa o ventilador</td>
<td>Corrigir a montagem do ventilador.</td>
</tr>
<tr>
<td></td>
<td>Motor solto da base</td>
<td>Apertar os parafusos de fixação.</td>
</tr>
<tr>
<td>Funcionamento ruidoso</td>
<td>Folga não uniforme</td>
<td>Verificar e corrigir a instalação das tampas de topo ou dos rolamentos.</td>
</tr>
<tr>
<td></td>
<td>Rotor desequilibrado</td>
<td>Voltar a equilibrar o rotor.</td>
</tr>
<tr>
<td>Rolamentos quentes</td>
<td>Velo dobrado ou fletido</td>
<td>Endireitar ou substituir o veio.</td>
</tr>
<tr>
<td></td>
<td>Tração excessiva da correa</td>
<td>Reduzir a tensão da correa.</td>
</tr>
<tr>
<td></td>
<td>Polias demasiado afastadas do apoio do veio</td>
<td>Deslocar a polia para uma posição mais próxima do rolamento do motor.</td>
</tr>
<tr>
<td></td>
<td>Diâmetro da polia demasiado pequeno</td>
<td>Utilizar polias maiores.</td>
</tr>
<tr>
<td></td>
<td>Desalinhamento</td>
<td>Corrigir através do realinhamento da transmissão.</td>
</tr>
<tr>
<td></td>
<td>Falta de lubrificação</td>
<td>Manter a qualidade e quantidade adequada de lubrificante no rolamento.</td>
</tr>
<tr>
<td></td>
<td>Deterioração da massa ou contaminação do lubrificante</td>
<td>Remover a massa antiga, lavar bem os rolamentos em querosene e lubrificar com massa nova.</td>
</tr>
<tr>
<td></td>
<td>Lubrificante em excesso</td>
<td>Reduzir a quantidade de massa lubrificante, o rolamento não deve estar cheio com mais de metade da sua capacidade.</td>
</tr>
<tr>
<td></td>
<td>Rolamento em sobrecarga</td>
<td>Verificar o alinhamento e o esforço radial e axial.</td>
</tr>
<tr>
<td></td>
<td>Esferas partidas ou caminhos de rolamento danificados ou gripados</td>
<td>Substituir o rolamento, limpar cuidadosamente a caixa em primeiro lugar.</td>
</tr>
</tbody>
</table>
11 Figuras

Figura 1. Diagrama que ilustra a dependência da resistência de isolamento em relação à temperatura, e como corrigir a resistência de isolamento medida para a temperatura de 40 °C.

Figura 2. Montagem dos meios-acoplamentos ou poleas.

Eixo X: Temperatura dos enrolamentos, Graus Celsius
Eixo Y: Coeficiente de Temperatura da Resistência de Isolamento, k_{tc}

1) Para corrigir a resistência de isolamento observada, R_i, para 40 °C, deverá ser multiplicada pelo coeficiente de temperatura k_{tc}: $R_{40°C} = R_i \times k_{tc}$
Figura 3. Ligação de terminais para alimentação.

Figura 4. Desvio de tensão e frequência nas zonas A e B.

<table>
<thead>
<tr>
<th></th>
<th>Eixo X</th>
<th>Eixo Y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>frequência p.u.</td>
<td>tensão p.u.</td>
</tr>
<tr>
<td>Chave</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>zona A</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>zona B (fora da zona A)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ponto de avaliação</td>
<td></td>
</tr>
</tbody>
</table>

Figura 3.

Figura 4.
Curvas de capacidade de carga orientadoras com conversores com controlo DTC

Figura 5a. Conversor com controlo de DTC, 50 Hz, aumento da temperatura B

Figura 5b. Conversor com controlo de DTC, 60 Hz, aumento da temperatura B

Figura 5c. Conversor com controlo de DTC, 50 Hz, aumento da temperatura F

Figura 5d. Conversor com controlo de DTC, 60 Hz, aumento da temperatura F

1. Self ventilated, IEC frame sizes 56-132
2. Self ventilated, IEC frame size 160-450
3. Separate motor cooling (force ventilated)
Curvas de capacidade de carga orientadoras com outra fonte de tensão do tipo PWM

Figura 6a. Conversor do tipo PWM com outra fonte de tensão, 50 Hz, aumento da temperatura B

Figura 6b. Conversor do tipo PWM com outra fonte de tensão, 60 Hz, aumento da temperatura B

Figura 6c. Conversor do tipo PWM com outra fonte de tensão, 50 Hz, aumento da temperatura F

Figura 6d. Conversor do tipo PWM com outra fonte de tensão, 60 Hz, aumento da temperatura F

1. Self ventilated, IEC frame sizes 56-132
2. Separate motor cooling (forced ventilated)

Figura 6a.

Figura 6b.

Figura 6c.

Figura 6d.
7 Underhåll ... 199
 7.1 Allmän inspektion ... 199
 7.1.1 Standby-läge ... 199
 7.2 Smörjning .. 200
 7.2.1 Motorer med permanentsmorda lager 200
 7.2.2 Motorer med smörjnipplar 200
 7.2.3 Smörjintervall och fettmängder 201
 7.2.4 Smörjmedel .. 202

8 Eftersäljssupport ... 203
 8.1 Reservdelar .. 203
 8.2 Demontering, montering och omlindning 203
 8.3 Lager ... 203

9 Miljökrav ... 204

10 Felsökning ... 205

11 Figurer ... 207
1 Inledning

Detta regler måste följas för att garantera säker och korrekt installation, funktion och underhåll. Detta regler måste delas varje person som installerar, använder eller underhåller motorn eller tillhörande utrustning. Motorn ska installeras och användas av kvalificerad personal som fullt behärskar gällande hälso- och säkerhetsmässiga krav samt gällande nationell lagstiftning. Att ignorera dessa regler kan upphäva samtliga tillämpliga garantier.

1.1 EU-deklaration

När motorn monteras i en maskin måste slutproduktens överensstämmelse med maskindirektivet 2006/42/EG fastställas av den part som tar produkten i drift.

1.2 Giltighet

Dessa instruktioner gäller för följande av ABB tillverkade elmotorer, både vid motor- och generatordrift:

- serierna MT*, MXMA,
- i IEC-storlek 56–500
- i NEMA-storlek 58*, 50**

Ytterligare information behövs för vissa maskintyper på grund av speciella tillämpnings- och/eller designöverväganden.

Ytterligare manueller är tillgängliga för följande motorer:

- motorer för rullbord
- vattenkylda motorer
- motorer för rökventilation
- bromsmotorer
- motorer för höga omgivningstemperaturer
- motorer i marina applikationer för montering på öppet däck
- på fartyg och offshore-enheter
2 Säkerhetsöverväganden

Motorn ska installeras och användas av kvalificerad personal som fullt behärskar gällande hälso- och säkerhetsmässiga krav samt gällande nationell lagstiftning.

Den säkerhetsutrustning som krävs för att förhindra olyckor vid montering och användning ska användas i enlighet med lokala föreskrifter.

WARNING

Nödstoppsfunktioner måste vara utrustade med omstartspärrar. Efter ett nödstopp kan ett nytt startkommando inte utföras förrän omstartspärren avsiktligt har återställts.

Att tänka på:

1. Klättra inte på motorn.
2. Temperaturen på motorns hölje kan kännas mycket hög vid beröring även under normal drift och i synnerhet efter avstängning.
3. Vissa speciella motortillämpningar kräver ytterligare instruktioner (t.ex. vid leverans med frekvensomriktadriften).
4. Var uppmärksam på roterande motordelar.
5. Öppna inte uttagslädor som är spänningsatta.
3 Hantering

3.1 Mottagande

Kontrollera omedelbart vid ankomsten att motorn inte skadats under transporten (t.ex. axeltappar, flänsar och målade ytor). Om den skadats ska speditören underrättas om detta så snart som möjligt.

Kontrollera samtliga märkskyltdata, särskilt spänning, kopplingar (Y eller D). Lagertyp är specificerad på märkskylten hos alla motorer utom för de minsta storleksarna.

Vid användning av motorer med omriktarmatning, kontrollera maximal belastbarhet enligt frekvensen som framgår av motorns tillägsmärkskylt.

3.2 Transport och förvaring

Motorer ska alltid förvaras inomhus (över –20 °C) under torra, vibrations- och dammfria förhållanden. Undvik stöt, fall och fuktighet under transport. Vid andra förhållanden, kontakta ABB.

Oskyddade bearbetade ytor (axeltappar och flänsar) skal behandlas med rostskyddsmedel. Axeln bör roteras med jämma mellanrum (en gång per kvartal) för att förhindra fett från att trängas bort.

Stilleståndsuppvärmning, om sådan finns installerad, rekommenderas för att undvika kondensvatten i motorn.

Motorn får inte utsättas för externa vibrationer vid stillastående, för att undvika skador på lagren.

Motorer utrustade med rullager och/eller vinkelkontaktlager ska vara försedda med transportlåsning av rotorn under transport.
3.3 Lyft

Alla ABB-motorer över 25 kg är utrustade med lyftöglor.

Bbara motorns huvudlyftöglor ska användas för lyft av motorn. De får inte användas för att lyfta motorn när denna är fäst vid annan utrustning.

Lyftöglor för hjälputrustning (t.ex. bromsar, separata kylfläktar) eller uttagslådor får inte användas för lyft av motorn. Motorns tyngdpunkt kan, trots samma storlek, variera beroende på effekt, monteringssätt och hjälputrustning.

Skadade lyftöglor får inte användas. Kontrollera att lyftöglorna på motorstativet är oskadade före lyft.

Lyftöglorna måste vara väl åtdragna före lyft. Vid behov kan lyftöglornas lägen justeras med hjälp av brickor.

Kontrollera att korrekt lyftutrustning används och att krokarnas storlek är anpassad till lyftöglorna.

Var noga med att inte skada hjälputrustning och kablar som är anslutna till motorn.

Avlägsna eventuella transportjiggar som fäster motorn till pallen.

Specifika lyftanvisningar är tillgängliga från ABB.

WARNING

Under lyftning, montering eller underhåll måste samtliga säkerhetsöverväganden göras och särskilt uppmärksamhet ägnas åt att se till att ingen utsätts för den lyfta lasten.

3.4 Motorns vikt

Motorns totala vikt kan variera inom samma storlek (axelhöjd) beroende på motoreffekt, monteringssätt och hjälputrustning.

Följande tabell visar uppskattade maximala vikter för maskiner i standardutförande, som en funktion av materialet i statorhuset.

Tabell 3.1: Minsta tvärsnittsarea för skyddsledare

<table>
<thead>
<tr>
<th>Storlek</th>
<th>Aluminium, vikt i kg</th>
<th>Gjutjärn, vikt i kg</th>
<th>Tillägg för broms</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>4,5</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>63</td>
<td>6</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>71</td>
<td>8</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>80</td>
<td>14</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>90</td>
<td>20</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>32</td>
<td>40</td>
<td>16</td>
</tr>
<tr>
<td>112</td>
<td>36</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>132</td>
<td>93</td>
<td>90</td>
<td>30</td>
</tr>
<tr>
<td>160</td>
<td>149</td>
<td>130</td>
<td>30</td>
</tr>
<tr>
<td>180</td>
<td>162</td>
<td>190</td>
<td>45</td>
</tr>
<tr>
<td>200</td>
<td>245</td>
<td>275</td>
<td>55</td>
</tr>
<tr>
<td>225</td>
<td>300</td>
<td>360</td>
<td>75</td>
</tr>
<tr>
<td>250</td>
<td>386</td>
<td>405</td>
<td>75</td>
</tr>
<tr>
<td>280</td>
<td>425</td>
<td>800</td>
<td>–</td>
</tr>
<tr>
<td>315</td>
<td>–</td>
<td>1 700</td>
<td>–</td>
</tr>
<tr>
<td>355</td>
<td>–</td>
<td>2 700</td>
<td>–</td>
</tr>
<tr>
<td>400</td>
<td>–</td>
<td>3 500</td>
<td>–</td>
</tr>
<tr>
<td>450</td>
<td>–</td>
<td>4 500</td>
<td>–</td>
</tr>
<tr>
<td>5000</td>
<td>–</td>
<td>2 800</td>
<td>–</td>
</tr>
</tbody>
</table>

Om motorn är utrustad med en separat fläkt, fråga ABB efter vikt.
4 Installation och driftsättning

4.1 Allmänt

Kontrollera noggrant alla data på motorns märkskylt för att säkerställa att motorskyddet och anslutningar utförs på korrekt sätt.

Smörj med angiven mängd fett när motorn startas första gången eller när den förvarats i mer än sex månader.

Se sektion “7.2.2 Motorer utrustade med återsmörjningsbara lager” för mer information.

När en motor monteras i vertikalt läge med axeln pekande nedåt måste motorn ha ett skyddstak mot fallande föremål och vätskor som annars kan hamna i ventilationsöppningarna. Detta kan även uppnås med ett separat skyddstak som inte är monterat på motorn. I detta fall måste det finnas en varningsmärkning på motorn.

Avlägsna eventuellt transportlåsning. Vrid om möjligt motorns axel för hand för att kontrollera fri rotation.

VARNING
Axialkraften på motorer med vinkelkontaktlager får inte under några omständigheter ändra riktning.

Lagertyperna anges på märkskylten.

4.2 Motorer med annat än kullager med djupa spår

Avlägsna eventuellt transportlåsning. Vrid om möjligt motorns axel för hand för att kontrollera fri rotation.

Motorer utrustade med rullager:
Om motorn körs utan radiell belastning på axeln kan rullagret skadas på grund av "glidande".

Motorer utrustade med vinkelkontaktlager:
Om motorn körs utan axiell kraft applikerad i rätt riktning i förhållande till axeln kan vinkelkontaktlagret skadas.
4.3 Kontroll av isolationsresistansen

Mät isolationsresistans (IR) före driftsättning, efter långa förvarings- eller avbrottsperioder när det kan finnas fukt på lindningarna. IR ska mätas direkt på motorkontakterna med matningskablarna frånkopplade så att de inte påverkar resultatet.

Isolationsresistans kan användas som en trendindikator för att fastställa förändringar i isolationsystemet. nya maskiner är IR vanligtvis tusentals Mohm och därmed är förändring av IR viktigt för att mäta isolationssystemets tillstånd. IR ska typiskt sett inte vara under 10 MΩ, och det ska aldrig vara under 1 MΩ (mäts med 500 eller 1 000 VDC och korrigeras till 25 °C). Isolationsresistansens värde halveras för var 20 °C höjning av temperaturen.

Figur 1 i kapitel 11 kan användas för isolationskorrigering till önskad temperatur.

VARING

För att undvika risker för elektriska stötar måste motorhöljet vara jordat och lindningarna laddas ur mot höljet omedelbart efter varje mätning.

Om referensresistansen inte kan uppnås är lindningen för fuktig och måste torkas i ugn. Ugnstemperaturen ska vara 90 °C under 12–16 timmar, följt av 105 °C under 6–8 timmar.

Om det finns pluggar i dräneringshålen måste dessa tas ur och stängningsventiler, om sådana finns, måste vara öppna under uppvärmningen. Kom ihåg att sätta tillbaka pluggarna efter värmningen. Även om dräneringspluggar finns rekommenderas att lagersköldarnas och uttagslådans lock avmonteras före värmningen. Lindningar som dränkts in med havsvatten måste normalt omlindas.

4.4 Fundament

Slutanvändaren ansvarar för utförandet av fundamentet.

Fundament av metall ska vara målade för att förhindra korrosion.

Fundamenten ska vara plana och tillräckligt stabila för att motstå kortslutningskrafterna. De ska vara utformade och dimensionerade så att vibrationer inte överförs till motorn och så att vibrationer inte uppstår på grund av egenresonans. Se nedanstående figur.

Ob/G Hojddifferensen får inte överstiga ±0,1mm mellan något av fotlägena.
4.5 Balansering och montering av kopplingshalvor och remskivor

Kopplingshalvor och remskivor ska monteras på axeln med hjälp av lämplig utrustning och verktyg som inte skadar lagren och tätningarna. Monterar aldrig en kopplingshalva eller remskiva genom att slå på den och demontera den aldrig genom att ta spjärn mot motorn och bryta.

4.6 Montering och uppriktning av motorn

Korrekta uppriktningen krävs så att lagerhaverier, vibrationer och axeltappsbröt undviks.

Montera motorn på fundamentet med lämpliga bultar eller klotsar och placera mellanläggsplåtar mellan fundamentet och foten.

Rikta upp motorn med lämplig metod.

Borra styrhål och fåst styrpinnarna på plats om det behövs.

Krav på kopplingshalvans monteringsnoggrannhet: kontrollera att frigången b är mindre än 0,05 mm och att skillnaden mellan a1 och a2 också är mindre än 0,05 mm. Se figur 2.

Kontrollera uppriktningen på nytt efter en sista åtdragning av bultar eller klotsar.

Överskrid inte lagrens tillåtna belastningar som finns angivna i produktkatalogerna.

Kontrollera att motorn får tillräckligt med kylluft. Säkerställ att ingen angränsande utrustning eller direkt solljus strålar ytterligare värme mot motorn.

Se till att konstruktionen tillåter tillräckligt luftflöde på utsidan av flänsen för motorer med flänsmontering (t.ex. B5, B35, V1).

4.7 Radialkrafter och remdrift

Spänn remmarna enligt anvisningarna från leverantören av den drivna utrustningen. Överskrid dock inte maximal remkraft (tillåten radiell kraft på lagret) angiven i tillämplig produkttkatalog.

WARNING

För hög remspänning skadar lagren och kan förorsaka axelskador.
4.8 Motorer med dräneringspluggar för kondensvatten

Kontrollera att dräneringshål och pluggar är riktade nedåt. För vertikalt monterade motorer kan pluggarna vara i horisontellt läge.

Motorer med förseglingsbara dräneringspluggar levereras i öppet läge. I extremt dammiga miljöer ska alla dräneringshål vara stängda.

4.9 Kablage och elanslutningar

Uttagslådan till en enhastighetsmotor av standardtyp innehåller normalt sex lindningsuttag och minst ett jordat uttag.

Förutom uttag för huvudlindning och jord kan uttagslådan också innehålla uttag för termistorer, värmeelement eller andra hjälpmedel.

Lämpliga kabelskor måste användas för anslutning av samtliga huvudkablar. Kablar för hjälpmedel kan anslutas som de är till respektive plint.

Certifierad ledningsnav eller kabelkонтактдона ska användas vid installationen.

VARNING

Kablarna ska ha mekaniskt skydd och ska vara fastklämda nära uttagslådan för att uppfylla tillåtna krav i IEC/EN 60079-0 och lokala installationsföreskrifter.

Kabelförskruvningar som inte används försluts med skyddsproppar i enlighet med uttagslådans IP-klass.

Kapslingsklass och diameter anges i de dokument som medföljer kabelförskruvningen.

Tabell 4,1: Minsta tvärsnittsarea för skyddsledare

<table>
<thead>
<tr>
<th>Tvärsnittsarea för installationens fasledare, S, [mm²]</th>
<th>Minsta tvärsnittsarea för motsvarande skyddsledare, S, [mm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>35</td>
<td>25</td>
</tr>
<tr>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>70</td>
<td>35</td>
</tr>
<tr>
<td>95</td>
<td>50</td>
</tr>
<tr>
<td>120</td>
<td>70</td>
</tr>
<tr>
<td>150</td>
<td>70</td>
</tr>
<tr>
<td>185</td>
<td>95</td>
</tr>
<tr>
<td>240</td>
<td>120</td>
</tr>
<tr>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td>400</td>
<td>185</td>
</tr>
</tbody>
</table>

Dessutom måste jordnings- och förbindningsan- slutningar utanför den elektriska apparaturen ge effektiv anslutning för en ledare med en tvärsnittsarea på minst 4 mm².

Kabelanslutningen mellan nätet och motoranslutningarna ska uppfylla kraven i nationella installationsstandarder eller i standarden IEC/EN 602041 för den märkström som anges märkssyft.

Motorn ska anslutas till jord enligt gällande bestämmelser innan den ansluts till nätet.
När omgivningstemperaturen overstiger +50 °C ska som minst kablar med en tillåten arbetstemperatur på +90 °C användas. Dessutom ska övriga omvandlingsfaktorer beroende på installationsförhållanden beaktas när kablarna dimensioneras.

Se till att motorns kapsling motsvarar aktuell miljö och rådande väderförhållanden. Se till exempel till att vatten inte kan komma in i motorn eller uttagslådorna.

Tätningarna för uttagslådorna måste placeras på rätt sätt i de förberedda skårorna för att garantera korrekt IP-klass. Ett läckage kan leda till att damm eller vatten träger in, vilket innebär risk för överslag i spänningsförande delar.

4.9.1 Anslutningar för olika startmetoder
Uttagslådan till en enhastighetsmotor av standardtyp innehåller normalt sex lindningsuttag och minst ett jordat uttag. Detta möjliggör användning av direktstart (DOL) eller Y/D-start.

För tvåhastighetsmotorer och specialmotorer måste anslutningen till nätet göras enligt anvisningarna i uttagslådan eller motorhandboken.

Spänning och anslutning framgår av märkskylten.

Direktstart (DOL):
Y- eller D-lindningsanslutningar kan användas.
690 VY, 400 VD indikerar t.ex. Y-anslutning för 690 V och D-anslutning för 400 V.

Y/D-start:
Motorns nätspänning måste vara lika med märkspännningen för motorn när en D-koppling används.

Alla kopplingslänkar ska tas bort från plinten.

Andra startmetoder och svårare startförhållanden:
När andra startmetoder, t.ex. omriktare eller mjukstartare, ska användas i drifttyperna S1 och S2 anses enheten vara “isolerad från kraftsystemet när den elektriska maskinen körs” enligt standarden IEC 60079-0 och överhettningsskydd är valfritt.

4.9.2 Anslutning av hjälpfunktionsutrustning
Om en motor är utrustad med termistorer eller andra motståndstemperaturgivare (Pt100, termiska reléer, osv.) och hjälpenheter måste de användas och anslutas på lämpligt sätt. För vissa applikationer måste överhettningsskydd användas. Mer utförlig information finns i dokumentationen som levereras med motorn. Anslutningschematic för hjälpfunktioner och uttag finns i uttagslådan.

Maximal mätspänning för termistorerna är 2,5 V. Maximal mätström för Pt100 är 5 mA. Om högre mätspänning eller mätström används kan avläsningar fel eller skador på temperaturdetektorn uppstå.

Isoleringen av termiska givare uppfyller kraven för grundläggande isolering.

4.10 Uttag och rotationsriktning

Om nätfaserna – L1, L2 och L3 – ligger anslutna till uttagen enligt figur 3 roterar axeln medurs sett mot axeländen på drivsidan.

Låt två av matningskablarna byta plats om rotationsriktningen ska ändras.

Om motorn har en rotationsberoende fläkt ska rotationsriktningen överensstämma med pilen på motorn.
5 drift

5.1 Allmänt

Motorerna är avsedda att användas under följande förhållanden såvida inget annat anges på märksskylten.

- Motorerna är enbart avsedda för fast installation.
- Gränserna för normal omgivningstemperatur är –20 °C till +40 °C.
- Maximal höjd över havet är 1 000 m.
- Nätspänningsens och frekvensens variation får inte överstiga de gränser som anges i relevanta standarder. Tolerans för nätspänningen är ±5 % och för frekvens ±2 % i enlighet med figur 4 (EN/IEC 60034-1, paragraf 7.3, zon A). Båda extremvärdena är inte tänkta att inträffa samtidigt.

Motorn får endast användas i tillämpningar som den är avsedd för. Märkdata och driftsförhållanden visas på motorns märksskyltar. Dessutom måste alla krav som anges i denna handbok och övriga tillhörande instruktioner och standarder följas.

Om dessa gränser överskrids ska motor- och konstruktionsdata kontrolleras. Kontakta ABB för ytterligare information.

WARNING

Att ignorera instruktioner eller underhåll av apparaten kan innebära en säkerhetsrisk och att motorn inte kan användas.
6 Lågspänningsmotorer vid omriktarmatning

6.1 Inledning

6.2 Lindningsisolering

Omrriktarmatning skapar högre spänningsstress än den sinusformade matningen på motorns lindningar. Därför ska motorns lindningsisolation samt filtret på omriktarutgången dimensioneras enligt följande anvisningar.

6.2.1 Val av lindningsisolering för ABB-omriktare

För enkeldrift med en diodmatningsenhet med exempelvis ABB-serierna AC_8__ och AC_5__ (okontrollerad DC-spänning) kan valet av lindningsisolation och filter göras enligt tabell 6.1.

6.2.2 Val av lindningsisolering med alla andra omriktare

Spänningsstressen måste begränsas under de accepterade gränserna. Kontakta systemleverantören för att säkerställa tillämpningens säkerhet. Påverkan av möjliga filter ska beaktas när motorn dimensioneras

6.3 Överhettningsskydd

De flesta motorer täcks som täcks av den här handboken är utrustade med PTC-termistorer eller andra typer av RTD:er i statorlindningarna. Det rekommenderas att man ansluter dessa till frekvensomriktaren. Läs mer i kapitel 4.9.2.
6.4 Lagerström

Isolerade lager eller lagerkonstruktioner, CM-filter (common mode) samt lämpliga kabeldragnings- och jordningsmetoder ska användas i enlighet med följande instruktioner och tabell 6.1.

Tabell 6.1 Val av lindningsisolering för ABB-omriktare

<table>
<thead>
<tr>
<th>$P_n < 100 \text{ kW}$</th>
<th>$P_n \geq 100 \text{ kW}$ eller $\text{IEC315} \leq \text{Stomstorlek} \leq \text{IEC355}$</th>
<th>$P_n \geq 350 \text{ kW}$ eller $\text{IEC400} \leq \text{Stomstorlek} \leq \text{IEC450}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U_n \leq 500 \text{ V}$</td>
<td>Standardmotor + Isolerat N-lager</td>
<td>Standardmotor + Isolerat N-lager + CM-filter</td>
</tr>
<tr>
<td>$500 \text{ V} > U_n \leq 600 \text{ V}$</td>
<td>Standardmotor + $\text{dU}/\text{dt} – \text{filter (reaktor)}$ ELLER Förstärkt isolation</td>
<td>Standardmotor + Isolerat N-lager + CM-filter ELLER Förstärkt isolation + Isolerat N-lager</td>
</tr>
<tr>
<td>$500 \text{ V} > U_n \leq 600 \text{ V}$ (kabellängd > 150 m)</td>
<td>Standardmotor + Isolerat N-lager</td>
<td>Standardmotor + Isolerat N-lager + CM-filter</td>
</tr>
<tr>
<td>$600 \text{ V} > U_n \leq 690 \text{ V}$</td>
<td>Förstärkt isolation + $\text{dU}/\text{dt} – \text{filter (reaktor)}$ ELLER Förstärkt isolation + Isolerat N-lager ELLER Förstärkt isolation + Isolerat N-lager + CM-filter</td>
<td></td>
</tr>
<tr>
<td>$600 \text{ V} > U_n \leq 690 \text{ V}$ (kabellängd > 150 m)</td>
<td>Förstärkt isolation + Isolerat N-lager</td>
<td>Förstärkt isolation + Isolerat N-lager + CM-filter</td>
</tr>
</tbody>
</table>

6.4.1 Eliminering av lagerströmmar med ABB-omriktare

Om ABB-frekvensomriktare med diodmatningsenhet används, som exempelvis serierna AC_8_ _ och AC_5_ _, ska metoderna enligt tabell 6.1 användas för att undvika skadliga lagerströmmar i motorerna.

6.4.2 Eliminering av lagerströmmar med alla andra omriktare

Användaren ansvarar för att skydda motorn och utrustningen som körs från skadliga lagerströmmar. Anvisningarna som beskrivs i kapitel 6.4.1 kan användas som riktlinje, men deras effektivitet kan inte garanteras i alla situationer.
6.5 Kabelanslutningar, jordning och EMC

För att ge korrekt jordningsskydd och för överensstämmelse med gällande EMC-krav, ska motorer över 30 kW anslutas med skärmade symmetriska kablar och EMC-kabelförskruvningar, d.v.s. kabelförskruvningar som ger 360° förbindning.

Symmetriska och skärmade kablar rekommenderas även för mindre motorer. Utför 360°-jordningen vid alla kabelingångar enligt beskrivningen i anvisningarna för kabelförskruvningarna. Tvinn kabelskärmarna till buntar och anslut till närmaste jordningsterminal/samlingsskena i uttagslådan, frekvensomriktarskåpet eller liknande.

Mer information om jordning och ledningsanslutning för motorer med omriktarmatning finns i manuken "Grounding and cabling of the drive system" (Kod: 3AFY 61201998).

Lämpliga kabelförskruvningar som ger 360° förbindning måste användas vid alla termineringspunkter, såsom vid motor, omriktare, ev. säkerhetsbrytare, m.m.

6.6 Driftvarvtal

För varvtal högre än den nominella hastigheten som anges på motorns märkspinet eller i respektive produktdokumentation ska man säkerställa att den högsta tillåtna rotationshastigheten för motorn, eller den kritiska hastigheten för hela applikationen, inte överskrids.

6.7 Motorer i tillämpningar med omriktarmatning

6.7.1 Allmänt

För applikationer som matas av andra omriktare måste motorerna dimensioneras manuellt. För mer information, kontakta ABB.

Belastbarhetskurvorna (eller lastkapacitetskryvor) baseras på nominell matningsspänning. Drift i tillstånd med under- eller överspänning kan påverka applikationens prestanda.

6.7.2 Motorns belastbarhet med AC_8__-serien omriktare med DTC-styrning

6.7.3 Motorns belastbarhet med AC₅₉-sserien omriktare
Belastbarhetskurvor i figurererna 6a-6d gäller för ABB AC₅₉-sserien omriktare. Figurerna anger maximalt tillåtet kontinuerligt utmoment som en funktion av matningsfrekvensen. Utmomentet anges som ett procentuellt värde av motorns märkmoment. Värdena är indikativa och exakta värdena är tillgängliga på förfrågan.

Det maximala varvtalet för motorn och applikationen får inte överskridas!

6.7.4 Motorns belastbarhet med omriktare av PWM-typ med andra spänningskällor
För andra omriktare, med okontrollerad DC-spänning och lägsta omkopplingsfrekvens på 3 kHz (200...500 V), kan dimensioneringsanvisningarna som nämns i kapitel 6.7 användas som riktlinjer. Det ska dock noteras att den faktiska termiska belastbarheten också kan vara lägre. Kontakta tillverkaren av omriktaren eller systemleverantören.

Den faktiska termiska belastbarheten för en motor kan också vara lägre än vad som anges i riktlinjernas kurvor.

6.7.5 Kortvarig överbelastning
ABB-motorer kan oftast tillfälligt överbelastas i intermittent drift. Den enklaste dimensioneringsmetoden för sådana applikationer är att använda verktyget DriveSize.

6.8 Märkskyltar

Användningen av ABB:s motorer med omriktarmatning kräver oftast inte ytterligare märkskyltar. Parametrarna som krävs för driftsättning av omriktaren finns på huvudmärkskylten. I vissa specialtillämpningar kan motorerna dock utrustas med ytterligare märkskyltar för tillämpning med omriktarmatning.

Dessa innehåller följande information:
• varvtalsområde
• kraftområde
• spännings- och strörområde
• typ av moment (konstant eller kvadratisk)
• och omriktartyp och minsta kopplingsfrekvens som krävs.

6.9 Driftsättning av tillämpning med omriktarmatning

Driftsättning av omriktarmatningen måste ske i enlighet med anvisningarna för frekvensomriktaren samt gällande lagar och föreskrifter. Hänsyn måste även tas till de krav och gränser som ställs av tillämpningen.

Alla parametrarna som krävs för att konfigurera omriktaren finns på motormärkskyltar. De parametrar som oftast behövs är:
• nominell spännning
• nominell ström
• nominell frekvens
• nominellt varvtal
• nominell kraft

Om information saknas eller är felaktig ska motorn inte användas förrän korrekta inställningar gjorts!

ABB rekommenderar att omriktarens alla lämpliga skyddsfunktioner används för att förbättra tillämpningens säkerhet. Omriktare har oftast följande funktioner (namn och tillgänglighet av funktion beror på omriktarens tillverkare och modell):
• lägsta varvtal
• högsta varvtal
• accelerations- och retardationstider
• högsta strömstyrka
• högsta moment
• skydd mot fastlåsning
7 Underhåll

7.1 Allmän inspektion

1. Inspektera motorn regelbundet, minst en gång om året. Vilket kontrollintervall som behövs beror b.l.a. på fukthalten i den omgivande luften och lokala väderförhållanden. Intervallet skall bestämmas experimentellt, varefter det ska följas strikt.

2. Håll motorn ren och se till att ventilationsluften kan strömma fritt. Om motorn används i dammig miljö skall ventilationssystemet regelbundet kontrolleras och rengöras.

Om försiktighetsskador upptäcks ska motorn demonteras och alla delar kontrolleras och vid behov ersättas. När lagren byts måste ersättningslagren vara av samma typ som originallagren. Vid byte av axeltätningar måste dessa ersättas med tätningar av samma kvalitet och med samma egenskaper som originalen.

Om en IP 55-motor som har levererats med stängd dräneringsplugg bör pluggen öppnas regelbundet så att kondensvatten kan rinna ut ur motorn och inte bli kvar. Motorn ska vara avstängd och ha gjorts arbetssäker innan detta utförs.

7.1.1 Standby-läge

Om en motor står i standby-läge en längre tid på ett fartyg eller i någon annan vibrierande miljö måste följande åtgärder vidtas:

1. Axeln måste roteras minst varannan vecka (ska rapporteras) genom att systemet startas. Om start av någon anledning inte är möjlig måste axeln roteras för hand så att dess position ändras minst en gång i veckan. Vibrationer från utrustning i omgivningen orsakar ytutmattning på lagren, vilket måste minimeras genom regelbunden drift eller rotation för hand.

2. Lagret måste smörjas medan axeln roteras varje år (ska rapporteras). Om motorn har ett rullager i den drivande änden ska transportläset tas bort innan axeln roteras. Transportläset ska sättas tillbaka vid transport.

7.2 Smörjning

VARNING
Se upp för roterande delar!

VARNING
Fett kan förorsaka hudirritation och ögoninflammation. Följ alla säkerhetsföreskrifter som angivts av fettleverantören.

Lagertyper finns angivna i respektive produktkatalog samt på märkskylten för alla motorer utom de minsta storlekarna.

Tillförlitligheten kommer i första hand vid val av lagersmörjningsintervall. ABB tillämpar L1-principen (d.v.s. att 99 % av motorerna ska klara livslängden) för smörjning.

7.2.1 Motorer med permanentsmorda lager
Lagren är normalt permanentsmorda lager typ 1Z, 2Z, 2RS eller motsvarande.

Som riktvärde gäller att tillräcklig smörjning för storlekar upp till 250 kan uppnås under följande tid, enligt \(L_{10} \). Kontakta ABB vid drift i högre omgivningstemperaturer. Formel för att grovt ändra \(L_{1} \)-värdena till \(L_{10} \)-värden: \(L_{10} = 2,0 \times L_{1} \).

Driftstimmar för permanentsmorda lager vid omgivningstemperaturerna 25 och 40 °C är:

<table>
<thead>
<tr>
<th>Storlek</th>
<th>Poler</th>
<th>Driftstimmar vid 25 °C</th>
<th>Driftstimmar vid 40 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>2</td>
<td>52 000</td>
<td>33 000</td>
</tr>
<tr>
<td>56</td>
<td>4-8</td>
<td>65 000</td>
<td>41 000</td>
</tr>
<tr>
<td>63</td>
<td>2</td>
<td>49 000</td>
<td>31 000</td>
</tr>
<tr>
<td>63</td>
<td>4-8</td>
<td>63 000</td>
<td>40 000</td>
</tr>
<tr>
<td>71</td>
<td>2</td>
<td>67 000</td>
<td>42 000</td>
</tr>
<tr>
<td>71</td>
<td>4-8</td>
<td>100 000</td>
<td>56 000</td>
</tr>
<tr>
<td>80-90</td>
<td>2</td>
<td>100 000</td>
<td>65 000</td>
</tr>
<tr>
<td>80-90</td>
<td>4-8</td>
<td>100 000</td>
<td>96 000</td>
</tr>
<tr>
<td>100-112</td>
<td>2</td>
<td>89 000</td>
<td>56 000</td>
</tr>
<tr>
<td>100-112</td>
<td>4-8</td>
<td>100 000</td>
<td>89 000</td>
</tr>
<tr>
<td>132</td>
<td>2</td>
<td>67 000</td>
<td>42 000</td>
</tr>
<tr>
<td>132</td>
<td>4-8</td>
<td>100 000</td>
<td>77 000</td>
</tr>
<tr>
<td>160</td>
<td>2</td>
<td>60 000</td>
<td>38 000</td>
</tr>
<tr>
<td>160</td>
<td>4-8</td>
<td>100 000</td>
<td>74 000</td>
</tr>
<tr>
<td>180</td>
<td>2</td>
<td>55 000</td>
<td>34 000</td>
</tr>
<tr>
<td>180</td>
<td>4-8</td>
<td>100 000</td>
<td>70 000</td>
</tr>
<tr>
<td>200</td>
<td>2</td>
<td>41 000</td>
<td>25 000</td>
</tr>
<tr>
<td>200</td>
<td>4-8</td>
<td>95 000</td>
<td>60 000</td>
</tr>
<tr>
<td>225</td>
<td>2</td>
<td>36 000</td>
<td>23 000</td>
</tr>
<tr>
<td>225</td>
<td>4-8</td>
<td>88 000</td>
<td>56 000</td>
</tr>
<tr>
<td>250</td>
<td>2</td>
<td>31 000</td>
<td>20 000</td>
</tr>
<tr>
<td>250</td>
<td>4-8</td>
<td>80 000</td>
<td>50 000</td>
</tr>
</tbody>
</table>

Data gäller upp till 60 Hz.

7.2.2 Motorer med smörjnipplar

Informationsskylt för smörjning och allmänna smörjningsråd

Om motorn har en informationsskylt för smörjning ska den följas.

Smörjintervall beroende på montering, omgivningstemperatur och varvtal anges på smörjinformationsskylten.

Vid första start eller efter en lagersmörjning kan en tillfällig temperaturhöjning uppstå under circa 10 till 20 timmar.

En del motorer kan vara försedda med en uppsamlare för gammalt fett. Följ i så fall de särskilda instruktionerna för denna utrustning.

A. Manuell smörjning

Smörjning vid roterande motor

- Ta bort fettutloppspluggen eller öppna stängningsventilen, om sådan finns.
- Se till att smörjkanalen är öppen.
- Tryck i angiven mängd fett i lagret.
- Låt motorn gå i 1-2 timmar tills allt överskottsfett garanterat har trängt ut ur lagret. Stäng fettutloppspluggen eller stängningsventilen om sådan finns.

Smörjning när motorn står stilla

Om det inte är möjligt att smörja lagren medan motorn arbetar kan de istället smörjas under stillestånd.

- Använd i så fall endast halva fettmängden och låt därefter motorn gå några minuter med maximalt varvtal.
- Tryck in resten av angiven mängd fett i lagret när motorn har stannat.
- Stäng fettutloppspluggen eller stängningsventilen, om sådan finns, efter 1-2 timmars körning.

B. Automatisk smörjning

Vid automatisk smörjning ska fettutloppspuggen avlägsnas permanent och en ev. stängningsventil ska vara öppen.

ABB rekommenderar endast användning av elektromekaniska system.

De fettmängder per smörjintervall som anges i tabellen ska multipliceras med tre om centralsmörjsystem används. När en mindre automatisk smörjenhet (en eller två patroner per motor) används gäller den normala fettmängden.
Om tvåpoliga motorer smörjs automatiskt ska fettrekommendationerna för tvåpoliga motorer i kapitlet Smörjmeddel följas.
Smörjmedlet ska vara lämpligt för automatisk smörjning. Följ rekommendationerna från leverantören av det automatiska smörjsystemet och fetttillverkaren.

Räkneexempel för mängd smörjmedel för ett automatiskt smörjsystem

Centralsmörjsystem: Motor IEC M3_P 315_4-polig

- i 50 Hz-nät, smörjintervall enligt tabellen är 7 600 h/55 g (DE) och 7 600 h/40g (NDE): (DE) RLI = 55 g/7600 h*3*24 = 0,52 g/dag
- (NDE) RLI = 40 g/7600 h*24 = 0,13 g/dag

Räkneexempel för fettmängd för en enkel automatisk smörjenhet (patron)

- (DE) RLI = 55 g/7600 h*24 = 0,17 g/dag
- (NDE) RLI = 40 g/7600 h*24 = 0,13 g/dag

RLI = smörjintervall, DE = drivande ände, NDE = icke-drivande ände

Tabell 7.2

<table>
<thead>
<tr>
<th>Kullager, smörjintervall i driftstimmar</th>
<th>Mängd fetten g/lager</th>
<th>kW 3600 r/min</th>
<th>kW 3000 r/min</th>
<th>kW 1800 r/min</th>
<th>kW 1500 r/min</th>
<th>kW 1000 r/min</th>
<th>kW 500-900 r/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>112 - 10 all</td>
<td>10 000</td>
<td>13 000</td>
<td>18 000</td>
<td>25 000</td>
<td>28 000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>132 - 15 all</td>
<td>9 000</td>
<td>11 000</td>
<td>17 000</td>
<td>23 000</td>
<td>26 500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160 - 16 all</td>
<td>9 000</td>
<td>12 000</td>
<td>18 000</td>
<td>24 000</td>
<td>24 000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160 - 16 all</td>
<td>> 18,5</td>
<td>7 500</td>
<td>> 15 15 500</td>
<td>14 000</td>
<td>24 000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180 - 16 all</td>
<td>30</td>
<td>7 000</td>
<td>9 000</td>
<td>15 500</td>
<td>24 000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180 - 16 all</td>
<td>> 22</td>
<td>6 000</td>
<td>8 500</td>
<td>14 000</td>
<td>24 000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 - 16 all</td>
<td>40</td>
<td>3 500</td>
<td>5 000</td>
<td>14 000</td>
<td>24 000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 - 16 all</td>
<td>> 37</td>
<td>3 000</td>
<td>4 500</td>
<td>14 000</td>
<td>24 000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225 - 16 all</td>
<td>50</td>
<td>4 000</td>
<td>6 500</td>
<td>16 000</td>
<td>24 000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225 - 16 all</td>
<td>> 45</td>
<td>1 500</td>
<td>2 500</td>
<td>16 000</td>
<td>24 000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250 - 16 all</td>
<td>60</td>
<td>2 500</td>
<td>4 000</td>
<td>9 000</td>
<td>18 000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250 - 16 all</td>
<td>> 55</td>
<td>1 000</td>
<td>1 500</td>
<td>3 500</td>
<td>7 000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>280 - 16 all</td>
<td>60</td>
<td>2 000</td>
<td>3 500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>280 - 16 all</td>
<td>> 60</td>
<td>8 000</td>
<td>10 500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>280 - 16 all</td>
<td>35</td>
<td>1 900</td>
<td>3 200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>280 - 16 all</td>
<td>> 35</td>
<td>7 800</td>
<td>9 600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>315 - 16 all</td>
<td>35</td>
<td>1 900</td>
<td>3 200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>315 - 16 all</td>
<td>> 35</td>
<td>5 900</td>
<td>7 600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>355 - 16 all</td>
<td>35</td>
<td>1 900</td>
<td>3 200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>355 - 16 all</td>
<td>> 35</td>
<td>4 000</td>
<td>5 600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400 - 16 all</td>
<td>40</td>
<td>1 500</td>
<td>2 700</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400 - 16 all</td>
<td>> 40</td>
<td>3 200</td>
<td>4 700</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>450 - 16 all</td>
<td>40</td>
<td>1 500</td>
<td>2 700</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>450 - 16 all</td>
<td>> 45</td>
<td>2 500</td>
<td>3 900</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500 - 16 all</td>
<td>40</td>
<td>3 000</td>
<td>5 300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500 - 16 all</td>
<td>> 40</td>
<td>6 400</td>
<td>9 500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5010 - 16 all</td>
<td>40</td>
<td>1 300</td>
<td>2 400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5010 - 16 all</td>
<td>> 40</td>
<td>4 900</td>
<td>7 200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5012 - 16 all</td>
<td>85</td>
<td>2 700</td>
<td>3 900</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.2.3 Smörjintervall och fettmängder

Smörjintervallerna baseras på en driftstemperatur för lagret på 80 °C (omgivningstemperatur cirka +25 °C).

WARNING

En ökning av omgivningstemperaturen medför en motsvarande ökning av lagertemperaturen. Intervallvärdena i tabellen bör halveras för 15 °C ökning av lagertemperaturen och bör fördobblas för 15 °C minskning av lagertemperaturen.

Högvarvsdifter, t.ex. frekvensomriktardifter, eller lägre varvtal vid stor last kräver kortare smörjintervall.

Den maximala driftstemperaturen för fett och lager, +110 °C, får inte överskridas. Det maximala varvtal motorn är konstruerad för får ej överskridas.
7.2.4 Smörjmedel

VARNING

Blanda inte olika typer av fett. Inkompatibla smörjmedel kan orsaka lagerskador.

När motorerna eftersmörjs ska endast fett med nederstående egenskaper användas:

- högkvalitetsfett baserat på litiumkomplextvål och med mineral- eller PAO-olja
- basoljeviskositet 100–160 cST vid 40 °C
- konsistens enligt NLGI 1,5–3 *)
- temperaturområde –30 °C till +140 °C,
- högkvalitetsfett baserat på litiumkomplextvål

Smörjmedel som innehåller EP-tillsatser rekommenderas generellt sett inte. I vissa fall kan det skada lagren och därför ska dess användning utvärderas från fall till fall tillsammans med smörjmedlens leverantörer.

Följande typer av högprestandafett kan användas:

- **Mobil Unirex N2** eller **N3** (litiumkomplexbas)
- **Mobil Mobilith SHC 100** (litiumkomplexbas)
- **Shell Gadus S5 V 100 2** (litiumkomplexbas)
- **KLüber Klüberplex BEM 41-132** (speciallitiumbaserat)
- **FAG Arcanol TEMP110** (litiumkomplexbas)
- **Lubcon Turmogrease L 802 EP PLUS** (speciallitiumbaserat)
- **Total** **Multis Complex S2 A** (litiumkomplexbas)

Smörjmedel med innehåll av EP-tillsatser rekommenderas generellt sett inte. I vissa fall kan det skada lagren och därför ska dess användning utvärderas från fall till fall tillsammans med smörjmedlens leverantörer.

Följande typer av fett kan användas för högvarviga gjutjärnmotorer, men inte tillsammans med litiumkomplexfett:

- **KLüber Klüber Quiet BQH 72-102** (polyureabaserat)
- **Lubcon Turmogrease PU703** (polyureabaserat)

Om andra smörjmedel används, kontrollera med tillverkaren att kvaliteten motsvarar den hos ovan nämnda smörjmedel. Smörjintervallet gäller för de typer av högprestandafett som anges ovan. Om annat fett används kan intervallen förkortas.

Tabell: Smörjintervall i driftstimmer

<table>
<thead>
<tr>
<th>Stomstørrelse/fett</th>
<th>kW</th>
<th>3600 r/min</th>
<th>3000 r/min</th>
<th>kW</th>
<th>1800 r/min</th>
<th>1500 r/min</th>
<th>kW</th>
<th>1000 r/min</th>
<th>kW</th>
<th>500-900 r/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>160 25 ≤ 18,5</td>
<td>4 500</td>
<td>6 000</td>
<td>≤ 15</td>
<td>9 000</td>
<td>10 500</td>
<td>≤ 11</td>
<td>12 000 alla</td>
<td>12 000 alla</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160 25 > 18,5</td>
<td>3 500</td>
<td>5 000 > 15</td>
<td>7 500</td>
<td>9 000 > 11</td>
<td>11 000 alla</td>
<td>12 000 alla</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180 30 ≤ 22</td>
<td>3 500</td>
<td>4 500 ≤ 22</td>
<td>7 500</td>
<td>9 000 ≤ 15</td>
<td>12 000 alla</td>
<td>12 000 alla</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180 30 > 22</td>
<td>3 000</td>
<td>4 000 > 22</td>
<td>7 000</td>
<td>8 500 > 15</td>
<td>10 500 alla</td>
<td>12 000 alla</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 40 ≤ 37</td>
<td>2 750</td>
<td>4 000 ≤ 30</td>
<td>7 000</td>
<td>8 500 ≤ 22</td>
<td>11 000 alla</td>
<td>12 000 alla</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 40 > 37</td>
<td>1 500</td>
<td>2 500 > 30</td>
<td>5 000</td>
<td>6 000 > 22</td>
<td>8 000 alla</td>
<td>10 000 alla</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>225 50 ≤ 45</td>
<td>2 000</td>
<td>3 000 ≤ 45</td>
<td>6 500</td>
<td>8 000 ≤ 30</td>
<td>11 000 alla</td>
<td>12 000 alla</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>225 50 > 45</td>
<td>750</td>
<td>1 250 > 45</td>
<td>2 500</td>
<td>3 000 > 30</td>
<td>4 000 alla</td>
<td>5 000 alla</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250 60 ≤ 55</td>
<td>1 000</td>
<td>2 000 ≤ 55</td>
<td>4 500</td>
<td>5 500 ≤ 37</td>
<td>7 500 alla</td>
<td>9 000 alla</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250 60 > 55</td>
<td>500</td>
<td>750 > 55</td>
<td>1 500</td>
<td>2 000 > 37</td>
<td>3 000 alla</td>
<td>3 500 alla</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>280 60</td>
<td>alla</td>
<td>1 000</td>
<td>1 750</td>
<td>alla</td>
<td>4 000</td>
<td>5 250</td>
<td>alla</td>
<td>7 000</td>
<td>alla</td>
<td>8 500</td>
</tr>
<tr>
<td>280 35</td>
<td>alla</td>
<td>900</td>
<td>1 600</td>
<td>alla</td>
<td>4 000</td>
<td>5 300</td>
<td>alla</td>
<td>7 000</td>
<td>alla</td>
<td>8 500</td>
</tr>
<tr>
<td>280 40</td>
<td>alla</td>
<td>900</td>
<td>1 600</td>
<td>alla</td>
<td>2 900</td>
<td>3 800</td>
<td>alla</td>
<td>5 900</td>
<td>alla</td>
<td>6 500</td>
</tr>
<tr>
<td>315 35</td>
<td>alla</td>
<td>900</td>
<td>1 600</td>
<td>alla</td>
<td>2 000</td>
<td>2 800</td>
<td>alla</td>
<td>4 800</td>
<td>alla</td>
<td>5 400</td>
</tr>
<tr>
<td>315 55</td>
<td>alla</td>
<td>900</td>
<td>1 600</td>
<td>alla</td>
<td>1 600</td>
<td>2 400</td>
<td>alla</td>
<td>4 300</td>
<td>alla</td>
<td>4 800</td>
</tr>
<tr>
<td>355 35</td>
<td>alla</td>
<td>900</td>
<td>1 600</td>
<td>alla</td>
<td>1 300</td>
<td></td>
<td>alla</td>
<td>4 800</td>
<td>alla</td>
<td>4 400</td>
</tr>
<tr>
<td>355 70</td>
<td>alla</td>
<td>900</td>
<td>1 600</td>
<td>alla</td>
<td>1 300</td>
<td>2 000</td>
<td>alla</td>
<td>3 800</td>
<td>alla</td>
<td>4 400</td>
</tr>
<tr>
<td>400 40</td>
<td>alla</td>
<td>900</td>
<td>1 600</td>
<td>alla</td>
<td>2 700</td>
<td></td>
<td>alla</td>
<td>4 700</td>
<td>alla</td>
<td>9 700</td>
</tr>
<tr>
<td>400 85</td>
<td>alla</td>
<td>900</td>
<td>1 600</td>
<td>alla</td>
<td>3 200</td>
<td>4 700</td>
<td>alla</td>
<td>8 600</td>
<td>alla</td>
<td>9 700</td>
</tr>
<tr>
<td>450 40</td>
<td>alla</td>
<td>900</td>
<td>1 600</td>
<td>alla</td>
<td>2 000</td>
<td></td>
<td>alla</td>
<td>4 700</td>
<td>alla</td>
<td>9 700</td>
</tr>
<tr>
<td>450 85</td>
<td>alla</td>
<td>900</td>
<td>1 600</td>
<td>alla</td>
<td>1 300</td>
<td>2 000</td>
<td>alla</td>
<td>3 800</td>
<td>alla</td>
<td>4 400</td>
</tr>
<tr>
<td>500 85</td>
<td>alla</td>
<td>900</td>
<td>1 600</td>
<td>alla</td>
<td>2 500</td>
<td>3 600</td>
<td>alla</td>
<td>6 600</td>
<td>alla</td>
<td>7 400</td>
</tr>
<tr>
<td>5012 85</td>
<td>alla</td>
<td>900</td>
<td>1 600</td>
<td>alla</td>
<td>1 300</td>
<td>1 900</td>
<td>alla</td>
<td>3 500</td>
<td>alla</td>
<td>4 000</td>
</tr>
</tbody>
</table>

*) M3AA

Om annat fett används kan intervallen förkortas.
8 Eftersäljsupport

8.1 Reservdelar

Reservdelar måste vara originaldelar eller godkända av ABB om inget annat anges.

Vid beställning av reservdelar ska motorns tillverkningsnummer, fullständiga typbeteckning och produktkod enligt märkskylten anges.

8.2 Demontering, montering och omlindning

Omlindning får endast utföras av kvalificerade serviceverkstad.

Rökventilation och andra specialmotorer ska inte lindas om utan att först kontakta ABB.

8.3 Lager

Lager kräver speciell omsorg.

Lager ska demonteras med avdragare och monteras med hjälp av uppvärmning eller specialverktyg.

Lagerbyte beskrivs i detalj i en särskild instruktionsbroschyr som kan rekryteras från ABB.

Alla eventuella anvisningar som sitter på motorn, i form av etiketter eller dylikt, måste följas. Lager-typerna som anges på märkskylten får inte ändras.
9 Miljökrav

De flesta av ABB:s motorer har en ljudtrycksnivå som underskrider 82 dB(A) vid 50 Hz, med tolerans ±3 dB(A).

Värden för specifika motorer kan hittas i motsvarande produktkataloger. Vid 60 Hz sinusmatning ska 50 Hz-värdena i produktkatalogerna ökas med cirka 4 dB(A).

Kontakta ABB för ljudtrycksnivåer vid frekvensomriktarmatning.

Lämpliga tillvägagångssätt ska användas samt lokala föreskrifter och lagstiftning följas när motorer kasseras eller återvinns.
10 Felsökning

Nedanstående instruktioner täcker inte alla detaljer eller varianter för utrustningen och beskriver inte heller alla situationer som kan tänkas uppstå i samband med installation, drift och underhåll. För närmare information, kontakta närmaste ABB-försäljningskontor.

Felsökningsschema för motorer
Motorservice och felsökning ska skötas av kvalificerad personal med ändamålsenlig utrustning.

Tabell 10.1: Felsökning

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>CAUSE</th>
<th>ÅTGÄRD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motorn startar inte</td>
<td>Säkringarna har löst ut</td>
<td>Bytt till säkringar av korrekt typ och utlösningsvärde.</td>
</tr>
<tr>
<td></td>
<td>Överbelastningsutlösning</td>
<td>Kontrollera och återställ överbelastningsskyddet i startapparaten.</td>
</tr>
<tr>
<td></td>
<td>Felaktig matning</td>
<td>Kontrollera att matningen överensstämmer med uppgifterna på motorns märkställe och med driftförhållandena.</td>
</tr>
<tr>
<td></td>
<td>Felaktig matningsanslutning</td>
<td>Kontrollera anslutningarna mot det schema som medföljer motorn.</td>
</tr>
<tr>
<td></td>
<td>Mekaniskt fel</td>
<td>Kontrollera att motorn och den drivna utrustningen roterar fritt. Kontrollera lager och smörjning.</td>
</tr>
<tr>
<td></td>
<td>Kortsluten stator</td>
<td>Kontakta ABB eller Säkerställ att matningen är frånkopplad och att jordning finns, koppla från kablaroch om måt isolationsresistansen.</td>
</tr>
<tr>
<td></td>
<td>Dålig anslutning av statorspole</td>
<td>Känn igen på att säkringarna har löst ut. Motorn måste lindas om. Demontera lagersköldarna och hitta felet.</td>
</tr>
<tr>
<td></td>
<td>Motorn kan vara överbelastad</td>
<td>Minska belastningen.</td>
</tr>
<tr>
<td>Motor fastlagt</td>
<td>En fas kan vara öppen</td>
<td>Kontrollera spänningen på alla faser.</td>
</tr>
<tr>
<td></td>
<td>Fel tillämpning</td>
<td>Ändra typ eller storlek. Kontakta leverantören.</td>
</tr>
<tr>
<td></td>
<td>Överbelastning</td>
<td>Minska belastningen.</td>
</tr>
<tr>
<td></td>
<td>För låg spänning</td>
<td>Kontrollera att matningsspänningen uppfyller kraven enligt märkställen. Kontrollera anslutningen.</td>
</tr>
<tr>
<td></td>
<td>Öppen krets</td>
<td>Säkringar utlösta. Kontrollera överbelastningsrelä, stator och tryckknappar.</td>
</tr>
<tr>
<td>Motorn startar, men retarderar och stannar</td>
<td>Matningsfel</td>
<td>Kontrollera om matningsanslutningarna behöver dras åt. Kontrollera säkringar och manöverorgan.</td>
</tr>
<tr>
<td>Motorn uppnår inte märkvärdalet</td>
<td>Felaktig användning</td>
<td>Kontakta leverantören för anvisning om rätt typ.</td>
</tr>
<tr>
<td></td>
<td>För låg spänning vid motoranslutningarna på grund av spänningsfall i matningsnätet</td>
<td>Använd högre spänning eller transformeranslutningar för att minska belastningen. Kontrollera anslutningarna. Kontrollera att ledarna har rätt dimension.</td>
</tr>
<tr>
<td></td>
<td>För hög startbelastning</td>
<td>Kontrollera att motorn startar utan last.</td>
</tr>
<tr>
<td></td>
<td>Öppen primärkrets</td>
<td>Hitta felet med mätinstrument och reparera.</td>
</tr>
<tr>
<td>PROBLEM</td>
<td>CAUSE</td>
<td>ÅTGÄRD</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>Motorn behöver för lång tid för att accelerera och/eller drar mycket ström</td>
<td>Överbelastning</td>
<td>Minska belastningen.</td>
</tr>
<tr>
<td></td>
<td>Låg spänning vid start</td>
<td>Kontrollera om resistansen är för hög. Kontrollera att rätt kabeldimension används.</td>
</tr>
<tr>
<td></td>
<td>Fel på kortsluten rotor</td>
<td>Byt till en ny rotor.</td>
</tr>
<tr>
<td></td>
<td>För låg matningsspänning</td>
<td>Korrigera matningsspänningsen.</td>
</tr>
<tr>
<td>Fel rotationsriktning</td>
<td>Fel fasföljd</td>
<td>Låt två fasledare byta plats vid motorn eller i gruppcentralen.</td>
</tr>
<tr>
<td>Motorn blir överhettad vid körning</td>
<td>Överbelastning</td>
<td>Minska belastningen.</td>
</tr>
<tr>
<td></td>
<td>Ventilationsöppningarna kan vara igenasatta så att motorn inte får tillräcklig kylning</td>
<td>Öppna ventilationsöppningarna och se till att kyluftens strömförmåga inte är för lägre.</td>
</tr>
<tr>
<td></td>
<td>En fas kan vara öppen</td>
<td>Kontrollera om samtliga ledare och kablar är korrekt anslutna.</td>
</tr>
<tr>
<td></td>
<td>Jordsluten spole</td>
<td>Motorn måste lindas om.</td>
</tr>
<tr>
<td></td>
<td>Öbalanserad uttagsspänning</td>
<td>Kontrollera om det finns felaktiga ledare, anslutningar och transformatorer.</td>
</tr>
<tr>
<td>Motorn vibrerar</td>
<td>Motorn felaktigt uppriktad</td>
<td>Rikta upp motorn.</td>
</tr>
<tr>
<td></td>
<td>Svagt fundament</td>
<td>Förstärk fundamentet.</td>
</tr>
<tr>
<td></td>
<td>Obalanserad koppling</td>
<td>Balansera kopplingen.</td>
</tr>
<tr>
<td></td>
<td>Driven utrustning obalanserad</td>
<td>Balansera den drivna utrustningen.</td>
</tr>
<tr>
<td></td>
<td>Lagerfel</td>
<td>Byt lager.</td>
</tr>
<tr>
<td></td>
<td>Lager ej uppriktad</td>
<td>Reparera motorn</td>
</tr>
<tr>
<td></td>
<td>Balanseringsvikterna har förskjutits</td>
<td>Balansera om motorn.</td>
</tr>
<tr>
<td></td>
<td>Bristande kompatibilitet mellan rotor- och kopplingsbalansering (halv kil – hel kil)</td>
<td>Balansera om kopplingen eller rotorn.</td>
</tr>
<tr>
<td></td>
<td>Flerfasmotor drivs med enfasmatning</td>
<td>Kontrollera om någon krets är öppen.</td>
</tr>
<tr>
<td></td>
<td>För stort ändspel</td>
<td>Justera lager eller sätt in shims.</td>
</tr>
<tr>
<td>Skrapljud</td>
<td>Fläkten i kontakt med lagersköld eller fläktkåpa</td>
<td>Korrigera fläktens montering.</td>
</tr>
<tr>
<td></td>
<td>Motorn lösn på fundamentplattan</td>
<td>Dra åt fästskruvarna.</td>
</tr>
<tr>
<td>Onormalt driftbuller</td>
<td>Öjamt luftgap</td>
<td>Kontrollera och korrigera montering av lagersköldar och lager.</td>
</tr>
<tr>
<td>Rotor obalanserad</td>
<td>Balansera om motorn.</td>
<td></td>
</tr>
<tr>
<td>Överhettad lager</td>
<td>Böjd eller sned axel</td>
<td>Rikta upp eller byt axeln.</td>
</tr>
<tr>
<td></td>
<td>För hög remspänning</td>
<td>Minska remspänningen.</td>
</tr>
<tr>
<td></td>
<td>Remskivan för långt från axelansatsen</td>
<td>För remskivan närmare motorlagret.</td>
</tr>
<tr>
<td></td>
<td>För liten remskivediameter</td>
<td>Använd större remskivor.</td>
</tr>
<tr>
<td></td>
<td>Felaktig uppriktning</td>
<td>Korrigera genom att rikta upp drivsystemet.</td>
</tr>
<tr>
<td></td>
<td>Bristande smörjning</td>
<td>Se till att rätt mängd lagerfett av rätt kvalitet används.</td>
</tr>
<tr>
<td></td>
<td>Fettet eller smörjmedlet förbrukat eller förörent</td>
<td>Avlägsna gammalt fett, tvätta lagret grundligt med fotogen och pressa in nytt fett.</td>
</tr>
<tr>
<td></td>
<td>För mycket smörjmedel</td>
<td>Minska fettmängden: lagret ska inte vara fyllt mer än till hälften.</td>
</tr>
<tr>
<td></td>
<td>Överhettad lager</td>
<td>Kontrollera uppriktningen samt den radiella och axiella belastningen.</td>
</tr>
<tr>
<td>Skadade kular eller löpbanor</td>
<td>Byt lager. Rengör först huset noggrant.</td>
<td></td>
</tr>
</tbody>
</table>
11 Figurer

Figur 1. Diagram som visar isolationsresistansens beroende av temperatur och hur den uppmätta isolationsresistansen korrigeras till temperaturen 40 °C.

Figur 2. Montering av kopplingshalva eller remskiva

Figur 1. Diagram som visar isolationsresistansens beroende av temperaturen och hur den uppmätta isolationsresistansen korrigeras till temperaturen 40 °C.

Figur 2. Montering av kopplingshalva eller remskiva

Figurer

Figur 1. Diagram som visar isolationsresistansens beroende av temperaturen och hur den uppmätta isolationsresistansen korrigeras till temperaturen 40 °C.

Figur 2. Montering av kopplingshalva eller remskiva

Figur 1.

Figur 2.

Förklaringar

1) För att korrigera den uppmätta isolationsresistansen, R_i, till 40 °C ska den multipliceras med temperaturkoefficienten k_{tc}. $R_{40 °C} = R_i \times k_{tc}$.
Figur 3. Anslutning till plint för strömförsörjning

Figur 4. Spännings- och frekvensavvikelse i zon A och B

Figur 3.

Figur 4.

Förklaringar

<table>
<thead>
<tr>
<th></th>
<th>X-axel</th>
<th>Y-axel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>zon A</td>
<td>spänning p.u.</td>
</tr>
<tr>
<td>2</td>
<td>zon B (utanför zon A)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>märkpunkt</td>
<td></td>
</tr>
</tbody>
</table>
Riktlinjer: belastbarhetskurvor för omriktare med DTC-styrning

Figur 5a. Omriktare med DTC-styrning, 50 Hz, temperaturstigning B

Figur 5b. Omriktare med DTC-styrning, 60 Hz, temperaturstigning B

Figur 5c. Omriktare med DTC-styrning, 50 Hz, temperaturstigning F

Figur 5d. Omriktare med DTC-styrning, 60 Hz, temperaturstigning F
Riktlinjer: belastbarhetskurvor för andra spänningskällor av PWM-typ

Figur 6a. Omriktare av PWM-typ med annan spänningskälla, 50 Hz, temperaturstigning B
—
Figur 6b. Omriktare av PWM-typ med annan spänningskälla, 60 Hz, temperaturstigning B
—
Figur 6c. Omriktare av PWM-typ med annan spänningskälla, 50 Hz, temperaturstigning F
—
Figur 6d. Omriktare av PWM-typ med annan spänningskälla, 60 Hz, temperaturstigning F

1) Self ventilated, IEC frame sizes 56-132
2) Separate motor cooling (force ventilated)

Figur 6a.

Figur 6b.

Figur 6c.

Figur 6d.
6.9 Nopeussäädetyn sovelluksen käyttöönotto .. 228

7 Huolto ... 229
 7.1 Yleinen tarkastus ... 229
 7.1.1 Valmiustilassa olevat moottorit 229
 7.2 Voitelu .. 230
 7.2.1 Kestovoidelluilla laakereilla varustetut moottorit 230
 7.2.2 Jälkivoideltavilla laakereilla varustetut moottorit 230
 7.2.3 Voiteluväli ja voiteluainemäärät 231
 7.2.4 Voiteluaineet .. 232

8 Myynnin jälkeinen tuki .. 233
 8.1 Varaosat ... 233
 8.2 Purkaminen, kokoaminen ja uudelleenkäämintä 233
 8.3 Laakerit ... 233

9 Ympäristövaatimukset .. 234

10 Vianmääritys .. 235

11 Kuvat ... 237
1 Johdanto

1.1 Vaatimustenmukaisuusvakuutus

Käyttöönottajan vastuulla on varmistaa, että lopputuote täyttää direktiivin 2006/42/EY (konedirektiivi) vaatimukset, kun moottori asennetaan koneeseen.

1.2 Voimassaolo

Näitä ohjeita koskevat seuraavat ABB:n sähkökonetyyppejä sekä moottorin että generaattorin käytössä:

- sarjat MT*, MXMA,
- IEC-runkokoko 56-500
- NEMA-runkokoko 58*, 50**

Esimerkiksi Ex-moottoreille on erillinen käyttöopas: "Low voltage motors for explosive atmospheres: Installation, operation and maintenance and safety manual (3GZF500730-47)".

Jotkin konetyypit voivat edellyttää lisätietoja käyttötarkoituksen ja/tai rakenteen perusteella.

Seuraaville moottoreille on saatavilla lisäopas:

- rullaratamoottorit
- vesijäädytteiset moottorit
- savukaasujen poistoon tarkoitetut moottorit
- jarrumoottorit
- moottorit ympäristöihin, joissa on korkea lämpötila
- alusten avokannelle tai offshore-yksiköihin
- asennettavat merenkulkusovellusten moottorit
Moottorin saavat asentaa ja sitä saavat käyttää vain pätevät, voimassa olevat turvallisuusvaatimukset tuntevat henkilöt.

Turvalaitteita, jotka ovat tarpeen onnettomuksien estämiseksi asennuksen ja käytön yhteydessä, on käytettävä paikallisten määräysten mukaan.

VAROITUS
Hätäpysäytimet on varustettava uudelleenkäynnistyksen lukituksilla. Hätäpysäytyskseen jälkeen uusi käynnistyskomento voi aktivoitua vasta sen jälkeen, kun uudelleenkäynnistyksen lukitus on tarkoituksella nollattu.

Huomioitavia seikoja:
1. Älä astu moottorin päälle.
2. Moottorin ulkopinta voi olla kuuma normaali- ja erityisesti pysäytyskse
 jälkeen.
3. Tietty moottoriosovellukset voivat edellyttää lisäohjeita (esimerkiksi jos moottori
 toimitetaan yhdessä taajuusmuuttajan kanssa).
4. Varo moottorin pyöriviä osia.
5. Älä avaa liitäntäkoteloihin, kun ne ovat jänniteisissä.

2 Turvallisuustietoja
3 Käsittely

3.1 Vastaanotto

Tarkista heti toimituksen vastaanotettuasi, ettei moottorissa näy ulkoisia vaurioita (tarkista esimerkiksi akselien päät, laipat ja maalipinnat). Jos havaitset vaurioita, ilmoita niistä välittömästi kuljetusliikkeelle.

Tarkista kaikki arvokilven tiedot, erityisesti jännite- ja käämitysliitännät (tähti tai kolmio).

Laakerityypit on mainittu kaikkien moottoreiden arvokilvissä lukuun ottamatta runkokooltaan pienimpää moottoreita.

Jos kyseessä on nopeussäädetty käyttösovellus, tarkista sallittu enimmäiskuormitettavuus moottorin toiseen arvokilpeen merkityn taajuuden mukaan.

3.2 Kuljetus ja varastointi

Suojamattomat koneistetut pinnat (akselien päät ja laipat) on käsitteltävä korroosionestoaineella.

Akselia on suositeltavaa pyörittää säänöllisin väliajoin (kahden viikon välein) käsin, jotta rasvaus säilyy.

On suositeltavaa kytkeä virta mahdollisiin seistäntälämmitysvastuuksiin, jotta kondensaatiolennetetyn kertyminen moottoriin voidaan estää. Pysähdyksissä olevaan moottoriin ei saa kohdistua 0,5 mm/s ylittävää ulkoista tärinää, jotta laakerit eivät vahingoitu.

Moottorit, joissa on rullalaakerit tai viistokuulalaakerit, tulee varastaa lukituksella kuljetuksen ajaksi.

Lisälaitteiden (esimerkiksi jarrujen tai erillisten puhaltimien) tai liitäntäkoteloiden nostosilmukoita ei saa käyttää moottorin nostamiseen. Saman runkoon moottoreilla voi olla eri painopiste, koska niiden nimellisteho, asennustapa ja lisälaitteet voivat vaihdella.

Vahingoittuneita nostosilmukoita ei saa käyttää. Tarkista ennen nostoa, että silmukkapultit tai kiinteät nostosilmukat ovat vahingoittumattomat.

Moottorin kokonaispaino voi vaihdella samassakin runkokoossa (korkeus keskikohdassa) eri nimellistehon, asennustavan ja erilaisten lisävarusteiden takia.

Seuraavassa taulukossa on esitetty eri materiaaleista valmistettujen vakiomallisten koneiden arvioidut enimmäispainot rungon materiaalin funktiona.

Kaikkien ABB:n moottorien todellinen paino, lukuun ottamatta pienimpää runkokojaa (56 ja 63), näkyy arvokilvessä.

VAROITUS

Noston, asennuksen ja kunnossapitotarkastuksen aikana on noudatettava kaikkiä asianmukaisia varotoimenpiteitä ja varottava erityisesti, ettei nostettu kuorma aiheuta kenellekään vaaraa.

3.3 Nostaminen

3.4 Moottorin paino

Jos moottori on varustettu erillisellä puhaltimella, kysy paino ABB:ltä.
4 Asennus ja käyttöönotto

4.1 Yleistä
Kaikki arvokilven arvot on tarkistettava huolellisesti, jotta moottorin suojaus ja kytkentä voidaan tehdä oikein.
Ennen kuin käynnistät moottorin ensimmäisen kerran tai yli 6 kuukauden varastoinnin jälkeen, voitelueen mukaisella voiteluaineen määrällä.
Lisätietoja on kohdassa 7.2.2, Jälkivoideltavilla laakereilla varustetut moottorit.

4.2 Moottorit, joissa on muut kuin urakuulalaakerit
Poista kuljetuslukitukset, jos niitä on. Tarkista mahdollisuksien mukaan vapaa pyöriminen kääntämällä moottorin akselia käsin.

Lieriörullalaakereilla varustetut moottorit:
Moottorin käyttö ilman akseliin kohdistuvaa särteittäistä kuormitusta saattaa aiheuttaa liukumista ja vahingoitetta rollalaakereita.

Viistokuulalaakereilla varustetut moottorit:
Moottorin käyttö ilman oikeansuuntaista ja -suuruista aksiaalivoimaa saattaa vahingoittaa moottorin viistokuulalaakeria.
4.3 Eristysvastuksen tarkistaminen

Mittaa eristysvastus ennen käyttöönottoa sekä pitkien seisontajaksojen tai varastoinnin jälkeen, jos on syytä epäillä käämien kostuneen.

Eristysvastus on mitattava suoraan moottorin liitäntänavoista syöttökaapelit irrotettuna, jotta ne eivät vaikuta tulokseen.

Eristysvastusta on käytettävä suunta-antavana indikaattorina määrittelüssä eristysjärjestelmän muutoksia. Uusissa koneissa eristysvastus on yleensä tihansia milliohmeja, joten eristysvastusta on tärkeää seurata, jotta eristysjärjestelmän kunto on tiedossa.

Eristysvastuksen on yleensä oltava vähintään 10 MΩ, eikä se saa missään tapauksessa olla alle 1 MΩ (mitattuna 500 tai 1000 VDC:llä ja korjattuna 25 °C:seen). Eristysvastuksen arvo puolitetaan jokaista 20 °C:n lämpötilan nousua kohti.

Eristysvastuksen arvon määrityksessä voidaan käyttää apuna luvussa 11 olevaa kuvaa 1.

VAROITUS

Sähköiskuvaaran välttämiseksi moottorin runko on maadoitettava ja käämien varaus on purettava runkoon välittömästi kunkin mittauksen jälkeen.

Ellei eristysvastusmittauksessa saavuteta ohjearvoa, käämitys on liian kostea ja se on kuivattava uunissa. Uunin lämpötilan on oltava 90 °C 12–16 tunnin ajan ja sen jälkeen 105 °C 6–8 tunnin ajan.

Mahdolliset vesireikien tulpat on irrotettava ja sulkuventtiilit avattava lämmityksen ajaksi. Lämmityksen jälkeen tulpat on muistettava sulkea. Vaikka moottori olisi varustettu vesirei'illä ja tulpillalla, on suositeltavaa purkaa laakerikilvet ja liitännäkötelon kanssi kuvausta varten.

Meriveden kastelemat käämitykset on useimmiten käännettävä uudelleen.

4.4 Alusta

Alustan valmistelusta vastaa kokonaisuudessaan loppukäyttäjä.

Metalliset alustat on maalattava, jotta ne eivät ruostu.

Huomautus: Moottorin jalkojen korkeusero ei saa olla yli ± 0,1 mm.

Meriveden kastelemat käämitykset on useimmiten käännettävä uudelleen.
4.5 Kytkinpuolikkaiden ja hihnapyörien tasapainottaminen ja asentaminen

Moottori tasapainotetaan normaalisti puolella kiilalla.

Kytkinpuolikkat ja hihnapyörät on tasapainottettava kiilaruoteen jyrkimmisen jälkeen.

Tasapainotusmenetelmä tulee valita akselin tasapainotusmenetelmään sopivaksi.

Kytkinpuolikat ja hihnapyörät tulee asentaa aksellille käyttäen tarkoituksen sopivia tarvikkeita ja työkäyttöä, jotka eivät vaurioita laakeereita tai tiivistäitä.

Älä koskaan asenna kytkinpuolikasta tai hihnapyörää lyömällä tai poista sitä vierumalla moottorin runkoa vasten.

4.6 Moottorin kiinnitys ja linjaus

Varmista, että moottorin ympärillä on riittävästi tilaa esteettömiä ilmavirtausta varten. Puhaltimen kannen ja seinän tai muun rakenteen välillä on suositeltavaa olla väli, joka on vähintään puolitoista puhallinkannen ilmanottoaukon koosta. Lisätietoja on tuoteluettelossa ja mitta- ja terveysohjeissa.

Oikea linjaus on erittäin tärkeää laakerivaaroin- den, täirän ja akselivaaroiden estämiseksi.

Kiinnitä moottori alustaan sopivilla pulteilla tai kierretangoilla ja lisää alustan ja jalkojen väliin sovitelevyjä.

Linja moottori käyttäen sopivia menetelmiä.

Poraa tarvittaessa reitit ohjaustapille ja kiinnitä ohjaustapit paikoilleen.

4.7 Säteisvoimat ja hihnakäytöt

Hihnat tulee kiristää käytettävän laitteiston toimittajan ohjeiden mukaan. Älä kuitenkaan ylitä tuote-esitteissä ilmoitettuja maksimihihnavoimia (eli laakerin radiaalikuormituksia).

VAROITUS

Liiallinen hihnojen kiristys varoiotaa laakeereita ja voi aiheuttaa akselin vahingoittumisen.
4.8 Kondenssivesireiät

Varmista, että vesireiät ja tulpat ovat alaspäin. Pystyasentoon asennetun moottorin vesireiät voivat olla vaakatasossa.

Moottorit, joissa on tiivistettävät muoviset vesireiät, toimitetaan avoimessa asennossa. Erittäin pölyisissä oloissa kaikkien vesireikien tulee olla suljettuina.

4.9 Kaapelit ja sähköliitännät

Normaalissa yksinopeuksisessa moottorissa on yleensä kuusi liitäntäliitäntä (pääliittimet) ja ainakin yksi maadoitusliitin.

Moottorin pääliittimien ja maadoitusliittimien lisäksi liitäntäkotelossa voi olla liittimet termistoreille, lämmitysvastuksille tai muille lisälaitteille.

Syöttökaapelit liitetään sopivien kaapelikenkien avulla. Lisälaitteiden kaapelit voidaan liittää kytentärimaan sellaisinaan.

Moottorit on tarkoitettu vain kiinteään asennukseen. Jos erikseen ei ole muuta mainittu, kaapeliläpivien on mukaan mitoitettu kierteen holkkitiivisteillä. Holkkitiivisteillä tulee olla vähintään sama IP-luokka kuin liitäntäkotelolla.

Asennuksen yhteydessä on käytettävä sertifioitua asennusputki- tai kaapeliliitäntä.

Kaapelit on suojattava mekaanisesti ja kiiroittettavissa laelle liitäntäkoteloa niin, että standardin IEC/SFS-EN 60204-0 ja paikallisten asennusstandardien vaatimukset täyttyvät.

Käyttämättömät kaapeliläpiviennit on tulkittava liitäntäkotelon IP-luokan mukaiseksi.

Suojausluokka ja halkaisija on määritelty holkkitiivisteiden dokumenteissa.

VAROITUS

Käytä kaapeliläpivieneissä asianmukaisia holkkitiivistiedä kaapelin tippin ja läpimittan mukaisesti.

Maadoitus on tehtävä paikallisten määräysten mukaan ennen moottorin kytkemistä verkkovirtaan.

Rungon maadoitusliitin on kytettävä suojamaadoitukseen (PE) kaapelilla standardin IEC/SFS-EN 60034-1 taulukon 5 mukaisesti:

<table>
<thead>
<tr>
<th>Asennuksen vaihejohdinten poikkipinta-ala, S, [mm²]</th>
<th>Vastaavan suojajohtimen vähimmäispoikkipinta-ala, S, [mm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>35</td>
<td>25</td>
</tr>
<tr>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>70</td>
<td>35</td>
</tr>
<tr>
<td>95</td>
<td>50</td>
</tr>
<tr>
<td>120</td>
<td>70</td>
</tr>
<tr>
<td>150</td>
<td>70</td>
</tr>
<tr>
<td>185</td>
<td>95</td>
</tr>
<tr>
<td>240</td>
<td>120</td>
</tr>
<tr>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td>400</td>
<td>185</td>
</tr>
</tbody>
</table>

Lisäksi sähköliitteen ulkopuolella olevien maadoitus- tai liitosliittimien on tuotettava tehokas liitäntä johtimeen, jonka poikkipinta-ala on vähintään 4 mm².

Verkon ja moottorin liitäntöjen välisen kaapeliliitännän on täytettävä kansallisissa standardeissa tai standardissä IEC/EN 60204-1 määrätty asennusvaatimukset arvokilvessä ilmoitettun nimellisvirran mukaisesti.
Jos ympäristön lämpötila ylittää +50 °C, on käytettävä vähintään +90 °C:n käyttöympäristön hyväksytyjä kaapeleita. Kaapelien mitaltoisessa on otettava myös huomioon muut asennusohjeistuksista seuravat muuntokertoimet.

Varmista, että moottorin kotelointi vastaa käyttöympäristön ja säilöolosuhteiden vaatimuksia. Varmista esimerkiksi, ettei vettä pääse moottoriin tai liitäntäkoteloihin.

Litiitäntäkoteloiden tiivisteiden täytyy olla kunnolla urissaan, jotta IP-luokka on varmasti oikea. Virheellisesti asennettu tiiviste saattaa aiheuttaa veden tai pölyn tunkeutumisen liitäntäkoteloon, mistä voi aiheutua kipinät tai räjähdysvaara.

4.9.1 Kytkennät eri käynnistystavoille
Normaalisissa yksinopeuksisessa moottorissa on yleensä kuusi liitintä käämeille (pääliittimet) ja ainakin yksi maadoitusliitin. Tämä mahdollistaa suoran käynnistysen tai tähti-/kolmiokäynnistysen.

Kaksinopeus- ja erikoismootoreilla kytkentä tehdään liitäntäkotelon sisällä tai moottorin käyttöoppaassa annettujen ohjeiden mukaisesti. Jännite ja kytkentä on merkitty arvokilpeen.

Suora käynnistys (DOL): Voidaan käyttää tähti- tai kolmiokytentä. Esimerkiksi 690 VY, 400 VD tarkoittaa tähtikytkentää jännitteellä 690 V ja kolmiokytkentää jännitteellä 400 V.

Tähti-/kolmiokäynnistys (Y/D)
Syöttöjännitteet on vastattava moottorin nimellisjännitettä käytettäessä D-liitäntää.

Poista riviliittimestä kaikki liitinosat.

Muut käynnistystavat ja hankalat käynnistysolosuhteet:
Jos muita käynnistystapoja (esim. muuttaja tai pehmokäynnistin) käytetään käyttöapojen S1 ja S2 yhteydessä, laitteen katsotaan olevan erotettuna tehonsyöttöstä sähkökoneen ollessa käynnissä, kuten standardi IEC 60079-0 edellyttää, jolloin lämpösuojaus on valinnainen.

4.9.2 Lisälaiteliitännät
Jos moottori on varustettu termistoreilla tai muilla vastuslämpötilamittauksilla (esimerkiksi Pt100:lla tai lämpöreileillä) ja lisälaitteilla, on suositeltavaa, että näitä laitteita käytetään ja ne liitetään asianmukaisesti. Tietyissä sovelluksissa lämpösuojaus on pakollinen. Lisätietoja on moottorin mukana toimitetuissa asiakirjoissa. Lisävarusteiden kytkentäkaavio ovat liitäntäkotelon sisällä.

Termistorien enimmäismittausjännite on 2,5 V. Pt100-anturien enimmäismittausvirta on 5 mA. Suuremman mittausjännitteen tai -virran käyttäminen voi aiheuttaa virheitä lukemien tai vaurioittaa lämpötila-anturia.

Lämpöanturien eristys täytyy peruseristysvaatimuksien mukaisesti.

4.10 Liitännät ja pyörimissuunta

Akselin pyörimissuunta on myötäpäivään akselin päästä katsottuna, kun vaihejärjestys L1, L2, L3 on kytkety liittimiin kuvan 3 mukaisesti.

Pyörimissuuntaa voi muuttaa vaihtamalla minkä tahansa kahden syöttökaapelin liitännät keskenään.

Jos moottorissa on vain yhteen suuntaan pyörivä tuuletin, tarkista, että pyörimissuunta on moottorin merkityn nuolen mukainen.
5 Käyttö

5.1 Yleistä

Moottorit on suunniteltu käytettäviksi seuraavissa olosuhteissa, ellei arvokilvessä ole toisin ilmoitettu:

- Moottorit on tarkoitettu vain kiinteään asennukseen.
- Normaali ympäristön lämpötila on –20 °C...+40 °C.
- Asennuskorkeus on enintään 1 000 metriä merenpinnan yläpuolella.

Moottoria saa käyttää vain sellaisissa sovelluksissa, joihin se on tarkoitettu. Nimellisarvot ja käyttöolosuhteet on ilmoitettu moottorien arvokilvissä. Lisäksi tulee noudattaa kaikkia tässä oppaassa ilmoitettuja vaatimuksia sekä muita asiaan liittyviä ohjeita ja standardeja.

Jos nämä rajat ylittyvät, kaikki moottorin arvot ja asennusarvot on tarkistettava. Lisätietoja saa ABB:ltä.

VAROITUS

Laitteiden käyttö- ja kunnossapito-ohjeiden laiminlyönti voi vaarantaa turvallisuuden ja estää siten moottorin käyttämisen.
6 Pienjännitemoottorit nopeussäädetystä käytössä

6.1 Johdanto

ABB saattaa tarvita lisätietoja voidakseen päättää joissakin erityissovelluksissa käytettävien tai erityisrakenteisten moottorityyppien soveltuvuudesta.

6.2 Käämityksen eristyys

Nopeussäädetyt käytöt aiheuttavat suurempia jänniterasituksia kuin moottorin käämityksen sinimuotoinen syöttö. Siksi moottorin käämityseristä ja muuttajan lähtösuodon on mitoitettava seuraavien ohjeiden mukaisesti.

6.2.1 Käämityksen eristyksen valinta ABB-taajuusmuuttajia varten
Jos käytössä on esimerkiksi AC_8_ tai AC_5_sarjan kuuluva yksittäinen taajuusmuuttaja, jossa on diodisyöttöyksikkö (hallitsematon tasajännite), käämityksen eristy ja suotimet voidaan valita taulukon 6.1 mukaisesti.

6.2.2 Käämityksen eristyksen valinta muita taajuusmuuttajia varten

6.3 Lämpösuojaus

Suurimmassa osassa tämän oppaan kattamista moottoreista on staattorikäämityksissä PTC-termistorit tai muuntuypiset vastuslämpömittarit. Ne on suositeltavaa liittää taajuusmuuttajaan. Lue lisää kohdasta 4.9.2.
6.4 Laakerivirrat

Eristettyjä laakereita tai laakerirakenteita, yhteisjännitesuodattimia sekä soveltuvia kaapelointi- ja maadoitusmenetelmiä on käytettävä seuraavien ohjeiden ja taulukon 6.1 mukaisesti.

Taulukko 6.1 ABB-muuttajien käämityseristyksen valinta

<table>
<thead>
<tr>
<th>U_N ≤ 500 V</th>
<th>P_N ≤ 100 kW tai IEC315 ≤ Runkokoko ≤ IEC355</th>
<th>P_N ≥ 350 kW tai IEC400 ≤ Runkokoko ≤ IEC450</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vakiomoottori</td>
<td>Vakiomoottori + Eristetty N-laakeri</td>
<td>Vakiomoottori + Eristetty N-laakeri + Yhteisjännitesuodatin</td>
</tr>
<tr>
<td>500 V > U_N ≤ 600 V</td>
<td>Vakiomoottori + dU/dt-suodatin (reaktori) TAI Vahvistettu eristy</td>
<td>Vakiomoottori + dU/dt-suodatin (reaktori) TAI Vahvistettu eristy + Eristetty N-laakeri</td>
</tr>
<tr>
<td>500 V > U_N ≤ 600 V (kaapelin pituus > 150 m)</td>
<td>Vakiomoottori + Eristetty N-laakeri</td>
<td>Vakiomoottori + Eristetty N-laakeri + Yhteisjännitesuodatin</td>
</tr>
<tr>
<td>600 V > U_N ≤ 690 V</td>
<td>Vahvistettu eristy + dU/dt-suodatin (reaktori)</td>
<td>Vahvistettu eristy + dU/dt-suodatin (reaktori) TAI Vahvistettu eristy + Eristetty N-laakeri</td>
</tr>
<tr>
<td>600 V > U_N ≤ 690 V (kaapelin pituus > 150 m)</td>
<td>Vahvistettu eristy + Eristetty N-laakeri</td>
<td>Vahvistettu eristy + Eristetty N-laakeri + Yhteisjännitesuodatin</td>
</tr>
</tbody>
</table>

6.4.1 Laakerivirtojen poistaminen käytettäessä ABB:n muuttajia

Jos käytössä on esimerkiksi ABB:n AC_8_- ja AC_5_-sarjaan kuuluva taajuusmuuttaja, jossa on diodisyöttöyksikkö, taulukon 6.1 mukaisia menetelmiä on käytettävä, jotta haatalliset laakerivirrat moottoreissa voidaan estää.

6.4.2 Laakerivirtojen poistaminen käytettäessä muita muuttajia

Käyttäjä vastaa moottorin ja käyttölaitteiden suojaamisesta hätallisilta laakerivirroilta. Kohdassa 6.4.1 kuvattuja ohjeita voidaan käyttää osiittain, mutta niiden toimivuutta ei voida taata kaikissa tapauksissa.
6.5 Kaapelointi, maadoitus ja sähkömagneettinen yhteenopisuus

Jotta laitteet maadoitetaan asianmukaisesti ja voimassa olevat sähkömagneettista yhteenopivuutta (EMC) koskevat vaatimukset täyttävät, yli 30 kW:n moottorit on kaapeloida käyttämällä symmetrisiä ja EMC-läpivientiholkkeja, joissa on 360 asteen kosketus.

Symmetrisiä ja suojattuja johtimia suositellaan myös pienemmille moottoreille. 360 asteen maadoitussuojat tulee tehdä kaikkiin kaapelillä yöksi läpivientiholkkien asennuksissa mukaisesti. Kierrä kaapelin suojavälijohtimet nipuiksi ja kytke ne liittäntäkotelon sisällä, taajuusmuuttajan kotelossa jne. olevaan lähimpään maadoitussuojaliitteen tai -kiskoon.

6.6 Käyttönopeus

Jos moottoria käytetään arvokilvessä tai tuoteluettelossa ilmoitettua nimellisnopeutta suuremmilla nopeuksilla, on varmistettava, että moottorin suurin sallittu pyöränopeus eivät ylity.

6.7 Nopeussäädettyissä sovelluksissa käytettävät moottorit

6.7.1 Yleistä

Soveluksissa, joissa käytetään muita muuttajia, moottorit on mitesiattava manuaaliseksi. Lisätietoja antaa ABB.

Kuormitettavuus (tai kuorman kapasiteettikäyrät) perustuvat nimelliseen syöttöjännitteeseen. Käyttö ali- tai ylijännitteenä voi vaikuttaa sovelluksen suorituskykyyn.

6.7.2 Moottorin kuormitettavuus käytettäessä AC_8_-sarjan taajuusmuuttajaa suoralla momentinsäädöllä

6.7.3 Moottorin kuormitettavuus käytettäessä AC_5_ _-sarjan taajuusmuuttajaa
Kuvissa 6a–6d esitetty kuormitettavuuskäyrät koskevat AC_5_ _-sarjan muuttajia. Luvut osoittavat moottorien keskimääräisen jatkuvan enimmäiskäytämomenzin syöttötäajuuden funktiona. Momentti ilmoitetaan prosenttiosuutena moottorin nimellismomentista. Arvot ovat ohjeellisia, ja tarkat arvot ovat saatavilla pyynnöstä.

6.7.4 Moottorin kuormitettavuus muita
Jos käytössä on muita taajuusmuuttajia sekä hallitsematon tasavirtajännite ja vähimmäiskytkentätaajuus on 3 kHz (200...500 V), kohdassa 6.7.3 mainittuja mitoitusohjeita voidaan käyttää osiin. On kuitenkin huomattava, että todellinen lämpökuormitettavuus voi olla pienempi. Tarkista Asia taajuusmuuttajan valmistajalta tai järjestelmän toimittajalta.

6.8 Arvikilvet
Jos ABB:n moottoreita käytetään nopeussäädetvyssä sovelluksissa, ylimääräisiä arvikilpiä ei yleensä tarvita. Moottajien käyttöönottoon tarvittavat parametrit löytyvät pääarvikilvistä. Josaksin erikoissovelusissa moottoreihin voidaan kuitenkin kiinnittää ylimääräisiä arvikilpiä nopeussäädettyjä sovelluksia varten.

Arvikilpiin merkitään seuraavat tiedot:
• nopeusalue
• tehoalue
• jännite- ja virta-alue
• momentti tyyppi (vakioteho vai neliöllinen)
• ja muuttajan tyyppi sekä vaadittu vähimmäiskytkentätaajuus.

6.9 Nopeussäädetyn sovelluksen käyttöönotto
Nopeussäädettyjen sovelluksen käyttöönotto on tehtävä taajuusmuuttajan käyttöohjeiden sekä paikallisten lakien ja sääolosien mukaisesti. Lisäksi on otettava huomioon sovelluksen asettamat vaatimukset ja rajoitukset.

Kaikki muuttajan asetusparametrit on tarkastettava moottorin arvikilvistä. Useimmiten tarvittavia parametreja ovat:
• nimellisjännite
• nimellisvirta
• nimellistäajuus
• nimellisnopeus
• nimellisteho.

ABB suosittelee käyttämään kaikkia sopivia taajuusmuuttajan suojauksominaisuuksia, jotta sovellus on mahdollisimman turvallinen. Taajuusmuuttajissa on yleensä seuraavat ominaisuudet (nimet ja saatavuus ovat valmistaja- ja mallikohtaisia):
• vähimmäisnopeus
• enimmäisnopeus
• kiihdytys- ja jarrutusajat
• enimmäisvirta
• enimmäismomentti
• jumisuojaus.
7 Huolto

7.1. Yleinen tarkastus

4. Tarkasta liitäntöjen sekä asennus- ja kiinnitysrivuisten kunto.

5. Tarkasta laakerien kunto kuuntelemalla laakeriäntää, mittamaalla laakerien tärinä ja lämpötilaa, tarkastamalla käytetty voiteluaine tai käyttämällä SPM-valvontalaitetta. Tarkkaile laakeriteitä erityisesti silloin, kun niiden laskettu käyttöikä alkaa lähestyä loppuaan.

Kun muuttumista alkaa tapahtua, avaa moottori, tarkista osat ja uusi ne tarvittaessa. Moottoreihin vaihdettavien laakereiden on oltava samaa tyyppiä kuin alkuperäisten. Akselitiivisteen on vaihdettava laakerivaihdon yhteydessä, ja niiden on oltava ominaisuusksiltaan samanlaisia kuin alkuperäinen tiiviste.

Jos IP 55 -moottori on toimitettu tulppa suljettuna, on suositeltavaa avata vesireikin tulpat säännöllisesti, jotta moottoriin kondensoituneen veden poistumiseksi ei tukkeudu ja vesi pääsee valumaan pois. Tämä tehdään, kun moottori on pysähdyksissä ja sellaisessa tilassa, jossa sen käsittely on turvallista.

7.1.1 Valmiustilassa olevat moottorit
Jos laivalla tai muussa tärisevässä ympäristössä oleva moottori on valmiustilassa pidemmän aikaa, on suoritettava seuraavat toimenpiteet:

7.2 Voitelu

Laakerrityyppit on mainittu tuote-esitteissä ja kaik- kien moottoreiden arvokilvissä runkokooltaan pienimpiä moottoreita lukuun ottamatta. Käyttövarmuus on tärkeä tekijä laakerien voiteluvälejä määritettäessä. ABB käyttää voitelussa L1-periaatetta, joka tarkoittaa, että 99 % moottoreista toimii häiriöttömästi ilmoitetun käyttötuntimäärän ajan.

7.2.1 Kestovoidelluilla laakereilla varustetut moottorit

Taulukko 7.1

<table>
<thead>
<tr>
<th>Runkokoko</th>
<th>Napaluku</th>
<th>Käyttötunnit 25 °C</th>
<th>Käyttötunnit 40 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>2</td>
<td>52 000</td>
<td>33 000</td>
</tr>
<tr>
<td>56</td>
<td>4-8</td>
<td>65 000</td>
<td>41 000</td>
</tr>
<tr>
<td>63</td>
<td>2</td>
<td>49 000</td>
<td>31 000</td>
</tr>
<tr>
<td>63</td>
<td>4-8</td>
<td>63 000</td>
<td>40 000</td>
</tr>
<tr>
<td>71</td>
<td>2</td>
<td>67 000</td>
<td>42 000</td>
</tr>
<tr>
<td>71</td>
<td>4-8</td>
<td>100 000</td>
<td>56 000</td>
</tr>
<tr>
<td>80–90</td>
<td>2</td>
<td>100 000</td>
<td>65 000</td>
</tr>
<tr>
<td>80–90</td>
<td>4-8</td>
<td>100 000</td>
<td>96 000</td>
</tr>
<tr>
<td>100-112</td>
<td>2</td>
<td>89 000</td>
<td>56 000</td>
</tr>
<tr>
<td>100-112</td>
<td>4-8</td>
<td>100 000</td>
<td>89 000</td>
</tr>
<tr>
<td>132</td>
<td>2</td>
<td>67 000</td>
<td>42 000</td>
</tr>
<tr>
<td>132</td>
<td>4-8</td>
<td>100 000</td>
<td>77 000</td>
</tr>
<tr>
<td>160</td>
<td>2</td>
<td>60 000</td>
<td>38 000</td>
</tr>
<tr>
<td>160</td>
<td>4-8</td>
<td>100 000</td>
<td>74 000</td>
</tr>
<tr>
<td>180</td>
<td>2</td>
<td>55 000</td>
<td>34 000</td>
</tr>
<tr>
<td>180</td>
<td>4-8</td>
<td>100 000</td>
<td>70 000</td>
</tr>
<tr>
<td>200</td>
<td>2</td>
<td>41 000</td>
<td>25 000</td>
</tr>
<tr>
<td>200</td>
<td>4-8</td>
<td>95 000</td>
<td>60 000</td>
</tr>
<tr>
<td>225</td>
<td>2</td>
<td>36 000</td>
<td>23 000</td>
</tr>
<tr>
<td>225</td>
<td>4-8</td>
<td>88 000</td>
<td>56 000</td>
</tr>
<tr>
<td>250</td>
<td>2</td>
<td>31 000</td>
<td>20 000</td>
</tr>
<tr>
<td>250</td>
<td>4-8</td>
<td>80 000</td>
<td>50 000</td>
</tr>
</tbody>
</table>

Tiedot ovat voimassa 60 Hz:iin asti.

7.2.2 Jälkivoimaltavilla laakereilla varustetut moottorit

Voiteluohjelma ja yleisiä voiteluvojeita

Jos moottorissa on voiteluohjelma, noudata siinä olevia arvoja. Voiteluohjelmissa on määritetty voiteluväli asennuksen, ympäristön lämpötilan ja pyörimisnopeuden mukaan.

A. Manuaalinen voitelu

Uudelleenvoitelu moottorin pyöriessä

• Jos voiteluaineen poistoaikaa on varustettu tiivistystulpalla tai sulkuventtiiliillä, ajava se voitelun ajaksi.

• Varmista, että voitelukanava on auki.

• Purista laakereihin suositeltu määrä voiteluaineet.

• Anna moottorin käydä 1–2 tuntia, jotta ylimääräinen voiteluaine ehtii poistua laakereista. Sulje tiivistystulpalla varustettu poistoaukko tai mahdollinen sulkuventtiili.

Uudelleenvoitelu moottorin ollessa pysähtyneenä

Moottori voidaan yleensä voidella sen pyöriessä, mutta jos se ei ole mahdollista, voitelu voidaan tehdä myös moottorin ollessa pysähtyneenä.

• Tällöin lisätään ensin vain puolet suositellusta voiteluainemäärästä ja annetaan koneen käydä täydellä nopeudella mutta lähempänä pysähtymisestä.

• Kun moottori on pysähtynyt, lisätään loput voiteluaineesta laakereiin.

• Anna moottorin pyöriä 1–2 tuntia ja sulje sen jälkeen tiivistystulpalla varustettu poistoaukko tai mahdollinen sulkuventtiili.

B. Automaattivoitelu

Automaattista voitelua käytetäessä poistoaukon tulppa on poistettava tai mahdollinen sulkuventtiili avattaava pysyvästi.

ABB suosittelee vain sähkömekaanisten järjestelmien käyttöä.

Taulukoissa mainitut voiteluainemäärät voiteluvälii kohti täytyy kohdentaa, jos käytetään keskusvoitelujärjestelmää. Pienemmän automaattivoitelyksikon (yksi tai kaksi kasetti) tapauksessa voidaan kohdentaa normaali voiteluainemäärää.

Käytettäessä automaattivoitelua kaksinapaistilta moottoreille on noudatettava niitä koskevaa voiteluainesuositusta, joka on annettu kohdassa.
Voiteluaineet.
Käytettävän voiteluaineen tulee soveltaa automaattivoiteluun. Tutustu automaattivoitelujärjestelmän toimittajan ja voiteluaineen valmistajan suosituksiin.

Laskentaesimerkkiksi automaattivoitelujärjestelmän voiteluainemäärään

Keskusvoitelujärjestelmä: Moottori IEC M3_P 315_4-napainen 50 Hz:n verkossa, alla olevan taulukon mukainen uudelleenvoiteluväli on 7 600 h/55 g (D-pää) ja 7 600 h/40 g (N-pää):

(D-pää) RLI = 55 g/7 600 h*3*24 = 0,52 g/vrk
(N-pää) RLI = 40 g/7 600 h*3*24 = 0,38 g/vrk

Laskentaesimerkki yhden automaattivoiteluyksikön (kasetin) voiteluainemäärälle

(D-pää) RLI = 55 g/7 600 h*3*24 = 0,17 g/vrk
(N-pää) RLI = 40 g/7 600 h*24 = 0,13 g/vrk

RLI = uudelleenvoiteluväli

7.2.3 Voiteluvälit ja voiteluainemäärät

Pystysuoraan asennettujen moottorien voiteluvälit ovat puolet alla olevan taulukon arvoista.

Seuraavassa taulukossa on esitetty riittävät voiteluvälit seuraavalle kestelle L1-periaatteen mukaan. Lisätietoja voiteluväleistä korkeammissa lämpötiloissa saa tarvittaessa ABB:ltä. Ohjeellinen kaava L1-arvojen likimääräiseen muuntamiseen L10-arvoiksi on L10 = 2,0 x L1 manuaalista voitelia käytettäessä.

Voiteluvälier perustuvat laakerin käyttolämpötilaan 80 °C (ympäristön lämpötila +25 °C).

Vaatin hajottamista voiteluväleistä ja käyttäjän antamaa tilaustiedostoja. Voiteluvälier on tarkoitus käyttää työläisten kesken ja tuotteen käyttöaikana.

Voiteluvälit ja laakerin suurinta sallittua käyttolämpötilaa +110 °C ei saa ylittää. Moottorin suurinta sallittua nopeutta ei saa ylittää.

VAROITUS

Ympäristön lämpötilan nousu nostaa laakerien lämpötilaa vastaa.

Voiteluvälier perustuvat laakerin lämpötilaan 80 °C (ympäristön lämpötila +25 °C). Voiteluvälier perustuvat laakerin käyttölämpötilaan 80 °C.

Suurinopeuksinen käyttö esim. suorataajuusmuuttajasovelluksissa tai melko raskaan kuorman käyttö pienellä nopeudella edellyttää lyhyempää voiteluväljä.

VAROITUS

Suurinopeuksinen käyttö esim. suorataajuusmuuttajasovelluksissa tai melko raskaan kuorman käyttö pienellä nopeudella edellyttää lyhyempää voiteluväljä.

VAROITUS

Suurinopeuksinen käyttö esim. suorataajuusmuuttajasovelluksissa tai melko raskaan kuorman käyttö pienellä nopeudella edellyttää lyhyempää voiteluväljä.

Suurinopeuksinen käyttö esim. suorataajuusmuuttajasovelluksissa tai melko raskaan kuorman käyttö pienellä nopeudella edellyttää lyhyempää voiteluväljä.

Suurinopeuksinen käyttö esim. suorataajuusmuuttajasovelluksissa tai melko raskaan kuorman käyttö pienellä nopeudella edellyttää lyhyempää voiteluväljä.
232

7.2.4 Voiteluaineet

<table>
<thead>
<tr>
<th>Runkoko</th>
<th>Voiteluaineen kW</th>
<th>3 600</th>
<th>3 000</th>
<th>kW</th>
<th>1 800</th>
<th>1 500</th>
<th>kW</th>
<th>1 000</th>
<th>kW</th>
<th>500–900</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>määrä g/laakeri</td>
<td>r/min</td>
<td>r/min</td>
<td>r/min</td>
<td>r/min</td>
<td>r/min</td>
<td>r/min</td>
<td>r/min</td>
<td>r/min</td>
<td>r/min</td>
</tr>
<tr>
<td>160</td>
<td>25</td>
<td>≤ 18,5</td>
<td>≤ 15</td>
<td>9 000</td>
<td>10 500</td>
<td>≤ 11</td>
<td>12 000</td>
<td>kaikki</td>
<td>12 000</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>25</td>
<td>> 18,5</td>
<td>> 15</td>
<td>7 500</td>
<td>9 000</td>
<td>> 11</td>
<td>11 000</td>
<td>kaikki</td>
<td>12 000</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>30</td>
<td>≤ 22</td>
<td>3 500</td>
<td>5 000</td>
<td>> 22</td>
<td>7 500</td>
<td>9 000</td>
<td>> 15</td>
<td>12 000</td>
<td>kaikki</td>
</tr>
<tr>
<td>180</td>
<td>30</td>
<td>> 22</td>
<td>3 000</td>
<td>4 000</td>
<td>> 22</td>
<td>7 000</td>
<td>8 500</td>
<td>> 15</td>
<td>12 000</td>
<td>kaikki</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>≤ 37</td>
<td>2 750</td>
<td>4 000</td>
<td>≤ 30</td>
<td>7 000</td>
<td>8 500</td>
<td>≤ 22</td>
<td>11 500</td>
<td>kaikki</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>> 37</td>
<td>1 500</td>
<td>2 500</td>
<td>> 30</td>
<td>5 000</td>
<td>6 000</td>
<td>> 22</td>
<td>8 000</td>
<td>kaikki</td>
</tr>
<tr>
<td>225</td>
<td>50</td>
<td>≤ 45</td>
<td>2 000</td>
<td>3 000</td>
<td>≤ 45</td>
<td>6 500</td>
<td>8 000</td>
<td>≤ 30</td>
<td>11 000</td>
<td>kaikki</td>
</tr>
<tr>
<td>225</td>
<td>50</td>
<td>> 45</td>
<td>750</td>
<td>1 250</td>
<td>> 45</td>
<td>2 500</td>
<td>3 000</td>
<td>> 30</td>
<td>4 000</td>
<td>kaikki</td>
</tr>
<tr>
<td>250</td>
<td>60</td>
<td>≤ 55</td>
<td>1 000</td>
<td>2 000</td>
<td>≤ 55</td>
<td>4 500</td>
<td>5 500</td>
<td>≤ 37</td>
<td>7 500</td>
<td>kaikki</td>
</tr>
<tr>
<td>250</td>
<td>60</td>
<td>> 55</td>
<td>500</td>
<td>750</td>
<td>> 55</td>
<td>1 500</td>
<td>2 000</td>
<td>> 37</td>
<td>3 000</td>
<td>kaikki</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rullalaakerit, voiteluvälit käyttöaikana</th>
</tr>
</thead>
<tbody>
<tr>
<td>280(^1) 60 kaikki 1 000 1 750</td>
</tr>
<tr>
<td>280(^1) 70 – – – – – – – – – –</td>
</tr>
<tr>
<td>280(^1) 35 kaikki 900 1 600</td>
</tr>
<tr>
<td>280(^1) 40 – – – – – – – – – –</td>
</tr>
<tr>
<td>315(^1) 35 kaikki 900 1 600</td>
</tr>
<tr>
<td>315(^1) 55 – – – – – – – – – –</td>
</tr>
<tr>
<td>355(^1) 35 kaikki 900 1 600</td>
</tr>
<tr>
<td>355(^1) 70 – – – – – – – – – –</td>
</tr>
<tr>
<td>400(^1) 40 kaikki 1 300 – – – – – – – – – –</td>
</tr>
<tr>
<td>400(^1) 85 – – – – – – – – – –</td>
</tr>
<tr>
<td>450(^1) 40 kaikki 1 300 – – – – – – – – – –</td>
</tr>
<tr>
<td>450(^1) 95 – – – – – – – – – –</td>
</tr>
<tr>
<td>500(^1) 85 kaikki 2 700 – – – – – – – – – –</td>
</tr>
<tr>
<td>500(^1) 60 kaikki 1 200 – – – – – – – – – –</td>
</tr>
<tr>
<td>5010 85 – – – – – – – – – –</td>
</tr>
<tr>
<td>5012 85 – – – – – – – – – –</td>
</tr>
</tbody>
</table>

\(^1\)M3AA

Voiteluaineet

7.2.4 Voiteluaineet

VAROITUS

Älä sekoita erityyppisiä voiteluaineita keskenään.
Yhteensopimattomat voiteluaineet voivat aiheuttaa laakerivaurion.

Voideltaessa uudelleen on käytettävä vain kuulalaakeriin tarkoitettuja, seuraavat ominaisuudet täyttävät voiteluaineit:

- laadukas liitium-kompleksisaippua ja liitiumkompleksi- tai PAO-öljy
- perusöljyn viskositeetti 100–160 cST 40 °C:ssa
- kuvuujuokka NLGI-aste 1,5–3
- lämpötila-alue -30...+120 °C, jatkuvu.

*) Pystysuoraan asennettuille moottoreille ja kuumiin olosuhteisiin suositellaan korkeampaa NLGI-astetta.

Edellä mainitut voiteluinetiedot ovat voimassa, jos ympäristön lämpötila on alle 110 °C. Muussa tapauksessa kysy sopivasta voiteluaineesta.

Seuraavia laadukkaita voiteluaineita voidaan käyttää:

- Mobil Unirex N2 tai N3 (liitiumkompleksipohja)
- Mobil Mobilith SHC 100 (liitiumkompleksipohja)
- Shell Gadus S5 V 100 2 (liitiumkompleksipohja)
- Klüber Klüberplex BEM 41-132 (erikoisitiumpohja)
- FAG Arcanol TEMP110 (liitiumkompleksipohja)
- Lubcon Turmogrease L 802 EP PLUS (erikoisitiumpohja)
- Total Multis Complex S2 A (liitiumkompleksipohja)

Seuraavia voiteluaineita voidaan käyttää valurautaisissa suurnopeusmoottoreissa, mutta sekoittetuna liitiumkompleksitauran kylkeen:

- Klüber Klüber Quiet BQH 72-102 (polyureapohja)
- Lubcon Turmogrease PU703 (polyureapohja)

Jos käytössä on jokin muu voiteluaine, tarkista valmistajalta, että voiteluaineen laatua vastaa edellä mainittuja voiteluaineita. Se voiteluaineen käyttäminen voi lyhentää voiteluväliä.
8 Myynnin jälkeinen tuki

8.1 Varaosat

Ellei muuta mainita, varaosien on oltava alkuperäisosi tai ABB:n hyväksymää.

Varaosia tilattaessa on ilmoitettava moottorin sarjanumero, täydellinen tyyppimerkintä ja tuotekoodi. Nämä tiedot on annettu arvokilvessä.

8.2 Purkaminen, kokoaminen ja uudelleenkäämintä

Takaisinkelaus on aina annettava pätevän korjaamon tehtäväksi.

Savunpoisto- ja muita erikoismoottoreita ei saa kelata uudelleen ottamatta ensin yhteyttä ABB:hen.

8.3 Laakerit

Laakereista on pidettävä erityistä huolta.

Laakerit on poistettava käytävän ulosvetäjää ja asennettava lämmitytyinia tai erityistyökaluja käytäen.

Laakereiden vaihto on kuvattu erillisessä ABB:n tuotemyynnistä saatavassa ohjeessa.

Kaikkia moottoriin esimerkiksi taroilla kiinnitettyjä ohjeita on noudatettava. Arvokilpeen merkittyjä laakerityyppejä ei saa vaihtaa.
9 Ympäristövaatimukset

Useimpien ABB:n moottoreiden äänenpainetaso ei ole yli 82 dB(A) (±3 dB) 50 Hz:n syötöllä. Yksittäisten moottorien arvot on ilmoitettu niiden tuote-esitteissä. 60 Hz:n sinimuotoisella syötöllä arvot ovat noin 4 dB(A) suuremmat kuin tuote-esitteissä annetut 50 Hz:n arvot. Lisätietoja äänenpainetasoista erilaisilla taajuusmuuttajasyötöillä saat ABB:ltä. Moottorin hävityksessä ja kierrätyksessä on noudatettava asianmukaista menettelyä, sekä paikallisia lakeja ja säädöksiä.
10 Vianmääritys

Nämä ohjeet eivät kata kaikkia laitteistovaihtoehtoja tai yksityiskohtia eivätkä kaikkia mahdollisia asennuksen, käytön tai huollon aikana ilmeneviä tilanteita. Lisäohjeita saat lähimmästä ABB:n myyntikonttorista.

Moottorin vianetsintätaulukko
Moottorin huollo- ja vianetsintätoimenpiteitä saavat suorittaa vain pätevät henkilöt, joilla on tarvittavat työkalut ja välineet.

—

Taulukko 10.1: Vianmääritys

<table>
<thead>
<tr>
<th>ONGELMA</th>
<th>AIHEUTTJA</th>
<th>SUOSITELTAVA TOIMENPIDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moottori ei käynnisty</td>
<td>Sulake palanut</td>
<td>Vaihda oikeantyyppinen ja nimellisarvoinen sulake.</td>
</tr>
<tr>
<td></td>
<td>Ylikuormalaukaisu</td>
<td>Tarkista ja kuituta ylikuormalaukaisu käynnistimeltä.</td>
</tr>
<tr>
<td></td>
<td>Väärrä syöttöjännite</td>
<td>Tarkista, että syöttöjännite on arvokilven mukainen.</td>
</tr>
<tr>
<td></td>
<td>Virheellinen kytkentä</td>
<td>Tarkista kytkennät moottorin mukana toimitetuista kytkentääväliöistä.</td>
</tr>
<tr>
<td></td>
<td>Katkos käämissä tai ohjauspiirissä</td>
<td>Vian voi tunnistaa surisevasta äänestä, kun kytkin on suljettuna. Etsi virheelliset kytkentöjä ja varmista, että kaikki ohjauskoskettimet sulkeutuvat.</td>
</tr>
<tr>
<td></td>
<td>Mekaaninen vika</td>
<td>Tarkista, että moottori ja käyttölaite pyörivät vapaasti. Tarkista laakerointi ja voitelu.</td>
</tr>
<tr>
<td></td>
<td>Käämin oikosulku</td>
<td>Ota yhteys ABB:hen tai Varmista, että virta on katkaistu ja maadoitus tehty, irrota kaapelit ja mitata eristysvastus.</td>
</tr>
<tr>
<td></td>
<td>Huono kosketus staattorikäämissä</td>
<td>Vika aiheuttaa sulakkeiden palamisen. Moottori täytyy käynnittää uudelleen. Irrota laakerikilvet ja etsi vika.</td>
</tr>
<tr>
<td></td>
<td>Moottori voi olla ylikuormitettu</td>
<td>Vähennä kuormitusta.</td>
</tr>
<tr>
<td>Moottori pysähtyy</td>
<td>Yhdessä vaiheessa voi olla jännitekatkos</td>
<td>Tarkista kytkennät katkosten varalta.</td>
</tr>
<tr>
<td></td>
<td>Väänääräinen moottori sovellukseen</td>
<td>Vaihda moottorityyppi tai -koko. Ota yhteys laitetoimittajaan.</td>
</tr>
<tr>
<td></td>
<td>Ylikuormitus</td>
<td>Vähennä kuormitusta.</td>
</tr>
<tr>
<td></td>
<td>Pienjännite</td>
<td>Varmista, että arvokilvessä ilmoitettua jännitettä on noudatettu. Tarkista kytkennät.</td>
</tr>
<tr>
<td></td>
<td>Jännitekatkos</td>
<td>Sulake on palanut. Tarkista ylikuormitusrele, staattori ja painikkeet.</td>
</tr>
<tr>
<td>Moottorin käynnistyvyys, mutta pysähtyy heti</td>
<td>Syöttöjännitevika</td>
<td>Tarkista, että vaihejohtimien, sulakkeiden ja ohjauspiirin kytkennät eivät ole löysillä.</td>
</tr>
<tr>
<td>Moottori ei saavuta nimellissnopeuttaan</td>
<td>Väänääräinen moottori sovellukseen</td>
<td>Ota yhteys laitetoimittajaan, jotta voit valita oikean moottorin.</td>
</tr>
<tr>
<td></td>
<td>Liian suuri kuorma käynnistettäessä</td>
<td>Tarkista moottorin käynnistyminen ”ilman kuormaa”.</td>
</tr>
<tr>
<td></td>
<td>Roottori on rikki</td>
<td>Tarkista oikosulkurenkaiden mahdolliset murtumat. Tarvitaan luultavasti uusi roottori, koska korjaus on yleensä tilapäinen.</td>
</tr>
<tr>
<td></td>
<td>Katkos päivävirtapiirissä</td>
<td>Etsi vika testauslaitteella ja korjaa se.</td>
</tr>
<tr>
<td>ONGELMA</td>
<td>AIHEUTTAJA</td>
<td>SUOSITELTAVA TOIMENPIDE</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Moottorin kiihdytysaika</td>
<td>Ylikuormitus</td>
<td>Vähennä kuormitusta.</td>
</tr>
<tr>
<td>Jon liian pitkä, ja tvoirrankuluttus on liian suuri</td>
<td>Liian alhainen jännite käynnistettäessä</td>
<td>Tarkista mahdollinen suuri vastus. Varmista, että kaapelin koko on riittävä.</td>
</tr>
<tr>
<td>Viiallinen oikosulkuroottori</td>
<td>Liian pieni syöttöjännite</td>
<td>Vaihda roottori.</td>
</tr>
<tr>
<td></td>
<td>Korja ja syöttöjännite.</td>
<td></td>
</tr>
<tr>
<td>Väärrä pyörämissuunta</td>
<td>Väärrä vaihejärjestys</td>
<td>Vaihda kytkentä moottorin liittimissä tai kytkintaulussa.</td>
</tr>
<tr>
<td>Moottori ylikuumenee</td>
<td>Ylikuormitus</td>
<td>Vähennä kuormitusta.</td>
</tr>
<tr>
<td></td>
<td>Runko tai jäähdytysaukot voivat olla likaiset</td>
<td>Aava tuuletusaukot ja varmista, että ilmavirtaus moottorista on jatkuva.</td>
</tr>
<tr>
<td>tai tukossa, mikä</td>
<td>Moottorin yhdessä vaiheessa voi olla katkos</td>
<td>Varmista, että kaikki johtimet ja kaapelit on kytetty kunnolla.</td>
</tr>
<tr>
<td>estää riittävän tuuletuksen</td>
<td>Maasuku</td>
<td>Moottori täytyy käännä uudelleen.</td>
</tr>
<tr>
<td></td>
<td>Epäsymmetrinen jännite moottoriliittimissä</td>
<td>Tarkista kytkenmat ja muun.</td>
</tr>
<tr>
<td>Moottori tärisee</td>
<td>Virheellinen linjaus</td>
<td>Linjaa moottori uudelleen.</td>
</tr>
<tr>
<td></td>
<td>Moottorin alusta heikko</td>
<td>Vahvista alustaa.</td>
</tr>
<tr>
<td></td>
<td>Kytkin epätasapainossa</td>
<td>Tasapainota kytkin.</td>
</tr>
<tr>
<td></td>
<td>Käytettävä laite epätasapainossa</td>
<td>Tasapainota laite.</td>
</tr>
<tr>
<td></td>
<td>Vialliset laakerit</td>
<td>Vaihda laakerit.</td>
</tr>
<tr>
<td></td>
<td>Laakerit eivät ole linjassa</td>
<td>Korja moottori.</td>
</tr>
<tr>
<td></td>
<td>Roottorin tasapainotus muuttunut</td>
<td>Tasapainota roottori.</td>
</tr>
<tr>
<td></td>
<td>Roottorin ja kytkimen tasapainotukset erilaiset</td>
<td>Tasapainota kytkin tai roottori.</td>
</tr>
<tr>
<td></td>
<td>Kivilaihkeinen moottori käy yksivaiheisenä</td>
<td>Tarkista kytkennät.</td>
</tr>
<tr>
<td></td>
<td>Liian suuri aksiaalivällys</td>
<td>Säädä laakerointi tai lisää välilevy.</td>
</tr>
<tr>
<td>Hankava ääni</td>
<td>Tuuletin hankaa laakerikilpeen tai suojukseen</td>
<td>Korja tuulettimen kiinnitys.</td>
</tr>
<tr>
<td></td>
<td>Moottori irronnut alustastaan</td>
<td>Kiristä pultit.</td>
</tr>
<tr>
<td>Meluinen käytäntäni</td>
<td>Ilmaväli on epätasainen</td>
<td>Tarkista laakerikilvet ja laakerit.</td>
</tr>
<tr>
<td></td>
<td>Roottori epätasapainossa</td>
<td>Tasapainota roottori.</td>
</tr>
<tr>
<td>Laakereiden kuumeneminen</td>
<td>Taipunut tai rikkoutunut akseli</td>
<td>Vaihda roottori.</td>
</tr>
<tr>
<td></td>
<td>Hiinha on liian kiireällä</td>
<td>Vähennä hihnin kireyttä.</td>
</tr>
<tr>
<td></td>
<td>Hihnployörät liian kaukana akselin olakkeesta</td>
<td>Siirrä hihnployörä lähemmäksi moottorin laakeria.</td>
</tr>
<tr>
<td></td>
<td>Hihnployörän halkaisija liian pieni</td>
<td>Käytä halkaisijaltaan suurempia hihnployöriä.</td>
</tr>
<tr>
<td></td>
<td>Linjausvirhe</td>
<td>Linjaa käyttölaite uudelleen.</td>
</tr>
<tr>
<td></td>
<td>Liian vähän voiteluainetta</td>
<td>Huolehdi laakerin riittävästä voitelusta ja voiteluaineen laadusta.</td>
</tr>
<tr>
<td></td>
<td>Voiteluaineen laadun heikkeneminen tai epäpuhtaudet</td>
<td>Poista vanha voiteluaine, pese laakerit huolellisesti ja vaihda uusi voiteluaine.</td>
</tr>
<tr>
<td></td>
<td>Liikaa voiteluainetta</td>
<td>Vähennä voiteluaineen määrää. Laakeri saa olla enintään puoliliana.</td>
</tr>
<tr>
<td></td>
<td>Laakerin ylikuormitus</td>
<td>Tarkasta linjaus sekä säteis- ja aksiaalivoimat.</td>
</tr>
<tr>
<td></td>
<td>Vioittunut laakeri</td>
<td>Vaihda laakeri, puhdista kotelo ensin huolellisesti.</td>
</tr>
</tbody>
</table>
11 Kuvat

Kuva 1. Eriistysvastuksen ja lämpötilan välillä riippuvuus suhde ja mitatun eristysvastuksen korjaiminen 40 °C:n lämpötilaan

Kuva 2. Kytkinguolikkaan tai hihnapyörän kiinnittäminen

Avain

X-akseli: Käämin lämpötila (Celciusasteina)
Y-akseli: Eriistysvastuksen lämpötilakerroin, ktc

1) Korjaa havaittu eristysvastus
Ri 40 °C:n lämpötilaan kertomalla se lämpötilakerroimella 𝑘_{TC}: R_{40°C} = R_i x

Kuva 1.

Kuva 2.
Kuva 3. Verkkosyöton
kytkennät

Kuva 4. Jännite-
ja taajuuspolikkeama
alueilla A ja B

X-akseli taajuus yksikköä kohti
Y-akseli jännite yksikköä kohti
Avain
1 alue A
2 alue B (alueen A ulkopuolella)
3 arvopiste
Ohjeelliset kuormitettavuuskäyrät käytettäessä muuttajia, joissa on suora momentinsäätö

Kuva 5a. Muuttaja, jossa on suora momentinsäätö, 50 Hz, lämpötilan nousu B

Kuva 5b. Muuttaja, jossa on suora momentinsäätö, 60 Hz, lämpötilan nousu B

Kuva 5c. Muuttaja, jossa on suora momentinsäätö, 50 Hz, lämpötilan nousu F

Kuva 5d. Muuttaja, jossa on suora momentinsäätö, 60 Hz, lämpötilan nousu F

1. Self-ventilated, EC frame sizes 56-132
2. Self-ventilated, EC frame sizes 160-450
3. Separate motor cooling (force ventilated)
Ohjeelliset kuormitettavuuskäyrät käytettäessä muuta PWM-tyypin jännitelähdettä

Kuva 6a. Muu jännitelähdde, PWM-tyypin muuttaja, 50 Hz, lämpötilan nousu B

Kuva 6b. Muu jännitelähdde, PWM-tyypin muuttaja, 60 Hz, lämpötilan nousu F

Kuva 6c. Muu jännitelähdde, PWM-tyypin muuttaja, 50 Hz, lämpötilan nousu F

Kuva 6d. Muu jännitelähdde, PWM-tyypin muuttaja, 60 Hz, lämpötilan nousu F
İçindekiler

<table>
<thead>
<tr>
<th>Sayfa</th>
<th>İşaretler</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Giriş</td>
</tr>
<tr>
<td></td>
<td>1.1 Uygunluk Bildirimi</td>
</tr>
<tr>
<td></td>
<td>1.2 Geçerlilik</td>
</tr>
<tr>
<td>2</td>
<td>Güvenlik hususları</td>
</tr>
<tr>
<td>3</td>
<td>Taşıma</td>
</tr>
<tr>
<td></td>
<td>3.1 Alım</td>
</tr>
<tr>
<td></td>
<td>3.2 Nakliye ve depolama</td>
</tr>
<tr>
<td></td>
<td>3.3 Kaldırma</td>
</tr>
<tr>
<td></td>
<td>3.4 Motor ağrılığı</td>
</tr>
<tr>
<td>4</td>
<td>Kurulum ve devreye alma</td>
</tr>
<tr>
<td></td>
<td>4.1 Genel</td>
</tr>
<tr>
<td></td>
<td>4.2 Sabit bilyalı rulmanlar dışındaki donanımları olan motorlar</td>
</tr>
<tr>
<td></td>
<td>4.3 Yalıtımdan dirençli kontrolü</td>
</tr>
<tr>
<td></td>
<td>4.4 Temel</td>
</tr>
<tr>
<td></td>
<td>4.5 Kaplınlerin ve kasnakların balansının alınması ve takılması</td>
</tr>
<tr>
<td></td>
<td>4.6 Motorun montajı ve hızlanması</td>
</tr>
<tr>
<td></td>
<td>4.7 Radyal kuvvetler ve kayış tahrirleri</td>
</tr>
<tr>
<td></td>
<td>4.8 Yoğuşma için tahliye tapalarına sahip motorlar</td>
</tr>
<tr>
<td></td>
<td>4.9 Kablo ve elektrik bağlantıları</td>
</tr>
<tr>
<td></td>
<td>4.9.1 Farklı yolverme yöntemleri için bağlantılar</td>
</tr>
<tr>
<td></td>
<td>4.9.2 Yardımcı aksesuarların bağlantısı</td>
</tr>
<tr>
<td></td>
<td>4.10 Terminaler ve dönüş yönü</td>
</tr>
<tr>
<td>5</td>
<td>Çalıştırma</td>
</tr>
<tr>
<td></td>
<td>5.1 Genel</td>
</tr>
<tr>
<td>6</td>
<td>Değişken hızlı çalışmada düşük gerilimli motor</td>
</tr>
<tr>
<td></td>
<td>6.1 Giriş</td>
</tr>
<tr>
<td></td>
<td>6.2 Sargı yalıtımı</td>
</tr>
<tr>
<td></td>
<td>6.2.1 ABB konvertörleri için sargı yalıtımı seçimi</td>
</tr>
<tr>
<td></td>
<td>6.2.2 Diğer tüm konvertörler ile kullanında sargı yalıtımının seçimi</td>
</tr>
<tr>
<td></td>
<td>6.3 Termal koruma</td>
</tr>
<tr>
<td></td>
<td>6.4 Rulman akımları</td>
</tr>
<tr>
<td></td>
<td>6.4.1 ABB konvertörleri ile rulman akımlarının giderilmesi</td>
</tr>
<tr>
<td></td>
<td>6.4.2 Diğer tüm konvertörlerle rulman akımlarının giderilmesi</td>
</tr>
<tr>
<td></td>
<td>6.5 Kablolar, topraklama ve EMC</td>
</tr>
<tr>
<td></td>
<td>6.6 Çalışma hızı</td>
</tr>
<tr>
<td></td>
<td>6.7 Değişken hızlı uygulamalarda motorlar</td>
</tr>
<tr>
<td></td>
<td>6.7.1 Genel</td>
</tr>
<tr>
<td></td>
<td>6.7.2 AC_8_ ile motor yüklenebilirliği – DTC kontrolü konvertör serisi</td>
</tr>
<tr>
<td></td>
<td>6.7.3 AC_5_ ile motor yüklenebilirliği – konvertör serisi</td>
</tr>
<tr>
<td></td>
<td>6.7.4 Diğer gerilim kaynağı PWM-tipi konvertörlerle motor yüklenebilirliği</td>
</tr>
<tr>
<td></td>
<td>6.7.5 Kısa süreli aşırı yüklemeler</td>
</tr>
<tr>
<td></td>
<td>6.8 Değerlendirme plakaları (Etiketler)</td>
</tr>
<tr>
<td></td>
<td>6.9 Değişken hızlı uygulamanın devreye alınması</td>
</tr>
</tbody>
</table>
7 Bakım ... 259
 7.1 Genel denetim .. 259
 7.1.1 Bekleme konumundaki motorlar ... 259
 7.2 Yağlama ... 260
 7.2.1 Kendinden gresli rulmanlara sahip motorlar ... 260
 7.2.2 Gresörülü rulmanlara sahip motorlar .. 260
 7.2.3 Yağlama aralıkları ve miktarları .. 261
 7.2.4 Yağlar ... 262
8 Satış Sonrası Destek ... 263
 8.1 Yedek parçalar .. 263
 8.2 Parçalarına ayırma, birleştirme ve tekrar sarma .. 263
 8.3 Rulmanlar .. 263
9 Çevresel gereklilikler ... 264
10 Sorun Giderme .. 265
11 Şekiller ... 267
1 Giriş

1.1 Uygunluk Bildirimi

Motor makineye takıldığında, devreye alan tarafça tamamlanmış son ürünün 2006/42/EC (Makine) Direktifine göre uygulunu sağlamalıdır.

Örneğin Ex motorlar için ayrı bir kılavuz bulunmaktadır: 'Patlayıcı ortamlar için düşük gerilimli motorlar: Kurulum, işletim, bakım ve emniyet kılavuzu (3GZF500730-47).

1.2 Geçerlilik

Bu talimatlar, hem motor hem de jeneratör işletiminde aşağıdaki ABB elektrikli makine tipleri için geçerlidir:

- MT*, MXMA serisi,
- 56-500 IEC yapı büyüklüklerinde
- 58*, 50** NEMA yapı büyüklüklerinde

Örneğin Ex motorlar için ayrı bir kılavuz bulunmaktadır: 'Patlayıcı ortamlar için düşük gerilimli motorlar: Kurulum, işletim, bakım ve emniyet kılavuzu (3GZF500730-47).

Özel uygulama ve/veya tasarım hususları nedeniyle bazı motor tipleri için ek bilgiler gereklidir.

Aşağıdaki motorlar için ek kılavuz bulunmaktadır:

- makaralı tablo motorları
- su soğutmalı motorlar
- duman emiş motorları
- fren motorları
- yüksek ortam sıcaklıkları için motorlar
- açık güverte montaj için denizcilik uygulamalarında kullanılan motorlar
- gemilere veya açık deniz birimlerine ait motorlar
2 Güvenlik hususları

Motor, nitelikli, sağlık ve emniyet gereklilikleri ile ulusal mevzuatı bilen kişilere kurulum ve bakım için tasarlanmıştır.

Kurulumda ve işletim sahasında kazaların önlenmesi için gerekli emniyet ekipmanı, yerel yönetmeliklere göre sağlanmalıdır.

UYARI

Acil stop kontrolleri yeniden başlatma kilitleriyle donatılmıştır. Acil stop sonrasında, yeni bir başlatma komutu sadece yeniden başlatma kılıdı kasten resetlendiğinde etkili olabilir.

Dikkat edilmesi gereken noktalar:

1. Motor üzerine çıkmayın / basmayın.
4. Motorun dönen parçalarına temas etmeyin.
5. Elektrik verilirken, terminal kutularını açmayın.
3 Taşıma

3.1 Alım

Alımı takiben derhal motoru harici hasara karşı (örneğin mil uçları, flanşlar ve boyalı yüzeyler) kontrol edin, tespit edildiğinde, gecikmeksizin taşıyıcıyı bilgilendirin.

Tüm motor etiketi bilgilerini, özellikle gerilim ve sargı bağlantılarını (yıldız veya üçgen) kontrol edin. Rulman tipi, en küçük yapı büyüklüğündeki motorlar hariç olmak üzere, tüm motorların etiketi üzerinde belirtilir.

Değişken hızlı tahrık uygulaması durumunda, motorun ikinci plakasında bulunan frekansa göre izin verilen maksimum yüklenebilirliği kontrol edin.

3.2 Nakliye ve depolama

Motor her zaman iç mekanlarda (–20°C üzerinde), kuru, titreşimsiz ve toz olmayan koşullarda saklanmalıdır. Nakliye esnasında, şoklardan, düşmelerden ve nemden kaçınmalıdır.

Diğer şartlarda, lütfen ABB ile irtibata geçin.

Korunmamış işlenmiş yüzeyler (mil uçları ve flanşlar), korozyona karşı işlemden geçirilmelidir.

Gresin azalmasını önlemek için millerin düzenli olarak elle döndürüülmesi (üç ayda bir) tavsiye edilir.

Motorda su yoğunmasını önlemek için, mevcutsa, yoğunma önleyici isticiların kullanılması tavsiye edilir.

Motor bekleme konumundayken, rulmanlara yönelik zarardan kaçınmak için harici titreşimlere maruz kalmamalıdır.

Silindirik makaralı ve/veya açısal temaslı rulmanlara sahip motorlar nakliye esnasında kilitleme cihazları ile donatılmalıdır.
3.3 Kalırma

UYARI

Kaldırma, montaj ya da bakım çalışmaları sırasında, gerekli tüm güvenlik hususları göz önünde bulundurulacak ve kaldırılan yük nedeniyle kimseyin tehlikede olması için özellikle dikkat edilecektir.

3.4 Motor ağırlığı

Toplam motor ağırlığı, farklı çıkış, montaj düzeni ve yardımcı ekipmanlara bağlı olarak aynı yapı büyüklüğündeki motorlar (mil merkezin yerden yüksekliği) arasında değişiklik gösterebilir.

Aşağıdaki tabloda, makinelere kendi temel sürümleri içinde yapı materyalinin bir işlevi olarak tahmini maksimum ağırlıklar gösterilmiştir. En küçük yapı büyüklükleri (56 ve 63) hariç tüm ABB motorlarının gerçek ağırlığı, motor etiketinde gösterilmiştir.

<table>
<thead>
<tr>
<th>Yapı büyüklüğü</th>
<th>Alüminyum, Ağırlık (kg)</th>
<th>Dökme demir, Ağırlık (kg)</th>
<th>Fren için ekleni</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>4,5</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>63</td>
<td>6</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>71</td>
<td>8</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>80</td>
<td>14</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>90</td>
<td>20</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>32</td>
<td>40</td>
<td>16</td>
</tr>
<tr>
<td>112</td>
<td>36</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>132</td>
<td>93</td>
<td>90</td>
<td>30</td>
</tr>
<tr>
<td>160</td>
<td>149</td>
<td>130</td>
<td>30</td>
</tr>
<tr>
<td>180</td>
<td>162</td>
<td>190</td>
<td>45</td>
</tr>
<tr>
<td>200</td>
<td>245</td>
<td>275</td>
<td>55</td>
</tr>
<tr>
<td>225</td>
<td>300</td>
<td>360</td>
<td>75</td>
</tr>
<tr>
<td>250</td>
<td>386</td>
<td>405</td>
<td>75</td>
</tr>
<tr>
<td>280</td>
<td>425</td>
<td>800</td>
<td>–</td>
</tr>
<tr>
<td>315</td>
<td>–</td>
<td>1 700</td>
<td>–</td>
</tr>
<tr>
<td>355</td>
<td>–</td>
<td>2 700</td>
<td>–</td>
</tr>
<tr>
<td>400</td>
<td>–</td>
<td>3 500</td>
<td>–</td>
</tr>
<tr>
<td>450</td>
<td>–</td>
<td>4 500</td>
<td>–</td>
</tr>
<tr>
<td>5000</td>
<td>–</td>
<td>2 800</td>
<td>–</td>
</tr>
</tbody>
</table>

Motorda ayrı fan bulunuyorsa ağırlık için ABB ile irtibata geçin.
4 Kurulum ve devreye alma

4.1 Genel

Motor korumasının ve bağlantısının doğru şekilde yapıldığından emin olmak için tüm motor etiketi değerleri dikkatlice kontrol edilmelidir.

Motoru ilk kez çalıştırırken veya 6 aydan uzun süre depoda kaldıktan sonra, belirtilen gres miktarını uygulayın.

Daha fazla ayrıntı için “7.2.2 Gresörlü rulmanlara sahip motorlar” bölümune bakın.

4.2 Sabit bilyalı rulmanlar dışında donanımları olan motorlar

Motorun montajı yapılacak, nakliye kilidini çıkarın. Motorun milini, mümkünse serbest olarak dönmesini kontrol etmek üzere elle çevrin.

Silindirik makaralı rulman bulunan motorlar:
Mile hiçbir radyal kuvvet uygulamaksızın motorun çalıştırılması, “kayma” nedeniyle makaralı rulmana zarar verebilir,

Açılı temas bilyalı rulman bulunan motorlar:
Mile dik yönde hiçbir eksenel kuvvet olmaksızın motorun çalıştırılması, açılı temas rulmanına zarar verebilir.

UYARI
Açılı temas rulmanına sahip motorlar için eksenel kuvvet hiçbir şekilde yön değiştirmemelidir.

Rulman tipi, motor etiketinde belirtilir.
4.3 Yalıtım direnci kontrolü

Uzun süreli beklemelerden sonra veya sargı rutubetinden şüphelenildiği durumlarda depolama dan sonra devreye alınmadan önce yalıtım direncini (IR) ölçün. Sonucu etkilemesini önlemek için IR’nin besleme kablolardan çıkarılmış haldeyken doğrudan motor terminallerinde ölçülmesi gerekir.

Yalıtım sistemindeki değişiklikleri tespit etmek için bir trend göstergesi olarak yalıtım direnci kullanmalıdır. Yeni makinerde IR genellikle binlerce Mohm’dir ve bu nedenle IR değişiminin ardından yalıtım sisteminin durumunu bilmek önem taşır. Tipik olarak, IR 10 MΩ’un altında ve hiçbir durumda 1 MΩ’un altında olmamalıdır (500 veya 1000 VDC ile ölçülmüştür ve 25 °C’ye düzeltilmiştir). Yalıtım direnci değeri, ortam sıcaklığında her 20 °C’lık artışta yarısı düşer.

Bölüm 11’deki Şekil 1, istenen sıcaklığa yalıtım düzeltmesi uygulamak için kullanılabilir.

UYARI

Elektrik çarpması riskini önlemek için, motor gövdesi topraklanmalı ve sargılar ölçümden hemen sonra gövde üzerinden deşarj edilmelidir.

Referans direnç değerine ulaşılmamışsa, sargı çok ıslaktır ve fırında kurutulması gerekir. Fırın sıcaklığı 12-16 saat boyunca 90°C, ardından 6-8 saat boyunca 105°C olmalıdır.

Takılı olmalar halinde ısıtma esnasında tahliye deliği tapaları çıkarılması ve kapatma valfleri açık olmalıdır. Isıtma sonrasında, tapaların tekrar takıldığından emin olun. Tahliye tapaları takılı olsa bile, ön ve arka kapakların ve terminal kutusu kapaklarının kurutma işlemi için sökülmesi tavsiye edilir.

Deniz suyu ile ıslanmış sargıların tekrar sarılması gereklidir.

4.4 Temel

Temelin hazırlanması tamamıyla son kullanıcının sorumluluğundadır.

Metal temeller, korozyonu önlemek için boyanmalıdır.

Temeller, olası kısa devre güçlere dayanacak kadar düz ve sağlam olmalıdır. Temel, motora titreşim aktarımı ve rezonans nedeni ile oluşan titreşimleri önlemek üzere dizayn edilmiş olmalıdır. Bkz. aşağıdaki tablo.

Not: Diğer motor ayağına göre yükseklik farkı ± 0,1mm’yi geçmemelidir
4.5 Kaplinlerin ve kasnakların balansının alınması ve takılması

Standart olarak, motorun balansının alınması yarımkama kullanılarak gerçekleştirilmiştir.

Kaplin veya kasnaklar, kama yölleriğinin işlenmesini takiben mutlaka balans alma işlemine tabi tutulmalıdır. Balans alma işlemi, motor için belirlenen balans alma yöntemine doğrultusunda yapılmalıdır.

Kaplin ve kasnaklar, rulman ve contalara hasar vermeyen uygun ekipman ve alet kullanılarak mile takımlmalıdır.

Kaplini veya kasnaşı asla çekic kullanarak veya motor gövdesine bastırılan bir kol kullanarak takmayın.

UYARI

Aşırı kayış gerginliği rulmanlara zarar verebilir ve milin hasar görmesine neden olabilir.

4.6 Motorun montajı ve hızalanması

Doğru hızalama, rulman, titreşim ve olası arızaların önlenmesi için esastır.

Uygun civataşları veya saplamaları kullanarak motoru temele takın ve temel ile ayakların arasına şimleri yerleştirin.

Motoru uygun yöntemler kullanarak hızalayın.

Mümkünse, tespit deliklerini delin ve tespit pimlerini bu konumlara takın.

Kaplin yarının montaj doğruluğu: B aralığının 0,05 mm'den az olduğunu ve a1 ile a2 arasındaki farkın da 0,05 mm'den az olduğunu kontrol edin. Bkz. şekil 2.

Civataların veya saplamaların son sıkıştırma işleminden sonra hızalaymayı tekrar kontrol edin.

Ürün kataloglarında belirtlen şekilde, rulmanlar için izin verilen yük değerlerini aşmayın.

Motorun yeterli hava akışına sahip olduğunu kontrol edin. Yakındaki hiçbir nesnenin veya direkt güneş ışığının motora ilave ısı yaymasını sağlamayı sağlayın.

Flanşlı motorların (örn. B5, B35, V1), yapının flanşını dış yüzeyinde yeterli hava akışına olanak sağladıgından emin olun.

4.7 Radyal kuvvetler ve kayış tahrikleri

Kayışlar, tahrik ekipmanı tedarikçisinin talimatlarına göre gerilmelidir. Ancak, lügünü ürün kataloglarında belirtilen (örn. radyal rulman yüklemesi) azami kayış kuvvetlerini aşmayın.

UYARI

Aşırı kayış gerilmişliği rulmanlara zarar verebilir ve milin hasar görmesine neden olabilir.
4.8 Yoğuşma için tahliye tapalarına sahip motorlar

Tahliye deliklerinin ve tapalarının aşağı yöne baktığını kontrol edin. Dikey konumda monte edilmiş motorlarda, tahliye tapaları yatay konumda olabilir.

Sizdirmaz plastik tahliye tapalarına sahip motorlar açık konumda teslim edilir. Çok tozlu ortamlarda, tüm tahliye delikleri kapatılmalıdır.

4.9 Kablo ve elektrik bağlantıları

Standart tek hızlı motorlardaki terminal kutusunda normalde altı adet sargı terminali ve en az bir adet topraklama terminali bulunur.

Ana sargı ve topraklama terminaline ilaveten, terminal kutusu ayrıca termistörlerin, ışticicilerin veya diğer yardımcı aksesuarların bağlantılarını içeribilir.

Tüm ana kablolari bağlantısı için uygun kablo mapaları kullanılsıdır. Yardımcı ekipmanlara ilişkin kablolari aynı şekilde kendi terminal bloklarına bağlanabilir.

Motorlar sadece sabit / kalıcı kurulum için tasarlanmıştır. Aksi belirtilmediği takdirde, kablo giriş ölçülerini metrik bir kablo rakorunun IP sınıfı ile aynı olmalıdır.

Kurulum sırasında, sertifikalı kanal göbeği veya kablo konektörünü kullanmalısınız.

Gövde üzerindeki topraklama terminali PE’ye (koruyucu topraklama) bir kablo ile IEC/EN 60034-1, Tablo 5’te gösterildiği gibi bağlanmalıdır:

<table>
<thead>
<tr>
<th>Kurulum faz iletkenlerinin kesit alanı, S, [mm²]</th>
<th>İlgili koruyucu iletkenin minimum kesit alanı, SP, [mm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>185</td>
<td>185</td>
</tr>
<tr>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>400</td>
<td>400</td>
</tr>
</tbody>
</table>

Ayrıca, elektrikli aparatların dışındaki topraklama ya da ek bağlantı tesisleri, en az 4 mm² kesit alanına sahip bir iletkenin efektif bağlantısını sağlayabilmelidir.

Şebeke ve motor terminaleri arasındaki kablo bağlantısı, kurulum için ulusal standartlarda veya motor etiketinde belirtilen nominal akıma göre IEC/EN 60204-1 standardında belirtilen gereklilikleri karşılamalıdır.

Kişisel elektrikli aparaticlar, IP65 sınıflandırılmış kablo girişleri ile monte edilmiş motorlarda kullanılmak üzere tasarlanmıştır.
Ortam sıcaklığı +50 °C'yi aştığında,
en az +90 °C'ye izin verilen çalışma
sıcaklığına sahip kablolara bağlı diğer tüm dönüşüm faktörleri kablo
boyutlandırmasında hesaba katılacaktır.

Motor korumasının çevre ve hava koşullarına
karışık للغاية emin olun. Örneğin, motora
veya terminal kutularına su girmesine
neden olarak elektrik bulunan elemanların
sıcaklığına neden olabilir.

4.9.1 Farklı yolverme yöntemleri için
bağlantılar
Standart tek hızlı motorlardaki terminal kutu-
sunda normalde altı adet sargı terminali ve en az
bir adet topraklama terminali bulunur. Bu, DOL
veya Y/D yolvermenin kullanılmasına olanak verir.

iki hızlı veya özel motorlar için, besleme bağlantısı
yapılan terminal kutusunun içindeki veya motor
kilavuzundaki talimatlar uyulmalıdır.

Gerilim ve bağlantılı değerleri motor etiketinde yer
almaktadır.

Direkt-on-line starting (DOL) (direkt yolverme):
Y veya D sargı bağlantılıları kullanılabilir.

Örneğin, 690 VY, 400 VD, 690 V için Y bağlantısı
ve 400 V için D bağlantısı gösterir.

Yıldız/Üçgen başlatma (Y/D):
Besleme gerilimi, motorun D bağlantısının kullan-
ıldığı zaman nominal gerilimi eşit olmalıdır.

Terminal bloğunun tüm bağlantılara çıkaran.

Diğer yolverme yöntemleri ve aralıklı başlatma
koşulları:
S1 ve S2 tipli çalışma sınıflarında (örn. konvertör
veya yuvarak yolverici) diğer yol verme
yöntemlerinin kullanıldığı durumlarda, aygıtın,
IEC 60079-0 standardındaki gibi “elektrik motoru
çalışırken güç sisteminden yalıtıldığı” ve termal
korumununisteğe bağlı olduğu göz önünde
bulundurulmalıdır.

4.9.2 Yardımcı aksesuarların bağlantıları
Bir motor termistör veya diğer RTD'ler (Pt100,
termal röleler vb.) ile yardımcı cihazlarla
donatılmışsa, bunların uygun yollarla kullanılması
ve bağlanması tavsiye edilir. Bazı uygulamalar
 için, termal koruma kullanılması zorunludur.

Motor ile birlikte verilen belgelerde daha detaylı
bilgi bulunabilir. Yardımcı elemanlara ve bağlantılı
parçalarına ilişkin bağlantı diyagramları terminal
kutusunun içinde bulunabilir.

Termistörler için maksimum ölçüm gerilimi
2,5 V’tür. Pt100 için maksimum ölçüm akımı
5 mA’dır. Daha yüksek bir ölçüm gerilimi veya
akımın kullanımı, okumaları hatalara veya
cıkalış algılayıcısında hasara yol açabilir.

Termal sensörlerin yalıtımı temel yalıtım
gerekliligini karşılar.

4.10 Terminaller ve dönüş yönü

Mil, motora tahrik tarafi yönünden bakıldığı
zaman saat yönünde döner ve hat fazi sırası – L1,
L2, L3 – terminalere şekil 3’te gösterilen şekilde
bağlanır.

Dönüş yönünü değiştirirken için, besleme
kablelerin herhangi iki bağlantıyı birbiriyle
değiştirin.

Motor, tek yönlü bir soğutma fanna sahipse,
bunun motor üzerinde okla işaretlenen yön ile
aynı yönde dönüşmesini sağlayın.
5 Çalıştırma

5.1 Genel

Motorlar, motor etiketinde aksi belirtilmedikçe, aşağıdaki koşullar için tasarlanmıştır:

• Motorlar yalnızca kalıcı olarak monte edilmelidir.
• Normal ortam sıcaklığı –20 °C ila +40 °C arasındadır.
• Maksimum rakım, deniz seviyesinin 1000 m üzerindezdir.
• Besleme gerilimi ve frekans çeşitliliği, ilgili standartlarda bahsedilen sınırları aşmaz. Şekil 4 (EN / IEC 60034-1, paragraf 7.3, Bölüm A) uyarınca besleme gerilimi toleransı ±%5 ve frekans toleransı ±%2'dir. Her iki aşırı değerin aynı anda oluşmasına izin verilmez.

UYARI

Herhangi bir talimatın veya aparat bakımının göz ardı edilmesi, güvendiği tehlikeye atarak motorun kullanımını engelleyebilir.
6 Değişken hızlı çalışmada düşük gerilimli motor

6.1 Giriş

6.2 Sargı yalıtımı

Değişken hızlı tahrıkler, motorun sargısında sinüzoidal beslemeden daha yüksek gerilim stresleri oluşturur. Bu nedenle motorun sargı yalıtımı ve konvertör girişindeki filtre aşındığı talimatlara göre boyutlandırılmalıdır.

6.2.1 ABB konvertörleri için sargı yalıtımı seçimi

ABB olması durumunda, örneğin AC_8__-serisi ve AC_5__-serisi bir diyon besleme ünitesine sahip (kontrolsüz DC gerilimi) tekli tahrıkler, sargı yalıtımı ve filtrelerin seçimi tablo 6.1'e göre yapılabılır.

6.2.2 Diğer tüm konvertörler ile kullanımda sargı yalıtımının seçimi

6.3 Termal koruma

6.4 Rulman akımları

Yalıtımlı rulmanlar veya rulman yapıları, ortak mod filtreleri ve uygun kablolama ve topraklama yöntemleri aşağıdaki talimatlara ve tablo 6.1'ye göre kullanılmalıdır.

Tablo 6.1 ABB konvertörleri için sargı yalıtıma seçimi

<table>
<thead>
<tr>
<th>$U_N \leq 500\text{ V}$</th>
<th>$P_n < 100\text{ kW}$</th>
<th>$P_n \geq 100\text{ kW}$ veya $\text{IEC}315 \leq \text{Yapı büyüklüğü} \leq \text{IEC}355$</th>
<th>$P_n \geq 350\text{ kW}$ veya $\text{IEC}400 \leq \text{Yapı büyüklüğü} \leq \text{IEC}450$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standart motor</td>
<td>Standart motor</td>
<td>Standart motor</td>
<td>Standart motor</td>
</tr>
<tr>
<td>+ Yalıtımlı N-rulman</td>
<td>+ Yalıtımlı N-rulman</td>
<td>+ Ortak mod filtresi</td>
<td>+ Ortak mod filtresi</td>
</tr>
</tbody>
</table>

500V > $U_N \leq 600\text{V}$
- Standart motor
- dU/dt –filtre (reaktor)
- VEYA
- Güçlendirilmiş yalıtıma
- $P_n \geq 350\text{ kW}$ veya $\text{IEC}400 \leq \text{Yapı büyüklüğü} \leq \text{IEC}450$
- Standart motor
- dU/dt –filtre (reaktor)
- VEYA
- Güçlendirilmiş yalıtıma
- $P_n \geq 350\text{ kW}$ veya $\text{IEC}400 \leq \text{Yapı büyüklüğü} \leq \text{IEC}450$

500V > $U_N \leq 600\text{V}$ (kablo uzunluğu > 150 m)
- Standart motor
- Yalıtımlı N-rulman
- Ortak mod filtresi

600V > $U_N \leq 690\text{V}$
- Güçlendirilmiş yalıtıma
- dU/dt –filtre (reaktor)
- $P_n \geq 350\text{ kW}$ veya $\text{IEC}400 \leq \text{Yapı büyüklüğü} \leq \text{IEC}450$
- Güçlendirilmiş yalıtıma
- dU/dt –filtre (reaktor)
- Ortak mod filtresi

6.4.1 ABB konvertörleri ile rulman akımlarının giderilmesi
ABB frekans konvertörü olması durumunda, örneğin bir diyot besleme ünitesine sahip AC_8_ _- ve AC_5_ _-serisi durumunda, motorlarda zararlı rulman akımlarını önlemek için tablo 6.1'de belirtilen yöntemler kullanılmalıdır.

6.4.2 Diğer tüm konvertörlerle rulman akımlarının giderilmesi
Kullanıcı, motorun ve tahrik edilen ekipmanın zararlı rulman akımlarından korunması için ABB'nin bu konumda belirttiği talimatları kilavuz olarak kullanabilir, ancak bunların etkiliği her durumda garanti edilemez.
6.5 Kablo, topraklama ve EMC

IEC 280 ve üstü gövdeye sahip motorlar için, motor gövdesine tahrik edilen ekipman ortak bir çelik tabana takılmamışsa, aralarda ilave potansiyel dengelemesi gerekildir. Bu durumda, çelik taban ile sağlanan bağlantının yükse说得 frekans iletenlik, ön plana çıkan bileşenler arasındaki potansiyel farkın ölçülümesi ile kontrol edilebilir. Frekans konvertörlerine ait topraklama ve kablolama hakkında daha fazla bilgi, kilavuzun "Tahrik sistemünün topraklaması ve kablolaması" bölümünde görülebilir (Kod: 3AFY 61201998).

6.6 Çalışma hızı

Motorun etiketinde veya ilgili ürün katalogunda belirtilen nominal hızdan daha yüksek hızlar için, motorun verilen en yüksek dönüş hızını veya tüm uygulamanın kritik hızının aşıladiğinden emin olun.

6.7 Değişken hızlı uygulamalarda motorlar

6.7.1 Genel

6.7.2 AC_8_ ile motor yüklenebilirliği – DTC kontrollü konvertör serisi

Şekil 5a – 5d’de sunulan yüklenebilirlik eğrileri, kontrolsüz DC gerilimli ve DTC kontrollü ABB AC_8_ _-serisi konvertörler için geçerlidir. Şekillerde, besleme freksanının fonksiyonu olarak motorların yaklaşıklık maksimum sürekli çıkış torku gösterilmiştir. Çıktı torku, motorun nominal torkunun bir yüzdesi olarak verilir. Değerler göre nitelikinde olup talep üzerine kesin değerler sağlanabilir.
6.7.3 AC_5_ ile motor yüklenebilirliği – konvertör serisi

Şekil 6a – 6d’de sunulan yüklenebilirlik eğrileri, AC_5_ -serisi konvertörler için geçerlidir. Şekillerde, besleme frekansının fonksiyonu olarak motorların yaklaşık maksimum sürekli çıkış torku gösterilmiştir. Çıkış torku, motorun nominal torkunun bir yüzdesi olarak verilir. Değerler gösterge niteliğinde olup talep üzerine kesin değerler sağlanabilir.

6.7.4 Diğer gerilim kaynağı PWM-tipi konvertörlerle motor yüklenebilirliği

Kontrolsüz DC gerilimli ve minimum 3 kHz (200…500 V) anahtarlamaları, diğer konvertörler için, bölüm 6.7.3’te belirtilen boyutlandırma talimatları kilavuz olarak kullanılabilir. Ancak, gerçek termal yüklenebilirliğin de daha düşük olabileceği not edilmelidir. Lütfen konvertör üreticisine veya sistem tedarikçisiyle iletişime geçin.

6.7.5 Kısa süreli aşırı yüklemeler

ABB motorları genellikle geçici olarak aşırı yüklenebilir ve aralıklı çalışmalarda kullanılabilir. Bu tür uygulamaları boyutlandırmanın en uygun yöntem DriveSize aracıını kullanmakta.

6.8 Değerlendirme plakaları (Etiketler)

ABB motorlarının değişken hızlı uygulamaları kullanılan genellikle ilave motor etiketleri gerektirmez. Konvertörü devreye almak için gerekli parametreler ana motor etiketinde bulunabilir. Ancak bazı özel uygulamalarda motorlar, değişken hızlı uygulamalar için ilave motor etiketleri ile donatılabilir.

Bunlar aşağıdaki bilgileri içerir:
- hız aralığı
- güç aralığı
- gerilim ve akım aralığı
- tork tipi (sabit veya kuadratik)
- ve konvertör tipi ve gerekli minimum anahtarlama frekansı.

6.9 Değişken hızlı uygulamanın devreye alınması

Değişken hızlı uygulamalar devreye alma işlemi, gerilim konvertörü talimatlarına ve yerel kanunlar ile yönetmeliklere göre yapılmalıdır. Uygulama tarafından ortaya çıkan gerekli ve sınırılamanlar da ayrı dikkate alınmalıdır.

Konvertörü ayarlamak için gerekli tüm parametreler motor etiketinden alınmalıdır. En sık ihtiyaç duyulan parametreler şunlardır:
- nominal gerilim
- nominal akım
- nominal frekans
- nominal hız
- nominal güç

Eksik veya yanlıs bilgi durumunda, doğru ayarları sağlanmadan önce motoru çalıştırmayın!

ABB, uygulamanın emniyetinin artırılması için konvertör tarafından sağlanan tüm uygun koruyucu özelliklerin kullanılmasını tavsiye etmektedir. Konvertörler genellikle (özelliklerin adları ve kullanılabilenin konvertörün üreticisinin ve modeline bağlıdır) gibi özellikler sağlar:
- minimum hız
- maksimum hız
- hızlanma ve yavaşlama zamanları
- maksimum akım
- maksimum tork
- arıza koruması
7 Bakım

7.1 Genel denetim

Aşınma belirtileri görüldüğünde, motoru parçalarına ayırın, parçaları kontrol edin ve gerekirse değiştirin. Rulmanlar değiştirilirken, yeni parçalar, orijinal parçalar ile aynı tıpte olmalıdır. Rulmanlar değiştirilirken, şaft contaları orijinalleriyle aynı kalite ve karakteristikte contalarla değiştirilmelidir.

IP 55 motoru söz konusu olduğunda ve motor bir tapası kapağı çıkmazda teslim edildiğinde, tahliye tapaların yoğun sanının çıkışına ilişkin yolun engellenmesi ve yoğun sanının motorunun ağırlığı için periyodik olarak açılması tavsiye edilir. Bu işlem, motor dururken ve üzerinde çalışmak için emniyetli hale getirildikten sonra yapılmalıdır.

7.1.1 Bekleme konumundaki motorlar

Motor bir gemide veya diğer bir ortamda daha uzun bir süre bekleme konumunda kalırsa, aşağıdaki tedbirler alınmalıdır:

UYARI
Tüm dönen parçalara dikkat edin!

UYARI

İlgili ürün kataloglarında çok küçük gövdeli motorlar hariç bütün motorların etiketlerinde rulman tipleri belirtilmiştir.

Güvenirlik, rulman yağlama aralıkları için hayati bir hususdur. ABB, yağlama için esas olarak L1 (motorların %99’unun ömrünü tamamlayacağı kesinidir) ilkesini kullanır.

7.2.1 Kendinden gresli rulmanlara sahip motorlar
Rulmanlar genellikle 1Z, 2Z, 2RS veya benzer kendinden gresli rulmanlardır.

Kılavuz olarak, 250 gövdeye kadar olan boyutlara ilişkin yeterli yağlama, L_{10} göre aşağıdaki sürelerde被执行ilebilir. Daha yüksek ortam sıcaklıklarında çalışma için, lütfen ABB ile irtibata geçin. L_{10} değerlerinin kabaca L_{10} değerlerine değiştirilmesine yönelik bilgilendirici formül:

\[L_{10} = 2,0 \times L_{10} \]

25 ila 40°C arasındaki ortam sıcaklıklarında kendinden gresli rulmanlar için görev / çalışma saatleri şöyledir:

<table>
<thead>
<tr>
<th>Yapı büyüklüğü</th>
<th>Kutup sayısı</th>
<th>Çalışma saatleri 25 °C'de</th>
<th>Çalışma saatleri 40 °C'de</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>2</td>
<td>52 000</td>
<td>33 000</td>
</tr>
<tr>
<td>56</td>
<td>4-8</td>
<td>65 000</td>
<td>41 000</td>
</tr>
<tr>
<td>63</td>
<td>2</td>
<td>49 000</td>
<td>31 000</td>
</tr>
<tr>
<td>63</td>
<td>4-8</td>
<td>63 000</td>
<td>40 000</td>
</tr>
<tr>
<td>71</td>
<td>2</td>
<td>67 000</td>
<td>42 000</td>
</tr>
<tr>
<td>71</td>
<td>4-8</td>
<td>100 000</td>
<td>56 000</td>
</tr>
<tr>
<td>80-90</td>
<td>2</td>
<td>100 000</td>
<td>65 000</td>
</tr>
<tr>
<td>80-90</td>
<td>4-8</td>
<td>100 000</td>
<td>96 000</td>
</tr>
<tr>
<td>100-112</td>
<td>2</td>
<td>89 000</td>
<td>56 000</td>
</tr>
<tr>
<td>100-112</td>
<td>4-8</td>
<td>100 000</td>
<td>89 000</td>
</tr>
<tr>
<td>132</td>
<td>2</td>
<td>67 000</td>
<td>42 000</td>
</tr>
<tr>
<td>132</td>
<td>4-8</td>
<td>100 000</td>
<td>77 000</td>
</tr>
<tr>
<td>160</td>
<td>2</td>
<td>60 000</td>
<td>38 000</td>
</tr>
<tr>
<td>160</td>
<td>4-8</td>
<td>100 000</td>
<td>74 000</td>
</tr>
<tr>
<td>180</td>
<td>2</td>
<td>55 000</td>
<td>34 000</td>
</tr>
<tr>
<td>180</td>
<td>4-8</td>
<td>100 000</td>
<td>70 000</td>
</tr>
<tr>
<td>200</td>
<td>2</td>
<td>41 000</td>
<td>25 000</td>
</tr>
<tr>
<td>200</td>
<td>4-8</td>
<td>95 000</td>
<td>60 000</td>
</tr>
<tr>
<td>225</td>
<td>2</td>
<td>36 000</td>
<td>23 000</td>
</tr>
<tr>
<td>225</td>
<td>4-8</td>
<td>88 000</td>
<td>56 000</td>
</tr>
<tr>
<td>250</td>
<td>2</td>
<td>31 000</td>
<td>20 000</td>
</tr>
<tr>
<td>250</td>
<td>4-8</td>
<td>80 000</td>
<td>50 000</td>
</tr>
</tbody>
</table>

Veriler 60 Hz’ye kadar geçerlidir.

7.2.2 Gresörlüklü rulmanlara sahip motorlar
Yağlama plakası ve genel yağlama tavsiyesi.

Motor bir yağlama plakası ile donatılmışsa verilen değerlerle uyun.

Montaj, ortam sıcaklığı ve dönüş hızına göre gresleme aralıkları yağlama plakasında tanımlanmıştır.

ilk başlatma esnasında da rulman yağlamasını takiben, geçici sıcaklık artış yaklaşık 10 ila 20 saat boyunca görülebilir.

Bazı motorlar, eski gres için kolektör ile donatılabilir. Ekipman için verilen özel talimatlara uyun.

A. Manuel yağlama

Motor Çalışırken yeniden gresleme
- Gres boşaltma tapasını çıkarın veya takılıysa kapatin.
- Yağlama plakası ve genel yağlama tavsiyesi. Motor bir yağlama plakası ile donatılmışsa verilen değerlerle uyun.
- Montaj, ortam sıcaklığı ve dönüş hızına göre gresleme aralıkları yağlama plakasında tanımlanmıştır.
- İlk başlatma esnasında da rulman yağlamasını takiben, geçici sıcaklık artış yaklaşık 10 ila 20 saat boyunca görülebilir.
- Bazı motorlar, eski gres için kolektör ile donatılabilir. Ekipman için verilen özel talimatlara uyun.

B. Otomatik yağlama

Gres boşaltma tapası otomatik yağlama ile kalıcı olarak çıkarılmalıdır veya takılıysa kapama valfını açılır.

ABB sadece elektromekanik yağlama sistemlerinin kullanımını tavsiye etmektedir.

Tabloda belirtilen her bir yağlama aralığına ait gres miktarı, merkezi yağlama sistemi kullanılıyorsa üç ile çarpılmalıdır. Daha küçük otomatik yeniden gresleme ünitesi kullanılmadı durumunda (motor başına bir veya iki kartuş), normal gres miktarı kullanılabilir.

2 kutuplu motorlar yeniden greslenirde, yağlayıcılar bölümünde 2 kutuplu motorlara ilişkin yağlayıcı tavsiyelerine dair not dikkate alınmalıdır.

Kullanılan gres otomatik yağlama için uygun olmalıdır. Otomatik yağlama sistemi tedarikçisinin ve gres üreticisinin tavsiyeleri kontrol edilmelidir.
Otomatik yağlama sistemi için gres miktarı hesaplama örneği

Merkezi yağlama sistemi: 50 Hz sebeke deki IEC M3_P 315..4 kutuplu motor, Tabloya göre yeniden yağlama aralığı 7600 saat/55 g (DE) ve 7600 saat/40 g (NDE) şeklindedir:

(DE) RLI = 55 g/7600 saat*3*24 = 0,52 g/gün

(NDE) RLI = 40 g/7600 saat*3*24 = 0,38 g/gün

Tekli otomatik yağlama ünitesi (kartuş) için gres miktarı hesaplama örneği

(DE) RLI = 55 g/7600 saat*24 = 0,17 g/gün

(NDE) RLI = 40 g/7600 saat*24 = 0,13 g/gün

RLI = Yeniden yağlama aralığı, DE = Tahrik uçu, NDE = Tahrik edilmeyen uç

7.2.3 Yağlama aralıkları ve miktarları

Dikey motorlara ilişkin yağlama aralıkları, aşağıdaki tablodaki değerlerin yarısıdır. Kılavuz olarak, yeterli yağlama, L₁'e göre aşağıdaki sürelerde gerçekleştirilebilir. Daha yüksek ortam sıcaklıklarında çalışma için, lütfen ABB ile irtibata geçin. L₁ değerlerinin manuel yağlama ile kabaca L₁₀ değerlerinin L₁₀ = 2,0 x L₁ olarak değiştirilmesi için bilgilendirici formül şu şekildedir:

UYARI

Gres ve rulmanların maksimum işletim sıcaklığı +110°C'yi aşmamalıdır. Motorun tasarrufları maksimum hızı aşılmalıdır.

<table>
<thead>
<tr>
<th>Yapı büyüklüğü</th>
<th>Gres miktarı g/rulman</th>
<th>kW 3600 devir/ dakika</th>
<th>3000 devir/ dakika</th>
<th>kW 1800 devir/ dakika</th>
<th>1500 devir/ dakika</th>
<th>kW 1000 devir/ dakika</th>
<th>kW 500-900 devir/ dakika</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>10</td>
<td>10 000</td>
<td>13 000</td>
<td>18 000</td>
<td>21 000</td>
<td>2 500</td>
<td>28 000</td>
</tr>
<tr>
<td>132</td>
<td>15</td>
<td>9 000</td>
<td>11 000</td>
<td>17 000</td>
<td>19 000</td>
<td>2 500</td>
<td>26 500</td>
</tr>
<tr>
<td>160</td>
<td>25</td>
<td>9 000</td>
<td>12 000</td>
<td>18 000</td>
<td>21 500</td>
<td>11</td>
<td>24 000</td>
</tr>
<tr>
<td>160</td>
<td>> 18,5</td>
<td>7 500</td>
<td>1 000</td>
<td>> 15</td>
<td>15 000</td>
<td>18 000</td>
<td>11</td>
</tr>
<tr>
<td>180</td>
<td>30</td>
<td>≤ 22</td>
<td>7 000</td>
<td>9 000</td>
<td>≤ 22</td>
<td>15 500</td>
<td>18 500</td>
</tr>
<tr>
<td>180</td>
<td>> 22</td>
<td>6 000</td>
<td>8 500</td>
<td>> 22</td>
<td>14 000</td>
<td>17 000</td>
<td>> 22</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>≤ 37</td>
<td>5 500</td>
<td>8 000</td>
<td>≤ 30</td>
<td>14 500</td>
<td>17 500</td>
</tr>
<tr>
<td>200</td>
<td>> 37</td>
<td>3 000</td>
<td>5 500</td>
<td>> 30</td>
<td>10 000</td>
<td>12 000</td>
<td>> 22</td>
</tr>
<tr>
<td>225</td>
<td>≤ 45</td>
<td>4 000</td>
<td>6 500</td>
<td>≤ 45</td>
<td>13 000</td>
<td>16 500</td>
<td>≤ 30</td>
</tr>
<tr>
<td>225</td>
<td>> 45</td>
<td>1 500</td>
<td>2 500</td>
<td>> 45</td>
<td>5 000</td>
<td>6 000</td>
<td>> 30</td>
</tr>
<tr>
<td>250</td>
<td>60</td>
<td>≤ 55</td>
<td>2 500</td>
<td>4 000</td>
<td>≤ 55</td>
<td>9 000</td>
<td>11 500</td>
</tr>
<tr>
<td>250</td>
<td>> 55</td>
<td>1 000</td>
<td>1 500</td>
<td>> 55</td>
<td>3 500</td>
<td>4 500</td>
<td>> 37</td>
</tr>
<tr>
<td>280(1)</td>
<td>60</td>
<td>≥ 2000</td>
<td>3 500</td>
<td>≥ 2000</td>
<td>6 000</td>
<td>7 000</td>
<td>≥ 2000</td>
</tr>
<tr>
<td>280(1)</td>
<td>60</td>
<td>–</td>
<td>–</td>
<td>≥ 2000</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>280</td>
<td>35</td>
<td>≥ 2000</td>
<td>3 500</td>
<td>≥ 2000</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>280</td>
<td>40</td>
<td>–</td>
<td>–</td>
<td>≥ 2000</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>315</td>
<td>35</td>
<td>≥ 2000</td>
<td>3 500</td>
<td>≥ 2000</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>315</td>
<td>55</td>
<td>–</td>
<td>–</td>
<td>≥ 2000</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>355</td>
<td>35</td>
<td>≥ 2000</td>
<td>3 500</td>
<td>≥ 2000</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>355</td>
<td>70</td>
<td>–</td>
<td>–</td>
<td>≥ 2000</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>400</td>
<td>40</td>
<td>≥ 2000</td>
<td>3 500</td>
<td>≥ 2000</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>400</td>
<td>85</td>
<td>–</td>
<td>–</td>
<td>≥ 2000</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>450</td>
<td>40</td>
<td>≥ 2000</td>
<td>3 500</td>
<td>≥ 2000</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>450</td>
<td>95</td>
<td>–</td>
<td>–</td>
<td>≥ 2000</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>500(8)</td>
<td>40</td>
<td>≥ 2000</td>
<td>3 500</td>
<td>≥ 2000</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>500(8)</td>
<td>85</td>
<td>–</td>
<td>–</td>
<td>≥ 2000</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>5010</td>
<td>40</td>
<td>≥ 2000</td>
<td>3 500</td>
<td>≥ 2000</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>5010</td>
<td>85</td>
<td>–</td>
<td>–</td>
<td>≥ 2000</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>5012</td>
<td>85</td>
<td>–</td>
<td>–</td>
<td>≥ 2000</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Yağlama aralıklarında, rulman işletim sıcaklığı 80°C esas alınır (ortam sıcaklığı +25°C). Daha yüksek hızda işletim, örn. frekans konvertörü uygulamalarında, veya ağır yükte daha düşük hız için yağlama aralıklarının daha kısa tutulması gerekir.
<table>
<thead>
<tr>
<th>Yapı büyüklüğü</th>
<th>Gres miktarı/g/rulman</th>
<th>kW 3600 devir/dakika</th>
<th>kW 3000 devir/dakika</th>
<th>kW 1800 devir/dakika</th>
<th>kW 1500 devir/dakika</th>
<th>kW 1000 devir/dakika</th>
<th>kW 500-900 devir/dakika</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>25 ± 18,5</td>
<td>4 500</td>
<td>6 000</td>
<td>9 000</td>
<td>10 500</td>
<td>12 000</td>
<td>12 000</td>
</tr>
<tr>
<td>160</td>
<td>25 > 18,5</td>
<td>3 500</td>
<td>5 000</td>
<td>7 500</td>
<td>9 000</td>
<td>11 000</td>
<td>11 000</td>
</tr>
<tr>
<td>180</td>
<td>30 ± 22</td>
<td>3 500</td>
<td>4 500</td>
<td>7 500</td>
<td>9 000</td>
<td>12 000</td>
<td>12 000</td>
</tr>
<tr>
<td>180</td>
<td>30 > 22</td>
<td>3 000</td>
<td>4 000</td>
<td>7 000</td>
<td>8 500</td>
<td>15 000</td>
<td>15 000</td>
</tr>
<tr>
<td>200</td>
<td>40 ± 37</td>
<td>2 750</td>
<td>4 000</td>
<td>7 000</td>
<td>8 500</td>
<td>12 000</td>
<td>12 000</td>
</tr>
<tr>
<td>200</td>
<td>40 > 37</td>
<td>1 500</td>
<td>2 500</td>
<td>5 000</td>
<td>6 000</td>
<td>12 000</td>
<td>12 000</td>
</tr>
<tr>
<td>225</td>
<td>50 ± 45</td>
<td>2 000</td>
<td>3 000</td>
<td>6 500</td>
<td>8 000</td>
<td>11 000</td>
<td>11 000</td>
</tr>
<tr>
<td>225</td>
<td>50 > 45</td>
<td>1 500</td>
<td>2 500</td>
<td>3 500</td>
<td>5 000</td>
<td>7 000</td>
<td>7 000</td>
</tr>
<tr>
<td>250</td>
<td>50 ± 55</td>
<td>1 000</td>
<td>2 000</td>
<td>4 500</td>
<td>5 500</td>
<td>7 500</td>
<td>7 000</td>
</tr>
<tr>
<td>250</td>
<td>50 > 55</td>
<td>1 500</td>
<td>2 500</td>
<td>7 500</td>
<td>9 000</td>
<td>11 000</td>
<td>12 000</td>
</tr>
<tr>
<td>280</td>
<td>60 ± 70</td>
<td>1 000</td>
<td>1 750</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>280</td>
<td>60 > 70</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>315</td>
<td>70 ± 90</td>
<td>900</td>
<td>1 600</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>315</td>
<td>70 > 90</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>355</td>
<td>85 ± 100</td>
<td>900</td>
<td>1 600</td>
<td>1 300</td>
<td>4 300</td>
<td>4 800</td>
<td>4 800</td>
</tr>
<tr>
<td>355</td>
<td>85 > 100</td>
<td>1 300</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>400</td>
<td>100 ± 120</td>
<td>1 000</td>
<td>2 000</td>
<td>3 500</td>
<td>6 500</td>
<td>7 500</td>
<td>7 000</td>
</tr>
<tr>
<td>400</td>
<td>100 > 120</td>
<td>1 300</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>450</td>
<td>120 ± 150</td>
<td>1 000</td>
<td>2 000</td>
<td>3 800</td>
<td>7 000</td>
<td>9 000</td>
<td>9 000</td>
</tr>
<tr>
<td>450</td>
<td>120 > 150</td>
<td>1 200</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>5008</td>
<td>130 ± 180</td>
<td>1 000</td>
<td>2 000</td>
<td>3 800</td>
<td>7 000</td>
<td>9 000</td>
<td>9 000</td>
</tr>
<tr>
<td>5008</td>
<td>130 > 180</td>
<td>1 500</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>5010</td>
<td>150 ± 210</td>
<td>1 000</td>
<td>2 000</td>
<td>3 800</td>
<td>7 000</td>
<td>9 000</td>
<td>9 000</td>
</tr>
<tr>
<td>5010</td>
<td>150 > 210</td>
<td>2 000</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>5012</td>
<td>160 ± 250</td>
<td>1 000</td>
<td>1 900</td>
<td>3 500</td>
<td>7 000</td>
<td>9 000</td>
<td>9 000</td>
</tr>
<tr>
<td>5012</td>
<td>160 > 250</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

UYARI

1) M3AA

7.2.4 Yağlar

UYARI

Farklı tipteki gresleri karıştırmayın.

Yeniden greslerken, sadece aşağıdaki özelliklere sahip özel bilyalı rulman gresini kullanın:

- **lityum kompleks sabunu ve mineralli** veya **PAO yağlı** iyi kalite gres
- **baz yağ** viskozitesi 40°C'de 100-160 cST
- **yoğunluk NLGI derecesi** 1,5 - 3 (**)*)
- **sıcaklık aralığı** –30 °C - +120 °C, sürekli

*) Skalanın daha katı ucu, dikey montajlı motorlar ya da sıcak koşullar için önerilir.

Uygun olan yağları rulman hasarına neden olabilir.

- **Mobil Unirex N2** ya da **N3** (lityum kompleks bazlı)
- **Mobilith SHC 100** (lityum kompleks bazlı)
- **Shell Gadus S5 V 100 2** (lityum kompleks bazlı)
- **Klüber Klüberplex BEM 41-132** (özel lityum bazlı)
- **FAG Arcanol TEMP110** (özel lityum bazlı)
- **Lubcon Turmogrease L 802 EP PLUS** (özel lityum bazlı)
- **Total Multis Complex S2 A** (lityum kompleks bazlı)

Aşağıdaki yüksek performanslı gresler kullanılabilir:

- Mobil Unirex N2 ya da N3 (lityum kompleks bazlı)
- Mobilith SHC 100 (lityum kompleks bazlı)
- Shell Gadus S5 V 100 2 (lityum kompleks bazlı)
- Klüber Klüberplex BEM 41-132 (özel lityum bazlı)
- FAG Arcanol TEMP110 (özel lityum bazlı)
- Lubcon Turmogrease L 802 EP PLUS (özel lityum bazlı)
- Total Multis Complex S2 A (lityum kompleks bazlı)

Her zaman hız faktörünün 480.000'den daha fazla olduğu 2 kutuplu yüksek hızlı motorlara ilişkin yüksek hız gresini kullanın (Dm x n ile hesaplanır, Dm = ortalama rulman çapı, mm; n = dönüş hızı, devir/dakika).

- **Klüber Klüber Quiet BQH 72-102** (poliüre bazlı)
- **Lubcon Turmogrease PUT03** (poliüre bazlı)

Aşağıdaki gresler yüksek hızlı pik döküm motorlarda kullanılabilir, ancak lityum kompleks bazlı greslerle karıştırmamalıdır:

- Klüber Klüber Quiet BQH 72-102 (poliüre bazlı)
- Lubcon Turmogrease PUT03 (poliüre bazlı)

Diğer yağlar kullanılrsa, niteliklerin yukarıda listelenen yüksek performanslı gresler esas alınır. Başka greslerin kullanılması durumunda, yağlama aralığı kısalabilir.
8 Satış Sonrası Destek

8.1 Yedek parçalar

Yedek parçalar aksi belirtilmediği sürece orijinal ve ABB tarafından onaylanmış olmalıdır.

Yedek parçalar sipariş edilirken motor seri numarası, tam tip tanımi ve ürün kodu, motor etiketinde yazılan şekilde belirtilmelidir.

8.2 Parçalarına ayırma, birleştirme ve tekrar sarma

Geri sarma her zaman nitelikli tamirhaneler tarafından yapılmalıdır.

Duman tahliyesi ve diğer özel motorlar, ABB ile iletişime geçilmeden geri sarılamalıdır.

8.3 Rulmanlar

Rulmanlara özellikle dikkat edilmelidir.

Rulmanlar çektirme aletleri ile çıkarılmalı ve ısıtılara veya özel aletler kullanılarak takılmalıdır.

Rulman değişimi, ABB Satış Ofisinde mevcut olan ayrı bir talimat kitapçığından detaylı olarak açıklanmıştır.

Etiket gibi motor üzerinde bulunan yönergelere uyulmalıdır. Motor etiketindeki rulman tipleri değiştirilmemelidir.
ABB motorlarının birçoğu, 50 Hz’de 82 dB (A) (± 3 dB) düzeyini aşmayan bir ses basınç düzeyine sahiptir.

Belirli motorlara ilişkin değerler, ilgili ürün kataloglarında bulunabilir. 60 Hz sinüzoidal beslemede, değerler ürün kataloglarındaki 50 Hz değerle karşılaştırıldığında yaklaşık 4 dB(A) daha yüksektir.

Frekans konvertörü beslemesindeki ses basınç düzeyleri için, lütfen ABB ile irtibata geçin.

Motorların kazınması ve geri dönüştürülmesi gerektiğinde, uygun yollar, yerel yönetmelikler ve yasalar izlenmelidir.
10 Sorun Giderme

Bu talimatlar, ekipmana ait tüm detayları veya değişiklikleri kapsamamakta ve kurulum, işletim veya bakım ile bağlantılı olarak karşılanacak her türlü olması koşulu sağlamakta. İlave bilgiye ihtiyaç duyulduğunda, lütfen en yakın ABB Satış Ofisi ile irtibata geçin.

Motor sorun giderme tablosu
Motor servisi ve sorun giderme işlemi uygun alet ve ekipmana sahip nitelikli çahıslar tarafından yapılmalıdır.

<table>
<thead>
<tr>
<th>SORUN</th>
<th>NEĐEN</th>
<th>YAPILMASI GEREKEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor çalışmayı</td>
<td>Yanmış sigortalar</td>
<td>Sigortalari uygun tip ve değerdeki sigortalarla değiştirin.</td>
</tr>
<tr>
<td></td>
<td>Aşırı yük tetiklemeleri</td>
<td>Yol vericideki aşırı yüklemeyi kontrol edin ve resetleyin.</td>
</tr>
<tr>
<td></td>
<td>Uygun olmayan güç beslemesi</td>
<td>Beslenen güç motor plakasi ile yük faktörüne uydugunu görmek için kontrol edin.</td>
</tr>
<tr>
<td></td>
<td>Uygun olmayan hat bağlantıları</td>
<td>Motorla birlikte verilen diyagramlara göre bağlantıları kontrol edin.</td>
</tr>
<tr>
<td></td>
<td>Sargı veya kontrol anahtardında açık devre</td>
<td>Anahtar kapatin diginda bir uğultu sesi ile belirlenir. Gevşek kablo bağlantıları kontrol edin ve tüm kontrol kontaklarının kapişi olduğundan emin olun.</td>
</tr>
<tr>
<td></td>
<td>Mekanik arıza</td>
<td>Motorun ve tahrikin serbest biçimde dönüp olduğunu tespit edin. Ruşhanları ve yağlamayı kontrol edin.</td>
</tr>
<tr>
<td></td>
<td>Kısa devre olmuş stator</td>
<td>ABB ile iletişime geçin veya Yapilan çalışma için beslenmenin bağlantısının kesildiğinden ve topraklandığından emin olun, kablolari çıkarkin ve yalıtım direncini ölçün.</td>
</tr>
<tr>
<td></td>
<td>Motor aşırı yüklenmiş olabiliyor</td>
<td>Yüki azaltın.</td>
</tr>
<tr>
<td>Motor hız kaybediyor</td>
<td>Tek faz açık olabilir</td>
<td>Açık faz için hatları kontrol edin.</td>
</tr>
<tr>
<td></td>
<td>Yanlış uygulama</td>
<td>Tip ve boyutu değiştirin. Ekipman tedarikçisine danışın.</td>
</tr>
<tr>
<td></td>
<td>Aşırı yük</td>
<td>Yükü azaltın.</td>
</tr>
<tr>
<td></td>
<td>Alçak gerilim</td>
<td>Motor etiketinde belirtilen geriliminin sağlanmadığından emin olun. Bağlantıyı kontrol edin.</td>
</tr>
<tr>
<td></td>
<td>Açık devre</td>
<td>Sigortalar yanmış. Aşırı yük rolèsini, statoru ve düğmeleri kontrol edin.</td>
</tr>
<tr>
<td>Motor çalışmayı ve ardından duruyor</td>
<td>Güç arızası</td>
<td>Hattaki sigortalarla ve kontrole giden geçiş bağlantılarını kontrol edin.</td>
</tr>
<tr>
<td></td>
<td>Motor terminallerindeki gerilim, gerilim düşümü nedenile çok düşük</td>
<td>Uygun tip için ekipman tedarikçisine danışın.</td>
</tr>
<tr>
<td></td>
<td>Başlama yük çok yüksek</td>
<td>Motorun başlatma yükünü “yükse” konuma göre kontrol edin.</td>
</tr>
<tr>
<td></td>
<td>Kırık rotor çubukları veya geçiş rotor</td>
<td>Haikalının yanındaki kırıkları kontrol edin. Yeni bir rotor gerekebilir, çünkü onarım işlemeleri genellikle geçici çözümlerdir.</td>
</tr>
<tr>
<td></td>
<td>Açık primer devresi</td>
<td>Test cihazıyla arızayı tespit ve tamir edin.</td>
</tr>
<tr>
<td>SORUN</td>
<td>NEĐEN</td>
<td>YAPILMASI GEREKEN</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Motor hızlanması çok uzun zaman alıyor ve/veya yüksek akım çekiyor</td>
<td>Aşırı yük</td>
<td>Yükü azaltın.</td>
</tr>
<tr>
<td></td>
<td>Başıltmada açık gerilim</td>
<td>Yüksek direnç olup olmadığını kontrol edin.</td>
</tr>
<tr>
<td></td>
<td>Arızalı sincap kafesli rotor</td>
<td>Yeni bir rotorla değiştirin.</td>
</tr>
<tr>
<td></td>
<td>Uygulan gerilim çok düşük</td>
<td>Güç beslenmesini onarın.</td>
</tr>
<tr>
<td>Yanlış dönüş yönü</td>
<td>Yanlış faz sırası</td>
<td>Motorında veya dağıtım panosunda bağlantıları ters çevrin.</td>
</tr>
<tr>
<td>Motor çalışırken aşırı isşiyor</td>
<td>Aşırı yük</td>
<td>Yükü azaltın.</td>
</tr>
<tr>
<td></td>
<td>Gövde veya havalandırma açıklıkları kirlilik ve motorun uygun havalandırmasını engelleniyor olabilir</td>
<td>Havalandırma deliklerini açın ve motordan sürekli bir hava akışı olup olmadığını kontrol edin.</td>
</tr>
<tr>
<td></td>
<td>Motorun bir fazi açık olabilir</td>
<td>Tüm girişlerin ve kabloların iyi bağlı olduğundan emin olmak için kontrol edin.</td>
</tr>
<tr>
<td></td>
<td>Topraklanmış sargı</td>
<td>Motor tekrar sarılmalıdır.</td>
</tr>
<tr>
<td></td>
<td>Denges terminal gerilimi</td>
<td>Hatalı uçları, bağlantılıarı ve transformatörleri kontrol edin.</td>
</tr>
<tr>
<td>Motor titreşim yapıyor</td>
<td>Motor yanlış hizalanmış</td>
<td>Tekrar hizalayın.</td>
</tr>
<tr>
<td></td>
<td>Zayıf destek</td>
<td>Tabanı güçlendirin.</td>
</tr>
<tr>
<td></td>
<td>Kaplın dengesiz</td>
<td>Kapılı balanse edin.</td>
</tr>
<tr>
<td></td>
<td>Tahrik edilen ekipman dengesiz</td>
<td>Tahrik ekipmanın tekrar balanse edin.</td>
</tr>
<tr>
<td></td>
<td>Arızalı rulmanlar</td>
<td>Rulmanları değiştirin.</td>
</tr>
<tr>
<td></td>
<td>Rulmanlar hizada değil</td>
<td>Motoru onarın.</td>
</tr>
<tr>
<td></td>
<td>Dengeleme açıklıkları değişmiş</td>
<td>Rulman tekrar balanse edin.</td>
</tr>
<tr>
<td></td>
<td>Rotor ve kaplin dengesi arasında uyumsuzluğ (yarm kama - tam kama)</td>
<td>Kapılına veya rotoru tekrar balanse edin.</td>
</tr>
<tr>
<td></td>
<td>Tek faza çalışan polifaz motor</td>
<td>Açık devre olup olmadığını kontrol edin.</td>
</tr>
<tr>
<td></td>
<td>Aşırı uç boşluğu</td>
<td>Rulmanı ayarlayın veya şim koyun.</td>
</tr>
<tr>
<td>Sürtünme sesi</td>
<td>Fan arka rulman kapağına veya fan kapağına sürüyor</td>
<td>Fan montajını düzeltin.</td>
</tr>
<tr>
<td></td>
<td>Yatak plakasında gevşeklik</td>
<td>Tutucu civatalarını sıkıştırın.</td>
</tr>
<tr>
<td>Gürültülü işletim</td>
<td>Hava boşluğu uniform değil</td>
<td>Motor kapağı geçmelerini veya rulman geçmelerini kontrol edin ve düzeltin.</td>
</tr>
<tr>
<td></td>
<td>Rotor dengesiz</td>
<td>Rotor tekrar balanse edin.</td>
</tr>
<tr>
<td></td>
<td>Rulmanlar sıcak</td>
<td>Mili düzeltin veya değiştirin.</td>
</tr>
<tr>
<td></td>
<td>Mil bükümüş veya esnemiş</td>
<td>Mili düzeltin veya değiştirin.</td>
</tr>
<tr>
<td></td>
<td>Aşırı kayış çekmesi</td>
<td>Kayış gerginliğini azaltın.</td>
</tr>
<tr>
<td></td>
<td>Kasnaklar, mil desteğinden çok uzakta</td>
<td>Kasnakta motor rulmanının yanmasına getirin.</td>
</tr>
<tr>
<td></td>
<td>Kasnak çapı çok küçük</td>
<td>Daha büyük kasnak kullanın.</td>
</tr>
<tr>
<td></td>
<td>Yanlış hizalama</td>
<td>Yaniden hizalayarak tahiri düzenlendirin.</td>
</tr>
<tr>
<td></td>
<td>Yetersiz gres</td>
<td>Rulmanda uygun kalite ve miktarla gresin bulunmasını sağlayın.</td>
</tr>
<tr>
<td></td>
<td>Gresin bozulması veya yağın kirlenmesi</td>
<td>Eski gresi tahliye edin, rulmanları kerosenle tıtanın ve yeni gresi koj.</td>
</tr>
<tr>
<td></td>
<td>Aşırı yağ</td>
<td>Gres miktarını azaltın; rulman yardımcı fazla dolu olmamasıdır.</td>
</tr>
<tr>
<td></td>
<td>Aşırı yeğenmiş rulman</td>
<td>Hizalamayı, yan ve üç baskıını kontrol edin.</td>
</tr>
<tr>
<td></td>
<td>Kirik bilya veya kaba yüzeyler</td>
<td>Rulmanı değiştirin, önce gövdeyi iyice temizleyin.</td>
</tr>
</tbody>
</table>
11 Şekiller

Şekil 1. Yalıtım direncinin sıcaklık ile olan bağlantısını ve ölçülen yalıtım direncinin 40 °C sıcaklığı göre nasıl düzeltileceğini gösteren diyagram.

Şekil 2. Yarım kaplin veya kasınağın montajı

X eksen: Sargsı sıcaklığı, Santigrat Derece
Y eksen: Yalıtım Direnç Sıcaklık Katsayısı, ktc

1) Gözlenen yalıtım direncini düzeltmek için, \(R_1 \), 40 °C ye ktc sıcaklık katsayısı ile çarpın: \(R_{40°C} = R_1 \times \)
Şekil 3. Ana besleme için terminal bağlantıları

Şekil 4. Zon A ve B’de gerilim ve frekans sapması

X ekseni frekans p.u.
Y ekseni gerilim p.u.

Tuş	Annotasyon
1 | zon A
2 | zon B (zon A dışında)
3 | değerlendirme noktası
DTC kontrollü konvertörler ilekilavuz yükellebilirlik eğrileri

Şekil 5a. DTC kontrollü konvertör, 50 Hz, sıcaklık artışısı B

Şekil 5b. DTC kontrollü konvertör, 60 Hz, sıcaklık artışısı B

Şekil 5c. DTC kontrollü konvertör, 50 Hz, sıcaklık artışısı F

Şekil 5d. DTC kontrollü konvertör, 60 Hz, sıcaklık artışısı F

1. Self-ventilated, EEC frame sizes 56-132
2. Self-ventilated, EEC frame sizes 160-450
3. Separate motor cooling (force ventilated)
Diğer gerilim kaynağı PWM tipi ile kılavuz yüklenebilirlik eğrileri

- Şekil 6a. Diğer gerilim kaynağı PWM tipi konvertör, 50 Hz, sıcaklık artış B
- Şekil 6b. Diğer gerilim kaynağı PWM tipi konvertör, 60 Hz, sıcaklık artış B
- Şekil 6c. Diğer gerilim kaynağı PWM tipi konvertör, 50 Hz, sıcaklık artış F
- Şekil 6d. Diğer gerilim kaynağı PWM tipi konvertör, 60 Hz, sıcaklık artış F