Optimax Plant Performance Monitoring
Key performance indicators, controllable losses, what-if
OPTIMAX® Plant Performance Monitoring Challenge

- Power plant operators are in charge to keep up efficiency under continuously changing loads.
- Power plant maintenance staff shall reduce both unplanned outages and maintenance costs.
- Power plant managers strive for meaningful figures for strategic decisions.
OPTIMAX® Plant Performance Monitoring Solution

Features

- Standard tool library (ISO, ASME, DIN) for easy calculation engineering
- Calculates deviations between actual and expected performance
- Converts performance deviation to short- and long-term degradation
- Interface to ABB’s Power Generation Information Management System (PGIM)
OPTIMAX® Plant Performance Monitoring
Starting point: monitoring of process values in DCS

Process values alone usually give no information about the efficiency or the process quality of a plant.
OPTIMAX® Plant Performance Monitoring
Determination of performance indicators

Performance indicators are determined by using multiple process values
OPTIMAX® Plant Performance Monitoring

Key performance indicator example: condenser

\[Q_{th} = F_{\text{CoolWater}} \times \text{spec.HeatCoeff}_{\text{Water}} \times (T_2 - T_1) \]

\[A = \text{Condenser Surface} \]

\[\Delta T_{\text{log}} = \frac{T_2 - T_1}{\ln \left(\frac{T_C - T_1}{T_C - T_2} \right)} \]

Heat Transfer Coefficient \(k_{\text{Actual}} = \frac{Q_{th}}{A \Delta T_{\text{log}}} \)
OPTIMAX® Plant Performance Monitoring
Key performance indicators module library

- Steam Generators (fossil-fired, SG)
- Heat Recovery Steam Generators (HRSG)
- Combustion stoichiometry (for SG or HRSG)
- Gas turbines
- Steam turbines
- Feed water heaters
- Evaporators
- Super heaters
- Heat exchangers
- Desuperheaters
- Air preheaters
- Condensers
- Pumps, fans
- Generators
- Overall plant balance
- Auxiliary power and steam
- District heat
- Process steam
- Mathematical and statistical calculations
- Water/steam properties
- Gas properties
OPTIMAX® Plant Performance Monitoring
Generation of reference values

- Online calculation of reference values depending on e.g.
 - Temperature
 - Air pressure
 - Load
 - Fuel sort
 - ...

- Reference characteristics extracted from heat balance sheets or fitted to archived process data from acceptance tests of new plant or after major retrofit
OPTIMAX® Plant Performance Monitoring
Calculations configuration
Controllable losses include measured process values that can be controlled by the plant operator and having a known impact on plant energy losses when deviating from the design point, e.g.:

- Flue-gas temperature at boiler exit
- O_2 flue gas concentration at boiler exit
- Electrical auxiliary power
- Condenser pressure
- Condensate water temperature at feed water tank inlet
- Feed water temperature at boiler inlet
- Feed water temperature at economizer outlet
- Live steam temperature
- Live steam pressure

Process mimic presents for each controllable loss:

- Actual measurement value
- Design value (=expected value)
- Impact on plant efficiency / heat rate
- Additional plant fuel consumption due to actual deviation from design value
OPTIMAX® Plant Performance Monitoring

What if calculations

- Replace controllable losses actual measurement values by manually defined “What-if” values.
- The calculation shows the impact of all deviations of controllable losses from their design values.
OPTIMAX® Plant Performance Monitoring
Report of performance calculations

- Standard Reports e.g.:
 - Consumed and produced quantities
 - Components operating hours
 - Actuators number of switching cycles
 - Report of Performance Calculations e.g.:
 - Performance values averages, standard deviations
 - Performance values averages clustered into specific component/unit operation ranges/modes
OPTIMAX® Plant Performance Monitoring

Report configuration

<table>
<thead>
<tr>
<th>Signal</th>
<th>Quelle</th>
<th>Beschreibung</th>
<th>Wert</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_FDI</td>
<td>Demo/Demo/Blk 1</td>
<td>Druck Fehlschlag</td>
<td>177.10</td>
<td>bar</td>
</tr>
<tr>
<td>P_HD_AUS</td>
<td>Demo/Demo/Blk 1</td>
<td>Druck Turbineneintritt</td>
<td>31.30</td>
<td>bar</td>
</tr>
<tr>
<td>P_HD_AUS</td>
<td>Demo/Demo/Blk 1</td>
<td>Druck Turbineabtrieb</td>
<td>112.30</td>
<td>bar</td>
</tr>
<tr>
<td>P_HD_AUS</td>
<td>Demo/Demo/Blk 1</td>
<td>Druck Turbineabtrieb</td>
<td>0.070</td>
<td>bar</td>
</tr>
<tr>
<td>P_HD_EIN</td>
<td>Demo/Demo/Blk 1</td>
<td>Druck Turbineabtrieb</td>
<td>3.070</td>
<td>bar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-05-08</td>
<td>09:08</td>
<td>177.10</td>
<td>bar</td>
</tr>
<tr>
<td>2014-05-08</td>
<td>09:08</td>
<td>31.30</td>
<td>bar</td>
</tr>
<tr>
<td>2014-05-08</td>
<td>09:08</td>
<td>112.30</td>
<td>bar</td>
</tr>
<tr>
<td>2014-05-08</td>
<td>09:08</td>
<td>0.070</td>
<td>bar</td>
</tr>
<tr>
<td>2014-05-08</td>
<td>09:08</td>
<td>3.070</td>
<td>bar</td>
</tr>
</tbody>
</table>
OPTIMAX® PlantPerformance
Standard calculation of performance deviations

KPI = \frac{\eta_{act}}{\eta_{exp}}
OPTIMAX® PlantPerformance
Identifying the origin of performance deviations
OPTIMAX® Plant Performance Monitoring

Benefits

- Applicable for different plant types
- Increases overall plant efficiency by detecting sub-optimal operation modes
- Improves plant availability and predictive maintenance strategies by detecting material degradations
Power and productivity for a better world™
OPTIMAX® Plant Performance Monitoring
Key performance indicators for steam power plants

- Steam generator
 - Thermal efficiency according to DIN or ASME PTC
 - Efficiency economizer
 - Efficiency feed water preheater
- Condenser
 - Expected condenser pressure
 - Cleanliness/heat rate
- Preheater
 - Logarithmic linear medium temperature difference
 - Heat rate impact
 - Efficiency
- Steam turbine
 - Thermal efficiency/heat rate impact
 - Isentropic heat power extractions
 - Shaft power
- Unit balances
 - Heat rate of unit
 - Auxiliary power consumption
 - Auxiliary steam consumption
 - Heat flow to district heating
OPTIMAX® Plant Performance Monitoring
Key performance indicators for combined cycle power plants

- GT calculations acc. ISO2314, DIN4341, ASME-PTC22
 - Calculate actual efficiency and exhaust mass flow and enthalpy
 - Correct expected power and efficiency to ISO conditions based on correction curves for:
 - ambient air pressure, temperature, humidity
 - dp inlet and exhaust
 - grid frequency
 - Calculate expected power and efficiency from design curves

- HRSG calculations acc. ASME-PTC4.4
 - Calculate actual thermal efficiency according to either:
 - input / output method
 - thermal loss method
 - Calculate actual exergetic efficiency
 - Expected efficiency based on correction curves can be calculated by using the math and core tools