Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General</td>
<td>3</td>
</tr>
<tr>
<td>1.1</td>
<td>Using the product manual</td>
<td>3</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Note</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Product and functional overview</td>
<td>5</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Product overview</td>
<td>5</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Functional overview</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Device Technology</td>
<td>7</td>
</tr>
<tr>
<td>2.1</td>
<td>Technical data</td>
<td>7</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Outputs Value V1/2</td>
<td>9</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Inputs</td>
<td>9</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Fan rated current 6 A</td>
<td>10</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Output rated current 20 AX</td>
<td>11</td>
</tr>
<tr>
<td>2.1.5</td>
<td>Output lamp load 20 AX</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Connection schematic</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Dimension drawing</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Assembly and installation</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>Manual operation</td>
<td>17</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Display elements</td>
<td>18</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Operating controls</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>Commissioning</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>Overview</td>
<td>21</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Functions of the inputs</td>
<td>22</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Functions of the output</td>
<td>22</td>
</tr>
<tr>
<td>3.2</td>
<td>Parameters</td>
<td>23</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Parameter window General</td>
<td>24</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Parameter window Manual operation</td>
<td>27</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Parameter window Control input</td>
<td>31</td>
</tr>
<tr>
<td>3.2.3.1</td>
<td>HVAC system – 1 Control value/2-pipe</td>
<td>33</td>
</tr>
<tr>
<td>3.2.3.2</td>
<td>HVAC-System – 1 Control values/4-pipe, with switching object</td>
<td>34</td>
</tr>
<tr>
<td>3.2.3.3</td>
<td>HVAC system – 2 Control value/2-pipe</td>
<td>35</td>
</tr>
<tr>
<td>3.2.3.4</td>
<td>HVAC-System – 2 Control values/2-pipe, with switching object</td>
<td>36</td>
</tr>
<tr>
<td>3.2.3.5</td>
<td>HVAC system – 2 Control values/4-pipe</td>
<td>37</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Parameter window Multi-level fan</td>
<td>38</td>
</tr>
<tr>
<td>3.2.4.1</td>
<td>Parameter window – Status messages</td>
<td>44</td>
</tr>
<tr>
<td>3.2.4.2</td>
<td>Parameter window – Automatic operation</td>
<td>49</td>
</tr>
<tr>
<td>3.2.4.3</td>
<td>Parameter window – Direct operation</td>
<td>55</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Parameter window Two level fan</td>
<td>57</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Parameter window One-level fan</td>
<td>58</td>
</tr>
<tr>
<td>3.2.6.1</td>
<td>Parameter window – Status messages</td>
<td>61</td>
</tr>
<tr>
<td>3.2.6.2</td>
<td>Parameter window – Automatic operation</td>
<td>63</td>
</tr>
<tr>
<td>3.2.7</td>
<td>Parameter window Valve 1</td>
<td>67</td>
</tr>
<tr>
<td>3.2.7.1</td>
<td>Parameter window – Function</td>
<td>68</td>
</tr>
<tr>
<td>3.2.7.2</td>
<td>Parameter window – Curve</td>
<td>72</td>
</tr>
<tr>
<td>3.2.8</td>
<td>Parameter window Valve 2</td>
<td>74</td>
</tr>
<tr>
<td>3.2.9</td>
<td>Parameter window Inputs</td>
<td>75</td>
</tr>
<tr>
<td>3.2.9.1</td>
<td>Parameter window Input a</td>
<td>76</td>
</tr>
<tr>
<td>3.2.9.1.1</td>
<td>Parameter Distinction between short and long operation – no</td>
<td>77</td>
</tr>
<tr>
<td>3.2.9.1.2</td>
<td>Parameter Distinction between short and long operation – yes</td>
<td>81</td>
</tr>
<tr>
<td>3.2.9.2</td>
<td>Parameter window Input a c</td>
<td>83</td>
</tr>
<tr>
<td>3.2.10</td>
<td>Parameter window Output A</td>
<td>84</td>
</tr>
<tr>
<td>3.2.10.1</td>
<td>Parameter window – Timefunction</td>
<td>87</td>
</tr>
</tbody>
</table>
ABB i-bus® KNX

Contents

3.3 Communication objects ... 90
3.3.1 Short overview of the communication objects ... 90
3.3.2 Communication objects General ... 92
3.3.3 Communication objects Manual .. 93
3.3.4 Communication objects Control input .. 94
3.3.4.1 Communication objects HVAC System – 1 Control value/2 pipe ... 94
3.3.4.2 Communication objects HVAC System 1 Control value/4 pipe, with switching object 95
3.3.4.3 Communication objects HVAC System – 2 Control values/2 pipe .. 96
3.3.4.4 Communication objects HVAC System 2 Control values/2 pipe, with switching object 97
3.3.4.5 Communication objects HVAC System – 2 Control values/4 pipe ... 98
3.3.4.6 Communication object Fault control value ... 99
3.3.5 Communication objects Multi-level fan ... 100
3.3.6 Communication objects Fan one-level ... 105
3.3.7 Communication objects Valve Heating, Valve Cooling ... 109
3.3.7.1 Communication objects Input a…c .. 111
3.3.8 Communication objects Output .. 113

4 Planning and application ... 115
4.1 Heating, ventilation, climate control with Fan Coil units ... 115
4.1.1 Terms ... 115
4.1.2 Fan operation ... 117
4.1.2.1 Fan in a two-way connection .. 117
4.1.2.2 Fan with speed switching .. 117
4.1.3 Configuration of a HVAC system with Fan Coil units ... 117
4.1.4 Design of a Fan Coil unit ... 118
4.1.5 Pipe systems .. 119
4.1.5.1 2 pipe system, configuration .. 120
4.1.5.2 2 pipe system HEATING and COOLING ... 121
4.1.5.3 2 pipe system HEATING or COOLING .. 122
4.1.5.4 3 pipe system, configuration .. 123
4.1.5.5 4 pipe system, configuration .. 124
4.2 System configuration with a Fan Coil Actuator ... 125
4.2.1 Automatic operation .. 125
4.2.2 Direct operation .. 127
4.2.3 Switchover between automatic and direct operation ... 127
4.2.4 Logic of the stage switching .. 128
4.2.5 Fan operation functional diagram .. 129
4.3 Valve drives, valves and controller ... 130
4.3.1 Electromotor valve drives ... 130
4.3.2 Electro-thermal valve drives ... 130
4.3.3 Valve curve .. 131
4.3.4 Control types .. 134
4.3.4.1 Continuous control .. 134
4.3.4.2 Pulse width modulation (PWM) ... 135
4.3.4.3 Pulse width modulation – calculation ... 137
4.4 Behaviour with ... 138
4.4.1 Bus voltage recovery .. 138
4.4.2 ETS reset .. 139
4.4.3 Download (DL) .. 140
4.4.4 Bus voltage failure ... 140
4.4.5 Bus voltage failure, recovery and download ... 141

A Appendix ... 145
A.1 Scope of delivery ... 145
A.2 Status byte forced/operation .. 146
A.3 Ordering information ... 147
A.4 Notes ... 148
1 General

Fans, also referred to as blower convectors or Fan Coil units, are used for distributed HEATING and COOLING applications. They are installed in a room and powered via a central heating and cooling system. The room temperature can be quickly adjusted to suit individual preferences using this system.

The Fan Coil Actuator FCA/S 1.2.2.1 has two outputs for control of motor power operated or thermal heating and cooling valves. Fan Coil Actuators switch multi-level fans with up to three fan speeds using floating contacts. Furthermore, three binary inputs, e.g., for monitoring of a window contact and the dew point are available. An additional contact is possible, for example, for control of an electric heater.

1.1 Using the product manual

This manual provides you with detailed technical information relating to the function, installation and programming of the ABB i-bus® KNX Fan Coil Actuator. The application of the device is explained using examples.

This manual is divided into the following sections:

Chapter 1 General
Chapter 2 Device technology
Chapter 3 Commissioning
Chapter 4 Planning and application
Chapter A Appendix
Notes and safety instructions are represented as follows in this manual:

<table>
<thead>
<tr>
<th>Note</th>
<th>Tips for usage and operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples</td>
<td>Application examples, installation examples, programming examples</td>
</tr>
<tr>
<td>Important</td>
<td>These safety instructions are used as soon as there is danger of a malfunction without risk of damage or injury.</td>
</tr>
<tr>
<td>Caution</td>
<td>These safety instructions are used as soon as there is danger of a malfunction without risk of damage or injury.</td>
</tr>
<tr>
<td>Danger</td>
<td>These safety instructions are used if there is a danger for life and limb with inappropriate use.</td>
</tr>
<tr>
<td>Danger</td>
<td>These safety instructions are used if there is a danger to life with inappropriate use.</td>
</tr>
</tbody>
</table>
1.2 Product and functional overview

The Fan Coil Actuator FCA/S controls a single-phase fan with up to three fan speeds via a step or changeover control. In the mode *Changeover switch* this ensures that no two fan speeds can be switched on simultaneously. An additional programmable switch-over delay is provided for this purpose. Three-phase drives are not supported. The additional output can be used for control of an electrical load. Manual operation of the device is possible.

The FCA/S controls motor-power operated heating and cooling valves as well as multilevel fans via the outputs.

Three binary inputs are available, for example, as signalling contacts for window contact and dew point monitoring. The scanning voltage for the inputs is provided by the device.

The actuator is a modular installation device with a module width of 6 space units in Pro M design for installation in the distribution board. The connection to the ABB i-bus® is established using the front side bus connection terminal. The Fan Coil Actuator does not require an auxiliary voltage supply. The assignment of the physical addresses as well as the parameterization is carried out with Engineering Tool Software ETS.

1.2.1 Product overview

<table>
<thead>
<tr>
<th>Inputs</th>
<th>FCA/S 1.2.2.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact scanning</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Switching contact 20 AX</td>
<td>1</td>
</tr>
<tr>
<td>Switching contact 6 A</td>
<td>3</td>
</tr>
</tbody>
</table>

1.2.2 Functional overview

<table>
<thead>
<tr>
<th>Inputs</th>
<th>FCA/S 1.2.2.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Window contact</td>
<td>1</td>
</tr>
<tr>
<td>Drip tray</td>
<td>1</td>
</tr>
<tr>
<td>Signal contact</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20 AX switch</td>
<td>1</td>
</tr>
<tr>
<td>Auxiliary electrical heater</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs 6 A switches</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3-speed fan</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs 0…10 V</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve V1 HEATING</td>
<td>1</td>
</tr>
<tr>
<td>Valve V2 COOLING</td>
<td>1</td>
</tr>
</tbody>
</table>
2 Device Technology

The Fan Coil Actuator FCA/S 1.2.2.1 is a modular installation device (MDRC) in Pro M Design. It is intended for installation in the distribution board on 35 mm mounting rails. The assignment of the physical addresses as well as the parameterization is carried out with ETS.

The device is powered via the ABB i-bus® and does not require any additional auxiliary voltage supply. The FCA/S 1.2.2.1 is operational after connection of the bus voltage.

2.1 Technical data

<table>
<thead>
<tr>
<th>Supply</th>
<th>Bus voltage 21…32 V DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current consumption, bus</td>
<td>< 12 mA</td>
</tr>
<tr>
<td>Leakage loss, bus</td>
<td>Maximum 250 mW</td>
</tr>
<tr>
<td>Leakage loss, device</td>
<td>Maximum 2 W*</td>
</tr>
</tbody>
</table>

*The maximum power consumption of the device results from the following specifications:

<table>
<thead>
<tr>
<th>KNX connection</th>
<th>0.25 W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay 16 A</td>
<td>1.0 W</td>
</tr>
<tr>
<td>Relay 6 A</td>
<td>0.6 W</td>
</tr>
<tr>
<td>Analog outputs</td>
<td>0.15 W</td>
</tr>
</tbody>
</table>

Connections

<table>
<thead>
<tr>
<th>Connections</th>
<th>KNX: via bus connection terminals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inputs/Outputs</td>
<td>Via screw terminals</td>
</tr>
</tbody>
</table>

Connection terminals

<table>
<thead>
<tr>
<th>Screw terminal</th>
<th>Screw terminal with universal head (PZ 1) 0.2…4 mm² stranded, 2 x (0.2…2.5 mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.2…6 mm² single core, 2 x (0.2…4 mm²)</td>
</tr>
<tr>
<td>Ferrules without/plastic sleeves</td>
<td>without: 0.25…2.5 mm²</td>
</tr>
<tr>
<td></td>
<td>with: 0.25…4 mm²</td>
</tr>
<tr>
<td>TWIN ferrules</td>
<td>0.5…2.5 mm²</td>
</tr>
<tr>
<td></td>
<td>Contact pin length min. 10 mm</td>
</tr>
</tbody>
</table>
Operating and display elements

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Button/LED</td>
<td>For assignment of the physical address</td>
</tr>
<tr>
<td>Button</td>
<td>For toggling between manual operation/operation via ABB i-bus® and displays</td>
</tr>
<tr>
<td>LED ON (green)</td>
<td>Display Ready for operation</td>
</tr>
<tr>
<td>Button Output A</td>
<td>For switching and display</td>
</tr>
<tr>
<td>Button Fan speed</td>
<td>For switching through the individual fan speeds: 0 => 1 => 2 => 3 => 0 => 1 => 2 => 3 =>…</td>
</tr>
<tr>
<td>LED</td>
<td>For display of fan speed 1</td>
</tr>
<tr>
<td>LED</td>
<td>For display of fan speed 2</td>
</tr>
<tr>
<td>LED</td>
<td>For display of fan speed 3</td>
</tr>
<tr>
<td>Button Valve V1 HEATING</td>
<td>For opening/closing valve V1</td>
</tr>
<tr>
<td>LED Valve V1 HEATING</td>
<td>For display of valve position V1</td>
</tr>
<tr>
<td>Button Valve V2 COOLING</td>
<td>For opening/closing valve V2</td>
</tr>
<tr>
<td>LED Valve V2 COOLING</td>
<td>For display of valve position V2</td>
</tr>
<tr>
<td>Button Valve V1</td>
<td>For switching and display</td>
</tr>
<tr>
<td>Button Valve V2</td>
<td>For switching and display</td>
</tr>
<tr>
<td>Button Valve V1</td>
<td>For switching and display</td>
</tr>
</tbody>
</table>

Enclosure

- **Enclosure**: IP 20
- **Classification**: To EN 60 529

Safety class

- **Classification**: II
- **Classification**: To EN 61 140

Isolation category

- **Classification**: Overvoltage category III to EN 60 664-1

KNX safety extra low voltage

- **Classification**: Pollution degree II to EN 60 664-1
- **Classification**: SELV 24 V DC

Temperature range

- **Operation**: -5 °C…+45 °C
- **Transport**: -25 °C…+70 °C
- **Storage**: -25 °C…+55 °C
 - Exceeding +45 °C reduces the service life!

Ambient conditions

- **Maximum air humidity**: 93 %, no condensation allowed

Design

- **Modular installation device (MDRC)**
- **Modular installation device, ProM**
- **Dimensions**: 108 x 72 x 64.5 mm (H x W x D)

Installation

- **Mounting width in space units**: 6 modules at 18 mm
- **Mounting depth**: 64.5 mm
- **Mounting position**: On 35 mm mounting rail
- **Classification**: To EN 60 715

Mounting position

- **Classification**: as required

Weight

- **Classification**: 0.3 kg

Housing/colour

- **Classification**: Plastic housing, grey
Device Technology

<table>
<thead>
<tr>
<th>Device type</th>
<th>Application program</th>
<th>Maximum number of communication objects</th>
<th>Maximum number of group addresses</th>
<th>Maximum number of associations</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCA/S 1.2.2.1</td>
<td>Fan Coil Actuator 0…10V/*</td>
<td>70</td>
<td>254</td>
<td>255</td>
</tr>
</tbody>
</table>

* … = current version number of the application program. Please observe the software information on our homepage for this purpose.

Note

The ETS and the current version of the device application program are required for programming. The current version of the application program is available for download on the internet at www.abb.com/knx. After import it is available in the ETS under ABB/Heating, Ventilation, Air conditioning/Fan coil actuator 1-fold 0-10.

The device does not support the locking function of a KNX device in the ETS. If you inhibit access to all devices of the project with a BCU code, it has no effect on this device. It can still be read and programmed.

2.1.1 Outputs Valve V1/2

<table>
<thead>
<tr>
<th>Rated values</th>
<th>Number</th>
<th>2, non-isolated, short-circuit proofed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting signal</td>
<td>0…10 V DC</td>
<td></td>
</tr>
<tr>
<td>Signal type</td>
<td>Analogue</td>
<td></td>
</tr>
<tr>
<td>Output load</td>
<td>> 10 kΩ</td>
<td></td>
</tr>
<tr>
<td>Output tolerance</td>
<td>+/- 10 %</td>
<td></td>
</tr>
<tr>
<td>Current limited</td>
<td>Up to 1.5 mA</td>
<td></td>
</tr>
</tbody>
</table>

2.1.2 Inputs

<table>
<thead>
<tr>
<th>Rated values</th>
<th>Number</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scanning current</td>
<td>1 mA</td>
<td></td>
</tr>
<tr>
<td>Scanning voltage</td>
<td>10 V</td>
<td></td>
</tr>
<tr>
<td>Contact scanning</td>
<td>Floating</td>
<td></td>
</tr>
</tbody>
</table>

| Cable length | Between sensor and device input | Maximum 30 m, one-way |
2.1.3 Fan rated current 6 A

<table>
<thead>
<tr>
<th>Rated values</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>3 contacts</td>
</tr>
<tr>
<td>Un1 rated voltage</td>
<td>250/440 V AC (50/60 Hz)</td>
</tr>
<tr>
<td>lr1 rated current (per output)</td>
<td>6 A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Switching currents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AC3" operation (cos $\varphi = 0.45$) EN 60 947-4-1</td>
<td>6 A/230 V</td>
</tr>
<tr>
<td>AC1" operation (cos $\varphi = 0.8$) EN 60 947-4-1</td>
<td>6 A/230 V</td>
</tr>
<tr>
<td>Fluorescent lighting load to EN 60 669-1</td>
<td>6 A/250 V (35 μF)</td>
</tr>
<tr>
<td>Minimum switching performance</td>
<td>20 mA/5 V</td>
</tr>
<tr>
<td></td>
<td>10 mA/12 V</td>
</tr>
<tr>
<td></td>
<td>7 mA/24 V</td>
</tr>
<tr>
<td>DC current switching capacity (resistive load)</td>
<td>6 A/24 V=</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Service life</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical endurance</td>
<td>> 107</td>
</tr>
<tr>
<td>Electronic endurance to DIN IEC 60 947-4-1</td>
<td></td>
</tr>
<tr>
<td>AC1" (240 V/cos $\varphi = 0.8$)</td>
<td>> 105</td>
</tr>
<tr>
<td>AC3" (240 V/cos $\varphi = 0.45$)</td>
<td>> 1.5 x 104</td>
</tr>
<tr>
<td>AC5a* (240 V/cos $\varphi = 0.45$)</td>
<td>> 1.5 x 104</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Switching times2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum relay position change per output and minute if only one relay is switched.</td>
<td>2,683</td>
</tr>
</tbody>
</table>

1) The maximum inrush-current peak may not be exceeded.

2) The specifications apply only after the bus voltage has been applied to the device for at least 10 seconds. Typical delay of the relay is approx. 20 ms.

What do the terms AC1, AC3 and AC5a mean?

In intelligent installation systems, different switching capacity and performance specifications that are dependent on the special applications, have become established in domestic and industrial installations. These performance specifications are rooted in the respective national and international standards. The tests are defined so that typical applications, e.g. motor loads (industrial) or fluorescent lamps (residential), are simulated.

The specifications AC1 and AC3 are switching performance specifications, which have become established in the industrial field.

Typical application:

- **AC1** – Non-inductive or slightly inductive loads, resistive furnaces (relates to switching of ohmic/resistive loads)
- **AC3** – Squirrel-cage motors: Starting, switching off motors during running (relates to inductive motor load)
- **AC5a** – Switching of electric discharge lamps

These switching performances are defined in the standard EN 60947-4-1 *Contactors and motor-starters - Electromechanical contactors and motor-starters*. The standard describes starter and/or contactors which previously preferably used in industrial applications.
2.1.4 Output rated current 20 AX

Rated values

<table>
<thead>
<tr>
<th>Number</th>
<th>Un rated voltage</th>
<th>Iq rated current</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>250/440 V AC (50/60 Hz)</td>
<td>20 A</td>
</tr>
</tbody>
</table>

Switching currents

<table>
<thead>
<tr>
<th>AC3* operation (cos $\varphi = 0.45$)</th>
<th>16 A/230 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>To EN 60 947-4-1</td>
<td></td>
</tr>
<tr>
<td>AC1* operation (cos $\varphi = 0.8$)</td>
<td>20 A/230 V</td>
</tr>
<tr>
<td>To EN 60 947-4-1</td>
<td></td>
</tr>
<tr>
<td>Fluorescent lighting load AX to EN 60 669-1</td>
<td>20 A/250 V (140 μF)1</td>
</tr>
<tr>
<td>Minimum switching performance</td>
<td>100 mA/12 V</td>
</tr>
<tr>
<td>DC current switching capacity (resistive load)</td>
<td>100 mA/24 V</td>
</tr>
</tbody>
</table>

Service life

<table>
<thead>
<tr>
<th>Mechanical service life to IEC 60 947-4-1</th>
<th>$> 10^5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC1* (240 V/cos $\varphi = 0.8$)</td>
<td>$> 10^5$</td>
</tr>
<tr>
<td>AC3* (240 V/cos $\varphi = 0.45$)</td>
<td>$> 3 \times 10^4$</td>
</tr>
<tr>
<td>AC5a (240 V/cos $\varphi = 0.45$)</td>
<td>$> 3 \times 10^4$</td>
</tr>
</tbody>
</table>

Switching times2)

| Maximum relay position change per output and minute if only one relay is switched. | 93 |

1 The maximum inrush-current peak may not be exceeded.

2 The specifications apply only after the bus voltage has been applied to the device for at least 10 seconds. Typical delay of the relay is approx. 20 ms.

What do the terms AC1, AC3 and AC5a mean?

In intelligent installation systems, different switching capacity and performance specifications that are dependent on the special applications, have become established in domestic and industrial installations. These performance specifications are rooted in the respective national and international standards. The tests are defined so that typical applications, e.g. motor loads (industrial) or fluorescent lamps (residential), are simulated.

The specifications AC1 and AC3 are switching performance specifications, which have become established in the industrial field.

Typical application:

AC1 –	Non-inductive or slightly inductive loads, resistive furnaces (relates to switching of ohmic/resistive loads)
AC3 –	Squirrel-cage motors: Starting, switching off motors during running (relates to (inductive) motor load)
AC5a –	Switching of electric discharge lamps

These switching performances are defined in the standard EN 60947-4-1 *Contactors and motor-starters - Electromechanical contactors and motor-starters*. The standard describes starter and/or contactors which previously preferably used in industrial applications.
2.1.5 Output lamp load 20 AX

<table>
<thead>
<tr>
<th>Lamps</th>
<th>Incandescent lamp load</th>
<th>3680 W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorescent lamp T5/T8</td>
<td>Uncorrected</td>
<td>3680 W</td>
</tr>
<tr>
<td></td>
<td>Parallel compensated</td>
<td>2500 W</td>
</tr>
<tr>
<td></td>
<td>DUO circuit</td>
<td>3680 W</td>
</tr>
<tr>
<td>Low-voltage halogen lamps</td>
<td>2000 W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uncorrected</td>
<td>2500 W</td>
</tr>
<tr>
<td></td>
<td>DUO circuit</td>
<td>3680 W</td>
</tr>
<tr>
<td>Dulux lamp</td>
<td>3680 W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parallel compensated</td>
<td>3000 W</td>
</tr>
<tr>
<td>Mercury-vapour lamp</td>
<td>Uncorrected</td>
<td>3680 W</td>
</tr>
<tr>
<td></td>
<td>Parallel compensated</td>
<td>3680 W</td>
</tr>
<tr>
<td>Switching performance (switching contact)</td>
<td>Maximum peak inrush-current I_p (150 μs)</td>
<td>600 A</td>
</tr>
<tr>
<td></td>
<td>Maximum peak inrush-current I_p (250 μs)</td>
<td>480 A</td>
</tr>
<tr>
<td></td>
<td>Maximum peak inrush-current I_p (600 μs)</td>
<td>300 A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of electronic ballasts (T5/T8, single element)1</th>
<th>18 W (ABB EVG 1 x 18 SF)</th>
<th>262</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24 W (ABB EVG-T5 1 x 24 CY)</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>36 W (ABB EVG 1 x 36 CF)</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>58 W (ABB EVG 1 x 58 CF)</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>80 W (Helvar EL 1 x 80 SC)</td>
<td>102</td>
</tr>
</tbody>
</table>

1) For multiple element lamps or other types, the number of electronic ballasts must be determined using the peak inrush current of the electronic ballasts.

2) Limited by protection with B16 automatic circuit-breakers.
2.2 Connection schematic

FCA/S 1.2.2.1

1 Label carrier
2 Button Programming
3 LED Programming (red)
4 Bus connection terminal
5 Button/LED Manual operation (yellow)
6 Inputs a, b, c
7 LED ON (green)
8 Buttons/LEDs valve V1 HEATING (yellow)
9 Buttons/LEDs valve V2 COOLING (yellow)
10 Valve V1 HEATING
11 Valve V2 COOLING
12 Button/LEDs Fan speed (yellow)
13 Fan
14 Output A
15 Buttons/LEDs Inputs a, b, c (yellow)
16 Button/display output A

Note
Terminals 1 and 4 are not internally assigned with FCA/S 1.2.2.1.
2.3 Dimension drawing
2.4 Assembly and installation

The device is a modular installation device for quick installation in the distribution board on 35 mm mounting rails to EN 60 715.

The mounting position can be selected as required.

The connection to the bus is implemented using the supplied bus connection terminal. The terminal assignment is located on the housing.

Accessibility to the device for the purpose of operation, testing, visual inspection, maintenance and repair must be provided compliant to VDE 0100-520.

Commissioning requirements

In order to commission the device, a PC with ETS and a KNX interface, e.g. USB or IP, are required. The device is ready for operation after connection to the bus voltage.

The installation and commissioning may only be carried out by qualified electrical specialists. The appropriate norms, guidelines, regulations and specifications for your country should be observed when planning and setting up electrical installations and security systems for intrusion and fire detection.

Protect the device from damp, dirt and damage during transport, storage and operation.

Only operate the device within the specified technical data limits!

The device should only be operated in an enclosed housing (distribution board)!

The voltage supply to the device must be switched off, before mounting work is performed.

![Danger]

In order to avoid dangerous touch voltages, which originate through feedback from differing phase conductors, all-pole disconnection must be observed when extending or modifying the electrical connections.

Foil keypad

The device incorporates manual operating features. Special device functions can be undertaken using the operating keys on the foil keypad.

The foil keypad may not be operated with pointed or sharp-edged objects, e.g. screwdrivers or pens. This may damage the keypad.
Supplied state
The device is supplied with the physical address 15.15.255. The application program is preloaded. It is therefore only necessary to load group addresses and parameters during commissioning. However, the complete application program can be reloaded if required. A longer downtime may result if the application program is changed or after a discharge.

Assignment of the physical address
The assignment and programming of the physical address is carried out in the ETS.

The device features a button Programming for assignment of the physical device address. The red LED Programming lights up after the button has been pushed. It switches off as soon as the ETS has assigned the physical address or the button is pressed again.

Download behaviour
Depending on the PC, which is used, the progress bar for the download may take up to one and a half minutes before it appears due to the complexity of the device.

Cleaning
If devices become dirty, they can be cleaned using a dry cloth or a cloth dampened with a soapy solution. Corrosive agents or solutions should never be used.

Maintenance
The device is maintenance-free. No repairs should be carried out by unauthorised personnel if damage occurs, e.g. during transport and/or storage.
2.5 Manual operation

Function of manual operation
Manual operation facilitates on-location operation of the device. The switch contact can be switched on and off via the control elements on the relay. The switch position is indicated simultaneously by the control element.

Manual operation facilitates on-location operation of the device. As standard, the button Manual operation is enabled and can be switched on and off using it.

Switch on of manual operation:
Press button until the yellow LED lights continuously.

Switch off of manual operation:
Press button for 1.5 seconds.

The yellow LED continues to flash for 2 seconds.

After connection to the KNX, an ETS download or ETS reset, the device is in KNX operation. The LED is off. All LEDs indicate the current state.

Note
If the Manual operation is generally disabled or disabled via communication object Enable/ block manual operation, the LED flashes during the button push.
A switchover from KNX operation to the Manual operation mode does not occur.

Note
If manual operation is activated, the current fan speed remains set and can only be operated manually. Here any limitations, forced operations and programmed dwell times are not considered.
If manual operation is deactivated, the fan sets to a speed to which it would also be set without manual operation, e.g. via the value of the communication objects. The setting occurs with the parameterized dwell times!
2.5.1 Display elements

Indicator LEDs are located on the front of the device.

All LEDs Output X indicate the actual state. In KNX operation the LED is off.

The response of the display elements is described in the following table:

<table>
<thead>
<tr>
<th>LED</th>
<th>KNX operation</th>
<th>Manual operation</th>
</tr>
</thead>
</table>
| ![Manual operation](image) | Off: The device is in KNX mode
Flashes: Changeover to manual mode. | On: The device is in manual mode
Flashes: Changeover to KNX mode. |
| ![Input a…c](image) | On: Input closed.
Off: Input opened. |
| ![Output switch contact](image) | 0: Contact open.
1: Contact closed. |
| ![Valve V1 HEATING](image) | On: Valve position = 0
Off: Valve position ≠ 0
Flashing: Both valve LEDs flash at overload.
The display indicates the same value as the 1 bit status of the valve control.
With a state change the new state is immediately indicated. |
| ![Valve V2 COOLING](image) | On: 🏈 Fan speed 1; 🏈 Fan speed 2; 🏈 Fan speed 3
Off: Fan is off. |
| ![Operational display](image) | On: Application active
Off: Bus voltage failure, download or ETS reset currently under way.
Flashing: Application active, internal hardware fault found. Inputs and valve outputs can no longer be controlled. Relay functional. |
2.5.2 Operating controls

Buttons for manual operation are located on the front of the device.

The behaviour of the operating controls is dependent on the operating states **KNX operation** and **Manual operation** is described in the following table:

<table>
<thead>
<tr>
<th>Button</th>
<th>KNX operation</th>
<th>Manual operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual operation</td>
<td>Long button push = > 1.5 s: Switch to Manual operation, provided that Manual operation is not blocked by a parameter setting. Short button push = > 1.5 s: LED flashes and switches off again. The device is once again in KNX operation.</td>
<td>Long button push = > 1.5 s: Changeover to the KNX operation. The inputs are scanned again. In this way, the input states are updated. Reset of the Manual operation to KNX operation can also be completed within a parameterized time depending on the parameterization.</td>
</tr>
<tr>
<td>Input a…c</td>
<td>No reaction</td>
<td>By pressing the button the input is simulated. The parameterized features are carried out. The button can be disabled by the parameter settings.</td>
</tr>
<tr>
<td>Output A</td>
<td>No reaction</td>
<td>The relay is toggled by pressing the button. The button can be disabled by the parameter settings.</td>
</tr>
<tr>
<td>Valve V1 HEATING</td>
<td>A fault, e.g. due to an overload, is indicated on the device by flashing (frequency 4.8 Hz) of the corresponding LED.</td>
<td>By pressing the button Opening/Closing the connected valve is controlled. A characteristic curve adjustment is not undertaken. The button can be disabled by the parameter settings.</td>
</tr>
<tr>
<td>Valve V2 COOLING</td>
<td>No reaction</td>
<td>By pressing the button, the individual fan speeds can be switched through. This is according to the following sequence: 0 => 1 => 2 => 3 => 0 => 1 => 2 => 3 => ... The button can be disabled by the parameter settings.</td>
</tr>
<tr>
<td>Fan speed</td>
<td>No reaction</td>
<td></td>
</tr>
</tbody>
</table>
3 Commissioning

3.1 Overview

The application program Fan Coil Actuator/1.0 is available for the Fan Coil Actuator. Programming requires the ETS.

The following functions are available:

<table>
<thead>
<tr>
<th>Additional output</th>
<th>For control of auxiliary electrical heating, e.g. in the Winter → Summer transition phase.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan</td>
<td>A three speed fan is controlled alternately with a two-way connection or with speed switching.</td>
</tr>
<tr>
<td>Valve V1/2 HEATING/COOLING</td>
<td>One valve for HEATING and one valve for COOLING are controlled. The control of the valves can be implemented via an analogue setting signal from 0…10 V. The valve outputs are short circuit protected.</td>
</tr>
<tr>
<td>Inputs</td>
<td>Three binary inputs are available. These are used for example, to monitor the window contact, condensation (dew point) and signalling device.</td>
</tr>
</tbody>
</table>

The 6 A outputs are available for Fan Coil applications.

Caution

Improper switching will cause destruction of the fan motors.

The technical data of the fan must be observed, e.g. speed or switching function.

For further information see: Parameter window Multi-level fan, page 38

The Fan Coil Actuator features relays in each output which are mechanically independent of the other outputs. Switching noises cannot be avoided due to the mechanical nature of the design.

The installation location of the Fan Coil Actuator can either be centrally in an electrical distribution board, or distributed in a Fan Coil unit. Usually, the Fan Coil Actuator is used in conjunction with a room temperature controller for an individual room temperature control system. The room temperature controller sends a control variable which is used to control the fan stages via the Fan Coil Actuator.

Fan Coil controls

- Fan with three fan speeds
- With changeover or speed control
- 2 pipe system HEATING and COOLING
- 2 pipe system HEATING or COOLING
- 3 pipe system
- 4 pipe system

For further information see: Planning and Application, page 115
Configuration design types
A Fan Coil unit can be configured as a compact device or a modular installation device:

- **Compact devices**: These are supplied with enclosures and are available as self-contained units for wall or ceiling mounting.
- **Modular installation devices**: These have no enclosures and are mounted in the wall, in the ceiling or in the floor. The air is blown into the room through a grill.

Air supply
Fan Coil units are available as recirculation or as mixed air devices.

- **Recirculation devices**: The room air is directed past heat exchangers by the fans.
- **Mixed air devices**: The room air is mixed with fresh air. The mixing ratio between re-circulated and fresh air can usually be adjusted.

3.1.1 Functions of the inputs

The following table provides an overview of the functions possible with the inputs of the Fan Coil Actuator and the application program:

<table>
<thead>
<tr>
<th>Functions of the inputs</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simplified switch sensor</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.1.2 Functions of the output

The following table provides an overview of the functions possible with the outputs of the Fan Coil Actuator and the application program:

<table>
<thead>
<tr>
<th>Functions of the output</th>
<th>Output A (20 AX)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch function</td>
<td></td>
</tr>
<tr>
<td>Normally closed contact</td>
<td>■</td>
</tr>
<tr>
<td>Normally open</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td></td>
</tr>
<tr>
<td>Staircase light</td>
<td>■</td>
</tr>
</tbody>
</table>
3.2 Parameters

The parameterization of the Fan Coil-Actuator is implemented using the Engineering Tool Software ETS. The user program can be found in the ETS at ABB/Heating, Cooling, Blower/Fan Coil Actuator 1-fold.

The following chapter describes the parameters of the device using the parameter window. The parameter window features a dynamic structure so that further parameters may be enabled depending on the parameterization and the function of the outputs.

The default values of the parameters are underlined, e.g.:

Options: no yes
3.2.1 Parameter window General

Higher level parameters are set in the parameter window General.

<table>
<thead>
<tr>
<th>General</th>
<th>Sending and switching delay after bus voltage recovery in s [2...255]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual operation</td>
<td>2</td>
</tr>
<tr>
<td>Control input</td>
<td></td>
</tr>
<tr>
<td>Fan</td>
<td></td>
</tr>
<tr>
<td>Status messages</td>
<td></td>
</tr>
<tr>
<td>Automatic operation</td>
<td></td>
</tr>
<tr>
<td>Value 1</td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td></td>
</tr>
<tr>
<td>Value 2</td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td></td>
</tr>
<tr>
<td>Inputs</td>
<td></td>
</tr>
<tr>
<td>Output A</td>
<td></td>
</tr>
</tbody>
</table>

Sending and switching delay after bus voltage recovery in s [2...255]

Options: 2...255

Telegram are received by the device during the sending and switching delay. The telegrams are not processed, however, and the outputs remain unchanged. No telegrams are sent on the bus.

After the sending and switching delay time, telegrams are sent and the state of the outputs is set to correspond to the parameterization or the communication object values.

If communication objects are read during the sending and switching delay, e.g. by a visualisation system, these read requests are stored and a response is sent, after the sending and switching delay has been completed.

An initialization time of about two seconds is included in the delay time. The initialisation time is the time that the processor requires to be functional.

How does the device behave with bus voltage recovery?

After bus voltage recovery, the device always waits for the sending and switching delay time to elapse before sending telegrams on the bus.
Rate of telegrams
Options: not limited
1 telegram/second
2 telegrams/second
3 telegrams/second
5 telegrams/second
10 telegrams/second
20 telegrams/second
0.05 seconds/telegram
0.1 seconds/telegram
0.2 seconds/telegram
0.3 seconds/telegram
0.5 seconds/telegram

A telegram limitation is implemented to control the bus load created by the device.

Send object "in operation"
Options: no
yes

The in operation communication object indicates the presence of the device. This cyclic telegram can be monitored by an external device. If a telegram is not received, the device may be defective or the bus cable to the transmitting device may be interrupted.

Note
After bus voltage recovery the communication object is sent after the set sending and switching delay.

- yes: The communication object in operation is not enabled. The following parameters appear:

 Telegram repeated s [1...65,535]
 Options: 1...60...65,535

 This parameter determines the time interval, at which the communication object in operation cyclically sends a telegram.

 Send value cyclically
 Options: 1

 This parameter defines the value that the communication object sends on the bus.
Enable communication object
"Request status values" 1 bit
Options: no yes

Via this communication object, all status messages can be requested, provided that they have been parameterized with the option after a change or request.

- yes: A 1 bit communication object Request status values is enabled. The following parameter appears.

 recall with object value
 Options: 0
 1
 0 or 1

 - 0: The status messages are requested with the value 0.
 - 1: The status messages are requested with the value 1.
 - 0 or 1: The status messages are requested with the values 0 or 1.
3.2.2 Parameter window Manual operation

In the parameter window, all the settings for manual operation can be made.

<table>
<thead>
<tr>
<th>General</th>
<th>Manual operation</th>
<th>Reset manual operation to EB/KNX operation</th>
<th>Enable communication object “Status man. operation” 1 bit</th>
<th>Send object value after a change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control input</td>
<td>Manual operation enabled</td>
<td>no</td>
<td>yes</td>
<td>after a change</td>
</tr>
<tr>
<td>Fan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Status messages</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Automatic operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valve 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Function</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valve 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Function</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Manual operation

Options: enabled, disable via communication object, disabled

This parameter defines if the switch over between the operating states Manual operation and KNX operation is enabled or disabled via the button on the device or via a communication object.

- **enabled:** The operating states Manual operation and KNX operation can be toggled via button .
- **enable via communication object** The communication object Enable manual operation – manual operation (No. X) appears.
- **disabled:** Manual operation is generally disabled.

Telegram value 0 = enable button
1 = block button

For further information see: Manual operation, page 17.

Note

The manual operation overwrites the input states.
Reset manual operation to EIB/KNX operation
Option:
 - no
 - after 1/3/10/30 minute(s)

This parameter determines how long the device remains in the Manual operation mode after pressing the button 🍂.
- no: The device remains in Manual operation until the button 🍂 is pressed again.
- after 1/3/10/30 minute(s): The device remains in Manual operation after the last button push until either button 🍂 is pushed again or the programmed time has timed out.

Enable communication object "Status man. operation" 1 bit
Options:
 - no
 - yes

- yes: The 1 bit communication object Status of manual operation (no. X) is enabled. An additional parameter appears:

 Send object value
 Options:
 - no, update only
 - after a change
 - after request
 - after a change or request

- no, update only: The status is updated but not sent.
- after a change: The status is sent after a change.
- after request: The status is sent after a request.
- after a change or request: The status is sent after a change or a request.

For further information see: Manual operation, page 17
Function of the buttons:

Speed
Options: enabled
disabled
With this parameter the button can also be enabled or disabled.
- *enabled*: The button is enabled.
- *disabled*: The button is disabled.

Note
The Valve HEATING corresponds with valve V1
The Valve COOLING corresponds with valve V2

Valve Heating
Options: enabled
disabled
With this parameter the button 😊 can be enabled or disabled.
- *enabled*: The buttons are enabled.
- *disabled*: The buttons are disabled.

Valve Cooling
The operation of the COOLING valve does not differ from the operation of the HEATING valve.
For further information see: Parameter description Valve HEATING, page 67

Input a
This parameter is visible if in Parameter window Input , page 75, with parameter Input a the option Switch sensor/fault monitoring input has been selected.
Options: Block
Switch
Buttons
With this parameter the button can be disabled, or programmed as a switch or push button.
- *Block*: The button is disabled.
- *Switch*: With every actuation the states of the input and the LED are changed.
- *Push buttons*:
 - Press button => input closed, LED on
 - Release button => input opened, LED off
Input b…c
The operation of inputs b…c does not differ from the operation of input a.

Output A
Options: enabled
disabled

With this parameter, the button can be enabled or disabled.

- enabled: The button is enabled.
- disabled: The button is disabled.
3.2.3 Parameter window Control input

In this parameter window, all settings for the Control input are undertaken.

<table>
<thead>
<tr>
<th>General</th>
<th>HVAC-System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual operation</td>
<td>1 Control value/2-pipe</td>
</tr>
<tr>
<td>Control input</td>
<td>Valve cooling independently usable</td>
</tr>
<tr>
<td>- Fan</td>
<td><= Note</td>
</tr>
<tr>
<td>- Status messages</td>
<td>Operation heat/cool after bus voltage recovery</td>
</tr>
<tr>
<td>- Automatic operation</td>
<td>unchanged</td>
</tr>
<tr>
<td>Valve 1</td>
<td>Monitoring control values</td>
</tr>
<tr>
<td>- Function</td>
<td>e.g. thermostat</td>
</tr>
<tr>
<td>Valve 2</td>
<td>no</td>
</tr>
<tr>
<td>- Function</td>
<td></td>
</tr>
<tr>
<td>Inputs</td>
<td></td>
</tr>
<tr>
<td>Output A</td>
<td></td>
</tr>
</tbody>
</table>

HVAC-System

Options:
1 Control value/2-pipe
1 Control value/4-pipe, with switching object
2 Control values/2-pipe
2 Control values/2-pipe, with switching object
2 Control values/4-pipe

This parameter defines the pipe system, which is used with the Fan Coil Actuator. The individual functions are described in the following chapters.

Important

If a valve is deactivated due to a conversion of the HVAC system, the valve will be fully closed. A correction curve which may be set will be ignored!

Monitoring control values e.g. thermostat

Options:
no
yes

- yes: The communication object Fault control value is enabled. Hereby for example, a thermostat can be cyclically monitored.
With option yes, the following parameters appear:

Monitoring time in s

[30...65,535]

Options: 30…120…65,535

With this parameter, the time is set with which all telegrams on the input/setting values of the FCA/S are monitored: Communication objects Control value, HEATING, Control value, COOLING, Control value HEATING/COOLING or Toggle, HEATING/COOLING.

If a setting variable is not received within the parameterized time, a communication malfunction has occurred and emergency operation is activated.

<table>
<thead>
<tr>
<th>Important</th>
</tr>
</thead>
<tbody>
<tr>
<td>It must be assured that the monitoring time is set to at least factor 3 larger than the set sending time of the thermostat.</td>
</tr>
</tbody>
</table>

The reaction of the FCA/S to a setting value not received can be defined in the following parameters.

Send object value

(Object "Control value fault" 1 bit)

Options: no, update only
- after a change
- after request
- after a change or request

- **no, update only:** The status is updated but not sent.
- **after a change:** The status is sent after a change.
- **after request:** The status is sent after a request.
- **after a change or request:** The status is sent after a change or a request.

Control value after control fault

in % [0…100]

Options: 0…30…100

This parameter sets the control value in % with which the valve is set in emergency operation, e.g. should the control fail.
3.2.3.1 HVAC system – 1 Control value/2-pipe

If option 1 Control values/2-pipe is selected, then further parameters appear:

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Valve HEATING corresponds with valve V1</td>
</tr>
<tr>
<td>The Valve COOLING corresponds with valve V2</td>
</tr>
</tbody>
</table>

Valve cooling independently usable
This parameter serves as a note or remark.

Valve Cooling
The cooling valve can be used additionally and independently via the communication object Control value COOLING(extra!). The valve V2 COOLING is not monitored in the process.

Valve HEATING
Via communication object Control value HEATING/COOLING, the valve V1 HEATING and the fan are controlled.

For further information see: Configuration of a HVAC system with Fan Coil units, page 117

Operation heat/cool after bus voltage recovery
Options: unchanged
Heating
Cooling

Using this parameter, the reaction after bus voltage recovery is set.

- unchanged: After bus voltage recovery, the state which existed before bus voltage failure is set.
- Heating: After bus voltage recovery, the HEATING state is set.
- Cooling: After bus voltage recovery, the COOLING state is set.
3.2.3.2 HVAC-System – 1 Control values/4-pipe, with switching object

If option 1 Control value/4-pipe with switching object is selected, further parameters appear:

Toggle Heating/Cooling via object

This parameter serves as a note or remark.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Valve HEATING corresponds with valve V1</td>
</tr>
<tr>
<td>The Valve COOLING corresponds with valve V2</td>
</tr>
</tbody>
</table>

Valve HEATING/COOLING

Using communication object Control value HEATING/COOLING, the valves V1/V2 HEATING/COOLING and the fans are controlled.

Toggle between HEATING and COOLING is implemented via the communication object Toggle HEATING/COOLING.

The corresponding inactive/non-actuated valve is thus automatically closed when toggled.

For further information see: Configuration of a HVAC system with Fan Coil units, page 117

Operation heat/cool after bus voltage recovery

Options: unchanged

- Heating: After bus voltage recovery, the HEATING state is set.
- Cooling: After bus voltage recovery, the COOLING state is set.

Object value for heating the object

"Toggle heating/cooling"

Options: 1

With this parameter, you set the communication object value used to toggle between HEATING and COOLING.

- 1: As soon as a telegram with the value 1 is received, HEATING is activated and COOLING is deactivated.
- 0: As soon as a telegram with the value 0 is received, HEATING is activated and COOLING is deactivated.
HVC system – 2 Control value/2-pipe

If option 2 Control values/2-pipe is selected, then further parameters appear:

Toggle Heating/Cooling via automatically controlled value

This parameter serves as a note or remark.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Valve HEATING corresponds with valve V1</td>
</tr>
<tr>
<td>The Valve COOLING corresponds with valve V2</td>
</tr>
</tbody>
</table>

Valve HEATING/Valve COOLING

Toggling between HEATING and COOLING is implemented by updating the control values. The HEATING/COOLING status is then set accordingly.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>The switchover between HEATING/COOLING should occur exclusively in the respective thermostat. Here only HEATING or COOLING is always active depending on the last control value received.</td>
</tr>
<tr>
<td>• If a control with a value > 0 is received, the fan and the corresponding valve are controlled.</td>
</tr>
<tr>
<td>• The other valve is closed.</td>
</tr>
<tr>
<td>• If a control value with a value = 0 is received, this is ignored if the other control value > 0.</td>
</tr>
</tbody>
</table>

Caution

With a 2-pipe HVAC system, both the Control value HEATING as well as the Control value COOLING act on the valve V1 HEATING (electronic outputs O, P). Please note that the last control value received always controls the valve V1 HEATING.

For 2 pipe systems, only the communication objects for the valve V1 HEATING are relevant.

The communication objects in conjunction with the valve V2 COOLING, e.g. status, forced operation or valve purge are not effective.

For further information see: Configuration of a HVAC system with Fan Coil units, page 117

Operation heat/cool after bus voltage recovery

Options: unchanged

<table>
<thead>
<tr>
<th>Heating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling</td>
</tr>
</tbody>
</table>

Using this parameter, the reaction after bus voltage recovery is set.

- **unchanged**: After bus voltage recovery, the state which existed before bus voltage failure is set.
- **Heating**: After bus voltage recovery, the HEATING state is set.
- **Cooling**: After bus voltage recovery, the COOLING state is set.
3.2.3.4 HVAC-System – 2 Control values/2-pipe, with switching object

If option 2 Control value/2-pipe with switching object is selected, further parameters appear:

Toggle Heating/Cooling via object

This parameter serves as a note or remark.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Valve HEATING corresponds with valve V1</td>
</tr>
<tr>
<td>The Valve COOLING corresponds with valve V2</td>
</tr>
</tbody>
</table>

Valve HEATING/Valve COOLING

The valve is controlled via the communication object Control value HEATING.

Toggle between HEATING and COOLING is implemented via the communication object Toggle HEATING/COOLING.

Caution

With a 2-pipe HVAC system, both the Control value HEATING as well as the Control value COOLING act on the valve V1 HEATING (electronic outputs O, P). Please note that always the last control value received and the switching object control the HEATING valve.

For 2 pipe systems, only the communication objects for the valve V1 HEATING are relevant.

The communication objects in conjunction with the valve V2 COOLING, e.g. status, forced operation or valve purge are not effective.

For further information see: Configuration of a HVAC system with Fan Coil units, page 117

Operation heat/cool after bus voltage recovery

Options: unchanged, HEATING, COOLING

Using this parameter, the reaction after bus voltage recovery is set.

- **unchanged:** After bus voltage recovery, the state which existed before bus voltage failure is set.
- **Heating:** After bus voltage recovery, the HEATING state is set.
- **Cooling:** After bus voltage recovery, the COOLING state is set.

Object value for heating the object “Toggle heating/cooling”

Options: 1, 0

With this parameter, you set the communication object value used to toggle between HEATING and COOLING.

- **1:** As soon as a telegram with the value 1 is received, HEATING is activated and COOLING is deactivated.
- **0:** As soon as a telegram with the value 0 is received, HEATING is activated and COOLING is deactivated.
HVAC system – 2 Control values/4-pipe

If option 2 Control values/4-pipe is selected, then further parameters appear:

Toggle Heating/Cooling via automatically controlled value

This parameter serves as a note or remark.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Valve HEATING corresponds with valve V1</td>
</tr>
<tr>
<td>The Valve COOLING corresponds with valve V2</td>
</tr>
</tbody>
</table>

Valve HEATING/Valve COOLING

The HEATING valve V1 is controlled via the communication object Control value HEATING.

The COOLING valve V2 is controlled via the communication object Control value COOLING.

Toggling between HEATING and COOLING is implemented by updating the control values. The HEATING/COOLING status is then set accordingly.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>The switchover between HEATING/COOLING should occur exclusively in the respective thermostat. Here only HEATING or COOLING is always active depending on the last control value received.</td>
</tr>
<tr>
<td>• If a control with a value > 0 is received, the fan and the corresponding valve are controlled.</td>
</tr>
<tr>
<td>• The other valve is closed.</td>
</tr>
<tr>
<td>• If a control value with a value = 0 is received, this is ignored if the other control value > 0.</td>
</tr>
</tbody>
</table>

For further information see: [Configuration of a HVAC system with Fan Coil units](#), page 117

Operation heat/cool after bus voltage recovery

Options: unchanged

Heating

Cooling

Using this parameter, the reaction after bus voltage recovery is set.

- **unchanged**: After bus voltage recovery, the state which existed before bus voltage failure is set.
- **Heating**: After bus voltage recovery, the HEATING state is set.
- **Cooling**: After bus voltage recovery, the COOLING state is set.
Parameter window *Multi-level fan*

In this parameter window, all settings for the *Multi-level fan* are undertaken.

Fan type

Option:
- **multi-level**
- **one-level**

This parameter defines the fan type which is to be controlled.

- **multi-level**: A fan with up to three speeds is controlled.
- **one-level**: A fan with one speed should be controlled.

Speed on 2 limit

Option:
- **no**
- **yes**

The fan speeds can be limited to two here. The following settings are the same as those for a three speed fan, but are only limited to two speeds.

- **no**: A three speed fan is controlled.
- **yes**: A two speed fan is controlled via fan speeds 1 and 2. Fan speed 3 is non-functional.
Fan Operation Mode note techn. Data of Fan III!
Option: Changeover switch
Step switch

The control of the fan is set with this parameter. The mode of fan control should be taken from the technical data of the fan.

How does a two-way changeover circuit function?
Only the corresponding output of the assigned fan speed is switched on with the parameterization as a changeover switch.

The delay time between the stage switch over and a minimum dwell time in a valve stage are programmable. The minimum dwell time in a fan speed is only active in automatic mode.

How does speed switching function?
With step switch control, no erratic and sudden switch on of the fan is possible. The individual fan speeds are activated consecutively (outputs switched on) until the required fan speed is achieved.

The parameterized delay time between two fan speeds has the effect that the current fan speed must be switched on for at least this time before the next valve speed is switched on. The parameterized minimum dwell time in a fan speed has the same effect as a changeover switch, i.e. it is only active in automatic mode and is added to the switchover delay.

- Changeover switch: The following parameter appears:

 Delay between fan speed switching in ms [50...5,000]
 Option: 50...500...5,000

 A switchover delay can be programmed with this parameter. As this time is a fan specific factor, it is always considered.

Fan speed on bus voltage failure
Option: unchanged
off

Fan speed on bus voltage recovery
Options: unchanged
off
1
2
3

- unchanged: The fan speeds of the fan remain unchanged.
- off: The fan is switched off.
- 1, 2 or 3: The fan switches to fan speed 1, 2 or 3.
Caution

The FCA/S is supplied ex-works with a default setting (factory default). This ensures the fan setting is switched off when the bus voltage is applied to the relay for the first time. Thus, damage to the device due to unintentional switch on during transport, e.g. due to vibration, is avoided.

It is advisable to apply a bus voltage before connecting the fan in order to achieve a defined switch state of the fan. This eliminates the possibility of the destruction of the fan due to an incorrect contact setting.

Enable communication object

"Forced operation" 1 bit

Options:
- no
- yes

Through forced operation for example, a recirculation: Valve OFF and fan ON can be implemented.

- yes: A 1 bit communication object Forced operation is enabled. The following parameters appear at the same time:

<table>
<thead>
<tr>
<th>Forced operation on object value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Options: 1 0</td>
</tr>
</tbody>
</table>

- 1: Forced operation is activated by a telegram with value 1.
- 0: Forced operation is activated by a telegram with value 0.

Note

During forced operation, the settings set in Automatic operation are ignored. Automatic operation is updated after forced operation has been rescinded.

Important

Forced operation remains active until:

- the complementary set values are sent.
- the assignment is changed.
- the fan type is changed.

The forced operation is not deactivated by a download of the application program, in which the fan type and the respective group addresses are retained.

The forced operation is reset if an ETS reset has occurred.
Limitation with forced operation
Options: 3, 2, 1, off
unchanged
off
1
1, off
2
2, 1
2, 1, off
3
3, 2
3, 2, 1

This parameter sets which fan speed is set with active forced operation or which may not be exceeded or undershot.

- 3, 2, 1, off Everything is possible.
- unchanged: The state is retained.
- Off: Off.
- 1: limited to speed 1.*
- 1, off limited to speed 1 and off.
- 2: limited to speed 2.*
- 2, 1: limited to speed 2 and 1.
- 2, 1, off: limited to speed 2, 1 and off.
- 3: limited to speed 3.*
- 3, 2: limited to speed 3 and 2.
- 3, 2, 1: limited to speed 3, 2 and 1.
* The control value is ignored.

Enable automatic operation
Options: no
yes

- yes: Automatic operation is enabled. Furthermore, the Parameter window - Automatic operation, page 49 appears.

Enable direct operation
Options: no
yes

- yes: Direct operation is enabled. Furthermore, the Parameter window - Direct operation, page 55 appears.
Starting characteristic of fan

Options:

- **no**
- **yes**

This parameter enables the fan to start from the OFF state with a defined fan speed. This fan stage is immediately applied.

In order to guarantee a safe start of the fan motor, it can be useful to start the fan motor first with a higher fan speed. Thus, a higher torque for the start up phase of the fan is achieved.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>A step switch normally means however that the previous fan stages are usually switched on consecutively. With the changeover switch, the fan speed is directly switched on.</td>
</tr>
</tbody>
</table>

The delay between the switchover of two fan speeds (contact change) is considered.

The dwell times in a fan speed, which are considered in automatic mode, are inactive and will only be considered after the start up phase.

The start-up behaviour is a technical characteristic of the fan. For this reason, this behaviour has a higher priority than an active limitation or forced operation.

With the option **yes** in the parameter *Starting characteristic of fan*, the two additional parameters appear:

Switch on over fan speed

Options:

- 1/2/3

Here you set which fan stage the fan uses to start from the OFF state.

Minimum dwell period in switch on fan speed in s [1...65,535]

Options:

- 1...5...65,535

This parameter defines the length of the minimum dwell time in a switch on speed.
Example: Starting characteristic of a three speed fan

The illustration shows the response in automatic operation with the option *Switch on over fan speed 3*, if the fan receives the telegram from the OFF state to set *Speed 1*.

* The parameter *Minimum dwell period in fan speed in s [0...65,535]* in the parameter window *Automatic operation* is only active and programmable, if the option *yes* has been selected in the parameter *Enable automatic operation*. In the parameter window *Fan*, you can find the parameter *Enable automatic operation*.

Important

The forced operation remains valid and is considered.

The parameterized minimum dwell time in the fan speed for automatic mode is ignored during manual operation. Accordingly, an immediate reaction to the manual operation is detected. The delay time with speed switch over remains active to protect the fan.
3.2.4.1 Parameter window - Status messages

In this parameter window, the Status messages are defined.

Enable communication object “Status fan speed x” 1 bit
Options: no yes

The setting of a fan speed is displayed via these communication objects. You can parameterize the status to indicate a current fan speed or a required fan speed.

- yes: Three 1 bit communication objects, Status fan speed x, x = 1 to 3 are enabled. The following parameters appear:

 Meaning
 Options: current fan speed required fan speed

 This parameter defines whether the status of the current fan speed or the required fan speed is displayed.

 What is the current fan speed?
 The current fan speed is the speed at which the fan is actually operating.
What is the required fan speed?
The required fan speed is the fan speed which has to be achieved, e.g. when the transition and dwell times are completed.

Note
The limitations are included in this observation, i.e. if a limitation allows only fan speed 2 and the fan is operating at fan speed 2, and for example, a telegram to switch up is received, the required fan speed remains at 2 as fan speed 3 cannot be achieved due to the limitation.

Send object values
Options: no, update only
after a change
after request
after a change or request
- no, update only: The status is updated but not sent.
- after a change: The status is sent after a change.
- after request: The status is sent after a request.
- after a change or request: The status is sent after a change or a request.

Enable communication object
“Status fan speed” 1 byte
Options: no
yes
This status byte defines the figure value of the fan speed.

This display can be differentiated with the selection of current fan speed from the required fan speed. Initially, the switchover times, dwell times and the start-up phase must be completed before the required fan speed is achieved.

- yes: The communication object Status fan speed is enabled.

What is the current fan speed?
The current fan speed is the speed at which the fan is actually operating.

What is the required fan speed?
The required fan speed is the fan speed which has to be achieved, e.g. when the transition and dwell times are completed.
With option yes the following parameters appear:

Meaning

Options: current fan speed
required fan speed

This parameter defines whether the status of the current fan speed or the required fan speed is displayed.

Note

The limitations are included in this observation, i.e. if a limitation allows only fan speed 2 and the fan is operating at fan speed 2, and for example, a telegram to switch up is received, the required fan speed remains at 2 as fan speed 3 cannot be achieved due to the limitation.

used datapoint type

Optionen:
- DPT 5.010 (step value 0...n)
- DPT 5.001 (percent value 0...100 %)

With this parameter, you set the datapoint type for the communication object Fan speed switch.

Send object value

Options: no, update only
- after a change
- after request
- after a change or request

- **no, update only**: The status is updated but not sent.
- **after a change**: The status is sent after a change.
- **after request**: The status is sent after a request.
- **after a change or request**: The status is sent after a change or a request.

Enable communication object

“Status byte mode” 1 byte

Options: no
- yes

From this status byte, the states HEATING, COOLING, automatic, forced operation and the four limitations are indicated directly via a 1 bit coding.

For further information see: Status byte forced operation, page 146
• **yes:** The communication object *Status byte* mode is enabled. The following parameter appears:

Send object values

Options: no, update only
after a change
after request
after a change or request

- **no, update only:** The status is updated but not sent.
- **after a change:** The status is sent after a change.
- **after request:** The status is sent after a request.
- **after a change or request:** The status is sent after a change or a request.

Enable communication object

“Status Fan On/Off” 1 bit

Options: no
yes

The communication object *Status fan* can be enabled with this parameter.

Some fans must receive an ON telegram before they are set to a fan speed from the OFF state. This ON telegram acts on a main switch which has to be switched on. This demand can be implemented with any switch output which is controlled via the *Status fan* communication object. The corresponding switch communication object of the switch actuator should be connected with the *Status fan* communication object.

With the option **yes**, the following parameters appear:

Send object value

Options: no, update only
after a change
after request
after a change or request

- **no, update only:** The status is updated but not sent.
- **after a change:** The status is sent after a change.
- **after request:** The status is sent after a request.
- **after a change or request:** The status is sent after a change or a request.

The following parameter only becomes visible if the option **yes** has been selected in the *Enable automatic operation* parameter in the *Fan* parameter window.
Enable communication object
“Status automatic” 1 bit
Options: no yes
The communication object Status automatic is enabled with this parameter.
Telegram value
1 = FCA/S is in automatic operation.
0 = automatic operation switched off

- yes: The following parameter appears:

Send object value
Options: no, update only
after a change
after request
after a change or request

- no, update only: The status is updated but not sent.
- after a change: The status is sent after a change.
- after request: The status is sent after a request.
- after a change or request: The status is sent after a change or a request.
3.2.4.2 Parameter window - Automatic operation

This parameter window is visible if in parameter window Fan, the option Enable automatic operation has been selected with the option yes.

In this parameter window, the threshold values for switchover of the fan speed are defined. Furthermore, the limitations can also be enabled.

Important

The Fan Coil Actuator evaluates the threshold values in ascending order, i.e. first of all the threshold value for OFF <-> Fan speed 1 is checked followed by Fan speed 1 <-> Fan speed 2 etc. The correct method of function is only assured if the threshold value for OFF <-> Fan speed 1 is less than the threshold value Fan speed 1 <-> Fan speed 2 and this is less than Fan speed 2 <-> Fan speed 3, etc.

Object value "automatic On/Off"
switch on to the automatic
Options: 1 0

This parameter defines how to react to a telegram.
- 1: Automatic is activated by a telegram with value 1.
- 0: Automatic is activated by a telegram with value 0.
Threshold value OFF <-> speed 1 in %
[1...100]
Options: 1...10...100
Here the threshold value is set, at which switch on of fan speed 1 occurs. If the value in the control value communication object is greater than the parameterized threshold value, fan speed 1 is switched on. If the value is less, than it is switched off.

Threshold value speed 1 <-> speed 2 in %
[1...100]
Options: 1...30...100
Here the threshold value, at which switch over to fan speed 2 occurs, is set. If the value in the communication object Control value HEATING or Control value COOLING is greater than the parameterized threshold value, switch over to fan speed 2 occurs.

Threshold value speed 2 <-> speed 3 in %
[1...100]
Options: 1...70...100
Here the threshold value, at which switch over to fan speed 3 occurs, is set. If the value in the communication object Control value HEATING or Control value COOLING is greater than the parameterized threshold value, switch over to fan speed 3 occurs.

Hysteresis
threshold value in % +/- [0...20]
Options: 0...5...20
Here a hysteresis is set at which switchover to the next fan speed occurs. The hysteresis applies for all three threshold values.
The setting 0 causes immediate switching without hysteresis.
The entered percentage value is directly added to or subtracted from the percentage value of the Fan speed x threshold value x. The result is a new upper or lower threshold value.
Switch threshold top (switch on) = threshold value + hysteresis
Switch threshold bottom (switch off) = threshold value - hysteresis
Example: Three speed fan, hysteresis with fan control

Using hysteresis, a continuous switching between the fan speeds around the threshold value with deviating input signals can be avoided.

Important

How does the fan react if the switch thresholds overlap by the use of hysteresis?

1) The hysteresis defines from which point the set speed transition occurs.
2) If the speed transition occurs, the new speed is determined using the control value and the set switch thresholds. The hysteresis is not considered.

A control variable with the value 0 always results in speed 0.

An example:

Parameterized:
- Threshold value OFF <-> speed 1 = 10%
- Threshold value 1 <-> speed 2 = 20%
- Threshold value 2 <-> speed 3 = 30%
- Hysteresis 15%

Behaviour when ascending from speed 0:
- Speed 0 transition at 25% (≥ 10% + hysteresis).
- The new speed is 2 (25% is between 20 and 30%).
- Accordingly, speed 1 is omitted.

Behaviour when descending from speed 3:
- Speed 3 transition at 14% (< 30% − hysteresis).
- The new speed is 1 (15% is between 10 and 20%).
- Accordingly, speed 2 is omitted.
Minimum dwell period in fan speed
in s [0...65,535]
Options: 0...30...65,535
This parameter defines the dwell time for a fan speed of the fan until it switches to the next higher or lower fan speed. The input is made in seconds.
A setting of 0 means non-delayed switching. The minimum switch times of the relay can be found in the Technical data, page 7.
The dwell time in a fan stage is only considered in automatic mode.

Enable limitations
Option: no
yes
• yes: Other parameters appear.
At the same time, 4 communication objects for limitation of the fan speed are enabled:
• Limitation 1, e.g. for frost/heat protection
• Limitation 2, e.g. for comfort operation
• Limitation 3, e.g. for night shutdown
• Limitation 4, e.g. for standby operation
Speed ranges (limitations) are defined for the fan with the function Speed limitation which may not be exceeded or undershot.
Four limitations are available. They can be used, for example, for the control of various operating modes, e.g. frost/heat protection, comfort, night shutdown and standby. In normal cases, the thermostat takes these operating modes into account in its control variable for the actuator.

Important
The parameterized starting behaviour, which is a technical characteristic of the fan, has a higher priority than a limitation or forced operation, i.e. if a limitation is activated in fan speed 2 and a start-up behaviour is parameterized via fan speed 3, the following behaviour will result: The fan is in the OFF state and receives a control signal for fan speed 1. Initially, the fan operates at fan speed 3 (start-up speed) and then proceeds to fan speed 2 that is defined by the limitation. The actual required fan speed 1 will not be achieved due to the limitation.

The sequence of the displayed parameters corresponds with their priorities, i.e. the parameter with the highest priority has limitation 1 followed by limitation 2, 3 and 4.

Note
The fault operation, e.g. as with a malfunction of the thermostat has a lower priority than the fan limitation, i.e. by a limitation of the fan speed during a thermostat malfunction only the upper or the lower limit of the fan limitation can be set at best.
When automatic mode is exited, e.g. by a manual action, the limitations 1 to 4 are inactive. The set limitations are reactivated after automatic operation is reactivated.

The following points apply for limitations:

- The fan speed and valve position can be parameterized independently.
- The limitation need not necessarily apply to one fan speed only. It can also encompass another range of the fan speeds, i.e. only certain fan speeds can be set if the limitation is active. In this way, a limited control is also possible.
- The Limitation is activated if a telegram with the value 1 is received on the communication object \textit{Limitation x}. The limitation is deactivated if a telegram with the value 0 is received on the communication object \textit{Limitation x}. A manual action ends automatic mode.
- If a limitation is activated, the Fan Coil Actuator switches to the parameterized fan speed regardless of the control value. If during the activation of the limitation another fan stage or a fan stage outside the range of the “limitation range” is set, the required fan stage or the limit fan stage of the range is set.
- After switch off of the limitations, the fan speed and the communication objects for valve control are recalculated and executed. This means that during limitation the actuator operates normally in the background, the outputs are not changed and implementation only occurs after the end of limitation.

There are the same parameters for each of the individual four limitations used to limit the fan speeds.

<table>
<thead>
<tr>
<th>Important</th>
</tr>
</thead>
<tbody>
<tr>
<td>The priority is according to the listed sequence. The highest priority is assigned to limitation 1, e.g. Frost/Heat protection; the lowest priority is assigned to limitation 4, e.g. standby operation.</td>
</tr>
</tbody>
</table>
Speed with limitation 1
Speed with limitation 2
Speed with limitation 3
Speed with limitation 4
Options:
 3, 2, 1, off
 unchanged
 off
 1
 1, off
 2
 2, 1
 2, 1, off
 3
 3, 2
 3, 2, 1

With this parameter, you set which fan speed is set with active limitation or which speed is not exceeded or undershot.

- **3, 2, 1, off**: Everything is possible.
- **unchanged**: The state is retained.
- **Off**: Off.
- **1**: limited to speed 1.*
- **1, off**: limited to speed 1 and off.
- **2**: limited to speed 2.*
- **2, 1**: limited to speed 2 and 1.
- **2, 1, off**: limited to speed 2, 1 and off.
- **3**: limited to speed 3.*
- **3, 2**: limited to speed 3 and 2.
- **3, 2, 1**: limited to speed 3, 2 and 1.

* The control value is ignored.
3.2.4.3 Parameter window - Direct operation

This parameter window is visible if in parameter window Fan, the option Enable direct operation has been selected with the option yes.

<table>
<thead>
<tr>
<th>Enable communication object</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Switch speed x" 1 bit</td>
</tr>
<tr>
<td>Options: no yes</td>
</tr>
<tr>
<td>yes: Three 1 bit communication objects Speed 1, Speed 2 and Speed 3 are enabled.</td>
</tr>
</tbody>
</table>

The FCA/S receives a setting telegram via these communication objects and switches off automatic operation.

Telegram value 1 = Fan speed x is switched on
0 = Fan speed x is switched on

If several ON/OFF telegrams are received consecutively in a short period of time at various communication objects Fan speed 1…3, the value last received by the fan control is the decisive value. An OFF telegram to one of the three communication objects, Fan speed 1…3, switches off the fan completely.

Important

The forced operation remains valid and is considered.

The parameterized minimum dwell time in the fan speed for automatic mode is ignored during manual operation. Accordingly, an immediate reaction to the manual operation is detected.

The delay time with speed switch over remains active to protect the fan.
Enable communication object
"Fan speed up/down" 1 bit
Options: no yes

- yes: A communication object 1 bit Fan speed UP/DOWN is enabled.

Telegram value
1 = a fan speed is switched UP
0 = a fan speed is switched DOWN

If the maximum fan speed is achieved and a further telegram with the value 1 is received the fans speed will remain as it is.

<table>
<thead>
<tr>
<th>Important</th>
</tr>
</thead>
<tbody>
<tr>
<td>The forced operation remains valid and is considered.</td>
</tr>
<tr>
<td>The parameterized minimum dwell time in the fan speed for automatic mode is ignored during manual operation. Accordingly, an immediate reaction to the manual operation is detected.</td>
</tr>
<tr>
<td>The delay time with speed switch over remains active to protect the fan.</td>
</tr>
</tbody>
</table>

With multiple manual UP or DOWN switching, the target speed will be increased or reduced by a speed step. This is possible until the maximum or minimum possible speed is achieved. Further UP or DOWN telegrams are ignored and not executed. Each new switching telegram initiates a new calculation of the target speed. This means that the target speed can be changed by switching telegrams until the target speed is achieved.

Enable communication object
"Fan speed switch" 1 byte
Options: no yes

- yes: A 1 byte communication object Switch speed is enabled.

used datapoint type
Optionen: DPT 5.010 (step value 0…n)
DPT 5.001 (percent value 0…100 %)

With this parameter, you set the datapoint type for the communication object Fan speed switch.
3.2.5 Parameter window Two level fan

In this parameter window, all settings for the Two-level fan are undertaken.

<table>
<thead>
<tr>
<th>General</th>
<th>Fan type</th>
<th>multi-level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual operation</td>
<td>Speed on 2 limit</td>
<td>yes</td>
</tr>
<tr>
<td>Control input</td>
<td>Fan Operation Mode note technical data of fan</td>
<td>Changeswitch</td>
</tr>
<tr>
<td></td>
<td>Delay between fan speed switching in ms [50...5,000]</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Fan speed on bus voltage failure</td>
<td>unchanged</td>
</tr>
<tr>
<td></td>
<td>Fan speed on bus voltage recovery</td>
<td>unchanged</td>
</tr>
<tr>
<td></td>
<td>Enable communication object "Forced operation" 1 bit</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>Enable automatic operation</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>Enable direct operation</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>Starting characteristic of fan</td>
<td>no</td>
</tr>
</tbody>
</table>

If a fan with two fan speeds is to be controlled via the FCA/S, the following parameters must be set:

- Select the option multi-level with parameter Fan type in the parameter window Fan.
- For parameter Speed on 2 limit, the option yes must be selected.

Now a two speed fan is controlled via fan speeds 1 and 2.

Fan speed 3 with all its parameters and options is now non-functional.

Note
Further parameters and their settings can be found in Parameter window Multi-level fan, page 38.
3.2.6 Parameter window One-level fan

In this parameter window, all settings for the one-level fan are undertaken.

Fan type

Option:
- multi-level
- one-level

The fan type to be controlled is set with this parameter.

If a fan with up to three speeds is to be controlled, the option *multi-level* must be selected.

If a fan with one speed is to be controlled, the option *one-level* must be selected.

Fan speed on bus voltage failure

Option:
- unchanged
- off
- on

The behaviour of the fan on bus voltage failure is defined here.
Fan speed on bus voltage recovery
Options:
unchanged
off
on

The behaviour of the fan on bus voltage recovery is defined here.

- **unchanged**: The fan speed of the fan remains unchanged.
- **Off**: The fan is switched off.
- **On**: The fan is switched on.

Caution

The FCA/S is supplied ex-works with a default setting (factory default). This ensures the fan setting is switched off when the bus voltage is applied to the relay for the first time. Thus, damage to the device due to unintentional switch on during transport, e.g. due to vibration, is avoided.

It is advisable to apply a bus voltage before connecting the fan in order to achieve a defined switch state of the fan. This eliminates the possibility of the destruction of the fan due to an incorrect contact setting.

Enable communication object
"Forced operation“ 1 bit
Options:
no
yes

- **yes**: A 1 bit communication object *Forced operation* is enabled. The following parameters appear at the same time:

 Forced operation on object value
 Options:
 1
 0

 - **1**: Forced operation is activated by a telegram with value 1.
 - **0**: Forced operation is activated by a telegram with value 0.

 Behaviour with forced operation
 Options:
 unchanged
 off
 on

 This parameter defines how the fan should respond with forced operation.
Enable automatic operation
Options: no
 yes
- yes: Automatic mode is enabled; an additional parameter window Automatic operation appears.

Time function on ON
Options: none
 switching delay
 minimum time
The function Time at fan ON is defined here with this parameter.
- none: No function Time is executed.
- switching delay: The fan is switched on using this delay.
- minimum time: The fan remains ON for at least this time.
With option switching delay, the following parameters appear:

Time in s [1…65,535 x 0.1]
Options: 1…20…65,535
The fan is switched on using this delay.
With option minimum time, the following parameters appear:

Time in s [1…65,535]
Options: 1…20…65,535
The fan remains ON for at least this time.

Function time on OFF
Options: none
 switching delay
 minimum time
The function Time at fan ON is defined here with this parameter.
- none: No function Time is executed.
- switching delay: The fan is switched off using this delay.
- minimum time: The fan remains OFF for at least this time.
With option switching delay, the following parameters appear:

Time in s [1…65,535 x 0.1]
Options: 1…20…65,535
The fan is switched off using this delay.
With option minimum time, the following parameters appear:

Time in s [1…65,535]
Options: 1…20…65,535
The fan remains OFF for at least this time.
Parameter window - Status messages

In this parameter window, the *Status messages* are defined.

<table>
<thead>
<tr>
<th>General</th>
<th>Enable communication object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual operation</td>
<td>"Status byte mode" 1 byte</td>
</tr>
<tr>
<td>Control input</td>
<td>Enable communication object</td>
</tr>
<tr>
<td>Fan</td>
<td>"Status Fan On/Off" 1 bit</td>
</tr>
</tbody>
</table>

- **Status messages**
 - Valve 1
 - Function
 - Valve 2
 - Function

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Output A</th>
</tr>
</thead>
</table>

Enable communication object

"Status byte mode" 1 byte

Options: no, yes

From this status byte, the states HEATING, COOLING, automatic, forced operation and the four limitations are indicated directly via a 1 bit coding.

For further information see: Status byte forced/operation, page 146

- yes: The communication object *Status byte* mode is enabled. The following parameter appears:

 Send object values

 Options: no, update only

 - after a change
 - after request
 - after a change or request

 - no, update only: The status is updated but not sent.
 - after a change: The status is sent after a change.
 - after request: The status is sent after a request.
 - after a change or request: The status is sent after a change or a request.
Enable communication object
“Status Fan On/Off” 1 bit
Options: no yes
The communication object Status fan can be enabled with this parameter.
Some fans initially require an ON telegram before they are set to a fan speed from the OFF state. This ON telegram acts on a main switch, which has to be switched on. This demand can be implemented with any switch output that is controlled via the Status fan communication object. The corresponding switch communication object of the switch actuator should be connected with the Status fan communication object.

With the option yes, the following parameters appear:

Send object value
Options: no, update only after a change after request after a change or request
- no, update only: The status is updated but not sent.
- after a change: The status is sent after a change.
- after request: The status is sent after a request.
- after a change or request: The status is sent after a change or a request.

Enable communication object
“Status automatic” 1 bit
Options: no yes
The communication object Status automatic is enabled with this parameter.
Telegram value 1 = automatic operation active 0 = automatic operation inactive
- yes: The following parameter appears:

Send object values
Options: no, update only after a change after request after a change or request
- no, update only: The status is updated but not sent.
- after a change: The status is sent after a change.
- after request: The status is sent after a request.
- after a change or request: The status is sent after a change or a request.
3.2.6.2 Parameter window - Automatic operation

This parameter window is visible if in parameter window Fan, the option Enable automatic operation has been selected with the option yes.

In this parameter window, the threshold values for switchover of the fan speed are defined. Furthermore, the limitations can also be enabled.

The corresponding valve control communication object receives the value 1 if a fan speed is set. If a fan speed is not set, the communication object will receive the value 0.

Object value "automatic On/Off"
switch on to the automatic
Options: 1 0

This parameter defines how to react to a telegram.

- 1: Automatic is activated by a telegram with value 1.
- 0: Automatic is activated by a telegram with value 0.

Threshold value OFF -> ON in % [1..100]
Options: 1...10...100

Here the threshold value, at which switch on occurs, is defined. If the value in the control value communication object is greater than or equal to the parameterized threshold value, it is switched on. If the value is less, then it is switched off.
Hysteresis
threshold value in % +/- [0…20 %]
Options: 0…5…20

Using this parameter a hysteresis, at which switchover to the next fan speed occurs, is set. The hysteresis applies for all three threshold values.

The setting 0 causes immediate switching without hysteresis.

The entered percentage value is directly added to or subtracted from the percentage value of the Fan speed x threshold value x. The result is a new upper or lower threshold value.

Example, a three speed fan, hysteresis with fan control

Using hysteresis, a continuous switching between the fan speeds around the threshold value with deviating input signals can be avoided.

Enable limitations
Option: no
yes

• yes: Other parameters appear.

At the same time, 4 communication objects for limitation of the fan speed are enabled:

• Limitation 1, e.g. for frost/heat protection
• Limitation 2, e.g. for comfort operation
• Limitation 3, e.g. for night shutdown
• Limitation 4, e.g. for standby operation

Speed ranges (limitations) are defined for the fan with the speed limitation function which may not be exceeded or undershot.
Four limitations are available. These can be used, for example, for the control of various operating modes such as frost/heat protection, night shut-down and standby. In normal cases, the thermostat takes these operating modes into account in its control variable for the actuator.

Important

The parameterized starting behaviour, which is a technical characteristic of the fan, has a higher priority than a limitation or forced operation, i.e. if a limitation is activated in fan speed 2 and a start-up behaviour is parameterized via fan speed 3, the following behaviour will result: The fan is in the OFF state and receives a control signal for fan speed 1. Initially, the fan operates at fan speed 3 (start-up speed) and then proceeds to fan speed 2 that is defined by the limitation. The actual required fan speed 1 will not be achieved due to the limitation.

The sequence of the displayed parameters corresponds with their priorities, i.e. the parameter with the highest priority has limitation 1 followed by limitation 2, 3 and 4.

Note

The fault operation, e.g. as with a malfunction of the thermostat has a lower priority than the fan limitation, i.e. by a limitation of the fan speed during a thermostat malfunction only the upper or the lower limit of the fan limitation can be set at best.

When automatic mode is exited, e.g. by a manual action, the limitations 1…4 remain.

The following points apply for limitations:

- The fan speed and valve position can be parameterized independently.
- The limitation need not necessarily apply to one fan speed only. It can also encompass another range of the fan speeds, i.e. only certain fan speeds can be set if the limitation is active. In this way, a limited control is also possible.
- The limitation is activated if a telegram with the value 1 is received on the limitation communication object. The limitation is deactivated if a telegram with the value 0 is received on the communication object Limitation x. A manual action ends automatic mode.
- If a limitation is activated, the Fan Coil Actuator switches to the parameterized fan speed regardless of the control value. If during the activation of the limitation another fan stage or a fan stage outside the range of the “limitation range” is set, the required fan stage or the limit fan stage of the range is set.
- After switch off of the limitations, the fan speed and the communication objects for valve control are recalculated and executed. This means that during limitation the actuator operates normally in the background, the outputs are not changed and implementation only occurs after the end of limitation.

There are the same parameters for each of the individual four limitations used to limit the fan speeds. The priority is according to the listed sequence. The highest priority is assigned to limitation 1, e.g. Frost/Heat protection; the lowest priority is assigned to limitation 4, e.g. standby operation.
Fan with limitation 1
Fan with limitation 2
Fan with limitation 3
Fan with limitation 4
Options: inactive
unchanged
OFF
ON

With this parameter, you set which fan speed is set with active limitation, or which speed is not exceeded or undershot.
3.2.7 Parameter window Valve 1

In this parameter window, all settings for Valve 1 are undertaken.

Valve control

- **0-10 V**

Valve position on bus voltage failure

- **0 Volt**

Valve position when valve inactive

- Options: 0 Volt, 10 Volt

This parameter determines the valve position when the valve is inactive.

Valve position after bus voltage recovery

- Options: unchanged, select
 - **unchanged**: The valve position does not change after bus voltage recovery.
 - **select**: After bus voltage recovery the valve will assume the position as defined in the following parameter.

- **Valve position in % [0...100]**
 - Option: 0...100

 This parameter defines the position of the valve after bus voltage recovery as a percentage.

Correct valve characteristic curve

- Option: no, yes
 - **yes**: The Parameter window - Curve, page 72, appears This is adapted in the characteristic of the valve
3.2.7.1 Parameter window - Function

Various communication objects can be enabled in the parameter window - *Function*.

<table>
<thead>
<tr>
<th>General</th>
<th>Enable communication object "Enable" 1 bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual operation</td>
<td>Enable communication object "Disable" 1 bit</td>
</tr>
<tr>
<td>Control input</td>
<td>Enable communication object "Forced operation" 1 bit</td>
</tr>
<tr>
<td>Fan</td>
<td>Enable communication object "Valve position status" 1 byte/1 bit</td>
</tr>
<tr>
<td></td>
<td>Enable valve purge</td>
</tr>
</tbody>
</table>

Enable communication object "Disable" 1 bit

Options:
- no
- yes

- yes: The 1 bit block communication object *Block* is enabled. It can be used to block the valve. The current valve position is retained. The following parameter appears:

 Disable on object value

 Options:
 - 1
 - 0

 This parameter defines the communication object value, which disables/blocks the valve. Incoming setting values are stored. After the valve is re-enabled, the last setting value received is set.
Enable communication object
"Forced operation" 1 bit
Options: no
yes
- yes: The 1 bit communication object Forced operation is enabled. The valve can be forcibly operated in this way. The following parameters appear:

Forced operation on object value
Options: 1
0
This parameter defines the communication object value which forcibly operates the valve.

Valve position on forced operation in % [0…100]
Options: 0…30…100
This parameter determines the valve position in % during forced operation. Incoming setting values are stored. After forced operation is removed, the last setting value received is set.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forced operation is only undertaken with an active valve and remains ineffective with a deactivated valve.</td>
</tr>
</tbody>
</table>

Enable communication object
"Valve position status" 1 byte / 1 bit
Options: no
1 bit
1 byte

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>The valve position status is sent immediately after the control value is received.</td>
</tr>
</tbody>
</table>

- **1 bit**: The following parameters appear:

 Send object value
 Options: no, update only
 after a change
 after request
 after a change or request

 - no, update only: The status is updated but not sent.
 - after a change: The status is sent after a change.
 - after request: The status is sent after a request.
 - after a change or request: The status is sent after a change or a request.

 Object value with valve position > 0
 Options: 1
 0
1 byte: The following parameter appears:

Send object value

Options: no, update only
- after a change
- after request
- after a change or request

- **no, update only**: The status is updated but not sent.
- **after a change**: The status is sent after a change.
- **after request**: The status is sent after a request.
- **after a change or request**: The status is sent after a change or a request.

Enable valve purge

Options: no, yes

- yes: The 1 bit communication object *Trigger valve purge* is enabled. The following parameters appear:

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the valve purge is interrupted by a higher priority, it will restart after the completion of the priority task, unless, for example, the control value was 100 % or it was active for the duration of the purge time due to the higher priority. The valve position for purging is always the control value 100 %. For further information see: Behaviour with, ..., S. 138</td>
</tr>
</tbody>
</table>

Enable communication object

"Status valve purge" 1 bit

Options: no, yes

- yes: The 1 bit communication object *Status valve purge* is enabled.

The status of the valve purge is visible via this communication object. The following parameter appears:

Send object value

Options: no, update only
- after a change
- after request
- after a change or request

- **no, update only**: The status is updated but not sent.
- **after a change**: The status is sent after a change.
- **after request**: The status is sent after a request.
- **after a change or request**: The status is sent after a change or a request.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>The status is sent immediately as soon as a new control value is received.</td>
</tr>
</tbody>
</table>
Duration of valve purge in min.

[1…255]

Options: 1…10…255

This parameter defines the time duration for the valve purge. In this time, the valve is fully opened. When the time has elapsed, the state before the purge is re-established.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>The opening time of the valve must be considered when entering the purge time.</td>
</tr>
</tbody>
</table>

Automatic valve purge

Options: no

yes

- yes: The following parameters appear:

 Purge cycle in weeks
 [1…12]

 Options: 1…6…12

 The counter for automatic purging starts to run when the parameter is downloaded. The time is re-set each time it is downloaded.

 The time is reset as soon as purging is completed. This can occur either through automatic purging or via the communication object *Trigger valve purge*.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purging can also be triggered via the bus with the communication object Trigger valve purge.</td>
</tr>
<tr>
<td>After bus voltage recovery and download, the purge cycle continues, the bus failure time – the time for which the bus actually failed – is not considered.</td>
</tr>
<tr>
<td>The purging cycle will restart if Purge cycle in weeks [1…12] is changed after the download.</td>
</tr>
</tbody>
</table>

Reset purge cycle

from control value in % [1…99]

Options: 1…99

Hereby, the purge cycle from the set control value is reset.
3.2.7.2 Parameter window - Curve

The parameter - Curve is visible if in Parameter window Valve 1 the parameter Correct valve characteristic curve the option yes has been selected.

The following must be considered with the curve entries:

- The value pairs can be entered in any sequence. They are sorted in ascending order of the control value in the device, and intermediate values are interpolated.
- If value pairs have the same control value, the value pair with the largest value position applies. All other value pairs are ignored.
- The value pair with the smallest valve position applies for the correction of the smaller control values.
- If no value pair has been entered for the control value 0 %, the valve position of the first value pair applies for all control values from 0 to the first value pair.
- If no value pair has been entered for the control value 100 %, the valve position from the last value pair up to 100 % applies for the last value pair.

Note
The characteristic curve adjustment is active with forced operation.

Caution
A parameterization of the value pair with the same control value leads to an undefined state and should be strictly avoided. Otherwise it can lead to destruction of the HVAC system.
Value pair 1
Control value in % [0...100]
Options: 0…100

Valve position in % [0...100]
Options: 0…100

Value pair 2
Control value in % [0...100]
Options: 0…100

Valve position in % [0...100]
Options: 0…100
Value pair 1 forms the lower limit and value pair 2 forms the upper limit of the curve.
The possibility of activating other value pairs allows different curve characteristics to be realised.
For further information see: Valve curve, page 131

A total of four value pairs can be set.

Further value pair
Options: no
yes
• yes: A further value pair can be set.

Value pair 3
Control value in % [0...100]
Options: 0…50…100

Valve position in % [0...100]
Options: 0…50…100

Further value pair
Options: no
yes
• yes: A further value pair can be set.

Value pair 4
Control value in % [0...100]
Options: 0…50…100

Valve position in % [0...100]
Options: 0…50…100
3.2.8 Parameter window Valve 2

The setting options of Valve 2 do not differentiate from those of Valve 1.
The descriptions of the parameter setting options and adjustable communication objects for Valve 2 are described under Parameter window Valve 1, page 67.
3.2.9 Parameter window Inputs

In this parameter window, Inputs a...c are defined.

<table>
<thead>
<tr>
<th>General</th>
<th>Enable input a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual operation</td>
<td>(binary input, contact scanning)</td>
</tr>
<tr>
<td>Control input</td>
<td></td>
</tr>
<tr>
<td>Fan</td>
<td></td>
</tr>
<tr>
<td>- Status messages</td>
<td></td>
</tr>
<tr>
<td>- Automatic operation</td>
<td></td>
</tr>
<tr>
<td>Valve 1</td>
<td></td>
</tr>
<tr>
<td>- Function</td>
<td></td>
</tr>
<tr>
<td>Valve 2</td>
<td></td>
</tr>
<tr>
<td>- Function</td>
<td></td>
</tr>
</tbody>
</table>

Enable input a
(binary input, contact scanning)

Enable input b
(binary input, contact scanning)

Enable input c
(binary input, contact scanning)

Options: no yes

- yes: The input is activated. The corresponding parameter window is enabled.
Parameter window Input a

In this parameter window, all settings for the *Input a* are undertaken.

This parameter window is visible if in Parameter window Inputs, page 24, in parameter *Input a (binary input, contact scanning)*, the option yes has been selected.

Distinction between short and long operation

Options: no | yes

Using this parameter, you decide if the input differentiates between short and long operation.

- **yes**: After opening/closing of the contact, it must first of all be ascertained if a short or long operation has occurred here. Only thereafter will a possible reaction be triggered.

The following drawing shows the function in detail:

![Diagram showing distinction between short and long operation](image)

TL is the time duration from where a long operation is detected.
3.2.9.1.1 Parameter Distinction between short and long operation – no

If the option no is selected with the parameter Distinction between long and short operation, the following parameters in the parameter window Input a are visible.

General
- Manual operation
- Control input
- Fan - Status messages
- Automatic operation
- Valve 1 - Function
- Valve 2 - Function
- Inputs
- Input a
- Output A

Distinction between long and short operation
- Distinction between long and short operation
- Reaction on closing the contact (rising edge)
- Reaction on opening the contact (falling edge)
- Scan input after download, ETS-reset and bus voltage recovery
- Debounce time: 100 ms

Cyclic sending of object “Switch”
- no

Activate minimum signal time
- Activate minimum signal time with rising edge
- Activate minimum signal time with falling edge

Reaction on closing the contact (rising edge)
Options:
- on
- off
- TOGGLE
- no reaction
- terminate cyclic sending

Reaction on opening the contact (falling edge)
Options:
- on
- off
- TOGGLE
- no reaction
- terminate cyclic sending

For each edge, a definition is made to determine if the object value ON, OFF or TOGGLE is switched or if there should be no reaction.

Scan input after download, ETS-reset and bus voltage recovery
Options:
- no
- yes

- **no**: The communication object value is not scanned after a download, ETS reset and bus voltage recovery.
- **yes**: The communication object value is scanned after a download, ETS reset and bus voltage recovery. The following parameter appears:
Inactive wait state after bus voltage recovery in s [0...30,000]

Options: 0...30,000

Here the waiting time after a bus voltage recovery is set. After the waiting time has elapsed, the state on the input terminals is scanned. The input reacts as if the state on the input terminals has just been set/not set.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>The inactive waiting time does not add to the actual, adjustable send delay time. This can be set separately.</td>
</tr>
</tbody>
</table>

Debounce time

100 ms

Debouncing prevents unwanted multiple operations of the input, e.g. due to bouncing of the contact.

What is the debounce time?

If an edge is detected at an input, the input will react immediately to this edge (e.g. by sending a telegram). At the same time, the duration of the debounce time T_D starts. The signal on the input is not evaluated within the debounce time duration.

Example: Debounce time of the input signal for a detected edge:

After detection of an edge on the input, further edges are ignored for the debounce time T_D.

Cyclic sending of object “Switch”

Options: no yes

- yes: The following parameters appear:
with object value
Options:
1
0
0 or 1

- 1: The communication object value is sent cyclically with 1.
- 0: The communication object value is sent cyclically with 0.
- 0 or 1: The communication object is sent cyclically.

What is cyclic sending?
Cyclic sending enables the communication object Switch to send automatically at a fixed interval.

If cyclic sending is only carried out for a specific communication object value (ON or OFF), this condition refers to the value of the communication object. It is therefore possible in principle to start cyclic sending by sending a value to the communication object Switch. As this behaviour is generally unwanted, the flags Write and Update of the communication object are deleted in the preliminary setting so that they cannot be changed via the bus. If this functionality is still required however, these flags should be set accordingly.

With changes to the communication object Switch and after bus recovery changes (after the send delay time has elapsed), the communication object value is sent immediately on the bus and the transmission cycle time restarts.

Telegram repeated
in s [1…65,535]
Options:
1…60…65,535

The send cycle time describes the time used between two cyclically sent telegrams.

Activate minimum signal time
with rising edge
Options:
no
yes

- yes: The following parameter appears:

in value x 0.1 s [1…65,535]
Options:
1…65,535
Activate minimum signal time with falling edge
Options: no yes
• yes: The following parameter appears:
 in value x 0.1 s [1...65,535]
 Options: 1...65,535

What is the minimum signal time?
In contrast to the debounce time, a telegram is only sent after the minimum signal duration has elapsed.

The individual functions:
If an edge is detected on the input, the minimum signal duration will commence. No telegram is sent on the bus at this time. The signal on the input is observed within the minimum signal duration. If a further edge appears at the input during the minimum signal duration, it will be interpreted as a new operation, and the minimum signal duration restarts. If the input signal duration has not changed during the minimum signal duration, an edge is detected and a telegram is sent on the bus.

Example: Minimum signal duration of the input signal for a detected edge:

As only two edges remain stable for the minimum signal time T_M, only these are detected as valid.
Parameter Distinction between short and long operation – yes

If with parameter Distinction between long and short operation, the option yes has been selected, the following parameters in parameter window Input a are visible.

Reaction on short operation
Options:
- **on**
- **off**
- **TOGGLE**
- **no reaction**

Reaction on long operation
Options:
- **on**
- **off**
- **TOGGLE**
- **no reaction**

For each edge, a definition is made to determine if the object value ON, OFF or TOGGLE is switched or if there should be no reaction.

Long operation after...
Options:
- 0.3/0.4/0.5/0.6/0.8 s
- 1/1.2/1.5 s
- 2/3/4/5/6/7/8/9/10 s

Here the time period \(T_L \) after which an actuation is considered a “long” operation, is defined.
Input is by operation
Options: closed
opened
- closed: The input is closed with actuation.
- opened: The input is opened with actuation.

Enable communication object with
"Long operation" 1 bit
Options: no
yes

Debounce time
100 ms
Debouncing prevents unwanted multiple operations of the input, e.g. due to bouncing of the contact.

What is the debounce time?
If an edge is detected at an input, the input will react immediately to this edge (e.g. by sending a telegram). At the same time, the duration of the debounce time T_D starts. The signal on the input is not evaluated within the debounce time duration.

Example: Debounce time of the input signal for a detected edge:

After detection of an edge on the input, further edges are ignored for the debounce time T_D.
3.2.9.2 Parameter window Input a…c

The Inputs b…c do not differ from Input a.

The descriptions of the parameter setting options and adjustable communication objects for the Inputs b…c described under Parameter window Input a, page 75.
Parameter window Output A

All settings for the Output A are made in this parameter window.

<table>
<thead>
<tr>
<th>General</th>
<th>Enable output A (switch contact 20 AX)</th>
<th>Reaction of output</th>
<th>Contact position on bus voltage failure</th>
<th>Object value “Switch” on bus voltage recovery</th>
<th>Enable time function</th>
<th>Enable communication object “Status switch” 1 bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual operation</td>
<td>yes</td>
<td>normally opened contact</td>
<td>unchanged</td>
<td>not write</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Control input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Status messages</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Automatic operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Function</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Function</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Enable output A (switch contact 20 AX)

Options: no yes

- yes: Output A is enabled. The following parameters appear:

Reaction of output

Options: normally opened contact

Normally closed contact

This parameter whether the output operates as a Normally closed contact or Normally open contact.

- Normally opened contact: An ON telegram (1) closes the contact and an OFF telegram (0) opens the contact.
- Normally closed contact: An ON telegram (1) opens the contact and an OFF telegram (0) closes the contact.

Contact position on bus voltage failure

Options: opened closed unchanged

This parameter defines the state that the parameter should assume at bus voltage failure.

- opened: The contact is opened with bus voltage failure.
- closed: The contact is closed with bus voltage failure.
- unchanged: No change of the contact position.

Note

The reaction on bus voltage failure and download is to be monitored.
Object value "Switch" on bus voltage recovery
Options:
not write
write with 0
write with 1

With this parameter, the output can be influenced by the value of the communication object Switch on bus voltage recovery.

The communication object Switch can be written with either a 0 or 1 when the bus voltage recovers. The contact position is redefined and set in dependence on the set device parameterization.

- **not write:** The communication object assumes the value 0. This value remains as it is until modified via the bus. The contact position is only re-evaluated at this time.

Note
The reaction on bus voltage failure, recovery and download is to be monitored.

The Fan Coil Actuator draws the energy for switching the contact from the bus. After bus voltage is applied, sufficient energy is only available after about ten seconds in order to switch all contacts simultaneously.

Depending on the set transmission and switching delay after recovery of bus voltage set in the parameter window General, the individual outputs will only assume the desired contact position after this time.

If a shorter time is set, the device will only switch the first contact when sufficient energy is stored in the device, in order to ensure that enough energy is available to immediately bring all outputs safely to the required position with a renewed bus voltage failure.

Enable time function
Options:
no
yes

- **no:** The parameter window remains disabled and invisible.
- **yes:** The communication object Block staircase lighting as well as the parameter window - Time are enabled.
Enable communication object
"Status switch" 1 bit
Options: no
yes

- yes: The following parameters appear:

Send object value
(Object "Status switch")
Options: no, update only
after a change
after request
after a change or request

- no, update only: The status is updated but not sent.
- after a change: The status is sent after a change.
- after request: The status is sent after a request.
- after a change or request: The status is sent after a change or a request.

Object value of contact position
(Object "Status switch")
Options: 1=closed, 0=open
0=closed, 1=open

With this parameter, the communication object value of the switch status (Status switch) is defined.

- 1=closed, 0=open A closed contact is represented by communication object value 1 and an open contact is represented by the value 0.
- 0=closed, 1=open A closed contact is represented by communication object value 0 and an open contact is represented by the value 1.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>The contact position and thus the switch status can result from a series of priorities and links.</td>
</tr>
</tbody>
</table>
3.2.10.1 Parameter window - Time function

In this parameter window, all settings for the function Time are undertaken:

This parameter window is visible if in Parameter window Output, page 84, with parameter Enable function Time, the option yes has been selected.

<table>
<thead>
<tr>
<th>General</th>
<th>Object value "Disable time function" on bus voltage recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual operation</td>
<td>unchanged</td>
</tr>
<tr>
<td>Control input</td>
<td>1, i.e. Disable time function</td>
</tr>
<tr>
<td>Fan</td>
<td>0, i.e. Enable time function</td>
</tr>
<tr>
<td>- Status messages</td>
<td></td>
</tr>
<tr>
<td>- Automatic operation</td>
<td></td>
</tr>
<tr>
<td>Valve 1</td>
<td></td>
</tr>
<tr>
<td>- Function</td>
<td></td>
</tr>
<tr>
<td>Valve 2</td>
<td></td>
</tr>
<tr>
<td>- Function</td>
<td></td>
</tr>
<tr>
<td>Inputs</td>
<td></td>
</tr>
<tr>
<td>Output A</td>
<td></td>
</tr>
<tr>
<td>- Time function</td>
<td></td>
</tr>
</tbody>
</table>

Object value "Disable time function" on bus voltage recovery
Options: unchanged
1, i.e. Disable time function
0, i.e. Enable time function

- **unchanged**: The function Time can continue unchanged.
- **1, i.e. Disable time function**: The function Time is disabled.

Note
They can only be enabled via the communication object Disable time function.

- **Enable time function**: The function Time is enabled and active after a bus failure.

Note
If the staircase light is disabled when the function Time is operational, the light will stay ON until it is switched OFF manually.
Staircase lighting time in s

[1...65,535]

Options: 1...30...65,535

The staircase lighting defines how long the contact is closed – provided that the contact is programmed as a normally open contact – and how long the light remains on after an ON telegram. The input is made in seconds.

Staircase lighting can be switched

Options: ON with 1 and OFF with 0

ON with 1 no action with 0

ON with 0 or 1, switch OFF not possible

This parameter defines the telegram value used for switching the staircase lighting on and off prematurely.

- **ON with 0 or 1, switch OFF not possible**: The function Staircase lighting is switched on independently of the value of the incoming telegram. Premature switch off is not possible.

Enable communication object

“Change stairc. light. duration”

Options: no yes

- **yes**: A 2 byte communication object Change duration of staircase lighting is enabled. The staircase lighting time can be changed via the bus with this communication object. The value defines the staircase lighting time in seconds. The staircase lightning time which has already commenced is completed. A change of the staircase lighting time is used the next time it is accessed.

- **no**: No modification of the staircase lighting time is possible via the bus.

Note

With bus voltage failure the changed staircase lighting time is saved. Only after a renewed download of the application program is the staircase lighting time overwritten.

How does the staircase light behave with bus voltage recovery?

The reaction at bus voltage recovery is defined by two conditions:

- With the communication object Block staircase light: If the function Time is blocked after bus voltage recovery, the staircase lighting can only be switched on or off via the communication object Switch.

- Using the parameterization of the communication object Switch: Whether the light is switched on or off with bus voltage recovery depends on the programming of the communication object Switch.
Enable communication object
"Permanent ON" 1 bit
Options: no
 yes

If the communication object Permanent ON is assigned with the value 1, the output is switched on irrespective of the value of the communication object Switch and remains switched on until the communication object Permanent ON has the value 0. After ending the Permanent ON state, the staircase will react as defined in the following parameters.

Example
This communication object can be used, for example, to allow the caretaker or maintenance and cleaning personnel to initiate a permanent ON.

- yes: The communication object Permanent ON is enabled. The following parameter appears:

 Restart of staircase time after end of permanent ON
 Options: no
 yes

 - yes: The lighting remains on and the staircase lighting time restarts.
 - no: The lighting switches off if Permanent ON is ended.
3.3 Communication objects

3.3.1 Short overview of the communication objects

<table>
<thead>
<tr>
<th>CO no.</th>
<th>Function</th>
<th>Name</th>
<th>Data Point Type (DPT)</th>
<th>Length</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>In operation</td>
<td>System</td>
<td>1.002</td>
<td>1 bit</td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>Request status values</td>
<td>General</td>
<td>1.017</td>
<td>1 bit</td>
<td>x</td>
</tr>
<tr>
<td>2</td>
<td>Enable/disable manual operation</td>
<td>Manual operation</td>
<td>1.003</td>
<td>1 bit</td>
<td>x</td>
</tr>
<tr>
<td>3…4</td>
<td>Not assigned</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Status manual Operation</td>
<td>Manual operation</td>
<td>1.003</td>
<td>1 bit</td>
<td>x</td>
</tr>
<tr>
<td>6</td>
<td>Overload</td>
<td>Valve 1</td>
<td>1.005</td>
<td>1 bit</td>
<td>x</td>
</tr>
<tr>
<td>7</td>
<td>Overload</td>
<td>Valve 2</td>
<td>1.005</td>
<td>1 bit</td>
<td>x</td>
</tr>
<tr>
<td>8…9</td>
<td>Not assigned</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Fan speed switch</td>
<td>Fan (multi-level)</td>
<td>5.010</td>
<td>1 byte</td>
<td>x</td>
</tr>
<tr>
<td>11</td>
<td>Switch speed 1</td>
<td>Fan (multi-level)</td>
<td>1.001</td>
<td>1 bit</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Switch</td>
<td>Fan (one-level)</td>
<td>1.001</td>
<td>1 bit</td>
<td>x</td>
</tr>
<tr>
<td>12</td>
<td>Switch speed 2</td>
<td>Fan (multi-level)</td>
<td>1.001</td>
<td>1 bit</td>
<td>x</td>
</tr>
<tr>
<td>13</td>
<td>Switch speed 3</td>
<td>Fan (multi-level)</td>
<td>1.001</td>
<td>1 bit</td>
<td>x</td>
</tr>
<tr>
<td>14</td>
<td>Fan speed UP/DOWN</td>
<td>Fan (multi-level)</td>
<td>1.007</td>
<td>1 bit</td>
<td>x</td>
</tr>
<tr>
<td>15</td>
<td>Status fan ON/OFF</td>
<td>Fan</td>
<td>1.001</td>
<td>1 bit</td>
<td>x</td>
</tr>
<tr>
<td>16</td>
<td>Status fan speed</td>
<td>Fan (multi-level)</td>
<td>5.010</td>
<td>1 byte</td>
<td>x</td>
</tr>
<tr>
<td>17</td>
<td>Status fan speed 1</td>
<td>Fan (multi-level)</td>
<td>1.001</td>
<td>1 bit</td>
<td>x</td>
</tr>
<tr>
<td>18</td>
<td>Status fan speed 2</td>
<td>Fan (multi-level)</td>
<td>1.001</td>
<td>1 bit</td>
<td>x</td>
</tr>
<tr>
<td>19</td>
<td>Status fan speed 3</td>
<td>Fan (multi-level)</td>
<td>1.001</td>
<td>1 bit</td>
<td>x</td>
</tr>
<tr>
<td>20</td>
<td>Not assigned</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Limitation 1</td>
<td>Fan</td>
<td>1.003</td>
<td>1 bit</td>
<td>x</td>
</tr>
<tr>
<td>22</td>
<td>Limitation 2</td>
<td>Fan</td>
<td>1.003</td>
<td>1 bit</td>
<td>x</td>
</tr>
<tr>
<td>23</td>
<td>Limitation 3</td>
<td>Fan</td>
<td>1.003</td>
<td>1 bit</td>
<td>x</td>
</tr>
<tr>
<td>24</td>
<td>Limitation 4</td>
<td>Fan</td>
<td>1.003</td>
<td>1 bit</td>
<td>x</td>
</tr>
<tr>
<td>25</td>
<td>Forced operation</td>
<td>Fan</td>
<td>1.003</td>
<td>1 bit</td>
<td>x</td>
</tr>
<tr>
<td>26</td>
<td>Automatic ON/OFF</td>
<td>Fan</td>
<td>1.003</td>
<td>1 bit</td>
<td>x</td>
</tr>
<tr>
<td>27</td>
<td>Not assigned</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Status automatic</td>
<td>Fan</td>
<td>1.003</td>
<td>1 bit</td>
<td>x</td>
</tr>
<tr>
<td>29</td>
<td>Status byte mode</td>
<td>Fan</td>
<td>non DPT</td>
<td>1 byte</td>
<td>x</td>
</tr>
<tr>
<td>30</td>
<td>Control Value, Heating/Cooling</td>
<td>Control input</td>
<td>5.001</td>
<td>1 byte</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Control Value, Heating</td>
<td>Control input</td>
<td>5.001</td>
<td>1 byte</td>
<td>x</td>
</tr>
<tr>
<td>31</td>
<td>Control Value, Cooling (extra!)</td>
<td>Control input</td>
<td>5.001</td>
<td>1 byte</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Control Value, Cooling</td>
<td>Control input</td>
<td>5.001</td>
<td>1 byte</td>
<td>x</td>
</tr>
<tr>
<td>32</td>
<td>Toggle, Heating / Cooling</td>
<td>Control input</td>
<td>1.100</td>
<td>1 bit</td>
<td>x</td>
</tr>
<tr>
<td>33</td>
<td>Fault control value</td>
<td>Control input</td>
<td>1.005</td>
<td>1 bit</td>
<td>x</td>
</tr>
<tr>
<td>34</td>
<td>Not assigned</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO no.</td>
<td>Function</td>
<td>Name</td>
<td>Data Point Type (DPT)</td>
<td>Length</td>
<td>Flags</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>35</td>
<td>Block</td>
<td>Valve heating</td>
<td>1.003</td>
<td>1 bit</td>
<td>x</td>
</tr>
<tr>
<td>36</td>
<td>Forced operation</td>
<td>Valve heating</td>
<td>1.003</td>
<td>1 bit</td>
<td>x</td>
</tr>
<tr>
<td>37</td>
<td>Trigger valve purge</td>
<td>Valve heating</td>
<td>1.017</td>
<td>1 bit</td>
<td>x</td>
</tr>
<tr>
<td>38</td>
<td>Status valve purge</td>
<td>Valve heating</td>
<td>1.003</td>
<td>1 bit</td>
<td>x</td>
</tr>
<tr>
<td>39</td>
<td>Status valve position</td>
<td>Valve heating</td>
<td>1.001</td>
<td>1 bit</td>
<td>x</td>
</tr>
<tr>
<td>39</td>
<td>Status valve position</td>
<td>Valve heating</td>
<td>5.001</td>
<td>1 byte</td>
<td>x</td>
</tr>
<tr>
<td>40…44</td>
<td>the same CO as Valve HEATING</td>
<td>Valve cooling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Switch</td>
<td>Output</td>
<td>1.001</td>
<td>1 bit</td>
<td>x</td>
</tr>
<tr>
<td>46</td>
<td>Permanent ON</td>
<td>Output</td>
<td>1.003</td>
<td>1 bit</td>
<td>x</td>
</tr>
<tr>
<td>47</td>
<td>Disable function Time</td>
<td>Output</td>
<td>1.001</td>
<td>1 bit</td>
<td>x</td>
</tr>
<tr>
<td>48</td>
<td>Staircase lighting duration</td>
<td>Output</td>
<td>7.005</td>
<td>2 byte</td>
<td>x</td>
</tr>
<tr>
<td>49</td>
<td>Status switch</td>
<td>Output</td>
<td>1.001</td>
<td>1 bit</td>
<td>x</td>
</tr>
<tr>
<td>50</td>
<td>Block</td>
<td>Input a</td>
<td>1.003</td>
<td>1 bit</td>
<td>x</td>
</tr>
<tr>
<td>51</td>
<td>Switch</td>
<td>Input a</td>
<td>1.001</td>
<td>1 bit</td>
<td>x</td>
</tr>
<tr>
<td>52</td>
<td>Long switch operation</td>
<td>Input a</td>
<td>1.001</td>
<td>1 bit</td>
<td>x</td>
</tr>
<tr>
<td>53…54</td>
<td>Not assigned</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55…57</td>
<td>the same CO as input a</td>
<td>Input b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60…62</td>
<td>the same CO as input a</td>
<td>Input c</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.3.2 Communication objects General

<table>
<thead>
<tr>
<th>No.</th>
<th>Function</th>
<th>Communication object name</th>
<th>Data type</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>In operation</td>
<td>System</td>
<td>1 bit DPT 1.002</td>
<td>C, R, T</td>
</tr>
<tr>
<td>1</td>
<td>Request status values</td>
<td>General</td>
<td>1 bit DPT 1.017</td>
<td>C, R, T</td>
</tr>
<tr>
<td>6</td>
<td>Overload</td>
<td>Valve 1</td>
<td>1 bit DPT 1.005</td>
<td>C, R, T</td>
</tr>
<tr>
<td>7</td>
<td>Overload</td>
<td>Valve 2</td>
<td>1 bit DPT 1.005</td>
<td>C, R, T</td>
</tr>
</tbody>
</table>

Description:

0 In operation System

The communication object is enabled if in parameter window *General*, the parameter *Send communication object "in operation"* has been selected with option yes.

In order to regularly monitor the presence of the device on the KNX, an in operation monitoring telegram can be sent cyclically on the bus.

As long as the communication object is activated, it sends a programmable in operation telegram.

1 Request status values General

The communication object is enabled if in parameter window *General*, the parameter *Enable communication object "Request status values"* 1 bit has been selected with option yes.

If a telegram with the value x (x = 0/1/0 or 1) is received in the communication object, all status communication objects are sent on the bus, as long as these have not been programmed with the option *after a change and/or request*.

The following function results for the option x = 1:

Telegram value:
- 1 = all status messages, provided they are programmed with the option *after a change and/or request* are sent.
- 0 = no reaction.

6 Overload Valve 1

The communication object sends a 1 with a fault, e.g. through a thermal overload on the output of the valve HEATING. The communication object is always visible.

Telegram value:
- 1 = there is a fault on the output Valve V1 HEATING.
- 0 = no fault.

7 Overload Valve 2

The communication object sends a 1 with a fault, e.g. through a thermal overload on the output of the COOLING valve. The communication object is always visible.

Telegram value:
- 1 = there is a fault on the output Valve V2 COOLING.
- 0 = no fault.

8...9 Not assigned
3.3.3 Communication objects Manual operation

<table>
<thead>
<tr>
<th>No.</th>
<th>Function</th>
<th>Communication object name</th>
<th>Data type</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Enable/ disable manual operation</td>
<td>Manual operation</td>
<td>1 bit</td>
<td>C, W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DPT 1.003</td>
<td></td>
</tr>
</tbody>
</table>

This communication object is enabled when in parameter window Manual operation, the parameter Manual operation has been selected with the option enable/disable via communication object.

Manual operation of the device is blocked or enabled via this communication object.

Using the value 0, the button is blocked on the device. If the device is in Manual operation, it toggles immediately to KNX operation.

Using the value 1, the button is enabled on the device.

Telegram value: 0 = button enabled
1 = button disabled

<table>
<thead>
<tr>
<th>3...4</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

Not assigned.

<table>
<thead>
<tr>
<th>5</th>
<th>Status manual Operation</th>
<th>Manual operation</th>
<th>1 bit</th>
<th>C, R, T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>DPT 1.003</td>
<td></td>
</tr>
</tbody>
</table>

The communication object is enabled if in parameter window Manual operation, the parameter Enable communication object “Status man. operation” 1 bit has been selected with the option yes.

This communication object indicates whether manual operation is activated.

Telegram value: 0 = manual operation not active
1 = manual operation active

The status of manual operation is sent after a change, after request or after a change and request as programmed.
Communication objects Control input

3.3.4 Communication objects HVAC System – 1 Control value/2 pipe

<table>
<thead>
<tr>
<th>No.</th>
<th>Function</th>
<th>Communication object name</th>
<th>Data type</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Control Value, Heating/Cooling</td>
<td>Control input</td>
<td>1 byte</td>
<td>C, W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DPT 5.001</td>
<td></td>
</tr>
</tbody>
</table>

The communication object is enabled if in parameter window Control input, the parameter HVAC System has been selected with the option 1 Control value/2 pipe.

Using this communication object, the control value HEATING or COOLING is predefined as a 1 byte value [0…255].

Telegram value:
- 0 = OFF, no heating or cooling
- 255 = ON, largest control value, maximum heating or cooling

<table>
<thead>
<tr>
<th>No.</th>
<th>Function</th>
<th>Communication object name</th>
<th>Data type</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Control Value, Cooling (extra!)</td>
<td>Control input</td>
<td>1 byte</td>
<td>C, W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DPT 5.001</td>
<td></td>
</tr>
</tbody>
</table>

Note

Independent of communication object 30, the valve V2 COOLING can be additionally controlled without monitoring via the communication object 31.

The communication object is enabled if in parameter window Control input, the parameter HVAC System has been selected with the option 1 Control value/2 pipe.

Using this communication object, the control value COOLING is predefined as a 1 byte value [0…255].

Telegram value:
- 0 = OFF, no cooling
- 255 = ON, largest control value, maximum cooling

<table>
<thead>
<tr>
<th>No.</th>
<th>Function</th>
<th>Communication object name</th>
<th>Data type</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>Not assigned.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.3.4.2 Communication objects HVAC System 1 Control value/4 pipe, with switching object

<table>
<thead>
<tr>
<th>No.</th>
<th>Function</th>
<th>Communication object name</th>
<th>Data type</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Control Value, Heating/Cooling</td>
<td>Control input</td>
<td>1 byte</td>
<td>C, W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DPT 5.001</td>
<td></td>
</tr>
</tbody>
</table>

The communication object is enabled if in parameter window Control input, the parameter HVAC System has been selected with the option 1 Control value/4 pipe, with switching object.

Using this communication object, the control value HEATING or COOLING is predefined as a 1 byte value [0…255].

Telegram value:
- 0 = OFF, no heating or cooling
- 255 = ON, largest control value, maximum heating or cooling

31
not assigned.

<table>
<thead>
<tr>
<th>32</th>
<th>Toggle, Heating / Cooling</th>
<th>Control input</th>
<th>1 bit</th>
<th>C, W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>DPT 1.100</td>
<td></td>
</tr>
</tbody>
</table>

The communication object is enabled if in parameter window Control input, the parameter HVAC System has been selected with the option 1 Control value/4 pipe, with switching object.

If the value 1 is set in the parameter:

Telegram value:
- 0 = COOLING activated
- 1 = HEATING activated

If the value 0 is set in the parameter:

Telegram value:
- 0 = HEATING activated
- 1 = COOLING activated

Note

If communication object 32 Toggle HEATING/COOLING – Control input receives a value, the monitoring time is re-started.
Communication objects HVAC System – 2 Control values/2 pipe

<table>
<thead>
<tr>
<th>No.</th>
<th>Function</th>
<th>Communication object name</th>
<th>Data type</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Control Value, Heating</td>
<td>Control input</td>
<td>1 byte</td>
<td>C, W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DPT 5.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The communication object is enabled if in parameter window Control input, the parameter HVAC System has been selected with the option 2 Control values/2 pipe. Using this communication object, the control value HEATING is predefined as a 1 byte value [0…255]. Telegram value: 0 = OFF, no heating 255 = ON, largest control value, maximum heating</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

31	Control Value, Cooling	Control input	1 byte	C, W
			DPT 5.001	
	The communication object is enabled if in parameter window Control input, the parameter HVAC System has been selected with the option 2 Control values/2 pipe. Using this communication object, the control value COOLING is predefined as a 1 byte value [0…255]. Telegram value: 0 = OFF, no cooling 255 = ON, largest control value, maximum cooling			

| 32 | Not assigned. | | | |
Communication objects **HVAC System 2 Control values/2 pipe, with switching object**

<table>
<thead>
<tr>
<th>No.</th>
<th>Function</th>
<th>Communication object name</th>
<th>Data type</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Control Value, Heating</td>
<td>Control input</td>
<td>1 byte</td>
<td>C, W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DPT 5.001</td>
<td></td>
</tr>
</tbody>
</table>

The communication object is enabled if in parameter window Control input, the parameter HVAC System has been selected with the option 2 Control value/2 pipe, with switching object.

Using this communication object, the control value HEATING is predefined as a 1 byte value [0…255].

Telegram value:
- 0 = OFF, no heating
- 255 = ON, largest control value, maximum heating

<table>
<thead>
<tr>
<th>31</th>
<th>Control Value, Cooling</th>
<th>Control input</th>
<th>1 byte</th>
<th>C, W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>DPT 5.001</td>
<td></td>
</tr>
</tbody>
</table>

The communication object is enabled if in parameter window Control input, the parameter HVAC System has been selected with the option 2 Control value/2 pipe, with switching object.

Using this communication object, the control value COOLING is predefined as a 1 byte value [0…255].

Telegram value:
- 0 = OFF, no cooling
- 255 = ON, largest control value, maximum cooling

<table>
<thead>
<tr>
<th>32</th>
<th>Toggle, Heating / Cooling</th>
<th>Control input</th>
<th>1 bit</th>
<th>C, W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>DPT 1.100</td>
<td></td>
</tr>
</tbody>
</table>

The communication object is enabled if in parameter window Control input, the parameter HVAC System has been selected with the option 2 Control value/2 pipe, with switching object.

If the value 1 is set in the parameter:

Telegram value:
- 0 = COOLING activated
- 1 = HEATING activated

If the value 0 is set in the parameter:

Telegram value:
- 0 = HEATING activated
- 1 = COOLING activated

Note

If communication object 32 Toggle HEATING/COOLING – Control input receives a value, the monitoring time is restarted.
Communication objects HVAC System – 2 Control values/4 pipe

<table>
<thead>
<tr>
<th>No.</th>
<th>Function</th>
<th>Communication object name</th>
<th>Data type</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Control Value, Heating</td>
<td>Control input</td>
<td>1 byte</td>
<td>C, W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DPT 5.001</td>
<td></td>
</tr>
</tbody>
</table>

The communication object is enabled if in parameter window Control input, the parameter HVAC System has been selected with the option 2 Control values/2 pipe.

Using this communication object, the control value HEATING is predefined as a 1 byte value [0…255].

Telegram value:
- 0 = OFF, no heating
- 255 = ON, largest control value, maximum heating

<table>
<thead>
<tr>
<th>31</th>
<th>Control Value, Cooling</th>
<th>Control input</th>
<th>1 byte</th>
<th>C, W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>DPT 5.001</td>
<td></td>
</tr>
</tbody>
</table>

The communication object is enabled if in parameter window Control input, the parameter HVAC System has been selected with the option 2 Control values/2 pipe.

Using this communication object, the control value COOLING is predefined as a 1 byte value [0…255].

Telegram value:
- 0 = OFF, no cooling
- 255 = ON, largest control value, maximum cooling

| 32 | Not assigned. | | | |
3.3.4.6 Communication object *Fault control value*

<table>
<thead>
<tr>
<th>No.</th>
<th>Function</th>
<th>Communication object name</th>
<th>Data type</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>Fault control value</td>
<td>Control input</td>
<td>1 bit</td>
<td>C, R, T</td>
</tr>
</tbody>
</table>

The communication object is enabled if in parameter window *Control input*, the parameter *Monitoring control values e.g. thermostat* has been selected with the option *yes*.

This communication object indicates a malfunction of the control value, e.g. of a thermostat.

The Fan Coil control reports a fault and assumes the safety position with the communication object *Fault control value*. This safety position affects the fan speed and the valves.

Telegram value: 0 = no fault
 1 = fault

Note

If the communication object value *Control value HEATING, Control value COOLING* or *Control value, HEATING/COOLING* remains off for a parameterized time, a fault of the thermostat is assumed. If communication object *32 Toggle HEATING/COOLING – Control input* receives a value, the monitoring time is re-started.
3.3.5 Communication objects *Multi-level fan*

<table>
<thead>
<tr>
<th>No.</th>
<th>Function</th>
<th>Communication object name</th>
<th>Data type</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Fan speed switch</td>
<td>Fan</td>
<td>1 byte</td>
<td>C, W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DPT 5.010</td>
<td></td>
</tr>
</tbody>
</table>

The communication object is enabled if in parameter window *Fan* the parameter *Enable direct operation* and *Enable communication object “Fan speed switch”* 1 byte are selected with option yes.

With this communication object, the fan can be switched on via a 1 byte communication object of a fan speed. If another fan speed is switched on at this point it will be switched off. A new fan speed is switched on taking the transition times, dwell times and start-up phase into consideration.

Limitations through forced operation or one of the four limitations 1…4 are retained. Automatic operation is disabled. A renewed activation of automatic mode occurs via the communication object *Automatic ON/OFF*.

The following telegram values result:

<table>
<thead>
<tr>
<th>1 byte value</th>
<th>Hexadecimal</th>
<th>Binary value bit</th>
<th>Fan speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>00000000</td>
<td>0 (OFF)</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>00000001</td>
<td>Fan speed 1</td>
</tr>
<tr>
<td>2</td>
<td>02</td>
<td>00000010</td>
<td>Fan speed 2</td>
</tr>
<tr>
<td>3</td>
<td>03</td>
<td>00000011</td>
<td>Fan speed 3</td>
</tr>
<tr>
<td>>3</td>
<td>>03</td>
<td>>00000011</td>
<td>Values greater than 3 are ignored</td>
</tr>
</tbody>
</table>

11 Switch speed 1

The communication object is enabled if in parameter window *Fan*, the parameter *Enable direct operation* and *Enable communication object “Switch speed x”* 1 bit are selected with option yes.

Via the 1 bit communication object, the Fan Coil Actuator can receive a control value for fan speed 1.

Limitations through forced operation or one of the four limitations 1…4 are retained. Automatic operation is disabled. A renewed activation occurs via the communication objects *Automatic ON/OFF*.

If several 1 ON telegrams are received by the various speed communication objects *Speed x*, the value last received for the fan control is decisive. This also applies for the OFF telegram 0. If the actuator for a switched OFF speed again receives an OFF command it is carried out, this means that another speed switched on at this time will be switched off even though the respective fan speed communication object does not act directly on the fan speed. The last telegram – in this case the OFF telegram of another fan speed – is always executed.

Telegram value:
0 = fan OFF
1 = fan ON in speed 1

12 Switch speed 2

See communication object 11

13 Switch speed 3

See communication object 11
Fan speed UP/DOWN

<table>
<thead>
<tr>
<th>No.</th>
<th>Function</th>
<th>Communication object name</th>
<th>Data type</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Fan speed UP/DOWN</td>
<td>Fan</td>
<td>1 bit</td>
<td>C, W</td>
</tr>
</tbody>
</table>

The communication object is enabled if in parameter window Fan, the parameter Enable direct operation and Enable communication object "Fan speed up/down" 1 bit are selected with option yes.

With this communication object, the fan can be switched one fan speed further up or down via a 1 bit telegram. Switching (UP/DOWN) is determined by the telegram value.

Limitations through forced operation or one of the four limitations 1…4 are retained. Automatic operation is disabled. A renewed activation occurs via the communication objects Automatic ON/OFF.

With multiple manual UP or DOWN switching, the target speed will be increased or reduced by a speed step. This is possible until the maximum or minimum possible speed is achieved. Further UP or DOWN telegrams are ignored and not executed.

Each new switching telegram initiates a recalculation of the target speed.

Telegram value:
- 0 = switch fan speed DOWN
- 1 = switch fan speed UP

Status fan ON/OFF

<table>
<thead>
<tr>
<th>No.</th>
<th>Function</th>
<th>Communication object name</th>
<th>Data type</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Status fan ON/OFF</td>
<td>Fan</td>
<td>1 bit</td>
<td>C, T</td>
</tr>
</tbody>
</table>

The communication object is enabled if in parameter window Status messages, the parameter Enable communication object "Status fan ON/OFF" 1 bit have been selected with option yes.

The communication object receives the communication object value 1 (ON), if at least one fan speed is not equal to zero (OFF). The value of the communication object is sent if not equal to zero. This communication object thus defines the status of the fan and whether it is switched on or switched off. The target speed is also indicated.

Telegram value:
- 0 = OFF
- 1 = ON

Note

Some fans require an ON telegram before you set a fan speed. Using the communication object Status fan ON/OFF, the fan can, for example, be switched on centrally with a switch actuator via the main switch.
No.	Function	Communication object name	Data type	Flags
16 | Status fan speed | Fan | 1 byte | C, R, T |

The communication object is enabled if in parameter window Status messages, the parameter Enable communication object "Status fan speed" 1 byte has been selected with option yes. You can parameterize whether only the communication object value is updated or if they are only sent on the bus after a change or on request. It is possible to parameterize if the actual or required stages are displayed with the communication object Status fan speed x.

With this communication object, it is possible, for example, to display the fan speed on the display as a direct figure value. The following telegram values apply for the 1 byte communication object:

<table>
<thead>
<tr>
<th>Figure value</th>
<th>Hexadecimal</th>
<th>Binary value bit 76543210</th>
<th>Fan speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>00000000</td>
<td>0 (OFF)</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>00000001</td>
<td>Fan speed 1</td>
</tr>
<tr>
<td>2</td>
<td>02</td>
<td>00000010</td>
<td>Fan speed 2</td>
</tr>
<tr>
<td>3</td>
<td>03</td>
<td>00000011</td>
<td>Fan speed 3</td>
</tr>
</tbody>
</table>

17 | Status fan speed 1 | Fan | 1 bit | C, R, T |

The communication object is enabled if in parameter window Status messages, the parameter Enable communication object "Status fan speed" 1 byte has been selected with option yes. It is possible to parameterize if a communication object value is only updated and not sent, sent on request, or only sent when changed. Furthermore, you can parameterize if the status should indicate a current fan speed or a required fan speed. With this communication object, it is possible to display the fan speed in a visualisation or to indicate it on a display.

Telegram value: 0 = fan speed OFF 1 = fan speed ON

18 | Status fan speed 2 | See communication object 17 |

19 | Status fan speed 3 | See communication object 17 |

20 | Not assigned |
<table>
<thead>
<tr>
<th>No.</th>
<th>Function</th>
<th>Communication object name</th>
<th>Data type</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Limitation 1</td>
<td>Fan</td>
<td>1 bit</td>
<td>C, W</td>
</tr>
</tbody>
</table>

The communication object is enabled if in parameter window Automatic operation, the parameter "Limitation 1" has been selected with the option "yes".
The limitation is active if a telegram with the value 1 is received on the communication object Limitation 1. The Limitation 1 is deactivated if a telegram with the value 0 is received on the communication object Limitation 1.

When Limitation 1 is activated, the fan can only assume the set fan speed or fan speed range in the parameter window Fan limitation. The valve position is independently programmable from the fan limitation.

Telegram value:
- 0 = limitation x inactive
- 1 = limitation x active

<table>
<thead>
<tr>
<th>22…24</th>
<th>Limitation 2…4</th>
<th>See communication object 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Forced operation</td>
<td>Fan</td>
</tr>
</tbody>
</table>

The communication object is enabled if in parameter window Direct operation, the parameter Enable communication object "Forced operation" has been selected with the option "yes".

If forced operation is activated, the Fan Coil Actuator switches independently from the control value and its parameterized Limitation 1…4 to forced operation.

The fan speed and valve position(s) during forced operation can be parameterized individually from one another.

Telegram value:
- 0 = no forced operation
- 1 = forced operation

<table>
<thead>
<tr>
<th>26</th>
<th>Automatic ON/OFF</th>
<th>Fan</th>
<th>1 bit</th>
<th>C, W</th>
</tr>
</thead>
</table>

The communication object is enabled if in parameter window Fan the parameter window Enable automatic operation has been enabled.

If automatic mode is enabled, it will be activated on this communication object with the value 1 after a download, ETS reset or via a telegram.

Automatic mode is switched off, if a telegram is received on a "manual communication object".

Manual communication objects are:
- Fan: Fan speed switch
- Fan: Switch speed x (x = 1, 2 or 3)
- Fan: Fan speed UP/DOWN
- Fan: Limitation x (x = 1, 2, 3 or 4)

During forced operation the automatic mode remains active; however, it is only operated within the allowed limits.

If the value 1 is set in the parameter:

Telegram value:
- 0 = automatic operation OFF
- 1 = automatic operation ON

If the value 0 is set in the parameter:

Telegram value:
- 0 = automatic operation ON
- 1 = automatic operation OFF

<table>
<thead>
<tr>
<th>27</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

Not assigned.
No.	Function	Communication object name	Data type	Flags
28 | Status automatic | Fan | 1 bit | C, R, W

The communication object is enabled if in parameter window Status messages, the parameter Enable communication object "Status automatic" 1 bit has been selected with option yes.

It is possible to parameterize if a communication object value is only updated and not sent, sent on request, or only sent when changed.

The communication object indicates the status of the automatic mode.

Telegram value: 0 = inactive
1 = activated

29 | Status byte mode | Fan | 1 byte non DPT | C, R, T

The communication object is enabled if in parameter window – Status messages the parameter Enable communication object "Status byte mode" 1 byte is selected with option yes.

The operating state of the fan can be displayed or sent on the bus via this communication object. It is possible to parameterize if a communication object value is only updated and not sent, sent on request, or only sent when changed.

Bit sequence: 76543210

Bit 7: Forced operation
Telegram value: 0: inactive
1: active

Bit 6: Limitation 1
Telegram value: 0: inactive
1: active

Bit 5: Limitation 2
Telegram value: 0: inactive
1: active

Bit 4: Limitation 3
Telegram value: 0: inactive
1: active

Bit 3: Limitation 4
Telegram value: 0: inactive
1: active

Bit 2: Thermostat fault
Telegram value: 0: inactive
1: active

Bit 1: Automatic
Telegram value: 0: inactive
1: active

Bit 0: HEATING/COOLING
Telegram value: 0: COOLING
1: HEATING

Note

Bit 0: If toggling between HEATING and COOLING is undertaken automatically using control variables, the status HEATING/COOLING is only switched in bit 0 if a value > 0 is received on the control value.

For further information see: Status byte code table, page 146
3.3.6 Communication objects *Fan one-level*

<table>
<thead>
<tr>
<th>No.</th>
<th>Function</th>
<th>Communication object name</th>
<th>Data type</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td>Not assigned.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Switch</td>
<td>Fan</td>
<td>1 bit</td>
<td>C, W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DPT 1.001</td>
<td></td>
</tr>
</tbody>
</table>

The communication object is enabled if in parameter window *Fan* the parameter *Fan type* has been selected with the option *one-level*.

With this 1 bit communication object, the fan can be switched on or off.

Limitations through forced operation or one of the four limitations 1…4 are retained. Automatic operation is disabled. A renewed activation occurs via the communication objects *Automatic ON/OFF*.

If several ON telegrams 1 are received, the value last received for the fan control is decisive. This also applies for the OFF telegram 0.

If the actuator for the switched off fan speed again receives an OFF telegram, it is carried out, i.e. another speed switched on at this time will be switched off even though the respective fan speed communication object does not act directly on the fan speed. The last telegram – in this case the OFF telegram of another fan speed – is always executed.

Telegram value:
0 = fan OFF
1 = fan ON

12…14		Not assigned.		
15	Status ON/OFF	Fan	1 bit	C, T
			DPT 1.001	

The communication object is enabled if in parameter window *Status messages* the parameter *Enable communication object “Status fan ON/OFF”* 1 bit have been selected with option *yes*.

The communication object receives the communication object value 1 (ON), if the fan speed is not equal to zero (OFF). The value of the communication object is updated and sent when the fan speed is changed.

This communication object thus defines the status of the fan and whether it is switched on or switched off. It can also be used for control of a main switch for the fan.

Telegram value:
0 = OFF
1 = ON

Note

Some fans require an ON telegram before you set a fan speed. Using the communication object *Status fan ON/OFF*, the fan can, for example, be switched on centrally with a switch actuator via the main switch.
<table>
<thead>
<tr>
<th>No.</th>
<th>Function</th>
<th>Communication object name</th>
<th>Data type</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>16…20</td>
<td>Not assigned.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Limitation 1</td>
<td>Fan</td>
<td>1 bit</td>
<td>C, W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DPT 1.003</td>
<td></td>
</tr>
</tbody>
</table>

The communication object is enabled if in parameter window *Automatic operation*, the parameter *Enable limitations* has been selected with the option *yes*.

Note

Limitation 1 is only active in automatic mode.

The limitation 1 is active if a telegram with the value 1 is received on the communication object *Limitation 1*. The *Limitation 1* is deactivated if a telegram with the value 0 is received on the communication object *Limitation 1*.

When *Limitation 1* is activated, the fan can only assume the set fan speed or speed range in the parameter window *Fan limitation*. The valve position is independently programmable from the fan limitation.

Telegram value: 0 = limitation x inactive
1 = limitation x active

22…	Limitation 2…4			
25	Forced operation	Fan	1 bit	C, W
			DPT 1.003	

The communication object is enabled if in parameter window *Fan*, the parameter *Enable communication object "Forced operation" 1 bit* has been selected with the option *yes*.

If Forced operation is activated, the Fan Coil Actuator switches independently from the control value and its parameterized *Limitation 1…4* to forced operation.

The fan speed and valve position(s) during forced operation can be parameterized individually from one another.

Telegram value: 0 = no forced operation
1 = forced operation
26 Automatic ON/OFF
Fan
1 bit
DPT 1.003
C, W

The communication object is enabled if in parameter window Fan the parameter window Enable automatic operation has been enabled.

If automatic mode is enabled, it will be activated on this communication object with the value 1 after a download, ETS reset or via a telegram. Automatic mode is switched off, if a signal has been received on a “manual communication object”.

Manual communication objects are:
- Fan: Fan speed switch
- Fan: Switch speed x (x = 1, 2 or 3)
- Fan: Fan speed UP/DOWN
- Fan: Limitation x (x = 1, 2, 3 or 4)

During one of the four limitations or forced operation, the automatic mode remains active, but however, it is only operated in the allowed limits.

If the value 1 is set in the parameter:
Telegram value: 0 = automatic operation OFF
1 = automatic operation ON

If the value 0 is set in the parameter:
Telegram value: 0 = automatic operation ON
1 = automatic operation OFF

27 Not assigned.

28 Status automatic
Fan
1 bit
DPT 1.003
C, R, W

The communication object is enabled if in parameter window Status messages, the parameter Enable communication object “Status automatic” 1 bit has been selected with option yes.

It is possible to parameterize if a communication object value is only updated and not sent, sent on request, or only sent when changed.

The communication object indicates the status of the automatic mode.
Telegram value: 0 = inactive
1 = activated
Status byte mode

<table>
<thead>
<tr>
<th>No.</th>
<th>Function</th>
<th>Communication object name</th>
<th>Data type</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Status byte mode</td>
<td>Fan</td>
<td>1 byte non DPT</td>
<td>C, R, T</td>
</tr>
</tbody>
</table>

The communication object is enabled if in parameter window – Status messages the parameter Enable communication object “Status byte mode” 1 byte is selected with option yes.

The operating state of the fan can be displayed or sent on the bus via this communication object. It is possible to parameterize if a communication object value is only updated and not sent, sent on request, or only sent when changed.

Bit sequence: 76543210

<table>
<thead>
<tr>
<th>Bit 7: Forced operation</th>
<th>Telegram value:</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0: inactive</td>
<td>1: active</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit 6: Limitation 1</th>
<th>Telegram value:</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0: inactive</td>
<td>1: active</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit 5: Limitation 2</th>
<th>Telegram value:</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0: inactive</td>
<td>1: active</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit 4: Limitation 3</th>
<th>Telegram value:</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0: inactive</td>
<td>1: active</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit 3: Limitation 4</th>
<th>Telegram value:</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0: inactive</td>
<td>1: active</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit 2: Thermostat fault</th>
<th>Telegram value:</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0: inactive</td>
<td>1: active</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit 1: Automatic</th>
<th>Telegram value:</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0: inactive</td>
<td>1: active</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit 0: HEATING/COOLING</th>
<th>Telegram value:</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0: COOLING</td>
<td>1: HEATING</td>
</tr>
</tbody>
</table>

Note

Bit 0: If toggling between HEATING and COOLING is undertaken automatically using control variables, the status HEATING/COOLING is only switched in bit 0 if a value > 0 is received on the control value.

For further information see: Status byte code table, page 146
3.3.7 Communication objects Valve Heating, Valve Cooling

<table>
<thead>
<tr>
<th>No.</th>
<th>Function</th>
<th>Communication object name</th>
<th>Data type</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>Block</td>
<td>Valve heating</td>
<td>1 bit DPT 1.003</td>
<td>C, W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The valve is disabled with this communication object. If the block is enabled, the highest priority is retained and the current control value is retained, i.e. the valve remains stationary. Movement to a target position which may not have yet been achieved will be performed to completion. If the block is removed, the target position which has been set without the block is approached.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Telegram value: 0 = valve not blocked</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = valve blocked</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Forced operation</td>
<td>Valve heating</td>
<td>1 bit DPT 1.003</td>
<td>C, W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This communication object sets the valve output in a defined state and blocks it. If the value 1 is received, forced operation is activated and the valve output triggers the programmed valve position. If the value 0 is received, forced operation ends. The valve position is retained until the FCA/S receives a new setting signal.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Telegram value: 0 = end forced operation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = start forced operation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Trigger valve purge</td>
<td>Valve heating</td>
<td>1 bit DPT 1.017</td>
<td>C, W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The valve purge is triggered using this communication object.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Telegram value: 0 = end valve purge, valve will be closed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = start valve purge, valve will be opened</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note for value 0

A purge currently underway is interrupted.
A purge not undertaken due to a higher priority will no longer be undertaken.
The purge cycle with automatic purge will be restarted.
<table>
<thead>
<tr>
<th>No.</th>
<th>Function</th>
<th>Communication object name</th>
<th>Data type</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>Status valve purge</td>
<td>Valve heating</td>
<td>1 bit</td>
<td>C, R, T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DPT 1.003</td>
<td></td>
</tr>
</tbody>
</table>

The status of the valve purge is visible via this communication object.

Telegram value: 0 = valve purge not active
1 = valve purge active

Note

The status is displayed as soon as a purge has been activated. The status remains active even when the purge has been interrupted, e.g. by a priority.

<table>
<thead>
<tr>
<th>39</th>
<th>Status valve position</th>
<th>Valve heating</th>
<th>1 bit</th>
<th>C, R, T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>DPT 1.001</td>
<td></td>
</tr>
</tbody>
</table>

This communication object is enabled if in parameter window Valve 1, the parameter *Enable communication object "Status valve position"*, the option 1 bit has been selected.

The status of the valve position is visible via this communication object. Hereby, the target position where the valve should move to is always transferred. The displays LEDs V1 HEATING indicates the same value as the status.

Telegram value: 0 = Valve position equal to zero/LEDs V1 HEATING off
1 = Valve position not equal to zero/LEDs V1 HEATING on

<table>
<thead>
<tr>
<th>39</th>
<th>Status valve position</th>
<th>Valve heating</th>
<th>1 byte</th>
<th>C, R, T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>DPT 5.001</td>
<td></td>
</tr>
</tbody>
</table>

This communication object is enabled if in parameter window Valve 1, the parameter *Enable communication object "Status valve position"*, the option 1 bit has been selected.

The status of the valve position is visible via this communication object. Hereby, the target position where the valve should move to is always transferred. The display LEDs V1 HEATING indicates the same value as the status.

Telegram value: 0…255 = valve position is displayed directly as a figure value
At 0 = LEDs V1 HEATING off
At > 0 = LEDs V1 HEATING on
3.3.7.1 Communication objects Input a…c

The communication objects of all Inputs do not differentiate from one another and are explained using Input a.

The descriptions of the parameter setting options of Input a are described in Parameter window Input a, page 75.

The communication objects Input a have the nos. 50…52.

The communication objects Input b have the nos. 55…57.

The communication objects Input c have the nos. 60…62.

<table>
<thead>
<tr>
<th>No.</th>
<th>Function</th>
<th>Communication object name</th>
<th>Data type</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>Block</td>
<td>Input a</td>
<td>1 bit DPT 1.003</td>
<td>C, W</td>
</tr>
</tbody>
</table>

This communication object is enabled if in parameter window General for parameter Input a (binary input, contact scanning) the option yes has been selected.

Using the communication object Block, the input circuitry can be blocked or enabled. With the enable of a blocked input no telegram is sent on the bus. With activated communication object Block the inputs are blocked.

Note

When the input is blocked there is fundamentally no reaction, but:
- Waiting for a long button operation or a minimum signal duration is suspended.
- A signal change on the terminals or with manual operation is ignored.
- Communication objects continue to be updated and sent if necessary.

When enabling an input a change of the signal states (compared to before the block) leads to immediate processing, e.g.:
- The minimum actuation or detection of a long/short button push starts.
- Communication objects are sent if necessary.

Telegram value:
0 = enable input
1 = block input
<table>
<thead>
<tr>
<th>No.</th>
<th>Function</th>
<th>Communication object name</th>
<th>Data type</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>Switch</td>
<td>Input a</td>
<td>1 bit</td>
<td>C, W, T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DPT 1.001</td>
<td></td>
</tr>
</tbody>
</table>

This communication object is enabled if in parameter window General for parameter Input a (binary input, contact scanning) the option yes has been selected.

In accordance with the parameter setting, this communication object can be switched by actuation of the ON, OFF or TOGGLE input. With TOGGLE, the previous value, e.g. 1, is toggled directly to the value 0.

The communication object can be sent cyclically, e.g. for lifesign monitoring of the sensor. It is important to note that the communication object can be written to externally. Thus, cyclic sending is interrupted or may not be possible.

Telegram value: 0 = OFF
1 = ON

<table>
<thead>
<tr>
<th>52</th>
<th>Long switch operation</th>
<th>Input a</th>
<th>1 bit</th>
<th>C, W, T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>DPT 1.001</td>
<td></td>
</tr>
</tbody>
</table>

This communication object is only enabled if the parameter Distinction between long and short operation and Enable communication object with "Long operation" 1 bit has been selected with yes.

This additional communication object is assigned to the long actuation. The communication object Input a – Switch no longer reacts to a long operation.

Telegram value: 0 = no
1 = yes

| 53...54 | Not assigned |
Communication objects **Output**

<table>
<thead>
<tr>
<th>No.</th>
<th>Function</th>
<th>Communication object name</th>
<th>Data type</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>Switch</td>
<td>Output</td>
<td>1 bit</td>
<td>C, W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DPT 1.001</td>
<td></td>
</tr>
</tbody>
</table>

This communication object is used for switching of the output ON/OFF. The device receives a switch telegram via the communication object.

- **Normally opened contact:**
 - Telegram value: 1 = switch ON
 - Telegram value: 0 = switch OFF

- **Normally closed contact:**
 - Telegram value: 1 = switch OFF
 - Telegram value: 0 = switch ON

<table>
<thead>
<tr>
<th>46</th>
<th>Permanent ON</th>
<th>Output</th>
<th>1 bit</th>
<th>C, W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>DPT 1.003</td>
<td></td>
</tr>
</tbody>
</table>

This communication object is enabled if in parameter window **Time function**, the parameter **Enable communication object "Permanent ON" 1 bit** has been selected with the option **yes**.

With this communication object, the output can be forcibly switched on.

If the communication object is assigned with the value 1, the output is switched on irrespective of the value of the object **Switch** and remains switched on until the communication object **Permanent ON** has the value 0. After ending the permanent ON state, the state of the communication object **Switch** is used.

Permanent ON only switches ON and “masks” the other functions. This means that the other functions (e.g. staircase lighting) continue to run in the background but do not initiate a switching action. After the end of **Permanent ON**, the switching state, which would result without the **Permanent ON** function, becomes active. For the function **Staircase lighting** the response after **Permanent ON** is parameterized in Parameter window **-**, page 87.

This communication object can be used for example to allow the service or maintenance and cleaning personnel to initiate a permanent ON. The device receives a switch telegram via the communication object **Switch**.

*After a download or bus voltage recovery, **Permanent ON** becomes inactive.*

- Telegram value: 1 = activates Permanent ON
- Telegram value: 0 = deactivates Permanent ON

<table>
<thead>
<tr>
<th>47</th>
<th>Disable function Time</th>
<th>Output</th>
<th>1 bit</th>
<th>C, W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>DPT 1.003</td>
<td></td>
</tr>
</tbody>
</table>

This communication object is enabled if in parameter window **Output (16 A/10 AX)**, the parameter **Enable function Time** has been selected with the option **yes**.

*After bus voltage recovery, in parameter window **Time** the communication object value with the parameter **Object value "Disable time function" on bus voltage recovery** can be determined.*

With the blocked function **Time** the output can only be switched on or off, the function **Staircase lighting** is not triggered.

- Telegram value: 1 = staircase lighting disabled
- Telegram value: 0 = staircase light enabled

The contact position at the time of disabling and enabling is retained and will only be changed with the next switch telegram to the communication object **Switch**.
<table>
<thead>
<tr>
<th>No.</th>
<th>Function</th>
<th>Communication object name</th>
<th>Data type</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>Staircase lighting duration</td>
<td>Output</td>
<td>2 byte</td>
<td>C, R, W</td>
</tr>
</tbody>
</table>

This communication object is enabled if in parameter window - Time, the parameter Enable communication object "Change duration of staircase lighting" 2 byte has been selected with option yes.

The duration of staircase lighting is set here. The time is defined in seconds. After bus voltage recovery, the value of the communication object is set by the programmed value and the value set via the bus is overwritten.

The staircase lighting time can changed via the bus with this communication object. The time is defined in seconds.

The staircase lightning time which has already commenced is completed. A change of the staircase lighting time is used the next time it is accessed.

With bus voltage failure the changed staircase lighting time is retained. Only after a complete download of the application program, a version change, when the device has been discharged or with an ETS reset, is the staircase lighting time duration overwritten with the value set in the parameters.

| 49 | Status Switch | Output | 1 bit | C, R, T |

In the parameter window Output you can parameterize whether the communication object value no, update only, after a change or after request is sent on the bus.

The communication object value directly indicates the current contact position of the switching relay.

The status value can be inverted.

Telegram value
- 1 = relay ON or OFF depending on the parameterization
- 0 = relay OFF or ON depending on the parameterization
4 Planning and Application

In this section you will find a description of different types of fans, blowers and fan coil controls. Here also are some tips and application examples are described for practical use of the device.

4.1 Heating, ventilation, climate control with Fan Coil units

The Fan Coil Actuator FCA/S controls single-phase fans, blowers or fan coil units. Three speed single phase fans with step or changeover control are possible.

Special fan properties such as switchover pauses, dwell times and a start-up phase can be parameterized. Up to two input variables for heating and cooling signals, e.g. for a thermostat, are available. As output variables, the Fan Coil Actuators generate up to two valve communication objects, which they can use to control the valves in a heating or cooling circuit.

The separate fan and valve parameterization in the FCA/S provides a maximum in flexibility and very many combination possibilities for various applications in the heating, ventilation and air-conditioning (HVAC) field.

4.1.1 Terms

Fan Coil unit is a term used for a fan convector or blower convection unit.

The Fan Coil unit is connected to a central heating and cooling water supply and generates the desired temperature for the room. A room can be heated, cooled and ventilated using a Fan Coil unit.

4.1.2 Fan operation

In fan operation a single phase fan, blower or convector can be controlled. In combination with a valve control 2, 3 or 4 pipe system can be implemented. The fans are controlled via a 3 speed controller. For this purpose, 3 windings are tapped off of the fan motor. The speed which results is dependent on the tap-off. It must be ensured that two contacts are not switched on simultaneously. For control purposes at least one 3 speed changeover switch with zero position is usually used. This switch is simulated with a group of outputs in the Fan Coil Actuator.
The control of the FCA/S is implemented in accordance with the following schematic principle:

With three Fan stage x switch \(x = 1, 2, \text{ or } 3\) communication objects that are independent of each other, the fan stages are controlled via the outputs of the Fan Coil Actuator.

Alternatively, the fan control can be implemented via a 1 byte communication object Switch speed or via the communication object Fan speed up/down.

Some ventilation controls require an additional central switch on mechanism (main switch) in addition to the speed switch. This can be implemented with a further output of the Fan Coil Actuator. The output must be linked to the communication object Status Fan ON/OFF. Hereby, the main switch is switched on if at least one fan speed is set. If the fan is OFF (Status Fan ON/OFF = 0), the main switch is also switched off.
4.1.2.1 Fan in a two-way connection

Control of a fan is usually implemented with a changeover switch.

The following control table results for a three-stage fan, which simulates the FCA/S with a group of switch outputs:

<table>
<thead>
<tr>
<th>Terminal 8</th>
<th>Terminal 9</th>
<th>Terminal 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fan speed 1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Fan speed 2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Fan speed 3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

4.1.2.2 Fan with speed switching

In some cases, the fan is controlled via a step switch. The following control table results for a three-speed fan, which simulates the FCA/S with its outputs:

<table>
<thead>
<tr>
<th>Terminal 8</th>
<th>Terminal 9</th>
<th>Terminal 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fan speed 1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Fan speed 2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Fan speed 3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The step switch cannot be switched on rapidly. If for example, fan speed 3 is to be switched on from the OFF state, fan speeds 1 and 2 must be controlled with the associated dwell times first.

4.1.3 Configuration of a HVAC system with Fan Coil units

A HVAC system with Fan Coil units (HVAC = heating, ventilation, air-conditioning) consists of a central heating and cooling water system. The Fan Coil units are installed in rooms and directly connected to the heating and cooling circuit.
4.1.4 Design of a Fan Coil unit

The Fan Coil unit consists of a fan or blower-convector and one or two heat exchangers, which emit heating or cooling power to the room.

If only one heat exchanger and one heating or cooling circuit is available, you have a 2 pipe system.

If two heat exchangers with two separate heating and cooling circuits are in use, you have a 4 pipe system. The Fan Coil Actuator directly controls the fan.

The heat exchanger and the fan are the most important components of a Fan Coil unit. Heating or cooling water flows in the heat exchanger depending on the desired room temperature. The flow of water through the heat exchanger is controlled via the valves.

The fan blows air past the heat exchanger and into the room through a filter. The air is heated or cooled in the heat exchangers and thus generates the desired room temperature. The fan is driven by a motor. The motor and the valves are controlled by a Fan Coil Actuator.

The water condensation which results during cooling collects in a condensation water trough.
4.1.5 Pipe systems

A Fan Coil unit can be configured as a 2-, 3- or 4-pipe system.
4.1.5.1 2 pipe system, configuration

The 2 pipe system consists of just a single water circuit, which is heated or cooled alternately to suit the season. In a 2 pipe Fan Coil unit there is only one heat exchanger with a valve.

Note

In some HVAC systems, cooling is undertaken exclusively using a 2 pipe Fan Coil unit. The heating function is undertaken by a conventional heater or an electrical heater.
4.1.5.2 2 pipe system HEATING and COOLING

In this system only one heat exchanger is available for HEATING and COOLING. Depending on the weather, warm or cold water is supplied centrally to the pipe system (2 pipes). The Fan Coil Actuator or the thermostat is informed if warm or cold water is currently flowing through the system. Depending on this setting, both control values act on just a single valve. The thermostat decides which control value (HEATING/COOLING) is actively sent. The FCA/S controls the fan speed and only one valve.
2 pipe system HEATING or COOLING

In this system, one heat exchanger is available for HEATING or COOLING. The control value for HEATING or COOLING is provided by a thermostat. Only warm or only cold water is supplied centrally to the pipe system (2 pipes). Depending on this setting one control value acts on one valve. The thermostat sends the control value (COOLING) and the FCA/S controls the fan speed and the valve.

Note

Both 2-pipe systems can be established using a 3 stage fan or blower. Depending on the control value (1 byte or 1 bit) which is sent from a thermostat, the Fan Coil Actuator determines the corresponding fan stages (speeds) via programmable threshold values.
For a continuous control value (1 byte; 0…100 %), the threshold values for the fan speeds can be defined for example as follows:

Example

Three speed fan: Switch thresholds in the FCA/S:

- Fan speed 1: 1…29 % Off -> Fan speed 1 = 1%
- Fan speed 2: 30…59% Fan speed 1 -> 2 = 30%
- Fan speed 3: 60…100% Fan speed 2 -> 3 = 60%

4.1.5.4 3 pipe system, configuration

The 3 pipe system has a similar design to the 4 pipe system. There is a separate inlet for heating and cooling water as well as two separate heat exchangers with one valve each. In contrast to a 4 pipe system, the 3 pipe system has a common return for heating and cooling water.

The Fan Coil Actuator directly controls the fan and provides two communication objects for control of the valves.
4.1.5.5 4 pipe system, configuration

In a 4 pipe system two separate heat exchangers (for HEATING and COOLING) are available. Warm and cold water is provided centrally to two separate pipe systems (of 2 pipes each).

The thermostat on-site decides if heating or cooling is applied. The thermostat sends a separate heating and cooling signal.

The Fan Coil Actuator directly controls the fan.
4.2 System configuration with a Fan Coil Actuator

In this function, the Fan Coil Actuator is used for control of the heating and cooling valve as well as for switching the fan outputs. Temperature detection is undertaken by a thermostat.

Even the offset of the set point value as well as changeover of the operating modes is implemented by the thermostat. The sensors can be connected directly to the Fan Coil Actuator in order to consider the monitoring of the condensed water and the window contact.

In order to correctly implement this function the thermostat must send the actual temperature as well as the corresponding operating mode to the Fan Coil Actuator via the bus.

4.2.1 Automatic operation

With automatic fan control, a fan drive is connected directly to the Fan Coil Actuator and switched via three floating contacts. A single stage (speed), two stage or three stage fan can be connected.

The fan speed is set automatically in dependence on the control value. For example, the following control value ranges can be programmed for the corresponding fan speeds:

<table>
<thead>
<tr>
<th>Control value</th>
<th>Fan speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0…9%</td>
<td>0 (fan off)</td>
</tr>
<tr>
<td>10…39%</td>
<td>1</td>
</tr>
<tr>
<td>40…69%</td>
<td>2</td>
</tr>
<tr>
<td>70…100%</td>
<td>3</td>
</tr>
</tbody>
</table>

Important

The Fan Coil Actuator FCA/S is purely an actuator, which does not have a controller for a room temperature controller (thermostat).
Control of the room temperature is implemented using a room temperature controller which generally detects the room temperature. The FCA/S primarily controls a fan and valves. In addition to a manual control via the communication objects Fan speed x, Fan speed switch or Fan speed up/down, the Fan Coil Actuator can also operate in automatic mode together with a thermostat. Communication objects Control value HEATING, Control value COOLING or when operating with just a single input variable, the communication object Control value HEATING/COOLING, are available.

The automatic mode is enabled in the parameter window Fan with the parameter Enable automatic operation. Depending on the HVAC system, this is set in the parameter window Control input and the control value communication objects are enabled.

An automatic operation parameterized in the ETS only becomes active after the first download. With a subsequent download the automatic operating state (active, inactive) is retained as it was before the download. However, there is an exception when system properties such as HVAC systems, fan control (changeover, step control) or the fan stage count have been changed (1/2/3). In these cases the automatic mode is activated if the automatic mode has been enabled in the ETS.

Automatic mode is switched off either by a manual setting command via the communication objects Speed x, Fan speed switch or Fan speed up/down, or if a telegram with the value 0 is received via the communication object Automatic ON/OFF.

The automatic operation can be reactivated by the communication object Automatic ON/OFF or activated with the 1 byte communication object Change limitation.

An activation of one of the four limitations or the forced operation does not end automatic operation. By using a range limit (several fan stages are permissible), a limited automatic control with several fan stages (speeds) is possible.

The following functional diagram shows the relationship between automatic and manual operation of the Fan Coil Actuator.
4.2.2 Direct operation

With direct fan control via the ABB i-bus®, a fan drive is connected directly to the Fan Coil Actuator and switched via three floating contacts. A single stage (speed), two stage or three stage fan can be connected.

The Fan Coil Actuator sets the fan speed in accordance with the value received via the ABB i-bus®. The value is received as a 1 byte value. The conversion of the received 1 byte value to the fan speed occurs in the same way as the automatic fan control via the parameterized threshold values.

<table>
<thead>
<tr>
<th>1 byte value</th>
<th>Fan speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0… 9 %</td>
<td>0 (fan off)</td>
</tr>
<tr>
<td>10… 39 %</td>
<td>1</td>
</tr>
<tr>
<td>40… 69 %</td>
<td>2</td>
</tr>
<tr>
<td>70…100 %</td>
<td>3</td>
</tr>
</tbody>
</table>

4.2.3 Switchover between automatic and direct operation

In the Fan Coil Actuator, you can switch between automatic operation and direct operation. The changeover to manual fan control is implemented via a 1 bit value. The fan stage is switched in accordance with the received 1 byte value.

The fan control is changed back to automatic operation if a 1 is received in the respective communication object.

The current status of automatic operation is fed-back via a 1 bit value.
4.2.4 Logic of the stage switching

The following illustration indicates the logic of a switchover stage for a Fan Coil Actuator in dependence on the control values and the parameterized threshold values and hysteresis.

The diagram relates to a three speed fan without parameterized fan limitations. The fan limitations are only relevant after the fan stage has been determined and do not change the flow chart.

Hy = Hysteresis
If fan speed x - Hysteresis < 0 % the fan speed x - Hysteresis = 1 %
If fan speed x + Hysteresis > 100 % the fan speed x + Hysteresis = 99 %
The following illustration indicates the sequence in which the functions of the fan control are processed. Communication objects, which lead to the same box, have the same priority and are processed in the sequence in which the telegrams are received.
4.3 Valve drives, valves and controller

4.3.1 Electromotor valve drives

Electromotor valve drives open and close valves via a small electric motor. Electromotor valve drives are offered as proportional or as 2 or 3-way valve drives.

Proportional valve drives are controlled via an analogue signal, e.g. 0…10 V. They can be controlled with the Fan Coil Actuator. 2 or 3-point valve drives are controlled via switching of the supply voltage.

2-point valve drives are controlled via the telegrams OPEN and CLOSE. The valve can be completely open or completely closed. 2-point valves are controlled via a 2-point control or pulse width modulation (PWM). 2-point valve drives, which require 2-point control, cannot be controlled with the Fan Coil Actuator.

The Fan Coil Actuator does not support the control of electric motor 3-point valve drives. These are normally connected via three connection cables to a Fan Coil unit: Neutral conductor, switched phase to OPEN, switched phase for CLOSE. Using 3-point control valve drives, the valve can be opened by any desired percentage and the position can be retained over an extended period. If the valve does not move, no voltage is applied to the motor.

The valve is opened wide enough to allow the exact quantity of hot or cold water to flow that is required to bring the heat exchanger to the required temperature. Thus the valve is controlled via the valve opening (0…100 %). The control usually used in most cases is continuous control.

4.3.2 Electro-thermal valve drives

Electro-thermal drives are adjusted due to heat expansion of a material caused by a flow of electric current. Electro-thermal valve drives are controlled by pulse width modulation. The Fan Coil Actuator supports the control of electro-thermal valve drives via pulse width modulation.

Electro-thermal valve drives are offered in the de-energised closed and de-energized opened variants. Depending on the variant, the valve is opened when voltage is applied and closed when no voltage is applied, or vice versa.

Electro-thermal valve drives are connected via two connection cables to the Fan Coil device.
4.3.3 Valve curve

The Fan Coil Actuator controls valves with linear valve curves. The valve control is matched linearly to the control value. The valve is closed with a control value of 0 %, i.e. also 0 %. The valve is fully open with a control value of 100 %, i.e. also 100 %. The same ratio also applies for all intermediate values.

![Linear valve curve](image)

These valve curves can be matched for different valve types. Many valves, for example, have practically no flow when barely opened and achieve maximum flow at 60…80 %. Furthermore, many valves emit an annoying whistling sound at low flows.
These effects can be taken into consideration by limitation of the active valve opening range. The positioning frequency of the valve drive may also be reduced by this limitation.
A further adaption of the valve curve is implemented via the limitation of the valve control value. The valve output does not react in the upper and lower range due to this limitation. Thus, for example, a valve movement with a minimal heating or cooling requirement can be avoided.

Limitation of the valve control value

A further adaption of the curve can be undertaken in the Parameter window - Curve, page 72, which is separately adjustable for the heating and the cooling valve. The valve control value can be adapted to the control value using the adjustable parameters there. The positioning frequency of the valve drive may also be reduced by this function.

A reduction of the positioning frequency reduces the current requirement for positioning and extends the service life of the valve. However, a reduced positioning frequency will also impair the accuracy of the temperature control.
4.3.4 Control types

The following control types are commonly used for the control of valves in heating, air-conditioning and ventilation applications.

- Continuous control
- Pulse width modulation (PWM)
- Pulse width modulation – calculation

4.3.4.1 Continuous control

With continuous control, a control value is calculated based on the target temperature and the actual temperature, and is used to optimally set the temperature. The valve is brought to a position which complies with the calculated control value. With this method the valve can be fully opened, fully closed and even positioned in every intermediate position.

Continuous control is the most precise form of temperature control. At the same time, the positioning frequency of the valve drive can be kept low. Continuous control can be implemented with the FCA/S for electro-motor 3-point valve drives. This is implemented via a 1 byte control.

What is a 1 byte control?
For 1 byte control, a value of 0...255 (corresponds to 0 %...100 %) is preset by the room thermostat. At 0 % for example, the valve is closed and at 100 % it is fully opened.
4.3.4.2 Pulse width modulation (PWM)

With pulse width modulation, the valve is operated as with 2-point control exclusively in the positions fully opened and fully closed. In contrast to a 2-point control, the position is not controlled via limit values, but rather by calculated control values similar to continuous control.

The control value is fixed for a timed cycle and recalculated in the duration for valve opening. The control value 20 % at a cycle time of 15 minutes, for example, will be recalculated for a valve opening time of three minutes. The control value 50 % results in a valve opening time of 7.5 minutes.

With pulse width modulation, a relatively accurate setting of the temperature can be achieved without any resulting overshoots. Simple, attractively-priced control valves can be used. The positioning frequency of the control valve is relatively high.

Pulse width modulation can be used with the Fan Coil Actuator in conjunction with electromotor or electro-thermal valve drives.
An example: When the FCA/S receives a 1 byte control value (continuous control) as an input signal, this value together with the parameterized cycle time from a PWM calculation is converted into a signal for a 2-point control (ON-OFF-ON).

With PWM control, the received control value (0...100 %) calculated in the control algorithm is converted to a pulse width modulation. The conversion is based on a constant cycle time. If the FCA/S for example, receives a control value of 20%, then for a cycle time of 15 minutes the valve will be opened for three minutes (20% of 15 minutes) and closed for 12 minutes (80% of 15 minutes).
4.3.4.3 Pulse width modulation – calculation

With pulse width modulation, the control is implemented by a variable mark-space ratio.

During the time t_{ON} the valve is opened and during the time t_{OFF} it is closed. Due to $t_{ON} = 0.4 \times t_{CYC}$ the valve is set to about 40% on. t_{CYC} is the so-called PWM cycle time for continuous control.
4.4 Behaviour with, …

4.4.1 Bus voltage recovery

General
- At bus voltage recovery, the communication object values can be parameterized; if not they are set to the value 0.
- Timers are out of operation and should be restarted.
- Status communication objects are sent as long as the option after a change has been set.
- The contact positions of the fan speeds are not known after bus voltage recovery. It is assumed that the contact positions have not changed during bus voltage failure (no manual operation possibilities occur). Only after a new switch event is received are the contact positions known to the Fan Coil Actuator.
- The send delay is only active at bus voltage recovery!

Switch contact output
- The communication object value Staircase lighting time remains unchanged as before bus voltage failure.
- The communication object value Disable time function is dependent on the selected option.
- The communication object value Permanent ON remains unchanged as before bus voltage failure.
- The switch contact output switches as follows:
 - After the set communication object value Switch with bus voltage recovery.
 - If the parameter Object value “Switch” at bus voltage recovery is not parameterized, the behaviour at bus voltage failure is decisive.
 - If none of the two above options is selected, the last position is retained as with bus voltage failure.

Note
If a staircase lighting time was active at bus voltage failure, it will restart.
Valves V1/2

- The purging cycle restarts if it was active before the failure.
- The priorities *Blocking*, *Forced operation* and *Purging* are re-established and executed as priorities.

The priorities are defined as follows:

1. Manual operation, if active
2. Parameterized valve position after bus voltage recovery
3. Communication object *Block*
4. Communication object *Forced operation*
5. Valve Purge
6. Control values

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 corresponds to the highest priority.</td>
</tr>
</tbody>
</table>

- The value parameterized for bus voltage recovery is only carried out if no higher priority was active before the failure. If a new control value is received during bus voltage recovery and an active priority, it will replace the control value that was defined in the parameterization.

4.4.2 ETS reset

What is an ETS Reset?

Generally an ETS reset is defined as a reset of the device via the ETS. The ETS reset is initiated in the ETS3 under the menu item *Commissioning* with the function *Reset device*. This stops the application program and it is restarted.

Output A (20 AX)

- The communication object value *Staircase lighting time* receives its parameterized value.
- The communication object value *Disable time function* is 0, i.e., function *Time* is not blocked.
- The object value *Permanent ON* is 0, i.e., permanent on is not active.
- The switch contact output goes to the safely opened state.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>For all resets after delivery including the first download, the response will comply with that of a reset via the bus. A send and switch delay is not executed. All states are reset.</td>
</tr>
</tbody>
</table>
4.4.3 Download (DL)

General

After a change of the fan control (stage control or changeover control) of the fan type, a full reset of the actuator is required in order to avoid incorrect function. This full reset has the same effect as reset of the device in the ETS. In this case, the communication objects are normally written with the value 0. The timers stop and are set to 0. Status communication objects are set to 0 (with the exception of automatic, if it is active) and contacts are opened.

With the normal download, where no re-parameterization of the fan type and fan control has occurred, an action has the effect that in the ideal case no unwanted reactions are initiated and thus normal operation is not influenced. Communication object values remain unchanged. Timer will not operate and must only be restarted. Status values are updated and sent. The contact position remains unchanged and only changes with the next switch telegram.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>After a download with a change, the application complies in behaviour to a reset of the device in the ETS. If the application of the same version is reloaded after discharge, the behaviour is the same as with a download</td>
</tr>
</tbody>
</table>

Output A (20 AX)

The communication object value *Staircase lighting time* remains unchanged.

The communication object value *Disable function time* remains unchanged.

Exception: The communication object value is set to 0 if there is no assignment to the communication object.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Otherwise, the block for the function Time is removed, if the communication object Disable function time is not available. The switch contact output will otherwise use the new parameters.</td>
</tr>
</tbody>
</table>

The communication object value *Permanent ON* remains unchanged.

The switch contact output remains unchanged.

4.4.4 Bus voltage failure

After the contact positions have set with bus voltage recovery, the Fan Coil Actuator remains functional until the bus voltage recovers.

Only the energy for a non-delayed switching action is available when the bus voltage fails for each output. Reversing times, dwell times and startup behaviour cannot be considered. For this reason, it is only possible for the fan at bus voltage recovery to retain the fan speed (unchanged) or to switch off.

The special behaviour is described in the following table.
4.4.5 Bus voltage failure, recovery and download

Behaviour of the fan stage on a download, ETS reset, bus voltage failure and recovery

<table>
<thead>
<tr>
<th>Behaviour with</th>
<th>Bus voltage recovery</th>
<th>Bus voltage failure</th>
<th>Download, if no change of the operating function(^1) occurs.</th>
<th>ETS bus reset and download (if a change of operating function(^1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan</td>
<td>Can be parameterized</td>
<td>Can be parameterized</td>
<td>Unchanged or moves from a previously selected required stage, if this has not been achieved by switchover pauses and dwell times.</td>
<td>OFF, contacts open</td>
</tr>
<tr>
<td>Fan speed</td>
<td>Can be parameterized</td>
<td>Can be parameterized</td>
<td>Unchanged or moves from a previously selected required stage, if this has not been achieved by switchover pauses and dwell times.</td>
<td>OFF, inactive</td>
</tr>
<tr>
<td>Forced operation</td>
<td>Inactive</td>
<td>No function</td>
<td>OFF, inactive</td>
<td>OFF, inactive</td>
</tr>
<tr>
<td>Limitation x (x = 1\ldots4)</td>
<td>Inactive</td>
<td>No function</td>
<td>OFF, inactive</td>
<td>OFF, inactive</td>
</tr>
<tr>
<td>Automatic operation</td>
<td>Automatic mode is activated, if automatic mode is possible.</td>
<td>No function</td>
<td>Is retained if already available. Remains inactive, if already inactive.</td>
<td>Automatic mode is activated if automatic mode is possible, otherwise not active.</td>
</tr>
<tr>
<td>Communication object</td>
<td>Is updated and sent in dependence on the parameterization</td>
<td>No function</td>
<td>Is updated and sent in dependence on the parameterization</td>
<td>Is updated and sent in dependence on the parameterization (always, after a change, not)</td>
</tr>
<tr>
<td>Status automatic</td>
<td>Will be updated and sent</td>
<td>No function</td>
<td>Unchanged, implemented when the next telegram is received</td>
<td>Is updated (OFF, communication object value 0) and sent.</td>
</tr>
<tr>
<td>Communication object</td>
<td>Values are recalculated and sent after the parameterized send delay</td>
<td>No function</td>
<td>Unchanged and sent. COOLING or COOLING/HEATING, communication object value 0</td>
<td></td>
</tr>
<tr>
<td>Status byte</td>
<td>Values are updated and sent in dependence on the parameterization.</td>
<td>No function</td>
<td>Values are updated and sent in dependence on the parameterization.</td>
<td>Values are updated and sent in dependence on the parameterization (always, when changed, not)</td>
</tr>
</tbody>
</table>

\(^1\) An operating function can occur by the change from fan stage 1, 2 or 3 or to the switchover to a stage and changeover circuit of the fan control.
Behaviour of the output on a download, ETS reset, bus voltage failure and recovery

<table>
<thead>
<tr>
<th>Behaviour with</th>
<th>Bus voltage recovery</th>
<th>Bus voltage failure</th>
<th>Download, if no change of the operating function(^1) occurs.</th>
<th>ETS bus reset and download (if a change of operating function(^1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>Can be parameterized</td>
<td>Communication object no longer available.</td>
<td>Unchanged. Evaluation only after a new event has been received.</td>
<td>Contacts go to a safe state. Renewed evaluation only after a new event has been received.</td>
</tr>
<tr>
<td>Communication object Switch</td>
<td>Can be parameterized</td>
<td>Communication object no longer available.</td>
<td>Unchanged.</td>
<td>Contacts go to a safe state. Renewed evaluation only after a new event has been received.</td>
</tr>
<tr>
<td>Function Time disable communication object Disable time function</td>
<td>Can be parameterized</td>
<td>Communication object no longer available. Timer stops. Contact position parameterized with BVF</td>
<td>Unchanged.</td>
<td></td>
</tr>
<tr>
<td>Staircase light</td>
<td>In the parameter window, you can be set if the function Time is disabled or not disabled after bus voltage recovery. Timer stops. Light stays on, if staircase lighting time has run with BF. Otherwise unchanged. Change only after a new event has been received. The staircase lighting time is retained.</td>
<td>No function. Contact position with bus voltage failure can be parameterized.</td>
<td>Unchanged. Change only after an event has been received. e.g. the staircase lighting remains on until it is started again or switched off. The staircase lighting time is accepted from the parameter. Exception: • New device • Initial parameterization</td>
<td>Running staircase lighting time stops. Switch contact is opened. Staircase lighting timer is set to 0. Staircase lighting time is set to the value parameterized in the ETS. The staircase lighting time sent via the bus is overwritten and is lost. If a function Time is parameterized this will remain active. The communication object Disable time function is reset to the value 0 (function Time activated).</td>
</tr>
<tr>
<td>Permanent ON</td>
<td>Permanent ON becomes inactive. Contact position is determined via communication object value Switch.</td>
<td>No function. Contact position with bus voltage failure can be parameterized.</td>
<td>Is inactive after a download.</td>
<td>Inactive</td>
</tr>
</tbody>
</table>

\(^1\) An operating function can occur by the change from fan stage 1, 2 or 3 or to the switchover to a stage and changeover circuit of the fan control.
<table>
<thead>
<tr>
<th>Behaviour with</th>
<th>Bus voltage recovery</th>
<th>Bus voltage failure</th>
<th>Download, if no change of the operating function(^1) occurs.</th>
<th>ETS bus reset and download (if a change of operating function(^1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valves</td>
<td></td>
<td></td>
<td>Communication object values are available</td>
<td></td>
</tr>
<tr>
<td>Valve operation</td>
<td>Can be parameterized</td>
<td>Can be parameterized</td>
<td>Calculation/evaluation will be continued with the existing communication object values (input values)</td>
<td>Calculation/evaluation for valve control is set. Valve is closed (reference run = run time × 5 %)</td>
</tr>
<tr>
<td>Functions</td>
<td>Unchanged</td>
<td>Unchanged, however without function. Contact position is programmable.</td>
<td>Will be accepted, if changed</td>
<td>Will be accepted, if changed</td>
</tr>
<tr>
<td>Monitoring (communication object Thermostat fault)</td>
<td>Monitoring time will be restarted. Communication object value is 0</td>
<td>No monitoring</td>
<td>Monitoring time will be restarted. Communication object value unchanged.</td>
<td>Monitoring time will be restarted. Thermostat fault is reset</td>
</tr>
<tr>
<td>Behaviour forced operation</td>
<td>Inactive, must be reactivated.</td>
<td>Inactive</td>
<td>Inactive</td>
<td>Becomes inactive</td>
</tr>
</tbody>
</table>

\(^1\) An operating function can occur by the change from fan stage 1, 2 or 3 or to the switchover to a stage and changeover circuit of the fan control.
Appendix

A.1 Scope of delivery

The Fan Coil Actuator is supplied together with the following components. The delivered items should be checked according to the following list.

- 1 x FCA/S 1.2.2.1, Fan Coil Actuator, 0-10 V, MDRC
- 1 x installation and operating instructions
- 1 x bus connection terminal (red/black)
A.2 Status byte forced-operation

<table>
<thead>
<tr>
<th>Bit No.</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>1F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bit 0 value

- 00: Normal operation
- 01: Forced operation
- 02: Limitation 1
- 03: Limitation 2
- 04: Limitation 3
- 05: Thermostat fault
- 06: Automatic
- 07: Heating
- 08: Cooling
- 09: Ventilation
- 0A: Lighting
- 0B: Power

Bit 0 value

- 10: No.
- 11: HE
- 12: COOLING
- 13: AUTO
- 14: COOL
- 15: LIMITATION 2
- 16: LIMITATION 3
- 17: LIMITATION 1
- 18: THERMOSTAT
- 19: FORCED
- 1A: SPEC
- 1B: MANDATORY
- 1C: RESERVED
- 1D: RESERVED
- 1E: RESERVED
- 1F: RESERVED

- ** = applicable
A.3 Ordering information

<table>
<thead>
<tr>
<th>Short description</th>
<th>Designation</th>
<th>Order No.</th>
<th>bbn 40 16779 EAN</th>
<th>Price group</th>
<th>Weight 1 pc. [kg]</th>
<th>Pack unit [pc]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCA/S 1.2.2.1</td>
<td>Fan Coil Actuator, MDRC</td>
<td>2CDG 110 084 R0011</td>
<td>66508 7</td>
<td>P2</td>
<td>0.1</td>
<td>1</td>
</tr>
</tbody>
</table>
Contact

ABB STOTZ-KONTAKT GmbH
Eppelheimer Straße 82
69123 Heidelberg, Germany
Phone: +49 (0)6221 701 607 (Marketing)
 +49 (0)6221 701 434 (KNX Helpline)
Fax: +49 (0)6221 701 724
e-mail: knx.marketing@de.abb.com

Further information and local contacts:
www.abb.com/knx

Note:
We reserve the right to make technical changes to the products as well as amendments to the content of this document at any time without advance notice.
The agreed properties are definitive for any orders placed. ABB AG shall not be liable for any consequences arising from errors or incomplete information in this document.

We reserve the rights to this document and all the items and illustrations contained therein. Reproduction, transfer to third parties or processing of the content – including sections thereof – is not permitted without prior expressed written permission from ABB AG.

Copyright© 2012 ABB
All rights reserved