Read and understand this document

Please read and understand this document before using the products. Please consult your ABB Electrification Sweden representative if you have any questions or comments.

Suitability for use

ABB shall not be responsible for conformity with any standards, codes, or regulations that apply to the combination of products in the customer’s application or use of the product. Third party certificates for the products are available at https://new.abb.com/low-voltage/products/safety-products. This information by itself is not sufficient for a complete determination of the suitability of the products in combination with the end product, machine, system, or other application or use.

The following are some examples of applications for which particular attention must be given. This is not intended to be an exhaustive list of all possible uses of the products, nor is it intended to imply that the uses listed may be suitable for the products:

• Outdoor use uses involving potential chemical contamination or electrical interference, or conditions or uses not described in this document.
• Nuclear energy control systems, combustion systems, railroad systems, aviation systems, medical equipment, amusement machines, vehicles, and installations subject to separate industry or government regulations.
• Systems, machines, and equipment that could present a risk to life or property.

Please know and observe all prohibitions of use applicable to the products.

NEVER USE THE PRODUCTS FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE ABB PRODUCT IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

Descriptions and examples show how the product works and can be used. It does not mean that it fulfills the requirements for all types of machines and processes. The buyer/user is responsible for installing and using the product according to applicable standards and regulations. We reserve the right to make changes to the product and the documentation without prior notice.
Table of Contents

1 Introduction ... 5
 1.1 Purpose of document ... 5
 1.2 Intended audience .. 5
 1.3 Reading prerequisites .. 5
 1.4 Special notes .. 5

2 Safety ... 6
 2.1 Intended use .. 6
 2.2 Safety precautions ... 6

3 Product description ... 7
 3.1 Sentry safety relays ... 7
 3.2 Sentry product range .. 7
 3.3 Safety relay overview ... 8

4 Installation .. 9
 4.1 Installing precautions .. 9
 4.2 Attaching the safety relay on the DIN rail ... 9
 4.3 Removing the safety relay from the DIN rail ... 10
 4.4 Resetting the latching device ... 10
 4.5 Connecting precautions ... 11
 4.6 Connection blocks ... 11
 4.7 Coding the connection blocks .. 11
 4.8 Connecting to a screw compression type terminal ... 12
 4.9 Connecting to a push-in type terminal ... 12
 4.10 Wire properties ... 12
 4.11 Wire length ... 12

5 Functions .. 13
 5.1 Function overview ... 13
 5.2 Power supply ... 13
 5.3 Relay outputs ... 13
 5.4 Test, start and reset interface .. 14
 5.5 Test and start .. 14

6 Connections .. 15
 6.1 Connection groups .. 15

7 Application connections ... 16
 7.1 Connection examples ... 16

8 Maintenance .. 17
 8.1 Maintaining precautions ... 17
 8.2 Scheduled test ... 17

9 Troubleshooting .. 18
 9.1 Front LEDs .. 18
1 Introduction

1.1 Purpose of document
The purpose of this document is to describe the functions and to provide instructions for installation, operation, maintenance and troubleshooting of the product.

1.2 Intended audience
This document is intended for authorized personnel.

1.3 Reading prerequisites
It is assumed that the reader of this document has:
• Basic knowledge of ABB safety products.
• Knowledge of machine safety.
• Knowledge of safety devices.

1.4 Special notes
Pay attention to special notes in this document:

⚠️ Warning! Risk of severe personal injury!
An instruction or procedure which, if not carried out correctly, may result in injury to the technician or other personnel.

⚠️ Caution! Risk of damage to the equipment!
An instruction or procedure which, if not carried out correctly, may damage the equipment.

>Note! Important or explanatory information.
2 Safety

2.1 Intended use

The intended use of the Sentry safety relay is to monitor the state of a safety device and depending on the state, activate or inactivate the outputs within the system response time. The protective function of the safety device is only safe if the safety relay is correctly connected and configured. The safety relay is not by itself a complete protective device.

- Use the safety relay as a safety monitoring device.
- Use the safety relay as expansion device of safe outputs
- The safety relay is not intended for use in explosive or easily flammable adjacent air.
- Other use than defined as correct is considered as incorrect use.

2.2 Safety precautions

⚠️ Warning! The safety precautions must be followed during installation, operation, maintenance and troubleshooting.

⚠️ Warning! The safety functions must be tested at start up or at replacement before the system is put in operation.

Installation shall be conducted by authorized personnel following the Safety regulations, standards and local legal regulations. Carefully read through the entire original instruction before using the device.

Make sure that these instructions are included together with the documentation of the system. Make sure that these instructions always are available for users of the system.

The safety relay must be selected so its safety related capacity meets or exceed the performance level (PL) or safety integrity level (SIL) that has been estimated in the risk analysis. The safety relay must only be used after it has been selected according to related instructions, relevant standards, rules and regulations for protection and safety at work.

The entire dangerous zone must be visible from the position where the reset button is installed. The reset button must be positioned out of reach from the dangerous zone.

The safety functions must be tested after installation or replacement of components or cables. The safety relay must be exchanged within 20 years.

Failure to comply with instructions, operation that is not in accordance with the use prescribed in the instructions, improper installation or handling can affect the safety of people and the system. Failure to comply with the instructions or standards, excludes any liability.
3 Product description

3.1 Sentry safety relays

Sentry safety relays provide safe stop and start of monitored devices to prevent errors. The following safety device types are applicable for the Sentry safety relays:

- 1 channel safety device.
- 2 channel safety device with equivalent contacts.
- 2 channel safety device with antivalent contacts.
- Expansion of safety modules.
- Pressure sensitive safety device (short-circuit detection).
- Two-hand safety device.
- OSSD safety device.

Examples of devices for connection to the Sentry safety relays:

- Light beams.
- Light curtains.
- Three position safety device.
- Safety interlock switches.
- Emergency stop buttons.
- Bumpers, contact edges and safety mats.

3.2 Sentry product range

The Sentry product range has the following groups of safety relays:

BSR (Basic function Safety Relay) group

The BSR group include BSR10, BSR11 and BSR23. The safety relays have basic monitoring functions for 1- and 2-channel safety devices. The safety relay can be used as an expansion of other safety modules.

SSR (Single function Safety Relay) group

The SSR group includes SSR10, SSR10M, SSR20, SSR20M, SSR32 and SSR42. The safety relays have single safety device functions and limited configuration possibilities for automatic and manual reset. SSR32 and SSR42 have a timer function.

TSR (Timer function Safety Relay) group

The TSR group includes TSR10, TSR20 and TSR20M. The safety relays have timer functions and configuration possibilities. TSR10 is fully configurable with preset selection possibilities and password protection.

USR (Universal function Safety Relay) group

The USR group include USR10 and USR22. The safety relays have multiple functionalities for monitoring safety device including timer functions. The USR group is fully configurable with preset selection possibilities and password protection.
3.3 Safety relay overview

A. Connection block, top side back.
B. Connection block, top side front.
C. Product name.
D. Print for connection block, top side back.
E. Print for connection block, bottom side front.
F. Relay output configuration.
G. Print for connection block, top side front.
H. Print for connection block, bottom side back.
J. LEDs for status indication.
K. Connection block, bottom side front.
L. Connection block, bottom side back.
M. DIN rail latching device.
4 Installation

4.1 Installing precautions

Follow the instructions carefully to avoid personal injury or damage to the device.

The safety relay shall be attached on a 35 mm DIN rail in a lockable enclosure that has at least protection class IP54. Sentry safety relays shall be installed in an upright position.

Make sure there is at least 10 mm distance between the safety relay and other non-Sentry units to prevent uncontrolled heating. Make sure there is at least 50 mm distance above and below the safety relay and other units for correct air flow in the venting holes of the safety relay.

Caution! Sentry safety relays can be installed without distance to other Sentry safety relays, with exception of BSR23. Make sure there is at least 5 mm distance between BSR23 and other Sentry safety relays.

4.2 Attaching the safety relay on the DIN rail

1. Make sure that the DIN rail latching is reset.
2. Hang the top rear side of the safety relay on the DIN rail.
3. Push the bottom rear side of the safety relay on the DIN rail until a click is heard.
4.3 Removing the safety relay from the DIN rail

1. Use a screwdriver to unlock the DIN relay latching device from the DIN rail.
2. Pull the bottom rear side of the safety relay away from the DIN rail until a click is heard.
3. Lift the top rear side of the safety relay away from the DIN rail.

4.4 Resetting the latching device

- Pull the bottom side of the DIN rail latching device from the safety relay and push it upwards to release it to its original position.
4.5 Connecting precautions

Warning! Disconnect the power supply before attaching or removing the connection blocks.

Make sure that connection blocks and wires are clearly marked for correct connections. Use applicable requirements in IEC 60204-1 for wire connections. Make sure that the wires are fitted with crimp terminals or ferrules before connection, unless solid copper conductors are used.

For connections of relay output contacts: Make sure that all power supplies or signal sources are connected to one side of the safety relay and that all power consumers or signal receivers are connected to the opposite side of the safety relay.

Make sure to use at least one of the following methods to ensure correct wire protection against short circuits for the safety relay outputs:

- The wires are permanently connected and protected against external damage, for example by wire ducts or other types of covers for protection.
- Use of separate multi-core wires.
- Use of cables with wires being individually shielded with earth connection.

The safety requirement is that fuses shall be used on the relay outputs.

4.6 Connection blocks

The connection blocks on the safety relay are detachable to simplify installation and replacement. The safety relay can be ordered with two different types of connection blocks, screw compression type or push-in type.

4.7 Coding the connection blocks

The coding kit is used to make each connection point individual to avoid faulty connection. Place the coding parts in an specific order on the connection block and match these with the pin header.

- The risk assessment must include the risk of mistakes when using the connection blocks without coding.
- If coding is used, a test of the outcome of the coding against the identified risks must be done.
4.8 Connecting to a screw compression type terminal

Use a screwdriver with slot size 3,5 mm.

1. Open the terminal before inserting a wire.
2. Insert the wire in the correct terminal.
3. Close the terminal and secure the wire with torque 0,7 Nm ±0,1.

4.9 Connecting to a push-in type terminal

1. Press the actuating lever.
2. Insert the wire in the correct terminal.
3. Release the actuating lever.

4.10 Wire properties

Wire area, screw compression type connection block
Wire with crimp sleeve, ferrule or single solid conductor. Two wires with the same area must be used. Wire strip length 6,5 mm ±0,5.

- Minimum 1x24 AWG and Maximum 1x12 AWG
- Minimum 1x0,2 mm² and Maximum 1x3,3 mm²
- Minimum 2x24 AWG and Maximum 2x16 AWG
- Minimum 2x0,2 mm² and Maximum 2x1,5 mm²

Wire area, push-in type connection block
Wire with crimp sleeve, ferrule or single solid conductor. Two wires with the same area must be used. Wire strip length 6,5 mm ±0,5.

- Minimum 1x24 AWG and Maximum 1x14 AWG
- Minimum 1x0,2 mm² and Maximum 1x2,5 mm²
- Minimum 2x24 AWG and Maximum 2x16 AWG
- Minimum 2x0,25 mm² and Maximum 2x1,5 mm²

4.11 Wire length

The maximum wire length is dependent on the wire voltage drop from the voltage source to the safety relay input terminal. It is crucial to fulfill “Minimum input high voltage (VIHmin)” requirement at “Maximum current sink (Isink)”. Isink is typical 2.8/VR where VR is the voltage level measured at the R input terminal. Consult the section for technical data for technical characteristics.
5 Functions

5.1 Function overview

Power supply, 24 VDC via safety device

Relay output
- 3 NO + 1 NC
- One channel
- Two channels with equivalent contacts (no 2 channel monitoring)
- Expansion of PLC outputs

Test, start and reset interface
- Test and start

5.2 Power supply

24 VDC via safety device

The safety relay and the safety devices are supplied with 24 VDC and common shared ground.

⚠️ Warning! The power supply must be of type PELV/SELV

5.3 Relay outputs

The safety relay output contacts are opened or closed based on the signals from the safety device. Each safety relay output has two contacts in series, one contact for each internal output relay.

A. Connectors: Terminals in connection blocks.
B. NO contact: The NO contact is open when the relay is inactivated and closed when the relay is activated.
C. NC contact: The NC contact is closed when the relay is inactivated and open when the relay is activated.

⚠️ Caution! A relay output is in safe state when the contact is open.

⚠️ Caution! The NC contact is intended to monitor the state of a safety device only. It is not a safe output.

ℹ️ Note! The NO contact is open at all types of internal failures and is a safe output.
Arc suppression for inductive loads is recommended to get a longer lifetime for the relay contacts.

5.4 Test, start and reset interface

The safety relay has an interface for test, start and reset functions. The safety relay enters inactive mode when at least one input is not accepted. The safety relay enters active mode when the inputs are accepted, and a reset is performed.

5.5 Test and start

The safety relay has a Test/Start connection, the X4 input can be connected either directly to +24 VDC or to a test circuit for supervised contactors and/or a button for Start.

The relay output will turn active if X4 is set to +24 VDC while it is powered via R1/R2. After activation, X4 can be removed and the active state will be kept solely by R1/R2.

The safety relay can be used as a safe expansion relay without external monitoring since the internal output relays are monitored by the unit itself.
6 Connections

6.1 Connection groups

The connections are divided into groups.

- **R** Signal from safety device
- **X** Test/reset/start/indication
- 13, 23, 33 Safety output, NO
- 14, 24, 34 Safety output, NO
- 41 Output, NC
- 42 Output, NC

![Diagram of connections](image)
7 Application connections

7.1 Connection examples

A. One signal from +24VDC, start and stop
B. Two signals from +24VDC / 0
C. One signal from +24VDC
D. One signal from +24VDC, start
E. One signal from +24VDC

Note! Always use transient suppressors when inductive loads are connected to the relay outputs.
8 Maintenance

8.1 Maintaining precautions

⚠️ Warning! Comply to maintenance precautions. Risk of severe personal injury.

A defective safety relay shall be replaced with a new. Never bypass the safety circuit. Repair and exchange of parts of the safety relay is forbidden. That may impair the safety of the system and could lead to serious personal injury. In case of breakdown or damage to the safety relay, contact nearest ABB Electrification service office or reseller.

ABB will not accept responsibility for failure of the functions if the installation and maintenance requirements shown in this document are not implemented. These requirements form part of the product warranty.

8.2 Scheduled test

Scheduled test, high demand application
All safety relays and connected safety devices used in high demand applications must be tested once a year.

Scheduled test, low demand application
All safety relays and connected safety devices used in low demand applications must be tested every third year.

Test sequence
Test should be conducted according to:
1. Set inputs to inactivate outputs.
2. Wait until all outputs are in off-state.
3. Set inputs to activate outputs.
4. Monitor that outputs are activated.
9 Troubleshooting

9.1 Front LEDs
The three LEDs in the safety relay front indicates operation status and errors in the system.

A. **ON** 24 V on R1/R2
B. **OUT** Output status
C. **X4** 24 V on X4/R2

9.2 LED operation indication and error status

<table>
<thead>
<tr>
<th>ON</th>
<th>OUT</th>
<th>X4</th>
<th>Status</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>off</td>
<td>off</td>
<td>Loss of power supply or too low voltage. Occurs during regular operation</td>
<td>Measure R1/R2 voltage</td>
</tr>
<tr>
<td>green</td>
<td>off</td>
<td>off</td>
<td>Input X4 is not powered with correct voltage. Occurs during regular operation</td>
<td>Measure X4/R2 voltage. Troubleshoot the monitored device. Troubleshoot the test/start circuit</td>
</tr>
<tr>
<td>green</td>
<td>off</td>
<td>green</td>
<td>Safety relay internal error</td>
<td>Exchange the safety relay</td>
</tr>
<tr>
<td>off</td>
<td>off</td>
<td>green</td>
<td>No signal to R1/R2. Occurs during regular operation</td>
<td>Measure R1/R2 voltage</td>
</tr>
<tr>
<td>green</td>
<td>green</td>
<td>green</td>
<td>Normal operation</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>OUT</td>
<td>X4</td>
<td>Status</td>
<td>Action</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>-------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>green</td>
<td>green</td>
<td>off</td>
<td>Normal operation</td>
<td></td>
</tr>
</tbody>
</table>
10 Model overview

10.1 Sentry models

The connection blocks are delivered without coding. The coding kit is an optional accessory and is ordered separately.

<table>
<thead>
<tr>
<th>Model</th>
<th>Order code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSR10</td>
<td>2TLA010040R0000</td>
<td>Screw compression connection blocks. 24VDC</td>
</tr>
<tr>
<td>BSR10P</td>
<td>2TLA010040R0001</td>
<td>Push-in connection blocks. 24VDC</td>
</tr>
<tr>
<td>BSR11</td>
<td>2TLA010040R0200</td>
<td>Screw compression connection blocks. 24VDC</td>
</tr>
<tr>
<td>BSR11P</td>
<td>2TLA010040R0201</td>
<td>Push-in connection blocks. 24VDC</td>
</tr>
<tr>
<td>BSR23</td>
<td>2TLA010041R0600</td>
<td>Screw compression connection blocks. 24VDC</td>
</tr>
<tr>
<td>BSR23P</td>
<td>2TLA010041R0601</td>
<td>Push-in connection blocks. 24VDC</td>
</tr>
<tr>
<td>SSR10</td>
<td>2TLA010050R0000</td>
<td>Screw compression connection blocks. 24VDC</td>
</tr>
<tr>
<td>SSR10P</td>
<td>2TLA010050R0001</td>
<td>Push-in connection blocks. 24VDC</td>
</tr>
<tr>
<td>SSR10M</td>
<td>2TLA010050R0100</td>
<td>Screw compression connection blocks. 85-265VAC/120-375VDC</td>
</tr>
<tr>
<td>SSR10MP</td>
<td>2TLA010050R0101</td>
<td>Push-in connection blocks. 85-265VAC/120-375VDC</td>
</tr>
<tr>
<td>SSR20</td>
<td>2TLA010051R0000</td>
<td>Screw compression connection blocks. 24VDC</td>
</tr>
<tr>
<td>SSR20P</td>
<td>2TLA010051R0001</td>
<td>Push-in connection blocks. 24VDC</td>
</tr>
<tr>
<td>SSR20M</td>
<td>2TLA010051R0100</td>
<td>Screw compression connection blocks. 85-265VAC/120-375VDC</td>
</tr>
<tr>
<td>SSR20MP</td>
<td>2TLA010051R0101</td>
<td>Push-in connection blocks. 85-265VAC/120-375VDC</td>
</tr>
<tr>
<td>SSR32</td>
<td>2TLA010052R0400</td>
<td>Screw compression connection blocks. 24VDC</td>
</tr>
<tr>
<td>SSR32P</td>
<td>2TLA010052R0401</td>
<td>Push-in connection blocks. 24VDC</td>
</tr>
<tr>
<td>SSR42</td>
<td>2TLA010053R0400</td>
<td>Screw compression connection blocks. 24VDC</td>
</tr>
<tr>
<td>SSR42P</td>
<td>2TLA010053R0401</td>
<td>Push-in connection blocks. 24VDC</td>
</tr>
<tr>
<td>TSR10</td>
<td>2TLA010060R0000</td>
<td>Screw compression connection blocks. 24VDC</td>
</tr>
<tr>
<td>TSR10P</td>
<td>2TLA010060R0001</td>
<td>Push-in connection blocks. 24VDC</td>
</tr>
<tr>
<td>Model</td>
<td>Order code</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>TSR20</td>
<td>2TLa010061R0000</td>
<td>Screw compression connection blocks. 24VDC</td>
</tr>
<tr>
<td>TSR20P</td>
<td>2TLa010061R0001</td>
<td>Push-in connection blocks. 24VDC</td>
</tr>
<tr>
<td>TSR20M</td>
<td>2TLa010061R0100</td>
<td>Screw compression connection blocks. 85-265VAC/120-375VDC</td>
</tr>
<tr>
<td>TSR20MP</td>
<td>2TLa010061R0101</td>
<td>Push-in connection blocks. 85-265VAC/120-375VDC</td>
</tr>
<tr>
<td>USR10</td>
<td>2TLa010070R0000</td>
<td>Screw compression connection blocks. 24VDC</td>
</tr>
<tr>
<td>USR10P</td>
<td>2TLa010070R0001</td>
<td>Push-in connection blocks. 24VDC</td>
</tr>
<tr>
<td>USR22</td>
<td>2TLa010070R0400</td>
<td>Screw compression connection blocks. 24VDC</td>
</tr>
<tr>
<td>USR22P</td>
<td>2TLa010070R0401</td>
<td>Push-in connection blocks. 24VDC</td>
</tr>
</tbody>
</table>

10.2 Accessories and spare parts

<table>
<thead>
<tr>
<th>Type</th>
<th>Order code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection block</td>
<td>2TLa010099R0000</td>
<td>Screw compression type</td>
</tr>
<tr>
<td>Connection block</td>
<td>2TLa010099R0001</td>
<td>Push-in type</td>
</tr>
<tr>
<td>Coding kit</td>
<td>2TLa010099R0100</td>
<td>For coding connection block</td>
</tr>
</tbody>
</table>
11 Dimensions

All dimensions are in mm.

11.1 Sentry

<table>
<thead>
<tr>
<th>Measure</th>
<th>Connection block type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Screw connection type</td>
</tr>
<tr>
<td>A</td>
<td>120</td>
</tr>
<tr>
<td>B</td>
<td>22.5</td>
</tr>
<tr>
<td>C</td>
<td>120</td>
</tr>
</tbody>
</table>
Technical data

12.1 Technical data

Manufacturer
ABB Electrification Sweden AB
SE-721 61 Västerås
Sweden

Note!
While every effort has been taken to ensure the accuracy of the information contained in this document, ABB cannot accept responsibility for errors or omissions and reserves the right to make changes and improvements without notice. Performance data given in this document is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of ABB’s test conditions, and the users must correlate it to actual application requirements. Actual performance is subject to the ABB Warranty and Limitations of Liability.

Note!
There may be working points that will lead to higher performance for a specific application. An example would be the combination of installation distance between products, total load current and ambient temperature.

Caution!
The difference between absolute maximum rating and max operating rating is the following: The product will have full performance as long as all parameters are within operating rating, in any combination. If any of the values in Absolute maximum rating are exceeded, the relay must be disposed.

Absolute maximum rating

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum voltage rating for R<sup>Note 2</sup></td>
<td>30 VDC</td>
</tr>
<tr>
<td>Maximum voltage rating for X<sub>4</sub><sup>Note 2</sup></td>
<td>30 VDC</td>
</tr>
<tr>
<td>Maximum operating breaking voltage for relay contacts</td>
<td>500 Vp</td>
</tr>
<tr>
<td>Maximum voltage rating for NO/NC contacts</td>
<td>265 VAC or 350 VDC</td>
</tr>
<tr>
<td>Maximum current rating for 1 NO relay contact</td>
<td>8 A</td>
</tr>
<tr>
<td>Maximum current rating for 1 NC relay contact</td>
<td>5 A</td>
</tr>
<tr>
<td>Maximum load capacity, ΣI<sub>th</sub><sup>2</sup><sup>Note 1</sup></td>
<td>≤72<sup>2</sup></td>
</tr>
</tbody>
</table>

^{Note 1}: ΣI_{th}² is the sum of the square for each relay output contact. For example: I₁ = 2_{ARMS}; I₂ = 4_{ARMS}; I₃ = 5_{ARMS}; I₄ = 1_{ARMS} → ΣI_{th}² = 4 + 16 + 25 + 1 = 46²

^{Note 2}: Fault voltages up to 60 V is not dangerous but the safety relay might be broken or its performance might be degraded.

Power supply

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input signal type</td>
<td>PELV/SELV</td>
</tr>
<tr>
<td>Internal consumption</td>
<td>2W</td>
</tr>
</tbody>
</table>

Note!
BSR10 is supplied with power through its signal input port R.
Relay output specification

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay output configuration</td>
<td>3 NO + 1 NC</td>
</tr>
<tr>
<td>Maximum operating switching voltage Note</td>
<td>250 VAC</td>
</tr>
<tr>
<td>Overvoltage category</td>
<td>II</td>
</tr>
<tr>
<td>Rated impulse withstand voltage</td>
<td>4 kV</td>
</tr>
<tr>
<td>Rated operational voltage</td>
<td>250 VAC</td>
</tr>
<tr>
<td>Minimum operating contact load</td>
<td>5 VDC / 10 mA (15 VDC / 3 mA)</td>
</tr>
<tr>
<td>Maximum operating switching frequency</td>
<td>0.5 Hz</td>
</tr>
<tr>
<td>Rated isolation voltage</td>
<td>400 V</td>
</tr>
</tbody>
</table>

Note!

In a 400 V system a 3 phase load shall only be used in a star connection.

NO contact

<table>
<thead>
<tr>
<th>Load Type</th>
<th>Rated Operating Voltage (Ue)</th>
<th>250 VAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC load (AC15, AC1)</td>
<td>Rated operating current (Ie)</td>
<td></td>
</tr>
<tr>
<td>1 contact</td>
<td>5 A</td>
<td></td>
</tr>
<tr>
<td>2 contacts</td>
<td>5 A</td>
<td></td>
</tr>
<tr>
<td>3 contacts</td>
<td>4.6 A</td>
<td></td>
</tr>
<tr>
<td>DC load (DC13, DC1)</td>
<td>Rated operating voltage (Ue)</td>
<td>+24 VDC</td>
</tr>
<tr>
<td>1 contact</td>
<td>6 A</td>
<td></td>
</tr>
<tr>
<td>2 contacts</td>
<td>5.6 A</td>
<td></td>
</tr>
<tr>
<td>3 contacts</td>
<td>4.6 A</td>
<td></td>
</tr>
</tbody>
</table>

NC contact

<table>
<thead>
<tr>
<th>Load Type</th>
<th>Rated Operational Voltage (Ue)</th>
<th>250 VAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC load (AC15, AC1)</td>
<td>Rated operating current (Ie)</td>
<td></td>
</tr>
<tr>
<td>1 contact</td>
<td>0.5 A</td>
<td></td>
</tr>
<tr>
<td>DC load (DC13, DC1)</td>
<td>Rated operating voltage (Ue)</td>
<td>+24 VDC</td>
</tr>
<tr>
<td>Rated operating current (Ie)</td>
<td></td>
<td>2 A</td>
</tr>
</tbody>
</table>

Safety device interface specification

Input (I) R1 and R2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum operating input voltage</td>
<td>27.6 VDC</td>
</tr>
<tr>
<td>Minimum input high voltage (VIH<sub>min</sub>) Note 1</td>
<td>15 VDC</td>
</tr>
<tr>
<td>Maximum input low voltage (VIL<sub>max</sub>) Note 2</td>
<td>1 VDC</td>
</tr>
<tr>
<td>Maximum current sink (I<sub>sink</sub>) Note 3</td>
<td>200 mA</td>
</tr>
</tbody>
</table>

Note 1: Voltage level above VIH_{min} is interpreted as logic “1”, in worst case operating conditions.

Note 2: Voltage level below VIL_{max} is interpreted as logic “0”, in worst case operating conditions.

Note 3: If VIH ≥15 VDC is applied to R1 and R2 (I_{sink} is typical 2.8/VDCR).

Test/start/reset interface specification

Input/Output (I/O) X4

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum input high voltage (VIH<sub>min</sub>) Note 1</td>
<td>15 VDC</td>
</tr>
<tr>
<td>Maximum input low voltage (VIL<sub>max</sub>) Note 2</td>
<td>2 VDC</td>
</tr>
<tr>
<td>Typical input impedance</td>
<td>0.5-3 kΩ</td>
</tr>
<tr>
<td>Maximum current sink (I<sub>sink</sub>)</td>
<td>55 mA</td>
</tr>
</tbody>
</table>
Test/start/reset interface specification

Note 1: Voltage level above \(V_{IH_{min}} \) is interpreted as logic "1", in worst case operating conditions.

Note 2: Voltage level below \(V_{IL_{max}} \) is interpreted as logic "0", in worst case operating conditions.

Response time

<table>
<thead>
<tr>
<th>Response time at activation</th>
<th>Start</th>
<th>≤ 40 ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response time at inactivation</td>
<td></td>
<td>≤ 20 ms</td>
</tr>
</tbody>
</table>

Electrical operations lifetime

<table>
<thead>
<tr>
<th>Load (\Sigma I_{th}) ≤ 64</th>
<th>AC1, AC15</th>
<th>160 000 operations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DC1, DC13</td>
<td>100 000 operations</td>
</tr>
</tbody>
</table>

Measurement conditions:

- Maximum breaking voltage for relay contacts: 250 V
- Maximum switching voltage for relay contacts: 400 V
- Rated current
- Switching frequency ≤ 0.1 Hz (Switching frequency > 0.1 Hz will shorten life.)
- \(T \leq 55 \, ^\circ \text{C} \)
- No arc suppression (Usage of arc suppression will prolong life but may increase response time at inactivation.)
- 3 phase load in a star connection.

Mechanical data

<table>
<thead>
<tr>
<th>Weight</th>
<th>190 – 230 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td></td>
</tr>
<tr>
<td>Housing</td>
<td>PA66 with 25 % fiberglass (UL94 V0)</td>
</tr>
<tr>
<td>Connection block, screw compression type</td>
<td>PA66 (UL94 V0)</td>
</tr>
<tr>
<td>Connection block, push-in type</td>
<td>PA66 with 25 % fiberglass (UL94 V0)</td>
</tr>
<tr>
<td>Opener, push-in type</td>
<td>PBT/GF (UL94 V0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Color</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing</td>
<td>Yellow</td>
</tr>
<tr>
<td>Connection block, screw compression type</td>
<td>Black</td>
</tr>
<tr>
<td>Connection block, push-in type</td>
<td>Black</td>
</tr>
<tr>
<td>Opener, push-in type</td>
<td>Orange</td>
</tr>
</tbody>
</table>

Attachment requirements

35 mm DIN rail (DIN 50022)

Environmental data

<table>
<thead>
<tr>
<th>Pollution degree</th>
<th>II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection class</td>
<td>Safety relay IP20</td>
</tr>
<tr>
<td>Enclosure for installation</td>
<td>At least IP54. Lockable.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ambient temperature range for operation within specified operation range</th>
<th>-25°C – +55°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature range for storage</td>
<td>-40°C ≤ Ta ≤ +70°C</td>
</tr>
<tr>
<td>Humidity range for operation</td>
<td>10 % ≤ Rh ≤ 90 %, no icing, occasional condensation</td>
</tr>
<tr>
<td>Humidity range for storage</td>
<td>10 % ≤ Rh ≤ 95 %, no icing, occasional condensation</td>
</tr>
</tbody>
</table>
Environmental data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum temperature gradient</td>
<td>2°C/min</td>
</tr>
<tr>
<td>Altitude</td>
<td>Suitable for use at ≤ 2000 meters above sea level</td>
</tr>
<tr>
<td>Vibration</td>
<td>10-55 Hz sine, 0.35 mm (1 oct/min 20 sweep cycles, all directions)</td>
</tr>
<tr>
<td>Shock</td>
<td>5g, 11 ms Half sine +/- 100 Shocks</td>
</tr>
</tbody>
</table>

EU Directive Compliance

- **Directives**
 - European Machinery Directive 2006/42/EC
 - EMC Directive 2014/30/EU
 - RoHS Directive 2011/65/EU
 - RoHS3 Directive 2015/863

UK Regulations Compliance

- **Regulations**
 - 2008 No.1597 Supply of Machinery (Safety) Regulations (MD)
 - 2012 No.3032 Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations (RoHS)
 - 2016 No.1091 Electromagnetic Compatibility Regulations (EMC)

US/CA Compliance

- **Application standard compliance**
 - UL 60947-5-1:2014
 - CSA C22.2 No. 60947-5-1:2014
 - CSA B44.1

Standard compliance and approvals

- **Application standard compliance**
 - EN ISO 13851:2019
 - EN ISO 13856-1:2013
 - EN ISO 13856-2:2013
 - EN ISO 13856-3:2013

- **Functional safety standard compliance**
 - IEC 61508-1–4:2010, up to SIL3
 - EN ISO 13849-1:2015, up to PLe/Cat.4
 - EN 62061:2005, up to SILCL3
 - EN 61511:1:2003
 - UL 61508

- **Electrical safety standard compliance**
 - EN 50178-1:1997
 - EN 60204-1:2018
 - EN 60664-1:2007
 - IEC 60947-5-1:2009

- **Electromagnetic compatibility standard compliance**
 - EN 61326-3-1:2008

Approvals

- CE
- TÜV SÜD
Approvals

- cULus
- CCC
- RCM
- S
- KC
- UKCA

Standard

<table>
<thead>
<tr>
<th>Standard</th>
<th>PFH<sub>D</sub> 3.0E-9 and PFD 5.2E-6 (see chapter 8.2 Scheduled test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 61508</td>
<td></td>
</tr>
<tr>
<td>EN ISO 13849-1, EN 62061</td>
<td>PFH<sub>D</sub> 3.0E-9</td>
</tr>
<tr>
<td>Mission time</td>
<td>20 years</td>
</tr>
</tbody>
</table>

Information for use in USA/Canada

<table>
<thead>
<tr>
<th>Intended use</th>
<th>Applications according to NFPA 79</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power source</td>
<td>A suitable isolating source in conjunction with a fuse in accordance with UL248. The fuse shall be any (JDYX/7) fast acting, ratings 250V, 4 A, IR200A, and be installed in the +24 VDC and 230VAC power supply to the device in order to limit the available current.</td>
</tr>
</tbody>
</table>
Declaration of conformity
EC Declaration of conformity
(according to 2006/42/EC, Annex 2A)

We ABB Electrification Sweden AB
SE-721 61 Västerås
Sweden

declare that the safety components of ABB AB manufacture
with type designations and safety functions as listed below, is
in conformity with the Directives
2006/42/EC - Machinery
2014/30/EU - EMC
2011/65/EU – RoHS
2015/863 – RoHS3

Authorised to compile the technical
file

ABB Electrification Sweden AB
SE-721 61 Västerås
Sweden

Product
EC type-examination certificate

Safety relay
Sentry, all versions of
USR10, USR22, SSR10M, SSR10,
SSR20M, SSR20, SSR32, SSR42,
TSR10, TSR20M, TSR20, BSR10,
BSR11, BSR23

M6A 049833 0032 Rev.00

Notified Body
TÜV Süd Product Service GmbH
Ridlerstrasse 65
80339 München
Germany
Notified body No. 0123

Used harmonized standards
EN ISO 12100:2010, EN ISO 13849-1:2015,

Other used standards
EN 61508:2010

Magnus Backman
R&D Manager
Kungsbacka 2021-11-02
Declaration of conformity
(according to 2008 No 1597)

We ABB Electrification Sweden AB
SE-721 61 Västerås Sweden

declare that the safety components of ABB AB manufacture with type
designations and safety functions as listed below, is in conformity
with UK Statutory Instruments (and their amendments)
2008 No 1597 – Supply of Machinery (Safety) Regulations (MD)
2016 No. 1091 – Electromagnetic Compatibility Regulations (EMC)
2012 No 3032 – Restriction of the Use of Certain Hazardous
Substances in Electrical and Electronic Equipment Regulations
(RoHS)

Authorised to compile the
technical file
ABB Ltd. Tower Court
Coventry CV6 5NX
United Kingdom

Product
Safety relay Sentry

USR10, USR22,
SSR10M, SSR10, SSR20M,
SSR20, SSR32, SSR42,
TSR10, TSR20M, TSR20,
BSR10, BSR11, BSR23

Used designated standards
EN ISO 12100:2010, EN ISO 13849-1:2015,

Other used standards
EN 61508:2010

Magnus Backman
R&D Manager
Västerås 2021-03-28

Original