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Abstract 

 
Due to enormous growth of the secondary aluminum industry and 
the required increase in melt quality, the development of methods 
for inclusion removal has become highly important. To produce 
high quality aerospace alloys with very low inclusion contents, 
casthouses must analyze and optimize their production processes 
from the beginning to the end. Nowadays, there are several 
methods available for process evaluation and the determination of 
inclusion level from one step to another. Furthermore, the most 
important parameters for control of the final inclusion level have 
to be investigated.  
 
This paper characterizes the change of the inclusion content for 
the alloy AA 7075 during standard casthouse processing. The 
possibilities for the improvement of the melt quality are also 
discussed. 
 

Introduction 
 
The casting facility which is going to be discussed is used for the 
production of 2xxx-, 5xxx- and 7xxx-series rolling ingots. These 
ingots are rolled to sheets and plates.  
Due to the high safety standards for applications in the aerospace 
industries, plates which are used as a raw material for components 
have to undergo an ultrasonic check. In order to reach the safety 
standards, the material has to be free of inclusions above a critical 
size. Because of this, the main focus during casthouse operations 
is a reduction of the inclusion content from one step to another. 
This paper discusses the process of evaluation for improvements 
to the alloy AA 7075. 
For this alloy, the generally large variety of inclusions [1] can be 
reduced to three main groups: 
 
1. Nonmetallic inclusions: 

• Al2O3, MgO, Al2MgO4 in compact form or as cluster 
• Material from refractory lining 
• TiB2-Agglomerates (exact type depends on the grain 

refiner used) 
• Salt 
• Reaction products with graphite components 

 
2. Metallic inclusions: 

• Cr-, CrMn- and Zr-aluminides 
• Incompletely dissolved alloy elements 

 
3. Oxide films: 

• Al2O3 films 
• MgO films 

 

All the investigations have been performed in co-operation with 
Austria Metall AG (AMAG), Austria and in part with N-Tec, 
England. 
 

Process layout 
 
The casting facility at AMAG for the production of 7xxx series 
ingots consists of a single melting furnace, two casting furnaces, a 
SNIF P140, a ceramic foam filter unit and an electro magnetic 
casting pit for 4 ingots (see Figure 1).  
 

 
Figure 1. Process layout EMC asset group 

 
The raw material which consists of more than 50 percent in-house 
scrap and of primary aluminum is melted in a gas fired and tiltable 
melting furnace with a capacity of 33 tons. Subsequently, the melt 
is transferred to one of the two casting furnaces (33 t capacity) 
and alloyed. The casting furnaces are channel induction furnaces. 
After this step, the melt is skimmed and stirred by a gas lance 
purging treatment. To reduce the amount of alkali metal, 
dissolved hydrogen and inclusions, a chlorination treatment with a 
FDU/RDU [2,3] rotary degasser is carried out. Further, the melt is 
then skimmed again and trimmed with respect to the chemical 
composition. Finally, after a certain settling time, the casting 
process starts. To separate large dross particles, a glass cloth 
channel filter is positioned in front of the SNIF P140 unit. 
Afterwards, the melt is grain refined and filtered through a 
ceramic foam filter (CFF) before the melt is distributed to one of 
the four electromagnetic molds. 
 

Experimental setup 
 
To evaluate melt purity, two standard methods are used. Both are 
pressure filtration techniques, Prefil® and PoDFA.  
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1. Prefil® - a shop floor technique 
The Prefil® test uses the flow-rate of molten metal through a 
micro filter at constant temperature and pressure, to measure the 
quality of the metal. Very clean metal flows quickly, giving a 
steep straight line in the test output. Inclusions in the metal, such 
as oxide films, quickly build-up on the filter surface during a test 
and reduce the flow-rate through the filter. 
 
The Prefil® operating principle is shown in Figure 2 with a 
detailed explanation given in [4-7]. 
 
2. PoDFA – a metallographic method 
Although it is very time consuming, metallographic examinations 
for inclusion analysis have to be carried out. PoDFA and Prefil® 
data can be correlated to connect the filtration curves with the 
total inclusion content (TIC) and to create a database. After 
several tests, it is possible to estimate the TIC value from the 
Prefil® characteristics alone. 
 
The PoDFA operating principle is explained in detail in [4,7-8]. 
 
Evaluation of melt cleanliness 
To characterize the final melt quality, PoDFA samples were taken 
at a certain period of time, particularly after the CFF. Due to the 
fact that the melt quality was found to vary a number of process 
improvements were attempted and evaluated with the Prefil® 
testing method in combination with metallographic analysis of the 
filtration residues. 
 
To enable direct comparison between different Prefil® curves 
without doing PoDFA analyses, two Prefil® curve parameters for 
each have been calculated and compared. 
The first parameter is the “Total Area under Prefil® curve” which 
is calculated by finding the total area under the Prefil® curve 
within the standard testing window (150 s and 1400 g) and has the 
unit of kg·s.  
 
The second parameter is the “Prefil® curve gradient 3 – 21 s”. It 
has been observed that the initial gradient of a Prefil® curve is 
largely influenced by medium to large inclusions such as oxide 
films, refractory particles and inclusion clusters, but not by well 
dispersed grain refiner particles. Such small particles cause the 

curve to turn over after approx. 30 s. Therefore, the initial gradient 
between 3 and 21 seconds can be used to give a quick indication 
of whether fine particulate is present. 
 
The current process can be divided in several steps inbetween 
which Prefil® tests have been carried out: 
 

1. after melting the charged material 
2. after alloying Mg in the melting furnace 
3. after melt transfer and skimming 
4. after lance treatment 
5. after chlorination treatment with the impeller 
6. after final adjustment of the chemical composition + 

lance treatment 
7. after settling time 
8. after SNIF and before grain refinement 
9. after CFF 

 
Testing conditions 
All Prefil® tests were carried out at 685 °C and a pressure of              
12.1 psi. The PoDFA tests were carried out between 680 and            
690 °C and a pressure of 12.1 psi. The filtered melt weight for the 
PoDFA samples is 1000 g. 
 

Melt cleanliness – before process improvements 
 
With regard to process improvement, it is very important to know 
the current position before starting investigations to enhance melt 
purity. At AMAG, PoDFA samples have been taken nearly every 
two months to check the melt quality. Sampling positions were 
always in the launder during the casting process as follows: 
 

1. before SNIF 
2. after SNIF & grain refiner 
3. after CFF 

 
Figure 3 shows the average decrease in inclusion concentration 
(based on the average TIC of the melt after finishing melting) for 
the process steps mentioned above. It can be seen that the loading 
after melting the charged material is rather high in comparison 
with the amount after the final refinement steps.  
 

 
Figure 2. Prefil® operating principle [3] 
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The in-line treatment does a very good job and decreases the 
loading to less than 7 % after SNIF + grain refinement and to less 
than 5.5 % after the CFF. 
 

 
Figure 3. Melt quality before process improvement 

 
Results and discussion 

 
Process improvements 
For the final melt quality, it is very important to understand that 
the inclusion levels, particularly oxide films and metallurgical 
spinel, should always be minimized at every stage of the process. 
If operating properly, all metal cleaning processes are percentage 
processes, so generally, “cleaner in” means “cleaner out”. This 
leads to the conclusion that every step of the production chain has 
to be optimized. Accordingly several procedures are carried out to 
improve melt cleanliness step by step.  
In addition, there are a number of potentially deleterious 
operations which must also be carried out. Even through a 
decrease in melt quality may occur as a result e.g. when 
transferring the melt from one furnace to another. Therefore, 
careful handling and decreasing the negative influence is also 
absolutely necessary. 
 
When trying to reduce the total inclusion content, mechanisms 
about inclusion development should be known and understood. 
AA 7075 is an alloy with an average magnesium content of 2.5 %. 
Due to the relatively high affinity of both – magnesium and 
aluminum – to oxygen, oxides are going to be produced at every 
situation where oxygen is present. Hence, all PoDFA samples 
show a high percentage of magnesium oxide, the reaction product 
with aluminum oxide – spinel – and oxide films (see Figure 4). 
Beside this, certain amounts of the total inclusion content are 
carbides and grain refiner particles. The origin of carbides is 
primary aluminum, breakdown products from oily scraps as well 
as products due to reaction with graphite components e.g. 
impellers. 
 
Based on this, a number of improvements have been developed or 
considered for incorporations into the standard production 
process.  
 
These are as follows: 

1. A new concept for alloying magnesium has been 
developed.  

It differs in the addition procedure and considers the 
burn-off of magnesium. 

2. Due to the well known effect of dross generation during 
lance treatment and the potential risk of oxide 
entrainment, this step has been shortened to a minimum 
and placed in the right order of the process flow. 

3. As a result of the poor results out of the Prefil® tests 
after the chlorine conditioning with the impeller, a 
higher efficiency rotor blade is currently being 
developed. 

4. Finally, trials have been carried out to decrease porosity 
of the ceramic foam filter. 

 

 
Figure 4. PoDFA sample from the casting furnace, showing dirty 
metal with fine carbides, magnesium oxide, spinel particles and 

oxide films  
 
Melt cleanliness after process improvement  
Because PoDFA analyses are very costly and time intensive 
before a clear result can be reached, Prefil® tests have been done 
to rapidly assess the effect of process changes.  
Starting with a baseline process evaluation a certain amount of 
test residues have been metallographically analyzed. In this way it 
has been possible to correlate the Prefil® curve and especially the 
two curve parameters mentioned above with the total inclusion 
content.  
A statistically firm amount of drops has been accompanied doing 
Prefil® tests between each step of the process. Afterwards, the 
total area under the curve, as well as the gradient between 3 and 
21 seconds have been calculated.  
Figure 5 shows the average result of every operation: 
 

 
Figure 5. Prefil® results of different process steps 

 

605



Table I. Data of average Prefil® curve parameters for each process step 

process step area       
[%] 

change in area  
[%] 

gradient 
[%] 

change in gradient 
[%] 

after melting the charged material 100,0  100,0  
after alloying Mg in the melting furnace 93,7 -6,3 101,8 1,8 
after melt transfer and skimming 90,3 -3,4 93,9 -7,9 
after lance treatment 102,3 12,0 102,7 8,9 
after chlorination treatment with the impeller 90,8 -11,5 102,4 -0,3 
after final adjustment of the chemical 
composition + lance treatment 104,2 13,4 109,7 7,3 
after settling time 107,4 3,2 117,4 7,7 
after SNIF and before grain refinement 124,1 16,7 132,4 15,0 
after CFF (standard) 120,8 -3,4 115,4  
after CFF (standard + 10 ppi) 125,1 1,0 138,2 5,8 
after CFF (standard + 20 ppi) 127,8 3,7 135,8 3,5 

 
The results relate to the initial values after melting the charged 
material which is set 100 %. So one can see that values below  
100 % illustrate a decrease in melt quality. On the other hand 
enhanced melt cleanliness is given by an increase of both, area 
and gradient step by step. To demonstrate the efficiency of each 
element of the production chain, the variation of area and gradient 
has been calculated. Detailed data is given by Table I. 
 
Metallurgical spinel, magnesium oxide and fine carbides are the 
major inclusions found in the melting and casting furnaces. The 
level of these inclusions is generally high, although the final 
treatment in the casting furnace has a significant cleaning effect. 
Oxide film levels are also high in the melting and casting 
furnaces, but are heavily reduced until after “in-line” treatment. 
 
Alloying magnesium in the melting furnace leads to, as expected, 
an increase of magnesium oxide due to the melting loss. This 
effect can only be minimized, but not removed completely. Also, 
an increase of metallurgical spinel can be observed because of the 
reaction of magnesium oxide with aluminum oxide. 
Transferring the melt from the melting into the casting furnace in 
combination with most of the alloying work, results in melt 
quality reaching a minimum. This can be attributed to high levels 
of turbulence and the entrainment of inter-connected oxide films, 
as well as the input of impurities from the alloying ingredients.  
After skimming dross, a lance treatment is applied to homogenize 
the melt and make sure that all alloying elements are dissolved. 
Although dross is going to be generated because of the surface 
turbulence, injected gas bubbles lead to a decrease in inclusion 
content through the flotation effect.  
A further chlorine treatment which is used primary to reduce 
alkali metal residues, dissolved hydrogen and to do another melt 
homogenization, has a detrimental effect on the Prefil® 
characteristic. This is attributed to the inefficient geometry of the 
rotor blade and caused problems in connection with this. 
The lance treatment after final correction in chemical composition 
effects an increase in the melt quality. 
There is only a minor effect of settling in the casting furnace. This 
is not unexpected, due to the channel inductor. 
 
The metal quality after the SNIF is generally good but a carry 
through of all inclusion types is observed. The throughput of 
inclusions decreases highly by providing melt with an increased 
melt quality before the treatment. 
 

 
Although the inclusion content after the CFF is very low and 
within generally acceptable limits, using standard porosity, the 
inclusion profile is similar to that observed before the in line 
treatment. That is metallurgical spinel, magnesium oxide and fine 
carbide particles are all still present. In this case, a trace of 
titanium diboride (grain refiner) is also present – as expected 
following grain refiner rod injection. 
The Prefil curves show a significant improvement in the metal 
quality after filtration with 10 ppi or 20 ppi finer filters compared 
to standard use.  
 
Comparison before and after process improvment 
To draw a comparison before and after implementing 
arrangements to improve the final melt quality, the total inclusion 
content after using a standard + 20 ppi ceramic foam filter was 
decreased to a minimum of 0.001 mm2/kg (see Figure 6). 
 

 
Figure 6. PoDFA sample from after the CFF,                                  

showing clean metal 
 
In general, to highlight the differences between the old and the 
current process (see Figure 7), the melt leaves the casting furnace 
much cleaner than before. A reduced inclusion loading in the melt 
leads to a better performance of the final melt refinement. SNIF 
and the CFF are an effective metal cleaning combination. Both 
total inclusion contents and oxide film levels fall to very low 
levels after the in line treatments. 
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Figure 7. Melt quality before and after process improvement 

 
Operating windows 

 
In casthouse operations, it is very important to know whether 
metal quality is inside or outside a specification. Depending on 
this, operators make the decision ‘Go/No-Go’. Relaying on a 
Prefil® test to help make this decision requires an “operating 
window” for every part of the process. Furthermore, all 
information provided by the test curves has to be well interpreted. 
Clean, un-grain refined metal results in a Prefil characteristic that 
is essentially a steep straight line. The presence of small oxide 
films results in a steep straight going at the beginning and a final 
turn off. The addition of grain refiners introduces small titanium 
diboride particles to the melt. The presence of borides causes the 
Prefil characteristic to deviate from a straight line and produces a 
rate of change of curvature that is dependent on the boride loading 
(see Figure 8). 
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Figure 8. Different behavior of Prefil® curve                             

regarding to different loadings [9] 
 
Melting and casting furnaces 
 
Prefil® curves are usually interpreted by comparison with an 
industrial range or production window. The real benefits of Prefil® 
are realized when the Prefil® curve for a particular sample, 
obtained on-line, is compared with a pre-established window or 
footprint for appropriate quality. 
 

Operating windows, whether for a process group or a single 
process step, are used to control the melt quality, treatment 
efficiency or while doing process improvements. It can be derived 
by plotting the average Prefil® curve, resulting from several tests 
plus and minus the standard deviation. 
In this case, two operating windows have been selected for the 
process steps in the melting furnace (see Figure 9) and the casting 
furnace (see Figure 10). These windows are shown below 
 

 
Figure 9. Operating window melting furnace 

 
Comparing Figure 9 and 10, one can see that after melting the 
charged material, the various process operations lead to a wider 
Prefil® window indicating less consistency in the metal quality.  
 

 
Figure 10. Operating window casting furnace 

 
Launder 
Doing a final quality check after the CFF enables the operator to 
decide whether the product can be used for critical plate 
production or not. In cases where melt quality is not sufficient 
enough, the ingot can be used for applications which are less 
inclusion critical. 
 
From this study, the operating window for the in-line treatment 
(see Figure 11) is a very powerful tool for decision making. The 
left border of the operating area represents a total inclusion 
content of 0.001 mm2/kg ± 40 %. 
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Figure 11. Operating window launder 

 
Conclusion 

 
Overall, one can see that there is a clear difference between the 
quality of the metal in the melting and casting furnaces, as well as 
after the in-line treatment processes (see Figure 12). Yet, this step 
change also shows that the in-line processes are working well. 
 

 
Figure 12. Comparison of the casting furnace and launder 

operating window with selected Prefil® curves                                            
at different process stages  

 
Alloying and treatment practices in the casting furnace are an 
important part of the metal cleaning process, and this is where 
most of the inconsistency in metal quality is likely to originate. 
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