
ABB Robotics

Application manual
RAPID development guidelines for handling applications

Trace back information:
Workspace Main version a23 (not checked in)
Published 2013-02-01 at 10:15:54
Skribenta version 1184

Application manual
RAPID development guidelines for handling applications

Document ID: 3HAC046417-001
Revision: -

© Copyright 2013 ABB. All rights reserved.

The information in this manual is subject to change without notice and should not
be construed as a commitment by ABB. ABB assumes no responsibility for any errors
that may appear in this manual.
Except as may be expressly stated anywhere in this manual, nothing herein shall be
construed as any kind of guarantee or warranty by ABB for losses, damages to
persons or property, fitness for a specific purpose or the like.
In no event shall ABB be liable for incidental or consequential damages arising from
use of this manual and products described herein.
This manual and parts thereof must not be reproduced or copied without ABB's
written permission.
Additional copies of this manual may be obtained from ABB.
The original language for this publication is English. Any other languages that are
supplied have been translated from English.

© Copyright 2013 ABB. All rights reserved.
ABB AB

Robotics Products
SE-721 68 Västerås

Table of contents
7Overview of this manual ...
8License agreement ...
9Product documentation, M2004 ...
11Safety ..

131 Introduction
131.1 General ...

152 Project flow
152.1 Project planning procedure ...

173 Program structure
173.1 Process flow diagram ...
183.2 Program structure ...
183.2.1 Introduction to the program structure ..
193.2.2 System modules ...
203.2.3 Program modules ..
213.2.4 System parameters ...
223.2.5 Backup or restore ..
233.3 Naming the data ..
233.3.1 General naming conventions ...
243.3.2 Convention on the position names ..
253.3.3 Naming the movement routines ...
263.3.4 Use of type-dependent movement routines ..
273.3.5 Naming the I/O signals ...
283.4 Error handling ...
303.5 The program structure ..
313.6 Write-protection of the modules / password assignment ...

334 Program documentation
334.1 Introduction ..
344.2 Structure for the creation of the program documentation ..
354.3 Headers and program information ..
354.3.1 Program header ..
364.3.2 Module header ..
374.3.3 Routine header for procedures and functions in the user program
384.3.4 Routine header for standard procedures and functions
394.3.5 Program information ..
404.3.6 Disturbance range signals ..

415 Naming data, I/O, and labels

456 Sample program
456.1 System description ..
466.2 Flow chart of the system ...
476.3 Overview of the position numbers ..
486.4 Signal step diagram ...
496.5 Signal description (excerpt) ...
516.6 Program printout (excerpt) ..

3HAC046417-001 Revision: - 5
© Copyright 2013 ABB. All rights reserved.

Table of contents

This page is intentionally left blank

Overview of this manual
About this manual

This manual explains programming guidelines while handling applications under
RAPID software development.

Who should read this manual?
This manual is primarily intended for experienced programmers.

Prerequisites
The reader should be well versed in

• industrial robots and their basic terminology,
• the Rapid programming language
• and with the system parameters and their configuration.

References

Document IDReferences

Program design guidelines - Part B / S4 Handbook of Methods

Revisions

DescriptionRevision

First edition, Robotware 5.15.-

3HAC046417-001 Revision: - 7
© Copyright 2013 ABB. All rights reserved.

Overview of this manual

License agreement
License agreement for RobotWare Machine Tending

1 ABB is the only owner of the copyright and usage rights in the software option
RobotWare Machine Tending that is delivered.

2 ABB assigns to the licensee a simple, non-transferable, exclusive, but
unlimited right to use the option RobotWare Machine Tending.

3 The license entitles the user only to the "proper use" of the software option
RobotWareMachine Tending on a robot controller. The licensee is not allowed
to replicate the option RobotWare Machine Tending or parts of it and make
these accessible to third parties or the use the software or parts of it on other
robot controls. Taking a back-up copy exclusively for own use on the original
hardware is exempted from this.

4 Modifying, translating, reverse engineering or decompiling or disassembling
the software option RobotWare Machine Tending is not allowed.

8 3HAC046417-001 Revision: -
© Copyright 2013 ABB. All rights reserved.

License agreement

Product documentation, M2004
Categories for manipulator documentation

The manipulator documentation is divided into a number of categories. This listing
is based on the type of information in the documents, regardless of whether the
products are standard or optional.
All documents listed can be ordered from ABB on a DVD. The documents listed
are valid for M2004 manipulator systems.

Product manuals
Manipulators, controllers, DressPack/SpotPack, and most other hardware will be
delivered with a Product manual that generally contains:

• Safety information.
• Installation and commissioning (descriptions of mechanical installation or

electrical connections).
• Maintenance (descriptions of all required preventivemaintenance procedures

including intervals and expected life time of parts).
• Repair (descriptions of all recommended repair procedures including spare

parts).
• Calibration.
• Decommissioning.
• Reference information (safety standards, unit conversions, screw joints, lists

of tools).
• Spare parts list with exploded views (or references to separate spare parts

lists).
• Circuit diagrams (or references to circuit diagrams).

Technical reference manuals
The technical reference manuals describe reference information for robotics
products.

• Technical reference manual - Lubrication in gearboxes: Description of types
and volumes of lubrication for the manipulator gearboxes.

• Technical reference manual - RAPID overview: An overview of the RAPID
programming language.

• Technical referencemanual - RAPID Instructions, Functions and Data types:
Description and syntax for all RAPID instructions, functions, and data types.

• Technical reference manual - RAPID kernel: A formal description of the
RAPID programming language.

• Technical reference manual - System parameters: Description of system
parameters and configuration workflows.

Application manuals
Specific applications (for example software or hardware options) are described in
Application manuals. An application manual can describe one or several
applications.

Continues on next page
3HAC046417-001 Revision: - 9

© Copyright 2013 ABB. All rights reserved.

Product documentation, M2004

An application manual generally contains information about:
• The purpose of the application (what it does and when it is useful).
• What is included (for example cables, I/O boards, RAPID instructions, system

parameters, DVD with PC software).
• How to install included or required hardware.
• How to use the application.
• Examples of how to use the application.

Operating manuals
The operating manuals describe hands-on handling of the products. The manuals
are aimed at those having first-hand operational contact with the product, that is
production cell operators, programmers, and trouble shooters.
The group of manuals includes (among others):

• Operating manual - Emergency safety information
• Operating manual - General safety information
• Operating manual - Getting started, IRC5 and RobotStudio
• Operating manual - Introduction to RAPID
• Operating manual - IRC5 with FlexPendant
• Operating manual - RobotStudio
• Operatingmanual - Trouble shooting IRC5, for the controller andmanipulator.

10 3HAC046417-001 Revision: -
© Copyright 2013 ABB. All rights reserved.

Product documentation, M2004

Continued

Safety
Safety of personnel

A robot is heavy and extremely powerful regardless of its speed. A pause or long
stop in movement can be followed by a fast hazardousmovement. Even if a pattern
of movement is predicted, a change in operation can be triggered by an external
signal resulting in an unexpected movement.
Therefore, it is important that all safety regulations are followed when entering
safeguarded space.

Safety regulations
Before beginning work with the robot, make sure you are familiar with the safety
regulations described in themanualOperatingmanual - General safety information.

3HAC046417-001 Revision: - 11
© Copyright 2013 ABB. All rights reserved.

Safety

This page is intentionally left blank

1 Introduction
1.1 General

The RAPID programming language assumes knowledge in the fundamentals of
higher level programming languages. This manual does not provide basic
information about RAPID programming and the available instructions and functions.
Programming styles, as we know, are different and each one who ever tried to read
and understand a program which has been written by someone else knows, how
frustrating the result can be.
The purpose of this manual is to provide a programming standard for handling
applications. It covers the experience of more than 15 years of software
development in this field.
This standard does not only mean the program code itself but also includes the
steps for preparation as well as the program documentation
Robot programmers of ABB, subcontractors and others should make use of these
guidelines, with the goal to have a common open standard for RAPID programs.
This will help to make different handling programs more comprehensible for
programmers, technicians and customers.
The program elements in this manual are named in accordance with the guidelines
compiled by ABB: "Program design guidelines - Part B / S4 Handbook of Methods".

Note

Users of the ABB software option Machine Tending Solution (MTS) note that this
manual does not describe special functionalities of MTS. Nevertheless if a RAPID
application is programmed by considering these guidelines, it will be easier to
useMTS. If the HomeRun functionality of MTS shall be used in a software project,
these guidelines are binding. Otherwise, HomeRun will not work properly.

3HAC046417-001 Revision: - 13
© Copyright 2013 ABB. All rights reserved.

1 Introduction
1.1 General

This page is intentionally left blank

2 Project flow
2.1 Project planning procedure

Before writing the robot program and using these guidelines in the actual sense,
the programmer should first of all understand the task description and put it down
in a form that is meaningful to him.
The following steps must be complied with for this purpose:

1 Preparing a process flow description of the entire system.
To begin with, the programmer should be clear about what needs to be
programmed. A process flow description of the system is indispensable for
this purpose. This process flow description (flow chart), however, should not
only contain the normal execution, but also the strategies for abnormal
conditions (error handling).

2 Creating a position overview.
A position overview facilitates quick detection of the stations (for example,
machines, conveyors, slides…) that are located in the system and is helpful
in finding your way in the process flow description and for naming or
designating the robot positions associated with the stations.

3 Defining the required signals.
The signals can be defined once the stations located in the system are known
and how they communicate with one another. In the process, it should be
noted that a "High active handshake" must always be used for the
communication. A non-existent OK signal is not to be evaluated automatically
as an OK indication, since on account of wire breakage or defective sensors
it cannot be ensured that the signal is always working properly (example:
Instead of an input signal meaning "Production without the robot", a signal
with the meaning "Production with the robot" should be used. This rules out
inadvertent movements of the robot in the event of wire breakage). Release
signals for an action by the robot as well as acknowledgments should follow
the following example (Signal flow for unloading a feed by the robot):

en1300000185

When communicating with a PLC, only the edge of a signal from the PLC
must be evaluated (for example, for release signals). This is so because a
signal present at the robot must not necessarily also be a clearance signal
(Robot controller = Down-stream controller).
Only those signals with which the robot sends indications that it is beyond
the disturbance range of a machine, etc., should be evaluated statically.
All signals to the robot (Outputs of the PLC) are static signals, which must
be acknowledged accordingly by the robot. Sending pulse signals is not
permissible.

Continues on next page
3HAC046417-001 Revision: - 15

© Copyright 2013 ABB. All rights reserved.

2 Project flow
2.1 Project planning procedure

4 Documenting the signals.
After knowing the signals that are used, these must also be documented.
The documentation of the signals always includes the name, a brief
explanation and a detailed explanation. The brief explanation serves as an
enumeration of the name, and the detailed explanation is an enumeration of
the function of the signal. A sample of such documentation is provided in
the Sample program on page 45.

5 PLC interfacing / defining and documenting handshaking.
In order to explain the function of the individual signals even better, a "Signal
step diagram" should be prepared to illustrate the chronological flow of the
signals and, thus, to clarify the function of the signals. An example of such
a signal step diagram is also provided in the sample documentation.
The process flow description, the documentation of the signals and the signal
step diagram must be coordinated with the PLC programmers.

6 Specifying error handling.
The following aspects must be clarified:

• What errors or faults can occur?
• How should the operator respond?
• How should the robot respond?

7 Specifying password assignment.
Should passwords be assigned, what should they be and which levels should
be password-protected?

8 Defining task distribution for the background tasks (only for multitasking).
9 Writing the program (including backgound tasks).
10 Documenting the program.

16 3HAC046417-001 Revision: -
© Copyright 2013 ABB. All rights reserved.

2 Project flow
2.1 Project planning procedure

Continued

3 Program structure
3.1 Process flow diagram

A process flow diagram must always be prepared at the beginning of the project.
If this important preparatory work is not done, it almost always leads to problems,
particularly with complex programs.
The preparation of a process flow diagram compels the programmer to work in a
structured manner and enables critical parts of the project to be detected in the
initial stage. This avoids undesirable surprises when the project is already in an
advanced stage of implementation. Moreover, a process flow diagram simplifies
and facilitates induction into the project in the event of any necessary changes in
the team.
The resources for the preparation of a process flow diagram are for example:

• Flow chart
• Nassi-Shneidermann diagram
• Simplified system layout with position overview
• Process flow description / System description

3HAC046417-001 Revision: - 17
© Copyright 2013 ABB. All rights reserved.

3 Program structure
3.1 Process flow diagram

3.2 Program structure

3.2.1 Introduction to the program structure

In general, the following applies to the RAPID program structure:
• Strict demarcation between movement routines and administrative routines.
• BASE.SYS and USER.SYS remain unchanged.
• Standard utilities are saved in separate system modules and are possibly

encoded. Such utilities may be: Palletizing modules, data transfer to
visualization systems, special self instructions, and so on. These standard
routines, if required, must be adapted to the year of manufacture.

• Data for processes can be saved in a separate programmodule (for example,
PRGPARAM.MOD).

The following figure illustrates how the basic structure of a RAPID program for
handling applications should look like.

en1300000181

18 3HAC046417-001 Revision: -
© Copyright 2013 ABB. All rights reserved.

3 Program structure
3.2.1 Introduction to the program structure

3.2.2 System modules

At the time of delivery, the system modules "BASE" and "USER" are already
available as the operating system in the controller. These should not be changed.
System-specific routines and data are saved in their own system modules, which
are protected from external attack using special attributes (for example, NOVIEW
or encoding of the source code).

3HAC046417-001 Revision: - 19
© Copyright 2013 ABB. All rights reserved.

3 Program structure
3.2.2 System modules

3.2.3 Program modules

The Sample program on page 45 comprises at least of three modules:

DescriptionModule

Main program module, which contains the procedure main() and the
general production flow.

<CellName>.mod

Movement module with movement routines and the related data.Movement.mod

Module with messages and text fragments.Message.mod

Moreover, it is possible to add other modules containing data and routines to the
programs, with these modules being applicable to several robot stations (for
example, tools (TCPs), work-piece objects, etc.), or containing different setup
routines. These should be created as a programmodule so that they can be saved
as a separate module and may be loaded in another robot controller.
The division has been selected on grounds of practicable handling. Thus, for
example, messages are saved only in the module Message.mod and may, if
required, be completely revised or translated in a foreign language.
When saving the program, all program modules (*.MOD) are saved in a common
directory. In addition, a program file ending with .PGF is generated and this ensures
that all modules saved can be loaded again jointly.

Note

When loading a program < CellName >.pgf, all program modules *.MOD
already loaded are deleted or overwritten with the new modules. In contrast, the
system modules (*.SYS) must be loaded or deleted separately.

20 3HAC046417-001 Revision: -
© Copyright 2013 ABB. All rights reserved.

3 Program structure
3.2.3 Program modules

3.2.4 System parameters

The system parameters are stored in a separate directory called SYSPAR on the
data medium. Basically, the system parameters from the controller are saved in
this directory.

3HAC046417-001 Revision: - 21
© Copyright 2013 ABB. All rights reserved.

3 Program structure
3.2.4 System parameters

3.2.5 Backup or restore

The backup feature saves all system parameters, system modules and program
modules in a single operation. The data is stored in a directory that the user must
specify.
In addition to the backup, the program should always also be saved separately.
The restore feature restores the data from a backup directory. Restore replaces
all system parameters and loads all modules from the backup directory. A warm
restart is initiated after restoring the data.

22 3HAC046417-001 Revision: -
© Copyright 2013 ABB. All rights reserved.

3 Program structure
3.2.5 Backup or restore

3.3 Naming the data

3.3.1 General naming conventions

The "Handbook of Methods" is binding for the assignment of names. The prefixes
defined in this handbook for individual variables, constants and persistents, in fact,
reduce the number of characters available for choosing the rest of the name, but
however, they are indispensable for clear and unique identification. In a sample
query, such as IF Start = 1 THEN..., for example, it cannot be concluded
whether what is being referred to is an input or something else. It is only with the
prefix di that it becomes clear that what is being referred to here is a digital input
(IF diStart = 1 THEN...).

3HAC046417-001 Revision: - 23
© Copyright 2013 ABB. All rights reserved.

3 Program structure
3.3.1 General naming conventions

3.3.2 Convention on the position names

The following specifications are laid down as an extension to those given in the
"Handbook of Methods":

• Position names basically begin with the letter "p".
• Special default or standard positions have identifying names (pHome, pReady,

etc.)
• All other positions are named according to the following convention:

DescriptionFormat

p:Position prefixpXX(X)

XX(X): 2-digit (or 3-digit) station name beginning with 10 (100) (e.g.: Separation
(10 or 100), Oiling (20 or 200), etc..)

pXX(X)_TY

T:Type prefix for index according to different part types
Y:Type index according to different part types

Examples:
p10, Preliminary position at station 10

p11, Pick position at station 10

p12, End position at station 10

p20 Preliminary position at station 20

…

p20_T1 Preliminary position at station 20 for part type 1

p21_T1 Drop position at station 20 for part type 1

p22_T1 End position at station 20 for part type 1

A station (machine) can have any number and there is no mandatory specification.
The only condition: The meaning of a number must be explained on a position
overview diagram.
For subordinate (or secondary) intermediate positions, serial numbering or the
selection of star "*" positions has been a proven method for the robtargets,
since it is impossible to find an intelligent and self-explanatory name for each
position and one that still fits within the maximum length of a position name.
A sequence of * positions (even individually) should always be enclosed by positions
with clear and unique names, for example, p10, *,..., p11.
The home position should always be the position p99 or p999.

24 3HAC046417-001 Revision: -
© Copyright 2013 ABB. All rights reserved.

3 Program structure
3.3.2 Convention on the position names

3.3.3 Naming the movement routines

The names of movement routines always identify the starting and ending point of
a movement.
In general, all movement routine names begin with the prefix mv.
mvStartpoint_Endpoint

Example

moves the robot from the station 10 to the home position.mv10_999

moves the robot from station 10 to station 20.mv10_20

As a rule, movement to the first position (starting position) takes place only in
programming mode and at slow speed. In this manner, uncontrolled movement
from the end (final) position back to the starting position while testing the robot
movements is prevented.
It cannot be prevented that a worker operates a movement routine in continuous
mode, which means that after the last instruction in the routine it starts executing
again from the fist instruction onwards. Slow speed may therefore prevent
uncontrolled movement and major damage.
Example

PROC mv999_10 ()

!Von : Homeposition

!Nach: Prepos. station 10

IF OpMode()<>OP_AUTO MoveJ p999,v200,z10,tGripper;

MoveJ *,v2500,z10,tGripper;

MoveJ p10,v2500,z10,tGripper;

ENDPROC

3HAC046417-001 Revision: - 25
© Copyright 2013 ABB. All rights reserved.

3 Program structure
3.3.3 Naming the movement routines

3.3.4 Use of type-dependent movement routines

If different types of work-pieces need to be moved using different movement
rou-tines in a robot program, but are handled with the same program execution
flow, these are identified by a type-dependent index, which is also provided with
the "T" prefix.
Example:
Movement from position 10 to 20 for type number 3 with the type prefix:
Routine name: mv10_20_T3
The advantage of this method lies in the fact that, in general, only the movement
routines change, but not the general program execution flow.
As a result, the administrative routines that invoke the movement routines must
not be rewritten for each type, but instead, only the index for the routine call needs
to be adapted. This takes place preferably with the help of routine calls with late
binding (Late Binding "%string%").
Example:

%"mv10_20_T"+ValToStr(nTypeNo)%; (with type prefix)

or with
CallByVar "mv10_20_T",nTypeNo;

Benefit:
The administrative program needs to bemodified only once in case of any changes
in its execution flow.

Note

When using type-dependent routines, the position names are also indexed.
Example:

PROC mv12_20_T1()

!From: End position station 10

!To: Preliminary position station 20

FirstMove\J,p12_T1,v200,z10,tGripper;

MoveJ *,v2500,z10,tGripper;

MoveJ p20_T1,v2500,z10,tGripper;

ENDPROC

26 3HAC046417-001 Revision: -
© Copyright 2013 ABB. All rights reserved.

3 Program structure
3.3.4 Use of type-dependent movement routines

3.3.5 Naming the I/O signals

• For the identification of the inputs and outputs, the codes di/do for digital
inputs and outputs, ai/ao for analog inputs and outputs and gi/go for group
inputs and outputs must be used (for example, diProgStop, doMotorOff).

• The name of the signal should be chosen to be as self-explanatory as possible
and should be related to the "1" status of the function (for example,
diGripperOpen for "Gripper is open").

• Any assignment of the physical channels within the signal names must be
avoided (for example, di1_CycleEnd).

• The somewhat favored naming convention like di1, do5, …, which indicates
the channel where a signal is located, may be somewhat helpful while testing
the hardware, but does not serve to improve the readability of the programs.
It is not so important where a signal is present, but instead, that it is present.

• The position, name (or designation) and explanation of the signals must be
documented in any case.

3HAC046417-001 Revision: - 27
© Copyright 2013 ABB. All rights reserved.

3 Program structure
3.3.5 Naming the I/O signals

3.4 Error handling

As a rule, all programs should be written so that they are as reliable as possible.
This means that every possible error or fault condition should be trapped by the
program on its own in order to enable defined error handling and to thereby ensure
streamlined and trouble-free operation of the system as far as possible. The program
documentation should describe the possible errors and how they are handled. Any
response to an error condition that occurs definitely depends on the situation. For
this reason, standard routines should always have their own error handlers, which
treat the possible error regardless of the procedure / function in which the error
occurs. In general, it would be possible to have a standard error handler in the
main routine in order to be able to trap the error at least globally.
Furthermore, it is possible to implement the strategies necessary for conditions
of faults or failures with the help of error handling, by invoking separate error
numbers (1-90) using the RAISE instruction. In this process, the program exits the
routine with a specific abort or cancelation, and continuation of program execution
is enabled via the error handling routine with suitable measures and actions.
Example:

CONST errnum erToHomePos:=89;

!**

!* Procedure Example()

!*

!* Description:

!*

!* Example of error handling

!*

!* Date: Version: Programmer: Reason:

!* 2013-01-01. 1.0 Mr. Example created

!**

PROC Example()

!Release or cancelation is expected

WaitUntil diRelease=high or diIRBtoHome=high;

!With the request move "IRB to the home position"

!the program is terminated via error handling

IF diIRBtoHome=high RAISE erToHomePos;

…

ERROR

IF ERRNO=erToHomePos THEN

mv100_999;

RAISE;

ENDIF

ENDPROC

In the example illustrated above, the procedure Example waits for the input
diRelease or the cancelation signal (for example, diIRBtoHome). If the cancel
signal is set, the error handling routine is invoked with the error number
erToHomePos. The error handling routine for this error number in the example

Continues on next page
28 3HAC046417-001 Revision: -

© Copyright 2013 ABB. All rights reserved.

3 Program structure
3.4 Error handling

given contains amovement of the robot (mv100_999) and a call to the error handling
system of the previous routine (RAISE). The error should be handled appropriately
in this previous routine.

3HAC046417-001 Revision: - 29
© Copyright 2013 ABB. All rights reserved.

3 Program structure
3.4 Error handling

Continued

3.5 The program structure

The basic structure of the main program module should not be modified in order
to enable similar appearance of the routines and to be able to find one's way in
the program. A Sample program on page 45 has been furnished in a later chapter.
The main routine could have the following structure:

PROC main()

!Initialize the start values

Init;

!Check if the gripper is working

CheckGripper;

!Move to the preposition of the first station

Mv999_100;

!Repeat until automatic mode is de-selected

WHILE diAutomatic=high DO

!Output program information

ProgInfo;

!Execute one production cycle

Production;

ENDWHILE

!Move to home position

Mv100_999;

STOP;

ENDPROC

The predefined routines must "merely" be provided with their contents.

30 3HAC046417-001 Revision: -
© Copyright 2013 ABB. All rights reserved.

3 Program structure
3.5 The program structure

3.6 Write-protection of the modules / password assignment

After the station has been commissioned, all modules may be assigned the
VIEWONLY attribute so that any unprotected manipulation by the worker is ruled
out. The VIEWONLY attribute can only be changed on one PC.
Moreover, the robot can be provided with passwords at various levels so that no
un-authorized access to the robot is possible. For this reason, passwords must be
assigned at any cost and controlled.

Note

No password is specified by default. For this reason, the operator can initially
make any modifications.

3HAC046417-001 Revision: - 31
© Copyright 2013 ABB. All rights reserved.

3 Program structure
3.6 Write-protection of the modules / password assignment

This page is intentionally left blank

4 Program documentation
4.1 Introduction

In order to ensure proper program creation and maintenance, programs must be
docu-mented in accordance with the following aspects:

1 A complete program printout with all procedures, functions and routines
(other than system modules with standard routines) must be created.

2 With the help of a simple, clearly structured and commented program
structure it must be ensured that detailed program flow charts of all
procedures and routines may be dispensed with.
This is ensured to a large extent by creating the routine main() and the
routines called within it. For station-specific complex or cluttered program
flows, structure charts or flow charts (for example withMSVisio) are prepared.
These should, however, not represent any 1:1 implementation of the RAPID
program, but instead, it should have an overview of all basic logical flows
for the contents.

3 The functional descriptions of the standard routines usedmay be incorporated
into the documentation for the sake of completion. System-specific processing
is omitted.

4 All robot positions (starting and end positions of a movement) must be
represented as position numbers in a graphical image (for example simplified
system layout). This can, however, be limited to the station number if the
starting and end positions required are described in a separate list.

5 All signals are described in a signal list with names, meanings, channel
numbers, etc.

6 For all other system parameters, the description for parameter modification
must be given separately in the documentation.

7 If needed, other supplementary documents may be added.

3HAC046417-001 Revision: - 33
© Copyright 2013 ABB. All rights reserved.

4 Program documentation
4.1 Introduction

4.2 Structure for the creation of the program documentation

1 Program Structure
a General Rules
b System Parameters
c System Modules
d Program Modules
e Naming Conventions

I General Naming Conventions
II Naming of Positions
III Naming of Movement Routines
IV Naming of Digital Inputs and Outputs

2 Program Description
a Position Layout
b Position Description
c Description of the Production Cell

I Components of the Production Cell
II Description of the Production Flow
III Production Flow in Case of Errors

d Flowchart of the Program Flow
3 Overview of the Progam- and System Modules
4 Guidance for Commissioning

a Setting up the Worldzones and Event Routines
b Multitasking

I Available Tasks
II Registering the Tasks
III Preparing the Tasks to be Loaded Automatically
IV Loading the Task Modules into the Memory

34 3HAC046417-001 Revision: -
© Copyright 2013 ABB. All rights reserved.

4 Program documentation
4.2 Structure for the creation of the program documentation

4.3 Headers and program information

4.3.1 Program header

A standard module header like the one shown below can be used. It needs to be
filled up once at the time of setting up the project and it must be then updated in
case of program changes:

!**

!*

!* Station : System Name (Designation)

!*

!**

!*

!* Customer : Customer company name and location

!*

!* Project name : Project Description

!* Project no. : Order Number

!*

!* Robot no. : IRB ??-?????

!* Software : RobotWare 5.15

!* Revision : 0

!* Key Contr. : ThEgOOdDiEyOuNg

!* Key Drive : AvEcAeSARmoRiTuriTEsAlUTaNT

!*

!* Author : Name of the author

!* Company : The company name,

!* City / State

!* Department : Name of department

!* Telephone : +67(0)12345/99 – 0

!*

!* Hotline : +67(0)12345/99 – 1

!*

!* Version : 1.0

!* Created : 2013-01-01

!*

!* Modification Date: Name: Reason:

!* 2013-02-31 Mr. Example New release signal

!*

!**

Additional information may be provided such as the contents of the module and
the software version of the routines incorporated.

3HAC046417-001 Revision: - 35
© Copyright 2013 ABB. All rights reserved.

4 Program documentation
4.3.1 Program header

4.3.2 Module header

The module header for program and system modules looks like the following:
!**

!*

!* Module name: Name of the module

!*

!**

!*

!* Description:

!*

!* General description of the module functionality

!*

!*

!* Date: Version: Programmer: Reason:

!* 2013-01-01 1.0 Mr. Example created

!**

36 3HAC046417-001 Revision: -
© Copyright 2013 ABB. All rights reserved.

4 Program documentation
4.3.2 Module header

4.3.3 Routine header for procedures and functions in the user program

Administrative routines have a routine header, which describes the function of the
routine. Program modifications or adaptations in the routine must be marked in
the program header with the date, programmer and reason for the same.
Example:

!***

!*

!* Sample procedure

!*

!* Description:

!*

!* General description of the routine function

!*

!*

!* Date: Version: Programmer: Reason:

!* 2013-01-01 1.0 Mr. Example created

!* 2013-01-02 1.1 Mr. Example bTest added

!***

A detailed routine header is definitely not necessary for movement programs since
a movement program should not contain anything other than move commands.
Hence, it is not mandatory to provide a routine header in such cases.
Example:

PROC mv999_100()

!From: Home position

!To : Prelim. pos. DGM

IF OpMode()<>OP_AUTO MoveJ p999,v200,z10,tGripper;

MoveJ p100,v2500,z10,tGripper;

ENDPROC

3HAC046417-001 Revision: - 37
© Copyright 2013 ABB. All rights reserved.

4 Program documentation
4.3.3 Routine header for procedures and functions in the user program

4.3.4 Routine header for standard procedures and functions

Standard routines contain a routine header, which gives an explanation of the
routine as well as the data used. In the process, the transfer parameters, the return
parameters as well as all the data that the routine modifies or needs are listed and
described. Lines that are not needed in the headers may be omitted.
In addition, an example is added from which it becomes clear how the routine is
to be used or how its parameters are to be configured.
Example:

!**

!*

!* ROUTINE NAME: <name of the routine>

!*

!**

!*

!* DESCRIPTION: <what the procedure does (not how)>

!*

!* IN: <parameter name and description>

!*

!* OPTIONAL: <parameter name and description>

!*

!* INOUT: <parameter name and description>

!*

!* RETURN: <parameter type>

!*

!* ASSUMPTIONS: <list of each external variable,

!* control, open file, or other element

!* that is not obvious>

!*

!* EFFECTS: <list of each affected external variable

!* control or file and the effect it has

!* (only if this is not obvious) >

!*

!* NOTE: <internal remarks (only if this is not

!* obvious) >

!*

!* EXAMPLE: <example, how the routine is used

!* (only if this is not obvious)>

!*

!*

!* Date: Version: Programmer: Reason:

!* 2013-01-01 1.0 Mr. Example created

!**

FUNC datatype RoutineName(Arguments)

ENDFUNC

38 3HAC046417-001 Revision: -
© Copyright 2013 ABB. All rights reserved.

4 Program documentation
4.3.4 Routine header for standard procedures and functions

4.3.5 Program information

Each program must contain information about its origin and subsequent
modifications. Moreover, the tasks and the process flows of the system may be
described in a special module.
It should contain the following information as a minimum:

• Station name
• Current program version
• Name of the programmer
• Serial number of the robot
• Hotline number, if this is different from the ABB hotline
• Note on the info routine, if available

This information can either be in the form of comments at the beginning of the
routine Main or it may be displayed via a separate routine on the FlexPendant.
Example:

!**

!* Procedure main *

!* *

!* Description: *

!* *

!* This procedure sets the initial values for execution *

!* *

!* Date: Version: Programmer: Reason: *

!* 2013-01-01 1.0 Author created *

!**

PROC main()

!***

!System data

!Customer : Company XYZ

!System : DCM Operation

!SN no. : 24-12345

!Author : Mr. Example

!Date : 2012-01-01

!Hotline : +67(0)1234/56-798

!***

!

....

ENDPROC

3HAC046417-001 Revision: - 39
© Copyright 2013 ABB. All rights reserved.

4 Program documentation
4.3.5 Program information

4.3.6 Disturbance range signals

In addition to the normal handshake for program execution, in case of machine
operations, the robot should also send a signal to the corresponding machine that
it is not located in its disturbance range. Safe working of the machine can be
ensured in this manner since the machine should move only if this signal is set.
The disturbance range signals must be defined in such amanner that the "1" status
always means "Robot outside the disturbance range" (safety against cable
breakage).
Within the robot program, this output may be set either via world zones or in the
program flow.
If the disturbance range is set in the program flow, collisions must be prevented
by timely setting (computer running before the controller).
This can take place either by using a "fine" point or by position-related triggering
(TriggL, TriggJ, MoveLDO, or MoveJDO) at the end point of the movement.

40 3HAC046417-001 Revision: -
© Copyright 2013 ABB. All rights reserved.

4 Program documentation
4.3.6 Disturbance range signals

5 Naming data, I/O, and labels
Prefixes and examples

ExamplePrefixType of data

aioExampleaioaiotrigg

bPartOKbbool

resExampleresbtnres

bstExamplebstbusstate

btnExamplebtnbuttondata

btExamplebtbyte

ckCycleTimeckclock

cfConf15cfconfdata

cdExamplecdcorrdescr

dpExampledpdatapos

iConditionidionum

dirExampledirdir

erdExampleerderrdomain

erGripperErrorererrnum

ersExampleerserrstr

ertExampleerterrtype

evtExampleevtevent_type

ejAxpos10ejextjoint

icoExampleicoicondata

idExampleididentno

irCycleStopirintnum

deFiledeiodev

iosExampleiosiounit_state

jtExamplejtjointtarget

lstExamplelstlistitem

loPart1loloaddata

lidExamplelidloadidnum

lsExamplelsloadsession

meUnitmemecunit

moC_Motsetmomotsetdata

nCounternnum

-opnum

orIent1ororient

-paridnum

-paridvalidnum

Continues on next page
3HAC046417-001 Revision: - 41

© Copyright 2013 ABB. All rights reserved.

5 Naming data, I/O, and labels

ExamplePrefixType of data

prcExampleprcpathrecid

psPos1pspos

peFrame1pepose

pdSearchpdprogdisp

rawExamplerawrawbytes

rsdExamplersdrestartdata

rjExamplerjrobjoint

pHOMEprobtarget

shExampleshshapedata

smStart1smseamdata

Not used in programs-signalxx

sdeExamplesdesocketdev

sstExamplesstsocketstatus

v50vspeeddata

spdExamplespdstoppointdata

stNameststring

syStation1sysymnum

sidExamplesidsyncident

Not defined-System Data

tidExampletidtaskid

tskExampletsktasks

--testsignal

tGripperttooldata

tpExampletptpnum

tdExampletdtrapdata

trExampletrtriggdata

tuExampletutunetype

wdFillet10wdWelddata

wvVertwvweavedata

wFixture2wwobjdata

wzsExamplewz, (wzs)wzstationary

wztExamplewz, (wzt)wztemporary

z100zzonedata

lbStartlbLabel
(Labels are not used since the command associated
with them, GOTO, should not be used.)

ExamplePrefixType of I/O

diFetchPartdidigital in

Continues on next page
42 3HAC046417-001 Revision: -

© Copyright 2013 ABB. All rights reserved.

5 Naming data, I/O, and labels

Continued

ExamplePrefixType of I/O

giPartNumbergidigital group in

doPartPlaceddodigital out

goMoldNumbergodigital group out

aiTemperatureaianalog in

aoFeedaoanalog out

3HAC046417-001 Revision: - 43
© Copyright 2013 ABB. All rights reserved.

5 Naming data, I/O, and labels

Continued

This page is intentionally left blank

6 Sample program
6.1 System description

The system consists of an ABB robot IRB 6400/2.8m, one die-casting machine,
one parts inspection station, one cooling basin, one trimming press, one chute for
good parts and one for rejected parts and scrap.
The robot IRB 6400 removes the molded parts from the die-casting machine and
holds them in front of an inspection station. If the part inspected is complete, the
die-casting machine is restarted. After inspecting the parts, they are cooled down
by turning them over in the cooling basin.
The good (OK) parts are finally placed in a trimming press and removed after
trimming in order to place them on the chute for good (OK) parts. The robot then
returns to its waiting position in front of the die-casting machine.
If a reject part (scrap) is detected at the inspection station, it is placed after cooling
down directly in the chute for rejects (scrap), after which the robot returns to the
home position.
If the trimming press is deselected, the parts are placed on the chute for good (OK)
parts after they are cooled down.

Special functions
Stop at the end of the cycle:
If the operator requests for "Stop at the end of the cycle" using the button on the
die-casting machine, the robot removes one part from the die-casting machine,
places it down and moves to its home position.
Move the robot to its home position:
If the robot does not get any signals from the peripheral devices, it can be made
to cancel the instantaneous processing andmove to the home position by pressing
the "Robot to home position" button.
If the robot program is started from main and the robot is not in the home position,
it can be moved to the home position in manual mode by joystick or on a direct
route.

3HAC046417-001 Revision: - 45
© Copyright 2013 ABB. All rights reserved.

6 Sample program
6.1 System description

6.2 Flow chart of the system

en1300000182

46 3HAC046417-001 Revision: -
© Copyright 2013 ABB. All rights reserved.

6 Sample program
6.2 Flow chart of the system

6.3 Overview of the position numbers

en1300000183

NamePosition

Preliminary position at the die-casting machine10

Preliminary position of the mold in the die-casting machine11

Gripping (picking) position at the die-casting machine12

Eject position in the die-casting machine13

End position at the die-casting machine14

Preliminary position at the inspection station20

Inspecting position at the inspection station21

Preliminary position at the cooling basin30

Cooling position at the cooling basin31

Preliminary position at the trimming press50

Placement position at the trimming press51

Gripping (picking) position at the trimming press52

Preliminary position at the reject (scrap) chute60

Placement position at the reject (scrap) chute61

Preliminary position at the chute for good (OK) parts70

Placement position at the chute for good (OK) parts71

Home position999

3HAC046417-001 Revision: - 47
© Copyright 2013 ABB. All rights reserved.

6 Sample program
6.3 Overview of the position numbers

6.4 Signal step diagram

en1300000184

48 3HAC046417-001 Revision: -
© Copyright 2013 ABB. All rights reserved.

6 Sample program
6.4 Signal step diagram

6.5 Signal description (excerpt)

Inputs

SPSDescriptionSignalChannelUnit

A10.0Robot preselected for produc-
tion

diWithRobot0Unit 1

A10.1Diecasting machine in auto-
matic mode

diDCMAuto1Unit 1

A10.2Shot done (Aluminium
pushed into the mould)

diShotDone2Unit 1

A10.3DCM mould is opendiMouldOpen3Unit 1

A10.4DCM robot-sided gate is opendiGateOpen4Unit 1

A10.5Cores retracted, release to
attach part in mould

diReleaseAt-
tachPart

5Unit 1

A10.6Ejector advanced, part
pushed out of the mould

diPush-
erAvanced

6Unit 1

A10.7Ejector retracteddiPusherRe-
tracted

7Unit 1

A11.0Part has been identified as
scrap

diScrap8Unit 1

A11.1Part has been identified as a
good part

diGoodPart9Unit 1

A11.2Request to send robot to
home position

diToHomePos10Unit 1

A11.3Robot is inside the home pos-
ition

diIRBinHome11Unit 1

…………Unit 1

………0Unit 2

………1Unit 2

………2Unit 2

…………Unit 2

Outputs

SPSDescriptionSignalChannelUnit

E10.0Release to start the next DCM
cycle

doStartDCM0Unit 1

E10.1Advance pusher to push part
out of the mould

doAdvance-
Pusher

1Unit 1

E10.2Robot program errordoError2Unit 1

E10.3Request a part checkdoPartCheck3Unit 1

E10.4Robot ouside collision area of
DCM, channel 1

doIRBout-
sideCol1

4Unit 1

E10.5Robot ouside collision area of
DCM, channel 2

doIRBout-
sideCol2

5Unit 1

E10.6Robot outside collision area
of the sprayer

doIRBouside-
Sprayer

6Unit 1

Continues on next page
3HAC046417-001 Revision: - 49

© Copyright 2013 ABB. All rights reserved.

6 Sample program
6.5 Signal description (excerpt)

SPSDescriptionSignalChannelUnit

E10.7……7Unit 1

E11.0……8Unit 1

E11.1……9Unit 1

E11.2……10Unit 1

E11.3……11Unit 1

………Unit 1

………0Unit 2

………1Unit 2

………2Unit 2

…………Unit 2

50 3HAC046417-001 Revision: -
© Copyright 2013 ABB. All rights reserved.

6 Sample program
6.5 Signal description (excerpt)

Continued

6.6 Program printout (excerpt)

%%%

VERSION:1

LANGUAGE:ENGLISH

%%%

MODULE DCM1234

!**

!*

!* Cell : DCM extraction cylinder head

!*

!**

!*

!* Customer : ABCD company

!*

!* Project name : V123456

!* Project no. : 47110815

!*

!* Robot no. : IRB 66-12345

!* Software : RobotWare 5.15

!* Revision : 0

!* Key Contr. : ThEgOOdDiEyOuNg

!* Key Drive : AvEcAeSARmoRiTuriTEsAlUTaNT

!*

!* Author : Mr. Bean

!* Company : DCBA Integrators Company

!* San Francisco / California

!* Department : DCBA-EF

!* Telephone : +1 123456789/99 – 0

!*

!* Hotline : +1 123456789/99 – 22

!*

!* Version : 1.0

!* Created : 2013-01-01

!*

!* Modification Date: Name: Reason:

!* 2013-02-31 Mr. Bean New release signal

!*

!**

!

!**

!* Boolean declarations

!**

!Flag, end the program

VAR bool bProgEnd;

!Flag, part in the parts inspection is not in order

PERS bool bReject:=FALSE;

!**

!* System Constants

Continues on next page
3HAC046417-001 Revision: - 51

© Copyright 2013 ABB. All rights reserved.

6 Sample program
6.6 Program printout (excerpt)

!**

!Constant for the stroke of the ejector at the DGM

CONST num nEjectorStroke:=250;

!Waiting time at the parts inspection

CONST num ntInspection:=2;

!**

!* Interrupt Declarations

!**

!Interrupt for stop after the end of the cycle

VAR intnum irCycleStop;

!**

!* Procedure main

!*

!* Description:

!*

!* This procedure is the main routine and controls the

!* overall execution of the user program.

!*

!* Date: Version: Programmer: Reason:

!* 2012-01-01 1.0 Mr. Bean created

!**

PROC main()

!***

!System data

!Customer: ABCD

!System : DCM Operation

!SN no. : 66-12345

!Author : Mr. Bean, ABB

!Date : 2012-01-01

!Hotline: +1 123456789/99 – 0

!***

!

!Initialize the start values

Init;

!Check if the gripper is working

GripperTest;

!Move to the home position in front of the DGM

mv99_10;

WHILE NOT bProgEnd DO

Production;

ENDWHILE

mv10_99;

Stop;

ENDPROC

!**

!* Procedure Init

!*

!* Description:

!*

Continues on next page
52 3HAC046417-001 Revision: -

© Copyright 2013 ABB. All rights reserved.

6 Sample program
6.6 Program printout (excerpt)

Continued

!* This procedure sets the initial values for execution

!*

!* Date: Version: Programmer: Reason:

!* 2012-01-01 1.0 Mr. Bean created

!**

PROC Init()

!Wait until compressed air is available

WaitDi diAirOK,1;

!Check if the robot is in the home position

CheckHomePos;

!Defined setting of the outputs

Reset doPartGripped;

Reset doDGMUnload;

Reset doEjectBack;

Reset doDGMLoad;

Reset doStartPress;

Reset doBlowOff;

…

…

!Defined setting of the variables

bProgEnd:=FALSE;

!Interrupt for stop after the end of the cycle

IDelete irCycleStop;

CONNECT irCycleStop WITH T_CycleStop;

ISignalDI diCycleStop,1,irCycleStop;

ENDPROC

!**

!* Procedure Production

!*

!* Description:

!*

!* This procedure manages the production process.

!*

!* Date: Version: Programmer: Reason:

!* 2012-01-01 1.0 Mr. Bean created

!**

PROC Production()

!Unload the die-casting machine

DGMUnload;

mv14_20;

PartCheck;

mv20_30;

CoolDownPart;

!If the parts inspection has reported a reject part

IF bReject THEN

!Dispose of the rejected part

mv30_60;

LoadScrapSlide;

mv60_10;

!Continue working with the trimming press

ELSEIF diWithPress=high THEN

Continues on next page
3HAC046417-001 Revision: - 53

© Copyright 2013 ABB. All rights reserved.

6 Sample program
6.6 Program printout (excerpt)

Continued

mv30_50;

LoadPress;

UnloadPress;

mv50_70;

LoadGoodPartSlide;

mv70_10;

!Continue working without the trimming press

ELSE

mv30_70;

LoadGoodPartSlide;

mv70_10;

ENDIF

ERROR

IF errno=erCancel RETURN;

ENDPROC

!**

!* Procedure LoadScrapSlide

!*

!* Description:

!*

!* Startup parts and parts outside tolerance limits

!* are placed on the slide for rejects (scrap).

!*

!* Date: Version: Programmer: Reason:

!* 2012-01-01 1.0 Mr. Bean created

!**

PROC LoadScrapSlide()

!Wait until the slide is ready for loading

WaitDI diScrapSlideFree,high;

!Move to the loading position at the scrap slide

mv60_61;

!Open the gripper

GripperOpen;

!Return to the preliminary position

mv61_60;

bReject:=FALSE;

ENDPROC

!**

!* Procedure LoadGoodPartSlide

!*

!* Description:

!*

!* The good parts are placed on the slide for good parts

!*

!* Date: Version: Programmer: Reason:

!* 2012-01-01 1.0 Mr. Bean created

!**

PROC LoadGoodPartSlide()

Continues on next page
54 3HAC046417-001 Revision: -

© Copyright 2013 ABB. All rights reserved.

6 Sample program
6.6 Program printout (excerpt)

Continued

!Wait until the conveyor is ready for loading

WaitDI diIOChuteFree,high;

!Move to the loading position at the conveyor belt

mv70_71;

!Open the gripper

GripperOpen;

!Return to the preliminary position

mv71_70;

ENDPROC

!**

!* Procedure T_CycleStop

!*

!* Description:

!*

!* If the input <Stop is active at the end of the cycle>

!* becomes high then a message is output and a flag is set.

!*

!* Date: Version: Programmer: Reason:

!* 2012-01-01 1.0 Mr. Bean created

!**

TRAP T_CycleStop

!Input <stop at the end of the cycle> is active

TPWrite stStopCycle;

bProgEnd:=TRUE;

ENDTRAP

ENDMODULE

MODULE Message

!**

!*

!* Module name: Message

!*

!**

!*

!* Description:

!*

!* This module contains all text messages of the program.

!*

!*

!* Date: Version: Programmer: Reason:

!* 2012-01-01 1.0 Mr. Bean created

!**

!

CONST string stStopCycle:= "Stop at the end of the cycle requested";

ENDMODULE

Continues on next page
3HAC046417-001 Revision: - 55

© Copyright 2013 ABB. All rights reserved.

6 Sample program
6.6 Program printout (excerpt)

Continued

MODULE MOVEMENT

!**

!* *

!* Module name: M O V E M E N T *

!* *

!**

!* *

!* Description: *

!* *

!* This module contains all movement programs. *

!* *

!* *

!* Date: Version: Programmer: Reason: *

!* 29.02.2007 1.0 Surname,First name created *

!**

!

!**

!* Tool declarations *

!**

PERS tooldata
tGripper:=[TRUE,[[0,0,0],[1,0,0,0]],[10,[0,0,0],[1,0,0,0],0,0,0]];

!

!**

!* Robtarget Definition *

!**

CONST robtarget
p10:=[[0,0,0],[1,0,0,0],[0,0,0,0],[9E+009,9E+009,9E+009,9E+009,9E+009,9E+009]];

CONST robtarget
p11:=[[0,0,0],[1,0,0,0],[0,0,0,0],[9E+009,9E+009,9E+009,9E+009,9E+009,9E+009]];

CONST robtarget
p12:=[[0,0,0],[1,0,0,0],[0,-1,0,0],[9E+009,9E+009,9E+009,9E+009,9E+009,9E+009]];

CONST robtarget
p13:=[[0,0,0],[1,0,0,0],[0,-1,0,0],[9E+009,9E+009,9E+009,9E+009,9E+009,9E+009]];

CONST robtarget
p14:=[[0,0,0],[1,0,0,0],[0,0,0,0],[9E+009,9E+009,9E+009,9E+009,9E+009,9E+009]];

!

CONST robtarget
p20:=[[0,0,0],[1,0,0,0],[0,0,0,0],[9E+009,9E+009,9E+009,9E+009,9E+009,9E+009]];

CONST robtarget
p21:=[[0,0,0],[1,0,0,0],[0,0,0,0],[9E+009,9E+009,9E+009,9E+009,9E+009,9E+009]];

!

CONST robtarget
p30:=[[0,0,0],[1,0,0,0],[0,-1,0,0],[9E+009,9E+009,9E+009,9E+009,9E+009,9E+009]];

CONST robtarget
p31:=[[0,0,0],[1,0,0,0],[0,-1,0,0],[9E+009,9E+009,9E+009,9E+009,9E+009,9E+009]];

!

CONST robtarget
p50:=[[0,0,0],[1,0,0,0],[0,-1,0,0],[9E+009,9E+009,9E+009,9E+009,9E+009,9E+009]];

CONST robtarget
p51:=[[0,0,0],[1,0,0,0],[0,-1,0,0],[9E+009,9E+009,9E+009,9E+009,9E+009,9E+009]];

Continues on next page
56 3HAC046417-001 Revision: -

© Copyright 2013 ABB. All rights reserved.

6 Sample program
6.6 Program printout (excerpt)

Continued

CONST robtarget
p52:=[[0,0,0],[1,0,0,0],[0,-1,0,0],[9E+009,9E+009,9E+009,9E+009,9E+009,9E+009]];

!

CONST robtarget
p60:=[[0,0,0],[1,0,0,0],[0,-1,0,0],[9E+009,9E+009,9E+009,9E+009,9E+009,9E+009]];

CONST robtarget
p61:=[[0,0,0],[1,0,0,0],[0,-1,0,0],[9E+009,9E+009,9E+009,9E+009,9E+009,9E+009]];

!

CONST robtarget
p70:=[[0,0,0],[1,0,0,0],[0,-1,0,0],[9E+009,9E+009,9E+009,9E+009,9E+009,9E+009]];

CONST robtarget
p71:=[[0,0,0],[1,0,0,0],[0,-1,0,0],[9E+009,9E+009,9E+009,9E+009,9E+009,9E+009]];

!

CONST robtarget
p99:=[[0,0,0],[1,0,0,0],[0,-1,0,0],[9E+009,9E+009,9E+009,9E+009,9E+009,9E+009]];

!

!Position names:

!10 : Preliminary position at the die-casting machine

!11 : Preliminary position of the mold in the die-casting machine

!12 : Gripper position at the die-casting machine

!13 : Eject position at the die-casting machine

!14 : End position at the die-casting machine

!20 : Preliminary position at the inspection station

!21 : Inspecting position at the inspection station

!30 : Preliminary position at the cooling basin

!31 : Cooling position at the cooling basin

!50 : Preliminary position at the trimming press

!51 : Placement position at the trimming press

!52 : Gripper position at the trimming press

!60 : Preliminary position at the chute for rejects (Scrap)

!61 : Placement position at the rejects chute

!70 : Preliminary position at the chute for good (OK) parts

!71 : Placement position at the chute for good (OK) parts

!99 : Home position

PROC mv14_20()

!From : End position at the die-casting machine

!To : Preliminary position at the inspection station

IF OpMode()<>OP_AUTO MoveJ p14,v100,z10,tGripper;

MoveJ p20,v2500,z10,tGripper;

ENDPROC

PROC mv20_30()

!From : Preliminary position at the inspection station

!To : Preliminary position at the cooling basin

IF OpMode()<>OP_AUTO MoveJ p20,v100,z10,tGripper;

MoveJ p30,v2500,z10,tGripper;

ENDPROC

PROC mv30_50()

!From : Preliminary position at the cooling basin

Continues on next page
3HAC046417-001 Revision: - 57

© Copyright 2013 ABB. All rights reserved.

6 Sample program
6.6 Program printout (excerpt)

Continued

!To : Preliminary position at the trimming press

IF OpMode()<>OP_AUTO MoveJ p30,v100,z10,tGripper;

MoveJ p50,v2500,z10,tGripper;

ENDPROC

PROC mv30_60()

!From : Preliminary position at the cooling basin

!To : Preliminary position at the reject (Scrap) chute

IF OpMode()<>OP_AUTO MoveJ p30,v100,z10,tGripper;

MoveJ p60,v2500,z10,tGripper;

ENDPROC

PROC mv30_70()

!From : Preliminary position at the cooling basin

!To : Preliminary position at the chute for good (OK) parts

IF OpMode()<>OP_AUTO MoveJ p30,v100,z10,tGripper;

MoveJ p70,v2500,z10,tGripper;

ENDPROC

PROC mv50_70()

!From : Preliminary position at the trimming press

!To : Preliminary position at the chute for good (OK) parts

IF OpMode()<>OP_AUTO MoveJ p50,v100,z10,tGripper;

MoveJ p70,v2500,z10,tGripper;

ENDPROC

PROC mv60_10()

!From : Preliminary position at the reject (Scrap) chute

!To : Preliminary position at the die-casting machine

IF OpMode()<>OP_AUTO MoveJ p60,v100,z10,tGripper;

MoveJ p10,v2500,z10,tGripper;

ENDPROC

PROC mv60_61()

!From : Preliminary position at the reject (Scrap) chute

!To : Placement position at the reject (Scrap) chute

IF OpMode()<>OP_AUTO MoveJ p60,v100,z10,tGripper;

MoveJ p61,v2500,z10,tGripper;

ENDPROC

...

...

ENDMODULE

58 3HAC046417-001 Revision: -
© Copyright 2013 ABB. All rights reserved.

6 Sample program
6.6 Program printout (excerpt)

Continued

Contact us

ABB AB
Discrete Automation and Motion
Robotics
S-721 68 VÄSTERÅS, Sweden
Telephone +46 (0) 21 344 400

ABB AS, Robotics
Discrete Automation and Motion
Box 265
N-4349 BRYNE, Norway
Telephone: +47 51489000

ABB Engineering (Shanghai) Ltd.
5 Lane 369, ChuangYe Road
KangQiao Town, PuDong District
SHANGHAI 201319, China
Telephone: +86 21 6105 6666

ABB Inc.
Discrete Automation and Motion
Robotics
1250 Brown Road
Auburn Hills, MI 48326
USA
Telephone: +1 248 391 9000

www.abb.com/robotics

3H
AC

04
64
17
-0
01
,R

ev
-,
en

	Table of contents
	1 Introduction
	1.1 General

	2 Project flow
	2.1 Project planning procedure

	3 Program structure
	3.1 Process flow diagram
	3.2 Program structure
	3.2.1 Introduction to the program structure
	3.2.2 System modules
	3.2.3 Program modules
	3.2.4 System parameters
	3.2.5 Backup or restore

	3.3 Naming the data
	3.3.1 General naming conventions
	3.3.2 Convention on the position names
	3.3.3 Naming the movement routines
	3.3.4 Use of type-dependent movement routines
	3.3.5 Naming the I/O signals

	3.4 Error handling
	3.5 The program structure
	3.6 Write-protection of the modules / password assignment

	4 Program documentation
	4.1 Introduction
	4.2 Structure for the creation of the program documentation
	4.3 Headers and program information
	4.3.1 Program header
	4.3.2 Module header
	4.3.3 Routine header for procedures and functions in the user program
	4.3.4 Routine header for standard procedures and functions
	4.3.5 Program information
	4.3.6 Disturbance range signals

	5 Naming data, I/O, and labels
	6 Sample program
	6.1 System description
	6.2 Flow chart of the system
	6.3 Overview of the position numbers
	6.4 Signal step diagram
	6.5 Signal description (excerpt)
	6.6 Program printout (excerpt)

