ABB Robotics

Application manual
RAPID development guidelines for handling applications

viy AL HRHED
Power and productivity
for a better world™ " I. I.

Trace back information:

Workspace Main version a23 (not checked in)
Published 2013-02-01 at 10:15:54

Skribenta version 1184

Application manual
RAPID development guidelines for handling applications

Document ID: 3HAC046417-001

Revision: -

© Copyright 2013 ABB. All rights reserved.

The information in this manual is subject to change without notice and should not
be construed as a commitment by ABB. ABB assumes no responsibility for any errors
that may appear in this manual.

Except as may be expressly stated anywhere in this manual, nothing herein shall be
construed as any kind of guarantee or warranty by ABB for losses, damages to
persons or property, fitness for a specific purpose or the like.

In no event shall ABB be liable for incidental or consequential damages arising from
use of this manual and products described herein.

This manual and parts thereof must not be reproduced or copied without ABB's
written permission.

Additional copies of this manual may be obtained from ABB.

The original language for this publication is English. Any other languages that are
supplied have been translated from English.

© Copyright 2013 ABB. All rights reserved.

ABB AB
Robotics Products
SE-721 68 Vasteras

Table of contents

Table of contents

Overview of thisS MANUAL ... e e e e nes 7

[ToT=T g T Vo | £=T=T 0 0= o) 8
Product documentation, M2004 ... e e e e e e s 9

ST =1 R 11

1 Introduction 13
1 S R - o 1= - | Y 13

2 Project flow 15
2.1 Project planning ProCeAUIEouiuiuiiiieii e e e e e e e e 15

3 Program structure 17
3.1 Process flIoW didgramoeieiiiiiii e e e 17
3.2 Program SIFUCTUIEceei ittt e e e e e e e e e e e e e e e rneaeaens 18
3.2.1 Introduction to the program Structure ..o e 18

3.2.2 SystemM MOAUIEScuiiiiii e 19

3.2.3 Program mMoOdUIESciiiiiiiiiiii i 20

3.2.4 System Parameterscciiiiiii i 21

B2 ST = - T (0 o T o] g =1 (o] NP 22

3.3 Naming the dataccooiminieii e e 23
3.3.1 General Naming CONVENTIONSciiiuiiiiie e e e e e e e e e e e eeaenns 23

3.3.2 Convention on the positioN NAMEScciiiiiiiii e 24

3.3.3 Naming the movement routinesSccoeiiiiiiiiiiii e 25

3.3.4 Use of type-dependent movement routinescccvviiiiiiiiiiiiiiiiiieeeaens 26

3.3.5 Naming the /O Signalsccoeieiiiiiii e e e 27

3.4 Error handlingc.oeoeeie e 28
3.5 The program STrUCIUIEcoeiei i e e e e e n e e e e neas 30
3.6 Write-protection of the modules / password assignmentcooiiiiiiiiiiiiieenenns. 31

4 Program documentation 33
L 3 O [1o T [¥ o7 [T o PP 33
4.2 Structure for the creation of the program documentationc.c.cociiiiiiiiiiiiiiinnnns 34
4.3 Headers and program informationccooiiiiiiiiii e 35
4.3.1 Program h@aderouiuiiiiiiii e 35

4.3.2 ModUIE REAEN ...t e 36

4.3.3 Routine header for procedures and functions in the user program 37

4.3.4 Routine header for standard procedures and functionsc.c.coeiiiieiannne. 38

4.3.5 Program informationcoiiiiiiiiiii i 39

4.3.6 Disturbance range Signalsccoiiiiiiiiiiiii e 40

5 Naming data, I/O, and labels 41
6 Sample program 45
6.1 System desCriPtioncoiiiiii 45
6.2 Flow chart of the SYyStem ... e e s 46

6.3 Overview of the position NUMDEIS ... e e 47
6.4 Signal Step diagramoieieiiiiiiii e 48
6.5 Signal descCription (EXCEIPL)vieiiiiiii i e e 49
6.6 Program printout (EXCEIPL)eeieieiii it 51
3HAC046417-001 Revision: - 5

© Copyright 2013 ABB. All rights reserved.

This page is intentionally left blank

Overview of this manual

Overview of this manual

About this manual
This manual explains programming guidelines while handling applications under
RAPID software development.

Who should read this manual?
This manual is primarily intended for experienced programmers.

Prerequisites
The reader should be well versed in

 industrial robots and their basic terminology,
+ the Rapid programming language
« and with the system parameters and their configuration.

References
References Document ID
Program design guidelines - Part B / S4 Handbook of Methods
Revisions
Revision Description
- First edition, Robotware 5.15.
3HAC046417-001 Revision: - 7

© Copyright 2013 ABB. All rights reserved.

License agreement

License agreement

License agreement for RobotWare Machine Tending
1 ABB is the only owner of the copyright and usage rights in the software option
RobotWare Machine Tending that is delivered.

2 ABB assigns to the licensee a simple, non-transferable, exclusive, but
unlimited right to use the option RobotWare Machine Tending.

3 The license entitles the user only to the "proper use" of the software option
RobotWare Machine Tending on a robot controller. The licensee is not allowed
to replicate the option RobotWare Machine Tending or parts of it and make
these accessible to third parties or the use the software or parts of it on other
robot controls. Taking a back-up copy exclusively for own use on the original
hardware is exempted from this.

4 Modifying, translating, reverse engineering or decompiling or disassembling
the software option RobotWare Machine Tending is not allowed.

8 3HAC046417-001 Revision: -
© Copyright 2013 ABB. All rights reserved.

Product documentation, M2004

Product documentation, M2004

Categories for manipulator documentation
The manipulator documentation is divided into a number of categories. This listing
is based on the type of information in the documents, regardless of whether the
products are standard or optional.

All documents listed can be ordered from ABB on a DVD. The documents listed
are valid for M2004 manipulator systems.

Product manuals

Manipulators, controllers, DressPack/SpotPack, and most other hardware will be
delivered with a Product manual that generally contains:

Safety information.

Installation and commissioning (descriptions of mechanical installation or
electrical connections).

Maintenance (descriptions of all required preventive maintenance procedures
including intervals and expected life time of parts).

Repair (descriptions of all recommended repair procedures including spare
parts).

Calibration.

Decommissioning.

Reference information (safety standards, unit conversions, screw joints, lists
of tools).

Spare parts list with exploded views (or references to separate spare parts
lists).

Circuit diagrams (or references to circuit diagrams).

Technical reference manuals
The technical reference manuals describe reference information for robotics
products.

Technical reference manual - Lubrication in gearboxes: Description of types
and volumes of lubrication for the manipulator gearboxes.

Technical reference manual - RAPID overview: An overview of the RAPID
programming language.

Technical reference manual - RAPID Instructions, Functions and Data types:
Description and syntax for all RAPID instructions, functions, and data types.
Technical reference manual - RAPID kernel: A formal description of the
RAPID programming language.

Technical reference manual - System parameters: Description of system
parameters and configuration workflows.

Application manuals

Specific applications (for example software or hardware options) are described in
Application manuals. An application manual can describe one or several
applications.

Continues on next page

3HACO046417-001 Revision: -

9
© Copyright 2013 ABB. All rights reserved.

Product documentation, M2004

Continued

An application manual generally contains information about:

The purpose of the application (what it does and when it is useful).

What is included (for example cables, I/O boards, RAPID instructions, system
parameters, DVD with PC software).

How to install included or required hardware.
How to use the application.
Examples of how to use the application.

Operating manuals

The operating manuals describe hands-on handling of the products. The manuals
are aimed at those having first-hand operational contact with the product, that is
production cell operators, programmers, and trouble shooters.

The group of manuals includes (among others):

Operating manual - Emergency safety information

Operating manual - General safety information

Operating manual - Getting started, IRC5 and RobotStudio

Operating manual - Introduction to RAPID

Operating manual - IRC5 with FlexPendant

Operating manual - RobotStudio

Operating manual - Trouble shooting IRCS5, for the controller and manipulator.

10

3HAC046417-001 Revision: -
© Copyright 2013 ABB. All rights reserved.

Safety

Safety

Safety of personnel
A robot is heavy and extremely powerful regardless of its speed. A pause or long
stop in movement can be followed by a fast hazardous movement. Even if a pattern
of movement is predicted, a change in operation can be triggered by an external
signal resulting in an unexpected movement.

Therefore, it is important that all safety regulations are followed when entering
safeguarded space.

Safety regulations
Before beginning work with the robot, make sure you are familiar with the safety
regulations described in the manual Operating manual - General safety information.

3HAC046417-001 Revision: - 11
© Copyright 2013 ABB. All rights reserved.

This page is intentionally left blank

1 Introduction

1.1 General

1 Introduction

1.1 General

The RAPID programming language assumes knowledge in the fundamentals of
higher level programming languages. This manual does not provide basic
information about RAPID programming and the available instructions and functions.

Programming styles, as we know, are different and each one who ever tried to read
and understand a program which has been written by someone else knows, how
frustrating the result can be.

The purpose of this manual is to provide a programming standard for handling
applications. It covers the experience of more than 15 years of software
development in this field.

This standard does not only mean the program code itself but also includes the
steps for preparation as well as the program documentation

Robot programmers of ABB, subcontractors and others should make use of these
guidelines, with the goal to have a common open standard for RAPID programs.
This will help to make different handling programs more comprehensible for
programmers, technicians and customers.

The program elements in this manual are named in accordance with the guidelines
compiled by ABB: "Program design guidelines - Part B / S4 Handbook of Methods".

ﬂ Note

Users of the ABB software option Machine Tending Solution (MTS) note that this
manual does not describe special functionalities of MTS. Nevertheless if a RAPID
application is programmed by considering these guidelines, it will be easier to
use MTS. If the HomeRun functionality of MTS shall be used in a software project,
these guidelines are binding. Otherwise, HomeRun will not work properly.

3HAC046417-001 Revision: - 13
© Copyright 2013 ABB. All rights reserved.

This page is intentionally left blank

2 Project flow

2 Project flow

2.1 Project planning procedure

2.1 Project planning procedure

Before writing the robot program and using these guidelines in the actual sense,
the programmer should first of all understand the task description and put it down
in a form that is meaningful to him.

The following steps must be complied with for this purpose:

1

Preparing a process flow description of the entire system.

To begin with, the programmer should be clear about what needs to be
programmed. A process flow description of the system is indispensable for
this purpose. This process flow description (flow chart), however, should not
only contain the normal execution, but also the strategies for abnormal
conditions (error handling).

Creating a position overview.

A position overview facilitates quick detection of the stations (for example,
machines, conveyors, slides...) that are located in the system and is helpful
in finding your way in the process flow description and for naming or
designating the robot positions associated with the stations.

Defining the required signals.

The signals can be defined once the stations located in the system are known
and how they communicate with one another. In the process, it should be
noted that a "High active handshake" must always be used for the
communication. A non-existent OK signal is not to be evaluated automatically
as an OK indication, since on account of wire breakage or defective sensors
it cannot be ensured that the signal is always working properly (example:
Instead of an input signal meaning "Production without the robot", a signal
with the meaning "Production with the robot" should be used. This rules out
inadvertent movements of the robot in the event of wire breakage). Release
signals for an action by the robot as well as acknowledgments should follow
the following example (Signal flow for unloading a feed by the robot):

Input: Feed ready for unloading '| ?
Output: Robot has unloaded feed \
Output: Robot ide feed ‘

L]

en1300000185

When communicating with a PLC, only the edge of a signal from the PLC
must be evaluated (for example, for release signals). This is so because a
signal present at the robot must not necessarily also be a clearance signal
(Robot controller = Down-stream controller).

Only those signals with which the robot sends indications that it is beyond
the disturbance range of a machine, etc., should be evaluated statically.

All signals to the robot (Outputs of the PLC) are static signals, which must
be acknowledged accordingly by the robot. Sending pulse signals is not
permissible.

Continues on next page

3HACO046417-001 Revision: -

15
© Copyright 2013 ABB. All rights reserved.

2 Project flow

2.1 Project planning procedure

Continued

8
9

Documenting the signals.

After knowing the signals that are used, these must also be documented.
The documentation of the signals always includes the name, a brief
explanation and a detailed explanation. The brief explanation serves as an
enumeration of the name, and the detailed explanation is an enumeration of
the function of the signal. A sample of such documentation is provided in
the Sample program on page 45.

PLC interfacing / defining and documenting handshaking.

In order to explain the function of the individual signals even better, a "Signal
step diagram" should be prepared to illustrate the chronological flow of the
signals and, thus, to clarify the function of the signals. An example of such
a signal step diagram is also provided in the sample documentation.

The process flow description, the documentation of the signals and the signal
step diagram must be coordinated with the PLC programmers.

Specifying error handling.

The following aspects must be clarified:
« What errors or faults can occur?
« How should the operator respond?
« How should the robot respond?

Specifying password assignment.

Should passwords be assigned, what should they be and which levels should
be password-protected?

Defining task distribution for the background tasks (only for multitasking).
Writing the program (including backgound tasks).

10 Documenting the program.

16

3HAC046417-001 Revision: -
© Copyright 2013 ABB. All rights reserved.

3 Program structure

3.1 Process flow diagram

3 Program structure

3.1 Process flow diagram

A process flow diagram must always be prepared at the beginning of the project.
If this important preparatory work is not done, it almost always leads to problems,
particularly with complex programs.
The preparation of a process flow diagram compels the programmer to work in a
structured manner and enables critical parts of the project to be detected in the
initial stage. This avoids undesirable surprises when the project is already in an
advanced stage of implementation. Moreover, a process flow diagram simplifies
and facilitates induction into the project in the event of any necessary changes in
the team.
The resources for the preparation of a process flow diagram are for example:

» Flow chart

* Nassi-Shneidermann diagram

« Simplified system layout with position overview

» Process flow description / System description

3HAC046417-001 Revision: - 17
© Copyright 2013 ABB. All rights reserved.

3 Program structure

3.2.1 Introduction to the program structure

3.2 Program structure
3.2.1 Introduction to the program structure

In general, the following applies to the RAPID program structure:
 Strict demarcation between movement routines and administrative routines.
+ BASE.SYS and USER.SYS remain unchanged.
- Standard utilities are saved in separate system modules and are possibly
encoded. Such utilities may be: Palletizing modules, data transfer to

visualization systems, special self instructions, and so on. These standard
routines, if required, must be adapted to the year of manufacture.

- Data for processes can be saved in a separate program module (for example,
PRGPARAM.MOD).

The following figure illustrates how the basic structure of a RAPID program for
handling applications should look like.

Administrative module
(.mod)

Contains the logical production
flovy and the depending data.

Movement module
{.mod)

Containg the moverment related
routines and the depending data
liketooldata, warkohjects and
robtarget s

Message module
{.mod)

Cantains the program message
text declarations.

Basic functionality module
(.sys)

Contains procedures, functions
and data, that do niot belohg
directly to the application, but e.q.
provide general basic and
extended features.

en1300000181

18 3HAC046417-001 Revision: -
© Copyright 2013 ABB. All rights reserved.

3 Program structure

3.2.2 System modules

3.2.2 System modules

At the time of delivery, the system modules "BASE" and "USER" are already
available as the operating system in the controller. These should not be changed.

System-specific routines and data are saved in their own system modules, which
are protected from external attack using special attributes (for example, NOVIEW
or encoding of the source code).

3HAC046417-001 Revision: - 19
© Copyright 2013 ABB. All rights reserved.

3 Program structure

3.2.3 Program modules

3.2.3 Program modules

The Sample program on page 45 comprises at least of three modules:

Module Description

<CellName>.mod | Main program module, which contains the procedure main() and the
general production flow.

Movement.mod |Movement module with movement routines and the related data.

Message.mod Module with messages and text fragments.

Moreover, it is possible to add other modules containing data and routines to the
programs, with these modules being applicable to several robot stations (for
example, tools (TCPs), work-piece objects, etc.), or containing different setup
routines. These should be created as a program module so that they can be saved
as a separate module and may be loaded in another robot controller.

The division has been selected on grounds of practicable handling. Thus, for
example, messages are saved only in the module Message. nod and may, if
required, be completely revised or translated in a foreign language.

When saving the program, all program modules (*.MOD) are saved in a common
directory. In addition, a program file ending with . PG is generated and this ensures
that all modules saved can be loaded again jointly.

ﬂ Note

When loading a program < Cel | Name >. pgf, all program modules *. MOD
already loaded are deleted or overwritten with the new modules. In contrast, the
system modules (*. SYS) must be loaded or deleted separately.

20

3HAC046417-001 Revision: -
© Copyright 2013 ABB. All rights reserved.

3 Program structure

3.2.4 System parameters

3.2.4 System parameters

The system parameters are stored in a separate directory called SYSPAR on the
data medium. Basically, the system parameters from the controller are saved in
this directory.

3HAC046417-001 Revision: - 21
© Copyright 2013 ABB. All rights reserved.

3 Program structure

3.2.5 Backup or restore

3.2.5 Backup or restore

The backup feature saves all system parameters, system modules and program
modules in a single operation. The data is stored in a directory that the user must
specify.

In addition to the backup, the program should always also be saved separately.

The restore feature restores the data from a backup directory. Restore replaces
all system parameters and loads all modules from the backup directory. A warm
restart is initiated after restoring the data.

22

3HAC046417-001 Revision: -
© Copyright 2013 ABB. All rights reserved.

3 Program structure

3.3.1 General naming conventions

3.3 Naming the data
3.3.1 General naming conventions

The "Handbook of Methods" is binding for the assignment of names. The prefixes
defined in this handbook for individual variables, constants and persistents, in fact,
reduce the number of characters available for choosing the rest of the name, but
however, they are indispensable for clear and unique identification. In a sample
query,suchas | F Start = 1 THEN. .., for example, it cannot be concluded
whether what is being referred to is an input or something else. It is only with the
prefix di that it becomes clear that what is being referred to here is a digital input
(IF disStart = 1 THEN...).

3HAC046417-001 Revision: - 23
© Copyright 2013 ABB. All rights reserved.

3 Program structure

3.3.2 Convention on the position names

3.3.2 Convention on the position names

The following specifications are laid down as an extension to those given in the
"Handbook of Methods™:

» Position names basically begin with the letter "p".

« Special default or standard positions have identifying names (pHone, pReady,
etc.)

+ All other positions are named according to the following convention:

Format Description

pXX(X) p:Position prefix

PXX(X)_TY | XX(X): 2-digit (or 3-digit) station name beginning with 10 (100) (e.g.: Separation
(10 or 100), Qiling (20 or 200), etc..)

T:Type prefix for index according to different part types

Y:Type index according to different part types

Examples:
pl0, Prelimnary position at station 10
pll, Pick position at station 10
pl2, End position at station 10

p20 Prelimnary position at station 20

p20_T1 Prelimnary position at station 20 for part type 1
p21 _T1 Drop position at station 20 for part type 1
p22_T1 End position at station 20 for part type 1

A station (machine) can have any number and there is no mandatory specification.
The only condition: The meaning of a number must be explained on a position
overview diagram.

For subordinate (or secondary) intermediate positions, serial numbering or the
selection of star "*" positions has been a proven method for the r obt ar get s,
since it is impossible to find an intelligent and self-explanatory name for each
position and one that still fits within the maximum length of a position name.

A sequence of * positions (even individually) should always be enclosed by positions
with clear and unique names, for example, p10, *,..., p11.

The home position should always be the position p99 or p999.

24 3HAC046417-001 Revision: -
© Copyright 2013 ABB. All rights reserved.

3 Program structure

3.3.3 Naming the movement routines

3.3.3 Naming the movement routines

The names of movement routines always identify the starting and ending point of
a movement.

In general, all movement routine names begin with the prefix nv.
nvSt art poi nt _Endpoi nt
Example

mv10_999 moves the robot from the station 10 to the home position.

mv10_20 |moves the robot from station 10 to station 20.

As a rule, movement to the first position (starting position) takes place only in
programming mode and at slow speed. In this manner, uncontrolled movement
from the end (final) position back to the starting position while testing the robot
movements is prevented.

It cannot be prevented that a worker operates a movement routine in continuous
mode, which means that after the last instruction in the routine it starts executing
again from the fist instruction onwards. Slow speed may therefore prevent
uncontrolled movement and major damage.

Example
PROC nmv999_10 ()
'Von : Homeposition
I Nach: Prepos. station 10
| F OpMode() <>0OP_AUTO Mved p999, v200, z10,t G i pper;
MoveJd *,v2500, z10,t Gi pper;
Moved pl0, v2500, z10,t Gi pper;
ENDPRCC

3HAC046417-001 Revision: - 25
© Copyright 2013 ABB. All rights reserved.

3 Program structure

3.3.4 Use of type-dependent movement routines

3.3.4 Use of type-dependent movement routines

If different types of work-pieces need to be moved using different movement
rou-tines in a robot program, but are handled with the same program execution
flow, these are identified by a type-dependent index, which is also provided with
the "T" prefix.

Example:
Movement from position 10 to 20 for type number 3 with the type prefix:
Routine name: mv10_20_ T3

The advantage of this method lies in the fact that, in general, only the movement
routines change, but not the general program execution flow.

As a result, the administrative routines that invoke the movement routines must
not be rewritten for each type, but instead, only the index for the routine call needs
to be adapted. This takes place preferably with the help of routine calls with late
binding (Late Binding "%st r i ng%).

Example:

% mv10_20_T"+Val ToStr (nTypeNo) % (with type prefix)
or with

Cal | ByVar "mv10_20_T", nTypeNo;
Benefit:

The administrative program needs to be modified only once in case of any changes
in its execution flow.

ﬂ Note

When using type-dependent routines, the position names are also indexed.

Example:
PROC mv12_20_T1()
IFrom End position station 10
ITo: Prelimnary position station 20
First Move\ J, p12_T1,v200, z10, t Gi pper;
Moved *,v2500,z10,t G i pper;
Moved p20_T1, v2500, z10,t G i pper;
ENDPROC

26 3HAC046417-001 Revision: -
© Copyright 2013 ABB. All rights reserved.

3 Program structure

3.3.5 Naming the I/O signals

3.3.5 Naming the 1/O signals

For the identification of the inputs and outputs, the codes di/do for digital
inputs and outputs, ai/ao for analog inputs and outputs and gi/go for group
inputs and outputs must be used (for example, di Pr ogSt op, doMot or O f).

The name of the signal should be chosen to be as self-explanatory as possible
and should be related to the "1" status of the function (for example,

di G i pper Open for "Gripper is open").

Any assignment of the physical channels within the signal names must be
avoided (for example, di 1_Cycl eEnd).

The somewhat favored naming convention like di 1, do5, ..., which indicates
the channel where a signal is located, may be somewhat helpful while testing
the hardware, but does not serve to improve the readability of the programs.
It is not so important where a signal is present, but instead, that it is present.

The position, name (or designation) and explanation of the signals must be
documented in any case.

3HACO046417-001 Revision: -

27
© Copyright 2013 ABB. All rights reserved.

3 Program structure

3.4 Error handling

3.4 Error handling

As arule, all programs should be written so that they are as reliable as possible.
This means that every possible error or fault condition should be trapped by the
program on its own in order to enable defined error handling and to thereby ensure
streamlined and trouble-free operation of the system as far as possible. The program
documentation should describe the possible errors and how they are handled. Any
response to an error condition that occurs definitely depends on the situation. For
this reason, standard routines should always have their own error handlers, which
treat the possible error regardless of the procedure / function in which the error
occurs. In general, it would be possible to have a standard error handler in the
main routine in order to be able to trap the error at least globally.

Furthermore, it is possible to implement the strategies necessary for conditions
of faults or failures with the help of error handling, by invoking separate error
numbers (1-90) using the RAI SE instruction. In this process, the program exits the
routine with a specific abort or cancelation, and continuation of program execution
is enabled via the error handling routine with suitable measures and actions.

Example:
CONST errnum er ToHormePos: =89;

| IR S S S S

I* Procedure Exanple()

| *
I* Description:

!*

I* Exanple of error handling

| *

I* Date: Version: Progranmer: Reason:

I* 2013-01-01. 1.0 M. Exanple created
!**
PROC Exanpl e()

I Rel ease or cancel ation is expected

WaitUntil di Rel ease=hi gh or dil RBt oHonme=hi gh;

IWth the request nove "IRB to the honme position"

I'the programis termnated via error handling

| F di | RBt oHome=hi gh RAI SE er ToHonePos;

ERROR

| F ERRNGC=er ToHonmePos THEN

mv100_999;

RAI SE;

ENDI F

ENDPROC

In the example illustrated above, the procedure Exanpl e waits for the input

di Rel ease or the cancelation signal (for example, di | RBt oHone). If the cancel
signal is set, the error handling routine is invoked with the error number

er ToHonmePos. The error handling routine for this error number in the example

Continues on next page

28

3HAC046417-001 Revision: -
© Copyright 2013 ABB. All rights reserved.

3 Program structure

3.4 Error handling
Continued

given contains a movement of the robot (mv100_999) and a call to the error handling
system of the previous routine (RAI SE). The error should be handled appropriately
in this previous routine.

3HAC046417-001 Revision: - 29
© Copyright 2013 ABB. All rights reserved.

3 Program structure

3.5 The program structure

3.5 The program structure

The

basic structure of the main program module should not be modified in order

to enable similar appearance of the routines and to be able to find one's way in
the program. A Sample program on page 45 has been furnished in a later chapter.

The

The

main routine could have the following structure:

PROC i n()

Ilnitialize the start val ues

Init;

I Check if the gripper is working
CheckG i pper;

I Move to the preposition of the first station
M/999_100;

I Repeat until automatic node is de-sel ected
VWHI LE di Aut omati c=hi gh DO

I Qut put programinformation
Pr ogl nf o;

| Execut e one production cycle
Producti on;

ENDWHI LE

I Move to hone position
M/100_999;

STOP;

ENDPROC

predefined routines must "merely" be provided with their contents.

30

3HAC046417-001 Revision: -
© Copyright 2013 ABB. All rights reserved.

3 Program structure

3.6 Write-protection of the modules / password assignment

3.6 Write-protection of the modules / password assignment

After the station has been commissioned, all modules may be assigned the
VI EWONLY attribute so that any unprotected manipulation by the worker is ruled
out. The VI EWONLY attribute can only be changed on one PC.

Moreover, the robot can be provided with passwords at various levels so that no
un-authorized access to the robot is possible. For this reason, passwords must be
assigned at any cost and controlled.

o

No password is specified by default. For this reason, the operator can initially
make any modifications.

3HAC046417-001 Revision: - 31
© Copyright 2013 ABB. All rights reserved.

This page is intentionally left blank

4 Program documentation

4.1 Introduction

4 Program documentation

4.1 Introduction

In order to ensure proper program creation and maintenance, programs must be
docu-mented in accordance with the following aspects:

1

A complete program printout with all procedures, functions and routines
(other than system modules with standard routines) must be created.

With the help of a simple, clearly structured and commented program
structure it must be ensured that detailed program flow charts of all
procedures and routines may be dispensed with.

This is ensured to a large extent by creating the routine mai n() and the
routines called within it. For station-specific complex or cluttered program
flows, structure charts or flow charts (for example with MS Visio) are prepared.
These should, however, not represent any 1:1 implementation of the RAPID
program, but instead, it should have an overview of all basic logical flows
for the contents.

The functional descriptions of the standard routines used may be incorporated
into the documentation for the sake of completion. System-specific processing
is omitted.

All robot positions (starting and end positions of a movement) must be
represented as position numbers in a graphical image (for example simplified
system layout). This can, however, be limited to the station number if the
starting and end positions required are described in a separate list.

All signals are described in a signal list with names, meanings, channel
numbers, etc.

For all other system parameters, the description for parameter modification
must be given separately in the documentation.

If needed, other supplementary documents may be added.

3HACO046417-001 Revision: -

33
© Copyright 2013 ABB. All rights reserved.

4 Program documentation

4.2 Structure for the creation of the program documentation

4.2 Structure for the creation of the program documentation

1 Program Structure

a General Rules
System Parameters
System Modules
Program Modules

®O o O T

Naming Conventions
I General Naming Conventions
Il Naming of Positions
Il Naming of Movement Routines
IV Naming of Digital Inputs and Outputs
2 Program Description
a Position Layout
b Position Description
¢ Description of the Production Cell
I Components of the Production Cell
Il Description of the Production Flow
lll Production Flow in Case of Errors
d Flowchart of the Program Flow
3 Overview of the Progam- and System Modules
4 Guidance for Commissioning
a Setting up the Worldzones and Event Routines
b Multitasking
I Available Tasks
Il Registering the Tasks
lll Preparing the Tasks to be Loaded Automatically
IV Loading the Task Modules into the Memory

34 3HAC046417-001 Revision: -
© Copyright 2013 ABB. All rights reserved.

4 Program documentation

4.3.1 Program header

4.3 Headers and program information

4.3.1 Program header

A standard module header like the one shown below can be used. It needs to be
filled up once at the time of setting up the project and it must be then updated in
case of program changes:

| BRI R R Sk S S e ok ok R R S R R R R Sk kS R R R R R Rk kb S R R R R ik kR R

| *
| *

| *

Station : System Name (Designation)

[BRI E E E E E E EE SE EE E E E E E E E E E E EE E E EE E EE E E E EEE E E E E E E E EEE E E E E E EE E

Custoner : Custoner conpany nane and | ocation

Project nane : Project Description
Project no. : Oder Nunber

Robot no. : | RB ?7?-?2?7???

Sof tware : RobotWare 5. 15

Revision : 0

Key Contr. : ThEgOGdDi EyCQuNg

Key Drive : AvEcAeSARnDRI Turi TESAl UTaNT

Aut hor : Nane of the author
Conpany : The conpany nane,
Cty /| State

Departnent : Nane of departnent
Tel ephone : +67(0)12345/99 — 0

Hotline : +67(0)12345/99 — 1

Version : 1.0
Created : 2013-01-01

Modi ficati on Date: Nanme: Reason:
2013-02-31 M. Exanple New rel ease signal

[BRI Sk R R Sk R R Sk R R R R R R R S R AR Rk Sk R R R R R R R R R Rk o

Additional information may be provided such as the contents of the module and
the software version of the routines incorporated.

3HACO046417-001 Revision: -

35
© Copyright 2013 ABB. All rights reserved.

4 Program documentation

4.3.2 Module header

4.3.2 Module header

The module header for program and system modules looks like the following:

| IR I I S O I
| *

I* Modul e nane: Nane of the nodul e

| *

| B I I R R
| *

I'* Description:

| *

I* General description of the nmodule functionality

| *

I* Date: Version: Progranmer: Reason:
I* 2013-01-01 1.0 M. Exanple created

| B S

36 3HAC046417-001 Revision: -
© Copyright 2013 ABB. All rights reserved.

4 Program documentation

4.3.3 Routine header for procedures and functions in the user program

4.3.3 Routine header for procedures and functions in the user program

Administrative routines have a routine header, which describes the function of the
routine. Program modifications or adaptations in the routine must be marked in
the program header with the date, programmer and reason for the same.
Example:

[k kK kK R R K R Kk R KR R KR R KR R K K R K K R K K

| *

I* Sanmpl e procedure
I* Description:

I* General description of the routine function

I* Date: Version: Programmer: Reason:
I* 2013-01-01 1.0 M. Exanple created
1* 2013-01-02 1.1 M. Exanple bTest added

[IRk S b e b b S b R R R S R O Rk S Sk R R S O

A detailed routine header is definitely not necessary for movement programs since
a movement program should not contain anything other than move commands.
Hence, it is not mandatory to provide a routine header in such cases.

Example:
PROC mv999_100()
! From Hone position
!To : Prelim pos. DGM
| F OpMode() <>OP_AUTO Mved p999, v200, z10,t G i pper;
MoveJ p100, v2500, z10, t Gri pper;
ENDPRCC

3HAC046417-001 Revision: - 37
© Copyright 2013 ABB. All rights reserved.

4 Program documentation

4.3.4 Routine header for standard procedures and functions

4.3.4 Routine header for standard procedures and functions

Standard routines contain a routine header, which gives an explanation of the
routine as well as the data used. In the process, the transfer parameters, the return
parameters as well as all the data that the routine modifies or needs are listed and
described. Lines that are not needed in the headers may be omitted.

In addition, an example is added from which it becomes clear how the routine is
to be used or how its parameters are to be configured.

Example:

| I I S S S
| *

I* ROUTI NE NAME: <nane of the routine>

| *

| BRI S

| *

I * DESCRI PTI ON: <what the procedure does (not how)>
I* IN:. <paraneter nanme and description>

I* OPTIONAL: <paraneter nane and description>

I* I NOUT: <paraneter name and description>

I'* RETURN: <paraneter type>

I'* ASSUMPTI ONS: <list of each external variable,

I* control, open file, or other elenent

I* that is not obvious>

I* EFFECTS: <list of each affected external variable
I* control or file and the effect it has

I* (only if this is not obvious) >

I'* NOTE: <internal remarks (only if this is not
I* obvious) >

I * EXAMPLE: <exanple, how the routine is used
I* (only if this is not obvious)>

I* Date: Version: Progranmer: Reason:
I* 2013-01-01 1.0 M. Exanple created

[IR EE Rk bk kS bk S kR R Rk kI kb R o kS R R O b O R Ik S

FUNC dat at ype Routi neNanme(Argunent s)

ENDFUNC

38

3HAC046417-001 Revision: -
© Copyright 2013 ABB. All rights reserved.

4 Program documentation

4.3.5 Program information

4.3.5 Program information

Each program must contain information about its origin and subsequent
modifications. Moreover, the tasks and the process flows of the system may be
described in a special module.

It should contain the following information as a minimum:

This

routine Mai n or it may be displayed via a separate routine on the FlexPendant.

Station name
Current program version
Name of the programmer
Serial number of the robot
Hotline number, if this is different from the ABB hotline
Note on the info routine, if available
information can either be in the form of comments at the beginning of the

Example:

| * d ddhdhdhdhdhddhdhddddhddddddddddddddddddddddddddbdddddddddddddsh

I* Procedure main *

| % *

I* Description: *

| * *

I* This procedure sets the initial values for execution *
!* *

I* Date: Version: Programmer: Reason: *

I* 2013-01-01 1.0 Author created *

[IR R ok kb S b b I R I kR O S R R Rk Sk b R O b ok R I

PROC mai n()
!***
| System dat a

I Custorer : Conpany XYZ

I System : DCM Operation

I'SN no. : 24-12345

I'Aut hor : M. Exanple

IDate : 2012-01-01

IHotline : +67(0)1234/56-798

| I O R O R

ENDPRCC

3HACO046417-001 Revision: -

© Copyright 2013 ABB. All rights reserved.

39

4 Program documentation

4.3.6 Disturbance range signals

4.3.6 Disturbance range signals

In addition to the normal handshake for program execution, in case of machine
operations, the robot should also send a signal to the corresponding machine that
it is not located in its disturbance range. Safe working of the machine can be
ensured in this manner since the machine should move only if this signal is set.

The disturbance range signals must be defined in such a manner that the "1" status
always means "Robot outside the disturbance range" (safety against cable
breakage).

Within the robot program, this output may be set either via world zones or in the
program flow.

If the disturbance range is set in the program flow, collisions must be prevented
by timely setting (computer running before the controller).

This can take place either by using a "fine" point or by position-related triggering
(Triggl, Tri ggJ, MovelLDO, or MoveJDO) at the end point of the movement.

40

3HAC046417-001 Revision: -
© Copyright 2013 ABB. All rights reserved.

5 Naming data, I/O, and labels

5 Naming data, 1/0, and labels

Prefixes and examples

Type of data Prefix Example
aiotrigg aio aioExample
bool b bPartOK
btnres res resExample
busstate bst bstExample
buttondata btn btnExample
byte bt btExample
clock ck ckCycleTime
confdata cf cfConf15
corrdescr cd cdExample
datapos dp dpExample
dionum i iCondition
dir dir dirExample
errdomain erd erdExample
errnum er erGripperError
errstr ers ersExample
errtype ert ertExample
event_type evt eviExample
extjoint €j ejAxpos10
icondata ico icoExample
identno id idExample
inthum ir irCycleStop
iodev de deFile
iounit_state ios iosExample
jointtarget jt jtExample
listitem Ist IstExample
loaddata lo loPart1
loadidnum lid lidExample
loadsession Is IsExample
mecunit me meUnit
motsetdata mo moC_Motset
num n nCounter
opnum -

orient or orlent1
paridnum -

paridvalidnum |-

Continues on next page

3HAC046417-001 Revision: -
© Copyright 2013 ABB. All rights reserved.

41

5 Naming data, 1/O, and labels

Continued

Type of data Prefix Example
pathrecid prc prcExample
pos ps psPos1
pose pe peFrame1
progdisp pd pdSearch
rawbytes raw rawExample
restartdata rsd rsdExample
robjoint rj rjExample
robtarget p pHOME
shapedata sh shExample
seamdata sm smStart1
signalxx - Not used in programs
socketdev sde sdeExample
socketstatus sst sstExample
speeddata v v50
stoppointdata spd spdExample
string st stName
symnum sy syStation1
syncident sid sidExample
System Data - Not defined
taskid tid tidExample
tasks tsk tskExample
testsignal - -
tooldata t tGripper
tpnum tp tpExample
trapdata td tdExample
triggdata tr trExample
tunetype tu tuExample
Welddata wd wdFillet10
weavedata wv wvVert
wobjdata w wFixture2
wzstationary wz, (wzs) wzsExample
wztemporary wz, (wzt) wztExample
zonedata z z100
Label Ib IbStart
(Labels are not used since the command associated
with them, GOTO, should not be used.)
Type of I/O Prefix Example
digital in di diFetchPart

Continues on next page

42

3HAC046417-001 Revision: -

© Copyright 2013 ABB. All rights reserved.

5 Naming data, I/O, and labels

Continued
Type of I/0 Prefix Example
digital group in |gi giPartNumber
digital out do doPartPlaced
digital group out |go goMoldNumber
analog in ai aiTemperature
analog out ao aoFeed
3HAC046417-001 Revision: - 43

© Copyright 2013 ABB. All rights reserved.

This page is intentionally left blank

6 Sample program

6.1 System description

6 Sample program

6.1 System description

The system consists of an ABB robot IRB 6400/2.8m, one die-casting machine,
one parts inspection station, one cooling basin, one trimming press, one chute for
good parts and one for rejected parts and scrap.

The robot IRB 6400 removes the molded parts from the die-casting machine and
holds them in front of an inspection station. If the part inspected is complete, the
die-casting machine is restarted. After inspecting the parts, they are cooled down
by turning them over in the cooling basin.

The good (OK) parts are finally placed in a trimming press and removed after
trimming in order to place them on the chute for good (OK) parts. The robot then
returns to its waiting position in front of the die-casting machine.

If a reject part (scrap) is detected at the inspection station, it is placed after cooling
down directly in the chute for rejects (scrap), after which the robot returns to the
home position.

If the trimming press is deselected, the parts are placed on the chute for good (OK)
parts after they are cooled down.

Special functions
Stop at the end of the cycle:

If the operator requests for "Stop at the end of the cycle" using the button on the
die-casting machine, the robot removes one part from the die-casting machine,
places it down and moves to its home position.

Move the robot to its home position:

If the robot does not get any signals from the peripheral devices, it can be made
to cancel the instantaneous processing and move to the home position by pressing
the "Robot to home position" button.

If the robot program is started from nai n and the robot is not in the home position,

it can be moved to the home position in manual mode by joystick or on a direct
route.

3HAC046417-001 Revision: - 45
© Copyright 2013 ABB. All rights reserved.

6 Sample program

6.2 Flow chart of the system

6.2 Flow chart of the system

(Start of program)

Set start-up values

1

howe to = afe position in front of
DT

!

hlore to the home position

<_ End of program)

Ched: part completeness

'

Cool down the part

Serap part?
No

Crop part at,bad part” zlide

Crop part at,,good part’ slide =i

Unlaad the trimming press

¥
Crrop part at, good part” slide

!

il
T

ot
f

en1300000182

46 3HAC046417-001 Revision: -
© Copyright 2013 ABB. All rights reserved.

6 Sample program

6.3 Overview of the position numbers

6.3 Overview of the position numbers

en1300000183

Position

Name

10

Preliminary position at the die-casting machine

11

Preliminary position of the mold in the die-casting machine

12

Gripping (picking) position at the die-casting machine

13

Eject position in the die-casting machine

14

End position at the die-casting machine

20

Preliminary position at the inspection station

21

Inspecting position at the inspection station

30

Preliminary position at the cooling basin

31

Cooling position at the cooling basin

50

Preliminary position at the trimming press

51

Placement position at the trimming press

52

Gripping (picking) position at the trimming press

60

Preliminary position at the reject (scrap) chute

61

Placement position at the reject (scrap) chute

70

Preliminary position at the chute for good (OK) parts

71

Placement position at the chute for good (OK) parts

999

Home position

3HACO046417-001 Revision: -

© Copyright 2013 ABB. All rights reserved.

47

6 Sample program

6.4 Signal step diagram

6.4 Signal step diagram

divithRobot
diDCMAU
diShotDone
diMouldOpen
diGateOpen
diReleaseAttachPart
diFusherAdvanced
diPusherRetracted
diScrap
diGoodPart
diToHomePos
dilRBinHome
doStantDCK
doAdvancePusher
doError
doPartCheck
dolRBoutsideColl
dolRBoutsideCol2

dolRBoutsideSprayer

en1300000184

N

N —
LN LN
e
N1
L]

1
0
1
[
1
0
1
]
i
0
L
0
L
0
L
0
1
[
1
0
1
[
1
0
1
0
L
0
L
0
1
0
1
0
1
[
1
0

48

© Copyright 2013 ABB. All rights reserved.

3HAC046417-001 Revision: -

6 Sample program

6.5 Signal description (excerpt)

6.5 Signal description (excerpt)

Inputs
Unit Channel Signal Description SPS
Unit 1 0 diWithRobot |Robot preselected for produc-|A10.0
tion
Unit 1 1 diDCMAuto |Diecasting machine in auto- |A10.1
matic mode
Unit 1 2 diShotDone |Shot done (Aluminium A10.2
pushed into the mould)
Unit 1 3 diMouldOpen | DCM mould is open A10.3
Unit 1 4 diGateOpen |DCM robot-sided gate is open|A10.4
Unit 1 5 diReleaseAt- |Cores retracted, release to |A10.5
tachPart attach part in mould
Unit 1 6 diPush- Ejector advanced, part A10.6
erAvanced pushed out of the mould
Unit 1 7 diPusherRe- |Ejector retracted A10.7
tracted
Unit 1 8 diScrap Part has been identified as |A11.0
scrap
Unit 1 9 diGoodPart |Part has been identified as a |A11.1
good part
Unit 1 10 diToHomePos | Request to send robot to A11.2
home position
Unit 1 11 dilRBinHome |Robot is inside the home pos-|A11.3
ition
Unit 1
Unit 2 0
Unit 2 1
Unit 2 2
Unit 2
Outputs
Unit Channel Signal Description SPS
Unit 1 0 doStartDCM |Release to start the next DCM |E10.0
cycle
Unit 1 1 doAdvance- |Advance pusher to push part|E10.1
Pusher out of the mould
Unit 1 2 doError Robot program error E10.2
Unit 1 3 doPartCheck |Request a part check E10.3
Unit 1 4 dolRBout- Robot ouside collision area of |[E10.4
sideCol1 DCM, channel 1
Unit 1 5 dolRBout- Robot ouside collision area of |[E10.5
sideCol2 DCM, channel 2
Unit 1 6 dolRBouside- |Robot outside collision area |E10.6
Sprayer of the sprayer

Continues on next page

3HACO046417-001 Revision: -

© Copyright 2013 ABB. All rights reserved.

49

6 Sample program

6.5 Signal description (excerpt)

Continued

Unit Channel Signal Description SPS
Unit 1 7 E10.7
Unit 1 8 E11.0
Unit 1 9 E11.1
Unit 1 10 E11.2
Unit 1 11 E11.3
Unit 1
Unit 2 0
Unit 2 1
Unit 2 2
Unit 2

50 3HAC046417-001 Revision: -

© Copyright 2013 ABB. All rights reserved.

6 Sample program

6.6 Program printout (excerpt)

6.6 Program printout (excerpt)

%80

VERSI ON: 1
LANGUAGE: ENGLI SH
%80

MODULE DCML234

| R S Sk S S e o S S R R R R kS S R Rk ko S S R R kR
| *

I* Cell : DCMextraction cylinder head

| *

[BRI Sk R S R S R R Sk R R R R R R R S R o R R o R R R R R

I'* Customer : ABCD conpany

I* Project nane : V123456
I'* Project no. : 47110815

I* Robot no. : |IRB 66-12345

I* Software : RobotWare 5. 15

I* Revision : O

1* Key Contr. : ThEgOOdD EyQuNg

I* Key Drive : AvECAeSARNDRI Turi TESAl UTaNT

I'* Author : M. Bean

I* Conpany : DCBA Integrators Conpany
I* San Francisco / California

I* Departnent : DCBA- EF

I * Tel ephone : +1 123456789/99 — 0

I'* Hotline : +1 123456789/99 — 22

'* Version : 1.0
I* Created : 2013-01-01

I* Modification Date: Name: Reason:
I* 2013-02-31 M. Bean New rel ease signal

!**
!

!**

I* Bool ean decl arati ons
!**

I Flag, end the program

VAR bool bProgEnd;

I'Flag, part in the parts inspection is not in order

PERS bool bReject: =FALSE;

[IR S ok S b o b S R R S b Sk R R IR S I b S o R R R S ok R o

I* System Const ant s

Continues on next page

3HACO046417-001 Revision: -

51
© Copyright 2013 ABB. All rights reserved.

6 Sample program

6.6 Program printout (excerpt)

Continued

| S R R R

I Constant for the stroke of the ejector at the DGM
CONST num nEj ect or St r oke: =250;

IVaiting tine at the parts inspection

CONST num nt | nspecti on: =2;

| IR I S

I* Interrupt Declarations
!**
I'l'nterrupt for stop after the end of the cycle

VAR i ntnumirCycl eSt op;

| I S S

I* Procedure nmin

| *

I'* Description:

I'* This procedure is the main routine and controls the
I* overall execution of the user program

I* Date: Version: Progranmer: Reason:
I* 2012-01-01 1.0 M. Bean created

[IR R ok b Sk S b S S R R I ok kR R R o R R o R SRR o O S

PROC mai n()
!***
| System dat a

I Cust onrer: ABCD

I System : DCM QOperation

I'SN no. : 66-12345

I Aut hor : M. Bean, ABB

IDate : 2012-01-01

I'Hotline: +1 123456789/99 — 0O

[S I
|

I'Initialize the start val ues

Init;

I Check if the gripper is working

G i pper Test;

I Move to the hone position in front of the DGM
mv99_10;

WHI LE NOT bProgEnd DO
Pr oducti on;

ENDWHI LE

mv10_99;

St op;

ENDPRCC

| B I S R

I* Procedure Init

| *

I'* Description:

Continues on next page
52 3HAC046417-001 Revision: -
© Copyright 2013 ABB. All rights reserved.

6 Sample program

6.6 Program printout (excerpt)

Continued

I* This procedure sets the initial values for execution
| *

I* Date: Version: Progranmer: Reason:

I* 2012-01-01 1.0 M. Bean created

[k ok ko ko ko ok ko ok ok Rk kR ko Rk ok kR ko kR kR ko Rk ok kK ko kK ko ko
PRCC I nit()

'Wait until conpressed air is available

Wait D di Air oK 1;

ICheck if the robot is in the hone position
CheckHonePos;

I Defined setting of the outputs

Reset doPart Gri pped;

Reset doDGWUNI oad;

Reset doEj ect Back;

Reset doDG\WLoad;

Reset doStartPress;

Reset doBl owOf f;

I Defined setting of the variables

bPr ogEnd: =FALSE;

I'I'nterrupt for stop after the end of the cycle
I Del ete irCycl eStop;

CONNECT irCycleStop WTH T_Cycl eSt op;

I Si gnal DI di Cycl eStop, 1,irCycl eStop;

ENDPRCC

| * F dddhdhdhdhdhddhdhddddhddddddddddddddddddddddddddddddddddddddssn

I'* Procedure Production
I'* Description:
I'* This procedure nmanages the production process.

I* Date: Version: Programmer: Reason:

I* 2012-01-01 1.0 M. Bean created
!**
PRCC Producti on()

I'Unl oad the di e-casting machi ne

DGVUNI oad;

mv14_20;

Par t Check;

mv20_30;

Cool DownPar't ;

I'lf the parts inspection has reported a reject part
| F bRej ect THEN

I Di spose of the rejected part

mv30_60;

LoadScr apSl i de;

mv60_10;

I Continue working with the trimmng press

ELSEI F di Wt hPress=hi gh THEN

Continues on next page

3HACO046417-001 Revision: -

53
© Copyright 2013 ABB. All rights reserved.

6 Sample program

6.6 Program printout (excerpt)

Continued

mv30_50;

LoadPress;

Unl oadPr ess;

mv50_70;

LoadGoodPart Sli de;
mvy70_10;

I Continue working without the trinmmng press
ELSE

mvy30_70,;

LoadCGoodPart Sl i de;
mvy70_10;

ENDI F

ERROR

| F errno=er Cancel RETURN,
ENDPRCC

| IR I I S S O O I

I* Procedure LoadScrapSlide

| *

I'* Description:

!*

I* Startup parts and parts outside tolerance limts
I* are placed on the slide for rejects (scrap).

| *

I* Date: Version: Programmrer: Reason:

I* 2012-01-01 1.0 M. Bean created
!**
PROC LoadScrapSlide()

IWait until the slide is ready for |oading

Wai t DI di ScrapSl i deFr ee, hi gh;

I Move to the |l oading position at the scrap slide
m/60_61,

I Open the gripper

G i pper Open;

IReturn to the prelimnary position

nmv61_60;

bRej ect : =FALSE;

ENDPROC

| I S S

I* Procedure LoadGoodPart Slide

!*

I'* Description:

!*

I* The good parts are placed on the slide for good parts

!*

I* Date: Version: Progranmer: Reason:

I* 2012-01-01 1.0 M. Bean created

| I e R R

PROC LoadGoodPart Sli de()

Continues on next page
54 3HAC046417-001 Revision: -
© Copyright 2013 ABB. All rights reserved.

6 Sample program

6.6 Program printout (excerpt)

Continued

IVit until the conveyor is ready for |oading

Wai t DI di | CChut eFr ee, hi gh;

I Move to the | oading position at the conveyor belt
mv70_71;

I Open the gripper

G i pper Open;

IReturn to the prelimnary position

mv71_70;

ENDPRCC

| * kdhhhhhhhhhhhdhhhhhhhdhhhhhhhhhhhdhdhdhdhdhdhdhddddddddddhih

I* Procedure T_Cycl eStop
I'* Description:

I* |f the input <Stop is active at the end of the cycle>
I* becones high then a nmessage is output and a flag is set.

I* Date: Version: Programer: Reason:

1* 2012-01-01 1.0 M. Bean created
!**
TRAP T_Cycl eSt op

I'l'nput <stop at the end of the cycle> is active

TPWite stStopCycle;

bPr ogEnd: =TRUE;

ENDTRAP

ENDMODUL E

MODULE Message

| * d dhddhdhdhdhdhddhddhddddhddhddddddddddddddddddddddddddddddbdddddddsh

| *

I'* Mbdul e name: Message

| *
| % kK kkhhdk

| *

I* Description:

I* This nodul e contains all text messages of the program

I* Date: Version: Programer: Reason:
I* 2012-01-01 1.0 M. Bean created

| * kK hkhhdhdhdhdhdhik
|

CONST string stStopCycle:="Stop at the end of the cycle requested”;

ENDMODULE

Continues on next page

3HACO046417-001 Revision: -

55
© Copyright 2013 ABB. All rights reserved.

6 Sample program

6.6 Program printout (excerpt)

Continued

Continues on next page

MODULE MOVEMENT

| B

| * *

!'* Module nane: MOV EMENT *

| * *

[IR S b S b S b S S R e R S S R T S S R R R S S RO o

K

I* Description: *

| * *

I'* This nodul e contains all

| % *

| * *

I* Date: Version: Programer: Reason: *
I'* 29.02.2007 1.0 Surnane, First

nmovenment progranms. *

nane created *

| IR I I S S O O I

[IR ok b Sk kb S S R R o R R R R kR R R S S O R R o

I'* Tool declarations *

| I S R

PERS t ool dat a

tQipper:=[TRE[[0,0,0],[1,0,0,0]],[10,[0,0,0],[1,0,0,0],0,0,0]];

[IR E R ok b kS b Sk b S R R R R I kR S S Rk R T o Ok R R R R o o S b o

I* Robtarget Definition *

| I S R

CONST robt ar get

p10:5[0,0,0],[10,0,0],[0,0,0,0], [9E+009, 9EHO09, 9E+H009, 9EH09, 9EHO09, 9E+O0T] | ;

CONST robt ar get

pl1:5[0,0,0],[10,0,0],[0,0,0,0], [9E-009, 9E+009, 9E+009, 9EHI09, 9E+000, 9EH009 | ;

CONST robt ar get

p12:5[0,0,0],[1,0,0,Q],[0,-1,0,Q, [9E+009, 9=+009, 9E+HO09, 9E+009, 9E+O09, 9E+009]] ;

CONST robt ar get

p13:5[0,0,0],[1,0,0,0],[0,-1,0,0Q], [9E+H009, 9E+009, 9EHO09, 9E+009, 9E+HO09, 9EHO0I] 1 ;

CONST robt ar get

pl4:={[0,0,0],[10,0,0],[0,0,0,0], [9E+09, 9E+09, IEH009, 9E+09, 9EH009, 9EH0Y] | ;

!
CONST robt ar get

p20:5[0,0,0],[1,0,0,00,[0,0,0,0], [9EH09, 9E+009, 9EHO09, 9EH009, 9EHO09, 9EH09] | ;

CONST robt ar get

p21:[0,0,0],[10,0,0],[0,0,0,0], [9E+00, 9E+000, 9E+000, 9E+009, 9E+000, 9E+009] | ;

!
CONST r obt ar get

p30:5{[0,0,0],[1,0,0,0],[0,-1,0,0], [9E+009, 9=+009, 9EHO09, 9E+009, 9E+HO09, 9EHO09] 1 ;

CONST r obt ar get

p31:9[0,0,0,[1,0,0,0],[0,-1,0, 0], [9E+009, 9E+009, 9E+009, 9E+HO09, 9E+H009, 9E+H00T] | ;

!
CONST r obt ar get

ps0:{[0,0,00,[1,0,0,0],[0,-1,0,0], [9E+009, 9E+009, 9E+009, 9E+H009, 9E+009, 9E+00T] | ;

CONST robt ar get

p51:5[0,0,0],[1,0,0,0],[0,-1,0,Q], [9E+009, 9=+009, 9E+HO09, 9E+009, 9E+HO09, 9E+009] 1 ;

56

© Copyright 2013 ABB. All rights reserved.

3HAC046417-001 Revision: -

6 Sample program

6.6 Program printout (excerpt)

Continued

CONST r obt ar get
p52:5[0,0,01,[1,0,0,0],[0,-1,0, 0], [9E+H009, 9EH09, 9E+H09, 9E+009, 9EHOO9, 9EHO09] 1 ;

|

CONST r obt ar get
p60:5[0,0,01,[1,0,0,0],[0,-1,0,0], [9E+H009, 9EH09, 9E+H09, 9E+009, 9EHO09, 9EHO0Y] 1 ;

CONST r obt ar get
p6l:§[0,0,01,[1,0,0,0],[0,-1,0,0], [95009, 9EH009, 9E+009, 9E+009, 9E+HO09, 9E+HO0I] 1;

|

CONST r obt ar get
p70:5[0,0,01,[1,0,0,0],[0,-1,0,0], [9E+009, 9E+H009, 9E+H009, 9E+009, 9EHO09, 9E+HO0I] 1;

CONST r obt ar get
p71:5[0,0,01,[1,0,0,0],[0,-1,0, 0], [9009, 9EH09, 9E+H09, 9E+009, 9EHOO9, 9EHO0Y] 1 ;

|

CONST r obt ar get
p99:5[0,0,00,[1,0,0,0],[0,-1,0,0], [9E+H009, 9EH09, 9E+H09, 9E+009, 9EHOOI, 9EH0I] 1 ;

]

I Position names:

110 : Prelimnary position at the die-casting nmachine

111 : Prelimnary position of the nold in the die-casting nachine

112 : Gipper position at the die-casting machi ne

113 : Eject position at the die-casting machine

114 : End position at the die-casting machine

120 : Prelimnary position at the inspection station

121 : Inspecting position at the inspection station

130 : Prelimnary position at the cooling basin

131 : Cooling position at the cooling basin

150 : Prelimnpary position at the trinmmng press

151 : Placenent position at the trimmng press

152 : Gipper position at the trinmmng press

160 : Prelimnary position at the chute for rejects (Scrap)

161 : Placenent position at the rejects chute

170 : Prelimnary position at the chute for good (OK) parts

171 : Placenent position at the chute for good (OK) parts

199 : Hone position

PROC nv14_20()

'From: End position at the die-casting machine

!To : Prelimnary position at the inspection station
| F OpMode() <>0OP_AUTO MoveJ pl4,v100,z10,t G i pper;
Moved p20, v2500, z10,t Gri pper;

ENDPROC

PROC mv20_30()

'From: Prelimnary position at the inspection station
!To : Prelimnary position at the cooling basin

| F OpMode() <>OP_AUTO MveJ p20,v100, z10,t Gi pper;
Moved p30, v2500, z10,t G i pper;

ENDPRCC

PROC nv30_50()
'From: Prelimnary position at the cooling basin

Continues on next page

3HACO046417-001 Revision: -

57
© Copyright 2013 ABB. All rights reserved.

6 Sample program

6.6 Program printout (excerpt)

Continued
ITo : Prelimnary position at the trinmng press
| F OpMode() <>0OP_AUTO MoveJ p30,v100, z10,t Gri pper;
Moved p50, v2500, 210, t Gri pper;
ENDPROC
PROC mv30_60()
IFrom: Prelimnary position at the cooling basin
ITo : Prelimnary position at the reject (Scrap) chute
| F OpMode() <>OP_AUTO Moved p30,v100, z10,t Gi pper;
Moved p60, v2500, z10, t G'i pper;
ENDPROC
PROC mv30_70()
IFrom: Prelimnary position at the cooling basin
ITo : Prelimnary position at the chute for good (OK) parts
| F OpMode() <>OP_AUTO MoveJ p30,v100, z10,t G i pper;
Moved p70, v2500, 210, t Gri pper;
ENDPROC
PROC mv50_70()
IFrom: Prelimnary position at the trimmng press
ITo : Prelimnary position at the chute for good (OK) parts
| F OpMode() <>OP_AUTO MoveJ p50,v100, z10,t Gi pper;
Moved p70, v2500, 210, t G i pper;
ENDPROC
PROC nmv60_10()
lFrom: Prelimnary position at the reject (Scrap) chute
ITo : Prelimnary position at the die-casting nachine
| F OpMode() <>OP_AUTO MoveJ p60, v100, z10,t Gi pper;
Moved pl0, v2500, z10,t Gi pper;
ENDPROC
PROC nmv60_61()
IFrom: Prelimnary position at the reject (Scrap) chute
ITo : Placenment position at the reject (Scrap) chute
| F OpMode() <>0OP_AUTO MoveJ p60, v100, z10,t Gri pper;
Moved p61, v2500, 210, t G'i pper;
ENDPROC
ENDMODUL E
58 3HAC046417-001 Revision: -

© Copyright 2013 ABB. All rights reserved.

Contact us

ABB AB

Discrete Automation and Motion
Robotics .

S-721 68 VASTERAS, Sweden
Telephone +46 (0) 21 344 400

ABB AS, Robotics

Discrete Automation and Motion
Box 265

N-4349 BRYNE, Norway
Telephone: +47 51489000

ABB Engineering (Shanghai) Ltd.

5 Lane 369, ChuangYe Road
KangQiao Town, PuDong District
SHANGHAI 201319, China
Telephone: +86 21 6105 6666

ABB Inc.

Discrete Automation and Motion
Robotics

1250 Brown Road

Auburn Hills, Ml 48326

USA

Telephone: +1 248 391 9000

www.abb.com/robotics

Power and productivity
for a better world™

3HAC046417-001, Rev -, en

AL IDED
Mpm

	Table of contents
	1 Introduction
	1.1 General

	2 Project flow
	2.1 Project planning procedure

	3 Program structure
	3.1 Process flow diagram
	3.2 Program structure
	3.2.1 Introduction to the program structure
	3.2.2 System modules
	3.2.3 Program modules
	3.2.4 System parameters
	3.2.5 Backup or restore

	3.3 Naming the data
	3.3.1 General naming conventions
	3.3.2 Convention on the position names
	3.3.3 Naming the movement routines
	3.3.4 Use of type-dependent movement routines
	3.3.5 Naming the I/O signals

	3.4 Error handling
	3.5 The program structure
	3.6 Write-protection of the modules / password assignment

	4 Program documentation
	4.1 Introduction
	4.2 Structure for the creation of the program documentation
	4.3 Headers and program information
	4.3.1 Program header
	4.3.2 Module header
	4.3.3 Routine header for procedures and functions in the user program
	4.3.4 Routine header for standard procedures and functions
	4.3.5 Program information
	4.3.6 Disturbance range signals

	5 Naming data, I/O, and labels
	6 Sample program
	6.1 System description
	6.2 Flow chart of the system
	6.3 Overview of the position numbers
	6.4 Signal step diagram
	6.5 Signal description (excerpt)
	6.6 Program printout (excerpt)

