Operation Manual

VTR184-11 / -21

<table>
<thead>
<tr>
<th>Type</th>
<th>HT</th>
<th>n_Mmax</th>
<th>1/s</th>
<th>t_Mmax</th>
<th>°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_Emax</td>
<td>t_Bmax</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>kg</th>
<th>Application according to the Operation Manual</th>
</tr>
</thead>
</table>

Made in Switzerland
Operating condition and replacement intervals

The operational limits for the turbocharger nBmax, tBmax, nMmax, tMmax inspection- and replacement intervals for the components concerned on the rating plate are valid for the operational mode and compressor inlet condition, which has been agreed upon between the engine builder and ABB.

Note: Replacement intervals of components depends on the load profile, turbine inlet temperature, suction air temperature and turbocharger speed. In case the operation conditions differ significantly from what is considered to be normal for the current application, it is recommended to contact ABB for a re-calculation of replacement intervals. Frequent load alterations, high temperatures and high speed lower the life of components. Unless otherwise agreed, the application limits nMmax, tMmax are valid for the test operation for a limited time.
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorbemerkungen</td>
<td>Preliminary remarks</td>
<td>0</td>
</tr>
<tr>
<td>Sicherheits- und Gefahren- hinweise</td>
<td>Instructions on safety and hazards</td>
<td>1</td>
</tr>
<tr>
<td>Inbetriebnehmen</td>
<td>Putting into operation</td>
<td>2</td>
</tr>
<tr>
<td>Betrieb und Unterhalt</td>
<td>Operation and maintenance</td>
<td>3</td>
</tr>
<tr>
<td>Beheben von Störungen</td>
<td>Troubleshooting</td>
<td>4</td>
</tr>
<tr>
<td>Demontage und Montage</td>
<td>Disassembly and assembly</td>
<td>5</td>
</tr>
<tr>
<td>Ausserbetriebnehmen</td>
<td>Taking out of operation</td>
<td>6</td>
</tr>
<tr>
<td>Anhang</td>
<td>Appendix</td>
<td>7</td>
</tr>
<tr>
<td>Zugelassene Schmieröle</td>
<td>Approved lubricating oils</td>
<td>8.1</td>
</tr>
<tr>
<td>Service - Stellen Verzeichnis</td>
<td>Guide to service stations</td>
<td>8.2</td>
</tr>
</tbody>
</table>
Inhalt

1 Vorwort ... 3
2 Funktionsbeschreibung 5
3 Bestimmungsgemässe Verwendung 6
4 Organisatorische Massnahmen 7
5 Originalteile und Sicherheit 7
6 Befähigung des Personals 8
7 Kundendienst 8
8 Ausführungsvarianten 8
9 Lagern neuer Turbolader 9
10 Abkürzungen 9
11 Leistungsschild Turbolader 10

Contents

1 Foreword ... 3
2 Mode of operation 5
3 Correct application 6
4 Organizational measures 7
5 Original parts and safety 7
6 Qualification of personnel 8
7 After-sales service 8
8 Various models 8
9 Storage of new turbochargers 9
10 Abbreviations 9
11 Rating plate Turbocharger 10
1 Vorwort

Dieses Betriebshandbuch hilft Ihnen, den von ABB Turbo Systems gelieferten Turbolader besser kennenzulernen und seine bestimmungsgemässe Einsatzmöglichkeit wirkungsvoll zu nutzen.

Dieses Betriebshandbuch ergänzt und erweitert bereits bestehende nationale Vorschriften zum Unfallschutz und zur Unfallverhütung.

Dieses Betriebshandbuch muss ständig am Einsatzort des Turboladers verfügbar sein.

Dieses Betriebshandbuch ist unbedingt vor Arbeitsbeginn von allen Personen zu lesen, die mit dem oder am Turbolader arbeiten. Auch Personal, das nur gelegentlich (z.B. bei Montage und Wartung) an der Maschine tätig ist, muss das Betriebshandbuch gelesen und verstanden haben.

Die Anweisungen sind unbedingt zu befolgen.

Das gilt besonders für die allgemeinen und speziellen Sicherheitshinweise vor und in den entsprechenden Kapiteln.

Fragen Sie in Zweifelsfällen den für Ihren Bereich zuständigen Beauftragten für Sicherheit und Unfallschutz.

1 Foreword

This operation manual will help you to become familiar with your turbocharger supplied by ABB Turbo Systems and to utilize it to full effect in its intended application.

This operation manual provides important instructions as to the safe, correct, and economical operation of the turbocharger. It contains helpful information on how to recognize hazards at an early stage and avoid them, how to reduce repair costs and standstill times, and how to improve the reliability and the service life of the turbocharger.

This operation manual is a complement to, and an extension of, existing national regulations on accident protection and prevention.

It is essential that this operation manual is read before beginning operation by all persons working with or at the turbocharger.

Even personnel only working occasionally (e.g. installation and maintenance) must have read and fully understood the manual before working on the turbocharger.

All instructions must be strictly observed.

This applies especially to the general and special safety instructions preceding, and in the course of, the respective chapters.

In the event of doubt, consult the officer for safety and accident protection responsible for your area.
Fig. 0-1
Schnittdarstellung Turbolader
Section of the Turbocharger
2 Funktionsbeschreibung

Der Turbolader besteht aus zwei Strömungsmaschinen, einer Turbine und einem Verdichter, die auf einer gemeinsamen Welle angebracht sind.

Die Luft, die für den Betrieb des Dieselmotors benötigt und im Turbolader verdichtet wird, gelangt durch den Saugstutzen oder den Schalldämpfer (81000) in das Vorschaltad (26000) und das Verdichterrad (25000). Sie durchströmt den Diffusor (79000) und verlässt den Turbolader durch den Druckstutzen am Verdichtergehäuse (72000).

2 Mode of operation

The turbocharger consists of two machines, a turbine and a compressor which are mounted on a common shaft.

The exhaust gases of the diesel engine flow through the gas inlet casing (51000) and the nozzle ring (56001). The turbine (29000) uses the energy contained in the exhaust gas to drive the compressor and inducer wheel (25000/26000), whereby the compressor draws in fresh air and precompressed air is forced into the cylinders. The exhaust gases are led into the open air through the gas outlet casing (61000) and the exhaust pipes.

The air which is necessary for the operation of the diesel engine and which is compressed in the turbocharger passes through the suction branch or the silencer (81000), into the inducer wheel (26000) and the compressor wheel (25000). It then passes through the diffuser (79000) and leaves the turbocharger through the volute of the air outlet housing (72000).

The partition wall (23000) separates the air from the gas. Sealing air from the compressor is led into the labyrinth seal of the turbine rotor through the channel (X). The seal prevents exhaust gases from flowing into the compensation channel (Z) and the bearing space. The channels Y (compressor side) and Z (turbine side) provide pressure compensation in the bearing spaces and prevent oil loss.

The rotor runs in elastically mounted rolling contact bearings which are easily accessible at either end. Each bearing point has its own lubrication device. The bearing space covers have openings for filling and draining oil. One sightglass in each bearing space cover allows inspection of the bearing space.
3 Bestimmungsgemässe Verwendung

Dieser von ABB Turbo Systems gelieferte Turbolader ist ausschliesslich für den Einsatz an Dieselmotoren entwickelt worden, um die für den Betrieb des Dieselmotors benötigte Luftmenge und den notwendigen Ladedruck zu erzeugen.

Jeder darüber hinausgehende Gebrauch gilt als Sonderanwendung, die ABB Turbo Systems abklären muss. Für weitergehende Anwendungen haftet der Hersteller nicht.

Bestimmungsgemässes Verwenden des Turboladers schliesst auch das Einhalten der Betriebs-, Wartungs- und Instandhaltungsbedingungen ein, die vom Hersteller vorgeschrieben sind.

Der Turbolader darf nur in technisch einwandfreiem Zustand, seiner Bestimmung entsprechend und unter Beachtung des Betriebshandbuches bedient und benutzt werden.

Störungen, die die Sicherheit beeinträchtigen können, sind umgehend zu beseitigen.

Eigenmächtige Veränderungen am Turbolader schliesen eine Haftung des Herstellers für daraus entstehende Schäden aus.

Der Turbolader ist für den Dieselmotor, einschliesslich Drehzahl und Leistung, spezifiziert. Wird er anderweitig verwendet, lehnt ABB Turbo Systems alle Garantieansprüche ab.

3 Correct application

This turbocharger supplied by ABB Turbo Systems has been developed exclusively for use on diesel engines to generate the volume of air and the pressure necessary for the operation of the diesel engine.

Any other usage shall be regarded as a special application which must be clarified with ABB Turbo Systems. The manufacturer accepts no liability for other applications.

This turbocharger was built in accordance with state of the art technology and the recognized safety regulations and is safe for operation.

Nonetheless, the turbocharger can cause injury or death to the user or a third party, or damage to the turbocharger itself or to other property if it is not operated by trained personnel, or if it is used incorrectly, or for purposes other than that for which it was intended.

Correct application of the turbocharger also includes observation of the operating, maintenance and repair conditions specified by the manufacturer.

The turbocharger should only be operated and used in a technically perfect condition, for its intended purpose and in compliance with the operation manual.

Defects which could affect safety must be eliminated immediately.

The manufacturer shall not accept liability for damages resulting from unauthorized alterations to, or interference with, the turbocharger.

The turbocharger has been designed for the diesel engine described including speed and output. If it is used otherwise ABB Turbo Systems shall reject all guarantee claims.
4 Organisatorische Massnahmen

Ergänzend zum Betriebshandbuch sind zusätzlich die allgemeinen, gesetzlichen Vorschriften zur Unfallverhütung und zum Umweltschutz im Verwenderland zu beachten.

Das gilt auch für das Bereitstellen und Tragen von persönlichen Schutzausrüstungen.

Unter Beachtung des Betriebshandbuchs ist der sicherheits- und gefahrenbewusste Umgang des Personals an und mit dem Turbolader regelmäßig zu überprüfen.

Veränderungen und An- und Umbauten am Turbolader, die die Sicherheit beinträchtigen könnten, müssen vorher von ABB Turbo Systems genehmigt werden.

5 Originalteile und Sicherheit

Originalteile und Zubehör sind speziell für den von ABB Turbo Systems gelieferten Turbolader konzipiert.

Wir machen ausdrücklich darauf aufmerksam, dass nicht von uns gelieferte Originalteile und Zubehör auch nicht von uns geprüft und freigegeben sind.

Der Einbau und/oder die Verwendung solcher Produkte kann daher die konstruktiv vorgegebene Eigenschaften des Turboladers negativ verändern.

Dadurch kann die aktive und/oder passive Sicherheit des Turboladers nachteilig beeinflusst werden.

Für Schäden, die durch das Verwenden von Nicht-Originalteilen und entsprechendem Zubehör entstehen, schliesst ABB Turbo Systems jede Haftung aus.

4 Organizational measures

In addition to this manual, the general, statutory regulations applicable in the respective country for the prevention of accidents and the protection of the environment must be observed.

This also applies to the provision and wearing of personnel protection equipment.

The safety and risk consciousness of the personnel working at and with the turbocharger shall be checked regularly in accordance with the manual.

Additions to, and alterations and conversions of, the turbocharger which could impair safety, require the prior approval of ABB Turbo Systems.

5 Original parts and safety

Original parts and accessories are especially designed for the turbocharger supplied by ABB Turbo Systems.

We wish to state clearly that parts and accessories not supplied by us have not been tested and approved by us.

The installation and/or the use of such products can thus have a negative effect on design features of the turbocharger.

This in turn can be detrimental to the active and/or passive safety of the machine.

ABB Turbo Systems shall not be liable for any damage caused by using non-original parts and accessories.
6 Befähigung des Personals

Der Turbolader darf nur von ausgebildetem und autorisiertem Personal bedient und gewartet werden.

Arbeiten an mechanischen Bauteilen, wie Lagern oder Rotoren dürfen nur von Fachpersonal durchgeführt werden, das von ABB ausgebildet ist.

Es ist sicherzustellen, dass nur dazu beauftragtes Personal am Turbolader tätig wird.

7 Kundendienst

8 Ausführungsvarianten

Dieses Betriebshandbuch und das Verzeichnis der Teilenummern (s. Kap. 7) sind gültig für unterschiedliche Ausführungsvarianten von Turboladern.

Deshalb kann es vorkommen, dass im Verzeichnis der Teilenummern auch Teile aufgelistet sind, die beim gelieferten Turbolader nicht vorhanden sind.

6 Qualification of personnel

The turbocharger may only be operated and maintained by skilled and authorized personnel.

Work on mechanical components, such as bearings or rotors may only be carried out by expert personnel trained by ABB.

It must be ensured that only authorized personnel work on the turbocharger.

7 After-sales service

For spare parts orders, technical inquiries and maintenance work there is a list at the end of this manual with an updated, worldwide guide to service stations of ABB Turbo Systems.

8 Various models

This instruction manual and the parts directory (see chap. 7) are valid for various turbocharger models.

For this reason it can occur that parts are listed in the parts directory which are not present on the turbocharger supplied.
9 Storage of new turbochargers

Turbochargers supplied by ABB Turbo Systems can be stored for 12 months as of the date of delivery without any additional conservation measures in a dry place with an average air humidity of 40 to 70 %.

If the turbocharger has to be stored for a longer period please proceed as set out in chap. 6.

10 Abbreviations

The following abbreviations are being used:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE</td>
<td>Compressor end</td>
</tr>
<tr>
<td>chap.</td>
<td>Chapter</td>
</tr>
<tr>
<td>e.g.</td>
<td>For example</td>
</tr>
<tr>
<td>fig.</td>
<td>Figure</td>
</tr>
<tr>
<td>No.</td>
<td>Number</td>
</tr>
<tr>
<td>RPM</td>
<td>Revolution per minute</td>
</tr>
<tr>
<td>sec.</td>
<td>Section</td>
</tr>
<tr>
<td>Temp.</td>
<td>Temperature</td>
</tr>
<tr>
<td>TC</td>
<td>Turbocharger</td>
</tr>
<tr>
<td>TE</td>
<td>Turbine end</td>
</tr>
<tr>
<td>-</td>
<td>Working steps / Enumerations</td>
</tr>
<tr>
<td>+</td>
<td>Add. working steps for options</td>
</tr>
<tr>
<td></td>
<td>Notes for assembling</td>
</tr>
</tbody>
</table>

9 Lagern neuer Turbolader

Von ABB Turbo Systems neu gelieferte Turbolader sind ab Lieferdatum 12 Monate lang, ohne zusätzliche Konservierungsmassnahmen, an trockenen Orten mit einer durchschnittlichen Luftfeuchtigkeit von 40 bis 70% lagerbar.

Bei längerer Lagerung der Turbolader muss wie in Kap. 6 vorgegangen werden.

10 Abkürzungen

Folgende Abkürzungen werden verwendet:

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abschn.</td>
<td>Abschnitt</td>
</tr>
<tr>
<td>Bh</td>
<td>Betriebshandbuch</td>
</tr>
<tr>
<td>bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>Fig.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>Kap.</td>
<td>Kapitel</td>
</tr>
<tr>
<td>kpl.</td>
<td>komplett</td>
</tr>
<tr>
<td>Kühlw.</td>
<td>Kühlwasser</td>
</tr>
<tr>
<td>Nr.</td>
<td>Nummer</td>
</tr>
<tr>
<td>o.ä.</td>
<td>oder ähnliches</td>
</tr>
<tr>
<td>s.</td>
<td>siehe</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>Temp.</td>
<td>Temperatur</td>
</tr>
<tr>
<td>TL</td>
<td>Turbolader</td>
</tr>
<tr>
<td>TS</td>
<td>Turbinenseite</td>
</tr>
<tr>
<td>U</td>
<td>Umdrehungen</td>
</tr>
<tr>
<td>ü.d.M.</td>
<td>über dem Meer</td>
</tr>
<tr>
<td>VS</td>
<td>Verdichterseite</td>
</tr>
<tr>
<td>zB.</td>
<td>zum Beispiel</td>
</tr>
<tr>
<td>-</td>
<td>Arbeitsschritte / Aufzählungen</td>
</tr>
<tr>
<td>+</td>
<td>zus. Arbeitsschritte bei Optionen</td>
</tr>
<tr>
<td></td>
<td>Hinweise für den Zusammenbau</td>
</tr>
</tbody>
</table>
11 Leistungsschild Turbolader

Einsatzgrenzen:

1. \(n_{M\text{max}} \times t_{M\text{max}} \): Turbolader - Einsatzgrenzen bei Motorüberlast (110%), Nur im Prüfstandbetrieb, wenn nicht anders mit dem Motorenbauer vereinbart.

2. \(n_{B\text{max}} \times t_{B\text{max}} \): Turbolader - Einsatzgrenzen in Betrieb
 - \(n \): Turbolader - Drehzahl
 - \(t \): Abgastemperatur vor Turbine

Wechselzeiten von Turboladerkomponenten:

3. Wechselzeit der Lager in 1000h

4. Wechselzeit des Verdichters in 1000h
 Ohne Angaben: 100'000h

5. Wechselzeit der Turbine in 1000h
 Ohne Angaben: 100'000h

Weitere Angaben:

6. Kunden Part-Nummer

7. Feld für die Sonderausführungs Bezeichnung

8. Gewicht des Turboladers in kg

9. Turbolader-Typ

10. Serien-Nummer

11. Baujahr des Turboladers

11 Rating plate Turbocharger

Operational limits:

1. \(n_{M\text{max}} \times t_{M\text{max}} \): Turbocharger - operational limits at engine overload (110%), For test trials only, if not otherwise agreed with the engine manufacturer.

2. \(n_{B\text{max}} \times t_{B\text{max}} \): Turbocharger - operational limits in service
 - \(n \): Turbocharger speed
 - \(t \): Exhaust gas temperature before turbine

Replacement intervals for turbocharger components:

3. Replacement interval for the bearings in 1000h

4. Replacement interval for the compr. wheel in 1000h
 Unless otherwise stated: 100'000h

5. Replacement interval for the bladed shaft in 1000h
 Unless otherwise stated: 100'000h

Further descriptions:

6. Customer part-number

7. Space for the special design designation

8. Weight of the turbocharger in kg

9. Turbocharger type

10. Serial number

11. Year of construction of the turbocharger
The conditions agreed with the engine manufacturer apply to the values stated on the rating plate with regard to operational limits and replacement intervals.

The turbocharger is to be used only up to the application limits specified on the rating plate $n_{t\text{max}}$, $t_{t\text{max}}$. These are determined with the engine manufacturer for the specific application. Unless otherwise agreed operational limits $n_{t\text{max}}$, $t_{t\text{max}}$ are allowed for test trials only.

The replacement intervals for the turbocharger components specified must be observed without fail! Turbocharger components whose permissible operating times have expired may not be used again under any circumstances!
Instructions on safety and hazards
Sicherheits- und Gefahrenhinweise
1 Sicherheit

Inhalt

1 Einleitung ... 2
2 Definition von Sicherheitshinweisen 2
3 Warnschilder am Turbolader 3
4 Sicherer Betrieb und Unterhalt 4
 4.1 Arbeitssicherheit und Arbeitsschutz 4
 4.2 Schweissarbeiten 5
 4.3 Sicherheit beim Inbetriebnehmen und beim Betrieb 5
 4.4 Sicherheit beim Reinigen 6
 4.5 Sicherheit beim Demontage, Montage, Instandhaltung und Störungsbehebung ... 6
 4.6 Sicherheit beim Ausserbetriebnehmen oder Konservieren 6
5 Gefährdung bei Betrieb und Unterhalt 7
 5.1 Mechanische Gefährdung im Betrieb 7
 5.2 Mechanische Gefährdungen bei Arbeiten am Turbolader 7
 5.3 Gefährdung durch Lärm 8
 5.4 Gefährdung durch heisse Oberflächen und Substanzen 9
 5.5 Gefährdung durch Betriebs- und Hilfsstoffe 10
 5.6 Gefährdung durch den Umgang mit Isolationsmaterialien 11
 5.7 Gefährdung durch elektrische Komponenten 12
6 Heben von Lasten 12

1 Safety

Contents

1 Introduction .. 2
2 Definition of Safety instructions 2
3 Warning plates on the turbocharger 3
4 Safe operation and maintenance 4
 4.1 General work safety and work area safety 4
 4.2 Welding work 5
 4.3 Safety during commissioning and operation 5
 4.4 Safety during cleaning 6
 4.5 Safety during disassembly, assembly, maintenance and troubleshooting 6
 4.6 Safety when taking out of operation or preparation for mothballing 6
5 Hazards during operation and maintenance .. 7
 5.1 Mechanical hazards during operation 7
 5.2 Mechanical hazards when working on the turbocharger 7
 5.3 Hazards due to noise 8
 5.4 Hazards due to hot surfaces and substances 9
 5.5 Hazards due to operating and auxiliary materials 10
 5.6 Hazards when handling insulating materials 10
 5.7 Hazards due to electrical components 12
6 Handling loads 12
1 Einleitung

Von ABB Turbo Systems hergestellte Turbolader entsprechen dem Stand der Technik und den einschlägigen Anforderungen zur Sicherheit und zum Gesundheitsschutz zum Zeitpunkt des Baus des Turboladers. Der Turbolader ist somit betriebssicher. Trotzdem können beim Betrieb des Turboladers und bei Arbeiten am Turbolader Restrisiken bestehen, die:

- vom Turbolader selbst und seinem Zubehör ausgehen.
- von verwendeten Betriebsmitteln und Betriebs- und Hilfsstoffen ausgehen.
- die Folge eines ungenügenden Beachtens von Sicherheitshinweisen sind.
- die Folge eines ungenügenden und nicht sachgemäßen Ausführens von Wartungs- und Prüfarbeiten sind.

Der Betreiber ist für die organisatorischen Massnahmen verantwortlich, welche den sicheren Umgang seines Personals mit dem Turbolader regeln.

Alle in diesem Kapitel enthaltenen Hinweise sind für einen sicheren und störungsfreien Betrieb des Turboladers und bei Arbeiten am Turbolader zu beachten.

Ebenso sind alle weiteren, speziell gekennzeichneten Sicherheitshinweise (siehe Abschnitt Definition von Sicherheitshinweisen) in jedem Kapitel dieses Handbuchs zu beachten.

2 Definition von Sicherheitshinweisen

Folgende Symbole und Benennungen werden in diesem Handbuch verwendet, welche die Sicherheit betreffen oder die auf mögliche Gefährdungen hinweisen:

- **Vorsicht !**
 Definition Vorsicht
 Es kann zu folgenschweren Maschinen- oder Sachschäden führen, wenn Arbeits- und Bedienungsanweisungen mit diesem Symbol und dem Wort **Vorsicht** nicht oder ungenau befolgt werden.
 ▶ **Vorsichtshinweise müssen immer eingehalten werden.**

1 Introduction

Turbochargers manufactured by ABB Turbo Systems are state of the art and comply with the respective health and safety standards in effect at the time the turbocharger was built. This ensures safe operation of the turbocharger. Nevertheless, there may be some residual risks during operation and work on the turbocharger which:

- are caused by the turbocharger itself or its accessories.
- are caused by the operating equipment used and supplies or materials.
- are a consequence of insufficient observance of safety instructions.
- are a consequence of insufficient or inappropriate performance of maintenance and inspection work.

The operating company is responsible for the organisational measures that regulate the safe handling of the turbocharger by its personnel.

All instructions contained in this chapter must be observed for safe and trouble-free operation of the turbocharger and during all work on the turbocharger.

All further safety instructions contained and specifically identified in every chapter of this manual (see the section Definition of safety instructions) must also be observed.

2 Definition of Safety instructions

The following symbols and terms used in this manual concern safety or refer to possible hazards:

- **Caution !**
 Definition of Caution
 Serious machine or property damage may occur if work and operating instructions marked with this symbol and the word **Caution** are either not followed or not followed precisely.
 ▶ **Caution signs must be observed at all times.**
Warnung Definition Warnung
Es kann zu ernsthaften Personenschäden bis zu Unfällen mit tödlichen Folgen führen, wenn Arbeits- und Bedienungsanweisungen mit diesem Symbol und dem Wort Warnung nicht oder ungenau befolgt werden.
► Warnhinweise müssen immer eingehalten werden.

Warning Definition of Warning
Serious personal injuries and even accidents with fatal consequences may occur if work and operating instructions marked with this symbol and the word Warning are either not followed or not followed precisely.
► Warning signs must be observed at all times.

3 Warnschilder am Turbolader 3 Warning plates on the turbocharger

<table>
<thead>
<tr>
<th>Teilenummer / Part No</th>
<th>Grösse / Size</th>
<th>Typ</th>
</tr>
</thead>
<tbody>
<tr>
<td>72080</td>
<td>175 x 22</td>
<td>RR131</td>
</tr>
<tr>
<td>81080</td>
<td>74 x 52</td>
<td>VTR184 + VTR254; RR153; RR151/181/221; VTC..4</td>
</tr>
<tr>
<td></td>
<td>105 x 74</td>
<td>VTR304 + VTR714</td>
</tr>
</tbody>
</table>

Tabelle Warnschilder / Table of warning plates
Bei Turboladern, die unisoliert an den Motorenbauer geliefert werden, müssen die Warnschilder nachträglich auf die Isolation angebracht werden. Dies liegt in der Verantwortung des Motorenbauers.

WARNUNG Sturzgefahr
Bei Arbeiten auf dem Turbolader besteht Sturzgefahr.
- Nicht auf den Turbolader oder angebaute Teile steigen oder diese als Aufstiegshilfen verwenden.
- Bei Arbeiten über Körperhöhe sind die dafür geeignetten Aufstiegshilfen und Arbeitsbühnen zu verwenden.

- Allgemeine Unfallverhütungsvorschriften einhalten.
- Nur in physisch und psychisch stabiler Verfassung am Turbolader arbeiten.
- Der jeweilige Arbeit angemessene Schutzausrüstung tragen, wie:
 - Helm
 - Gehörschutz
 - Schutzhilfe
 - Schutzhandschuhe
 - Sicherheitsschuhe
 - Schutzkleidung
 - Haarnetz (bei langen Haaren)
 - Atemschutzmaske

Turbochargers supplied to the enginebuilder without insulation must be fitted later with warning plates to be affixed to the insulation. This is the responsibility of the enginebuilder.

Warning plates must be affixed at the designated locations and must be easily visible. For additional information, please contact an ABB Turbocharger service station.

4.1 Arbeitssicherheit und Arbeitsplatzsicherheit

4 Safe operation and maintenance

Die hier aufgeführten Hinweise dienen der Personensicherheit und ermöglichen zusammen mit den Hinweisen im Abschnitt Gefährdung bei Betrieb und Unterhalt in diesem Kapitel einen sicheren Umgang mit dem Turbolader.

4.1 General work safety and work area safety

The instructions specified in this section are for the safety of personnel. Together with the instructions in the Hazards during operation and maintenance section, they allow the user to safely use the turbocharger.

Warning Risk of falling
There is the risk that someone can fall when working on the turbocharger.
- Do not climb on the turbocharger or on parts attached to it or use these as climbing aids.
- When working at levels above the head, use climbing aids and work platforms suitable for this purpose.

- Comply with the general accident prevention regulations.
- Only perform work on the turbocharger when you are in a physically and psychologically stable condition.
- Wear appropriate protective equipment, such as:
 - Helmet
 - Hearing protection
 - Safety goggles
 - Safety gloves
 - Safety boots
 - Protective clothing
 - Hair net (for long hair)
 - Respirator mask
- Nur mit geeigneten Werkzeugen, sowie einwandfreien Geräten und Arbeitsmitteln arbeiten.
- Elektrowerkzeuge müssen einwandfrei geerdet und die Anschlusskabel dürfen nicht beschädigt sein.
- Arbeitsplatz sauber halten, lose Gegenstände wegräumen, Bodenhindernisse entfernen.
- Boden, Geräte und Turbolader sauber halten.
- Ölbindemittel bereithalten und Ölauffangwannen bereitstellen oder aufstellen.
- Leckagen beseitigen.
- Brandschutzmittel und Löschmittel bereithalten.

4.2 Schweissarbeiten
- Bei Schweissarbeiten oberhalb des Turboladers unbedingt den Filterschalldämpfer abdecken, damit die Filtermatte nicht beschädigt wird.
- Brennbare Gegenstände und Substanzen aus dem Bereich des Funkenflugs entfernen.
- Alle Anschlüsse am Turbolader abdecken, damit keine Fremdkörper in den Turbolader gelangen können.

4.3 Sicherheit beim Inbetriebnehmen und beim Betrieb
- Vor Arbeitsbeginn Sichtprüfung der Arbeitsumgebung durchführen.
- Hindernisse und herumliegende Gegenstände beseitigen.
- Vor dem Inbetriebnehmen sämtliche Leitungen von und zum Turbolader auf Beschädigungen und Lecks kontrollieren.
- Jede Arbeitsweise unterlassen, welche die Sicherheit am Turbolader beeinträchtigen könnte.
- Turbolader ungefähr alle 12 Betriebsstunden, beziehungsweise mindestens einmal am Tag auf erkennbare Schäden und Mängel prüfen.
- Schäden und Veränderungen des Betriebsverhältnisses sofort der zuständigen Stelle melden.
- Im Schadensfall Turbolader sofort ausser Betrieb nehmen und gegen unbeabsichtigtes und unbefugtes Benutzen sichern.
- Beim Einschalten von Hilfsenergien (Hydraulik, Pneumatik, Elektrizität, Wasser) ist auf mögliche Gefährdungen in Folge von Zuführung dieser Energien zu achten.

- Only work with suitable tools and with equipment and appliances that function properly.
- Power tools must be properly earthed and cables must be undamaged.
- Keep the workplace clean, clear away any loose objects and obstacles on the floor.
- Keep the floor, equipment and turbocharger clean.
- Have oil absorbent materials ready and provide or keep oil pans at hand.
- Clean up any spills.
- Have fire protection means and extinguishing agents available.

4.2 Welding work
- When performing welding work above the turbocharger, always cover the filter silencer to prevent it or the filter mat from being damaged.
- Keep flammable objects and substances out of the vicinity of flying sparks.
- Make sure that all connections on the turbocharger are close, so that no foreign object get inside the turbocharger.

4.3 Safety during commissioning and operation
- Visually inspect your working environment before starting work.
- Remove any obstacles and objects littering the workplace.
- Check all pipes to and from the turbocharger for damage and leaks before commissioning.
- Avoid all operational practice which could negatively affect safety at the turbocharger.
- Check turbocharger for recognisable damage or defects approximately every 12 hours of operation, or at least once a day.
- Report all damage and all alterations of operational characteristics to the responsible department immediately.
- In case of turbocharger damage, shut down immediately and safeguard against accidental/Unauthorized use.
- When switching on operating energy supplies (hydraulics, pneumatics, electricity, water), pay attention to the risks that may occur as a consequence of this energy input.
4.4 Sicherheit beim Reinigen

Für die Reinigung werden möglicherweise Reinigungs- und Lösungsmittel verwendet. Dazu unbedingt die Sicherheitshinweise im Abschnitt Gefährdung durch Betriebs- und Hilfsstoffe beachten.

- Vor dem Reinigen den Boden gegen unbeabsichtigtes Eindringen von Reinigungs- und Lösungsmitteln schützen.
- Angemessene Schutzkleidung tragen.
- Vor und nach der Reinigung Elektrokabel auf Schieberstellen und Beschädigungen überprüfen.

4.5 Sicherheit bei Demontage, Montage, Instandhaltung und Störungsbehebung

- Vorgeschriebene Einstell-, Service-, sowie Inspektionsarbeiten und Inspektionsintervalle einhalten.
- Bedienpersonal vor Beginn über alle Service- und Instandsetzungsarbeiten informieren.
- Vor dem Öffnen eines Deckels, beziehungsweise Entfernen einer Schutzvorrichtung des Turboladers, muss der Motor abgestellt und der Turbolader zum Stillstand gekommen sein.
- Sicherstellen, dass die Ölzufuhr unterbrochen ist, besonders bei externer Ölspeisung.
- Den Motor erst in Betrieb nehmen, nachdem alle Teile wieder ordnungsgemäß montiert wurden.

Vorsicht ! Mechanische Arbeiten am Turbolader
Mögliche Schädigung oder Zerstörung von Bauteilen am Turbolader.
- Nur Arbeiten ausführen, die in diesem Handbuch beschrieben sind.
- Nur Arbeiten ausführen, für die eine Ausbildung durchgeführt wurde.

4.6 Sicherheit beim Ausserbetriebnehmen oder Konservieren

- Rotor gegen Drehen sichern. Der Rotor kann allein durch Kaminzug drehen.
- Turbolader vor dem Konservieren reinigen.
- Angemessene Schutzkleidung tragen.

4.4 Safety during cleaning

It is possible that detergents or solvents will be used for cleaning. In this case, the safety instructions of the Hazard due to operating materials and supplies section in this chapter must always be observed.

- Protect the floor against unintentional penetration of detergents or solvents before starting cleaning operations.
- Wear appropriate protective clothing.
- Inspect the electric cables for abrasion and damaged areas before and after your cleaning work.

4.5 Safety during disassembly, assembly, maintenance and troubleshooting

- Observe the specified adjustment, service as well as inspection and inspection-work intervals.
- Inform operating personnel about all service and repair work before beginning.
- Before opening a cover or removing a protective device on a turbocharger, the engine must be switched off and the turbocharger must have come to a standstill.
- Ensure that the turbocharger oil supply is switched off, especially for external oil supply.
- Put the engine into operation only after all parts have been refitted properly.

Caution ! Mechanical work on the turbocharger
Possible damage to or destruction of components on the turbocharger.
- Perform only those tasks that are described in this manual.
- Perform work only for which training has been carried out.

4.6 Safety when taking out of operation or preparation for mothballing

- Secure rotor against turning. The rotor can rotate due to the stack draught alone.
- Clean the turbocharger prior to preparing for mothballing.
- Wear appropriate protective clothing.
5 Gefährdung bei Betrieb und Unterhalt

5.1 Mechanische Gefährdung im Betrieb

Im normalen Betrieb gehen vom Turbolader keine mechanischen Gefährdungen aus, wenn der Turbolader ordnungsgemäss angebaut wurde.

Warnung Verletzungsgefahr

► Turbolader vorschriftsgemäss betreiben.
► Rotor bei Wartungsarbeiten gegen unbeabsichtigte Rotation sichern.

5.2 Mechanische Gefährdungen bei Arbeiten am Turbolader

Bei Wartungsarbeiten können durch den unsachgemässen Umgang mit Komponenten, durch die Missachtung von Arbeitssicherheitsvorschriften, durch mangelnde Sorgfalt oder als Folge mangelhafter Ausbildung verschiedene Risiken entstehen.

Warnung Mechanische Gefährdung
Durch mechanische Einflüsse als Folge von riskanten, nicht sachgerechten Arbeitsweisen können schwere Personenschäden oder Unfälle mit tödlichen Folgen entstehen.

► Allgemeine Regeln zur Arbeitssicherheit und Unfallverhütung beachten.
► Arbeitsplatzsicherheit gewährleisten.
► Nur Arbeiten ausführen, die in diesem Handbuch beschrieben sind.
► Nur Arbeiten ausführen, für die eine Ausbildung durchgeführt wurde.

5 Hazards during operation and maintenance

5.1 Mechanical hazards during operation

During normal operation, no mechanical hazards emanate from the turbocharger if it has been installed properly.

Warning Risk of injury
Contact with rotating parts can lead to serious injuries. The turbocharger must never be operated without a filter silencer or an air suction branch. When the engine is at a standstill, the rotor can turn on its own because of stack draught.

► Operate the turbocharger in accordance with instructions.
► During maintenance work, secure the rotor against unintentional rotation.

5.2 Mechanical hazards when working on the turbocharger

During maintenance work, various risks can occur through the improper handling of components, through the non-observance of work instructions, due to inadequate care or as a consequence of insufficient training.

Warning Mechanical hazards
Serious personal injuries or accidents with fatal consequences can occur through mechanical influences as a result of risky, improper working methods.

► Heed the general rules for work safety and accident prevention.
► Ensure the safety of the work area.
► Perform only those tasks that are described in this manual.
► Perform work only for which training has been carried out.
5.3 Gefährdung durch Lärm

Die Lärmentwicklung im Betrieb wird durch die Einbauverhältnisse und die Betriebsbedingungen beeinflusst. Lärm mit einem Pegel von über 85 dB(A) wirkt schädigend.

Warnung

Einwirkung von Lärm kann zu Schädigungen des Gehörs, Beeinträchtigungen der Gesundheit und des psychischen Zustands, sowie zu Irritationen und Verminderung der Aufmerksamkeit führen.

- Bei laufendem Motor immer Gehörschutz tragen.
- Ab 85 dB(A) immer Gehörschutz tragen.

Richtwerte für die maximale Aufenthaltsdauer im Bereich von Lärremissionen (Quellenangabe: Unfallverhütungsvorschriften für Unternehmen der Seefahrt UVV See):

![Graph showing noise levels and time duration]

<table>
<thead>
<tr>
<th>x</th>
<th>Lärmpegel [dB(A)] / Noise level [dB(A)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>Maximale Aufenthaltsdauer [min], pro Arbeitstag / Maximal duration of stay [min], per work day</td>
</tr>
</tbody>
</table>

5.3 Hazards due to noise

The development of noise during operation is influenced by the installation and operating conditions. Noise with a level exceeding 85 dB(A) has a damaging effect.

Warning

The effects of noise can lead to hearing impairment, damage to health and the mental state as well as to irritation and diminished attention.

- Always wear ear protection when the engine is running.
- Above a level of 85 dB(A) wear ear protection at all times.

Reference values for the maximal duration of stay in the area of noise emissions (source: Accident Prevention Regulations for Companies Engaged in Shipping):
5.4 Hazards due to hot surfaces and substances

During operation, turbocharger surfaces and attached parts as well as operating materials (lubricating oil) become hot. The surface temperature is dependent on the effectiveness of the insulation being used. The temperature can become high enough so that it falls into ranges where burns are possible.

Warning

Risk of burning
Touching hot surfaces or contact with hot operating materials can lead to serious burns.

► Do not touch hot surfaces and heed the warning plate on the turbocharger.
► Wear heat-resistant protective gloves and protective clothing.
► Allow the turbocharger to cool down before carrying out any work.

Warning

Hot surfaces on uninsulated turbochargers
Uninsulated turbochargers can cause serious personal injuries (burns). The turbocharger is supplied by ABB Turbo Systems without insulation depending on the order from the engine builder. In this case, the engine builder is responsible for insulating the turbocharger properly or for providing protection against hot surfaces being touched.

► The engine builder's instructions and specifications about protection against hot turbocharger surfaces must be observed in every case.
5.5 Gefährdung durch Betriebs- und Hilfsstoffe

Betriebs- und Hilfsstoffe sind Substanzen, die für den Betrieb oder die Ausführung von Wartungsarbeiten gebraucht werden. Öle, Fette, Kühlmittel, Reinigungs- und Lösungsmittel, Säuren etc. können als Gefahrenstoffe gelten. Betriebs- und Hilfsstoffe können leicht entzündlich und brennbar sein.

Warnung

Vergiftungsgefahr, Verätzungsgefahr

Einnehmen oder Einatmen von Dämpfen entsprechender Betriebs- und Hilfsstoffe oder der Kontakt mit solchen kann zu Gesundheitsschädigungen führen.
► Hautkontakt und Einatmen vermeiden.
► Schutzbekleidung und Atemmaske tragen.

Warnung

Brandgefahr, Explosionsgefahr

Brennbare und leicht entzündliche Betriebs- und Hilfsstoffe können in Brand geraten, oder Dämpfe davon können zur Explosion führen.
► Kein offenes Feuer bei Reinigungsarbeiten zulassen.
► Reinigung im Freien durchführen, beziehungsweise für eine ausreichende Be- und Entlüftung sorgen.

Vorsicht!

Gefahr von Umweltschäden

Austreten von Betriebs- und Hilfsstoffen in die Atmosphäre oder Verschmutzung von Böden und Gewässern durch unsachgemässe Entsorgen, kann zu Schädigungen der Umwelt führen.
► Betriebs- und Hilfsstoffe vorsichtig handhaben.

5.5 Hazards due to operating and auxiliary materials

Operating and auxiliary materials are substances used for operation or the execution of maintenance work. Oils, greases, coolants, cleaning agents and solvents, acids, etc. can be regarded as hazardous materials. Operating and auxiliary materials can be combustible and easily ignited.

Warning

Risk of poisoning, burning

Ingestion or inhalation of vapours of the corresponding operating and auxiliary materials or contact with such can cause damage to health.
► Avoid inhalation and contact with the skin.
► Wear protective clothing and a breathing mask.

Warning

Risk of fire, explosion

Combustible or easily ignited operating and auxiliary materials can burst into flame, or vapours from them can cause explosions.
► Do not allow any exposed flame during cleaning work.
► Perform cleaning outdoors or ensure for adequate aeration and ventilation.

Caution!

Risk of environmental damage

The escape of operating and auxiliary materials into the atmosphere or contamination of the ground and water due to improper disposal can lead to environmental damage.
► Handle operating and auxiliary materials carefully.
5.6 Gefährdung durch den Umgang mit Isolationsmaterialien

- Gebrauchsanweisungen, Sicherheitsdatenblätter und Gefahrenhinweise auf den Behältern der Betriebs- und Hilfsstoffe beachten.
- Angemessene Schutzkleidung tragen.
- Hautkontakt und Einatmen vermeiden.
- Für ausreichende Be- und Entlüftung des Arbeitsraums sorgen.
- Behälter nach Gebrauch sofort dicht verschließen und wegräumen.
- Gebrauchte Arbeits- und Hilfsstoffe sicher auffangen, in geeigneten Behältern getrennt aufbewahren und entsprechend den gesetzlichen Vorschriften fach- und umweltgerecht entsorgen.
- Bei Leckagen oder nach Verschütten sofort geeignetes Bindemittel ausstreuen und diese entsprechend den gesetzlichen Vorschriften fach- und umweltgerecht entsorgen.

5.6 Hazards when handling insulating materials

- Heed the instructions for use, safety data sheets and hazard notices on the containers of the operating and auxiliary materials.
- Wear appropriate protective clothing.
- Avoid inhalation and contact with the skin.
- Ensure that the work space is adequately ventilated.
- Seal containers tightly immediately after use and put them away.
- Collect used working and auxiliary materials safely, store them separately in suitable containers and dispose of them properly and in an environmentally compatible manner in accordance with statutory regulations.
- In the event of leaks or after spilling, immediately spread a suitable binding agent and dispose of it properly and in an environmentally compatible manner in accordance with statutory regulations.

- Nur geeignete, nicht brennbare Isolierrmaterialien verwenden.
- Für gute Durchlüftung am Arbeitsplatz sorgen.
- Angemessene Arbeitskleidung (Schutzbrillen, Staubmaske) tragen.
- Aufwirbeln von Staub vermeiden.
- Staubvermeidende Werkzeuge und Bearbeitungsverfahren anwenden.
- Verpackung erst am Arbeitsplatz entfernen.
- Besondere Sorgfalt beim Entfernen alter Dämmstoffe anwenden.
- Isolationsmaterialien fach- und umweltgerecht entsorgen, nach den lokal gültigen Vorschriften.

- Use only suitable, non-combustible insulating materials.
- Ensure that the work area is well ventilated.
- Wear suitable work clothing (protective glasses, dust mask).
- Avoid stirring up dust.
- Use tools and processes that keep dust to a minimum.
- Remove packing materials only in the work area.
- Take particular care when removing old insulating materials.
- Dispose of insulating materials in a proper and environmentally compatible way.

5.6 Hazards when handling insulating materials

- Use only suitable, non-combustible insulating materials.
- Ensure that the work area is well ventilated.
- Wear suitable work clothing (protective glasses, dust mask).
- Avoid stirring up dust.
- Use tools and processes that keep dust to a minimum.
- Remove packing materials only in the work area.
- Take particular care when removing old insulating materials.
- Dispose of insulating materials in a proper and environmentally compatible way.

5.6 Hazards when handling insulating materials

- Use only suitable, non-combustible insulating materials.
- Ensure that the work area is well ventilated.
- Wear suitable work clothing (protective glasses, dust mask).
- Avoid stirring up dust.
- Use tools and processes that keep dust to a minimum.
- Remove packing materials only in the work area.
- Take particular care when removing old insulating materials.
- Dispose of insulating materials in a proper and environmentally compatible way.

5.6 Hazards when handling insulating materials

- Use only suitable, non-combustible insulating materials.
- Ensure that the work area is well ventilated.
- Wear suitable work clothing (protective glasses, dust mask).
- Avoid stirring up dust.
- Use tools and processes that keep dust to a minimum.
- Remove packing materials only in the work area.
- Take particular care when removing old insulating materials.
- Dispose of insulating materials in a proper and environmentally compatible way.
5.7 Gefährdung durch elektrische Komponenten

Warnung Gefahr durch elektrische Komponenten
Elektrische Komponenten arbeiten mit Spannungen, welche für den Menschen eine Gefahr darstellen können.
► Sämtliche Arbeiten an oder mit elektrischen Komponenten dürfen nur von speziell ausgebildeten Fachkräften vorgenommen werden.
► Landesspezifische Vorschriften sind zu beachten.

5.7 Hazards due to electrical components

Warning Hazards due to electrical components
Electrical components operate with voltages, which can present hazards to humans.
► All work on or with electrical components may only be performed by trained specialists.
► Heed any country-specific regulations.

6 Heben von Lasten

Warnung Schwebende Lasten
Durch nicht regelkonform aufgehängte Lasten können folgenschwere Personenschäden, beziehungsweise Unfälle mit tödlichen Folgen entstehen.
► Baugruppen oder Einzelteile ab 25 kg sorgfältig, an technisch einwandfreien Hebezeugen mit ausreichender Tragfähigkeit befestigen.
► Auf korrektes Anhängen der Lasten am Kranhaken achten.
► Es darf sich niemand unter schwebenden Lasten aufhalten.

6 Handling loads

Warning Suspended loads
Suspending loads in ways that do not comply with regulations can result in serious or fatal injuries.
► Carefully fasten assemblies or individual parts weighing more than 25 kg to technically perfect lifting gear with sufficient lifting capacity.
► Pay attention to correct attachment of the load to the crane hook.
► No one is permitted to stand beneath suspended loads.
Bei zwei oder mehr Anschlagpunkten darf der Anschlagwinkel von 45° nicht überschritten werden. Dadurch wird eine übermässige Belastung durch Schrägzug vermieden.

- Bauteile des Turboladers befestigen, wie in den jeweiligen Handlungsschritten beschrieben.
- Vor dem Umschlingen, die Bauteile des Turboladers abkühlen lassen (maximal 80°C).
- Bei scharfen Kanten einen geeigneten Kantenschutz einsetzen.
- Montagevorrichtungen müssen vollständig eingeschraubt sein und dürfen sich während des Einsatzes nicht lösen.
- Montagevorrichtungen nur für die beschriebenen Anwendungen verwenden.
- Demontierte Bauteile des Turboladers standsicher deponieren.

In the case of two or more suspension points, the slinging angle must not exceed 45°. This avoids excessive loading due to inclined tensile loading.

- Fasten turbocharger assemblies / components as described in respective handling steps.
- Before attaching slings, allow turbocharger components to cool down (maximum 80°C).
- Use suitable protection at sharp edges.
- Completely screw in assembly / fitting devices without fail so that they cannot work loose during use.
- Use assembly / fitting devices only for applications described.
- Make sure removed turbocharger components stand safely and securely.
Putting into operation

Inbetriebnehmen
2 Inbetriebnehmen

Inhalt

1 Schmieröl
 1.1 Schmierölmenge
 1.2 Schmierölklassifikationen
 1.3 Schmieröl einfüllen

2 Gasaustrittsgehäuse entwäsren

3 Kühlwasser
 3.1 Kühlwasser-temperaturen

4 Prüfarbeiten bei Inbetriebnahme
 4.1 Übersicht Prüfarbeiten
 4.2 Prüfen vor Inbetriebnahme
 4.3 Prüfen nach Inbetriebnahme
 4.4 Prüfen nach 100 Betriebsstunden
 4.5 Prüfen nach 50 ÷ 100 Betriebsstunden

2 Putting into operation

Contents

1 Lubricating oil
 1.1 Lubricating oil quantities
 1.2 Lubricating oil classifications
 1.3 Filling lubricating oil

2 Draining the gas outlet casing

3 Cooling water
 3.1 Cooling water temperatures

4 Inspection during putting into operation
 4.1 Outline of inspection work
 4.2 Inspection before putting into operation
 4.3 Inspection after putting into operation
 4.4 Inspection after 100 service hours
 4.5 Inspection after 50 ÷ 100 service hours
<table>
<thead>
<tr>
<th>Inhalt</th>
<th>Seite</th>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Inbetriebnahme nach Stillegung</td>
<td>15</td>
<td>5 Putting into operation after out of service period</td>
<td>15</td>
</tr>
<tr>
<td>5.1 Inbetriebnahme nach Stillegung bis zu 12 Monaten</td>
<td>15</td>
<td>5.1 Putting into operation after out of service period up to 12 months</td>
<td>15</td>
</tr>
<tr>
<td>5.2 Inbetriebnahme nach Stillegung über 12 Monate</td>
<td>16</td>
<td>5.2 Putting into operation after out of service period of more than 12 months</td>
<td>16</td>
</tr>
</tbody>
</table>
1 Schmieröl

Es dürfen nur Schmieröle auf mineralischer und synthetischer Basis der Listen 1 … 3 verwendet werden (Siehe Kapitel 8).

Für hochbelastete Anwendungen mit \(n_{\text{max}} \) grösser als in Tabelle 1 angegeben und/oder einem Verdichterdrukverhältnis \(\Pi_v > 4 \) dürfen nur Oele der Liste 2 und 3 verwendet werden. Wir empfehlen jedoch dringend die Oele der Liste 2b zu verwenden, welche sich im Turboladertest als besonders geeignet erwiesen haben.

\[
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
\text{VTR} & 184 & 214 & 254 & 304 & 354 & 454 & 564 & 714 \\
\text{n}_{\text{max}} > [1/s] & 726 & 611 & 514 & 433 & 364 & 289 & 230 & 183 \\
\hline
\end{array}
\]

Tabelle 1 / Table 1

Schmieröle auf der Basis von Ölen mit engem Schnitt d.h. Turbinen-, Hydraulik- und Kompressorenöle sind besonders geeignet.

Motorenöle mit speziell vielen Zusätzen für den Schwerölbetrieb dürfen nicht verwendet werden.

Vorsicht! Wegen der geforderten hohen Alterungsbeständigkeit sollten nur die empfohlenen Schmieröle verwendet werden. Wegen den speziellen Anwendungsbedingungen dürfen nur Schmieröle verwendet werden, deren Viskosität bei 40 °C und bei 100 °C (313 K und 373 K) innerhalb der angegebenen Bereiche liegen.

1.1 Schmierölmengen

Zum Füllen beider Lagerräume werden folgende Ölmengen benötigt:

\[
\begin{array}{|c|c|c|}
\hline
\text{VTR} & \text{Verdichterseite} & \text{Turbinenseite} \\
 & \text{Compressor end} & \text{Turbine end} \\
 & [dm^3] & [dm^3] \\
\hline
184 & 0,57 ... 0,65 & 0,29 ... 0,40 \\
214 & 0,77 ... 0,90 & 0,49 ... 0,60 \\
254 & 1,04 ... 1,25 & 0,81 ... 1,05 \\
304 & 1,67 ... 2,00 & 1,21 ... 1,48 \\
\hline
\end{array}
\]

1.1 Lubricating oil

Only the mineral and synthetic lubricating oils specified in lists 1...3 may be used (see chapter 8).

For heavy load applications with \(n_{\text{max}} \) greater than specified in table 1 and/or a compressor pressure ratio \(\Pi_v > 4 \), only oils in lists 2 and 3 must be used. However we urgently recommend the use of oils in lists 2b and 3b, which have proven specially suitable in the turbocharger test.

Lubricating oils based on narrow cut oils, i.e. turbine, hydraulic and compressor oils, are especially suitable.

Engine oils containing additives for heavy fuel oil operation must not be used.

Caution! Because of the high degree of aging resistance required, only the recommended lubricating oils should be used. The specialised needs of this application require that the viscosity of the lubricating oil used remains within the specified range for temperatures between 40°C and 100°C (313K and 373K).

1.1 Lubricating oil quantities

To fill both bearing spaces the following quantities of oil are required:

\[
\begin{array}{|c|c|c|}
\hline
\text{VTR} & \text{Verdichterseite} & \text{Turbinenseite} \\
 & \text{Compressor end} & \text{Turbine end} \\
 & [dm^3] & [dm^3] \\
\hline
354 & 1,85 ... 2,20 & 1,30 ... 1,66 \\
454 & 3,63 ... 4,35 & 2,95 ... 3,62 \\
564 & 7,40 ... 8,80 & 6,80 ... 7,53 \\
714 & 16,20 ... 18,00 & 14,00 ... 15,60 \\
\hline
\end{array}
\]
Fig. 2-1
Lagerraumdeckel
Bearing space cover

Fig. 2-2
Schild für den Ölstand
Oil level plate

Schauglas mit Markierungen
Sight glass with marking

46014 / 48012
46013 / 48011
1.2 Schmierölklassifikationen

<table>
<thead>
<tr>
<th>Lagerart</th>
<th>Schmiersystem</th>
<th>Turbolader Typ VTR</th>
<th>Viskosität [mm²/s] 40°C</th>
<th>Viskosität [mm²/s] 100°C</th>
<th>Viskositätsklasse ISO - VG</th>
<th>Viskositäts-index VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wälzlager</td>
<td>- Eigenschmierung LS 1 / TS 1</td>
<td>184 - 714</td>
<td>< 95</td>
<td>7, 5 - 12</td>
<td>68</td>
<td>> 80</td>
</tr>
<tr>
<td></td>
<td>- erweiterter Schmierölkreislauf LS 3 / TS 3</td>
<td>304 - 354</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- separates Fremdschmiersystem LS 2 / TS 2</td>
<td>454 - 714</td>
<td>< 115</td>
<td>7,5 - 16,1</td>
<td>68</td>
<td>> 80</td>
</tr>
</tbody>
</table>

1.3 Schmieröl einfüllen

An den Lagerraumdeckeln (s. Fig. 2-1) Verschluss schrauben (46013/48011) herausdrehen.

- Neues Schmieröl durch die Öffnungen in beide Ölräume einfüllen.
- Schmieröl bis zur oberen Schauglasmarke auffüllen (s. Fig. 2-2).

1.2 Lubricating oil classifications

<table>
<thead>
<tr>
<th>Bearing typ</th>
<th>Lubrication system</th>
<th>Turbocharger Typ VTR</th>
<th>Viskosity [mm²/s] 40°C</th>
<th>Viskosity [mm²/s] 100°C</th>
<th>Viskosity class ISO - VG</th>
<th>Viskosity index VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rolling contact bearing</td>
<td>- integral lubrication LS 1 / TS 1</td>
<td>184 - 714</td>
<td>< 95</td>
<td>7, 5 - 12</td>
<td>68</td>
<td>> 80</td>
</tr>
<tr>
<td></td>
<td>- extended lubricating oil system LS 3 / TS 3</td>
<td>304 - 354</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- separate external lubricating oil system LS 2 / TS 2</td>
<td>454 - 714</td>
<td>< 115</td>
<td>7,5 - 16,1</td>
<td>68</td>
<td>> 80</td>
</tr>
</tbody>
</table>

1.3 Filling lubricating oil

Warning! Fire risk when handling lubricating oil due to naked flame or smouldering cigarettes! Avoid spilling lubricating oil! Have a bucket ready for leaking oil. Have suitable absorbent material ready. The turbocharger must not be in operation when oil is being filled.

Remove the screw plugs (46013/48011) at the bearing space covers (see fig. 2-1).

- Fill fresh lubricating oil through the openings into both oil chambers.
- Fill the lubricating oil up to the upper mark on the sight glass (see fig. 2-2).
Fig. 2-3
Gasaustrittsgehäuse
Gas outlet casing
Inbetriebnehmen

- Dichtungen (46014/48012) auf die Verschluss- schrauben (46013/48011) setzen und Verschluss- schrauben festziehen.

Vorsicht!
Verschüttetes Schmieröl mit Ölabsorbentien binden.
Öl durchtränktes Absorbens als Sonder- müll getrennt sammeln und in vorge- schriebenen Altöl-Containern entsorgen.

2 Gasaustrittsgehäuse entwässern

- Entwässerung "O" (s. Fig. 2-3) öffnen und kontrollieren, ob sich Regen- oder Kondenswasser im Gasaustrittsgehäuse angesammelt hat.

- Ist dies der Fall oder besteht diese Möglichkeit, so ist eine Ablaufleitung mit Absperrhahn anzubrin- gen.

3 Kühlwasser

Der turbinenseitige Lagerraum und das Gasaustritts- gehäuse (61000) werden vom Motorkühlsystem mit Wasser gekühlt.

Vorsicht!
Wegen Korrosionsgefahr nur enthärte- tes, reines Süßwasser verwenden.
Gasausstrittsgehäuse an der obersten Stel- le der Wasseraustrittsleitung entlüften.

2 Draining the gas outlet casing

- Open the draining point "O" (see fig. 2-3) and check whether rainwater or condensation has gathered in the gas outlet casing.

- If this is the case or is possible, a drainage line with stop cock must be fitted.

3 Cooling water

The bearing space at the turbine end and the gas outlet casing (61000) are water-cooled by the engine’s cooling system.

Caution!
In order to avoid corrosion use only softened, pure fresh water.
Ventilate the gas outlet casing at the uppermost point of the water outlet line.
Fig. 2-4
Kühlen der Gaseintritts- und Gasaustrittsgehäuse
Cooling the gas inlet and gas outlet casing
3.1 Kühlwassertemperaturen

Zur Kühlung soll nur Süßwasser verwendet werden. Die Temperaturerhöhung des Kühlwassers ist eine angenähertes Mass für die durchfließende Menge. Mit Blenden in den Wasseraustrittsleitungen des Gas- ein- sowie des Gasaustrittsgehäuses muss bei Vollast des Motors die Temperaturerhöhung für das Gas- eintrittsgehäuse auf 5 ... 8 °C (K) und für das Gas- ausstrittsgehäuse auf 8 ... 12 °C (K) eingestellt werden.

Minimum Wassereintrittstemperatur: 50 °C (323K)

Ideale Wasseraustrittstemperatur: 80 °C (353K)

Maximale Wasseraustrittstemperatur: 85 °C (358K)

Der max. zulässige Wasserüberdruck beträgt 5 bar

3.1 Cooling water temperatures

Only fresh water should be used for cooling. The increase in temperature of the cooling water serves here as an approximate value for the volume of water flow. The increase of the cooling water temperature at full engine load must be adjusted with orifices in the water outlet pipes for the gas inlet casing to 5 ... 8 °C (K) and for the gas outlet casing to 8 ... 12 °C (K).

Minimum water inlet temperature: 50 °C (323K)

Ideal water outlet temperature: 80 °C (353K)

Maximum water outlet temperature: 85 °C (358K)

The max. permissible water overpressure is 5 bars

Legende zu Fig. 2-4

<table>
<thead>
<tr>
<th>A</th>
<th>Hochtank (Ausgleichsgefäß)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Entlüftungsbehälter</td>
</tr>
<tr>
<td>C</td>
<td>Luftsammler (Dom)</td>
</tr>
<tr>
<td>D</td>
<td>Permanent geöffnete Entlüftungsleitung</td>
</tr>
<tr>
<td>E*)</td>
<td>Blenden in den Wasseraustrittsleitungen der Gasgehäuse</td>
</tr>
<tr>
<td>F</td>
<td>Kühlwasser-Rücklaufleitung</td>
</tr>
<tr>
<td>G</td>
<td>Kühlwasser-Zufuhrleitungen</td>
</tr>
<tr>
<td>GA</td>
<td>Gasaustrittsgehäuse</td>
</tr>
<tr>
<td>GE</td>
<td>Gaseintrittsgehäuse</td>
</tr>
</tbody>
</table>

*) Wenn die Wassermenge durch den Leitungsquerschnitt bestimmt ist, wird keine Blende benötigt.

Legend for fig. 2-4

<table>
<thead>
<tr>
<th>A</th>
<th>Header tank (expansion tank)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Vent tank</td>
</tr>
<tr>
<td>C</td>
<td>Air collector (dome)</td>
</tr>
<tr>
<td>D</td>
<td>Air- release line permanent open</td>
</tr>
<tr>
<td>E*)</td>
<td>Orifice plate in water outlet line of the gas casings</td>
</tr>
<tr>
<td>F</td>
<td>Cooling water return line</td>
</tr>
<tr>
<td>G</td>
<td>Cooling water supply line</td>
</tr>
<tr>
<td>GA</td>
<td>Gas outlet casing</td>
</tr>
<tr>
<td>GE</td>
<td>Gas inlet casing</td>
</tr>
</tbody>
</table>

*) If the water flow is determined by the piping cross section an orifice is not necessary.
<table>
<thead>
<tr>
<th>Notizen</th>
<th>Notes</th>
</tr>
</thead>
</table>

| | |
4 Prüfarbeiten bei Inbetriebnahme

Diese Prüfarbeiten sind vorbeugende Sichtkontrollen, Überwachungs- und Messarbeiten, die die Funktionsfähigkeit des Turboladers sicherstellen. Sie helfen, Abweichungen vor und bei Inbetriebnahme zu erkennen und dadurch Maschinenschäden frühzeitig zu verhindern.

- In den unten angegebenen Zeitabständen sind an den aufgelisteten Prüfstellen Kontroll- und Messarbeiten durchzuführen.
- Vor und bei allen Prüfarbeiten sind die Sicherheitshinweise (in Kap. 1) zu beachten.

4.1 Übersicht Prüfarbeiten

4 Inspection during putting into operation

Inspection work includes preventive visual controls, as well as monitoring and measurement to ensure the correct functioning of the turbocharger. These serve as an aid for the recognition of deviations before and during putting into operation in order to prevent damage to the machine.

- Control and measurement checks must be carried out at the listed inspection points at the intervals quoted below.
- Before and during inspection work, the safety instructions cited (in chap. 1) must be observed.

4.1 Outline of inspection work

Inspection symbols and intervals

Kurzbezeichnung der Prüfzeitpunkte

Abbreviations for the inspection times

vor Inbetr. vor Inbetriebnahme

Before before putting into operation

nach Inbetr. nach Inbetriebnahme

After after putting into operation

Prüfsymbole und -zeiten

Inspection location

Inspection point (visible in the outline)

Inspection point (not visible in the outline)

Inspection

Recording of measurement values
Übersicht Prüfarbeiten

vor Inbetriebnahme

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Intervall Prüfzeit</th>
<th>Prüfstelle</th>
<th>Prüf-, Mess-, Einstellarbeitene</th>
<th>siehe</th>
</tr>
</thead>
</table>
| ① | vor Inbetriebnahme | Schauglas Oelräume | - Oelstand muss bis zu oberen Markierung reichen
- Bei Bedarf Oel nachfüllen | Abschn. 1.3 |
| ② | | Gasausrittsgehäuse | - auf eingedrungenes Kondens- und Regenwasser prüfen | Abschn. 2 |
| ③ | | Vibrationsüberwachung | - Funktion prüfen | Kap. 3 |
| ④ | | Luftfiltersegment | - auf Beschädigung prüfen | Kap. 3 |
| ⑤ | nach Inbetriebnahme| Gas-, Luft- und Kühlwasserleitungen | - Dichtheit prüfen | Abschn. 4.3 |
| ⑥ | | Laderdrehzahl | - messen | Kap. 3 |
| ⑦ | | Ladedruck | - messen | Kap. 3 |
| ⑧ | | Temperaturen | - vor / nach Turbine und Verdichter bei verschiedenen Motorleistungen messen | Kap. 3 |
| ⑨ | nach 50 - 100 [h] | Gehäuseschrauben | - Anzugsmoment prüfen | Abschn. 4.5 |
| ⑩ | | Fussbefestigungsschrauben | - Anzugsmoment prüfen | Abschn. 4.5 |

nach 50 - 100 [h]

<table>
<thead>
<tr>
<th>Item</th>
<th>Interval inspection time</th>
<th>Inspection point</th>
<th>Inspection, measurement and adjustment</th>
<th>see</th>
</tr>
</thead>
</table>
| ① | before putting into operation | Oil space sight glasses | - Oil level must correspond to upper marking
- top up if necessary | sec.1.3 |
| ② | | Gas outlet casing | - check for condensation and rainwater | sec.2 |
| ③ | | Vibration monitor | - check function | chap. 3 |
| ④ | | Air filter segment | - check for damage | chap. 3 |
| ⑤ | after putting into operation | Gas, air and cooling water ducts | - check for leaks | sec.4.3 |
| ⑥ | | Charger speed | - measure | chap. 3 |
| ⑦ | | Charger pressure | - measure | chap. 3 |
| ⑧ | | Temperatures | - measure before and after turbine and compressor at various engine speed | chap. 3 |
| ⑨ | after 50 - 100 [h] | Casings screws | - check tightening torque | sec.4.5 |
| ⑩ | | Screws of foot fixation | - check tightening torque | sec.4.5 |
4.2
Prüfen vor Inbetriebnahme

- Der Ölstand der verdichter- und turbinenseitigen Ölräume muss bis zur oberen Markierung der Schaugläser reichen.

Vorsicht! Es kann vorkommen, dass beide Ölräume schon mit Öl gefüllt sind. Da der Verschmutzungsgrad des Öles nicht bekannt ist, müssen beide Ölräume entleert und mit frischem Öl aufgefüllt werden.

- Das Gasaustrittsgehäuse ist auf eingedrungenes Kondens- oder Regenwasser zu prüfen (s. Abschn. 2).

- Die Überwachungseinrichtungen sind auf Funktion zu prüfen (s. Kap. 3).

4.3
Prüfen nach Inbetriebnahme

- Nach dem Anlassen des Motors alle Gas-, Luft- und Kühlwasserleitungen auf Dichtheit prüfen.

- Drehzahl, Ladedruck und Temperaturen vor und nach Turbolader und Verdichter bei verschiedenen Motorleistungen messen.

- Messwerte mit den Werten des Abnahmeprotokolls vergleichen und dabei unterschiedliche Betriebsbedingungen berücksichtigen.

4.2
Inspection before putting into operation

- The oil level of the oil spaces on the compressor and the turbine ends must correspond to the upper marking of the sight glasses.

Caution! It is possible that both oil spaces are already filled with oil. Due to the unknown grade of contamination of the oil both oil spaces have to be emptied and filled up with fresh lubricating oil.

- The gas outlet casing must be checked for condensation or rainwater (see sec. 2).

- Check that the monitoring devices are functioning (see chap. 3).

4.3
Inspection after putting into operation

- After the engine has been started up, check all gas, air and cooling water lines for leaks.

- Measure the speed, charging pressure and temperatures before and after the turbocharger and the compressor at various engine speeds.

- Compare the measured values with those of the inspection report, taking into account the different operation conditions.
4.4 Prüfen nach 100 Betriebsstunden

Nach den ersten 100 Betriebsstunden Schmieröl in beiden Ölräumen wechseln (s. Kap. 3).

4.4 Inspection after 100 service hours

After the first 100 service hours change the lubricating oil in both oil spaces (see chap. 3).

4.5 Prüfen nach 50 ÷ 100 Betriebsstunden

Nach den ersten 50 bis 100 Betriebsstunden sollen die vorgeschriebenen Anziehmomente der Gehäuse- schrauben nachgeprüft werden:

- zwischen Gaseintritts- und Gasaustrittsgehäuse und zwischen Luftaustritts- und Gasaustrittsgehäuse
- alle Fussbefestigungsschrauben

Die Tabelle der Anziehmomente siehe Kap. 5.

4.5 Inspection after 50 ÷ 100 service hours

The specified tightening torques of the casing screws should be checked following the first 50 to 100 hours of operation:

- between gas inlet and gas outlet casing and between air outlet and gas outlet casing
- all foot fixing screws

The table of tightening torques see chap. 5.
5 Inbetriebnahme nach Stillegung

5.1 Inbetriebnahme nach Stillegung bis zu 12 Monaten

Hinweis
Bei stillgelegten Turboladern, die länge-re Zeit Vibrationen ausgesetzt worden sind, sind die Wälzlager vor dem Inbetriebnehmen zu ersetzen. Ist ein Lagerwechsel nicht notwendig, eventuell vorhandenes Schmieröl in bei-den Lagerräumen ablassen und frisches Schmieröl einfüllen (s. Kap. 3).

- Falls vorhanden, Blindflansch zwischen Luft-austrittsgehäuse und Ladeluftleitung entfernen.
- Motorenseitige Kühlwasserzirkulation in Betrieb nehmen.
- Anschliessend Kühlsystem entlüften.

5.2 Inbetriebnahme nach Stillegung über 12 Monate

- Wälzlager ersetzen (s. Kap. 5).
- Motorenseitige Kühlwasserzirkulation in Betrieb nehmen.
- Anschliessend Kühlsystem entlüften.

5 Putting into operation after out of service period

5.1 Putting into operation after out of service period up to 12 months

Note
In case the turbocharger has been out of function and been exposed to vibrations for an extended period of time, the rolling contact bearings must be replaced before putting into operation. If a bearing replacement is not necessary, drain the eventually existing lubricating oil in the bearing spaces and fill both bearing spaces with fresh lubricating oil (see chap. 3).

- If applicable, remove the blind flange between the air outlet casing and the charge-air line.
- Start up the engine end cooling water circulation system.
- Ventilate the cooling system.

5.2 Putting into operation after out of service period of more than 12 months

- Replace rolling contact bearings (see chap. 5).
- Start up the engine and cooling water circulation system.
- Ventilate the cooling system.
3 Operation and maintenance

Inhalt

1 Prüfarbeiten .. 3
1.1 Übersicht Prüfarbeiten 3
1.2 Prüfen alle 25 bis 50 Stunden 5
1.3 Prüfen alle 100 Stunden 6
1.4 Prüfen bei jedem Service 6
1.5 Einträge in das Maschinentagebuch 6

2 Überwachung ... 9
2.1 Drehzahlmessung 9
2.2 U-Manometer ... 11
2.3 Pumpen des Turboladers 12
2.4 Streifen von rotierenden Teilen 13

3 Pflegearbeiten .. 14
3.1 Sicherheitshinweise 14
3.2 Übersicht Pflegearbeiten 15
3.3 Luftfilter reinigen 21
3.4 Kühlwasserräume und Sperrluftkanäle reinigen 23
3.5 Ölräume reinigen 27
3.6 Turbine reinigen 28
3.7 Verdichter reinigen 33

4 Unterhaltsarbeiten 36
4.1 Übersicht Unterhaltsarbeiten 37
4.2 Schmieröl wechseln 40
4.3 Lagerwechselzeit 43
4.4 Verdichterradwechselzeit 44
4.5 Turbinenwechselzeit 44

Contents

1 Inspection ... 3
1.1 Outline of inspection work 3
1.2 Inspection every 25 to 50 hours 5
1.3 Inspection every 100 hours 6
1.4 Inspection with every service 6
1.5 Entries in the machine logbook 6

2 Monitoring ... 9
2.1 Speed measurement 9
2.2 U-tube manometer 11
2.3 Surging of turbocharger 12
2.4 Contact with rotating parts 13

3 Cleaning work ... 14
3.1 Safety instructions 14
3.2 Outline of cleaning work 15
3.3 Cleaning the air filter 21
3.4 Cleaning the cooling water spaces and the sealing air ducts 23
3.5 Cleaning the oil spaces 27
3.6 Cleaning the turbine 28
3.7 Cleaning the compressor 33

4 Maintenance work 36
4.1 Outline of maintenance work 37
4.2 Changing the lubricating oil 40
4.3 Intervals for replacing the bearings 43
4.4 Intervals for replacing the compressor wheel 44
4.5 Intervals for replacing the bladed shaft 44
1 Prüfarbeiten

Diese Prüfarbeiten während des Betriebes sind Sicht-
kontrollen, Überwachungs- und Messarbeiten, die die
Funktionsfähigkeit des Turboladers erhalten. Sie hel-
fen, Abweichungen während des Betriebes zu erken-
nen und dadurch Maschinenschäden zu verhindern.

- In den unten angegebenen Zeitabständen sind an
den aufgelisteten Prüfstellen Kontroll- und Mess-
arbeiten durchzuführen

- Bei allen Prüfarbeiten sind die Sicherheitshinweise
in den entsprechenden Kapiteln zu beachten.

1.1 Übersicht Prüfarbeiten

Prüfsymbole und -intervalle

Prüfort

Prüfstelle
(in Übersicht sichtbar)

Prüfstelle
(in Übersicht verdeckt)

Prüfen

Messwerte erfassen

Kurzbezeichnung der Prüfintervalle

25 - 50 [h] alle 25-50 Betriebsstunden
100 [h] alle 100 Betriebsstunden

1 Inspection

Inspection work during operation includes visual
checks, as well as monitoring and measuring in order
to ensure correct functioning of the turbocharger.
This serves as an aid for the recognition of deviations
during operation in order to prevent damage to the
machine.

- Control and measurement checks must be carried
out on the listed inspection points at the intervals
quoted below.

- The safety instructions cited in the corresponding
chapters must be observed in the course of all
inspection work.

1.1 Outline of inspection work

Inspection symbols and intervals

Inspection location

Inspection point
(visible in the outline)

Inspection point
(not visible in the outline)

Inspection

Recording of measurement values

Abbreviations for inspection intervals

25 - 50 [h] after every 25-50 service hours
100 [h] after every 100 service hours
Prüfarbeiten

25 - 50 [h]

100 [h]

Outline of inspection work

Fig. 3-1
Übersicht Prüfarbeiten
Outline of inspection work
Übersicht Prüfarbeiten

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Prüfintervalle nach Betriebsstrudern</th>
<th>Prüf-, Mess-, Einstellarbeiten</th>
<th>siehe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alle 25 bis 50 [h]</td>
<td>Betriebsdaten</td>
<td>- erfassen</td>
<td>Abschn. 1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- in das Maschinenbuch eintragen</td>
<td>Kap. 4</td>
</tr>
<tr>
<td>Alle 100 [h]</td>
<td>Schauglas Ölräume</td>
<td>- bei Motorstillstand Ölstand prüfen</td>
<td>Abschn. 1.3</td>
</tr>
<tr>
<td>bei jedem Service</td>
<td>Gehäuseschrauben</td>
<td>- Anzugsmoment prüfen</td>
<td>Abschn. 1.4</td>
</tr>
<tr>
<td></td>
<td>Fussbefestigungsschrauben</td>
<td>- Anzugsmoment prüfen</td>
<td>Abschn. 1.4</td>
</tr>
</tbody>
</table>

Outline of inspection work

<table>
<thead>
<tr>
<th>Item</th>
<th>Inspection intervals acc. to service hours</th>
<th>Inspection points</th>
<th>Inspection, measurement, adjustment</th>
<th>see</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every 25 to 50 [h]</td>
<td>Operation data</td>
<td>- check</td>
<td>sec. 1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- enter in the log book</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- establish the cause of deviations</td>
<td>chap. 4</td>
<td></td>
</tr>
<tr>
<td>Every 100 [h]</td>
<td>Oil space sight glasses</td>
<td>- check oil level with engine at a standstill</td>
<td>sec. 1.3</td>
<td></td>
</tr>
<tr>
<td>with every service</td>
<td>Casings screws</td>
<td>- check tightening torque</td>
<td>sec. 1.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Screws of foot fixation</td>
<td>- check tightening torque</td>
<td>sec. 1.4</td>
<td></td>
</tr>
</tbody>
</table>

1.2 Prüfen alle 25 bis 50 Stunden

- Regelmässig alle 25 bis 50 Stunden sind die Betriebsdaten des Abgasturboladers zu erfassen und in das Maschinentagebuch einzutragen (s. Abschn. 1.4).

- Weichen die Betriebsdaten von den Daten des Abnahmeprotokolls grob ab, sind die Ursachen nach Kap. 4, zu klären.

- Rufen Sie eine autorisierte ABB Service-Stelle an (s. Kap. 8), wenn Sie die Ursache der Normabweichung nicht klären können.

1.2 Inspection every 25 to 50 hours

- The operating data of the exhaust gas turbocharger must be recorded regularly every 25 to 50 hours and entered in the machine logbook (see sec. 1.4).

- If the operation data deviates significantly from the data in the inspection report the causes must be established in accordance with chap. 4.

- Call an authorized ABB service station (see chap. 8) if the reasons for the deviation cannot be established.
1.3 Prüfen alle 100 Stunden

- Bei Motorstillstand den Ölstand im Schauglas der Ölräume auf Verdichter- und Turbinenseite prüfen.
- Der Ölstand im Schauglas muss innerhalb des Messringes sein, d.h. zwischen max. und min. Marke (s. Kap. 2).
- Öl nachfüllen (s. Kap. 2).

1.4 Prüfen bei jedem Service

Bei jedem Service sollen die vorgeschriebenen Anziehmomente der Gehäuseschrauben nachgeprüft werden:
- zwischen Gaseintritts- und Gasaustrittsgehäuse und zwischen Luftaustritts- und Gasaustrittsgehäuse
- alle Fussbefestigungsschrauben

Die Tabelle der Anziehmomente siehe Kap. 5.

1.5 Einträge in das Maschinentagebuch

Das Überwachen der Maschinenanlage erlaubt Rückschlüsse auf das Verhalten des Turboladers. Folgende Betriebsdaten und Messwerte sind regelmäßig in das Maschinentagebuch des Motorenherstellers einzutragen:
- Leistung und Drehzahl des Dieselmotors
- Luftansaugtemperatur
- Druckverlust im Luftfilter
- Druck der Ladeluft
- Lufttemperatur nach Verdichter und Luftkühler
- Druckverlust des Luftkühlers
- Kühlwassereintrittstemperatur des Luftkühlers

1.3 Inspection every 100 hours

- With the engine at standstill check the oil level in the sight glasses of the oil spaces at compressor and turbine end.
- The oil level in the sight glass must be within the measurement ring, i.e. between the maximum and minimum marks (see chap. 2).
- Top up oil (see chap. 2).

1.4 Inspection with every service

The specified tightening torques of the casing screws should be checked with every service:
- between gas inlet and gas outlet casing and between air outlet and gas outlet casing
- all foot fixing screws

The table of tightening torques see chap. 5.

1.5 Entries in the machine logbook

Monitoring of the machine plant provides information about the performance of the turbocharger. The following operation data and measurement values must be entered regularly in the machine logbook of the engine manufacturer:
- Output and speed of the diesel engine
- Air intake temperature
- Pressure loss in the air filter
- Pressure of the charge-air
- Air temperature after the compressor and the air cooler
- Pressure loss of the air cooler
- Cooling water inlet temperature of the air cooler
Falls vorhanden:
- Kühlwassereintrittstemperatur des Gasaustrittsgehäuses und der Lagergehäuse
- Drehzahl des Turboladers
- Kühlwasseraustrittstemperatur des Gasaustrittsgehäuses und der Lagergehäuse
- Abgastemperatur vor der Turbine
- Abgastemperatur nach der Turbine
- Druck nach Turbine oder vor Abgasboiler

Bei grob von der Norm abweichenden Messwerten, Ursachen klären (s. Angaben des Motorenherstellers und Kap. 4).

Nach einer Generalüberholung des Turboladers sind folgende Daten zu erfassen und an ABB Turbo Systems AG weiterzuleiten (Monteurbericht):
- Zustand des abgelassenen Öls
- Menge und Marke des nachgefüllten Öls
- Zustand des Luftfilters
- Art der Verschmutzung
- Zustand der Kühlwasserräume
- Lagerwechsel / -austausch
- Ölpumpenwechsel
- verwendete Ersatzteile
- nachbestellte Ersatzteile und Werkzeuge
- Betriebsstunden

In the event of measurement values which deviate significantly from the norm (see the specifications of the engine manufacturer and chap. 4), establish the cause.

Following a general overhaul of the turbocharger, the following data must be recorded and passed on to ABB Turbo Systems Ltd (service report):
- condition of the drained oil
- quantity and brand of the new oil
- condition of the air filter
- type of contamination
- condition of the cooling water spaces
- bearing change / replacement
- oil pump change
- spare parts used
- reorders of spare parts and tools
- service hours
Fig. 3-2
Drehzahlmessung

Speed measurement

2 Überwachung

Die folgenden Überwachungseinrichtungen sind bereits eingebaut oder können auf Wunsch nachträglich bestellt werden.

2.1 Drehzahlmessung

Die Laderdrehzahl ist als Kontrollwert bei laufender Überwachung der Maschinenanlage geeignet.

- Elektrisches Messsystem mit exzentrischem Geber
 Im Schmierrad befinden sich auf gleichem Durchmesser kleine Magnete die beim Vorbeiradieren am exzentrisch montiertem Geber im Lagerdeckel Impulse induzieren. Diese Impulse werden in einem elektronischen Gerät zur Drehzahlanzeige weiter verarbeitet.

Das Absinken der Drehzahl eines Laders kann bedeuten:
- Beschädigte Turbine
- Defekte an den angeschlossenen Zylindern (nur bei Stossbetrieb)
- Verstopfte Fanggitter (nur bei Stossbetrieb)
- Beginn einer Lagerhavarie

Mögliche Gründe für den Ausfall der Drehzahlanzeige:
- Defekte an den Drehzahlmessgeräten oder Verbindungskabeln
- Fortgeschrittener VS-Lagerschaden der den Ausfall der Drehzahlmessvorrichtung verursacht.

2 Monitoring

The following monitoring devices are already built in or can be supplied on request.

2.1 Speed measurement

The turbocharger speed is suitable as a check value for constant monitoring of the machine.

- Electrical measurement system with eccentric transmitter
 On the same diameter embedded small magnets in the oil slinger induce pulses into the pickup which is screwed eccentric into the bearing cover. These impulses are further processed in an electronic unit for the indication of the rotational speed.

The complete speed measuring device can be ordered from ABB Turbo Systems or direct from the supplier. Further informations from the engine manufacturer.

A reduction in speed of a charger can signify:
- damaged turbine
- defects in the connected cylinders (pulse operation only)
- blocked grid (pulse operation only)
- the beginning of bearing damage

Possible reasons for the breakdown of the speed indicator:
- Damaged speed measuring device or its wiring
- Advanced compressor end bearing damage which causes the breakdown of the speed measurement devices.
Fig. 3-4

U - Manometer

U - tube manometer
Beim Absinken der Drehzahl oder einem Ausfall der Drehzahlanzeige muss wie folgt vorgegangen werden:

Vorsicht! Um eine komplette Turboladerzerstörung zu verhindern, ist bei einem Absinken der Drehzahl während konstantem Motorbetrieb oder Ausfall der Drehzahlanzeige, sofort ein vollständiger Stop vorzunehmen und wie folgt vorzugehen:

- Kontrolle des Drehzahlmessgebers auf Beschädigungen bzw. Streifen
- Entfernen des Lagerdeckels und Messen des Masses "K" (s. Kap. 5) sowie des Rotorfreilaufs.
- Ist die Abweichung des Wertes "K" gegenüber dem Originalmass (siehe Schild auf VS Lagerdeckel-Innenseite) grösser als 0,5mm, ist ein VS Lagerwechsel vorzunehmen.
- Untersuchung des Verdichterrades auf Streifspuren.
- Das ausgebaute Lager ist durch eine ABB Service-Stelle kontrollieren zu lassen (s. Kap. 8).

2.2 U-Manometer

Mit dem U-Manometer (s. Fig. 3-4) wird der Unterdruck im Schalldämpfer gemessen und man erhält damit einen Hinweis über den Verschmutzungsgrad des Filtermateriales. Mechanische Erschütterungen des U-Manometers (81050) werden durch den Einbau von zusätzlichen Filzscheiben verringert.

Vorsicht! Das U-Manometer keinen mechanischen Erschütterungen aussetzen.

In the event of a speed reduction or breakdown of the speed indicator proceed as follows:

Caution! To prevent complete destruction of the turbocharger if the speed falls during constant engine operation or failure of the speed indication, a complete stop must be made immediately and the following procedure adopted:

- Check the speed measurement transmitter for damage or rubbing
- Remove the bearing cover, measure the dimension "K" (see chap. 5) and check that the rotor is turning freely.
- If the value "K" deviates by more than 0,5 mm from the original value (see plate on the inside of the compressor end bearing cover), the compressor end bearings must be replaced.
- Examine the compressor wheel for contact marks.
- Have the replaced bearing checked by an ABB service station (see chap. 8).

2.2 U-tube manometer

The U-tube manometer (s. fig 3-4) measures the vacuum in the silencer and thus provides an indication of the degree of contamination of the filter material. Vibration of the U-tube manometer (81050) is reduced by the installation of felt discs.

Caution! The U-tube manometer must not be exposed to shock or vibration.
2.3 Pumpen des Turboladers

Vorsicht!

Bei andauerndem oder periodisch wiederkehrendem Pumpen können folgende Bauteile beschädigt werden:
- Verdichterrad (Schwingungsbrüche etc.)
- Turbinenbeschaufelung (Risse)
- Lagerung (Ueberhitzung)
- Filterschalldämpfer

Hinweis

Zu treffende Massnahmen:
Bei andauerndem oder periodisch wiederkehrendem Pumpen ist die Betriebssicherheit des Turboladers nicht mehr gewährleistet. Der Betreiber muss zusammen mit Motorhersteller bzw. der nächsten ABB Service-Stelle (siehe Kap. 8) umgehend Massnahmen zur Beseitigung des Pumpens einleiten. Die oben genannten Bauteile sind auf Beschädigung zu untersuchen, im Zweielsfall zu ersetzen.

2.3 Surging of turbocharger

Surging of the turbocharger can occur with certain engine operating states, such as rapid load removal or while manoeuvering, particularly with high engine loads. The general direction of flow in the compressor is then temporarily reversed. Although surging leads to increased load of individual turbocharger components, sporadic pulses do not generally affect safe operation of the turbocharger.

Vorsicht!

The following components can be damaged by continuous or periodically recurring surging:
- compressor wheel (vibration fractures, etc.)
- turbine blades (cracks)
- bearings (overheating)
- filter silencer

Note

Action to be taken:
The operating safety of the turbocharger is no longer ensured with continuous or periodically recurring surging. The operator, together with the engine manufacturer or next ABB service station (see chap. 8), must take immediate action to eliminate the surging. The above mentioned components should be examined for damage and replaced in case of doubt.
2.4 Streifen von rotierenden Teilen

Eine minime und gleichmässige Abnützung am Umfang der Rotorkomponenten, hervorgerufen durch leichtes, örtliches Streifen an den angrenzenden Bauteilen ist ungefährlich und zulässig. Dabei werden die Verdichter- bzw. die Turbinenschaufeln etwas verkürzt. Um keinen wesentlichen Wirkungsgradverlust zu verursachen, müssen bestimmte Toleranzen eingehalten werden.

Hinweis Die Masskontrolle muss durch eine offizielle Service-Stelle der ABB Turbo Systems AG durchgeführt werden.

2.4 Contact with rotating parts

Mild, uniform wear around the circumference of rotor components, caused by slight local grazing against adjacent components, is non-hazardous and permissible. This slightly reduces the length of the blades in the compressor or turbine. Certain tolerances must be observed to avoid a significant loss in efficiency.

Note: The check on dimensions must be carried out by an official Service Station of ABB Turbo Systems Ltd.
3 Pflegearbeiten

Pflegearbeiten sind regelmässige Sichtkontrollen und Reinigungsarbeiten, die die störungsfreie Funktion des Turboladers und seiner Anbauten sicherstellen sollen.

- Der äussere Zustand und der Verschmutzungsgrad der unten aufgelisteten Pflegestellen ist durch Sichtkontrollen in den angegebenen Zeitabständen festzustellen.
- Bei allen Pflegearbeiten sind die Sicherheitshinweise in den entsprechenden Kapiteln zu beachten.

3.1 Sicherheitshinweise

⚠️ Warnung ! Wegen Explosionsgefahr, Reinigungsarbeiten im Freien durchführen. Ist das nicht möglich, unbedingt für ausreichende Frischluftzufuhr und Luftumwälzung sorgen.

Offenes Feuer (auch Zigaretten!) in geschlossenen Räumen wegen Explosionsgefahr vor Beginn der Reinigungsarbeiten löschen.

Unbedingt Schutzkleidung tragen (Lösungsmittel- und säurefeste Handschuhe, Körperschutz und Augenschutz). Beim Verwenden chemischer Reinigungsmittel sind die Vorschriften und Warnhinweise der Hersteller dieser Mittel zu beachten.

Bei Entkalkungsanlagen gilt sinngemäss Gleiches. Reinigungs- und Lösungsmittel umweltgerecht auffangen und getrennt in gesetzlich vorgeschriebenen verschliessbaren Gefahrgutbehältern lagern und umweltgerecht entsorgen.

3 Cleaning work

Cleaning work includes regular visual checks and washing to ensure the correct functioning of the turbocharger and its auxiliary appliances.

- The external condition and the degree of contamination of the cleaning points listed below must be established by visual checks at the intervals quoted.

- During all cleaning work the safety instructions in the respective chapters must be observed.

3.1 Safety instructions

When handling detergents, solvents, acids and alkalis be sure to observe the respective safety directions on the manufacturer's label and in the operation manual. Observe also the instructions for the environmentally compatible collection, storage and disposal of these substances (see chap. 1).

⚠️ Warning ! Cleaning work should be carried out outdoors due to explosion hazards. If this is not possible, ensure that there is adequate ventilation.

Before beginning cleaning work in confined spaces, extinguish naked flame (including cigarettes!) due to the danger of explosion.

Always wear protective clothing (solvent- and acid resistant gloves, body protection and eye protection). When using chemical cleaning agents the instructions and warnings of the manufacture must be observed.

The same applies analogously to decalcification plants. Cleaning agents and solvents must collected, stored separately in the legally prescribed, sealable containers, and disposed of in an environmentally compatible manner.
3.2 Outline of cleaning work

Cleaning symbols

1. Cleaning location

- Cleaning point (visible in the outline)
- Cleaning point (hidden in the outline)
- Visual check
- Washing

Abbreviations for cleaning intervals

- 25 - 50 [h] after every 25-50 service hours
- as reqd. as required
- see eng. see engine
- manuf. manufacturer
Pflegearbeiten

Fig. 3-5
Übersicht Pflegearbeiten
Übersicht Pflegearbeiten

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Pflegestelle</th>
<th>Pflegeart</th>
<th>Pflegeintervall</th>
<th>Vorbedingungen</th>
<th>Reinigungsmittel</th>
<th>siehe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 bis 50 [h]</td>
<td>nach Bedarf</td>
<td>nach Angabe Mot.herst.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>- Luftfilter</td>
<td>- reinigen</td>
<td>X</td>
<td>- Filterfüllung ausbauen</td>
<td>- Dieselöl - Terpentin - Seifenlauge</td>
<td>Abschn. 3.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Filzscheiben</td>
<td>- trocken reinigen</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>- Kühlwasser räume - Sperrluftkanäle - Dichtungsriilen</td>
<td>- reinigen</td>
<td>X</td>
<td>- oberen Wasseraustritt öffnen</td>
<td></td>
<td>Abschn. 3.4</td>
</tr>
<tr>
<td>3</td>
<td>- Ölräume turbinen- und verdichterseitig</td>
<td>- reinigen</td>
<td>X</td>
<td>- Oelablassen</td>
<td>- Dieselöl</td>
<td>Abschn. 3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Lagerraumdeckel abbauen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>- Verdichter</td>
<td>- reinigen</td>
<td>X</td>
<td>- betriebswarmer Motor - Motorlast 50-85%</td>
<td>- reines Wasser</td>
<td>Abschn. 3.7</td>
</tr>
<tr>
<td>5</td>
<td>- Turbine</td>
<td>- nass reinigen</td>
<td>X</td>
<td>- reduzierte Motorelleistung wenn max Gastemperatur vor Turbine 430°C (703K)</td>
<td>- reines Wasser</td>
<td>Abschn. 3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Motorleistung nicht reduzieren</td>
<td>- Trockengranulat</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- trocken reinigen</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Übersicht der Pflegearbeiten in Englisch, siehe nächste Seite.

Outline of cleaning work, see next page.
Cleaning work

Fig. 3-5
Outline of cleaning work
Outline of cleaning work

<table>
<thead>
<tr>
<th>Item.</th>
<th>Cleaning point</th>
<th>Cleaning measures</th>
<th>Cleaning intervals</th>
<th>Preliminaries</th>
<th>Cleaning agent</th>
<th>see</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>- Air filter</td>
<td>- washing</td>
<td>X</td>
<td>- remove filter</td>
<td>- diesel</td>
<td>sec. 3.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- felt discs</td>
<td>- turpentine</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- soap suds</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- dry clean</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>- Cooling water spaces</td>
<td>- washing</td>
<td>X</td>
<td>- open upper water outlet</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Sealing air ducts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Gasket grooves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>- TE and CE washing oil spaces</td>
<td>- washing</td>
<td>X</td>
<td>- drain oil</td>
<td>- diesel</td>
<td>sec. 3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- remove bearing space cover</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>- Compressor</td>
<td>- washing</td>
<td>X</td>
<td>- engine at normal operation</td>
<td>- pure water</td>
<td>sec. 3.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Engine load 50 – 85%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>- Turbine</td>
<td>- wet cleaning</td>
<td>X</td>
<td>- reduced engine load if max. gas</td>
<td>- pure water</td>
<td>sec. 3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>temperature be fore turbine is</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>430°C (703K)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- dry cleaning</td>
<td>X</td>
<td>- no reduction in speed</td>
<td>- dry granulate</td>
<td>sec. 3.6</td>
</tr>
</tbody>
</table>

ABB Turbo Systems Ltd 10011 - L -
Fig. 3-6
Luftfiltersegmente am Schalldämpfer
Air filter segments on the silencer

Fig. 3-7
Luftfiltersegmente baden
Soaking air filter segments

Abb. 3-8
Filtermatten einpassen
Fitting filter mats
3.3 Luftfilter reinigen

Reinigungsmittel

Reinigungsmittel für Filtermatten:
- Dieselkraftstoff
- Terpentin
- Seifenlauge

Hinweis
Beim Turbolader VTR 184 sind keine Filtermatten vorhanden.

Vorsicht!
Filter nicht ausbrennen. Ausbrennen zerstört den Filter.

- Luftfiltersegment (81250) in Tauchbad mit Sodalösung baden (s. Fig. 3-6 und 3-7).
- Segment über dem Schwenkbad abtropfen lassen.

Filterfüllung ersetzen

- Luftfiltersegmente (81250) umschliessen den Schalldämpfer (s. Fig. 3-6).
- Filtermatten (81257) einpassen und auf passende Größe zuschneiden (s. Fig. 3-8).

Dämpferscheiben reinigen

Vorsicht!
Dämpferscheiben (81150) des Schalldämpfers und befilzten Abschlussrichter (81101) nur trocken reinigen (s. Fig. 3-6).

- Schmutz mit Putzlappen, weicher Bürste oder mit Pressluft entfernen.
- Stark verschmutzte oder lose Filzfüllungen durch unsere ABB Service-Stellen ersetzen lassen (s. Kap. 8).

3.3 Cleaning the air filter

Cleaning agents

Cleaning agents for filter mats:
- diesel
- turpentine
- soap suds

Note
The turbocharger type 184 has no filter mats.

Caution!
Do not burn out the filter. Burning out destroys the filter.

- Bathe the air filter segment (81250) in a bath of soda solution (see fig. 3-6 and 3-7)
- Allow the segment to drip dry over the bath

Replacing the filter mats

- Several air filter segments (81250) enclose the silencer (see fig. 3-6)
- Fit in filter mats (81257) and cut to the correct size (see fig. 3-8).

Cleaning the silencer discs

Caution!
Silencer discs (81150) and felted end funnels (81101) may only be dry-cleaned (see fig. 3-6).

- Remove dirt with rags, a soft brush, or compressed air.
- Heavily contaminated or loose felt fillings should be replaced by one of our ABB service stations (see. chap. 8).
Fig. 3-9
Übersicht der verschiedenen Kanälen und der Dichtungbüchsen
Overview of the different channels and the sealing bushes
3.4 Cleaning the cooling water spaces and the sealing air ducts

Warning! Be careful to observe the safety instructions when handling cleaning agents (see chap. 1).

Note Cleaning intervals in accordance with the information provided by the plant operator. If necessary, have the cooling water spaces cleaned by an authorized service station of ABB Turbo Systems AG.

- If necessary, detach the turbocharger from the engine (see chap. 5).
- Dismantle the turbocharger (see chap. 5).
- Depending on the type and the extent of calcium deposits, repeat the cleaning process until the cooling water spaces in the gas casings are free of calcium.
- Replace all casing gaskets - including the core hole cover gaskets.

Caution! When mounting the core hole covers make sure that the covers are correctly positioned on the casing (see chap. 7).

Inspection
- Check manually that the sealing bushes (51014/76002) in the gas inlet casing (51000) and in the air inlet casing (76000) are sitting firmly.
- Replace loose sealing bushes.
- Check that the gasket grooves in the sealing bushes are undamaged and free of dirt.
- Check whether the compensation channels (Y) in the air inlet casing (76000) as well as (X) and (Z) in the gas inlet casing are clean (see figs. 3-9).
Fig. 3-11
Übersicht der verschiedenen Kanäle
Overview of the different channels
- Die Kanäle für Sperrluft (S), Druckmessung (Q), Kurbelgehäuseentlüftung (K), Verdichterreinigung (V) und Lufthilfsantrieb (L) (falls vorhanden) mit Druckluft auf Durchgängigkeit prüfen (s. Fig. 3-10).

- Gereinigter Turbolader zusammenbauen (s. Kap. 5).

- Turbolader am Motor anbauen (s. Kap. 5).

- Schmieröl in beide Lagerräume einfüllen (s.Kap. 2).

- Motorenteilige Kühlwasserzirkulation in Betrieb nehmen.

- Anschliessend Kühlssystem entlüften.

- Check with the aid of compressed air that the ducts for sealing air (S), pressure measurement (Q), crankcase ventilation (K), compressor cleaning (V) and air assist (L) (if provided) are unobstructed (see fig. 3-10).

- Assemble the turbocharger after cleaning (see chap. 5).

- Reconnect the turbocharger to the engine (see chap. 5).

- Fill in lubricating oil in both oil spaces (s. chap. 2).

- Start up the engine cooling water circulation system.

- Ventilate the cooling system.
Fig. 3-10
Ölraum / Oil spaces

Ölraum VS
CE oil space

Ölraum TS
TE oil space

Fig. 3-11
Öleinspritzlöcher der Ölzentrifuge
Oil injection holes in the oil centrifuge
3.5 Cleaning the oil spaces

The oil spaces on the turbine and compressor ends (see fig. 3-11) must be cleaned every time the bearings are changed.

Vorsicht !

Before beginning work take note of the safety instructions in sec. 3.1.

- Drain off the oil (see sec. 4.2)

Caution !

If coarse metal particles are present, inform the nearest service station (see chap. 8).

- Remove bearing space cover (46000/48000) (see chap. 5).

Caution !

To prevent corrosion do not use petrol.

- Clean the oil spaces and oil slinger with rags soaked in diesel.

- After cleaning check that the oil injection holes in the oil slinger leading to the bearing are unobstructed (see fig. 3-12).

- Mount the bearing cover (46000/48000) (see chap. 5).

- Fill with lubricating oil (see chap. 2).

3.5 Ölräume reinigen

Die turbinen- und verdichterseitigen Ölräume (s. Fig. 3-11) sind bei jedem Lagerwechsel zu reinigen.

Vorsicht !

Vor dem Reinigen unbedingt die Sicherheitsvorschriften in Abschn. 3.1 beachten.

- Öl ablassen (s. Abschn. 4.2).

- Öl auf groben Abrieb prüfen.

Vorsicht !

Beim Auffinden von grobem Metallabrieb die nächstgelegene ABB Service-Stelle informieren (s. Kap. 8).

- Lagerraumdeckel (46000/48000) abbauen (s. Kap. 5).

Vorsicht !

Wegen Rostgefahr nicht mit Benzin reinigen.

- Ölräume und Schmierrad mit in Dieselöl getränktem Lappen reinigen.

- Nach der Reinigung prüfen, ob die zum Lager führenden Öleinspritzlöcher im Schmierrad durchgängig sind (s. Fig. 3-12).

- Lagerdeckel (46000/48000) montieren (s. Kap. 5).

- Schmieröl einfüllen (s. Kap. 2).
3.6 Turbine reinigen

Allgemeines

Bei Registerausladung muss speziell nach Betriebsperioden im unteren Leistungsbereich darauf geachtet werden, beide Turbolader regelmäßig zu reinigen.

Zwei Reinigungsmethoden stehen zur Verfügung:

Hinweis Regelmässiges Reinigen der Turbine während des Betriebes verhindert bzw. verzögert eine zu starke Zunahme der Verschmutzung

Sehr stark verschmutzte Turbolader sind auf diese Art nicht mehr zu reinigen. In diesem Fall muss der Rotor ausgebaut (s. Kap. 5) und in einer ABB Service-Stelle gereinigt werden. Diese Reinigung ersetzt nicht die üblichen Wartungsarbeiten, bei denen der Turbolader vollständig zu zerlegen ist.

Nassreinigung

3.6 Cleaning the turbine

General
The burning of residual fuels in diesel engines causes fouling of the the turbine blades and nozzlerings of ABB Turbochargers and can also block protection grids fitted to the engine. This can result in reduced turbine efficiency, lower engine performance, increased exhaust gas temperatures and in four stroke engines higher boost and firing pressures.

Experiences in operating has shown that turbine side contamination can be reduced by regular cleaning in service. If carried out correctly this procedure can lengthen the periods between overhaul and prolong the time a turbocharger can remain in service without the need for dismantling.

In cases where sequential turbocharging is used, particularly after periods of low load operation, care should be taken to regularly clean both turbochargers.

Two methods of cleaning are available:
Wet cleaning (water washing) and dry cleaning (solid particle injection) Which of the two methods has to be adopted will depend primarily on the engine load and exhaust temperature before the turbine.

Note Regular cleaning of the turbine during operation prevents or retards excessive formation of deposits.

Turbochargers which are contaminated to a high degree cannot be cleaned in this way. In this case the rotor has to be removed (see. chap. 5) and cleaned by a ABB - service station. This cleaning operation does not substitute the usual maintenance work for which the turbocharger must be completely dismantled.

Wet cleaning
The turbocharger can be cleaned during operation by spraying in water. Wet cleaning should be carried out every 48-500 hours of operation. The interval between cleaning being dependent upon the extent of contamination and the increase in exhaust gas temperature after the turbine. The cleaning should be repeated when the gas temperature after the turbine increases to 20K above the average temperature at full load.
Vorsicht! Für das Nassreinigen darf nur sauberes Süßwasser ohne Reinigungs- oder Lösungsmittel verwendet werden.

Hinweis! Die Vorschriften des Motorenherstellers zur Nassreinigung sind einzuhalten.

- Die maximale Abgastemperatur vor der Turbinen darf vor der Reinigung 430°C (703 K) nicht übersteigen, damit eine allzugerissene Wärmeschockbeanspruchung der Turbinenkomponenten vermieden werden kann. Kann die Abgastemperatur vor der Turbine nicht gemessen werden, darf die mittlere Abgastemperatur nach den Zylindern vor der Reinigung 350°C (623 K) nicht übersteigen. Während der Reinigung darf die Turbineneintrittstemperatur auf 500°C (773 K) ansteigen, resp. die mittlere Abgastemperatur nach den Zylindern darf auf 420°C (693 K) ansteigen.)

- Der Ladedruck darf vor Beginn der Reinigung nicht unter 0,3 bar liegen. Während der Reinigung ist ein Absinken des Ladedruckes bis auf 0,2 bar zulässig. Dadurch wird sichergestellt, dass die Labyrinthdichtung auf der Turbinenseite genügend Dichtungsluft erhält.

- Während der Reinigung wird die Turbine gebremst, die Turbolader-Drehzahl sinkt um etwa 10%. Der Motor erhält weniger Luft und die Temperaturen nach Zylinder steigen, wobei jedoch die vom Motorhersteller angegebene maximal zulässige Abgastemperatur unter keinen Umständen überschritten werden darf.

- Sind an einem Motor mehrere Turbolader angebaut, die in den gleichen Luftreceiver fördern, empfehlen wir, um ein Pumpen der Turbolader zu vermeiden, die Turbolader gleichzeitig zu reinigen.

- Wenn alle Turbolader gleichzeitig gereinigt werden, wird die maximale Leistung, bei der gereinigt werden kann, durch die Gastemperatur nach Zylinder begrenzt. Die vom Motorhersteller angegebenen maximal zulässigen Temperaturen nach Zylinder dürfen nicht überschritten werden.

Caution! Only clean, fresh water is recommended for wet cleaning with no additives or solvents.

Note! Take care to observe the instructions of the engine manufacturer for wet cleaning.

- The maximum exhaust gas temperature before the turbine must not exceed 430°C (703 K) before cleaning to prevent stress in the turbine parts from thermal shock. If the exhaust gas temperature before the turbine cannot be measured, the mean exhaust gas temperature after the cylinder must not exceed 350°C (623 K) before cleaning. During cleaning, the turbine inlet temperature may rise to 500°C (773 K) (or the mean exhaust gas temperature after the cylinders may rise to 420°C (693K).

- The boost pressure must not be less than 0.3 bar before the start of cleaning. During cleaning, a fall in boost pressure to 0.2 bar is permissible. This ensures that the labyrinth seal on the turbine end receives sufficient sealing air.

- The turbine is braked during cleaning and the turbocharger speed falls by approx. 10%. The engine receives less air and the temperatures after the cylinder rise; however, the maximum permissible exhaust gas temperature specified by the engine manufacturer must not be exceeded under any circumstances.

- If several turbochargers are fitted on one engine supplying the same air receiver, it is recommended to clean the turbochargers at the same time to avoid pumping of the turbochargers.

- If all turbochargers are cleaned simul-taneously, the maximum output at which cleaning can be performed is limited by the gas temperature after the cylinder. The maximum permissible temperatures after the cylinder specified by the engine manufacturer must not be exceeded.
Vorgehen beim Reinigen

1. Motorleistung reduzieren, wenn die Abgastemperatur vor der Turbine mehr als 430°C (703 K) beträgt.
2. 5 bis 10 Minuten warten, bis sich die Last stabilisiert hat, bevor mit der Wassereinspritzung begonnen wird.
3. Überprüfen, ob die Turbineneintrittstemperatur stabil ist und unter 430 °C (703K) resp. die mittlere Abgastemperatur nach den Zylindern unter 350 °C (623 K) liegt.
4. Kontrollieren, ob der Ladedruck über 0,3 bar liegt und die Turboladerdrehzahl unter der angegebenen Last möglichst hoch ist.
8. Wasserventil (langsaml, innerhalb etwa 30 s) öffnen. Durch die Entwässerungsöffnung ist ein Ausfluss von 0.1 dm³/min ... 0.1 Q möglich. Die Reinigungszeit beträgt etwa 5 bis 10 Minuten.
9. Wasserventil (und Nadelventile) schliessen, das System entlüften und das obige Vorgehen wenn nötig wiederholen.
10. Wasseranschluss entfernen und die Entwässerungsleitung am Gasaustrittsgehäuse schliessen.
12. Betrieb des Motors für mindestens 10 ... 15 Minuten auf mittlerer Last.

Cleaning procedures

1. Reduce the engine output if the exhaust gas temperature before the turbine is more than 430°C (703 K).
2. Wait 5 to 10 minutes until the load has stabilized before starting water injection.
3. Check whether the turbine inlet temperature is stable and less than 430 °C (703 K) or that the mean exhaust gas temperature after the cylinders is below 350 °C (623 K).
4. Check whether the boost pressure is above 0.3 bar gauge and the turbocharger speed is as high as possible under given load.
5. Check whether the drain pipe on the gas outlet casing is free and open. With the outlet free, exhaust gas escapes from the drain pipe.
6. Connect water supply to the water cleaning connector on the gas inlet side.
7. Set water pressure to the value recommended by the engine manufacturer. Open needle valves (if present).
8. Open water valve (slowly within approx. 30 s). An outflow of 0.1 dm³/min - 0.1 Q is possible through the drain opening. The cleaning time is approx. 5 to 10 minutes.
9. Close water valve (and needle valves), vent the system and repeat the above procedure if necessary.
10. Remove water connection and close the drain pipe on the gas outlet casing.
11. If no improvement is apparent after three attempts, we recommend having the turbocharger cleaned and inspected by a licenced ABB service centre.
12. Run the engine for at least 10 ... 15 minutes on moderate load.
Dry cleaning

Dry solid particles are blown by compressed air into the exhaust lines before the turbocharger. This method of cleaning should be carried out every 24 - 48 hours of full load operation. The interval between cleaning being dependent upon the extent of contamination and the increase in exhaust gas temperature after the turbine. The cleaning should be repeated when the gas temperature after the turbine increases to 20K above the average temperature at full load. For a turbocharger with more than one gas inlet, clean the turbochargers one gas inlet after the other. On engines with several turbochargers clean one turbocharger after the other.

Materials:

On account of their hardness, granulated materials such as natural kernel granules, soft blast media or activated charcoal particles have all been used with success. The mean particle size of the cleaning granulate must be between 1,2 - 2,0 mm diameter.

Vorsicht !

Part of the solids blasted in can emerge smouldering from the flue.

Caution !

Take care to observe the instructions of the engine manufacturer for dry cleaning.

- To prevent a high rate of burn off of dry cleaning medium prior to the turbine, the gas inlet temperature before the turbine should not exceed 580°C - 590°C (853-863 K).

- Since it is not possible to remove thick deposits with relatively small amounts of solid particles this method has to be used more frequently.

- Injection of granulated dry cleaning medium into the turbine is best carried out at a high turbocharger speed to ensure effective mechanical cleaning.

- The boost pressure should be over 0,5 bar.
Vorgehen beim Reinigen

Bei Motoren mit mehreren Turboladern soll ein Turbo-
lader nach dem anderen, bei Turboladern mit 2 und
mehreren Gaseintritten soll ein Gaseintritt nach dem
anderen wie folgt gereinigt werden:

1. Sicherheitsventil schliessen, Verschlusskappe fest-
 ziehen. Reiberbahn / Schieber öffnen.
2. Druckabsperrventil öffnen. Event. im Verbin-
dungsrohr angesammelte Ablagerungen und/
or Kondenswasser werden nun durchgeblasen.
 Druckabsperrventil nach ca. 3 Minuten schliessen.
3. Reiberbahn/Schieber schliessen.
4. Sicherheitsventil öffnen. Dadurch wird der im
 Behälter herrschende Abgasdruck abgeblasen.
 Sicherheitsventil schliessen.
5. Verschlusskappe entfernen. Die aus der Tabelle
 ersichtliche Menge trockener Festkörper in den
 Behälter einfüllen (bei mehreren Behältern pro
 Turbolader, die Menge entsprechend verteilen).
 Verschlusskappe festziehen.
6. Kontrollieren, ob Sicherheitsventil geschlossen
 ist. Falls erforderlich, Motorleistung so reduzieren,
dass die Gastemperatur vor Turbine < 590 °C (863
 K) beträgt.
7. Reiberbahn / Schieber öffnen.
8. Druckluftabsperrventil öffnen. Die vorher eingefüll-
tete Menge Festkörper wird jetzt eingeblasen.
 Nach 1 - 1,5 Min. Druckabsperrventil schliessen.
10. Sicherheitsventil öffnen. Dadurch wird der im
 Behälter herrschende Abgasdruck abgeblasen.
 Sicherheitsventil schliessen.
11. Dieser Vorgang - Punkt 1 - 10 ist bei jedem weite-
 ren Gaseintritt des gleichen resp. nächsten Turbo-
laders durchzuführen.
12. Die Reinigung soll dann periodisch alle 24 - 48
 Betriebsstunden wiederholt werden.

Es ist wichtig, dass pro Reinigung die empfohlene
Menge von trockenem Reinigungsmedium eingebra-
lassen wird, und keine reduzierte Menge, da dadurch
die Anzahl der Festkörper, welche die Turbine erreichen,
erabgesetzt würde. Ferner müssen die Ablassöffnun-
gen im Gasaustrittsgehäuse während des Reinigens
der Turbine geschlossen bleiben.

Cleaning procedures

In engines with several turbochargers these should
be cleaned one after the other; for turbochargers with
2 or more gas inlets the inlets should be cleaned one
after the other as follows:

 Open cock/gate valve.
2. Open pressure shut-off valve. Any deposits and/
or condensation which have collected in the con-
necting pipe are then blown out. Close pressure
 shut-off valve after approx. 3 minutes.
4. Open safety valve to release exhaust gas pressure
 present in the container. Close safety valve.
5. Remove closing cap. Fill the amount of dry solid
 matter specified in table into the container (if num-
ber of containers >1 divide amount of solid matter
acc. to the numbers of containers in use).
 Tighten closing cap.
6. Check whether the safety valve is closed. If ne-
necessary, reduce engine output so that the gas
 temperature before the turbine is < 590 °C (863 K).
7. Open cock/gate valve.
8. Open compressed air shut-off valve. The solid
 matter previously filled is then blown in. Close
 pressure shut off valve after 1 - 1.5 minutes.
10. Open safety valve. This releases the exhaust gas
 pressure present in the container. Close safety
 valve.
11. The procedure in points 1 - 10 should be perfor-
 med for every other gas inlet on the same or the
 next turbocharger.
12. Cleaning should then be repeated periodically
 every 24 - 48 hours of operation.

It is important for the recommended amount of dry
cleaning medium to be injected for each cleaning
operation and not less, since this would decrease
the number of solid particles reaching the turbine. In
addition, the drain openings in the gas outlet casing
must remain closed during turbine cleaning.

Vorsicht ! Es ist Vorsicht walten zu lassen, da mit
dem Abgasrauch unvollständig verbrannte
Russteilchen austreten können.

Caution ! Care should be exercised, since incom-
pletely burnt rust particles can escape with the exhaust fumes.
3.7 Verdichter reinigen

Hinweis

Diese Richtlinien gelten ausschliesslich für die Reinigung des Laders mit Wasser und unter der Voraussetzung, dass der Motorhersteller das Verfahren zulässt.

Die periodische Reinigung des Verdichters im Betrieb verhindert oder verzögert eine starke Zunahme der Verschmutzung, sie ersetzt aber keinesfalls die üblichen Revisionen, bei denen der Turbolader vollständig zerlegt wird.

Um die Verdichterstufe im Betrieb zu reinigen, wird mit einem Einspritzröhrenchen im Filterschalldämpfer oder im Saugstutzen Wasser vor das Verdichterrad eingespritzt.
Das Wasser wirkt dabei nicht als Lösungsmittel, vielmehr wird der Belag durch die mechanische Arbeit der aufprallenden Tröpfchen abgetragen. Das Verfahren ist gut geeignet, solange die Verschmutzung noch nicht zu weit fortgeschritten ist.

Reinigung des Verdichters: bei Motorlast von 50-85%.

Vorsicht!

Es darf aus Gründen der Korrosionsgefahr nur reines Wasser, keinenfalls Salzwasser verwendet werden. Das Wasser soll auch keine Kühlwasser-Aufbereitungsmittel enthalten, die sich als Belag in den Strömungskanälen niederschlagen können.

Die Reinigungsintervalle legt der Motorenhersteller fest (s. Betriebsanleitung Motor). In der Regel soll bei Druckabfall im Verdichter gereinigt werden.

Vorsicht!

Auf keinen Fall darf das Einspritzröhrenchen über einen Hahn direkt an eine Wasserleitung oder ein grösseres Dosiergefass (27000) als mitgeliefert ange- schlossen werden (s. Fig 3-13). Dies um zu vermeiden, dass unkontrollierte Wassermengen in den Lader und in den Motor gelangen. Dies kann zu grossen Schäden führen.

- Wenn kein Dosiergefass vorhanden ist, mit dem Motorenhersteller Rücksprache halten.

3.7 Cleaning the compressor

Note

These guidelines apply exclusively to turbocharger cleaning with water, assuming that the engine manufacturer permits the procedure.

Periodic cleaning of the compressor in operation prevents or delays severe increase of soiling, but this in no way replaces normal overhauls, during which the turbocharger is completely dismantled.

Water is fed or injected before the compressor wheel via injection pipes fitted in the filter silencer and suction branch in order to clean the compressor stage in operation.

The water does not act as a solvent in the process, but the coating is removed by the mechanical impact of the falling drops. The process is ideal, provided the soiling is not too advanced.

Cleaning of the compressor: at engine load 50-85%.

Caution!

Due to the danger of corrosion, only fresh water must be used and on no account salt water. The water should not contain any cooling additives which could form deposits in the flow ducts.

The engine manufacturer sets the cleaning intervals (see the operation manual for the engine). As a rule, cleaning should be carried out when there is a pressure reduction in the compressor.

Caution!

The injection tube must under no circumstances be connected via a cock directly to a water pipe or a larger dosing vessel (27000) than supplied (see fig. 3-13). This prevents uncontrolled amounts of water entering the turbocharger and engine, which can result in major damage.

- If no dosing vessel is present, consult the engine manufacturer.
Fig. 3-13
Verdichter reinigen mit Dosiergefäß
Cleaning the compressor with dosing vessel
Reinigungsvorgang

Hinweis
Das Reinigen der Verdichterstufe muss bei betriebswarmen und möglichst vollbelastetem Motor durchgeführt werden, das heisst bei hoher Turboladerdrehzahl. Die ganze Wassermenge muss innerhalb von 4 - 10 Sekunden eingespritzt werden.

Cleaning procedure

Note
Cleaning of the compressor stage must be performed with the engine warm from running and as fully loaded as possible, i.e. at high turbocharger speed. The whole water volume should be injected within 4 - 10 seconds.

Bedienung des Dosiergefässes:

1. Verschlussstopfen (1) ausschrauben (s.Fig.3-13).

2. Gefäss (3) mit der in Tabelle angegebenen Wassermenge füllen.

VTR [dm³]

<table>
<thead>
<tr>
<th>VTR</th>
<th>184</th>
<th>214</th>
<th>254</th>
<th>304</th>
<th>354</th>
<th>454</th>
<th>564</th>
<th>714</th>
</tr>
</thead>
<tbody>
<tr>
<td>[dm³]</td>
<td>0,4</td>
<td>0,4</td>
<td>0,4</td>
<td>0,4</td>
<td>0,4</td>
<td>1,0</td>
<td>2,0</td>
<td>2,0</td>
</tr>
</tbody>
</table>

3. Verschlussstopfen (1) einschrauben.

4. Ventilgriff (2) gegen die Feder schieben und ca. 10 Sekunden halten, bis die gesamte Wassermenge eingespritzt ist.

Function
Durch die Betätigung des Ventils (2) gelangt Druckluft vom Turbolader durch eine Leitung (4) ins Gefäss (3). Der Luftdruck preßt das Wasser über einen ständig offenen Kanal im Boden des Gefässes in die Leitung (5) und von dort vor den Verdichter.

Hinweis
Der Erfolg der Reinigung kann am Ladeder oder Spühlldruck oder auch an den Abgastemperaturen erkannt werden. Ist die Reinigung erfolglos, muss diese frühestens nach 5 Minuten wiederholt werden. Sollte die Reinigung nach drei Vorgängen erfolglos bleiben, empfehlen wir, den Turbolader durch eine konzessionsionierte ABB-Servicestelle kontrollieren und reinigen zu lassen. Nach der Reinigung der Verdichterstufe soll der Motor noch mindestens während 5 Minuten unter Belastung laufen.

Bedienung des Dosiergefässes:

1. Remove the screw (1) (see fig. 3-13).

2. Fill the vessel (3) with the volume of water as set out in the table.

3. After filling tighten the screw plug (1).

4. Actuate the valve lever (2) towards the spring and hold it for about 10 seconds until all the water has been injected.

Function
By actuating the valve lever (2) compressed air from the turbocharger enters the vessel (3) through the line (4). The compressed air presses the water through an permanently open duct in the bottom of the vessel (3) into the line (5) and from there into the compressor.

Note
The success of the cleaning can be seen from the charger or flushing pressure or from the exhaust gas temperatures. If cleaning is unsuccessful, it should only be repeated after 5 minutes. If cleaning is unsuccessful after three operations, we recommend that the turbocharger is inspected and cleaned by a licensed ABB service department. After cleaning the compressor stage the engine should be run under load for at least another 5 minutes.
Unterhaltsarbeiten

Warnung !
Das Nichteinhalten von Unterhaltsarbeiten in den angegebenen Zeitabständen kann zu Beschädigung und Nutzungsausfall des Turboladers führen.

Bei allen Unterhaltsarbeiten sind die Sicherheitshinweise in den entsprechenden Kapiteln zu beachten.

Beschädigte Teile, die die Funktion beeinträchtigen können, sind grundsätzlich auszutauschen.

Befestigungen sind mit einem Drehmomentschlüssel nachzuziehen (s. Kap. 5). Ist Nachziehen nicht mehr möglich, Schraubenbefestigungen gegen neue austauschen.

Schmier- und Hilfsmittel bereithalten.

Maintenance work

Maintenance work includes inspection and function checks of wearing parts with or without changing process materials, parts or modules. It must be carried out in accordance with the intervals as set out in the Outline of Maintenance work.

Warning !
Failure to carry out the maintenance work within the prescribed intervals can lead to damage and inoperation of the turbocharger.

The safety instructions in the respective chapters must be observed for all maintenance work.

Damaged parts which could impair correct function must be replaced.

Screw fastenings must be tightened with a torque wrench (see chap. 5).
If retightening is no longer possible, replace the screw fastenings.

Keep lubrication and process materials ready.
4.1 Übersicht Unterhaltsarbeiten

Unterhaltssymbole

- Unterhaltsstelle (in Übersicht sichtbar)
- Unterhaltsstelle (in Übersicht verdeckt)
- Öl wechseln
- Austauschen

Kurzbezeichnung der Unterhaltsintervalle

n. Ang. nach Angabe des
Mot. herst. Motorherstellers
u/o L. schild und/oder Leistungsschild

4.1 Outline of maintenance work

Maintenance symbols

- Maintenance point (visible in the outline)
- Maintenance point (not visible in the outline)
- Oil change
- Replace

Abbreviations for maintenance work

see eng. see engine
manuf. manufacturer
a/o r. plate and/or rating plate
Fig. 3-14
Übersicht Unterhaltsarbeiten
Outline of maintenance work
Übersicht Unterhaltsarbeiten

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Unterhaltsstelle</th>
<th>Unterhaltsart</th>
<th>Unterhaltsintervall [h]</th>
<th>n. Angaben des Motorherstellers u./o. L.schild</th>
<th>siehe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wälzlager</td>
<td>- kpl. wechseln</td>
<td>X</td>
<td>16'000</td>
<td>Abschn. 4.3</td>
</tr>
<tr>
<td>2</td>
<td>Oelräume verdichter- und turbinenseitig</td>
<td>- Oel wechseln</td>
<td>X</td>
<td></td>
<td>Abschn. 4.2</td>
</tr>
<tr>
<td>3</td>
<td>Verdichterrad</td>
<td>- wechseln</td>
<td>X</td>
<td></td>
<td>Abschn. 4.4</td>
</tr>
<tr>
<td>4</td>
<td>Turbine</td>
<td>- wechseln</td>
<td>X</td>
<td></td>
<td>Abschn. 4.5</td>
</tr>
</tbody>
</table>

Outline of maintenance work

<table>
<thead>
<tr>
<th>Item</th>
<th>Maintenance point</th>
<th>Maintenance measures</th>
<th>Maintenance interval [h]</th>
<th>see</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rolling contact bearings</td>
<td>- replace compl.</td>
<td>X</td>
<td>16'000</td>
</tr>
<tr>
<td>2</td>
<td>TE and CE oil spaces</td>
<td>- change the oil</td>
<td>X</td>
<td>see</td>
</tr>
<tr>
<td>3</td>
<td>Compressor wheel</td>
<td>- replace</td>
<td>X</td>
<td>see</td>
</tr>
<tr>
<td>4</td>
<td>Turbine</td>
<td>- replace</td>
<td>X</td>
<td>see</td>
</tr>
</tbody>
</table>

Hinweis

Die Übersicht der Reserveteile befindet sich im Kap. 5.

Note

For the list of spare parts please refer to chapt. 5.
4.2 Schmieröl wechseln

Ölwechselintervalle:

max. 1'000 h
Für Mineralöle gemäss Kapitel 8, Liste 1 (Basisöle mit engem Schnitt).

max. 3'000 h
Für spezielle Mineralöle und synthetische Öle gemäss Kapitel 8, Liste 2.

max. 5'000 h
Für synthetische Schmieröle gemäss Kapitel 8, Liste 3

Sie sind jedoch zu verkürzen, wenn die mittlere Öltemperatur bzw. wenn (auf Turbinenseite) die Kühlwasser-Austrittstemperatur und/oder (auf Verdichterseite) die Ansaugluft-Temperatur bestimmte Werte überschreiten, die in der folgenden Tabelle gegeben sind:

<table>
<thead>
<tr>
<th>Mittlere Öltemperatur *)</th>
<th>Kühlwasseraustrittstemperatur **)</th>
<th>Ansaugluftstemperatur</th>
<th>Ölwechselperiode [h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C / K</td>
<td>°C / K</td>
<td>°C / K</td>
<td>Liste 1 / List 1</td>
</tr>
<tr>
<td>< 110 / 383</td>
<td>< 90 / 363</td>
<td>< 40 / 313</td>
<td>1000</td>
</tr>
<tr>
<td>< 120 / 393</td>
<td>< 100 / 373</td>
<td>< 55 / 328</td>
<td>500</td>
</tr>
<tr>
<td>< 130 / 403</td>
<td>< 110 / 383</td>
<td>---</td>
<td>750</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1250</td>
</tr>
</tbody>
</table>

*) Wird die mittlere Öltemperatur im Ölsumpf gemessen, so ist sie für die Festlegung der Ölwechselperiode zu verwenden. Andernfalls sind die Richtwerte für Kühlwasser-Austrittstemperatur bzw. Ansaugluft-Temperatur massgebend.

**) Die Kühlwasser-Austrittstemperatur darf 110°C (383 K) nicht überschreiten.

Die Zunahme der Neutralisationszahl darf höchstens 2 mg KOH/g und die Zunahme der Viskosität bei 40°C (104°F) maximal 20% betragen.

4.2 Changing the lubricating oil

Change intervals:

Max. 1,000 hours
For mineral oils in chapter 8, list 1 (base oils with narrow cut).

Max. 3,000 hours
For special mineral and synthetic oils in chapter 8, list 2.

Max. 5,000 hours
For synthetic lubricating oils in chapter 8, list 3.

These intervals should be reduced if the mean oil temperature, or the cooling water outlet temperature (turbine end) and/or the air inlet temperature (compressor end) exceed the values specified in the following table:

<table>
<thead>
<tr>
<th>Mittlere Öltemperatur *)</th>
<th>Kühlwasseraustrittstemperatur **)</th>
<th>Ansaugluftstemperatur</th>
<th>Ölwechselperiode [h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C / K</td>
<td>°C / K</td>
<td>°C / K</td>
<td>Liste 1 / List 1</td>
</tr>
<tr>
<td>< 110 / 383</td>
<td>< 90 / 363</td>
<td>< 40 / 313</td>
<td>1000</td>
</tr>
<tr>
<td>< 120 / 393</td>
<td>< 100 / 373</td>
<td>< 55 / 328</td>
<td>500</td>
</tr>
<tr>
<td>< 130 / 403</td>
<td>< 110 / 383</td>
<td>---</td>
<td>750</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1250</td>
</tr>
</tbody>
</table>

*) If the mean oil temperature is measured in the oil sump, then this should be used for determining the oil change interval. Otherwise, the nominal values for cooling water outlet temperature and air inlet temperature should be used.

**) Cooling water outlet temperature must not exceed 110°C (383K).

The increase in neutralisation number must not exceed 2 mg KOH/g and the increase in viscosity at 40°C must be no more than 20%.
Hinweis
Wird beim wechseln des Schmieröls zugleich von einem Mineralöl zu einem synthetischen Öl oder umgekehrt gewechselt, so müssen die einschlägigen Hinweise der Ölhersteller (bzgl. spülen) unbedingt beachtet werden.

Warnung!
Brandgefahr beim Hantieren mit Schmieröl durch offenes Feuer oder glimmende Rauchwaren!

Vorsicht!
Geeignete Auffangbehälter für ablaufendes Öl bereitstellen
Geeignete Ölabsorbentien bereithalten
Ölfeste Schutzhandschuhe tragen
Öldurchtränktes Absorbens als Sondermüll getrennt sammeln und in gesetzlich vorgeschriebenen Altöl-Containern umweltgerecht entsorgen.
Vor Arbeitsbeginn unbedingt die Sicherheitshinweise in Kap. 1 beachten.

Note
If an oil change involves a switch from a mineral oil to a synthetic oil, or vice versa, the appropriate oil manufacturer’s instructions (regarding flushing) must be observed.

Warning!
Fire hazard when handling lubricating oil from naked flame or lighted cigarettes!

Caution!
Have suitable containers ready for drained oil.
Have suitable absorbent materials ready.
Wear oil-resistant gloves.
Avoid spilling lubricating oil. Soak up spilled oil with absorbent material.
Used absorbent material must be collected separately as special waste and disposed of in the legally prescribed containers in an environmentally compatible manner.
Before beginning work take note of the safety instructions in chap. 1.
Fig. 3-15
Lagerraumdeckel
Bearing space cover

Fig. 3-16
Schild für den Ölstand
Oil level plate

Schauglas mit Markierung
Sight glass with marking
Schmieröl ablassen

- Turbolader stillsetzen
- Ölauffangwanne unterhalb des Ölauslaufes auf der Verdichter- und Turbinenseite aufstellen
- Verschlussschrauben (46009,46013 /48009,48011) (s. Fig. 3-15) herausdrehen und Altöl ablassen
- Verschlussschraube (46009/48009) mit den Dich tung (46010/48010) eindrehen und festziehen.

Vorsicht ! Altöl in gesetzlich vorgeschriebenen Altöl-Containern lagern und umweltgerecht entsorgen.

Schmieröl einfüllen
Die Öl mengen zum Füllen der verdichter- und turbins seitigen Ölräume sind aus Kap. 2 zu entnehmen.

- Verschlussschrauben (46013/48011) herausdrehen
- Neues Schmieröl (s. Kap. 2) durch die Öffnungen in beide Ölräume einfüllen.
- Schmieröl entsprechend Schild für den Öl stand (46015/48013) bis zur oberen Schauglasmarke auffüllen (s. Fig. 3-16)
- Die Dichtungen (46014/48012) auf die Verschlussschrauben (46013/48011) setzen und Verschlussschrauben eindrehen und festziehen.

4.3 Lagerwechselzeit

Draining the lubricating oil

- Shut down the turbocharger.
- Place an oil container beneath the screw plugs at the compressor and turbine ends.
- Remove the screws plugs (46009,46013 / 48009,48011) and drain off the used oil (see fig. 3-15).
- Replace the screw plug (46009/48009) with the gasket (46010/48010) and tighten.

Caution ! Store used oil in the legally prescribed containers and dispose of it in an environmentally compatible manner.

Filling lubricating oil
The quantities of oil necessary to fill the oil spaces on the compressor and turbine ends are set out in chap. 2.

- Remove the screw plugs (46013/48011).
- Fill fresh lubricating oil (see chap. 2) into the openings in both oil spaces.
- Fill the lubricating oil in accordance to the oil level plate (46015/48013) up to the upper sight glass mark (see fig. 3-16).
- Place the gaskets (46014/48012) onto the screw plugs (46013/48011), insert the screw plugs and tighten.

4.3 Intervals for replacing the bearings
The rolling contact bearings must be replaced if damaged, after a standstill period of the turbocharger in excess of 12 months, or at the latest after 5 years. Replacement intervals are give by the engine manufacturer and/or the rating plate (s. chap. 0). See chap. 5 for removing and installation of the bearings.
4.4 Verdichterradwechselzeit

Der Verdichter ist bei Beschädigung oder spätestens laut den Angaben des Motorenherstellers und/oder dem Leistungsschild zu wechseln (s. Kap. 0). Aus- und Einbau des Verdichters siehe Kap. 5.

4.5 Turbinenwechselzeit

4.4 Intervals for replacing the compressor wheel

The compressor must be replaced if damaged or at the latest in accordance to the instructions of the engine manufacturer and/or the rating plate (see chap. 0). See chap. 5 for removing and installation of the compressor.

4.5 Intervals for replacing the bladed shaft

The bladed shaft must be replaced if damaged or at the latest in accordance to the instructions of the engine manufacturer and/or the rating plate (see chap. 0). See chap. 5 for removing and installation of the bladed shaft.
4
Beheben von Störungen

Inhalt Seite Contents Page
1 Störungen 1 Troubles 5
Ursachen, Abhilfe 3 causes, remedies
1

Störungen,
Ursachen, Abhilfe

<table>
<thead>
<tr>
<th>Störung</th>
<th>Ort</th>
<th>Ursachen</th>
<th>Abhilfe</th>
<th>siehe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor</td>
<td>- Störungen im Einspritzsystem</td>
<td>- reparieren oder mit Motoren- hersteller Kontakt aufnehmen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbolader</td>
<td>- Luftpumpe, z.B. Luftpumpe durch Schmutz verschmutzt</td>
<td>- reinigen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Verdichter / Turbine verschmutzt</td>
<td>- reinigen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Abgaseintritt zu hoch</td>
<td>- Boiler oder Abgaskühldämpfer reinigen oder reparieren</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Turbinenschaufel beschädigt oder erodiert</td>
<td>- Rotor ersetzen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Abdeckring erodiert</td>
<td>- ersetzen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ladeluft- kühler</td>
<td>- Kühler verschmutzt</td>
<td>- reinigen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Kühlwassermenge zu gering</td>
<td>- auffüllen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Kühlwassertemperatur zu hoch</td>
<td>- Kühlwasser kontrollieren / reinigen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Entlüftung nicht ausreichend</td>
<td>- besser entlüften</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor</td>
<td>- Luftfilter unvollständig</td>
<td>- reparieren</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Gasleitungen zwischen Motor und Turbine undicht</td>
<td>- reparieren</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Einspritzung versetzt</td>
<td>- richtig einstellen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbolader</td>
<td>- Manometer anzeige fehlerhaft</td>
<td>- Manometer ersetzen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Manometer undicht</td>
<td>- Leck reparieren</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Luftfilter verschmutzt, deshalb Druckabfall zu groß</td>
<td>- reinigen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Verdichter / Turbine verschmutzt</td>
<td>- reinigen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Labyrinthdichtungen beschädigt</td>
<td>- ersetzen durch Service- Stelle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Turbinenschaufel beschädigt</td>
<td>- Rotor ersetzen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Düsenring beschädigt</td>
<td>- ersetzen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Abdeckring erodiert</td>
<td>- ersetzen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Abgaseintritt zu groß</td>
<td>- Boiler oder Abgaskühldämpfer reinigen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Störung</td>
<td>Ort</td>
<td>Ursachen</td>
<td>Abhilfe</td>
<td>siehe</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--------------------</td>
<td>---</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>Ladendruck zu hoch, dabei</td>
<td>Motor</td>
<td>- Störungen im Einspritzsystem</td>
<td>- richtig einstellen</td>
<td></td>
</tr>
<tr>
<td>Motorleistung und -Drehzahl</td>
<td></td>
<td>- Motorkraftleistung höher als vermutet</td>
<td>- Motorkraftleistung kontrollieren</td>
<td></td>
</tr>
<tr>
<td>unverändert; Ausgangsbedingungen</td>
<td></td>
<td>- Einspritzung verstellte</td>
<td>- richtig einstellen</td>
<td></td>
</tr>
<tr>
<td>normal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbolader</td>
<td></td>
<td>- Manometeranzeige fehlerhaft</td>
<td>- Manometer ersetzen</td>
<td>Kap. 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Düsenspritz versprüht oder teilweise versprüht</td>
<td>- reinigen</td>
<td></td>
</tr>
<tr>
<td>Vibrationen</td>
<td>Turbolader</td>
<td>- Rotoraufwand wegen starker Verdichtung/Turbinenverschmutzung</td>
<td>- demonstrieren und ersetzen</td>
<td>Kap. 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Turbinenschärfen oder Dämpferdrehzahl beschädigt</td>
<td>- Rotoren ersetzen</td>
<td>Kap. 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Lager defekt</td>
<td>- Lager ersetzen, evtl. Ursache suchen</td>
<td>Kap. 5</td>
</tr>
<tr>
<td>Auslaufenlausche Auslaufzeit zu kurz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anlauf zögert</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbolader</td>
<td></td>
<td>- Lager beschädigt</td>
<td>- Lager ersetzen</td>
<td>Kap. 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Rotoren streifen</td>
<td>- Service-Spiele anrufen</td>
<td>Kap. 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Turbolader verspritzt</td>
<td>- reinigen</td>
<td>Kap. 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Fremdkörper im Turbolader</td>
<td>- Service-Spiele anrufen, beschädigte Teile auswechseln</td>
<td>Kap. 8</td>
</tr>
<tr>
<td>Gehäuse unicht</td>
<td>Turbolader</td>
<td>- Risse durch Wärmespannungen, teil:</td>
<td>- Gehäuse ersetzen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Entlüftung ungenügend</td>
<td>- besser entlüften</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kühlmassermenge ungenügend</td>
<td>- kontrollieren und nachfüllen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kühlmassenverschmutzung</td>
<td>- reinigen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schmierölverlust</td>
<td>Turbolader</td>
<td>- Dichtung schäden (51014/76502) beschädigt oder ersetzt</td>
<td>- Dichtung schäden ersetzen</td>
<td>Kap. 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Ausgleichskanäle X und Z versprüht</td>
<td>- reinigen</td>
<td>Kap. 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Dichtung zum Lagerausdecker undicht</td>
<td>- Dichtung ersetzen</td>
<td>Kap. 5</td>
</tr>
<tr>
<td>Ständiges Pumpen des Turboladers</td>
<td>Turbolader</td>
<td>- Durchflusswiderstand erhöht, teil:</td>
<td>- reinigen</td>
<td>Kap. 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ladendruckkühler oder Schalldämpfer verspritzt</td>
<td>- reinigen</td>
<td>Kap. 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>starke Schmutzablagerung im Verdichter/in der Turbine</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor</td>
<td></td>
<td>- Dehnr. Rückschlagventile bei Zweihaktomotoren</td>
<td>- Ventile austauschen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Abgasdruck nach Turbine erhöht, teil:</td>
<td>- reinigen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>weil Boiler oder Abgaschalldämpfer verspritzt</td>
<td>- reinigen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Rückschlagventile verspritzt</td>
<td>- reinigen</td>
<td></td>
</tr>
</tbody>
</table>

Service/Vertretung anrufen, wenn die Ursache des Pumpens nicht gefunden wird
1 Troubles causes, remedies

<table>
<thead>
<tr>
<th>Trouble</th>
<th>Location</th>
<th>Cause</th>
<th>Remedy</th>
<th>see</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine</td>
<td>- faults in injection system</td>
<td>- repair or consult engine manufacturer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbocharger</td>
<td>- lack of air, e.g. filter blocked by dirt</td>
<td>- clean</td>
<td>chap. 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- compressor / turbine contaminated</td>
<td>- clean</td>
<td>chap. 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Exhaust gas back pressure too high</td>
<td>- clean or repair boiler</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- turbine blade damaged or eroded</td>
<td>- replace the rotor</td>
<td>chap. 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- cover ring eroded</td>
<td>- replace</td>
<td>chap. 5</td>
<td></td>
</tr>
<tr>
<td>Exhaust gas temperature too high, engine performance and speed unaltered</td>
<td>Charge-air cooler</td>
<td>- dirt in the cooler</td>
<td>- clean</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- insufficient cooling water</td>
<td>- top up</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- cooling water inlet temperature too high</td>
<td>- check & clean cooling system</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- insufficient ventilation</td>
<td>- improve ventilation</td>
<td></td>
</tr>
<tr>
<td>Engine</td>
<td>- leak in the air receiver</td>
<td>- repair</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- leak in the gas duct between engine and turbine</td>
<td>- repair</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- injection incorrectly adjusted</td>
<td>- adjust correctly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbocharger</td>
<td>- manometer indication defective</td>
<td>- replace manometer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- leaks in the line to the manometer</td>
<td>- repair leak</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- dirt in the air filter causing excessive pressure loss</td>
<td>- clean</td>
<td>chap. 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- dirt in the compressor / turbine</td>
<td>- clean</td>
<td>chap. 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- labyrinth seal damaged</td>
<td>- consult service station for replacement</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- turbine / compressor blades damaged</td>
<td>- replace the rotor</td>
<td>chap. 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- nozzle ring damaged</td>
<td>- replace</td>
<td>chap. 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- cover ring eroded</td>
<td>- replace</td>
<td>chap. 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- exhaust gas back pressure too high</td>
<td>- clean boiler or exhaust gas silencer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trouble</td>
<td>Location</td>
<td>Cause</td>
<td>Remedy</td>
<td>see</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------------</td>
<td>--</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>Charge air pressure too high, engine performance and speed unaltered</td>
<td>Engine</td>
<td>- Faults in the injection system</td>
<td>- Adjust correctly</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Engine performance higher than assumed</td>
<td>- Check engine performance</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Injection system incorrectly adjusted</td>
<td>- Adjust correctly</td>
<td></td>
</tr>
<tr>
<td>Turbocompressor</td>
<td>Turbocompressor</td>
<td>- Manometer indication incorrect</td>
<td>- Replace manometer</td>
<td>chap. 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Nozzle ring dirty or partly obstructed</td>
<td>- Clean</td>
<td>chap. 3</td>
</tr>
<tr>
<td>Vibrations</td>
<td>Turbocompressor</td>
<td>- Roar unbalance due to heavy commutation of compressor / turbine</td>
<td>- Remove and clean, call service station</td>
<td>chap. 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Turbine blades or damping wire damaged</td>
<td>- Replace rotor</td>
<td>chap. 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Bearing defect</td>
<td>- Replace bearing, seek possible cause</td>
<td>chap. 5</td>
</tr>
<tr>
<td>Noises on running down, time too short, reluctant starting</td>
<td>Turbocompressor</td>
<td>- Bearing damaged</td>
<td>- Replace bearing</td>
<td>chap. 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Motor rubbing</td>
<td>- Call service station</td>
<td>chap. 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Dirt in turbocompressor</td>
<td>- Clean</td>
<td>chap. 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Foreign bodies in the turbocompressor</td>
<td>- Call service station, replace damaged parts</td>
<td>chap. 8</td>
</tr>
<tr>
<td>Leaks in the casing</td>
<td>Turbocompressor</td>
<td>- Cracks due to thermal tension:</td>
<td>- Replace casing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>insufficiency ventilation</td>
<td>- Provide better ventilation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>insufficiency cooling water</td>
<td>- Check and top up</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>dirt in cooling water space</td>
<td>- Clean</td>
<td></td>
</tr>
<tr>
<td>Loss of lubrication oil</td>
<td>Turbocompressor</td>
<td>- Sealing bushes (51014/76002) damaged</td>
<td>- Replace sealing bushes</td>
<td>chap. 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>compensation ducts X and Z obstructed</td>
<td>- Clean</td>
<td>chap. 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gasket of bearing space cover leaking</td>
<td>- Replace gasket</td>
<td>chap. 5</td>
</tr>
<tr>
<td>Constant surging of the turbocompressor</td>
<td>Turbocompressor</td>
<td>- Increased flow resistance due to:</td>
<td>- Clean</td>
<td>chap. 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Dirt in the charge air cooler or silencer</td>
<td>- Clean</td>
<td>chap. 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Heavy deposits of dirt in the compressor / turbine</td>
<td>- Clean</td>
<td>chap. 3</td>
</tr>
<tr>
<td>Engine</td>
<td>Engine</td>
<td>- Defective check valves in two-stroke engines</td>
<td>- Replace valves</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Exhaust gas pressure increased after the turbine, because the boiler or the exhaust gas silencer are dirty</td>
<td>- Clean</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Grid dirty</td>
<td>- Clean</td>
<td></td>
</tr>
</tbody>
</table>

Call the service station or representative if the cause of the surging cannot be detected.
5 Demontage und Montage

Inhalt

1. Einleitung .. 3
2. Gewichte .. 5
3. Turbolader abbauen und anbauen ... 9
4. Lager ausbauen und einbauen ... 11
 4.1 Verdichterseitiges Lager ausbauen ... 11
 4.2 Turbinenseitiges Lager ausbauen ... 17
 4.3 Turbinenseitiges Lager einbauen ... 23
 4.4 Verdichterseitiges Lager einbauen ... 31
 4.5 Masse K, K1, K2, Spiele L und M ... 39
5. Rotor ausbauen und einbauen ... 41
 5.1 Rotor ausbauen ... 41
 5.2 Turbinenschaufeln ersetzen ... 45
 5.3 Verdichter wechseln ... 45
 5.4 Rotor einbauen ... 45
6. Düsenring ersetzen ... 47
7. Heben Gasaustrittsgehäuse ... 48
8. Reserveteile ... 50
9. Tabelle der Anziehmomente ... 53

Contents

1. Introduction .. 3
2. Weights .. 5
3. Removing and installing the turbocharger ... 9
4. Removing and installing the bearings ... 11
 4.1 Removing the compressor end bearing ... 11
 4.2 Removing the turbine end bearing ... 17
 4.3 Installing the turbine end bearing ... 23
 4.4 Installing the compressor end bearing ... 31
 4.5 Dimensions K, K1, K2, clearances L and M ... 39
5. Removing and installing the rotor ... 41
 5.1 Removing the rotor ... 41
 5.2 Replacing the turbine blades ... 45
 5.3 Replacing the compressor ... 45
 5.4 Installing the rotor ... 45
6. Replacing the nozzle ring ... 47
7. Lifting gas outlet casing ... 48
8. Reserve parts ... 50
9. Table of tightening torques ... 53
<table>
<thead>
<tr>
<th>Disassembly and assembly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demontage und Montage</td>
</tr>
<tr>
<td>Kap. / Chap. 5</td>
</tr>
<tr>
<td>Turbocharger VTR..4</td>
</tr>
</tbody>
</table>

ABB Turbo Systems Ltd

10020

- M -
1 Einleitung

Vorsicht ! Weiterführende Arbeiten
Weiterführende Arbeiten, die hier nicht beschrieben sind, dürfen nur von ge- schultem Personal einer ABB Turbola- der Servicestelle ausgeführt werden.
Nur Arbeiten ausführen, die in die- sem Kapitel beschrieben sind.

Hinweis Gehäusestellung für Montage markieren
ABB Turbo Systems empfiehlt, die Ge- häusestellungen vor der Demontage zu markieren.

Identifizierung der Montagevorrichtungen

Warnung Instandhalten der Montagevorrich- tungen
Montagevorrichtungen sind vor und nach Benutzung auf Beschädigung zu kontrollieren.
Sichtprüfung auf Korrosion, Deformation und Verschleiss.
Beschädigte Montagevorrichtungen dürfen nicht mehr gebraucht werden und sind zu ersetzen.

Kundenersatzteilset
Vor Beginn der Arbeiten sicherstellen, dass benötigte Kundenersatzteilsets vorhanden sind - siehe Reser- veteile, Abschn. 7.

1 Introduction

Caution ! Further work
Further tasks, which are not described here, may be carried out only by trained personnel from an ABB turbocharger service station.
Only carry out those tasks that are described in this chapter.

Note Marking casing positions for assembly
ABB Turbo Systems recommends that the casing positions be marked before disassembling the turbocharger.

Identifying assembly devices
Not all assembly devices are marked with a part number. They can be identified using the tool list. This list is enclosed in the toolbox.

Warning Maintaining assembly devices
Assembly devices must be checked for damage before and after use.
Check visually for corrosion, deformati- on and wear.
Don't use damaged assembly devices, but replace them.

Customer spare parts kit
Before beginning work, ensure that the required cu- stomer spare parts kits are available - see Reserve parts, sec. 7.
Anziehmomente für Bauteile des Turboladers
Die vorgeschriebenen Anziehmomente der Schraubverbindungen für Bauteile des Turboladers müssen eingehalten werden (siehe Tabelle der Anziehmomente).

Anziehmomente für Montagevorrichtungen von ABB Turbo Systems
Falls nichts anderes beschrieben ist, müssen die Schrauben und Muttern der Montagevorrichtungen fest anliegend angezogen werden.

Zu verwendende Anschlagwirbel
Zum sicheren Heben von Lasten werden Anschlagwirbel benötigt (nicht im Lieferumfang enthalten).

Tightening torques for turbocharger components
The specified tightening torques of screw connections for turbocharger components must be observed. (See Table of tightening torques.)

Tightening torques for assembly devices of ABB Turbo Systems
If nothing else is described, the screws and nuts of the assembly devices must be tightened down firmly.

Swivel lifting eyes to be used
Swivel lifting eyes are required to lift loads safely (not included in the material supplied by ABB).

<table>
<thead>
<tr>
<th>M x h</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anschlagwirbel</td>
<td>M8 x 13</td>
</tr>
<tr>
<td>Swivel lifting eyes</td>
<td>2</td>
</tr>
<tr>
<td>Für / for</td>
<td>Gasaustrittsgehäuse Gas outlet casing</td>
</tr>
</tbody>
</table>
2 Gewichte

Warnung! Einzelteile und grössere Baugruppen sorgfältig an geeigneten und technisch einwandfreien Hebezeugen / Lastaufnahmemitteln mit ausreichender Tragkraft befestigen. Sich nicht unter schwebenden Lasten aufhalten (s. Kap. 1).

<table>
<thead>
<tr>
<th>VTR</th>
<th>Turbolader kpl. mit Schalldämpfer, ohne Kühlwasser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Turbocharger compl. with silencer, without cooling water [kg]</td>
</tr>
<tr>
<td></td>
<td>VTR..4</td>
</tr>
<tr>
<td>184</td>
<td>280</td>
</tr>
<tr>
<td>214</td>
<td>400</td>
</tr>
<tr>
<td>254</td>
<td>650</td>
</tr>
<tr>
<td>304</td>
<td>1'030</td>
</tr>
<tr>
<td>354</td>
<td>1'680</td>
</tr>
</tbody>
</table>
Fig. 5-1
Gewichte der Baugruppen
Weights of assemblies
Assemblies

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Rotor kpl. / Rotor complet</td>
<td>20</td>
<td>31</td>
<td>50</td>
<td>80</td>
<td>131</td>
</tr>
<tr>
<td>32</td>
<td>Lager VS / Bearing CE</td>
<td>1.2</td>
<td>2</td>
<td>3</td>
<td>4.5</td>
<td>9</td>
</tr>
<tr>
<td>34</td>
<td>Lager TS / Bearing TE</td>
<td>0.7</td>
<td>1</td>
<td>2</td>
<td>2.5</td>
<td>4</td>
</tr>
<tr>
<td>46</td>
<td>Lagerraumdeckel VS</td>
<td>5.5</td>
<td>8</td>
<td>11</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Bearing space cover CE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Lagerraumdeckel TS</td>
<td>5.5</td>
<td>8</td>
<td>11</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Bearing space cover TE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Gaseintrittsgehäuse</td>
<td>56</td>
<td>71</td>
<td>120</td>
<td>165</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>Gas inlet casing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Düsenring / Nozzle ring</td>
<td>3</td>
<td>2.5</td>
<td>4.5</td>
<td>7.5</td>
<td>12.5</td>
</tr>
<tr>
<td>57</td>
<td>Abdeckring / Cover ring</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>VTR..4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Berstschutz / Burst protection</td>
<td>---</td>
<td>---</td>
<td>12.5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VTR..4P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Gasaustrittsgehäuse</td>
<td>80</td>
<td>89</td>
<td>128</td>
<td>195</td>
<td>340</td>
</tr>
<tr>
<td></td>
<td>Gas outlet casing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Fuss / Foot</td>
<td>8</td>
<td>13.5</td>
<td>23</td>
<td>38</td>
<td>50</td>
</tr>
<tr>
<td>72</td>
<td>Verdichtergehäuse / Compressor casing</td>
<td>57</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>74</td>
<td>Luftaustrittsgehäuse / Air outlet casing</td>
<td>---</td>
<td>50</td>
<td>102</td>
<td>118</td>
<td>194</td>
</tr>
<tr>
<td>76</td>
<td>Lufteintrittsgehäuse / Air inlet casing</td>
<td>VTR..4</td>
<td>25</td>
<td>35</td>
<td>48</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>VTR..4P</td>
<td></td>
<td>55</td>
<td>85</td>
<td>120</td>
<td>220</td>
</tr>
<tr>
<td>77</td>
<td>Einsatzwand / Wall insert</td>
<td>12.5</td>
<td>4</td>
<td>7</td>
<td>10.5</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>VTR..4</td>
<td></td>
<td>13</td>
<td>21.5</td>
<td>36</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>VTR..4P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Diffusor / Diffuser</td>
<td>8</td>
<td>14</td>
<td>23</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>Schalldämpfer / Silencer</td>
<td>24.5</td>
<td>43</td>
<td>61</td>
<td>116</td>
<td>180</td>
</tr>
<tr>
<td>82</td>
<td>Luftaugstutzen / Air suction branch</td>
<td>10</td>
<td>25</td>
<td>35</td>
<td>55</td>
<td>80</td>
</tr>
</tbody>
</table>
Fig. 5-2
Turbolader ab- und anbauen
Removing and installing the turbocharger
3 Removing and installing the turbocharger

- Disconnect all gas, air and cooling water lines in accordance with the manufacturer's instructions.
- Check the lifting equipment.
- Loop a rope around the turbocharger and fix it to the lifting gear (see fig. 5-2).

Caution! Consider the turbocharger weight for selecting a suitable rope.

- Release the screws for the feet.
- Lift the turbocharger from the engine and set it down.
- To install the turbocharger follow these instructions in the reverse order.
- Putting into operation according to chap. 2.

3 Turbolader abbauen und anbauen

- Sämtliche Gas-, Luft- und Kühlwasserleitungen nach den Angaben des Motorenbauers trennen.
- Hebegeschirr kontrollieren
- Seil um Turbolader schlingen und am Hebezeug befestigen (s. Fig. 5-2).

Vorsicht! Gewichte des Turboladers für die Seilwahl berücksichtigen.

- Fußbefestigungsschrauben lösen
- Turbolader vom Motor abheben und ablassen.

Turbolader in sinngemäss umgekehrter Reihenfolge anbauen.
- Inbetriebnahme gem. Kap. 2.
Fig. 5-3
Lagerraumdeckel verdichterseitig
Bearing space cover compressor end
4 Removing and installing the bearings

4.1 Removing the compressor end bearing

Warning! Wear oil-resistant gloves.

Caution! Before opening the oil drain screw put a suitable container in position.

Used oil must be stored in the legally prescribed used oil containers and disposed of in an environmentally compatible manner.

- Remove the screw plugs (46009/46013) and drain the lubricating oil (see fig. 5-3).

- If provided: Dismantle speed measurement.

4 Lager ausbauen und einbauen

4.1 Verdichterseitiges Lager ausbauen

Warning! Ölfeste Handschuhe tragen.

Caution! Vor dem Öffnen der Ölablassschraube, Ölauffangwanne unterstellen.

Altöl in gesetzlich vorgeschriebenen Altöl-Containern lagern und umweltrecht entsorgen.

- Verschlussschrauben (46009/46013) entfernen und Schmieröl ablassen (s. Fig. 5-3).

Caution! Verschüttetes Altöl mit Absorbentien aufnehmen und getrennt entsorgen.

- Falls vorhanden: Drehzahlmessung demontieren.
Fig. 5-4
Verdichterseitiges Lager ausbauen
Removing the compressor end bearing
- Remove the hex.-headed screw (76009) (see fig.5-4/1).

- Release the bearing space cover (46000) with the puller screws (90900) from the air inlet casing (76001) and remove it (see fig. 5-4/1).

- Zyl-Schrauben (32181) und Federringe (32182) entfernen und Nippel (32185) abziehen (s. Fig. 5-4/2).

- Zyl-Schrauben (32181) und Federringe (32182) entfernen und Nippel (32185) abziehen (s. Fig. 5-4/2).

- Fix the holding device (90030) with the hex.-headed screws (90031) to the oil slinger (32180) (see fig. 5-4/3).

- Unlock the cap nut (32157) and remove it with the box spanner (90050/90260) (see fig. 5-4/3).

- Remove the locking plate (32114).

- Screw the extractor (90070) into the holding device (90030) (see fig. 5-4/4).

- Remove the oil slinger (32180) together with the extractor (90070) and holding device (90030) (see fig. 5-4/4).

<table>
<thead>
<tr>
<th>VTR</th>
<th>184</th>
<th>214</th>
<th>254</th>
<th>304</th>
<th>354</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>0.00 ... 0.04</td>
<td>0.00 ... 0.04</td>
<td>0.00 ... 0.04</td>
<td>0.00 ... 0.05</td>
<td>0.00 ... 0.06</td>
</tr>
<tr>
<td></td>
<td>Nippel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nipple</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>0.00 ... 0.03</td>
<td>0.00 ... 0.03</td>
<td>0.00 ... 0.03</td>
<td>0.00 ... 0.03</td>
<td>0.00 ... 0.04</td>
</tr>
<tr>
<td></td>
<td>Schmierrad</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oil slinger</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rundlaufwerte für Nippel und Schmierrad

True run values for nipple and oil slinger
Fig. 5-4
Verdichterseitiges Lager ausbauen
Removing the compressor end bearing
- Zyl-Schrauben (76021) und Federringe bzw. Sperrkantringe (76022) entfernen (s. Fig. 5-4/5).

- Mass K messen (s. Abschn. 4.5), Wert notieren (für Vergleich bei Montage) und mit dem Wert vergleichen, der im verdichterseitigen Lagerraumdeckel angegeben ist.

- Abziehvorrangrichtung (90070) auf die innere Lagerbüchse schrauben und Lager (32100) abziehen (s. Fig. 5-4/6).

- Remove socket screws (76021) and locking washers or locking edge washers (76022) (see fig. 5-4/5).

- Measure dimension K (see sec. 4.5). Note the value (for comparison during assembly procedure) and compare it with the value given in the compressor end bearing space cover.

- Abziehvorrangrichtung (90070) auf die innere Lagerbüchse schrauben und Lager (32100) abziehen (s. Fig. 5-4/6).

- Screw the extractor (90070) to the inner bearing bush and remove the bearing (32100) (see fig. 5-4/6).

- Vorsicht ! Den Führungsbolzen (76020) keinesfalls entfernen (s. Fig. 5-4/6). Der Bolzen bestimmt die Lage des Lagers !

- Caution ! Do not remove the guide bolt (76020) under any circumstances (s. fig. 5-4/6). It determines the position of the bearing !

- Vorsicht ! Ausgebaute Teile vor Verschmutzung schützen. Ausgebautes Lager nicht weiter zerlegen.

- Caution ! Protect dismantled parts from dirt. Do not take apart the detached bearing any further.

- Hinweis Ausgebaute und defekte Lager zur Überholung an eine autorisierte Servicestelle der ABB Turbo Systems AG senden (s. Kap. 8).

- Note Send removed and defective bearings for overhauling to an authorized ABB Turbo Systems Ltd service station (see chap. 8).
Fig. 5-5
Lagerraumdeckel turbinenseitig
Turbine end bearing space cover
4.2 Turbinenseitiges Lager ausbauen

Warnung ! Ölfeste Handschuhe tragen

Vorsicht ! Vor dem Öffnen der Ölablassschraube, Ölauffangwanne unterstellen.

Altöl in gesetzlich vorgeschriebenen Altöl-Containern lagern und umweltrecht entsorgen.

- Verschlussschrauben (48009/48011) entfernen und Schmieröl ablassen (s. Fig. 5-5).

Vorsicht ! Verschüttetes Altöl mit Absorbentien aufnehmen und getrennt entsorgen.

4.2 Removing the turbine end bearing

Warning ! Wear oil-resistant gloves.

Caution ! Before opening the oil drain screw put a suitable container in position.

Used oil must be stored in legally prescribed used oil containers and disposed of in an environmentally compatible manner.

- Remove the screw plugs (48009/48011) and drain the lubricating oil (see fig. 5-5).

Caution ! Soak up spilled oil with absorbent material and dispose of as special waste.
Fig. 5-6
Turbinenseitiges Lager ausbauen
Removing the turbine end bearing
Demontage und Montage Kap. / Chap. 5 Disassembly and assembly

- 6kt-Schrauben (51011) entfernen (s. Fig. 5-6/1).
- Lagerraumdecker (48000) mit Abdrückschrauben (90900) vom Gas-Eintrittsgehäuse (51001) lösen und entfernen (s. Fig. 5-6/1).

VORSICHT! Rundlauf B1 am Nippel kontrollieren; max. Toleranz s. Tabelle unten.

- Zyl-Schrauben (34181) und Federringe (34182) entfernen und Nippel (34185) abziehen (s. Fig. 5-6/2).

VORSICHT! Rundlauf B2 am Schmierrad kontrollieren; max. Toleranz s. Tabelle unten.

- Festhaltevorrichtung (90030) mit 6kt-Schrauben (90031) am Schmierrad (34180) befestigen (s. Fig. 5-6/3).
- Hutmutter (34157) entsichern, und mit Steckschlüssel (90050/90260) abschrauben (s. Fig. 5-6/3).
- Sicherungsblech (34113) entfernen.
- Abziehvorrachtung (90070) in Festhaltevorrichtung (90030) einschrauben (s. Fig. 5-6/4).
- Schmierrad (34180) und Festhaltevorrichtung (90030) mit Abziehvorrachtung (90070) abziehen (s. Fig. 5-6/4).

VORSICHT! Rundlauf B2 am Schmierrad kontrollieren; max. Toleranz s. Tabelle unten.

- Fix the holding device (90030) with the hex.-headed screws (90031) to the oil slinger (34180) (see fig. 5-6/3).
- Unlock the cap nut (34157) and remove it with the box spanner (90050/90260) (see fig. 5-6/3).
- Remove the locking plate (34113).
- Fix the extractor (90070) into the holding device (90030) (see fig. 5-6/4).
- Remove the oil slinger (34180) together with the extractor (90070) and holding device (90030) (see fig. 5-6/4).

<table>
<thead>
<tr>
<th>VTR</th>
<th>184</th>
<th>214</th>
<th>254</th>
<th>304</th>
<th>354</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>0.00 ... 0.04</td>
<td>0.00 ... 0.04</td>
<td>0.00 ... 0.04</td>
<td>0.00 ... 0.05</td>
<td>0.00 ... 0.06</td>
</tr>
<tr>
<td>B2</td>
<td>0.00 ... 0.03</td>
<td>0.00 ... 0.03</td>
<td>0.00 ... 0.03</td>
<td>0.00 ... 0.03</td>
<td>0.00 ... 0.04</td>
</tr>
</tbody>
</table>

Rundlaufwerte für Nippel und Schmierrad

True run values for nipple and oil slinger
Fig. 5-6
Turbinenseitiges Lager ausbauen
Removing the turbine end bearing
- Remove socket screws (51025) and locking washers or locking edge washers (51026) (see fig. 5-6/5).

- Fix the extractor (90070) to the inner bearing bush and remove the bearing (34100) (see fig. 5-6/5).

- Zyl-Schrauben (51025) und Federringe bzw. Sperrkantringe (51026) entfernen (s. Fig. 5-6/5).

- Abziehvorrang (90070) auf die innere Lagerbüchse schrauben und Lager (34100) abziehen (s. Fig. 5-6/5).

Vorsicht ! Den Führungsbolzen (51022) keinesfalls entfernen (s. Fig. 5-6/5). Der Bolzen bestimmt die Lage des Lagers !

Caution ! Do not remove the guide bolt (51022) under any circumstances (s. fig. 5-6/5). It determines the position of the bearing!

Vorsicht ! Ausgebaute Teile vor Verschmutzung schützen. Ausgebautes Lager nicht weiter zerlegen.

Caution ! Protect dismantled parts from dirt. Do not dismantle the detached bearing any further.

Hinweis Ausgebaute und defekte Lager zur Überholung an eine autorisierte Service stelle der ABB Turbo Systems AG senden (s. Kap. 8).

Note Send removed and defective bearings for overhauling to an authorized ABB Turbo Systems service station (see chap. 8).
Fig. 5-7
Turbinenseitiges Lager einbauen
Installing the turbine end bearing
4.3 Turbinenseitiges Lager einbauen

Lager (34100) nur als gesamte Einheit auswechseln (s. Fig. 5-7).

Vorsicht!
Nur Originalteile von autorisierten Servicestellen der ABB Turbo Systems AG verwenden.
Nur Originalteile aus ungeöffnete Blechverpackungen verwenden.

- Lagerraum vor dem Einsetzen des neuen Lagers reinigen (s. Kap. 3).

Vorsicht!
Vor der Montage des neuen Lagers die Wellenenden unbedingt
- sehr sorgfältig reinigen
- gegen Festfressen mit MOLYKOTE TP42, D oder DX (weiss) einreiben.
(s. Fig. 5-7 *)

Hinweis
Wegen möglicher Schmierölverfärbung nur weisse Produkte verwenden.

- Überschüssige Paste entfernen

Hinweis
Das Spiel in den radialen Dämpfungspaketen ist bei den turbinenseitigen Ersatzlagern, die von ABB Turbo Systems AG oder von unseren Servicestellen geliefert wurden, richtig eingestellt.

4.3 Installing the turbine end bearing

Replace the bearing (34100) only as a complete unit (see fig. 5-7).

Caution!
Use only original parts from authorized service stations of the ABB Turbo Systems Ltd.
Use only original parts from unopened tin packing.

- Clean the bearing space before installing the new bearing (see chap. 3).

Caution!
Before fitting the new bearing the ends of the shaft must be:
- cleaned thoroughly
- coated with MOLYKOTE TP42, D or DX (white) to prevent seizing. (see fig. 5-7 *)

Note
Due to possible lubricating oil discolouring only white products should be used.

- Remove excess paste.

Note
The tolerance in the radial damping springs in the turbine end spare bearings supplied by ABB Turbo Systems Ltd or one of our service stations is correctly adjusted.
Installing the turbine ende bearing
Vorsicht! Sicherungsringe grundsätzlich ersetzen

- Lager (34100) - soweit wie möglich - von Hand einschieben (s. Fig. 5-8/1).

- Schmierrad (34180) und Festhaltevorrichtung (90030) mit Hutmutter (34157) montieren. (s. Fig. 5-8/1).

- Hutmutter (34157) mit Steckschlüssel (90050/90260) anziehen, bis das Lager an der Wellenschulter anliegt.

- Hutmutter (34157) wieder lösen und zusammen mit Schmierrad (34180) und Festhaltevorrichtung (90030) wieder entfernen (s. Fig. 5-8/1).

- Zyl.-Schrauben (51025) und Federringe resp. Sperrkantringe (51026) am Lager (34100) montieren und anziehen.

Hinweis: Ist das verdichterseitige Lager ebenfalls demontiert worden, so ist dieses Lager, bevor die Hutmutter (34157) festgezogen wird, einzubauen.

- Stirnseite der Hutmutter (34157) und Kontaktflächen des Sicherungbleches (34113) leicht mit MOLYKOTE einreiben.

- Schmierrad (34180) und Sicherungblech (34113) mit Hutmutter (34157) montieren. Darauf achten, dass Haltenase des Sicherungbleches in Richtung Lagerraumdeckel montiert wird.

- Hutmutter (34157) bis zum Anliegen an das Schmierrad anziehen.

Caution! Always replace safety rings

- Push the bearing (34100) in by hand as far as possible (see fig. 5-8/1a).

- Fit the oil slinger (34180) with the holding device (90030) and the cap nut (34157) (see fig. 5-8/1).

- Tighten the cap nut (34157) with the box spanner (90050) until the bearing reaches the shaft shoulder.

- Release the cap nut (34157) again and remove the oil slinger (34180) together with the holding device (90030) (see fig. 5-8/1).

- Carefully fit the socket screws (51025) with the locking washers resp. locking edge washer (51026) to the bearing (34100) and tighten them.

Note: If the compressor end bearing has been removed as well, this bearing must be installed before the cap nut (34157) is tightened.

- Apply some MOLYKOTE grease to the end face of the cap nut (34157) and to both surfaces of the locking plate (34113).

- Fit the oil slinger (34180) and the locking plate (34113) with the cap nut (34157). Make sure that the retainer of the locking plate points towards the bearing space cover.

- Tighten the cap nut (34157) until contact against the oil slinger.
Fig. 5-8
Turbinenseitiges Lager einbauen
Installing the turbine ende bearing
Disassembly and assembly

Steckschlüssel mit eingraviertem Anzugswinkel
- Steckschlüssel (90050) aufstecken und in der radialen Verlängerung der "O- Marke" (rechte) am Schmierrad (34180) eine Markierung anbringen (s. Fig. 5-8/3a).

Steckschlüssel ohne eingraviertem Anzugswinkel
- Das in der Tabelle angegebene Sehnenmass "S" mit Hilfe der Schiebelehre auf den Steckschlüssel (90050) übertragen und den Schlüssel markieren. Schlüssel aufstecken und in der radialen Verlängerung der ersten Marke (rechte) am Schmierrad (34180) eine Markierung anbringen (s. Fig. 5-8/3b).

Box spanner with marked angle of torque
- Press on the box spanner (90050) and make a mark on the oil slinger (34180) corresponding to the radial extension of "O-mark" (right) (see fig. 5-8/3a).

Box spanner without marked angle of torque
- Use a slide gauge to transfer the length of the chord S, given in the table, to the box spanner (90050) and mark it. Press on the box spanner and make a mark on the oil slinger (34180), corresponding to the radial extension of the first mark (right) (s. Fig. 5-8/3b).

<table>
<thead>
<tr>
<th>VTR</th>
<th>Winkel / Angle</th>
<th>Schlüssel Ø</th>
<th>Sehnenmass S</th>
</tr>
</thead>
<tbody>
<tr>
<td>α [°]</td>
<td>Ø of the box spanner</td>
<td>[mm]</td>
<td>Dimension of the chord S</td>
</tr>
<tr>
<td>184</td>
<td>35</td>
<td>28</td>
<td>8.5</td>
</tr>
<tr>
<td>214</td>
<td>40</td>
<td>35</td>
<td>12</td>
</tr>
<tr>
<td>254</td>
<td>30</td>
<td>44</td>
<td>11.5</td>
</tr>
<tr>
<td>304</td>
<td>30</td>
<td>45</td>
<td>11.5</td>
</tr>
<tr>
<td>354</td>
<td>30</td>
<td>52</td>
<td>13.5</td>
</tr>
</tbody>
</table>

- Die Hutmutter (34157) durch Schlagen mit dem Hammer auf den Drehstift (90260) festziehen, bis die zweite Markierung auf dem Steckschlüssel (90050) mit der Markierung am Schmierrad (34180) übereinstimmt. Dabei den Steckschlüssel (90050) von Hand stützen (s. Fig. 5-8/3a).

Note
In order to ensure a better true run, turn the rotor between each stroke of the hammer with the box spanner (90050) and the cap nut by 180°.

- Stimmt die Lage keiner Zunge des Sicherungsbleches (34113) mit einer Hutmutternut überein, dann diese weiter festziehen (nicht lösen), bis einwandfrei gesichert werden kann. (siehe folgende Seite)

Hinweis
Um einen besseren Rundlauf zu gewährleisten, den Rotor zwischen den einzelnen Schlägen mit Steckschlüssel (90050) und Hutmutter jeweils um 180° drehen.

Note
If none of the tongues on the locking plate (34113) correspond to a groove in the cap nut, tighten the latter (do not loosen) until correct locking is ensured. (see following page)

- Die Hutmutter (34157) durch Schlagen mit dem Hammer auf den Drehstift (90260) festziehen, bis die zweite Markierung auf dem Steckschlüssel (90050) mit der Markierung am Schmierrad (34180) übereinstimmt. Dabei den Steckschlüssel (90050) von Hand stützen (s. Fig. 5-8/3a).

Hinweis
Zunge des Sicherungsbleches noch nicht biegen bis die Rundlaufkontrolle am Schmierrad abgeschlossen ist.

Note
Do not bend the tongue on the locking plate until the check of the true run at the oil slinger has been completed.
Fig. 5-8
Turbinenseitiges Lager einbauen
Installing the turbine end bearing
Rundlaufwerte für Nippel und Schmierrad

<table>
<thead>
<tr>
<th>VTR</th>
<th>184</th>
<th>214</th>
<th>254</th>
<th>304</th>
<th>354</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>0.00 ... 0.04</td>
<td>0.00 ... 0.04</td>
<td>0.00 ... 0.04</td>
<td>0.00 ... 0.05</td>
<td>0.00 ... 0.06</td>
</tr>
<tr>
<td>B2</td>
<td>0.00 ... 0.03</td>
<td>0.00 ... 0.03</td>
<td>0.00 ... 0.03</td>
<td>0.00 ... 0.03</td>
<td>0.00 ... 0.04</td>
</tr>
</tbody>
</table>

Nippel (Nipple) Schmierrad (Oil slinger)
Fig. 5-9
Verdichterseitiges Lager einbauen
Installing the compressor end bearing
4.4 Verdichterseitiges Lager einbauen

Lager (32100) nur als gesamte Einheit auswechseln (s. Fig. 5-9).

Vorsicht ! Nur Originalteile von autorisierten Servicestellen der ABB Turbo Systems AG verwenden.

Nur Originalteile aus ungeöffneten Blechverpackungen verwenden.

- Lagerraum vor dem Einsetzen des neuen Lagers reinigen (s. Kap. 3).

Vorsicht ! Vor der Montage des neuen Lagers die Wellenenden unbedingt
- sehr sorgfältig reinigen
- gegen Festfressen mit MOLYKOTE TP42, D oder DX (weiss) einreiben (s. Fig. 5-9*)

Hinweis Wegen möglicher Schmierölverfärbung nur weisse Produkte verwenden.

- Überschüssige Paste entfernen

Hinweis Die Spiele in den radialen und axialen Dämpfungspaketen und die axiale Stellung des Vier-Punkt-Wälzlagers sind bei den verdichterseitigen Ersatzlagern, die von ABB Turbo Systems AG oder unseren Servicestellen geliefert wurden, richtig eingestellt.

4.4 Installing the compressor end bearing

Replace the bearing (32100) only as a complete unit (see fig. 5-9).

Caution ! Use only original parts from authorized ABB Turbo Systems Ltd service stations.

Use only original parts from unopened tin packing.

- Clean the bearing space before installing the new bearing (see chap. 3).

Caution ! Before fitting the new bearing the ends of the shaft must be:
- cleaned thoroughly
- coated with MOLYKOTE TP42, D or DX (white) to prevent seizing (see fig. 5-9*)

Note Due to possible lubricating oil discoloring only white products should be used.

- Remove excess paste.

Note The tolerances in the radial and axial damping springs and the axial position of the rolling bearing with four contact points supplied by ABB Turbo Systems Ltd or one of our service stations are correctly adjusted.
Fig. 5-10
Verdichterseitiges Lager einbauen
Installing the compressor end bearing
Vorsicht ! Sicherungsringe grundsätzlich ersetzen.

- Lager (32100) - soweit wie möglich - von Hand einschieben (s. Fig. 5-10/1).
- Schmierrad (32180) zusammen mit Festhaltevorrichtung (90030) und Hutmutter (32157) montieren. (s. Fig.5-10/1)
- Lager (32100) mittels Hutmutter (32157) und Steckschlüssel (90050/90260) mit max. 2 Umdrehungen auf die Welle aufpressen s. Fig 5-10/1).
- Hutmutter (32157) wieder lösen und zusammen mit Schmierrad (32180) und Festhaltevorrichtung (90030) entfernen (s. Fig. 5-10/1).

Vorsicht ! Masse K1 und K2 messen und die Spiele L und M rechnen, siehe Abschn. 4.5.

- Stirnseite der Hutmutter (32157) und Kontaktflächen des Sicherungsbleches (32114) leicht mit MOLYKOTE einreiben.
- Schmierrad (32180) und Sicherungsblech (32114) mit Hutmutter (32157) montieren. Darauf achten, dass die Haltenase vom Sicherungsblech in Richtung Lagerraumdeckel montiert wird (s. Fig. 5-10/2).
- Hutmutter (32157) bis zum Anliegen an das Schmierrad anziehen.
- Hutmutter (32157) wieder lösen und zusammen mit Schmierrad (32180) und Festhaltevorrichtung (90030) entfernen.
- Zyl.-Schrauben (76021) und Federringe resp. Sperrkantringe (76022) am Lager (32100) montieren und anziehen (s. Fig. 5-10/3).

Caution ! Always replace safety rings

- Push the bearing (32100) in by hand as far as possible (see fig. 5-10/1).
- Fit the oil slinger (32180) together with the holding device (90030) and the cap nut (32157) (see fig.5-10/1).
- Press the bearing (32100) with the cap nut (32157) and the box spanner (90050/90260) onto the shaft with a max. of two turns (see fig. 5-10/1).
- Release the cap nut (32157) again and remove the oil slinger (32180) together with the holding device (90030) (see fig. 5-10/1).

Caution ! Measure dimensions K1 and K2, calculate the tolerances L and M according to sec. 4.5.

- Apply some MOLYKOTE grease to the end face of the cap nut (32157) and to both surfaces of the locking plate (32114).
- Fit the oil slinger (32180) and the locking plate (32114) with the cap nut (32157). Make sure that the retainer of the locking plate points towards the bearing space cover (s. fig. 5-10/2).
- Tighten the cap nut (32157) until contact against the oil slinger.
- Release the cap nut (32157) again and remove the oil slinger (32180) together with the holding device (90030).
- Carefully fit the socket screws (76021) with the locking washers resp. locking edge washers (76022) to the bearing (32100) and tighten them (see fig. 5-10/3).
Fig. 5-10
Verdichterseitiges Lager einbauen
 Installing the compressor end bearing
- Steckschlüssel (90050) aufstecken und in der radialen Verlängerung der "0-Marke" (rechte) am Schmierrad (32180) eine Markierung anbringen (s. Fig. 5-10/4).

Hinweis Anzugswinkel, siehe Abschn. 4.3.

- Press on the box spanner (90050) and make a mark on the oil slinger (32180) corresponding to the radial extension of "O-mark" (right) (see fig. 5-10/4).

Note Angel of torque, see sec. 4.3.

- Die Hutmutter (32157) durch Schlagen mit dem Hammer auf den Drehstift (90260) festziehen, bis die zweite Markierung auf dem Steckschlüssel (90050) mit der Markierung am Schmierrad (32180) übereinstimmt. Dabei den Steckschlüssel (90050) von Hand stützen (s. Fig. 5-10/4).

Vorsicht ! Um einen besseren Rundlauf zu gewährleisten, den Rotor zwischen den einzelnen Schlägen mit Steckschlüssel (90050) und Hutmutter jeweils um 180° drehen.

- Tighten the cap nut (32157) by hammering on the tommy bar (90260) until the second mark on the box spanner (90050) corresponds to the marking on the oil slinger (32180). Support the box spanner (90050) with your hand when doing this operation (see fig. 5-10/4).

Caution ! In order to ensure a better true run, turn the rotor between each stroke of the hammer with the box spanner (90050) and the cap nut by 180°.

- Stimmt die Lage keiner Zunge des Sicherungsbleches (32114) mit einer Nut der Hutmutter über ein, dann diese weiter festziehen (nicht lösen), bis einwandfrei gesichert werden kann.

Hinweis Zunge des Sicherungsbleches noch nicht biegen bis die Rundlaufkontrolle am Schmierrad abgeschlossen ist.

Note Do not bend the tongue on the locking plate until the the check of the true run at the oil slinger has been completed.

Vorsicht ! Rundlauf B2 am Schmierrad kontrollieren; max. Toleranz siehe Tabelle auf nächster Seite.

Caution ! Check the true run B2 at the oil slinger; max. tolerance see table on the next page.

- Bei einem Rundlauffehler der ausserhalb der Toleranz liegt ist eine Service-Stelle zu kontaktieren (s. Kap. 8).

Vorsicht ! Ist der Rundlauf OK, Zunge des Sicherungsbleches (32114) biegen.

Caution ! If the true run is OK bend the tongue of the locking plate (32114).

- If the tolerance is exceeded, consult a service station (see chap. 8).

- Nippel (32185) mit Zyl.-Schrauben (32181) und Federring (32182) montieren.

Vorsicht ! Fit the nipple (32185) with socket screws (32181) and locking washer (32182).
Fig. 5-10
Verdichterseitiges Lager einbauen
Installing the compressor end bearing
Vorsicht ! Rundlauf B1 am Nippel kontrollieren; max. Toleranz s. Tabelle unten.

Caution ! Check the true run B1 of the nipple; max. tolerance see table below.

- Saugrohr im Lagerraumdeckel (46000) und Düse (32190) auf Durchgängigkeit prüfen und wenn nötig reinigen.

- Kolbenring (32191) und Düse (32190) auf Beschädigung prüfen und bei Bedarf ersetzen (s. Fig. 5-10/6).

- Lagerdeckeldichtung (32154) auf Beschädigung prüfen und bei Bedarf ersetzen.

- Lagerraumdeckel TS (46000) mit Schrauben (76009) und Federscheibe (76010) montieren.

- Falls vorhanden: Drehzahlimessung montieren.

- Verschlusschrauben (46009) mit Dichtungen (46010) eindrehen und festziehen (s. Fig. 5-10/7).

- Öl einfüllen (s. Kap. 2).

- Verschlusschraube (46013) mit Dichtung (46014) eindrehen und festziehen (s. Fig. 5-10/7).

Rundlaufwerte für Nippel und Schmierrad

<table>
<thead>
<tr>
<th>VTR</th>
<th>184</th>
<th>214</th>
<th>254</th>
<th>304</th>
<th>354</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>0.00 ... 0.04</td>
<td>0.00 ... 0.04</td>
<td>0.00 ... 0.04</td>
<td>0.00 ... 0.05</td>
<td>0.00 ... 0.06</td>
</tr>
<tr>
<td>B2</td>
<td>0.00 ... 0.03</td>
<td>0.00 ... 0.03</td>
<td>0.00 ... 0.03</td>
<td>0.00 ... 0.03</td>
<td>0.00 ... 0.04</td>
</tr>
</tbody>
</table>

Nippel
Oil slinger

Vorsicht ! Rundlauf Werte für Nippel und Schmierrad

True run values for nipple and oil slinger
Fig. 5-11
Masse K, K1, K2, Spiele L und M
Dimensions K, K1, K2, tolerances L and M
4.5 Masse K, K1, K2, Spiele L und M

Spielmessung bei Demontage

- Mass K messen (s. Fig. 5-11/3).
- Abziehvorrägung (90070) auf die innere Lagerbüchse VS schrauben und Lager (32100) ca. 5-6mm herausziehen.
- Rotor gegen den Verdichter schieben
- Mass K1 messen (s. Fig. 5-11/1)
- Rotor gegen Turbine ziehen
- Mass K2 messen (s. Fig. 5-11/2)

Spiel L und M berechnen gemäß Formel auf nächster Seite.

4.5 Dimensions K, K1, K2, clearances L and M

Measuring of the clearances during disassembly

- Measure dimension K (s. fig. 5-11/3)
- Screw the extractor device (90070) onto the inner bearing bush (CE) and pull out the bearing for about 5-6mm.
- Push the rotor towards the compressor.
- Measure dimension K1 (see fig. 5-11/1).
- Pull the rotor towards the turbine.
- Measure dimension K2 (see fig. 5-11/2).

Calculate the tolerances L and M according to the formulae on the following page.

Spielmessung bei Montage

- Rotor gegen den Verdichter schieben
- Mass K1 messen (s. Fig. 5-11/1)
- Rotor gegen Turbine ziehen
- Mass K2 messen (s. Fig. 5-11/2)

- Lager (32100), Schmierrad (32180) und Festhaltevorrichtung (90030) mittels Hutmutter (32157) und Steckschlüssel (90050) bis zur Wellenschulter auf die Welle aufpressen s. Fig 5-11/1).
- Hutmutter (32157) lösen und Schmierrad (32180) zusammen mit Festhaltevorrichtung (90030) wieder entfernen.
- Lager (32100) mit zwei um 180° versetzten Schrauben und Federringen (76021/76022) fixieren.
- Mass K messen (s. Fig. 5-11/3) und mit dem Wert vergleichen, der bei der Demontage gemessen wurde und/oder der im verdichterseitigen Lagerraumdeckel angegeben ist.

Spiel L und M berechnen gemäß Formel auf nächster Seite.

Measuring of the clearances during assembly

- Push the rotor towards the compressor.
- Measure dimension K1 (see fig. 5-11/1).
- Pull the rotor towards the turbine.
- Measure dimension K2 (see fig. 5-11/2).

- Press the bearing (32100) with the cap nut (32157) and the box spanner (90050), together with the oil slinger (32180) and the holding device (90030) onto the shaft until the bearing reaches the shaft shoulder. (see fig.5-11/1).
- Again release the cap nut (32157) and remove it together with the oil slinger (32180) and the holding device (90030).
- Fix the bearing (32100) with the two screws set at 180° and locking rings (76021/76022).
- Measure dimension K (see fig. 5-11/3) and compare it with the value measured during the disassembly procedure and/or given in the compressor end bearing space cover.

Calculate the tolerances L and M according to the formulae on the next page.
Spiele L und M berechnen nach:

- \(L = K - K_1 \)
- \(M = K_2 - K \)

- Die Spiele L und M müssen innerhalb der angegebenen Toleranzwerte liegen:

<table>
<thead>
<tr>
<th>VTR</th>
<th>184</th>
<th>214</th>
<th>254</th>
<th>304</th>
<th>354</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L \ [\text{mm}])</td>
<td>0.54 ... 1.28</td>
<td>0.55 ... 1.27</td>
<td>0.56 ... 1.35</td>
<td>0.68 ... 1.50</td>
<td>0.79 ... 1.70</td>
</tr>
<tr>
<td>(M \ [\text{mm}])</td>
<td>0.20 ... 1.02</td>
<td>0.19 ... 1.21</td>
<td>0.19 ... 1.26</td>
<td>0.20 ... 1.30</td>
<td>0.20 ... 1.37</td>
</tr>
</tbody>
</table>

VTR | 184P | 214P | 254P | 304P | 354P |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(L \ [\text{mm}])</td>
<td>0.85 ... 1.60</td>
<td>0.87 ... 1.58</td>
<td>0.96 ... 1.70</td>
<td>1.20 ... 1.95</td>
<td>1.35 ... 2.29</td>
</tr>
<tr>
<td>(M \ [\text{mm}])</td>
<td>0.50 ... 1.26</td>
<td>0.04 ... 1.05</td>
<td>0.06 ... 1.10</td>
<td>0.05 ... 1.10</td>
<td>0.05 ... 1.17</td>
</tr>
</tbody>
</table>

Calculate the tolerances L and M according to:

- \(L = K - K_1 \)
- \(M = K_2 - K \)

- The tolerances L and M must be within the values given in the following table:
5 Rotor ausbauen und einbauen

5.1 Rotor ausbauen

Hinweis

Die Gewichte der Einzelbaugruppen sind Abschn. 2 zu entnehmen.

- Schalldämpfer bzw. Luftsaugstutzen abbauen (siehe fig 5-12).

5 Removing and installing the rotor

5.1 Removing the rotor

Note

See sec. 2 for the weights of the individual assemblies.

- Remove silencer or air suction branch (see fig. 5-12).

- Lager VS (32100) und Lager TS (34100) ausbauen (s. Abschn. 4.1 und 4.2).

- Remove CE bearing (32100) and TE bearing (34100) (see sec. 4.1 and 4.2).
Fig. 5-13
Rotor ausbauen
Removing the rotor
Zwischenstück (90055) und Steckschlüssel (90050) verdichterseitig auf Welle aufschrauben (s. Fig. 5-13/1).

Führungsplatte (90170) mit 6kt-Schrauben (90172) am Verdichtergehäuse (72000) befestigen (s. Fig. 5-13/1).

Seil um Verdichtergehäuse (72000) schlingen und am Hebezeug einhängen.

Muttern (74023) am Verdichtergehäuse lösen und entfernen. (s. Fig. 5-13/1)

Verdichtergehäuse (72000) mit Abdrückschrauben (90900) lösen und entfernen.

Führungsplatte (90170) mit 6kt-Schrauben (90172) am Gas- eintrittsgehäuse (50000) befestigen (s. Fig.5-13/2).

Steckschlüssel (90050) auf das turbinenseitige Wellenende aufschrauben (s. Fig. 5-13/2).

Adapter (90216) auf das verdichterseitige Wellenende schrauben (s. Fig. 5-13/3).

Vorsicht ! Vor dem Anheben, Hebezeug auf richtige Befestigung und Tragseil auf festen Sitz prüfen.

- Rotor mit Kran langsam anheben, bis der Rotor seitwärts bewegt werden kann.

Hinweis Position der Zwischenwand mit Reissnadel oder Körner markieren.

- Rotor ca. 10cm ausfahren (s. Fig. 5-13/3).

Kranseil um die Zwischenwand (23000) schlingen und Rotor vorsichtig ausfahren (s. Fig. 5-13/4).

Hinweis Werden Streifspuren an Turbineschaufeln und/oder am Verdichterrad festgestellt ist eine autorisierte Service-Stelle der ABB Turbo Systems AG zu kontaktieren.

- Screw the intermediate piece (90055) and the box spanner (90050) onto the shaft at compressor end (see fig. 5-13/1).

- Fix the guide plate (90170) onto the compressor casing (72000) with the hex.-headed screws (90172), (see fig 5-13/1).

- Loop a rope around a rib in the compressor casing (72000) and tie it to the lifting gear.

- Release the hex. nuts (74023) from the compressor casing and remove them.(see fig. 5-13/1)

- Release the compressor casing (72000) with the puller screws (90900) and remove it.

- Fix the guide plate (90170) onto the gas inlet casing (50000) with the hex.-headed screws (90172), (see fig. 5-13/2).

- Screw the box spanner (90050) onto the shaft at compressor end (see fig. 5-13/2).

- Screw the adapter (90216) on to the compressor end shaft end (see fig. 5-13/3).

- Lift the rotor slowly with the crane until the rotor is can be moved sideways.

Note Mark the position of the partition wall with a marking tool or center punch.

- Withdraw the rotor for about 10cm (see fig. 5-13/3).

- Loop the rope around the partition wall (23000) and carefully remove the rotor (see fig. 5-13/4).

Note If striations are found on turbine blades and/or compressor wheel an authorized service station of ABB Turbo Systems Ltd should be contacted.
Fig. 5-14
Rotor einbauen
Installing the rotor
5.2 Turbinenschaufeln ersetzen

Hinweis Bei beschädigten Turbinenschaufeln und Dämpferdrähten muss die ganze Welle ersetzt werden.

5.3 Verdichter wechseln

Vorsicht ! Verdichter nur von einer autorisierten Service-Stelle der ABB Turbo Systems AG ersetzen lassen.

5.4 Rotor einbauen

In sinngemäss umgekehrter Reihenfolge (s. Fig. 5-14) einbauen.

Hinweis Mit dem Schwerspannstift (61015) wird die Zwischenwand (23000) im Gasaustrittsgehäuse (61001) positioniert.

Zwischenwand (23000) ev. mit leichten Hammerschlägen (nur Blei- oder Kupferhammer verwenden) am Gasausstrittsgehäuse (61001) zum Anliegen bringen.

Nach dem Einbau der Lager VS und TS unbedingt die Spiele L und M messen (s. Abschn. 4.5).

5.2 Replacing the turbine blades

Note In case of damaged turbine blades and damping the complete shaft has to be replaced.

5.3 Replacing the compressor

Caution ! The compressor may only be replaced by an authorized ABB Turbo Systems Ltd service station.

5.4 Installing the rotor

Follow the instructions in the reverse order to install the rotor (see fig. 5-14).

Note The partition wall (23000) is positioned in the gas outlet casing (61001) by the roll pin (61015).

If necessary tap slightly with a hammer (use a lead- or copper hammer only) to position the partition wall (23000) correctly in the gas outlet casing (61001).

After installation of the CE and TE bearings the tolerances L and M must be measured (see sec. 4.5).
Fig. 5-15
Düsenring ersetzen
Replacing the nozzle ring
6 Düsenring ersetzen

- Lager ausbauen (s. Abschn. 4.1 und 4.2).
- Rotor ausbauen (s. Absch. 5.1).

Vorsicht !
Beschädigten Düsenring nur von autorisierten Service-Stellen der ABB Turbo Systems AG wechseln lassen.

- Kühlwasserleitungen und Abgasleitung vom Gas eintrittsgehäuse (50000) trennen.
- Seil um Gaseintrittsgehäuse (50000) schlingen und am Hebezeug einhängen.
- Muttern (61010) lösen und entfernen.
- Gaseintrittsgehäuse (50000) ev. mit leichten Hammerschlägen (nur Blei- oder Kupferhammer verwenden) vom Gasaustrittsgehäuse (60000) lösen und entfernen.

Vorsicht !
Es besteht die Möglichkeit, dass der Düsenring (56001) mit dem Gas eintrittsgehäuse (50000) herausgezogen wird. Sichern sie den Düsenring gegen herunterfallen.

- Ev. festsitzender Düsenring (56001) mit Hammerschlägen (nur Blei- oder Kupferhammer verwenden) aus dem Gasaustrittsgehäuse (60000) austreiben.
- Beschädigter Düsenring ersetzen.

In sinngemäss umgekehrter Reihenfolge zusammenbauen.

Hinweis

6 Replacing the nozzle ring

- Remove the bearings (see sec. 4.1 and 4.2)
- Remove the rotor (see sec. 5.1)

Caution !
Damaged nozzle ring may only be replaced by an authorized service station of the ABB Turbo Systems Ltd.

- Disconnect the cooling water lines and the exhaust gas pipe from the gas inlet casing (50000).
- Loop a rope around the gas inlet casing (50000) and tie it to the lifting gear.
- Relaxe the hex. nuts (61010)
- If necessary tap slightly with a hammer (use lead or copper hammer only) on the gas inlet casing in order to release it from the gas outlet casing.

Caution !
It is possible that the nozzle ring (56001) is being pulled out together with the gas inlet casing (50000). Secure the nozzle ring in order to prevent it from falling down.

- Drive out a possible seized nozzle ring (56001) from the gas outlet casing (60000) using a hammer (lead or copper only).
- Have damaged nozzle ring replaced.

Follow these instructions in the reverse order for assembly.

Note
Before assembling center the nozzle ring (56001) to the gas inlet casing (50000). For easy assembling coat both contact surfaces of nozzle ring and gas inlet casing with some grease. Line up the hole in the nozzle ring (56001) to the centering pin (51021) in the gas inlet casing.
7 Lifting gas outlet casing

Fig. 5-16
Heben Gasaustrittsgehäuse
Lifting gas outlet casing
Fig. 5-16
Heben Gasaustrittsgehäuse
Lifting gas outlet casing
8 Reserveteile

Die zusammen mit dem Turbolader bestellten Reserveteile sind vollständig und gebrauchsfähig zu halten.

Deshalb sind:
- ausgetauschte und fehlende Teile sofort zu ersetzen
- angerostete Teile sorgfältig zu reinigen und einzufetten.

Vorsicht! Lagerteile mit Rostansatz sind unbrauchbar und deshalb auszutauschen.

Deshalb sind:
- Lager tropensicher in einer Blechdose zu verpacken.
- Dose erst unmittelbar vor dem Gebrauch zu öffnen.

8 Reserve parts

The set of reserve parts ordered with the turbocharger must be complete and in a useable condition.

For this reason:
- installed or missing parts must be replaced immediately
- used parts must be cleaned carefully and greased.

Caution! Bearing parts affected by rust are unusable and must be replaced.

For this reason:
- Bearings must be stored in tins to resist tropical conditions
- Do not open the tin until immediately before use.
List of reserve parts

<table>
<thead>
<tr>
<th>Menge</th>
<th>Bezeichnung</th>
<th>Teil-Nr.</th>
<th>Amount</th>
<th>Designation</th>
<th>Part no</th>
</tr>
</thead>
<tbody>
<tr>
<td>1*</td>
<td>Lager kpl. Verdichterseite & Sicherungsblech</td>
<td>32100</td>
<td>1*</td>
<td>Bearing compl. compressor end & Locking plate</td>
<td>32100 / 32114</td>
</tr>
<tr>
<td>1*</td>
<td>Lager kpl. Turbinenseite & Sicherungsblech</td>
<td>34100</td>
<td>1*</td>
<td>Bearing compl. turbine end & Locking plate</td>
<td>34100 / 34113</td>
</tr>
<tr>
<td>1*</td>
<td>Teile zu Hohlwellenpumpe bestehend aus:</td>
<td>97040</td>
<td>1*</td>
<td>Parts of centrifugal oil pump consisting of:</td>
<td>97040</td>
</tr>
<tr>
<td></td>
<td>- 1 Kolbenring</td>
<td>32191 / 34191</td>
<td></td>
<td>- 1 piston ring</td>
<td>32191 / 34191</td>
</tr>
<tr>
<td></td>
<td>- 1 Sicherungerring</td>
<td>32192 / 34192</td>
<td></td>
<td>- 1 safety ring</td>
<td>32192 / 34192</td>
</tr>
<tr>
<td></td>
<td>- 1 Hutmutter</td>
<td>32157 / 34157</td>
<td></td>
<td>- 1 cap nut</td>
<td>32157 / 34157</td>
</tr>
<tr>
<td>1</td>
<td>Dichtungsbüchse Verdichterseite</td>
<td>76002</td>
<td>1</td>
<td>Sealing bush compressor end</td>
<td>76002</td>
</tr>
<tr>
<td>1</td>
<td>Dichtungsbüchse Turbinenseite</td>
<td>51014</td>
<td>1</td>
<td>Sealing bush turbine end</td>
<td>51014</td>
</tr>
<tr>
<td>1</td>
<td>Reserveteile Schauglas bestehend aus:</td>
<td>97065</td>
<td>1</td>
<td>Sight glass spares consisting of:</td>
<td>97065</td>
</tr>
<tr>
<td></td>
<td>- 1 Schauglas mit Markierung</td>
<td>46004 / 48004</td>
<td></td>
<td>- 1 Marked sight glass</td>
<td>46004 / 48004</td>
</tr>
<tr>
<td></td>
<td>- 3 Dichtungen</td>
<td>46007 / 48007</td>
<td></td>
<td>- 3 Gaskets</td>
<td>46007 / 48007</td>
</tr>
<tr>
<td>1</td>
<td>Dichtung</td>
<td>32154 / 34154</td>
<td>1</td>
<td>Gasket</td>
<td>32154 / 34154</td>
</tr>
<tr>
<td>1</td>
<td>Satz Reserve-Schrauben</td>
<td>97030</td>
<td>1</td>
<td>Set of spare screws</td>
<td>97030</td>
</tr>
<tr>
<td>X</td>
<td>Reserveteile-Verzeichnis</td>
<td>---</td>
<td>X</td>
<td>List of contents</td>
<td>---</td>
</tr>
</tbody>
</table>

*) Tropensicher in Blechdose verpackt

*) Packed in tins in order to resist tropical conditions

Note: When reordering spare parts always quote the turbocharger type and the HT no.
Fig. 5-17
Uebersicht der Anziehmomente
Outline of tightening torques
9 Tabelle der Anziehmomente

Für allgemeine Schrauben der Festigkeitsklasse 8.8 gelten folgende Anziehmomente:

Schrauben mit Verbusripp-Scheiben:

<table>
<thead>
<tr>
<th>Schrauben</th>
<th>M4</th>
<th>M5</th>
<th>M6</th>
<th>M8</th>
<th>M10</th>
<th>M12</th>
<th>M16</th>
<th>M20</th>
<th>M22</th>
<th>M24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anziehmomente [Nm]</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>25</td>
<td>45</td>
<td>75</td>
<td>190</td>
<td>380</td>
<td>430</td>
<td>540</td>
</tr>
</tbody>
</table>

Hinweis

Die Verbusripp-Scheibe darf im trockenen oder geölten (empfohlen) Zustand montiert werden, es darf jedoch KEIN FETT eingesetzt werden um eine Überlastung der Schraube zu verhindern.

Für die in der unteren Tabelle angezogenen Schraubenverbindungen müssen folgende Anziehmomente eingehalten werden:

Schrauben mit Verbusripp-Scheiben:

<table>
<thead>
<tr>
<th>Schrauben</th>
<th>M10</th>
<th>M12</th>
<th>M16</th>
<th>M20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anziehmomente [Nm]</td>
<td>75</td>
<td>105</td>
<td>260</td>
<td>500</td>
</tr>
</tbody>
</table>

Note

The Verbus disc may be installed in dry or oiled (preferred) condition, however NO GREASE may be used to prevent an overload of the screw.

Für die in der unteren Tabelle angezogenen Schraubenverbindungen müssen folgende Anziehmomente eingehalten werden:

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Teil-Nr.</th>
<th>Anziehmomente [Nm]</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>46002</td>
<td>M 12x1,5 45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>48002</td>
<td>M 12x1,5 45</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M 12x1,5 45</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>46009</td>
<td>M 12 x 1,5 45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>48009</td>
<td>M 12 x 1,5 45</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M 12 x 1,5 45</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>74008</td>
<td>M 16 x 1,5 45</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M 16 x 1,5 45</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>76036</td>
<td>M 16x1,5 50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M 22x1,5 70</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M 26x1,5 90</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M 30x1,5 100</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>32157</td>
<td>Anziehen der Hutmutter s. Abschnitt 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>34157</td>
<td>Tightening of the cap nut see sec. 4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>51048</td>
<td>M 10 25</td>
<td></td>
</tr>
</tbody>
</table>

VTR354
Taking out of operation

Ausserbetriebnehmen
Inhalt

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Seite</th>
<th>Inhaltsangaben</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1 Turbolader stillsetzen</td>
</tr>
<tr>
<td>1.1</td>
<td>5</td>
<td>Abschlussvorrichtung anbringen</td>
</tr>
<tr>
<td>1.2</td>
<td>7</td>
<td>Turbinenseitig blockieren</td>
</tr>
<tr>
<td>1.2.1</td>
<td>7</td>
<td>Blockiervorrichtung einbauen</td>
</tr>
<tr>
<td>1.2.2</td>
<td>11</td>
<td>Blockiervorrichtung abbauen</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>Turbolader konservieren</td>
</tr>
<tr>
<td>2.1</td>
<td>12</td>
<td>Ausserbetriebnehmen bis zu max. 12 Monaten</td>
</tr>
<tr>
<td>2.2</td>
<td>13</td>
<td>Ausserbetriebnehmen über 12 Monate</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1 Turbolader stillsetzen</td>
</tr>
<tr>
<td>1.1</td>
<td>5</td>
<td>Fitting the blanking device</td>
</tr>
<tr>
<td>1.2</td>
<td>7</td>
<td>Locking the turbine end</td>
</tr>
<tr>
<td>1.2.1</td>
<td>7</td>
<td>Installing the locking device</td>
</tr>
<tr>
<td>1.2.2</td>
<td>11</td>
<td>Removing the locking device</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>Mothballing the turbocharger</td>
</tr>
<tr>
<td>2.1</td>
<td>12</td>
<td>Taking out of operation for up to a max. of 12 months</td>
</tr>
<tr>
<td>2.2</td>
<td>13</td>
<td>Taking out of operation for over 12 months</td>
</tr>
</tbody>
</table>
1 Turbolader stillsetzen

Kann der Dieselmotor, bei beschädigtem Turbolader, für eine Notreparatur nur kurzfristig abgestellt werden, so ist wie folgt vorzugehen:

- Schaden mit den vorhandenen Ersatzteilen beheben, oder
- Abschlussvorrichtung anbringen (s. Abschn. 1.1), oder
- Blockiervorrichtung einbauen (s. Abschn. 1.2.1).

1 Shutting down the turbocharger

If, in the case of a damaged turbocharger, the diesel engine can only be shut down for a short period for an emergency repair, then proceed as follows:

- eliminate damage with the available spare parts or
- fit the blanking device (see sec. 1.1) or
- install the locking device (see sec. 1.2.1).
Fig. 6-1
Abschlussvorrichtung
Blanking device
1.1 Abschlussvorrichtung anbringen

- Rotor ausbauen (s. Kap. 5).

- Öffnungen, die durch den Rotorausbau entstehen, sind mit der Abschlussvorrichtung zu schliessen (s. Fig.6-1).

Hinweis Im Notfall können die Teile zur Abschlussvorrichtung anhand der Tabelle in Kap. 7 selbst gefertigt werden.

- Den Abschlussdeckel TS (91002) mit den Schrauben (91011) befestigen.

- Die Zugstangen (91003) und (91004) mit dem inneren Abschlussdeckel (91005) zusammenschrauben.

- Beides am turbinenseitigen Abschlussdeckel (91002) mit den Tellerfedern (91008), der Distanzbüchse (91006) mit Sprengring (91009) und Mutter (91010) befestigen.

- 6kt-Mutter (91010) festdrehen, bis die Tellerfedern (91008) flachgedrückt sind.

- Abschlussdeckel VS (91001), Tellerfedern (91007), Distanzbüchse (91012), mit Sprengring (91013) und Mutter (91014) befestigen.

- Mutter (91014) festdrehen, bis die Tellerfedern (91007) flachgedrückt sind.

Vorsicht ! Kühlwasser nur abstellen, wenn das Turbinengehäuse stark undicht ist und damit den Betrieb des Motors gefährden könnte.

1.1 Fitting the blanking device

- Remove the rotor (see chap. 5).

- Close the openings which result from removing the rotor with the aid of the blanking device (see fig. 6-1).

Note In case of an emergency the parts to the blanking device can be manufactured by yourself according to the table in chap. 7.

- Fix the TE cover plate (91002) with the screws (91011).

- Screw the tie bolts (91003) and (91004) onto the inner cover plate (91005).

- Fix both onto the turbine end cover plate (91002) with the disc springs (91008), the distance sleeve (91006), the circlip (91009) and the nut (91010).

- Tighten the hex.-nut (91010) until the disc springs (91008) are pressed flat.

- Fit the CE cover plate with disc springs (91007), distance sleeve (91012), circlip (91013) and the nut (91014).

- Tighten the nut (91014) until the disc springs (91007) are pressed flat.

Caution ! Shut off the cooling water only if the turbine casing is leaking strongly and thus represents a hazard for the operation of the engine.
Fig. 6-2
Abschlussplatte am Luftaustrittsflansch
Cover plate on the air outlet flange

Masse für Abschlussdeckel
Dimensions for blanking cover

<table>
<thead>
<tr>
<th>Masse Dimension [mm]</th>
<th>VTR 184</th>
<th>214</th>
<th>254</th>
<th>304</th>
<th>354</th>
<th>454</th>
<th>564</th>
<th>714</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varnothing) da</td>
<td>185</td>
<td>220</td>
<td>260</td>
<td>280</td>
<td>318</td>
<td>400</td>
<td>505</td>
<td>644</td>
</tr>
<tr>
<td>(\varnothing) db</td>
<td>163</td>
<td>194</td>
<td>230</td>
<td>250</td>
<td>286</td>
<td>360</td>
<td>465</td>
<td>585</td>
</tr>
<tr>
<td>(\varnothing) dc</td>
<td>11</td>
<td>13</td>
<td>16</td>
<td>20</td>
<td>25</td>
<td>32</td>
<td>40</td>
<td>48</td>
</tr>
<tr>
<td>dd</td>
<td>8 x (\varnothing) 9</td>
<td>8 x (\varnothing) 11</td>
<td>8 x (\varnothing) 14</td>
<td>12 x (\varnothing) 14</td>
<td>16 x (\varnothing) 16</td>
</tr>
</tbody>
</table>
1.2 Turbinenseitig blockieren

Hinweis Blockiervorrichtung gesondert bestellen.

1.2.1 Blockiervorrichtung einbauen

Hinweis Die Vorschriften des Motorenherstellers sind zu beachten. Das gilt besonders für das Unterteilen des Spülluftreceivers und der Leistungsreduzierung einzelner Zylinder.

Vorsicht! Kühlwasser nur abstellen, wenn das Turbinengehäuse stark undicht ist und damit den Betrieb des Motors gefährden könnte.

Wird die Turbine eines blockierten Turboladers weiterhin von Abgasen durchströmt, muss durch den Verdichter Luft zirkulieren, damit er sich nicht zu stark erwärmt.

Es reicht dabei aus, wenn die Luft durch den stillstehenden Turbolader hindurch angesaugt wird.

Sind mehrere Turbolader an eine gemeinsame Ladeluftleitung angeschlossen, verhindert das Abschließen des Luftaustrittsflansches am blockierten Turbolader, dass Luft wegströmt.

Das Verdichterrad wird gekühlt, wenn in der Abschlussplatte am Luftaustrittsflansch (s. Fig. 6-2) ein Loch "dc" verhanden ist.

Die Abschlussplatte kann anhand der Tabelle auf Seite 6 selbst gefertigt werden.

1.2 Locking the turbine end

Note Order the locking device separately.

1.2.1 Installing the locking device

Note Be careful to observe the manufacturer’s instructions. This applies especially for partitioning the scavenging air receiver and the power reduction of individual cylinders.

Caution! Shut off the cooling water only if the turbine casing is leaking strongly and thus represents a hazard for the operation of the engine.

If exhaust gases continue to flow through the turbine of a locked turbocharger, air must circulate through the compressor so that it does not get too hot.

It is sufficient if the air is drawn through the shut down turbocharger.

If a number of turbochargers are connected to a joint charge-air receiver, locking the air outlet flange on the locked turbocharger prevents the escape of air.

The compressor wheel is cooled when there is a hole "dc" in the cover plate on the air outlet flange (see fig. 6-2).

The blanking cover can be manufactured by yourself according to the table on page 6.
Fig. 6-3
Blockievorrichtung einbauen
Installing the locking device
Montage der Vorrichtung

- Turbinenseitiges Lager ausbauen (s. Kap. 5).
- Blockievorrichtung (93000) auf eine ebene Unterlage stellen (s. Fig. 6-3/1).
- Zugring (93003) durch zwei Zyl.-Schrauben (93005) soweit abdrücken, bis er mit dem Blockierflansch (93002) bündig ist.
- Blockievorrichtung (93000) über Welle und Führungsbolzen (51022) schieben (s. Fig. 6-3/2).
- Zyl.-Schrauben (93005) abschrauben, Federringe (93006) und Bohrbüchsen (93004) vom Blockierflansch (93002) abnehmen (s. Fig. 6-3/2).
- Zyl.-Schrauben (93005), Federringe (93006) und Bohrbüchsen (93004) durch die Umfangslocher des äusseren Lochkreises in das Gaseintrittsgehäuse einschrauben.
- Zyl.-Schrauben (93007) des inneren Lochkreises mit 6kt-Stiftschlüssel kreuzweise anziehen (s. Fig. 6-3/3).
- Lagerraumdeckel (48000) montieren (s. Kap. 5).

Vorsicht ! Dauert das Blockieren der Welle länger als 60 Minuten, muss das verdichterseitige Lager (32100) ersetzt werden.

- Verdichterseitiges Lager (32100) ersetzen (s. Kap. 5).

Assembling the device

- Remove turbine end bearing (see chap. 5).
- Place the locking device (93000) on a flat surface (see fig. 6-3/1).
- Press the pull ring (93003) down by means of the two socket screws (93005) until it is flush with the locking flange (93002).
- Slide the locking device (93000) over the shaft and the guide bolt (51022) (see fig. 6-3/2).
- Remove socket screws (93005), locking washers (93006) and drill bushings (93004) from the locking flange (93002) (see fig. 6-3/2).
- Screw the socket screws (93005), locking washers (93006) and drill bushings (93004) through the outer circle of holes into the gas inlet casing.
- Tighten the socket screws of the inner circle of holes crosswise with a socket wrench (see fig. 6-3/3).
- Fit the bearing space cover (48000) (see chap. 5).

Caution ! If locking the shaft takes more than 60 minutes, the compressor end bearing (32100) must be replaced.

- Replace compressor end bearing (32100) (see chap. 5).
Fig. 6-4
Blockiervorrichtung abbauen
Removing the locking device
1.2.2 Blockiervorrichtung abbauen

- Zyl.-Schrauben (93007) des inneren Lochkreises mit Inbusschlüssel lösen (s. Fig. 6-4/1).

- Zugring (93003) mit drei Zyl.-Schrauben (93007) im inneren Lochkreis abdrücken.

- Blockierflansch (93002) mit drei Zyl.-Schrauben (93007) (im äusseren Lochkreis) vom Gaseintrittsgehäuse abdrücken (s. Fig. 6-4/2).

- Blockiervorrichtung (93000) entfernen.

- Zyl.-Schrauben (93005) abschrauben und mit Federring (93006) und Bohrbüchsen (93004) vom Gaseintrittsgehäuse abnehmen.

- Sämtliche Schrauben, Federringe und Bohrbüchsen wieder im inneren Lochkreis des Blockierflansches einschrauben.

- Turbinenseitiges Lager einbauen (s. Kap. 5).

1.2.2 Removing the locking device

- Release the socket screws (93007) of the inner circle of holes with a socket wrench (see fig. 6-4/1).

- Press down the pull ring (93003) with three socket screws (93007) in the inner circle of holes.

- Press the locking flange (93002) away from the gas inlet casing with the three socket screws (93007) in the outer circle of holes (see fig. 6-4/2).

- Remove the locking device (93000).

- Remove the socket screws (93005) from the gas inlet casing with the locking washer (93006) and the drill bushings (93004).

- Replace all screws, locking washers and drill bushings back into the inner circle of holes of the locking flange.

- Install the turbine end bearing (see chap. 5).
Turbolader konservieren

2.1 Ausserbetriebnehmen bis zu maximal 12 Monaten

Turbolader, die bis zu 12 Monate stillgelegt und gelagert werden, sind in folgender Weise zu konservieren:

- Öl auf Verdichter- und Turbinenseite ablassen (s. Kap. 3).
- Neues Öl einfüllen (s. Kap. 2).
- Motor kurz laufen lassen, bis Öl in die Lager gefördert wird.

Kann der Motor nicht gestartet werden, ist wie folgt vorzugehen:

- Öl ablassen (s. Kap. 2).
- Lagerdeckel entfernen
- Welle von Hand drehen
- Neues Öl mit einem Spritzöl hinter der Zentrifuge / Schmierscheibe direkt auf die Wälzlager spritzen.
- Blanke Teile der Welle mit Öl benetzen
- Lagerdeckel montieren
- Neues Öl einfüllen (s. Kap. 2).
- Kühlwasser ablassen bzw. nach den Angaben des Motorenbauers behandeln.
- Dreht der Rotor wegen Kaminzuges, ist zwischen dem Luftaustrittsgehäuse und der Ladeluftleitung ein Blindflansch einzubauen.

Mothballing the turbocharger

2.1 Taking out of operation for up to a max. of 12 months

Turbochargers which are to be taken out of service and stored for up to 12 months must be mothballed as follows:

- Drain the oil on the turbine and compressor ends (see chap. 3).
- Pour in fresh oil (see chap. 2).
- Turn on the engine briefly to allow oil to penetrate the bearings.

If the engine cannot be started, proceed as follows:

- Drain the oil (see chap. 2).
- Remove bearing cover
- Turn the shaft by hand
- Apply oil directly to the rolling contact bearings behind the centrifuge / lubricating disc with an oil gun.
- Apply oil to exposed parts of the shaft
- Fit the bearing cover
- Pour in fresh oil (see chap. 2).
- Drain cooling water or proceed in accordance with the engine manufacturer’s instructions.
- If the rotor turns due to a draught from the flue, fit a blind flange between the air outlet casing and the charge-air receiver.
Taking out of operation for over 12 months

Turbochargers which are to be shut down and stored for more than 12 months must be mothballed as follows:

- Drain the oil on the compressor and turbine ends (see chap. 3).
- Remove the bearings (see chap. 5).
- Immerse bearings in corrosion protection oil ANTI-CORIT 3.
 - Film type: colourless, oily film, non-resinous, non-drying
- Wrap the bearings and the bearing mounting parts separately in paraffin paper and store them in the tins provided for this purpose.
- Send the bearings for an overhaul to one of our service stations (see chap. 8).
- Apply vaseline at a temperature of 80°C (353 K) to the bearing parts at the shaft ends.
- Fit the CE fixing flange (95010) onto the compressor end with the hex.-headed screws (95013) (see fig. 6-5).
- Fit the TE fixing flange (95050) onto the turbine end with the hex.-headed screws (95051) (see fig. 6-6).
- Effect axial tensioning of the rotor with the tension washer and cap nut (32157) or the ring nut (32151) on the compressor end (see fig. 6-5).
- Fit the bearing space covers on the TE and CE
- Fix the inscription plates supplied for the TE (95052) and the CE (95014) on the bearing cover (see figs. 6-5 and 6-6).
- Spray or brush TECTYL 502 onto the casing connecting flanges.
Fig. 6-5
Konservierung Verdichterseite
Mothballing compressor end

Fig. 6-6
Konservierung Turbinenseite
Mothballing turbine end
- Seal the openings of the turbocharger with wooden covers and paraffin paper.

- Place the items packed in tins and containers into a crate.

- Stick the supplied inscription plate (Turbocharger, HT-no.) onto the outside of the crate.

Hinweis
Konservierte Turbolader und Reserve-Rotoren jährlich auf Korrosion überprüfen.

Bei Rostanfall, Teile reinigen und Korrosionsschutz erneuern.

Note
Check mothballed turbochargers and reserve rotors yearly for corrosion.

In the event of rust, clean and renew corrosion protection.
Anhang

Inhalt

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Thema</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ersatzteile</td>
<td>3</td>
</tr>
<tr>
<td>1.1</td>
<td>Ersatzteile bestellen</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Nummerierung der Bildseiten</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Verzeichnis der Teilenummern</td>
<td>7</td>
</tr>
<tr>
<td>2.1</td>
<td>Turbolader</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Werkzeuge</td>
<td>37</td>
</tr>
<tr>
<td>2.3</td>
<td>Abschlussvorrichtung</td>
<td>39</td>
</tr>
<tr>
<td>2.4</td>
<td>Blockiervorrichtung</td>
<td>43</td>
</tr>
<tr>
<td>2.5</td>
<td>Konservierung</td>
<td>45</td>
</tr>
</tbody>
</table>

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Spare parts</td>
<td>3</td>
</tr>
<tr>
<td>1.1</td>
<td>Ordering spare parts</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Numbering of illustrations</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Directory of part numbers</td>
<td>7</td>
</tr>
<tr>
<td>2.1</td>
<td>Turbocharger</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Tools</td>
<td>37</td>
</tr>
<tr>
<td>2.3</td>
<td>Blanking device</td>
<td>39</td>
</tr>
<tr>
<td>2.4</td>
<td>Locking device</td>
<td>43</td>
</tr>
<tr>
<td>2.5</td>
<td>Mothballing</td>
<td>45</td>
</tr>
</tbody>
</table>
1 Ersatzteile

1.1 Ersatzteile bestellen

Bei Rückfragen und Ersatzteil-Bestellungen sind folgende Daten zu nennen:
Unsere Vertretungen und Service-Stellen (siehe Service-Stellen Liste im Kap. 8) nehmen Bestellungen für Ersatzteile entgegen. Sie erteilen auch Auskunft, falls in der vorliegenden allgemeinen Vorschrift besondere Fälle nicht berücksichtigt sein sollten.

<table>
<thead>
<tr>
<th>Benötigte Daten</th>
<th>erhältlich in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ VTR.. HT-Nummer</td>
<td>Kap. 0 oder Leistungsschild am Turbolader</td>
</tr>
<tr>
<td>Bezeichnung, Teile-Nummer, Bild-Nummer</td>
<td>Abschn. 2</td>
</tr>
<tr>
<td>Stückzahl</td>
<td></td>
</tr>
</tbody>
</table>

Beispiele von Ersatzteil-Bestellungen oder Rückfragen

Turbolader VTR

Fabrikate-Nummer HT

1 Rotor kpl., Teil-Nr. 20000
(Bild VTR ..4-02.0-...*)

bei Serie -11/-21:

1 Gaseintrittsgehäuse montiert mit Kernlochdeckel, Teil-Nr. 50000
(Bild VTR ..4-05.0-...*)

-> Stutzenstellung des Gaseintrittsgehäuses angeben **)

1 Spare parts

1.1 Ordering spare parts

In case of inquiries and spare part order the following data must be quoted:
Our representatives and service stations (see Directory of Service Stations in chap. 8) will accept orders for spare parts. They also provide information in the event that individual cases are not taken account of in the general instructions.

<table>
<thead>
<tr>
<th>Date required</th>
<th>see</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typ VTR.. HT-Number</td>
<td>Chap. 0 or rating plate on the turbocharger</td>
</tr>
<tr>
<td>Designation, Part-No, Fig.-No</td>
<td>Sec. 2</td>
</tr>
<tr>
<td>Amount</td>
<td></td>
</tr>
</tbody>
</table>

Example of spare part order or enquiry

Turbocharger VTR....................

Serial number HT..................

1 rotor compl., Part no. 20000
(Illustration VTR ..4-02.0-...*)

for series -11/-21:

1 gas inlet casing assembled with core hole cover, part no. 50000
(Illustration VTR ..4-05.0-...*)

-> quote the branch position of the gas inlet casing **)
Beispiele von Ersatzteil-Bestellungen oder Rückfragen

1 Satz Kernlochdeckel zum Gaseintrittsgehäuse, Teil-Nr. 52000 (Bild VTR..4-05.1-...*)

bei Serie -32/ -42:
1 Gaseintrittsgehäuse montiert Teil-Nr. 51000 (Bild VTR..4-05.0-...*)

*) Laufnummer (s. Abschn. 2.0)

**) Die Stellung der Gehäuse und der Füsse wird von Turbinenseite her gesehen angegeben.

Example of spare part order or enquiry

1 set of core hole covers for the gas inlet casing, part no. 52000 (Illustration VTR..4-05.1-...*)

for series -32/ -42:
1 gas inlet casing assembled part no. 51000 (Illustration VTR..4-05.0-...*)

*) Consecutive number (see sec. 2.0)

**) The position of the casing and the feet is always stated relative to the turbine end.

1.2 Nummerierung der Bildseiten

Die Bildnummer besteht aus

1. Turboladertyp und -grösse
2. Einordnungsnummer
3. Laufnummer

Beispiel:

VTR _ _ 4 - 05.0 - _ _ 1

1. Turboladertyp und -grösse
2. Einordnungsnummer
3. Laufnummer

Example:

VTR _ _ 4 - 05.0 - _ _ 1

1. Turbocharger type and size
2. Classification number
3. Consecutive number
<table>
<thead>
<tr>
<th>Bild-Nr. / Illustration-No</th>
<th>Mod.</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTR184 - 02.0-001</td>
<td>--</td>
</tr>
</tbody>
</table>

20000

<table>
<thead>
<tr>
<th>Bild-Nr. / Illustration-No</th>
<th>Mod.</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTR184 - 02.1-001</td>
<td>B</td>
</tr>
</tbody>
</table>

27000

27005
2 Directory of part numbers

The following part numbers and designations must be quoted in all correspondence or spare part orders (see example for spare parts order, sec. 1.1).

2.1 Turbocharger

<table>
<thead>
<tr>
<th>Part no.</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>20000</td>
<td>Rotor compl.</td>
</tr>
<tr>
<td>27000</td>
<td>Dosing vessel</td>
</tr>
<tr>
<td>27005</td>
<td>Plug</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teil-Nr.</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>20000</td>
<td>Rotor kompl.</td>
</tr>
<tr>
<td>27000</td>
<td>Dosiergefäss</td>
</tr>
<tr>
<td>27005</td>
<td>Stopfen</td>
</tr>
<tr>
<td>Bild-Nr. / Illustration-No</td>
<td>Mod.</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------</td>
</tr>
<tr>
<td>VTR184 - 03.1-001</td>
<td>--</td>
</tr>
</tbody>
</table>

32100
<table>
<thead>
<tr>
<th>Teil-Nr.</th>
<th>Bezeichnung</th>
<th>Part no.</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>32100</td>
<td>Lager VS kompl.</td>
<td>32100</td>
<td>Bearing CE compl.</td>
</tr>
<tr>
<td>32114</td>
<td>Sicherungsblech</td>
<td>32114</td>
<td>Locking plate</td>
</tr>
<tr>
<td>32154</td>
<td>Dichtung</td>
<td>32154</td>
<td>Gasket</td>
</tr>
<tr>
<td>32157</td>
<td>Hutmutter</td>
<td>32157</td>
<td>Cap nut</td>
</tr>
<tr>
<td>32180</td>
<td>Schmierrad</td>
<td>32180</td>
<td>Oil slinger</td>
</tr>
<tr>
<td>32181</td>
<td>Zyl - Schraube mit Innen - 6kt</td>
<td>32181</td>
<td>Socket screw</td>
</tr>
<tr>
<td>32182</td>
<td>Federring</td>
<td>32182</td>
<td>Locking washer</td>
</tr>
<tr>
<td>32185</td>
<td>Nippel</td>
<td>32185</td>
<td>Nipple</td>
</tr>
<tr>
<td>32190</td>
<td>Düse</td>
<td>32190</td>
<td>Nozzle</td>
</tr>
<tr>
<td>32191</td>
<td>Kolbenring</td>
<td>32191</td>
<td>Piston ring</td>
</tr>
<tr>
<td>32192</td>
<td>Sicherungsring</td>
<td>32192</td>
<td>Safety ring</td>
</tr>
<tr>
<td>Teil-Nr.</td>
<td>Bezeichnung</td>
<td>Part no.</td>
<td>Designation</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>34100</td>
<td>Lager TS kompl.</td>
<td>34100</td>
<td>Bearing TE compl.</td>
</tr>
<tr>
<td>34113</td>
<td>Sicherungsblech</td>
<td>34113</td>
<td>Locking plate</td>
</tr>
<tr>
<td>34154</td>
<td>Dichtung</td>
<td>34154</td>
<td>Gasket</td>
</tr>
<tr>
<td>34157</td>
<td>Hutmutter</td>
<td>34157</td>
<td>Cap nut</td>
</tr>
<tr>
<td>34180</td>
<td>Schmierrad</td>
<td>34180</td>
<td>Oil slinger</td>
</tr>
<tr>
<td>34181</td>
<td>Zyl - Schraube mit Innen - 6kt</td>
<td>34181</td>
<td>Socket screw</td>
</tr>
<tr>
<td>34182</td>
<td>Federring</td>
<td>34182</td>
<td>Locking washer</td>
</tr>
<tr>
<td>34185</td>
<td>Nippel</td>
<td>34185</td>
<td>Nipple</td>
</tr>
<tr>
<td>34190</td>
<td>Düse</td>
<td>34190</td>
<td>Nozzle</td>
</tr>
<tr>
<td>34191</td>
<td>Kolbenring</td>
<td>34191</td>
<td>Piston ring</td>
</tr>
<tr>
<td>34192</td>
<td>Sicherungsring</td>
<td>34192</td>
<td>Safety ring</td>
</tr>
</tbody>
</table>
Bild-Nr. / Illustration-No Mod.
VTR184 - 04.1-001 --
<table>
<thead>
<tr>
<th>Teil-Nr.</th>
<th>Bezeichnung</th>
<th>Part no.</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>46000</td>
<td>Lagerraumdeckel VS kompl.</td>
<td>46000</td>
<td>Bearing space cover CE kompl.</td>
</tr>
<tr>
<td>46001</td>
<td>Lagerraumdeckel VS bearb.</td>
<td>46001</td>
<td>Bearing space cover CE mach.</td>
</tr>
<tr>
<td>46002</td>
<td>Verschlussschraube</td>
<td>46002</td>
<td>Screw plug</td>
</tr>
<tr>
<td>46003</td>
<td>Dichtung</td>
<td>46003</td>
<td>Gasket</td>
</tr>
<tr>
<td>46004</td>
<td>Schauglas mit Markierung</td>
<td>46004</td>
<td>Sight glass with marking</td>
</tr>
<tr>
<td>46006</td>
<td>Rückwand</td>
<td>46006</td>
<td>Screen</td>
</tr>
<tr>
<td>46007</td>
<td>Dichtung</td>
<td>46007</td>
<td>Gasket</td>
</tr>
<tr>
<td>46008</td>
<td>Gewindebüchse</td>
<td>46008</td>
<td>Thread bush</td>
</tr>
<tr>
<td>46009</td>
<td>Verschlussschraube</td>
<td>46009</td>
<td>Screw plug</td>
</tr>
<tr>
<td>46010</td>
<td>Dichtung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46011</td>
<td>Schild für Kontrollmass "K"</td>
<td>46010</td>
<td>Gasket</td>
</tr>
<tr>
<td>46013</td>
<td>Verschlussschraube</td>
<td>46011</td>
<td>Plate for control measure "K"</td>
</tr>
<tr>
<td>46014</td>
<td>Dichtung</td>
<td>46013</td>
<td>Screw plug</td>
</tr>
<tr>
<td>46015</td>
<td>Schild für den Ölstand</td>
<td>46014</td>
<td>Gasket</td>
</tr>
<tr>
<td>46016</td>
<td>Hrd. - Gewindeniet</td>
<td>46015</td>
<td>Plate for oil level</td>
</tr>
<tr>
<td>46017</td>
<td>6kt - Schraube</td>
<td>46016</td>
<td>Round - headed helicoidal rivet</td>
</tr>
<tr>
<td>46018</td>
<td>Federring</td>
<td>46017</td>
<td>Hex. - headed screw</td>
</tr>
<tr>
<td></td>
<td></td>
<td>46018</td>
<td>Locking washer</td>
</tr>
<tr>
<td>Bild-Nr. / Illustration-No</td>
<td>Mod.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTR184 - 04.2-001</td>
<td>--</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

48000
<table>
<thead>
<tr>
<th>Teil-Nr.</th>
<th>Bezeichnung</th>
<th>Part no.</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>48000</td>
<td>Lagerraumdeckel TS kompl.</td>
<td>48000</td>
<td>Bearing space cover TE compl.</td>
</tr>
<tr>
<td>48001</td>
<td>Lagerraumdeckel TS bearb.</td>
<td>48001</td>
<td>Bearing space cover TE mach.</td>
</tr>
<tr>
<td>48002</td>
<td>Verschlussschraube</td>
<td>48002</td>
<td>Screw plug</td>
</tr>
<tr>
<td>48003</td>
<td>Dichtung</td>
<td>48003</td>
<td>Gasket</td>
</tr>
<tr>
<td>48004</td>
<td>Schauglas mit Markierung</td>
<td>48004</td>
<td>Sight glass with marking</td>
</tr>
<tr>
<td>48006</td>
<td>Rückwand</td>
<td>48006</td>
<td>Screen</td>
</tr>
<tr>
<td>48007</td>
<td>Dichtung</td>
<td>48007</td>
<td>Gasket</td>
</tr>
<tr>
<td>48008</td>
<td>Gewindebüchse</td>
<td>48008</td>
<td>Thread bush</td>
</tr>
<tr>
<td>48009</td>
<td>Verschlussschraube</td>
<td>48009</td>
<td>Screw plug</td>
</tr>
<tr>
<td>48010</td>
<td>Dichtung</td>
<td>48010</td>
<td>Gasket</td>
</tr>
<tr>
<td>48011</td>
<td>Verschlussschraube</td>
<td>48011</td>
<td>Screw plug</td>
</tr>
<tr>
<td>48012</td>
<td>Dichtung</td>
<td>48012</td>
<td>Gasket</td>
</tr>
<tr>
<td>48013</td>
<td>Schild für den Ölstand</td>
<td>48013</td>
<td>Plate for oil level</td>
</tr>
<tr>
<td>48014</td>
<td>Hrd. - Gewindeniet</td>
<td>48014</td>
<td>Round - headed helicoidal rivet</td>
</tr>
<tr>
<td>48015</td>
<td>6kt - Schraube</td>
<td>48015</td>
<td>Hex. - headed screw</td>
</tr>
<tr>
<td>48016</td>
<td>Federring</td>
<td>48016</td>
<td>Locking washer</td>
</tr>
<tr>
<td>Bild-Nr. / Illustration-No</td>
<td>Mod.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTR184 - 05.0-001</td>
<td>--</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of ABB Turbocharger VTR..4](image-url)

50000
52000
51000
51014
51022
51026
51025
51011
51013
51001
51021
51023
51002
51005
51004
51006
51007
51009
51008
51010
Anhang Kap. / Chap. 7 Appendix

<table>
<thead>
<tr>
<th>Teil-Nr.</th>
<th>Bezeichnung</th>
<th>Part no.</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>50000</td>
<td>Gaseintrittsgehäuse mont. mit Kernlochdeckel</td>
<td>50000</td>
<td>Gasinlet casing ass. with core hole covers</td>
</tr>
<tr>
<td>51000</td>
<td>Gaseintrittsgehäuse mont. ohne Kernlochdeckel</td>
<td>51000</td>
<td>Gas inlet casing ass. without core hole covers</td>
</tr>
<tr>
<td>51001</td>
<td>Gaseintrittsgehäuse bearb.</td>
<td>51001</td>
<td>Gas inlet casing mach.</td>
</tr>
<tr>
<td>51002</td>
<td>Blindflansch</td>
<td>51002</td>
<td>Blind flange</td>
</tr>
<tr>
<td>51003</td>
<td>Dichtung</td>
<td>51003</td>
<td>Gasket</td>
</tr>
<tr>
<td>51004</td>
<td>6kt - Schraube</td>
<td>51004</td>
<td>Hex. - headed screw</td>
</tr>
<tr>
<td>51005</td>
<td>Federring</td>
<td>51005</td>
<td>Locking washer</td>
</tr>
<tr>
<td>51006</td>
<td>Flansch</td>
<td>51006</td>
<td>Flange/Orifice</td>
</tr>
<tr>
<td>51007</td>
<td>Luftkanaldeckel</td>
<td>51007</td>
<td>Bonnet of air duct</td>
</tr>
<tr>
<td>51008</td>
<td>6kt - Schraube</td>
<td>51008</td>
<td>Hex. - headed screw</td>
</tr>
<tr>
<td>51009</td>
<td>Federscheibe</td>
<td>51009</td>
<td>Spring washer</td>
</tr>
<tr>
<td>51010</td>
<td>6kt - Schraube</td>
<td>51010</td>
<td>Hex. - headed screw</td>
</tr>
<tr>
<td>51011</td>
<td>6kt - Schraube</td>
<td>51011</td>
<td>Hex. - headed screw</td>
</tr>
<tr>
<td>51013</td>
<td>Spannscheibe</td>
<td>51013</td>
<td>Tension washer</td>
</tr>
<tr>
<td>51014</td>
<td>Dichtungsbüchse</td>
<td>51014</td>
<td>Sealing bush</td>
</tr>
<tr>
<td>51021</td>
<td>Schwerspannstift</td>
<td>51021</td>
<td>Roll pin</td>
</tr>
<tr>
<td>51022</td>
<td>Führungsbolzen</td>
<td>51022</td>
<td>Guide bolt</td>
</tr>
<tr>
<td>51025</td>
<td>Zyl. - Schraube mit Innen - 6kt</td>
<td>51025</td>
<td>Socket screw</td>
</tr>
<tr>
<td>51026</td>
<td>Sperrkantring</td>
<td>51026</td>
<td>Locking edge washer</td>
</tr>
<tr>
<td>56001</td>
<td>Düsenring</td>
<td>56001</td>
<td>Nozzle ring</td>
</tr>
</tbody>
</table>

Hinweis
Gehäusestellungen und dazu gehörende Positionen der Kernlochdeckel, siehe VTR 184 - 05.1-001 ÷ 05.1-003.

Note
Casing positions and corresponding positions of the core hole covers, see VTR 184 - 05.1-001 ÷ 05.1-003.
<table>
<thead>
<tr>
<th>Bild-Nr. / Illustration-No</th>
<th>Mod.</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTR184 - 05.1-001</td>
<td>--</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AB000</td>
<td>AB015</td>
<td>AB030</td>
<td>AB045</td>
<td></td>
</tr>
<tr>
<td>AB060</td>
<td>AB075</td>
<td>AB090</td>
<td>AB105</td>
<td></td>
</tr>
<tr>
<td>AB120</td>
<td>AB135</td>
<td>AB150</td>
<td>AB165</td>
<td></td>
</tr>
<tr>
<td>AB180</td>
<td>AB195</td>
<td>AB210</td>
<td>AB225</td>
<td></td>
</tr>
<tr>
<td>AB240</td>
<td>AB255</td>
<td>AB270</td>
<td>AB285</td>
<td></td>
</tr>
<tr>
<td>AB300</td>
<td>AB315</td>
<td>AB330</td>
<td>AB345</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E/E₁</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>52100</td>
<td>52400</td>
<td>R</td>
<td>52600</td>
<td>Z</td>
</tr>
<tr>
<td></td>
<td>S2101</td>
<td>S2401</td>
<td>S2801</td>
<td>S2801</td>
</tr>
<tr>
<td></td>
<td>S2104</td>
<td>S2403</td>
<td>S2404</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S2103</td>
<td>S2402</td>
<td>S2401</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S2102</td>
<td>S2002</td>
<td>S2001</td>
<td></td>
</tr>
</tbody>
</table>
Gaseintrittsgehäuse / Gas inlet casing AA12
1 Gaseintritt / 1 Gas inlet

<table>
<thead>
<tr>
<th>Teil-Nr.</th>
<th>Bezeichnung</th>
<th>Part no.</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>52000</td>
<td>Satz Kernlochdeckel kompl. mit Dichtung</td>
<td>5200</td>
<td>Set of core hole covers compl. with gaskets</td>
</tr>
<tr>
<td>52100</td>
<td>Kernlochdeckel für Kühlwasserereint ritt ohne Dichtung</td>
<td>52100</td>
<td>Core hole cover for cooling water inlet without gasket</td>
</tr>
<tr>
<td>52101</td>
<td>Kernlochdeckel bearb.</td>
<td>52101</td>
<td>Core hole cover mach.</td>
</tr>
<tr>
<td>52102</td>
<td>Dichtung</td>
<td>52102</td>
<td>Gasket</td>
</tr>
<tr>
<td>52103</td>
<td>Flansch</td>
<td>52103</td>
<td>Flange</td>
</tr>
<tr>
<td>52104</td>
<td>6kt - Schraube</td>
<td>52104</td>
<td>Hex. - headed screw</td>
</tr>
<tr>
<td>52105</td>
<td>Prallplatte</td>
<td>52105</td>
<td>Baffle plate</td>
</tr>
<tr>
<td>52106</td>
<td>6kt - Schraube</td>
<td>52106</td>
<td>Hex. - headed screw</td>
</tr>
<tr>
<td>52107</td>
<td>Sicherungsblech</td>
<td>52107</td>
<td>Locking plate</td>
</tr>
<tr>
<td>52400</td>
<td>Kernlochdeckel für Kühlwasser-austritt ohne Dichtung</td>
<td>52401</td>
<td>Core hole cover for cooling water outlet without gasket</td>
</tr>
<tr>
<td>52401</td>
<td>Kernlochdeckel bearb.</td>
<td>52401</td>
<td>Core hole cover mach.</td>
</tr>
<tr>
<td>52402</td>
<td>Dichtung</td>
<td>52402</td>
<td>Gasket</td>
</tr>
<tr>
<td>52403</td>
<td>Flansch</td>
<td>52403</td>
<td>Flange</td>
</tr>
<tr>
<td>52404</td>
<td>6kt - Schraube</td>
<td>52404</td>
<td>Hex. - headed screw</td>
</tr>
<tr>
<td>52600</td>
<td>Kernlochdeckel blind ohne Dichtung</td>
<td>52600</td>
<td>Core hole cover blind without gasket</td>
</tr>
<tr>
<td>52801</td>
<td>Dichtung</td>
<td>52801</td>
<td>Gasket</td>
</tr>
<tr>
<td>Bild-Nr. / Illustration-No</td>
<td>Mod.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTR184 - 05.1-002</td>
<td>--</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram

- **AB000**
 - Diagram showing the layout with various parts labeled.

- **AB060**
 - Diagram showing the layout with various parts labeled.

- **AB120**
 - Diagram showing the layout with various parts labeled.

- **AB180**
 - Diagram showing the layout with various parts labeled.

- **AB210**
 - Diagram showing the layout with various parts labeled.

- **AB240**
 - Diagram showing the layout with various parts labeled.

- **AB270**
 - Diagram showing the layout with various parts labeled.

- **AB300**
 - Diagram showing the layout with various parts labeled.

- **AB330**
 - Diagram showing the layout with various parts labeled.

Additional Information

- Additional diagrams and labels are present, providing a comprehensive view of the components and their arrangements.
Gaseintrittsgehäuse / Gas inlet casing
AA21

2 Gaseintritte / 2 Gas inlets

<table>
<thead>
<tr>
<th>Teil-Nr.</th>
<th>Bezeichnung</th>
<th>Part no.</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>52000</td>
<td>Satz Kernlochdeckel kompl. mit Dichtung</td>
<td>52000</td>
<td>Set of core hole covers compl. with gaskets</td>
</tr>
<tr>
<td>52100</td>
<td>Kernlochdeckel für Kühlwassereintritt ohne Dichtung</td>
<td>52100</td>
<td>Core hole cover for cooling water inlet without gasket</td>
</tr>
<tr>
<td>52101</td>
<td>Kernlochdeckel bearb.</td>
<td>52101</td>
<td>Core hole cover mach.</td>
</tr>
<tr>
<td>52102</td>
<td>Dichtung</td>
<td>52102</td>
<td>Gasket</td>
</tr>
<tr>
<td>52103</td>
<td>Flansch</td>
<td>52103</td>
<td>Flange</td>
</tr>
<tr>
<td>52104</td>
<td>6kt - Schraube</td>
<td>52104</td>
<td>Hex. - headed screw</td>
</tr>
<tr>
<td>52105</td>
<td>Prallplatte</td>
<td>52105</td>
<td>Baffle plate</td>
</tr>
<tr>
<td>52106</td>
<td>6kt - Schraube</td>
<td>52106</td>
<td>Hex. - headed screw</td>
</tr>
<tr>
<td>52107</td>
<td>Sicherungsblech</td>
<td>52107</td>
<td>Locking plate</td>
</tr>
<tr>
<td>52400</td>
<td>Kernlochdeckel für Kühlwasser austritt ohne Dichtung</td>
<td>52400</td>
<td>Core hole cover for cooling water outlet without gasket</td>
</tr>
<tr>
<td>52401</td>
<td>Kernlochdeckel bearb.</td>
<td>52401</td>
<td>Core hole cover mach.</td>
</tr>
<tr>
<td>52402</td>
<td>Dichtung</td>
<td>52402</td>
<td>Gasket</td>
</tr>
<tr>
<td>52403</td>
<td>Flansch</td>
<td>52403</td>
<td>Flange</td>
</tr>
<tr>
<td>52404</td>
<td>6kt - Schraube</td>
<td>52404</td>
<td>Hex. - headed screw</td>
</tr>
<tr>
<td>52600</td>
<td>Kernlochdeckel blind ohne Dichtung</td>
<td>52600</td>
<td>Core hole cover blind without gasket</td>
</tr>
<tr>
<td>52801</td>
<td>Dichtung</td>
<td>52801</td>
<td>Gasket</td>
</tr>
<tr>
<td>Bild-Nr. / Illustration-No</td>
<td>Mod.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTR184 - 05.1-003</td>
<td>--</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ABB Turbocharger VTR..4

Bild-Nr. / Illustration-No: VTR184 - 05.1-003

<table>
<thead>
<tr>
<th>Mod.</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB000</td>
<td></td>
</tr>
<tr>
<td>AB030</td>
<td></td>
</tr>
<tr>
<td>AB060</td>
<td></td>
</tr>
<tr>
<td>AB090</td>
<td></td>
</tr>
<tr>
<td>AB120</td>
<td></td>
</tr>
<tr>
<td>AB150</td>
<td></td>
</tr>
<tr>
<td>AB180</td>
<td></td>
</tr>
<tr>
<td>AB210</td>
<td></td>
</tr>
<tr>
<td>AB240</td>
<td></td>
</tr>
<tr>
<td>AB270</td>
<td></td>
</tr>
<tr>
<td>AB300</td>
<td></td>
</tr>
<tr>
<td>AB330</td>
<td></td>
</tr>
</tbody>
</table>

Anhang Kap. / Chap. 7 Appendix

ABB Turbo Systems Ltd

10021 - E -
Gaseintrittsgehäuse / Gas inlet casing AA72

2 Gaseintritte / 2 Gas inlets

<table>
<thead>
<tr>
<th>Teil-Nr.</th>
<th>Bezeichnung</th>
<th>Part no.</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>52000</td>
<td>Setz Kernlochdeckel kompl. mit Dichtung</td>
<td>52000</td>
<td>Set of core hole covers compl. with gaskets</td>
</tr>
<tr>
<td>52100</td>
<td>Kernlochdeckel für Kühlwassereintritt ohne Dichtung</td>
<td>52100</td>
<td>Core hole cover for cooling water inlet without gasket</td>
</tr>
<tr>
<td>52101</td>
<td>Kernlochdeckel bearb.</td>
<td>52101</td>
<td>Core hole cover mach.</td>
</tr>
<tr>
<td>52102</td>
<td>Dichtung</td>
<td>52102</td>
<td>Gasket</td>
</tr>
<tr>
<td>52103</td>
<td>Flansch</td>
<td>52103</td>
<td>Flange</td>
</tr>
<tr>
<td>52104</td>
<td>6kt - Schraube</td>
<td>52104</td>
<td>Hex. - headed screw</td>
</tr>
<tr>
<td>52105</td>
<td>Prallplatte</td>
<td>52105</td>
<td>Baffle plate</td>
</tr>
<tr>
<td>52106</td>
<td>6kt - Schraube</td>
<td>52106</td>
<td>Hex. - headed screw</td>
</tr>
<tr>
<td>52107</td>
<td>Sicherungsblech</td>
<td>52107</td>
<td>Locking plate</td>
</tr>
<tr>
<td>52400</td>
<td>Kernlochdeckel für Kühlwasseraustritt ohne Dichtung</td>
<td>52400</td>
<td>Core hole cover for cooling water outlet without gasket</td>
</tr>
<tr>
<td>52401</td>
<td>Kernlochdeckel bearb.</td>
<td>52401</td>
<td>Core hole cover mach.</td>
</tr>
<tr>
<td>52402</td>
<td>Dichtung</td>
<td>52402</td>
<td>Gasket</td>
</tr>
<tr>
<td>52403</td>
<td>Flansch</td>
<td>52403</td>
<td>Flange</td>
</tr>
<tr>
<td>52404</td>
<td>6kt - Schraube</td>
<td>52404</td>
<td>Hex. - headed screw</td>
</tr>
<tr>
<td>52600</td>
<td>Kernlochdeckel blind ohne Dichtung</td>
<td>52600</td>
<td>Core hole cover blind without gasket</td>
</tr>
<tr>
<td>52801</td>
<td>Dichtung</td>
<td>52801</td>
<td>Gasket</td>
</tr>
<tr>
<td>Teil-Nr.</td>
<td>Bezeichnung</td>
<td>Part no.</td>
<td>Designation</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>60000</td>
<td>Gasaustrittsgehäuse mont. mit Kernlochdeckel</td>
<td>60000</td>
<td>Gas outlet casing ass. with core hole covers</td>
</tr>
<tr>
<td>61000</td>
<td>Gasaustrittsgehäuse mont. ohne Kernlochdeckel</td>
<td>61000</td>
<td>Gas outlet casing ass. without core hole covers</td>
</tr>
<tr>
<td>61001</td>
<td>Gasaustrittsgehäuse bearb.</td>
<td>61001</td>
<td>Gas outlet casing mach.</td>
</tr>
<tr>
<td>61002</td>
<td>Deckel</td>
<td>61002</td>
<td>Cover</td>
</tr>
<tr>
<td>61003</td>
<td>Dichtung</td>
<td>61003</td>
<td>Gasket</td>
</tr>
<tr>
<td>61004</td>
<td>6kt - Schraube</td>
<td>61004</td>
<td>Hex. - headed screw</td>
</tr>
<tr>
<td>61005</td>
<td>Federring</td>
<td>61005</td>
<td>Locking washer</td>
</tr>
<tr>
<td>61006</td>
<td>6kt - Schraube</td>
<td>61006</td>
<td>Hex. - headed screw</td>
</tr>
<tr>
<td>61007</td>
<td>Federring</td>
<td>61007</td>
<td>Locking washer</td>
</tr>
<tr>
<td>61008</td>
<td>6kt - Schraube</td>
<td>61008</td>
<td>Hex. - headed screw</td>
</tr>
<tr>
<td>61009</td>
<td>6kt - Schraube</td>
<td>61009</td>
<td>Hex. - headed screw</td>
</tr>
<tr>
<td>61010</td>
<td>Federring</td>
<td>61010</td>
<td>Locking washer</td>
</tr>
<tr>
<td>61011</td>
<td>Blindflansch</td>
<td>61011</td>
<td>Blind flange</td>
</tr>
<tr>
<td>61012</td>
<td>Dichtung</td>
<td>61012</td>
<td>Gasket</td>
</tr>
<tr>
<td>61013</td>
<td>6kt - Schraube</td>
<td>61013</td>
<td>Hex. - headed screw</td>
</tr>
<tr>
<td>61014</td>
<td>Federring</td>
<td>61014</td>
<td>Locking washer</td>
</tr>
<tr>
<td>61015</td>
<td>Schwerspannstift</td>
<td>61015</td>
<td>Roll pin</td>
</tr>
<tr>
<td>68000</td>
<td>Fuss</td>
<td>68000</td>
<td>Foot</td>
</tr>
</tbody>
</table>

Hinweis
Gehäusestellungen und dazu gehörende Positionen der Kernlochdeckel, siehe VTR 184-06.1-001.

Note
Casing positions and corresponding positions of the core hole covers, see VTR 184-06.1-001.
<table>
<thead>
<tr>
<th>Bild-Nr. / Illustration-No</th>
<th>Mod.</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTR184 - 06.1-001</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BB000</th>
<th>BB300</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BB060</th>
<th>BB090</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BB120</th>
<th>BB150</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BB180</th>
<th>BB210</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BB240</th>
<th>BB270</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BB300</th>
<th>BB330</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Teil-Nr.</td>
<td>Bezeichnung</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>62000</td>
<td>Satz Kernlochdeckel kompl. mit Dichtung</td>
</tr>
<tr>
<td>62100</td>
<td>Kernlochdeckel für Kühlwassereintritt ohne Dichtung</td>
</tr>
<tr>
<td>62101</td>
<td>Kernlochdeckel bearb.</td>
</tr>
<tr>
<td>62102</td>
<td>Dichtung</td>
</tr>
<tr>
<td>62103</td>
<td>Flansch</td>
</tr>
<tr>
<td>62104</td>
<td>6kt - Schraube</td>
</tr>
<tr>
<td>62105</td>
<td>Prallplatte</td>
</tr>
<tr>
<td>62106</td>
<td>6kt - Schraube</td>
</tr>
<tr>
<td>62107</td>
<td>Sicherungsblech</td>
</tr>
<tr>
<td>62400</td>
<td>Kernlochdeckel für Kühlwasser- austritt ohne Dichtung</td>
</tr>
<tr>
<td>62401</td>
<td>Kernlochdeckel bearb.</td>
</tr>
<tr>
<td>62402</td>
<td>Dichtung</td>
</tr>
<tr>
<td>62403</td>
<td>Flansch</td>
</tr>
<tr>
<td>62404</td>
<td>6kt - Schraube</td>
</tr>
<tr>
<td>62600</td>
<td>Kernlochdeckel blind ohne Dichtung</td>
</tr>
<tr>
<td>62601</td>
<td>Kernlochdeckel bearb.</td>
</tr>
<tr>
<td>62602</td>
<td>Dichtung</td>
</tr>
<tr>
<td>62603</td>
<td>Oval-Blindflansch</td>
</tr>
<tr>
<td>62604</td>
<td>6kt - Schraube</td>
</tr>
<tr>
<td>62801</td>
<td>Dichtung</td>
</tr>
<tr>
<td>Teil-Nr.</td>
<td>Bezeichnung</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>72000</td>
<td>Verdichtergehäuse mont.</td>
</tr>
<tr>
<td>72001</td>
<td>Verdichtergehäuse bearb.</td>
</tr>
<tr>
<td>74008</td>
<td>Verschlussschraube</td>
</tr>
<tr>
<td>74009</td>
<td>Dichtung</td>
</tr>
<tr>
<td>74021</td>
<td>Stiftschraube</td>
</tr>
<tr>
<td>74023</td>
<td>6kt - Mutter</td>
</tr>
<tr>
<td>76002</td>
<td>Dichtungsbüchse</td>
</tr>
<tr>
<td>76009</td>
<td>6kt - Schraube</td>
</tr>
<tr>
<td>76010</td>
<td>Spannscheibe</td>
</tr>
<tr>
<td>76012</td>
<td>Blindflansch</td>
</tr>
<tr>
<td>76013</td>
<td>Dichtung</td>
</tr>
<tr>
<td>76014</td>
<td>6kt - Schraube</td>
</tr>
<tr>
<td>76015</td>
<td>Federring</td>
</tr>
<tr>
<td>76016</td>
<td>Blindflansch</td>
</tr>
<tr>
<td>76017</td>
<td>Dichtung</td>
</tr>
<tr>
<td>76018</td>
<td>6kt - Schraube</td>
</tr>
<tr>
<td>76019</td>
<td>Federring</td>
</tr>
<tr>
<td>76020</td>
<td>Führungsbolzen</td>
</tr>
<tr>
<td>76021</td>
<td>Zyl.-Schraube mit Innen-6kt</td>
</tr>
<tr>
<td>76022</td>
<td>Sperrkantring</td>
</tr>
<tr>
<td>76026</td>
<td>Dichtung</td>
</tr>
<tr>
<td>76027</td>
<td>Blindflansch</td>
</tr>
<tr>
<td>76028</td>
<td>Federring</td>
</tr>
<tr>
<td>76029</td>
<td>6kt - Schraube</td>
</tr>
<tr>
<td>76030</td>
<td>Dichtung</td>
</tr>
<tr>
<td>76031</td>
<td>Blindflansch</td>
</tr>
<tr>
<td>76032</td>
<td>Federring</td>
</tr>
<tr>
<td>76033</td>
<td>6kt - Schraube</td>
</tr>
<tr>
<td>76036</td>
<td>Verschlussschraube</td>
</tr>
<tr>
<td>76038</td>
<td>Zyl.-Schraube mit Innen-6kt</td>
</tr>
<tr>
<td>79000</td>
<td>Diffusor kompl.</td>
</tr>
<tr>
<td>79001</td>
<td>Diffusor bearb.</td>
</tr>
<tr>
<td>79005</td>
<td>O-Ring</td>
</tr>
<tr>
<td>Teil-Nr.</td>
<td>Bezeichnung</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>81000</td>
<td>Schalldämpfer mit U-Manometer</td>
</tr>
<tr>
<td>81050</td>
<td>U-Manometer</td>
</tr>
<tr>
<td>81070</td>
<td>Befestigungsteile zu U-Manometer</td>
</tr>
<tr>
<td>81100</td>
<td>Schalldämpfer</td>
</tr>
<tr>
<td>81115</td>
<td>6kt-Schraube</td>
</tr>
<tr>
<td>81116</td>
<td>Federring</td>
</tr>
<tr>
<td>81250</td>
<td>Lochblechring</td>
</tr>
<tr>
<td>81255</td>
<td>Splint</td>
</tr>
<tr>
<td>Bild-Nr. / Illustration-No</td>
<td>Mod.</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------</td>
</tr>
<tr>
<td>VTR184 - 08.5-001</td>
<td>--</td>
</tr>
</tbody>
</table>

82000
<table>
<thead>
<tr>
<th>Teil-Nr.</th>
<th>Bezeichnung</th>
<th>Part no.</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>82000</td>
<td>Luftaugstutzen kompl.</td>
<td>82000</td>
<td>Air suction branch compl.</td>
</tr>
<tr>
<td>82001</td>
<td>Luftaugstutzen bearb.</td>
<td>82001</td>
<td>Air suction branch mach.</td>
</tr>
<tr>
<td>82002</td>
<td>6kt - Schraube</td>
<td>82002</td>
<td>Hex.- headed screw</td>
</tr>
<tr>
<td>82003</td>
<td>Spannscheibe</td>
<td>82003</td>
<td>Tension washer</td>
</tr>
</tbody>
</table>
Option 86500
Option Drehzahlmessvorrichtung

<table>
<thead>
<tr>
<th>Teil-Nr.</th>
<th>Bezeichnung</th>
<th>Part no.</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>86500</td>
<td>Drehzahlmessvorrichtung komplett</td>
<td>86500</td>
<td>Speed measuring device complete</td>
</tr>
<tr>
<td>Bild-Nr. / Illustration-No</td>
<td>Mod.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTR184 - 09.0-900</td>
<td>A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Available at ABB Turbocharging service station
2.2 Werkzeuge

Der gesondert zu bestellende Satz Werkzeuge wird in einer Werkzeugtasche zusammen mit dem Turbolader geliefert.

Er umfasst folgende Teile:

<table>
<thead>
<tr>
<th>Teil-Nr.</th>
<th>Bezeichnung</th>
<th>Part no.</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>90000</td>
<td>1 Satz Werkzeuge kompl. in Werkzeugtasche mit Blockiervorrichtung (93000)</td>
<td>90000</td>
<td>1 Set of tools compl. in tool bag with locking device (93000)</td>
</tr>
<tr>
<td>90001</td>
<td>1 Satz Werkzeuge kompl. in Werkzeugtasche ohne Blockiervorrichtung</td>
<td>90001</td>
<td>1 Set of tools compl. in tool bag without locking device</td>
</tr>
<tr>
<td>90011</td>
<td>Werkzeugtasche</td>
<td>90030</td>
<td>Holding device</td>
</tr>
<tr>
<td>90030</td>
<td>Festhaltevorrichtung</td>
<td>90031</td>
<td>Hex. - headed screw</td>
</tr>
<tr>
<td>90031</td>
<td>6kt - Schraube</td>
<td>90050</td>
<td>Box spanner</td>
</tr>
<tr>
<td>90050</td>
<td>Steckschlüssel</td>
<td>90055</td>
<td>Intermediate piece</td>
</tr>
<tr>
<td>90055</td>
<td>Zwischenstück</td>
<td>90070</td>
<td>Extractor</td>
</tr>
<tr>
<td>90070</td>
<td>Abziehvorrichtung</td>
<td>90170</td>
<td>Guide plate</td>
</tr>
<tr>
<td>90170</td>
<td>Führungsplatte</td>
<td>90172</td>
<td>Hex. - headed screw</td>
</tr>
<tr>
<td>90172</td>
<td>6kt - Schraube</td>
<td>90260</td>
<td>Tommy bar</td>
</tr>
<tr>
<td>90260</td>
<td>Drehstift</td>
<td>90900</td>
<td>Puller screw</td>
</tr>
<tr>
<td>90900</td>
<td>Abdrückschraube</td>
<td>X</td>
<td>Erecting panel (fig. 09.0)</td>
</tr>
<tr>
<td>X</td>
<td>Montage - Schild (Bild 09.0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

90216 Adapter mit Anschlagwirbel

90216 Adapter with swivel lifting eye

Notes: Eye nut must no longer be used. Adapter, 90216, is available at ABB Turbo Systems AG or it is to be obtained from the responsible ABB Turbocharging service station.
2.3 Abschlussvorrichtung

Die Zeichnungen zu den Teilen können separat be-stellt werden.

Hinweis Im Notfall können die Teile auch anhand der Tabelle in Kap. 2.3.1 selbst gefertigt werden.

<table>
<thead>
<tr>
<th>Teil-Nr.</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>91000</td>
<td>Abschlussvorrichtung kompl.</td>
</tr>
<tr>
<td>91001</td>
<td>Abschlussdeckel VS</td>
</tr>
<tr>
<td>91002</td>
<td>Abschlussdeckel TS</td>
</tr>
<tr>
<td>91003</td>
<td>Zugstange</td>
</tr>
<tr>
<td>91004</td>
<td>Zugstange</td>
</tr>
<tr>
<td>91005</td>
<td>Innerer Abschlussdeckel</td>
</tr>
<tr>
<td>91006</td>
<td>Distanzbüchse</td>
</tr>
<tr>
<td>91007</td>
<td>Tellerfeder</td>
</tr>
<tr>
<td>91008</td>
<td>Tellerfeder</td>
</tr>
<tr>
<td>91009</td>
<td>Sprengring</td>
</tr>
<tr>
<td>91010</td>
<td>6kt - Mutter</td>
</tr>
<tr>
<td>91011</td>
<td>6kt - Schraube</td>
</tr>
<tr>
<td>91012</td>
<td>Distanzbüchse</td>
</tr>
<tr>
<td>91013</td>
<td>Sprengring</td>
</tr>
<tr>
<td>91014</td>
<td>6kt - Mutter</td>
</tr>
</tbody>
</table>

2.3 Blanking device

The drawings to these parts can be ordered separate-ly.

Note In case of an emergency these parts can also be manufactured by yourself according to the table in chap. 2.3.1.

<table>
<thead>
<tr>
<th>Part. no.</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>91000</td>
<td>Blanking device, compl.</td>
</tr>
<tr>
<td>91001</td>
<td>Blanking cover CE</td>
</tr>
<tr>
<td>91002</td>
<td>Blanking cover TE</td>
</tr>
<tr>
<td>91003</td>
<td>Tie-bolt</td>
</tr>
<tr>
<td>91004</td>
<td>Tie-bolt</td>
</tr>
<tr>
<td>91005</td>
<td>Inner blanking cover</td>
</tr>
<tr>
<td>91006</td>
<td>Distance sleeve</td>
</tr>
<tr>
<td>91007</td>
<td>Disc spring</td>
</tr>
<tr>
<td>91008</td>
<td>Disc spring</td>
</tr>
<tr>
<td>91009</td>
<td>Circlip</td>
</tr>
<tr>
<td>91010</td>
<td>Hex. - nut</td>
</tr>
<tr>
<td>91011</td>
<td>Hex. - headed screw</td>
</tr>
<tr>
<td>91012</td>
<td>Distance sleeve</td>
</tr>
<tr>
<td>91013</td>
<td>Circlip</td>
</tr>
<tr>
<td>91014</td>
<td>Hex. - nut</td>
</tr>
<tr>
<td>Bild-Nr. / Illustration-No</td>
<td>Mod.</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------</td>
</tr>
<tr>
<td>VTR184 - 09.1-001</td>
<td>--</td>
</tr>
</tbody>
</table>
2.3.1 Table blanking device

Masse für VTR184 / Dimensions for VTR184

<table>
<thead>
<tr>
<th>Teil-Nr. Part-no.</th>
<th>Bezeichnung Designation</th>
<th>Menge Quantity</th>
<th>Masse Dimensions [mm]</th>
<th>Bemerkungen Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>91001</td>
<td>Abschlussdeckel VS Blanking cover CE</td>
<td>1</td>
<td>Ø320 x 10</td>
<td>Lochkreis Ø147 / Stiftloch 1 x Ø8.5 / Hole circle Ø147 / Pin hole 1 x Ø8.5</td>
</tr>
<tr>
<td>91002</td>
<td>Abschlussdeckel TS Blanking cover TE</td>
<td>1</td>
<td>Ø97 x 10</td>
<td>Lochkreis Ø80 / Schraubenloch 4 x Ø7 / 1 x Ø11* / Hole circle Ø80 / Screw hole 4 x Ø7 / 1 x Ø11*</td>
</tr>
<tr>
<td>91003</td>
<td>Zugstange Tie-bolt</td>
<td>1</td>
<td>Ø12 x 166</td>
<td>Aussengewinde M12 x 20 und M12 x 26 / Outside thread M12 x 20 and M12 x 26</td>
</tr>
<tr>
<td>91004</td>
<td>Zugstange Tie-bolt</td>
<td>1</td>
<td>Ø20 x 234</td>
<td>Aussengewinde M12 x 26 / Innengewinde M12 x 22 / Outside thread M12 x 26 / Inside thread M12 x 22</td>
</tr>
<tr>
<td>91005</td>
<td>Innerer Abschlussdeckel Inner blanking cover</td>
<td>1</td>
<td>Ø69 x 10</td>
<td>Bohrung Ø13 / Hole Ø13</td>
</tr>
<tr>
<td>91006</td>
<td>Distanzbüchse Distance sleeve</td>
<td>2</td>
<td>Ø32 x 23</td>
<td>Identisch mit 91012 / Identical with 91012</td>
</tr>
<tr>
<td>91007</td>
<td>Tellerfeder Disc spring</td>
<td>6</td>
<td>Ø40 x 2.5</td>
<td>Identisch mit 91008 / Identical with 91008</td>
</tr>
<tr>
<td>91010</td>
<td>6kt - Mutter Hex. - nut</td>
<td>2</td>
<td>M12</td>
<td>Identisch mit 91014 / Identical with 91014</td>
</tr>
<tr>
<td>91011</td>
<td>6kt - Schraube Hex. - headed screw</td>
<td>4</td>
<td>M8 x 20</td>
<td></td>
</tr>
</tbody>
</table>

* Stiftposition s. VTR 184 - 03.2-001

* Pin position see VTR 184 - 03.2-001
<table>
<thead>
<tr>
<th>Bild-Nr. / Illustration-No</th>
<th>Mod.</th>
<th>93000</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTR184 - 09.3-001</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>
2.4 Locking Device

<table>
<thead>
<tr>
<th>Teil-Nr.</th>
<th>Bezeichnung</th>
<th>Part no.</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>93000</td>
<td>Blockiervorrichtung komplett</td>
<td>93000</td>
<td>Locking device complete</td>
</tr>
<tr>
<td>Bild-Nr. / Illustration-No</td>
<td>Mod.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTR184 - 09.5-001</td>
<td>--</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Verdichterseite / Compressor end

Turbinenseite / Turbine end
2.5 Konservierung

<table>
<thead>
<tr>
<th>Teil-Nr.</th>
<th>Bezeichnung</th>
<th>Part no.</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>95000</td>
<td>Konservierung des Turboladers</td>
<td>95000</td>
<td>Mothballing of the turbocharger</td>
</tr>
<tr>
<td>95010</td>
<td>Halteflansch VS</td>
<td>95010</td>
<td>Holding flange CE</td>
</tr>
<tr>
<td>95011</td>
<td>Sicherungsblech</td>
<td>95011</td>
<td>Locking plate</td>
</tr>
<tr>
<td>95013</td>
<td>6kt-Schraube</td>
<td>95013</td>
<td>Hex.-headed screw</td>
</tr>
<tr>
<td>95014</td>
<td>Aufschriftschild VS</td>
<td>95014</td>
<td>Name plate CE</td>
</tr>
<tr>
<td>95050</td>
<td>Halteflansch TS</td>
<td>95050</td>
<td>Holding flange TE</td>
</tr>
<tr>
<td>95051</td>
<td>6kt-Schraube</td>
<td>95051</td>
<td>Hex.-headed screw</td>
</tr>
<tr>
<td>95052</td>
<td>Aufschriftschild TS</td>
<td>95052</td>
<td>Name plate TE</td>
</tr>
</tbody>
</table>
Approved lubricating oils
Zugelassene Schmieröle

8.1
Approved lubricating oils

List 1

Mineral oils (base oils with narrow cut) Oil change interval: max. 1’000 hours

<table>
<thead>
<tr>
<th>Lieferant / Supplier</th>
<th>Produkt / Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGIP</td>
<td>OTE 68</td>
</tr>
<tr>
<td>BP</td>
<td>ENERGOL THB 68</td>
</tr>
<tr>
<td></td>
<td>TURBINOL 68</td>
</tr>
<tr>
<td></td>
<td>BARTRAN 68</td>
</tr>
<tr>
<td>CASTROL</td>
<td>PERFECTO T68</td>
</tr>
<tr>
<td></td>
<td>HYSPIN AWS 68</td>
</tr>
<tr>
<td></td>
<td>HYSPIN AWH 68</td>
</tr>
<tr>
<td></td>
<td>HYSPIN AWH M68</td>
</tr>
<tr>
<td>CHEVRONTEXACO</td>
<td>REGAL R&O 68</td>
</tr>
<tr>
<td></td>
<td>INDUSTRIAL OIL GST 68</td>
</tr>
<tr>
<td></td>
<td>RANDO HD 68</td>
</tr>
<tr>
<td></td>
<td>RANDO HDZ 68</td>
</tr>
<tr>
<td></td>
<td>MECHANISM LPS 68</td>
</tr>
<tr>
<td>CONOCO</td>
<td>HYDROCLEAR TURBINE OIL 68</td>
</tr>
<tr>
<td></td>
<td>SUPER HYDRAULIC OIL 68</td>
</tr>
<tr>
<td></td>
<td>HYDROCLEAR AW HYDRAULIC FLUID 68</td>
</tr>
<tr>
<td></td>
<td>HYDROCLEAR MULTIPURPOSE R&O OIL 68</td>
</tr>
<tr>
<td>COSMO</td>
<td>TURBINE SUPER 68</td>
</tr>
<tr>
<td>ELF</td>
<td>TURBINE T 68</td>
</tr>
<tr>
<td></td>
<td>TURBELF SA 68</td>
</tr>
<tr>
<td></td>
<td>VISGA 68</td>
</tr>
<tr>
<td></td>
<td>HYDRELFS DS 68</td>
</tr>
<tr>
<td>ExxonMobil</td>
<td>NUTO H 68</td>
</tr>
<tr>
<td></td>
<td>DTE 16 M</td>
</tr>
<tr>
<td></td>
<td>DTE OIL HEAVY MEDIUM</td>
</tr>
<tr>
<td></td>
<td>RARUS 427 (*)</td>
</tr>
<tr>
<td>FINA</td>
<td>TURBINE OIL MEDIUM (68) / BAKOLA 68</td>
</tr>
<tr>
<td></td>
<td>TURBINE OIL HEAVY (80)</td>
</tr>
<tr>
<td></td>
<td>HYDRAN LZ 68</td>
</tr>
<tr>
<td>IDEMITSU</td>
<td>DAPHNE SUPER TURBINE HT-68</td>
</tr>
<tr>
<td>INDIAN OIL CORP.</td>
<td>SERVOPRIME 68</td>
</tr>
<tr>
<td></td>
<td>SERVOPRIME 76</td>
</tr>
<tr>
<td></td>
<td>SERVOPRESS 68</td>
</tr>
<tr>
<td></td>
<td>SERVOSYSTEM HLP 68</td>
</tr>
<tr>
<td>KUWAIT</td>
<td>VAN GOGH 68</td>
</tr>
<tr>
<td>PARS</td>
<td>BABAVIDJEH ISO68</td>
</tr>
<tr>
<td>REPSOL</td>
<td>TELEX - E 68</td>
</tr>
<tr>
<td></td>
<td>MERAK - B</td>
</tr>
<tr>
<td></td>
<td>ARIES 68</td>
</tr>
<tr>
<td>SCHAEFFER</td>
<td>MICRON MOLY HTC ISO VG68</td>
</tr>
<tr>
<td>SHELL</td>
<td>TURBO OIL T68</td>
</tr>
<tr>
<td></td>
<td>TURBO OIL T78</td>
</tr>
<tr>
<td></td>
<td>TELLUS S2 M 68 (TELLUS OIL 68)</td>
</tr>
<tr>
<td>SK CORPORATION</td>
<td>SUPREMAR TURBINE</td>
</tr>
<tr>
<td>STATOIL</td>
<td>STATOIL TURBWAY 68</td>
</tr>
<tr>
<td></td>
<td>STATOIL HYDRAWAY HMA 68</td>
</tr>
<tr>
<td>TOTAL</td>
<td>PRESLUA 68</td>
</tr>
<tr>
<td>SINOPEC</td>
<td>GREATWALL WEIYUE GAS TURBINE OIL 68</td>
</tr>
</tbody>
</table>

(* nicht US-Version
Not US-version)
Liste 2
Spezielle Mineralöle und synthetische Öle für Ölwechselintervalle von max. 3'000 h

Hinweis Ölwechselintervalle: siehe auch Kapitel 3

List 2
Special mineral and synthetic oils
Oil change interval: max. 3'000 hours

Note Oil change intervals: see also chapter 3

<table>
<thead>
<tr>
<th>Lieferant</th>
<th>Produkt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spezielle Mineröle / Special mineral oils</td>
</tr>
<tr>
<td>VALVOLINE</td>
<td>COMPRESSOR OIL 62</td>
</tr>
</tbody>
</table>

Liste / List 2a

<table>
<thead>
<tr>
<th>Lieferant</th>
<th>Produkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHELL</td>
<td>CORENA S4 P 68 (CORENA AP 68)</td>
</tr>
<tr>
<td>SINOPEC</td>
<td>GREATWALL 4506N68 SYNTHETIC COMPRESSOR OIL</td>
</tr>
</tbody>
</table>

Pourpoint tiefer -40 °C

Pourpoint below -40°C
Liste 3
Synthetische Schmieröle für Ölwechselintervalle von max. 5'000 h

<table>
<thead>
<tr>
<th>Lieferant</th>
<th>Produkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASTROL</td>
<td>AIRCOL CT 68</td>
</tr>
<tr>
<td></td>
<td>AIRCOL SN 68</td>
</tr>
<tr>
<td>CHEVRONTEXACO</td>
<td>CHEVRON Tegra SYNTHETIC COMPRESSORS OIL 68</td>
</tr>
<tr>
<td>ELF</td>
<td>BARELF CH 68</td>
</tr>
<tr>
<td>KUWAIT</td>
<td>SCUHMANN 68</td>
</tr>
<tr>
<td>MOTUL</td>
<td>MOTUL SAFCOBAR SY 100 NP</td>
</tr>
<tr>
<td>NYCO</td>
<td>NYCOLUBE 3060</td>
</tr>
<tr>
<td>TOTAL</td>
<td>CORTUSA HP 100</td>
</tr>
<tr>
<td>SHELL</td>
<td>CORENA S4 R 68 (CORENA AS 68)</td>
</tr>
</tbody>
</table>

Liste 3a
Synthetische Öle / synthetic oils

<table>
<thead>
<tr>
<th>Lieferant</th>
<th>Produkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGIP</td>
<td>DICREA SX 68</td>
</tr>
<tr>
<td>BP</td>
<td>ENSERSYN TC-S 68</td>
</tr>
<tr>
<td>CASTROL</td>
<td>AIRCOL SR68</td>
</tr>
<tr>
<td>CHEVRONTEXACO</td>
<td>CETUS PAO 68</td>
</tr>
<tr>
<td>ELF</td>
<td>BARELF SM 68</td>
</tr>
<tr>
<td>ExxonMobil</td>
<td>COMPRESSOR OIL RS 68</td>
</tr>
<tr>
<td></td>
<td>RARUS SHC 1026</td>
</tr>
<tr>
<td></td>
<td>SHC 626</td>
</tr>
<tr>
<td>Petrogal</td>
<td>GALP LUBAREP PRS68</td>
</tr>
</tbody>
</table>

Speziell geprüfte synthetische Öle für hochbelastete Turbolader
Specially tested synthetic oils for heavily loaded turbochargers

<table>
<thead>
<tr>
<th>Lieferant</th>
<th>Produkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGIP</td>
<td>DICREA SX 68</td>
</tr>
<tr>
<td>BP</td>
<td>ENERSYN TC-S 68</td>
</tr>
<tr>
<td>CASTROL</td>
<td>AIRCOL SR68</td>
</tr>
<tr>
<td>CHEVRONTEXACO</td>
<td>CETUS PAO 68</td>
</tr>
<tr>
<td>ELF</td>
<td>BARELF SM 68</td>
</tr>
<tr>
<td>ExxonMobil</td>
<td>COMPRESSOR OIL RS 68</td>
</tr>
<tr>
<td></td>
<td>RARUS SHC 1026</td>
</tr>
<tr>
<td></td>
<td>SHC 626</td>
</tr>
<tr>
<td>Petrogal</td>
<td>GALP LUBAREP PRS68</td>
</tr>
</tbody>
</table>

Pourpoint tiefer -40 °C
Pourpoint below -40°C
Contact information for the official service stations of ABB Turbo Systems is available online.

Scan the QR code to access our website.

ABB Turbo Systems Ltd
Bruggerstrasse 71a
CH-5401 Baden
Switzerland

www.abb.com/turbocharging