Type CW Power Relay
30° Characteristic for Three Phase Systems
Class 1E Application

CONTENTS
APPLICATION .. 1
CONSTRUCTION 2
CHARACTERISTICS 2
SETTINGS .. 2
INSTALLATION 3
ADJUSTMENT AND MAINTENANCE 4
RENEWAL PARTS 5

1.0 APPLICATION

These relays have been specially designed and tested to establish their suitability for Class 1E applications in accordance with the ABB Power T&D Company program for Class 1E Qualification Testing as detailed in bulletin STR-1. Materials have been selected and tested to insure that the relays will perform their intended function for their design life when operated in normal environment as defined by ANSI standards; when exposed to radiation levels up to 10^4 rads; and when subjected to seismic events producing a Shock Response Spectrum within the limits of the relay rating.

"Class 1E" is the safety classification of the electric equipment and systems in nuclear power generating stations that are essential to emergency shutdown of the reactor, containment isolation, cooling of the reactor, and heat removal from the containment and reactor, or otherwise are essential in preventing significant release of radioactive material to the environment.

The type CW relay for three-phase application is a single phase induction type relay providing over-power or reverse-power protection for electrical equipment or circuits and synchronous motor loss-of-field protection. It is not intended for use as a fault protective relay.

The CW relay for three-phase application uses phase-to-phase voltage and line current, with maximum torque occurring when the relay current leads the relay voltage by 30° at system unity power factor. Tap value is the volt-amperes at which the contacts close with relay current leading relay voltage by 30°. One CW relay is required for balanced three phase system and three relays are required for unbalanced conditions.

All possible contingencies which may arise during installation, operation or maintenance, and all details and variations of this equipment do not purport to be covered by these instructions. If further information is desired by purchaser regarding this particular installation, operation or maintenance of this equipment, the local ABB representative should be contacted.
nected in such a way that current, \(I_A \), leads voltage, \(V_{BA} \), by 150 degrees when the motor is operating at unity power factor. Loss of excitation to the motor causes a large var flow into the motor without appreciable change in the watt flow. As the current goes more lagging, operation of the CW permits tripping or alarm action.

2.0 CONSTRUCTION

The relay consists of a product operated unit, a phase shifter and an indicating contactor switch (ICS), shown in Figure 1, page 6.

2.1 PRODUCT TYPE UNIT

The electromagnet for the main element has a tapped current coil located on the center leg of an "E" type laminated structure and two potential coils on the outer legs. This is shown schematically in Figure 2, page 6. Operating torque is obtained by energizing the tapped coil with line current and the two outer coils with line potential from the line potential transformers. Out of phase air gap fluxes necessary to operating torques are produced by a phase shifting network in conjunction with the potential coils. Maximum torque occurs when the current leads the voltage by 30 degrees as illustrated in Figure 3, page 7. The voltage is independent of the direction of power flow. This provides a reference so that the disc can rotate in either direction depending upon direction of the line current. The combination of voltage and current produces an operating torque proportional to power.

2.1.1 Phase Shifter - The phase shifter network consist of a resistor in series with the potential coils.

2.2 INDICATING CONTACTOR SWITCH UNIT (ICS)

The dc indicating contactor switch is a small clapper type device. A magnetic armature, to which leaf-spring mounted contacts are attached, is attracted to the magnetic core upon energization of the switch. When the switch closes, the moving contacts bridge two stationary contacts, completing the trip circuit. Also during this operation two fingers on the armature deflect a spring located on the front of the switch, which allows the operation indicator target to drop. The target is reset from the outside of the case by a push-rod located at the bottom of the cover.

The front spring, in addition to holding the target, provides restraint for the armature and thus controls the pickup value of the switch.

3.0 CHARACTERISTICS

The type CW relays are available in the following ranges and taps:

<table>
<thead>
<tr>
<th>Volts Line-to-Line</th>
<th>Taps</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>20 - 120</td>
</tr>
<tr>
<td>100 - 600</td>
<td>100 - 150 - 200 - 300 - 400 - 500 - 600</td>
</tr>
<tr>
<td>208</td>
<td>35 - 200</td>
</tr>
<tr>
<td>175 - 1000</td>
<td>175 - 250 - 350 - 500 - 700 - 875 - 1000</td>
</tr>
</tbody>
</table>

Typical 60 hertz Time-Power Curves are shown in figures 4 & 5 page 8. The curves are taken at maximum torque which occurs with the current leading the voltage by 30 degrees (within \(\pm 4^\circ \)).

3.1 TRIP CIRCUIT

The main contacts will safely close 30 amperes at 250 volts dc and the seal-in contacts of the indicating contactor switch will safely carry this current long enough to trip a circuit breaker.

The indicating instantaneous trip contacts will safely close 30 amperes at 250 volts dc, and will carry this current long enough to trip a breaker.

3.2 TRIP CIRCUIT CONSTANTS

Indicating Contactor Switch Coil.

<table>
<thead>
<tr>
<th>Ampere Pickup</th>
<th>Ohms dc Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>8.5</td>
</tr>
<tr>
<td>1.0</td>
<td>0.37</td>
</tr>
<tr>
<td>2.0</td>
<td>0.10</td>
</tr>
</tbody>
</table>

4.0 SETTINGS

The watt tap and the time dial setting must be selected.

The connector screw on the terminal plate above the time dial makes connections to various turns on the operating coil. By placing this screw in the various
terminal plate holes, the relay will respond to multiples of tap value watts in accordance with the various typical time-watts curves, ± 5%.

CAUTION

Since the tap block connector screw carries operating current, be sure that the screw is turned tight.

In order to avoid opening current transformer circuits when changing taps under load, the relay must be first removed from the case. Chassis operating shorting switches on the case will short the secondary of the current transformer. The taps should then be changed with the relay outside of the case and then re-inserted into the case.

4.1 OVERWATT APPLICATION

The CW for three phase application has taps which represent the minimum balanced three phase watts divided by \(\sqrt{3} \) that will cause the disc to move. Tap value is also voltamperes at which the disc will begin to move with current leading voltage applied to the relay by 30 degrees. When connected for watt sensing the relay current leads relay voltage by 30 degrees when the system current and line-to-neutral voltage are in phase.

Assume:

\[
R_C = \text{ct ratio} = 600:5 = 120 \\
R_V = \text{vt ratio} = 4200:120 = 35 \\
P = \text{power} = 1000 \text{ primary kilowatts (3Ø) desired trip level}
\]

Direct Solution:

\[
T = \frac{P}{R_C R_V \sqrt{3}} = \frac{1,000,000}{120(35) \sqrt{3}} = 137.5
\]

Indirect Solution:

\[
I_p = \frac{P}{\sqrt{3} V_{LL}} = \frac{1,000,000}{\sqrt{3} \times 4160} = 138.8 \text{ a primary}
\]

\[
I_s = 138.8/120 = 1.157 \text{ a secondary}
\]

\[
V_s = 4160/35 = 118.86 \text{ volts line-to-line}
\]

\[
T = I_s V_s = 1.157(118.86) = 137.5
\]

Use tap 150 (closest to 137.5) on 100-600 watt relay.
\(P = 150/137.5(1000) = 1091 \text{ kW actural} \)

Time dial 2 will give 2 second operation at 2182 kilowatts. See Figure 4, page 8.

4.2 MOTOR LOSS OF FIELD APPLICATION

The usual setting of the CW relay for this application (Figure 7, page 10) is 20 watts, time dial 2 on the 20-120 watt relay. When, on loss of field, the motor power factor goes approximately 30 degrees lagging (watts and vars into the motor) and more, the contacts of the CW close after the time delay established by the time dial setting.

In this application, the CW would operate during motor starting and a field breaker 41a switch may be used to prevent this by controlling the voltage circuit. This allows the motor to be accelerated, and the field breaker closed before the CW close after the time delay established by the time dial setting.

Note that the use of field breaker 41a switch control, prevents loss of field detection on accidental field breaker opening. Other provisions must be incorporated to trip the controller when 41a is used and the field breaker opens following field application. If 41a is not used directly, it may drive a timer that closes the coil circuit when 41 closes and has time delay release when 41 opens.

This same relay will detect loss of synchronism in the first slip cycle provided the slip frequency is sufficiently low that the CW current stays in the “operate” area long enough to produce operation.

4.3 INDICATING CONTACTOR SWITCH (ICS)

There are no settings to make on the indicating contactors with (ICS).

Close the main relay contacts and pass sufficient dc current, through the trip circuit to close the contacts of the ICS. This value of current should not be greater than the particular ICS nameplate rating. The indicator target should drop freely.

Repeat above except pass 85% of ICS nameplate rating current. Contacts should not pickup and target should not drop.

5.0 INSTALLATION

The relays should be mounted on switchboard pan-
els or their equivalent in a location free from dirt, moisture, excessive vibration and heat. Mount the relay vertically by means of the four mounting holes on the flange for the semi-flush type FT case. The mounting screws may be utilized for grounding the relay. External toothed washers are provided for use in the locations shown on the outline and drilling plan to facilitate making a good electrical connection between the relay case, its mounting screws and the relay panel. Ground wires should be affixed to the mounting screws as required for poorly grounded or insulating panels. Other electrical connections may be made directly to the terminals by means of screws for steel panel mounting.

For detail information on the FT case refer to I.L. 41-076 for semi-flush mounting.

6.0 ADJUSTMENT AND MAINTENANCE

For an Acceptance Test use the following information as appropriate.

The proper adjustments to insure correct operation of this relay have been made at the factory and should not be disturbed after receipt by the customer. If the adjustments have been changed, the relay taken apart for repairs, or if it is desired to check the adjustments at regular maintenance periods, the instructions below should be followed carefully.

All contacts should be cleaned periodically. A contact burnisher Style Number 182A836H01 is recommended for this purpose. The use of abrasive material for cleaning contacts is not recommended, because of the danger of embedding small particles in the face of the soft silver and thus impairing the contact.

6.1 PRODUCT UNIT

NOTE: A spring shield covers the reset spring of the product unit. To remove the spring shield, requires that the damping magnet be removed first. The screw connection holding the lead to the moving contact should be removed next. The second screw holding the moving contact assembly should then be loosened not removed.

This screw terminates into a nut held captive beneath the molded block. If screw is removed, difficulty will be experienced in the re-assembly of the moving contact assembly.) Slide the spring shield outward and remove from relay. Tighten the screw holding the moving contact assembly to the molded block.

6.2 CONTACT

The index mark on the movement frame will coincide with the “0” mark on the time dial when the stationary contact has moved through approximately one-half of its normal deflection. Therefore, with the stationary contact resting against the backstop, the index mark is offset to the right of the “0” mark by approximately .020”. The placement of the various time dial positions in line with the index mark will give operating times as shown on the respective time-watt curves.

6.2.1 Minimum Trip Volt Amperes - Set the time dial to position 6. Using the lowest tap setting, alternately apply tap value volt amperes plus 3% and tap value volt amperes minus 3% with the current leading the voltage by 30°. The moving contact should leave the backstop at tap value plus 3% and should return to the backstop at tap value minus 3%. The relay should be calibrated with 10 times tap value at the number six time dial position. Check several points on the typical time curves. Time curve calibration is affected by adjusting the position of the permanent magnet keeper. Note that with current leading voltage by 30 degrees the actual watts applied to the relay are .866 times tap value at pickup.

6.3 INDICATING CONTACTOR SWITCH (ICS)

Initially adjust unit on the pedestal so that armature fingers do not touch the yoke in the reset position (viewed from top of switch between cover and frame). This can be done by loosening the mounting screw in the molded pedestal and moving the ICS in the downward position.

a) Contact Wipe – Adjust the stationary contact so that both stationary contacts make with the moving contacts simultaneously and wipe 1/64” to 3/64” when the armature is against the core.
b) **Target** – Manually raise the moving contacts and check to see that the target drops at the same time as the contacts make or up to 1/16” ahead. The cover may be removed and the tap holding the target reformed slightly if necessary. However, care should be exercised so that the target will not drop with a slight jar.

C) **Pickup** – The unit should pickup at 98% rating and not pickup at 85% of rating. If necessary, the cover leaf springs may be adjusted. To lower the pickup current use a tweezer or similar tool and squeeze each leaf spring approximately equal by applying the tweezer between the leaf spring and the front surface of the cover, at the bottom of the lower window.

If the pickup is low, the front cover must be removed and the leaf spring bent outward equally.

7.0 RENEWAL PARTS

Repair work can be done most satisfactorily at the factory. However, interchangeable parts can be furnished to the customers who are equipped for doing repair work. When ordering parts always give the complete nameplate data.

Current Coil Ratings:

<table>
<thead>
<tr>
<th>Range</th>
<th>Amperes</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-120 Watt Range</td>
<td>5 A</td>
</tr>
<tr>
<td>35-200 Watt Range</td>
<td></td>
</tr>
<tr>
<td>100-600 Watt Range</td>
<td>8 A</td>
</tr>
<tr>
<td>175-1000 Watt Range</td>
<td>370 A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relay Range</th>
<th>Potential Circuit</th>
<th>Current Circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watts</td>
<td>Voltage</td>
<td>Voltamperes</td>
</tr>
<tr>
<td>20 - 120</td>
<td>120</td>
<td>17.9</td>
</tr>
<tr>
<td>100 - 600</td>
<td>120</td>
<td>17.9</td>
</tr>
<tr>
<td>35 - 200</td>
<td>208</td>
<td>18.8</td>
</tr>
<tr>
<td>175 - 1000</td>
<td>208</td>
<td>18.8</td>
</tr>
</tbody>
</table>
Figure 1: Front View of Type CW Power Relay without Case (photo)

Figure 2: Internal Schematic of the Type CW Relay in Type FT-11 case
AT SYSTEM UNITY POWER FACTOR RELAY
I_{AN} LEADS V_{AC} BY 30°

SYSTEM WATTS = \sqrt{3} I_L E_{LL}
RELAY TORQUE \propto I_L E_{LL}
Figure 4: Typical 60 Hertz Time Curves of the 21-120 and the 35-200 watt type CW Relay.

Figure 5: Typical 60 Hertz Time Curves of the 100-600 and 175-1000 watt type CW Relay.
Figure 6: External Schematic of Three Type CW Relays on a Three-Phase System

Note: For Balanced Three-Phase Conditions only One CW Relay is required.
Figure 7: External Schematic of a Three-Phase Connection of One CW Relay for Loss of Field Protection
NOTE:
MAXIMUM TORQUE ANGLE IN THE TRIPPING DIRECTION OCCURS WHEN THE CURRENT LEADS THE VOLTAGE BY 30 DEGREES WITH CONNECTIONS AS SHOWN.

Sub 3
849A303

Figure 8: Diagram of Test Connections for Type CW Relay in FT-11 Case
Figure 9: Outline and Drilling Plan for the Type CW Relay in the FT-11 Case

ABB Inc.
4300 Coral Ridge Drive
Coral Springs, Florida 33065
Telephone: +1 954-752-6700
Fax: +1 954-345-5329
www.abb.com/substation_automation