

—
APPLICATION NOTE

AC500 V3 USING PRAGMAS
DESCRIPTIONS AND EXAMPLES

2 3ADR010570, 1, en_US

Contents

1 Introduction .. 3
1.1 Scope of the document .. 3
1.2 Compatibility .. 3
1.3 Overview .. 3

2 Pragmas .. 4
2.1 Message pragmas .. 4
2.2 Region pragmas .. 4
2.3 Conditional Pragmas ..5
2.4 Attribute Pragmas ... 7

2.4.1 DisplayMode .. 7
2.4.2 Hide, hide all locals ... 8
2.4.3 Initialize on call .. 8
2.4.4 Noinit ... 9
2.4.5 No instance in retain .. 9
2.4.6 Obsolete .. 9
2.4.7 Qualified only ... 9
2.4.8 Warning disable, warning restore... 10

 AC500 V3 USING PRAGMAS

 3ADR010570, 1, en_US 3

1 Introduction

1.1 Scope of the document

This document explains the functionality of pragmas and possible use cases

1.2 Compatibility

The application note explains some pragmas that can be used with an AC500 V3. Some fea-

tures are linked to several Firmware versions. More information can be found in the online

help.

1.3 Overview

Pragmas are special statements that influence the behavior when precompiling or compiling

(build) the project. This document explains the basic functionalities and use cases. All prag-

mas with detailed descriptions can be found in the online help.

4 3ADR010570, 1, en_US

2 Pragmas
Pragmas are instruction which affect the (pre-) compilation process of one or more variables.

Pragmas can be grouped in four categories

1. Message pragmas

2. Region pragmas

3. Conditional Pragmas

4. Attribute Pragmas

Pragmas are written in between curly brackets.

2.1 Message pragmas

Message pragmas output a message during compilation process.

Four Message types are possible. Text, Info, Warning and Error. Following pragmas are used

as example:

{text 'This is a Text message'}

{info 'This is an Info message'}

{warning 'This is a Warning message'}

{error 'This is an Error message'}

The pragmas can be located anywhere in a POU. In the Build log following output is visible:

In contrast to comments which are only somewhere in the code the message pragma is not

ignored by the compiler and has an output in the Build Messages. This can be used for tag-

ging ToDos, code to be checked or anything else which has to be change before releasing/

commissioning. This way a download of not working code or with intern comments can be

prevented.

Once the POU is compiled it will not be compiled anymore as long as there are no changes in

the POU or doing a rebuild all.

Note: The message pragma cannot be used to output a message during

runtime.

To do a logging during runtime the CmpLog Library can be used in CoDeSys.

 AC500 V3 USING PRAGMAS

 3ADR010570, 1, en_US 5

2.2 Region pragmas

The region pragma can be used to group the code into several regions. This improves the

code readability. Each region can be named. Also nested regions are possible. A region can be

defined like shown below.

{region “<Name>”}

 <Multiple lines Content>

{endregion}

The screenshot below shows the implementation in Automation Builder. Each region can be

collapsed by clicking – or shown by clicking +

In the collapsed view it is visible how many lines are hidden in the region.

2.3 Conditional Pragmas

The conditional pragmas {IF} {ELSIF} {ELSE} {END_IF} can be used similar to the normal if

statements. Usually if is used to check the state of a parameter which can be changed during

runtime. The pragma {IF} checks identifiers which are not changing during runtime. This way

the compiler result is different on the defined identifiers.

Following example is used. Depending on ‘Testing’ the variable is either set to 0 or 5. In addi-

tion, a message pragma is used.

6 3ADR010570, 1, en_US

The table below compares the code programmed with the classic if clause as well as using

conditional pragmas.

 IF condition Conditional Pragma

① TESTING is a variable which is true TESTING is an identifier wich is

defined

② The complete program is compiled both infos are

outputted.

Only the TESTING part is compiled.

Only the test mode is enabled info is

outputted.

③ TESTING can be changed during runtime. The TESTING identifier cannot be

changed during runtime

④ Possible breakpoints at both assignments possi-

ble

Possible breakpoint only at the as-

signment in the first case.

①

①

② ②

③

④

④

④

③

 AC500 V3 USING PRAGMAS

 3ADR010570, 1, en_US 7

Conditional Pragmas cannot be changed during runtime but using conditional pragmas in-

stead of if conditions reduces the code size as well as the execution time. The conditional

pragmas can be used as shown above to change the behavior pending on an identifier. This

can for example be used to simulate signals or inputs that are not connected or change the

behavior of the system pending on connected modules. In the real application the additional

code has not to be deleted. Only the define has to be deleted or undefined.

Another use case is for example having two similar Applications. Both Applications should

have the same source code. With ‘defined’ it is also possible to check if a variable or a type is

defined. Furthermore, it can be checked if POUs, tasks or resources are existing in the appli-

cation. Even more checks are possible. The complete list can be found in the online help.

Pending on the available POUs different code will be compiled and downloaded.

8 3ADR010570, 1, en_US

2.4 Attribute Pragmas

Attribute pragmas is the biggest category. Only a few examples were chosen for this docu-

ment. The complete list can be found in the online help.

2.4.1 DisplayMode

The attribute Display mode can be used to set the display mode of the following variable to

decimal, hexadecimal or binary.

Like shown in the picture below 4 values are decelerated at the same memory address. So all

values are the same.

In the online mode the three variables are displayed in the defined display mode.

When changing the general display mode from decimal to any other only intNotDefined will

change. The other values will remain.

 AC500 V3 USING PRAGMAS

 3ADR010570, 1, en_US 9

2.4.2 Hide, hide all locals

The attribute ‘hide’ hides selected variables. This variable will not be visible in online mode or

when accessing the POU variables from another POU.

In the Program hide two variables are define ‘invisible’ and ‘visible’. When accessing the POU

‘Hide’ only ‘visible’ is shown as member.

It is also not possible see the variables with the attribute hide in online mode or to monitor

them.

In addition to the attribute ‘hide’ the attribute ‘hide_all_locals’ is available. This hides all local

variables. Only input and output variables are visible then.

The attribute ‘hide’ is set in the line above the variable which shall be hidden.

The attribute ‘hide_all_locals’ is set in the very first line before the POU definition.

2.4.3 Initialize on call

The attribute pragma ‘initialize_on_call’ can be added to function block inputs. Each input

which is not especially set during the call is initialized with the default value. This pragma can

be used when inputs are not necessary for the function block. For example, an abort input.

Usually the function block is only called with an input variable. But somewhere in the code the

abort value is set. Even when ‘xAbort’ is not set anymore and this code is not executed

anymore the abort input of the instance will remain true.

This is especially critical when working with pointers to make sure that there is no invalid

pointer at the function block input.

In the example below the Abort input has the attribute ‘Initialize on call’. In addition the

whold function block must have the same attribute as definition above the POU definition.

If now the code above is executed Abort will only be set to TRUE for the cycles where

inst(Abort := TRUE); is called. Otherwise Abort will be initialized with FALSE again.

10 3ADR010570, 1, en_US

Attention: When using ‘initialize_on_call’ an input assign before the function

block call has no effect. So following input assign is not working when the at-

tribute is used at the inputs.

Inst.A := 1;

Inst.B := 2;

Inst();

2.4.4 Noinit

A program has two variables which are initialized with 1.

After login the two values are changed to 5.

When doing a reset warm or reset cold iVar1 is 1 again and iVar2 remains 5.

Attention: A ‘noinit’ variable is not remanent. A download or reboot will set

the variable back to 1 again.

2.4.5 No instance in retain

When developing a function block, it might be necessary to initialize some variables each

time the function block is called. Therefore, the variables must not be retained. To prevent

that a function block is instantiated in the retain area the attribute ‘no_istance_in_retain’ can

be added in the line above the function block declaration. In case the user tries to instantiate

this fb in the retain area the compiler outputs an error message.

2.4.6 Obsolete

A structure, function block, or other POU can be set to obsolete. If this object is compiled be-

cause it is instantiated or called in any POU or Task a warning is displayed.

It is recommended to use the attribute obsolete in case of maintaining old function blocks in

the project or library. In case the wrong function block is instantiated the warning is output-

ted to the user.

2.4.7 Qualified only

The attribute ‘qualified_only’ can be found after adding a new Global Variables List. The posi-

tion is in the line above VAR_GLOBAL. The effect is that global variables can only be accessed

by using the list name as address. For example, ‘GVL.A’.

 AC500 V3 USING PRAGMAS

 3ADR010570, 1, en_US 11

The following picture shows the Global Variables list ‘GVL’ which has the attribute qualified

only. In this list is the variable ‘A’. Another Global Variables list ‘GVL_1’ doesn’t have the attrib-

ute qualified only. In this list are the variables ‘B’ and ‘C’.

The program itself has the local variable ‘C’.

When trying to access A the namespace GVL must be used. So the assign is ‘GVL.A := 3’.

‘B’ and ‘C’ can be accessed without the namespace as GVL_1 is not qualified only.

Attention: Local variables shadow global variables. As ‘C’ is both a Global vari-

able and a Local variable C := 3 will change the local variable. To change the

global variable the address GVL_1.C has to be used even if the list is not ‘qual-

ified_only’.

2.4.8 Warning disable, warning restore

The compiler might throw warnings or errors during compilation. Warnings can be sup-

pressed with a pragma. Following program is assigning an integer value to an unsigned inte-

ger value.

12 3ADR010570, 1, en_US

In line 4 a warning for an implicit type conversation is thrown.

The same conversation is also done in line 6 but here is no warning outputted. The warning is

suppressed by {warning disable <compiler id>}. This pragma can be used to suppress the

warnings. After the assignment the warning is restored again. Please do not disable warnings

before checking the impact of a faulty case. In this example the integer value is only assigned

if it is greater than zero.

Attention: when disabling a warning please always restore the warning after-

wards again. Otherwise the warning will also be disable in other program

parts which are compiled later.

__

__

ABB Automation Products GmbH

Eppelheimer Straße 82

69123 Heidelberg, Germany

Phone: +49 62 21 701 1444

Fax: +49 62 21 701 1382

E-Mail: plc.support@de.abb.com

www.abb.com/plc

We reserve the right to make technical

changes or modify the contents of this

document without prior notice. With re-

gard to purchase orders, the agreed par-

ticulars shall prevail. ABB AG does not ac-

cept any responsibility whatsoever for

potential errors or possible lack of infor-

mation in this document.

We reserve all rights in this document and

in the subject matter and illustrations con-

tained therein. Any reproduction, disclo-

sure to third parties or utilization of its

contents – in whole or in parts – is forbid-

den without prior written consent of ABB

AG.

Copyright© 2020 ABB. All rights reserved

