APPLICATION NOTE

AC500 V3 USING PRAGMAS
DESCRIPTIONS AND EXAMPLES

Contents

1 Introduction 3
11 SCOPE Of the AOCUMENT ...ttt ne 3
1.2 COMPATIDTILY oottt sttt sttt st et 3
1.3 OVEIVIBW ettt b s bbbt s bt st s bt st st s st s bt et et st st et et et e s st et et et et et et eneen 3
2 Pragmas 4
2.1 MESSAGE PrAGIMASeeieieiiieeiieete et eete st e s et e st e e et s s ste s st e s st e eseeseseesest e s st e s st eeneeeeneeseneesantesaneen 4
2.2 REGION PragMas ...ceciecieieieieteieteitetertestetetetetestetestesessessessesssssessesssssssssssessensessessessensensensenes 4
2.3 CoNditioNal Pragmascccceceeerririririnenteeetet et ettt ettt st sttt sttt sttt et n 5
2.4 ATErIDULE Pragmas ...ttt ettt ettt sttt sttt sttt ettt et n 7
24.1 DiSPIaYMOAE......oeiiiiee ettt 7
2.4.2 Hide, NIA@ Al IOCAIS ..eeeeeiieeeeeeeeeeeteeette ettt ettt s e et e e s eat e sseatsssssseesssnnes 8
2.4.3 Initialize on call
2.4.4 INOTNTE 1ottt ettt ettt s s st s s e st st e e e ssesseneessenseneen
2.4.5 NO INSEANCE TN FELATN ..ottt sttt et 9
2.4.6 OIS OIREE ..t s 9
247 QUANFIEA ONIY .ttt ettt e e ea e snens 9
2.4.8 Warning disable, warning restore.......ccievevevenierieeeceeeeeeteee e 10

3ADRO010570, 1, en_US

1.1

1.2

1.3

AC500 V3 USING PRAGMAS

Introduction

Scope of the document

This document explains the functionality of pragmas and possible use cases

Compatibility

The application note explains some pragmas that can be used with an AC500 V3. Some fea-
tures are linked to several Firmware versions. More information can be found in the online
help.

Overview

Pragmas are special statements that influence the behavior when precompiling or compiling
(build) the project. This document explains the basic functionalities and use cases. All prag-
mas with detailed descriptions can be found in the online help.

- @ Automation Builder Installation Manager
- @ Getting Started
- IEC 61131-3 editor
- ([Programming for PMS&x
& () CODESYS Development System
14 Configuring 1/0 Links
11H] of Applications
- [E] Designating Identifiers
@ Declaring Variables
4@ Creating Source Code in IEC
Configuring the memory reserve for online char
Function Block — Caling Functions or Methods 1
Using Input Assistance
2] Using Library POUs

@ Checking Syntax and Analyzing Code

4@ Orientation and Navigation
2] Searching and Replacing in the Entire Project
=] Refactoring

45 contents | 3 index | Q, search

Ready

System > of > Using Pragmas

Using Pragmas

What is a pragma in CODESYS?
A pragma is a special statement in the source code of an application that influences the properties of var
precompiling or compiling (code generation)

There are different pragmas for different purposes (example: initialization of a variable, monitoring of 2 va

variable to the symbel configuration, forcing the display of messages during the compilation process, anc
variable under certain conditiens).

@ Managing Textin Text Lists NOTICE! @ Using Libraries
- [£] Using Image Pools -y Reference, Programming
@ Programmed Access o 1j0s ° Uppercase and lowercase characters must be maintained 4@ Frogranming Languages and Edtors

How and where to insert a pragma?

@ Task Configuration ¥ || Apragma statement is specified in braces. Aftributes and texts used within the statement are enclosed | e @ (RS
< 2 quotation marks. The opening brace may follow immediately after a variable name. Opening and closing | E S:"“"‘Edf
ywords

located on the same line.

Online Help

Qback © & & | contents [HIndex A Search | & Online Help

Contents -1 x Using Pragmas. @sack . [2] & | Gcontents [HIndex X Search | €

=-Uh Automation Buider ~ CODESYS D. Contents - x

3ADRO010570, 1, en_US

&[] Automation Buider
- Automation Buider Installation Manager
-4 Getting Started
=-() IEC 611313 editor
o)-[7) Programming for PMS8xc
&1-([J) CODESYS Development System
@ Configuring 1/O Links
Programming of Applications
@ Working with Control Networks
Transferring Appications to the PLC
@ Testing and Debugging
@ Application in Runtime Mode
@ Updating an Application on the PLC
- [£] Copying Fies to/from PLC
@ Using Device Appications

i+ Varizble Types and Special Varizbles
1@ Operators

i+ @ Operands

1 @ Data Types

[£] Methods FB_Init, FB_Reinit, and FB_Exit
-4 Error Reports

2.1

Pragmas

Pragmas are instruction which affect the (pre-) compilation process of one or more variables.
Pragmas can be grouped in four categories

1. Message pragmas

2. Region pragmas
3. Conditional Pragmas
4. Attribute Pragmas

Pragmas are written in between curly brackets.

Message pragmas

Message pragmas output a message during compilation process.

Four Message types are possible. Text, Info, Warning and Error. Following pragmas are used
as example:

{text 'This is a Text message’}
{info 'This is an Info message'}
{warning 'This is a Warning message'}
{error 'This is an Error message'}
The pragmas can be located anywhere in a POU. In the Build log following output is visible:

Messages - Total 2 error(s), 28 warning(s), 2 message(s)
Build - |Q 1 error(s) |® 14 warning(s) |0 1 message(s) | OB

Description Project Object Position
------ Build started: Application: PLC_ACS00...

typify code ...

This is a Text message Pragmas Messages [PLC_ACS00_V3: PLC Logic: Application] Line 14, Calumn 1 (Impl)
& Thicis an Info message Pragmas Messages [PLC_ACS500_V3: PLC Logic: Application] Line 15, Column 1 (Impl}
& C0373: Thisis a Warning message Pragmas Messages [PLC_ACS500_V3: PLC Logic: Application] Line 16, Column 1 (Impl)
€ This is an Error message Pragmas Messages [PLC_ACS500_V3: PLC Logic: Application] Line 17, Column 1 (Impl)

Compile complete — 1 errors, 14 warnings

In contrast to comments which are only somewhere in the code the message pragma is not
ignored by the compiler and has an output in the Build Messages. This can be used for tag-
ging ToDos, code to be checked or anything else which has to be change before releasing/

commissioning. This way a download of not working code or with intern comments can be

prevented.

Once the POU is compiled it will not be compiled anymore as long as there are no changes in
the POU or doing a rebuild all.

@ Note: The message pragma cannot be used to output a message during
runtime.

To do a logging during runtime the CmpLog Library can be used in CoDeSys.

3ADRO010570, 1, en_US

2.2

2.3

AC500 V3 USING PRAGMAS

Region pragmas

The region pragma can be used to group the code into several regions. This improves the
code readability. Each region can be named. Also nested regions are possible. A region can be
defined like shown below.

{region “<Name>"}
<Multiple lines Content>
{fendregion}
The screenshot below shows the implementation in Automation Builder. Each region can be
collapsed by clicking — or shown by clicking +

n he rouneEd 1o s= T1ONS

51
[
iy

(1]

Conditional Pragmas

The conditional pragmas {IF} {ELSIF} {ELSE} {END_IF} can be used similar to the normal if
statements. Usually if is used to check the state of a parameter which can be changed during
runtime. The pragma {IF} checks identifiers which are not changing during runtime. This way
the compiler result is different on the defined identifiers.

Following example is used. Depending on ‘Testing’ the variable is either set to O or 5. In addi-
tion, a message pragma is used.

3ADRO010570, 1, en_US 5

FALSE TRUE

<D

Mo Testing Mode Testing Mode

End

The table below compares the code programmed with the classic if clause as well as using
conditional pragmas.

IF condition Conditional Pragma
1 PROGRAM Conditional 1 PROGRAM Conditional

=z VAR S A
3 iVar : INT; 3 ivar :

4 TESTING : BOOL := TRUE; @ oo
s END_VAR -

= 1 IF TESTING THEN N @

INT;

iVar := 5; 4 ivar := 5;
= 4 ELSE = =
€ iVar := 0; 7 iVar := 0;
END_IF

Messages - Total O error(s), 0 warning(s), 8 message(s)

changed during runtime

Build - | €3 Derror(s) I
: Messages - Total 0 error(s), 0 warning(s), 4 message(s)
Description Build - ’m
—————— Build started: Application: PLC_ACS500_V3.Application ——— Description
o z:‘::’n;;:?s“glnah\gdl ------ Build started: Application: PLC_AC500_v3.Application -
& test mode is disabled! @ o Zz‘tf:n;z:z;nab\ad\
Compile complete -- 0 errors, 0 warnings Compile complete - 0 errors, 0 warnings
= 1| IF TESTINGEGUEL 'I'H'E:N@ 1 @
@ 3 iVar 3] := 5: :
= 4| ELSE @ iVar§] := ¢
@f - ;;"‘ = 7 iar[3] =
' — 8
@ TESTING is a variable which is true TESTING is an identifier wich is
defined
@ The complete program is compiled both infos are Only the TESTING part is compiled.
outputted. Only the test mode is enabled info is
outputted.
@ TESTING can be changed during runtime. The TESTING identifier cannot be

Possible breakpoints at both assignments possi- Possible breakpoint only at the as-
ble signment in the first case.

3ADRO010570, 1, en_US

AC500 V3 USING PRAGMAS

Conditional Pragmas cannot be changed during runtime but using conditional pragmas in-
stead of if conditions reduces the code size as well as the execution time. The conditional
pragmas can be used as shown above to change the behavior pending on an identifier. This
can for example be used to simulate signals or inputs that are not connected or change the
behavior of the system pending on connected modules. In the real application the additional
code has not to be deleted. Only the define has to be deleted or undefined.

Another use case is for example having two similar Applications. Both Applications should
have the same source code. With ‘defined’ it is also possible to check if a variable or a type is
defined. Furthermore, it can be checked if POUs, tasks or resources are existing in the appli-
cation. Even more checks are possible. The complete list can be found in the online help.
Pending on the available POUs different code will be compiled and downloaded.

3ADRO010570, 1, en_US 7

2.4

24.1

Attribute Pragmas

Attribute pragmas is the biggest category. Only a few examples were chosen for this docu-
ment. The complete list can be found in the online help.

DisplayMode

The attribute Display mode can be used to set the display mode of the following variable to

decimal, hexadecimal or binary.

Like shown in the picture below 4 values are decelerated at the same memory address. So all

values are the same.

AR
intDec AT EMWO:
intHex AT EMWO:
intBin AT %MWO:

intNotDefined AT FMWO:

END VAR

In the online mode the three variables are displayed in the defined display mode.

INT:

INT:

INT:

Expression Type
@ intDec INT
@ intHex INT
& intBin INT
& intNotDefined INT

When changing the general display mode from decimal to any other only intNotDefined will

change. The other values will rem

Value

1000

16%03E8
2#0000001111101000
1000

ain.

3ADRO010570, 1, en_US

Address

YMWO
YMWO
YMWO
YMWO

2.4.2

2.4.3

AC500 V3 USING PRAGMAS

Hide, hide all locals

The attribute ‘hide’ hides selected variables. This variable will not be visible in online mode or
when accessing the POU variables from another POU.

WAR
invisikle : BOOL; Ly I‘.;: i 111 not be wvisible =n logged 1in
visibkle : BOOL; 4 This w 111 be wvisible en logged in
END VAR

In the Program hide two variables are define ‘invisible’ and ‘visible’. When accessing the POU
‘Hide’ only ‘visible’ is shown as member.

Hide.

@ | This variable will be visible when logged ir
—

It is also not possible see the variables with the attribute hide in online mode or to monitor
them.

In addition to the attribute ‘hide’ the attribute ‘hide_all_locals’ is available. This hides all local
variables. Only input and output variables are visible then.

The attribute ‘hide’ is set in the line above the variable which shall be hidden.

The attribute ‘hide_all_locals’ is set in the very first line before the POU definition.

Initialize on call

The attribute pragma ‘initialize_on_call’ can be added to function block inputs. Each input
which is not especially set during the call is initialized with the default value. This pragma can
be used when inputs are not necessary for the function block. For example, an abort input.

inst{Input := iValue);
IF xibort THEN

inst (Abort := TEUE);
END IF

Usually the function block is only called with an input variable. But somewhere in the code the
abort value is set. Even when ‘xAbort’ is not set anymore and this code is not executed
anymore the abort input of the instance will remain true.

This is especially critical when working with pointers to make sure that there is no invalid
pointer at the function block input.

In the example below the Abort input has the attribute ‘Initialize on call’. In addition the
whold function block must have the same attribute as definition above the POU definition.

FUNCTION BLOCK initCnCall
VAR INFUT
Input : INT;

Bbort : BOOL»
END VAR

If now the code above is executed Abort will only be set to TRUE for the cycles where
inst(Abort := TRUE); is called. Otherwise Abort will be initialized with FALSE again.

3ADRO010570, 1, en_US 9

24.4

2.4.5

2.4.6

2.4.7

10

@ Attention: When using ‘initialize_on_call’ an input assign before the function
block call has no effect. So following input assign is not working when the at-

tribute is used at the inputs.

Inst.A :=1;
Inst.B:=2;
Inst();

Noinit

A program has two variables which are initialized with 1.
iVarl : INT := 1;
iVar2 @ INT := 1;

After login the two values are changed to 5.

When doing a reset warm or reset cold iVarl is 1 again and iVar2 remains 5.

@ ivarl INT 1
@ ivar2 INT 5

Attention: A ‘noinit’ variable is not remanent. A download or reboot will set
the variable back to 1 again.

No instance in retain

When developing a function block, it might be necessary to initialize some variables each
time the function block is called. Therefore, the variables must not be retained. To prevent
that a function block is instantiated in the retain area the attribute ‘no_istance_in_retain’ can
be added in the line above the function block declaration. In case the user tries to instantiate
this fb in the retain area the compiler outputs an error message.

Obsolete

A structure, function block, or other POU can be set to obsolete. If this object is compiled be-
cause it is instantiated or called in any POU or Task a warning is displayed.

It is recommended to use the attribute obsolete in case of maintaining old function blocks in
the project or library. In case the wrong function block is instantiated the warning is output-
ted to the user.

Qualified only

The attribute ‘qualified_only’ can be found after adding a new Global Variables List. The posi-
tion is in the line above VAR_GLOBAL. The effect is that global variables can only be accessed
by using the list name as address. For example, ‘GVL.A’.

3ADRO010570, 1, en_US

2.4.8

AC500 V3 USING PRAGMAS

The following picture shows the Global Variables list ‘GVL’ which has the attribute qualified
only. In this list is the variable ‘A’. Another Global Variables list ‘GVL_1" doesn’t have the attrib-
ute qualified only. In this list are the variables ‘B’ and ‘C'.

The program itself has the local variable ‘C’.

When trying to access A the namespace GVL must be used. So the assign is ‘GVL.A := 3",

‘B’ and ‘C’ can be accessed without the namespace as GVL_1 is not qualified only.
Attention: Local variables shadow global variables. As ‘C’ is both a Global vari-

able and a Local variable C := 3 will change the local variable. To change the
global variable the address GVL_1.C has to be used even if the list is not ‘qual-

ified_only’.

- 2 VAR GLOBAL

3 B : INT := Z; ~

4 END VAR o
GVL_1 Expression Type Value
= 1 VAR GLOBAL » - T ?

2 B : INT := 2; i

4 END VAR Expregsion Type Value

e }B INT 3

- @ c INT 2

1 PROGRAM qualifiedOnly -
= a YRR qualifiedOnh

2 C: INT := Z: PLC_AC500_V3.Application.qualifiedOnly

4 END VAR

- - Expression Type Value

®C INT 3
.

1 GVL.L := 3; <

2 B:=3; —

3 L 1 GVL.B 3 1= 35

C =3 2 = 3:
sl] := 3 EEEN

Warning disable, warning restore

The compiler might throw warnings or errors during compilation. Warnings can be sup-
pressed with a pragma. Following program is assigning an integer value to an unsigned inte-
ger value.

1 PROGRAM WarningDisable

= 2 VAR
3 iValue 1 INT;
4 uiValue : UINT;
H uiValue2 : UINT;

END_VAR

= 1 IF iValue <0 THEN
2 uivalue := 0;

= 3 ELSE
4 wivalue i= iValue;
g uiValue2 := iValue;
2 END_IF

Messages - Total 0 errar(s), 2 warning(s), 0 message(s)

Build - [© Demoris) [@ 1 waming(s) [@ 0 message(s] | W B
Description Project Object Position
- Build started: Application: PLC_ACS00_V3. Application
typify code ...
@ €0195: Implicit conversion from signed Type 'INT' to unsigned Type 'UINT' : possible change of sign Pragmas WarningDisable [PLC_ACS00_v3: PLC Logic: Application] Line 4, Column 1 {Impl)

Compile complete — 0 errors, 1warrings

3ADRO0O10570, 1, en_US 11

12

In line 4 a warning for an implicit type conversation is thrown.

The same conversation is also done in line 6 but here is no warning outputted. The warning is
suppressed by {warning disable <compiler id>}. This pragma can be used to suppress the
warnings. After the assignment the warning is restored again. Please do not disable warnings
before checking the impact of a faulty case. In this example the integer value is only assigned
if it is greater than zero.

@

Attention: when disabling a warning please always restore the warning after-
wards again. Otherwise the warning will also be disable in other program
parts which are compiled later.

3ADRO010570, 1, en_US

ABB Automation Products GmbH
Eppelheimer StraBe 82
69123 Heidelberg, Germany

Phone: +49 62217011444
Fax: +49 62 217011382
E-Mail: plc.support@de.abb.com

www.abb.com/plc

We reserve the right to make technical
changes or modify the contents of this
document without prior notice. With re-
gard to purchase orders, the agreed par-
ticulars shall prevail. ABB AG does not ac-
cept any responsibility whatsoever for
potential errors or possible lack of infor-
mation in this document.

We reserve all rights in this document and
in the subject matter and illustrations con-
tained therein. Any reproduction, disclo-
sure to third parties or utilization of its
contents - in whole or in parts - is forbid-
den without prior written consent of ABB
AG.

Copyright© 2020 ABB. All rights reserved

