
BRUNO GODOY AND MICHAEL STALDER, ABB, SWITZERLAND, AND DERYA 
DERINYOL, BURSA CIMENTO, TURKEY, DEMONSTRATE HOW BURSA CIMENTO 
IN TURKEY INCREASED PRODUCTIVITY USING MODEL PREDICTIVE CONTROL 

WITH ABB’S EXPERT OPTIMISER.

The Bursa Cimento plant
ABB successfully commissioned a MPC-based solution 
for the cement kiln at Bursa Cimento plant in Turkey.

The Bursa Cimento plant is located near the city 
of Bursa in the Marmara region of Turkey. Bursa is 
one of the most populated cities in Turkey and an 
important industrial area.

Bursa Cimento operates two clinker lines and four 
cement grinding mills. The Expert Optimiser project 
was carried out on line 1 which consists of a 50 m 
rotary kiln with a 5-stage preheater and an in-line 
calciner, designed by Polysius and commissioned 
in 1996. The system is designed for a capacity of 

2250 tpd. The kiln main burner is fired with coal 
dust, whereas the calciner burner also fires RDF 
(refuse-derived fuel) at a rate of about 4 tph. The kiln 
is followed by a grate cooler with 12 cooling fans.

The kiln is also equipped with a waste heat 
recovery plant (WHR) using exhaust gases to 
generate electricity.

Expert Optimiser project
Bursa Cimento was looking at improving the 
production and energy efficiency of its plant when 
ABB was approached to present their process 
optimisation system, Expert Optimiser.

INCREASING 
PRODUCTIVITY



August 2016
Reprinted from World Cement

The collaboration was started with a site audit 
in October 2014. An ABB engineer visited the 
Bursa Cimento plant to study the process and 
evaluate the potential of applying Expert Optimiser 
to clinker line 1 and two cement mills. In the 
pyro processing area it was identified that Expert 
Optimiser would be able to improve the stability of 
the calciner temperature and the cooler operation 
with subsequent optimisation of the kiln production 
and energy consumption.

The potential improvements indicated by 
ABB convinced Bursa Cimento and the contract 
to implement Expert Optimiser was signed in 
September 2015. 

In early 2016, two engineers from Bursa Cimento 
attended an Expert Optimiser training course to 
learn the essentials about the technology used in 
Expert Optimiser and ABB’s approach to control and 
optimise a cement factory.

Commissioning of the system started end of 
February 2016. The resistance of the operators was 
minimal as the system quickly showed benefits, 
including improving little things that made the 
operators life easier. Utilisation factors higher than 
90% were already achieved at the beginning of 
commissioning. ABB implemented Model Predictive 
Control (MPC) for the kiln1 and the mills. The MPC 
approach and results from the project will be 
explained in more detail in the next chapters with 
focus on the pyro processing section.

MPC Technology 
From a user perspective, the main components in an 
MPC are:

ll The plant model.

ll An objective function.

ll A state estimator.

ll An algorithm for solving constrained 
optimisation problems.

The following actions take place on a cyclic basis 
and are repeated with the user-defined sampling 
time, which is chosen with respect to the time scale 
of the controlled process:

ll The actual state of the process is estimated 
from current and past measurements and 
from the state at previous sample(s) using 
Moving Horizon Estimation (MHE) method for 
state estimation. The estimated state x(k) is 
assumed to be an accurate approximation of 
the sometimes unmeasurable state in the true 
process. It is used as the starting point for the 
optimisation in the next step.

ll The plant model can be used to predict the 
future trajectories of the plant outputs for a 
given sequence/trajectory of future control 
signals. Optimisation determines the future 
control signal such that the objective function 
is minimised. The optimisation may also account 
for constraints on the process inputs and the 
process outputs.

ll Finally, the first instance for each calculated 
future control signal is applied to the process.

It is worth noting that normally the objective 
function is a weighted sum of deviations in the 
plant outputs and in the control signal increments. 
There may also be linear terms for minimisation or 
maximisation of certain variables. 

Figure 2. Plot of pre-configured model and final model 
versus actual data.

Figure 3. Cooler under grate pressure trend.

Figure 1. Bursa Cimento plant.
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Model Predictive Control applied
This section describes the practical implementation 
of MPC application for the cement kiln at Bursa 
Cement plant. It describes the modelling approach, 
how the objective functions is designed and how 
MHE is used to deliver a robust controller.

Model building
A good model is crucial first step for a successful 
application of MPC. Many MPC projects are deployed 
using data-driven, empirical models, where the 
user feeds data to an algorithm which derives the 
model from this data. One major drawback of 
applying this technique is the need for ‘good’ data. 
Good data means that the data sets contain as few 
unmeasured disturbances as possible and the process 
has been exited in a controlled manner. Producing 
good datasets for empirical model building can be 
a lengthy process and especially, for a cement kiln, 
hard to achieve as unmeasured disturbances are 
plenty.

To overcome this issue, ABB uses an approach 
with preconfigured models built with a graphical 
editor. These pre-configured models describe the 
relationship between the measured variables and 
manipulated variables using knowledge of the 
cement making process, experience of engineers and 
past projects and information acquired from the site 
audit and discussions with the process engineers.

The kiln model is divided into three major model 
blocks:

1.	 BZT model captures the relationship between 
the actuators (kiln feed, kiln fuel, air flow 
and kiln rotary speed) and the burning 
zone temperature of the kiln. Burning zone 
temperature is virtual measurement or a 
so-called soft sensor. The measurement is built 
with three direct measurement that indicate the 
burning zone temperature conditions:
yy Kiln motor current.
yy Pyrometer temperature.
yy Secondary air temperature.

2.	 BET model models a temperature in the 
pre-heater tower. BET is important as a 
measurement because it indicates what will 
happen to BZT when the material has moved 
through the system.

3.	 O2 model describes the oxygen balance between 
air flow, fuels and kiln feed. 

The ABB engineer will arrive on site with a model 
that is 85% ready to use. His job is then to validate 
the model and adjust the model parameters to fit 
site conditions using data from the plant. The tools 
allow the engineer to compare data to different 
models, e.g. with different model parameters. 
Figure 2 shows a plot with the pre-configured 
model and final (tuned) model versus a dataset 
acquired during commissioning. The figure shows 

that the initial model captures the basic relationship 
correctly. Getting from the initial model to the final 
model is a matter of adjusting model parameters, 
such as gains, lag times, dead times etc.

Model building happens decoupled from the 
runtime, so there is no danger of disturbing the 
control of already deployed MPC controller when 
tuning models. 

Desired control behavior and objective 
function
The desired behavior for the kiln controller for Bursa 
factory is to maximise the kiln feed while keeping 
burning zone temperature and oxygen close to the 
setpoint. This behaviour is achieved by formulating 
following objective functions for the MPC problem: 

ll The object functions for burning zone 
temperature and oxygen are chosen such that 
the cost rises proportional to the deviation 
between setpoint and actual value:  
 

ll To maximise the kiln feed the objective function 
is selected such that the cost is inverse 
proportional to the kiln feed: 
 

An additional objective function is implemented 
for the kiln rotary speed. It is desired to operate 
close to ratio specified by the production engineer: 
 
 

The objective function is of the same type as 
for burning zone temperature. The controller will 
compromise between setting the speed into the 
correct ratio with feed and achieving the correct 
burning zone temperature.

Moving Horizon Estimation (MHE) for model 
adaptation
A concern often mentioned applying MPC is 
that model will be obsolete after a short time 
and the controller will no longer deliver a good 
performance. There are multiple approaches how to 
tackle this issue, including ‘engineered’ calculations 
outside the MPC framework to adjust certain model 
parameters which will be continuously fed to the 
MPC or concepts such as Robust Model Predictive 
Control often referred to in the literature.

ABB has successfully applied an approach 
using the MHE and MPC framework where the 
MHE capabilities are used to automatically correct 
modeling errors.1 – 2 This approach is also used in the 
MPC application for the cement kiln. 
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Results
The stability of the kiln system has been improved 
since first day Expert Optimiser was set into 
automatic mode. Figure 3 shows the trend when 
Expert Optimiser was first switched into automatic 
mode. One can see that the under grate pressure 
in the cooler stabilised immediately. Bursa Cimento 
had issues operating the WHR plant, as the required 
minimum temperature of 340˚C could often not be 
ensured. After Expert Optimiser stabilised the cooler 
operation this problem vanished. This will improve 
the overall performance of the plant outside of the 
foreseen Expert Optimiser scope.

Similar improvement was achieved for the 
calciner temperature. Figure 4 indicates the control 
error distribution of the calciner temperature, 
showing that Expert Optimiser controls the 
temperature more tightly. Please note that this 

statistic includes about 2 days of data when EO was 
inactive and about 20 days of data when Expert 
Optimiser was active. Good control of the calciner 
temperature is essential as it is important for the 
stability of entire pyro process. Stable calciner 
temperature ensures that the material is always well 
prepared before it enters the kiln. Large variations 
cannot be corrected anymore after that point.

Better process stability is the foundation for 
improving the productivity of the kiln. Figure 5 
shows the distribution of hourly oxygen values 
for Expert Optimiser active and inactive. The 
figure clearly shows that with Expert Optimiser 
in control the oxygen is operated at a lower level 
which indicates that the process is operated more 
efficiently. 

The same is supported by Table 1; both average 
kiln feed and thermal energy consumption are 
improved by 2 – 3% compared to typical values 
before Expert Optimiser was used. On 7 March, 
Expert Optimiser was first turned online. After 
initial tuning, Expert Optimiser was used almost 
continuously and utilisation of higher 95% has been 
reached since. 

In general the results achieved follow the 
findings made during the site audit at the very 
beginning of the project.

Similar results have also been achieved for the 
two raw mills and cement mills by applying the same 
principles. 

Conclusion
In this article, ABB and Bursa Cimento describe how 
an MPC-based solution for advanced kiln control 
has been implemented. The control strategy has 
been implemented with ABB’s Expert Optimiser. The 
results achieved follow observations made during a 
site audit before the project and show improvements 
in the stability of the process and the performance 
of the kiln system.

This project shows that ABB’s Expert Optimiser 
continues to produce value for its users. It depicts 
that the MPC-based approach can deliver results fast 
and consistently. 
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Table 1. Average kiln feed and energy consumption. 
Typical values vs. April 2016.

Average 
Kiln Feed 
(tph)

Specific Energy 
Consumption 
(kcal/kg)

EO 
utilisation 
(%)

Typical (EO 
off)

152.0 870 – 880

April 2016 155.8 850 – 860 > 95

Figure 4. Calciner temperature control (minute values).

Figure 5. Pre-heater oxygen distribution EO active and 
EO inactive (hourly values).


