Are you searching for Switching and Protection solutions to protect and secure Battery Racks in Utility Scale Battery Energy Storage System (BESS)? Easily find the best solution to fit in Battery Racks and quickly configure your BESS installation thanks to our pre-configured and tested Application Bundles.

What is a Battery Rack?
A Battery Rack is a cabinet where more battery modules are installed in series to reach the system rated voltage. In addition to the batteries, switching and protective devices are installed along with auxiliary and/or communication circuits.

Why do you need Switching and Protection (S&P) solutions?
Every battery rack requires adequate galvanically switching and protection against overcurrents caused by battery modules. Unlike in PV strings, the overcurrents caused by batteries can be very high according to the battery technology.

Main benefits
- **Smarter protection**
 Increases power in your installation and reduces CAPEX by using the full range of 1500 VDC LV components.

- **Speeds up your projects**
 Speeds up your projects by using a range of products in compact sizes able to provide excellent performance at different temperatures and humidity ratings.

- **Smarter metering & monitoring**
 Maximizes power yield and cash generation by correct measurement of your BESS parameters.
Utility Scale Battery Systems

Utility scale stationary battery storage systems, also known as grid-scale front-of-the-meter storage systems, play a key role in integrating variable energy resources while providing the required flexibility. Battery storage increases flexibility in power systems, enabling an optimal use of variable electricity sources like photovoltaic and wind energy. Batteries can provide services for system operation, defer investments in peak generation and grid reinforcement.

Key characteristics of BESS in a Front-of-the-meter configuration:
• Direct connection to the AC Utility without the User’s plant in parallel
• Grid support (ancillary services, fast power injection for peak requirements)
• Storage capacity typically ranging from just a few, to hundreds of MWh.
Battery Racks
Fundamentals, main components & functionalities

In Battery Energy Storage Systems, battery racks are responsible for storing the energy coming from the grid or power generator. They provide rack-level protection and are responsible for connecting/disconnecting individual racks from the system.

A typical lithium-ion (li-ion) rack cabinet configuration comprises several battery modules with a dedicated battery energy management system. The most commonly used batteries in energy storage installations are li-ion batteries; the main topologies are NMC (Nickel Manganese Cobalt) and LFP (Lithium Iron Phosphate).

DC Battery rack main components
- Switch-disconnector (Tmax PV/OTDC)
- Fuses
- Enclosure
- Battery modules

Main functionalities:
- Overcurrent protection of battery modules
- Switching and isolation of battery modules

Additional functionality
- Monitoring: mainly where any drop in BESS plant performance may represent a significant economic loss
- Voltage, current, or temperature monitoring
- Communication: to communicate parameters to centralized monitoring system.
- Remotely-operated: need for remote control
Switching & Protection solutions for Battery Racks in Utility scale BESS

Discover our Switching & Protection solutions for easy Battery Racks configuration considering a 4MWh BESS architecture with two of 2MWh main system modules in parallel.

Specifications of electrical quantities of each single module

<table>
<thead>
<tr>
<th>Input data</th>
<th>[MW]</th>
<th>[MWh]</th>
<th>[V]</th>
<th>[V]</th>
<th>[A]</th>
<th>[A]</th>
<th>[kA]</th>
<th>[kA]</th>
<th>8</th>
<th>[A]</th>
<th>[kA]</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated power</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Rated stored energy</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Rated DC voltage</td>
<td></td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>Rated AC voltage</td>
<td></td>
<td>528</td>
<td></td>
</tr>
<tr>
<td>Rated AC voltage</td>
<td></td>
<td>528</td>
<td></td>
</tr>
<tr>
<td>Rated AC current</td>
<td></td>
<td>2703</td>
<td></td>
</tr>
<tr>
<td>Rated AC current</td>
<td></td>
<td>2703</td>
<td></td>
</tr>
<tr>
<td>Prospective AC short circuit current</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Rack rated current</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>Rack short circuit current</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>N. containers</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>N. racks per container</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>DC bus max current</td>
<td>2640</td>
<td></td>
</tr>
<tr>
<td>DC bus short circuit current</td>
<td>96</td>
<td></td>
</tr>
</tbody>
</table>
ABB’s offering (IEC)

Battery Rack components

Tmax T5D/PV-E Moulded case switch-disconnector in fixed execution combined with fuses*. The switch disconnector is equipped with the undervoltage release YU and the motor operator to open/close remotely.

OTDC400FV11-ESS switch disconnector combined with maximum ETI 500A gPV fuses where remote tripping is not needed.

*The fuses must have a breaking capacity not lower than the prospective short-circuit current value provided by the rack and an adequate limitation capability to protect the Tmax T5D/PV-E switch-disconnector.
ABB offering – List of components

<table>
<thead>
<tr>
<th>Product</th>
<th>Part number</th>
<th>Description</th>
<th>Qty</th>
<th>Total Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>T5D/PV-E</td>
<td>1SDA076898R1</td>
<td>T5D/PV-E 500 4P F F 1500V DC</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>OTDC400FV11-ESS</td>
<td>1SCA158203R1001</td>
<td>OTDC400FV11-ESS DC Switch-disconnector</td>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>

Product offering

Tmax T PV

OTDC