Maszynowe przemienniki częstotliwości ABB

Podręcznik użytkownika

Przemienniki częstotliwości ACS380

Power and productivity for a better world™
Lista powiązanych podręczników użytkownika

<table>
<thead>
<tr>
<th>Podręczniki użytkownika i przewodniki przemienników częstotliwości</th>
<th>Kod (język angielski)</th>
<th>Kod (polski)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS380 drives hardware manual</td>
<td>3AXD50000029274</td>
<td>3AXD50000043464</td>
</tr>
<tr>
<td>ACS380 quick installation and start-up guide</td>
<td>3AXD50000018553</td>
<td>3AXD50000043109</td>
</tr>
<tr>
<td>ACS380 user interface guide</td>
<td>3AXD50000022224</td>
<td>3AXD50000043107</td>
</tr>
<tr>
<td>ACS380 firmware manual</td>
<td>3AXD50000029275</td>
<td>3AXD50000043465</td>
</tr>
</tbody>
</table>

Podręczniki użytkownika i przewodniki do elementów opcjonalnych

| ACS-AP-x Assistant control panel user’s manual | 3AUA0000085685 |

Podręczniki użytkownika i przewodniki dotyczące narzędzi i konserwacji

| Drive composer PC tool user’s manual | 3AUA0000094606 |
| Converter module capacitor reforming instructions | 3BFE64059629 |

Podręczniki użytkownika i inne dokumenty są dostępne w Internecie w formacie PDF. Dalsze informacje znajdują się w sekcji Biblioteka dokumentów w Internecie na wewnętrznej stronie tylnej okładki. W sprawie podręczników, które nie są dostępne w bibliotece dokumentów, należy skontaktować się z lokalnym przedstawicielem firmy ABB.

Dostępny poniżej kod QR pozwala wyświetlić internetowy spis podręczników powiązanych z tym produktem.
Podręcznik użytkownika

Przemienniki częstotliwości ACS380

Spis treści

1. Instrukcje bezpieczeństwa

4. Montaż mechaniczny

6. Instalacja elektryczna

© 2017 ABB Oy. Wszelkie prawa zastrzeżone.

3AXD50000043464 wersja C
PL
Tłumaczenie oryginalnego podręcznika
3AXD50000029274
OBOWIĄZUJE OD: 2017-12-11
Spis treści

Lista powiązanych podręczników użytkownika ... 2

1. Instrukcje bezpieczeństwa
Zawartość tego rozdziału ... 13
Objaśnienie ostrzeżeń i uwag użytych w tym podręczniku 13
Bezpieczeństwo ogólne podczas instalacji, rozruchu i konserwacji 14
Bezpieczeństwo elektryczne podczas instalacji, rozruchu i konserwacji 15
Środki bezpieczeństwa przed rozpoczęciem prac elektrycznych 15
Dodatkowe instrukcje i uwagi .. 16
Uziemienie ... 17
Dodatkowe instrukcje dla przemienników częstotliwości zasilających 18
Synchroniczne silniki z magnesami trwałymi .. 18
Bezpieczeństwo podczas instalacji, rozruchu i konserwacji 18
Ogólne bezpieczeństwo podczas obsługi ... 19

2. Wprowadzenie do podręcznika
Zawartość tego rozdziału ... 21
Zastosowanie ... 21
Odbiorcy docelowi ... 21
Przeznaczenie podręcznika użytkownika ... 21
Zawartość tego podręcznika ... 22
Powiązane dokumenty ... 22
Kategoryzacja według obudowy (rozmiar) ... 23
Schemat skróconej instrukcji montażu i rozruchu 24

3. Opis sprzętu
Zawartość tego rozdziału ... 27
Ogólny opis ... 27
Warianty produktu ... 27
Opis sprzętu .. 28
Przyłącza sterowania ... 29
 Wariant standardowy (we/wy i Modbus – ACS380-04xS) 29
 Wariant skonfigurowany (ACS380-04xC) ... 30
 Wariant podstawowy (ACS380-04xN) .. 31
 Opcje montowane z boku .. 32
Opcje panelu sterowania ... 32
Połączenie z komputerem ... 32
Etykiety przemiennika częstotliwości .. 33
 Etykieta z informacjami o modelu .. 33
 Tabliczka znamionowa ... 34
Kod typu ... 35
Podstawy obsługi .. 37
Panel sterowania .. 38
Widok główny ... 39
6 Spis treści

Widok komunikatów ... 40
Widok opcji ... 40
Menu ... 40

4. Montaż mechaniczny

Zawartość tego rozdziału .. 41
Sprawdzanie miejsca montażu .. 42
Potrzebne narzędzia ... 43
Rozpakowywanie produktu ... 43
Montaż przemiennika częstotliwości ... 44
 Montaż przemiennika częstotliwości przy użyciu wkrotów 44
 Montaż przemiennika na szynie DIN 45

5. Planowanie instalacji elektrycznej

Zawartość tego rozdziału .. 47
Wybór rozłącznika .. 47
 Unia Europejska .. 48
 Inne regiony ... 48
Sprawdzanie kompatybilności silnika i przemiennika częstotliwości .. 48
Dobór kabli ... 48
 Typowe rozmiary kabli zasilania .. 49
 Zalecane typy kabli zasilania .. 51
 Typy kabli zasilania do ograniczonego użytku 51
 Niedopuszczalne typy kabli zasilania 51
 Ekran kabla silnika .. 52
 Dodatkowe wymagania dla Stanów Zjednoczonych 52
Dobór kabli sterowania .. 54
 Ekranowanie .. 54
 Sygnały w osobnych kablach .. 54
 Sygnały, które można przesyłać tym samym kablem 54
 Kabel przekaźnika .. 54
 Kabel narzędzia komputerowego Drive composer 54
Prowadzenie kabli ... 55
 Osobne kanały kabli sterowania .. 56
 Ciągłość ekranu lub przepustu kabla silnika 56
Ochrona przed zwarciami ... 56
 Ochrona przemiennika częstotliwości i kabli zasilania przed zwarciami 56
 Ochrona silnika i kabla silnika przed zwarciami 56
Ochrona przed przeciążeniem cieplnym 57
 Ochrona przemiennika częstotliwości, wejściowych kabli zasilania i kabla silnika przed przeciążeniem cieplnym 57
 Ochrona silnika przed przeciążeniem cieplnym 57
Ochrona przemiennika częstotliwości przed zwarciami doziemnymi .. 57
 Kompatybilność z zabezpieczeniami różnicowo-prądowymi 57
Aktywacja funkcji zatrzymania awaryjnego 58
Aktywacja funkcji Bezpiecznego wyłączenia momentu (STO) 58
Używanie wyłącznika bezpieczeństwa między przemiennikiem częstotliwości i silnikiem 58
Stosowanie stycznika pomiędzy przemiennikiem częstotliwości i silnikiem .. 58
Ochrona styków wyjść przekaźnikowych 59
6. Instalacja elektryczna

Zawartość tego rozdziału .. 61
Ostrzeżenia ... 61
Potrzebne narzędzia .. 61
Pomiar izolacji ... 62
Przemiennik częstotliwości.. 62
Kabel zasilania .. 62
Silnik i kabel silnika ... 62
Układ rezystora hamowania ... 62
Zgodność z sieciami IT (bez uziemienia) i sieciami TN z uziemieniem wierzchołkowym 63
Filtr EMC ... 63
Odlaczanie filtra EMC ... 63
Warystor uziemienie-faza ... 64
Podłączanie kabli zasilania ... 65
Schemat połączeń .. 65
Procedura podłączania .. 66
Podłączanie kabli sterowania ... 67
Schemat domyślnych połączeń we/wy (makro ABB Standard) ... 68
Schemat podłączenia magistrali komunikacyjnej ... 69
Procedura podłączenia kabla sterowania ... 72
Wyjście napięcia pomocniczego .. 73
Moduły opcjonalne ... 74
Instalacja opcjonalnego modułu z przodu ... 75
Deinstalacja opcjonalnego modułu mocowanego z przodu ... 75
Instalacja opcjonalnego modułu z boku .. 76
Deinstalacja opcjonalnego modułu mocowanego z boku ... 76

7. Lista czynności sprawdzających po instalacji

Zawartość tego rozdziału ... 77
Ostrzeżenia ... 77
Lista czynności sprawdzających .. 77

8. Konserwacja

Zawartość tego rozdziału ... 79
Częstotliwość konserwacji .. 80
Czyszczenie radiatora ... 81
Wymiana wentylatorów chłodzących ... 82
Wymiana wentylatorów chłodzących w obudowach R1-R3 ... 82
Wymiana wentylatorów chłodzących w obudowie R4 .. 83
Serwisowanie kondensatorów ... 85
Formowanie kondensatorów .. 85

9. Dane techniczne

Zawartość tego rozdziału ... 87
Wartości znamionowe .. 88
Wartości znamionowe IEC .. 88
Wartości znamionowe NEMA .. 89
8 Spis treści

Definicje ... 89
Wybór rozmiaru ... 90
Obniżanie wartości znamionowych 90
Obniżanie wartości znamionowych przez temperaturę powietrza w otoczeniu, IP20 91
Obniżanie wartości znamionowych ze względu na częstotliwość kluczowania 91
Obniżanie wartości znamionowych ze względu na wysokość n.p.m. 92
Bezpieczniki (IEC) ... 93
Bezpieczniki gG .. 93
Bezpieczniki UL .. 94
Bezpieczniki gR .. 95
Alternatywa ochrona przed zwarciami 95
Miniature wyłączniki automatyczne (środowisko IEC) ... 95
Samozabezpieczający kombinacyjny kontroler ręczny — typ E .. 96
Środowisko USA (UL) ... 96
Wymiary i waga ... 98
Wymagane wolne miejsce ... 99
Straty, charakterystyka chłodzenia i hałas .. 99
Charakterystyka zacisków kabli zasilania .. 100
IEC ... 100
Charakterystyka zacisków kabli sterowania .. 101
Filtry EMC kategorii C1 .. 102
Specyfikacja sieci elektroenergetycznej .. 103
Długość kabla silnika ... 104
Charakterystyka przyłącza silnika .. 104
Dane połączenia sterowania .. 106
Przyłącze rezystora hamowania .. 108
Sprawność ... 108
Stopnie ochrony .. 108
Warunki otoczenia .. 109
Materiały ... 110
Obowiązujące normy .. 111
Oznaczenie CE .. 112
Zgodność z europejską dyrektywą niskonapięciową ... 112
Zgodność z europejską dyrektywą o kompatybilności elektromagnetycznej 112
Zgodność z europejską dyrektywą w sprawie ograniczenia stosowania niektórych niebezpiecznych substancji (RoHS) .. 112
Zgodność z europejską dyrektywą w sprawie utylizacji odpadów elektrycznych i elektronicznych (WEEE) .. 112
Zgodność z europejską dyrektywą maszynową .. 113
Definicje ... 114
Kategoria C1 ... 114
Kategoria C2 ... 114
Kategoria C3 ... 115
Kategoria C4 ... 116
Oznaczenie UL .. 117
Lista czynności sprawdzających UL .. 117
Oznaczenie RCM .. 118
Oznaczenie EAC .. 118
Chińskie oznakowanie RoHS .. 118
Zrzeczenie odpowiedzialności .. 118
10. Rysunki wymiarowe

Obudowa R0 (230 V) .. 120
Obudowa R0 (400 V) .. 121
Obudowa R1 (230 V) .. 122
Obudowa R1 (400 V) .. 123
Obudowa R2 (230 V) .. 124
Obudowa R2 (400 V) .. 125
Obudowa R3 (400 V) .. 126
Obudowa R4 (400 V) .. 127

11. Hamowanie rezystorowe

Zawartość tego rozdziału ... 129
Zasada działania i opis sprzętu 129
Dobór rezystora hamowania .. 129
 Referencyjne rezystory hamowania 131
Dobór kabli rezystora hamowania i ich kierowanie 131
 Minimalizacja zakłóceń elektromagnetycznych 132
 Maksymalna długość kabla 132
 Zgodność EMC po zakończeniu montażu 132
Umiejscowienie rezystorów hamowania 132
Ochrona systemu w przypadku błędów w obwodzie hamowania 133
 Ochrona systemu w przypadku zwarć kabla i rezystora hamowania 133
 Ochrona systemu przed przeciżeniem termicznym 133
Montaż mechaniczny .. 133
Montaż elektryczny ... 134
 Sprawdzanie izolacji zespołu 134
 Schemat podłączania .. 134
 Procedura podłączania ... 134
Uruchamianie ... 135

12. Funkcja bezpiecznego wyłączania momentu (STO)

Zawartość tego rozdziału ... 137
Opis ... 137
 Zgodność z europejską dyrektywą maszynową 138
Zasady podłączania ... 139
 Połączenie z zasilaniem wewnętrznym +24 V DC 139
 Połączenie z zasilaniem zewnętrznym +24 V DC 139
Przykładowe okablowanie ... 140
 Przełącznik aktywacyjny .. 140
 Typy i długości kabli ... 141
 Uziemienie ekranów ochronnych 141
Zasada działania ... 141
Uruchamianie z testem akceptacyjnym 142
 Osoba uprawniona .. 142
 Raporty z testu akceptacyjnego 142
Spis treści

<table>
<thead>
<tr>
<th>Strona</th>
<th>Treść</th>
</tr>
</thead>
<tbody>
<tr>
<td>143</td>
<td>Procedura testu akceptacyjnego</td>
</tr>
<tr>
<td>144</td>
<td>Eksploatacja</td>
</tr>
<tr>
<td>146</td>
<td>Konserwacja</td>
</tr>
<tr>
<td>146</td>
<td>Śledzenie błędów</td>
</tr>
<tr>
<td>147</td>
<td>Dane dotyczące bezpieczeństwa</td>
</tr>
<tr>
<td>149</td>
<td>Skróty</td>
</tr>
<tr>
<td>149</td>
<td>Deklaracja zgodności</td>
</tr>
<tr>
<td>150</td>
<td>Certyfikat</td>
</tr>
</tbody>
</table>

13. Moduł interfejsu enkodera impulsów BTAC-02

<table>
<thead>
<tr>
<th>Strona</th>
<th>Treść</th>
</tr>
</thead>
<tbody>
<tr>
<td>151</td>
<td>Zawartość tego rozdziału</td>
</tr>
<tr>
<td>151</td>
<td>Instrukcje dotyczące bezpieczeństwa</td>
</tr>
<tr>
<td>152</td>
<td>Opis sprzętu</td>
</tr>
<tr>
<td>152</td>
<td>Opis produktu</td>
</tr>
<tr>
<td>152</td>
<td>Układ</td>
</tr>
<tr>
<td>153</td>
<td>Montaż mechaniczny</td>
</tr>
<tr>
<td>153</td>
<td>Montaż elektryczny</td>
</tr>
<tr>
<td>153</td>
<td>Okablowanie — ogólne</td>
</tr>
<tr>
<td>155</td>
<td>Okablowanie — interfejs zasilania enkodera</td>
</tr>
<tr>
<td>156</td>
<td>Okablowanie — enkoder</td>
</tr>
<tr>
<td>163</td>
<td>Uruchamianie</td>
</tr>
<tr>
<td>165</td>
<td>Wybór sprzężenia zwrotnego</td>
</tr>
<tr>
<td>165</td>
<td>Ustawienia adaptera enkodera</td>
</tr>
<tr>
<td>165</td>
<td>Konfiguracja enkodera</td>
</tr>
<tr>
<td>165</td>
<td>Diagnostyka</td>
</tr>
<tr>
<td>166</td>
<td>Dane techniczne</td>
</tr>
<tr>
<td>166</td>
<td>Interfejs enkodera</td>
</tr>
<tr>
<td>166</td>
<td>Zapasowe zasilanie przemiennika częstotliwości</td>
</tr>
<tr>
<td>166</td>
<td>Złączka wewnętrzne</td>
</tr>
<tr>
<td>167</td>
<td>Wymiary</td>
</tr>
</tbody>
</table>

14. Moduł rozszerzeń wyjść przekaźnikowych BREL-01

<table>
<thead>
<tr>
<th>Strona</th>
<th>Treść</th>
</tr>
</thead>
<tbody>
<tr>
<td>169</td>
<td>Zawartość tego rozdziału</td>
</tr>
<tr>
<td>169</td>
<td>Instrukcje dotyczące bezpieczeństwa</td>
</tr>
<tr>
<td>170</td>
<td>Opis sprzętu</td>
</tr>
<tr>
<td>170</td>
<td>Opis produktu</td>
</tr>
<tr>
<td>170</td>
<td>Układ</td>
</tr>
<tr>
<td>171</td>
<td>Montaż mechaniczny</td>
</tr>
<tr>
<td>171</td>
<td>Montaż elektryczny</td>
</tr>
<tr>
<td>171</td>
<td>Oznaczenia zacisków</td>
</tr>
<tr>
<td>171</td>
<td>Okablowanie</td>
</tr>
<tr>
<td>172</td>
<td>Włączanie zasilania</td>
</tr>
<tr>
<td>172</td>
<td>Uruchamianie</td>
</tr>
<tr>
<td>172</td>
<td>Parametry konfiguracji</td>
</tr>
<tr>
<td>175</td>
<td>Dane techniczne</td>
</tr>
<tr>
<td>175</td>
<td>Złączka zewnętrzne</td>
</tr>
<tr>
<td>175</td>
<td>Złączka wewnętrzne</td>
</tr>
<tr>
<td>175</td>
<td>Wymiary</td>
</tr>
</tbody>
</table>
15. Moduł rozszerzeń zasilania BAPO-01

Zawartość tego rozdziału .. 177
Instrukcje dotyczące bezpieczeństwa .. 177
Opis sprzętu .. 178
 Opis produktu ... 178
 Układ .. 178
Montaż mechaniczny .. 179
Montaż elektryczny .. 179
Uruchamianie .. 179
Dane techniczne ... 180
 Wartości znamionowe napięcia i prądu dla zasilania pomocniczego 180
 Strata zasilania .. 180
 Wymiary ... 180

Dalsze informacje

Zapytania dotyczące produktów i serwisu ... 181
Szkolenia z zakresu obsługi produktów ... 181
Przesyłanie uwag dotyczących instrukcji obsługi przemienników częstotliwości ABB 181
Biblioteka dokumentów w Internecie .. 181
Spis treści
Instrukcje bezpieczeństwa

Zawartość tego rozdziału
Ten rozdział zawiera instrukcje bezpieczeństwa, których należy przestrzegać podczas instalowania, obsługi i serwisowania przemiennika częstotliwości. Nieprzestrzeganie instrukcji bezpieczeństwa grozi obrażeniami ciała lub śmiercią bądź uszkodzeniami.

Objaśnienie ostrzeżeń i uwag użytych w tym podręczniku
Ostrzeżenia informują o warunkach, które mogą doprowadzić do obrażeń ciała, śmierci lub uszkodzenia sprzętu. Informują one także, jak unikać niebezpieczeństw. Uwagi dotyczą konkretnego warunku lub faktu albo podają informacje na określony temat.

W podręczniku używane są następujące symbole ostrzegawcze:

<table>
<thead>
<tr>
<th>Symbole</th>
<th>Ostrzeżenia dotyczące elektryczności</th>
<th>Ostrzeżenia ogólne</th>
<th>Ostrzeżenia dotyczące urządzeń wrażliwych na ładunki elektrostatyczne</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>informują o niebezpieczeństwach związanych z prądem elektrycznym, które mogą doprowadzić do obrażeń ciała, śmierci lub uszkodzenia sprzętu.</td>
<td></td>
<td>informują o warunkach niezwiązanych z elektrycznością, które mogą doprowadzić do obrażenia ciała, śmierci lub uszkodzenia sprzętu.</td>
</tr>
</tbody>
</table>
Bezpieczeństwo ogólne podczas instalacji, rozruchu i konserwacji

Instrukcje są przeznaczone dla personelu instalującego przemiennik częstotliwości i wykonującego prace konserwacyjne.

OSTRZEŻENIE! Należy przestrzegać tych instrukcji. Nieprzestrzeganie instrukcji może skutkować obrażeniami, śmiercią lub uszkodzeniem urządzenia.

- Podczas obsługi przemiennika częstotliwości zachować ostrożność.
- Używać butów ochronnych z metalowymi noskami.
- Przemiennik częstotliwości należy przechowywać do czasu montażu w jego opakowaniu lub chronić go w inny sposób przed pylem i zadziorami podczas wiercenia i szlifowania.
- Aby zapobiec wciąganiu pyłu do środka przez wentylator chłodzący przemiennika częstotliwości, należy odkryć obszar pod przemiennikiem przed jego uruchomieniem.
- Przemiennik częstotliwości należy chronić przed pylem i zadziorami także po jego zamontowaniu. Zebrany wewnątrz przemiennika częstotliwości pył przewodzący prąd może spowodować uszkodzenia lub nieprawidłowe działanie.
- Nie przykrywać wlotu i wylotu powietrza, gdy przemiennik częstotliwości jest uruchomiony.
- Upewnić się, że chłodzenie jest wystarczające.
- Przed podłączeniem napędu do przemiennika częstotliwości należy upewnić się, że wszystkie jego osłony są założone. W trakcie pracy nie zdejmować osłon.
- Przed zmianą limitów pracy przemiennika częstotliwości należy upewnić się, że silnik i wszystkie napędzane urządzenia mogą pracować w określonych limitach.
- Przed aktywacją funkcji programowych przemiennika częstotliwości odpowiedzialnych za automatyczne resetowanie błędów upewnić się, że nie doprowadzi to do niebezpiecznych sytuacji. Takie funkcje automatycznie resetują przemiennik częstotliwości i kontynuują działanie po błędzie. W przypadku aktywowania tych funkcji instalacja musi zostać czytelnie oznakowana zgodnie z definicją w normie IEC/EN 61800-5-1, podsekcja 6.5.3, na przykład „TO URZĄDZENIE URUCHAMIA SIĘ AUTOMATYCZNIE”.
- Maksymalna liczba włączeń przemiennika częstotliwości wynosi dwa razy na minutę. Zbyt częste włączanie może uszkodzić obwód ładowania kondensatorów DC. Maksymalna łączna liczba cyklów ładowania to 15000.
- Jeśli do przemiennika częstotliwości podłączone obwody zabezpieczające (na przykład zatrzymanie awaryjne i funkcja bezpiecznego wyłączania momentu), należy sprawdzić ich prawidłowe działanie przed włączeniem.

Uwaga:
- Jeśli wybrano źródło zewnętrzne dla polecenia startu i jest ono włączone, przemiennik częstotliwości zostanie uruchomiony natychmiast po zresetowaniu błędu, chyba że przemiennik częstotliwości zostanie skonfigurowany do startu impulsowego.
- Gdy miejsce sterowania nie jest ustawione na lokalne, przycisk zatrzymywania na panelu sterowania nie zatrzyma przemiennika częstotliwości.
- Naprawy przemiennika częstotliwości mogą być przeprowadzane tylko przez autoryzowane osoby.
Bezpieczeństwo elektryczne podczas instalacji, rozruchu i konserwacji

Środki bezpieczeństwa przed rozpoczęciem prac elektrycznych

Te ostrzeżenia są przeznaczone dla wszystkich osób, które pracują przy przemieniniku częstotliwości, silniku lub kablu silnika.

OSTRZEŻENIE! Należy przestrzegać tych instrukcji. Nieprzestrzeganie instrukcji może skutkować obrażeniami, śmiercią lub uszkodzeniem urządzenia.
Wszelkie elektryczne prace instalacyjne i konserwacyjne powinny być wykonywane tylko przez wykwalifikowanych elektryków. Przed rozpoczęciem prac instalacyjnych i konserwacyjnych należy wykonać następujące czynności.

1. Jednoznacznie określić miejsce pracy.
2. Odłączyć wszelkie możliwe źródła zasilania.
 • Otworzyć główny rozłącznik zasilania przemiennika częstotliwości.
 • Upewnić się, że ponowne podłączenie nie jest możliwe. Zablokować rozłącznik w pozycji otwartej i przymocować do niego etykietę z ostrzeżeniem.
 • Odłączyć zewnętrzne źródła zasilania od obwodów sterujących przed pracą nad kablami sterowania.
 • Po odłączeniu przemiennika częstotliwości należy zawsze odczekać 5 minut przed kontynuacją prac, aż kondensatory obwodu pośredniego zostaną rozładowane.
3. Należy chronić przed kontaktem inne elementy znajdujące się pod napięciem w miejscu prowadzenia prac.
4. Należy zachować wyjątkową ostrożność w pobliżu odsłoniętych przewodników.
5. Zmierzyć, czy instalacja nie jest zasilana.
 • Należy używać miernika uniwersalnego z impedancją co najmniej 1 MΩ.
 • Upewnić się, że napięcie pomiędzy zaciskami wejściowymi zasilania przemiennika częstotliwości (L1, L2, L3) oraz zaciskiem uziemienia (PE) jest bliskie 0 V.
 • Upewnić się, że napięcie pomiędzy zaciskami DC przemiennika częstotliwości (UDC+ i UDC-) oraz zaciskiem uziemienia (PE) jest bliskie 0 V.
6. Zainstalować tymczasowe uziemienie zgodnie z wymogami przepisów lokalnych.
7. Wystąpić o pozwolenie na prace u osoby odpowiedzialnej za elektryczne prace instalacyjne.
OSTRZEŻENIE! Należy przestrzegać tych instrukcji. Nieprzestrzeganie instrukcji może skutkować obrażeniami, śmiercią lub uszkodzeniem urządzenia.

- Jeśli przemiennik częstotliwości jest instalowany w sieci IT (sieci zasilania bez uziemienia lub sieci zasilania uziemionej przez rezystancję o wysokiej wartości — ponad 30 Ω), należy odłączyć wewnętrzny filtr EMC, ponieważ spowoduje to połączenie systemu z uziemieniem przez kondensatory filtra EMC. Może to spowodować zagrożenie lub uszkodzić przemiennik częstotliwości.

Uwaga: Odłączenie wewnętrznego filtra EMC zwiększa przewodzone emisje i znacznie ogranicza kompatybilność EMC przemiennika częstotliwości.

- Jeśli przemiennik częstotliwości jest podłączany do sieci IT (sieci zasilania bez uziemienia lub sieci zasilania uziemionej przez rezystancję o wysokiej wartości — ponad 30 Ω), należy odłączyć warystor od uziemienia. W przeciwnym razie obwód warystora może ulec uszkodzeniu.

- Jeśli przemiennik częstotliwości jest instalowany w sieci TN z uziemieniem wierzchołkowym, należy odłączyć wewnętrzny filtr EMC, ponieważ spowoduje to połączenie systemu z uziemieniem przez kondensatory filtra EMC. Spowoduje to uszkodzenie przemiennika częstotliwości.

Uwaga: Odłączenie wewnętrznego filtra EMC zwiększa przewodzone emisje i znacznie ogranicza kompatybilność EMC przemiennika częstotliwości.

- Wszystkich obwodów bardzo niskiego napięcia (ELV) podłączonych do przemiennika częstotliwości należy używać tylko w strefie połączenia ewkipotencjalnego, tzn. w strefie, w której wszystkie jednocześnie dostępne części przewodzące są podłączone elektrycznie, aby uniemożliwić powstawanie pomiędzy nimi niebezpiecznego napięcia. Można osiągnąć to przez prawidłowe uziemienie fabryczne, tj. zapewnienie, że wszystkie dostępne jednocześnie części przewodzące są uziemione do szyny uziemienia (PE) budynku.

- Nie można wykonywać żadnych testów sprawdzających izolację lub napięcie przemiennika częstotliwości.

Uwaga:

- Zaciski kabla silnika w przemienniku częstotliwości są pod niebezpiecznym napięciem, gdy źródło zasilania jest włączone, bez względu na to, czy silnik się obraca, czy nie.

- Zaciski DC i rezystora hamowania (UDC+, UDC-, R+ i R-) są zasilane niebezpiecznym napięciem.

- Przewody zewnętrzne mogą doprowadzać niebezpieczne napięcie do zacisków wyjść przekaźnika.

- Funkcja bezpiecznego wyłączania momentu (STO) nie powoduje odłączenia napięcia od obwodu głównego i dodatkowego. Funkcja ta nie stanowi skutecznego zabezpieczenia przed sabotażem lub nieprawidłowym użyciem.

OSTRZEŻENIE! Podczas obsługi płytek drukowanych należy nosić na nadgarstku opaskę uziemiajną. Nie należy dotykać płytek drukowanych bez potrzeby. Płytki drukowane zawierają elementy wrażliwe na wyładowania elektrostatyczne.
Uziemienie

Te instrukcje są przeznaczone dla wszystkich osób, które są odpowiedzialne za instalacje elektryczne, łącznie z uziemieniem przemiennika częstotliwości.

OSTRZEŻENIE! Należy przestrzegać tych instrukcji. Nieprzestrzeganie instrukcji grozi obrażeniami ciała, śmiercią, nieprawidłowym działaniem urządzenia i zwiększeniem zakłóceń elektromagnetycznych.

- Wszelkie elektryczne prace uziemieniowe powinny być wykonywane tylko przez wykwalifikowanych elektryków.
- W instalacjach z wieloma przemiennikami częstotliwości podłączyć każdy przemiennik częstotliwości do szyny zbiorczej uziemienia (PE) zasilania.
- Upewnić się, że przewodność przewodów uziemiających (PE) jest wystarczająca. Więcej informacji podano w sekcji Dobór kabli na str. 48. Należy przestrzegać lokalnych przepisów.
- Podłączyć ekrany kabli zasilających do zacisków przewodów uziemiających (PE) przemiennika częstotliwości.
- Wykonać uziemienie obwodowe ekranów kabli zasilania i sterowania przy wjeńściach kabli, aby ograniczyć zakłócenia elektromagnetyczne.

Uwaga:

- Ekranów kabli można użyć jako przewodów uziemiających tylko wtedy, gdy ich przewodność jest wystarczająca.
- Norma IEC/EN 61800-5-1 (sekcja 4.3.5.5.2.) wymaga, by w przypadku normalnego prądu upływu przemiennika częstotliwości wyższego niż 3,5 mA AC lub 10 mA DC używane było stałe połączenie z ochronnym przewodem uziemowym (PE). Dodatkowo
 - należy zainstalować drugi ochronny przewód uziomowy o tej samej powierzchni przekroju co oryginalny przewód uziomowy
 lub
 - zainstalować ochronny przewód uziomowy o powierzchni przekroju co najmniej 10 mm² (Cu) lub 16 mm² (Al)
 lub
 - zainstalować urządzenie, które automatycznie odłącza zasilanie, jeśli wystąpi awaria ochronnego przewodu uziomowego.
Dodatkowe instrukcje dla przemienników częstotliwości zasilających synchroniczne silniki z magnesami trwałymi

Bezpieczeństwo podczas instalacji, rozruchu i konserwacji

Poniżej znajdują się dodatkowe ostrzeżenia dotyczące przemienników częstotliwości zasilających synchroniczne silniki z magnesami trwałymi. Obowiązują również pozostałe instrukcje dotyczące bezpieczeństwa z tego rozdziału.

OSTRZEŻENIE! Należy przestrzegać tych instrukcji. Nieprzestrzeganie instrukcji może skutkać obrażeniami, śmiercią i uszkodzeniem urządzenia.

- Nie należy wykonywać żadnych prac przy przemienniku częstotliwości, gdy podłączony jest do niego obracający się silnik synchroniczny z magnesami trwałymi. Obracający się silnik synchroniczny z magnesami trwałymi zasila przemiennik częstotliwości, w tym zaciski zasilania wejściowego.

Przed przystąpieniem do prac instalacyjnych i konserwacyjnych nad przemiennikiem częstotliwości należy:
- Zatrzymać silnik.
- Odlączyć silnik od przemiennika częstotliwości, używając włącznika bezpieczeństwa lub w inny sposób.
- Jeśli nie jest możliwe odczepienie silnika, upewnić się, że silnik nie może się obrać podczas pracy. Upewnić się, że żaden inny system (np. przemienniki częstotliwości podnośników hydraulicznych) nie może spowodować obracania się silnika bezpośrednio lub przez jakiekolwiek połączenie mechaniczne (takie jak filc, zacisk, linka itp.).
- Zmierzyć, czy instalacja nie jest zasilana.
 - Należy używać miernika uniwersalnego z impedancją co najmniej 1 MΩ.
 - Upewnić się, że napięcie pomiędzy zaciskami wyjściowymi przemiennika częstotliwości (T1/U, T2/V, T3/W) oraz uziemieniem (PE) szyny zbiorczej jest bliskie 0 V.
 - Upewnić się, że napięcie pomiędzy zaciskami wejściowymi zasilania przemiennika częstotliwości (L1, L2, L3) oraz uziemieniem (PE) szyny zbiorczej jest bliskie 0 V.
 - Upewnić się, że napięcie pomiędzy zaciskami DC przemiennika częstotliwości (UDC+, UDC-) oraz zaciskiem uziemienia (PE) jest bliskie 0 V.
 - Zainstalować tymczasowe uziemienie zacisków wyjściowych przemiennika częstotliwości (T1/U, T2/V, T3/W). Połączyć razem zaciski wyjściowe, jak również uziemienie PE.

Uruchamianie i eksploatacja:
- Upewnić się, że operator nie może uruchomić silnika z prędkością większą niż znamionowa. Stosowanie większych prędkości prowadzi do przepięcia, co z kolei może uszkodzić kondensatory lub spowodować ich wybuch w obwodzie pośrednim przemiennika częstotliwości.
Ogólne bezpieczeństwo podczas obsługi

Poniższe instrukcje są przeznaczone dla wszystkich osób, które obsługują przemiennik częstotliwości.

OSTRZEŻENIE! Należy przestrzegać tych instrukcji. Nieprzestrzeganie instrukcji może skutkować obrażeniami, śmiercią lub uszkodzeniem urządzenia.

- Nie należy sterować silnikiem za pomocą rozłącznika zasilania przemiennika. Zamiast tego należy używać przycisków startu i stopu panelu sterowania, poleceń wydawanych przy użyciu zacisków we/wy przemiennika lub interfejsu magistrali komunikacyjnej.
- Podać komendę zatrzymania do przemiennika częstotliwości przed zresetowaniem błędu. Jeśli używane jest źródło zewnętrzne dla polecenia startu i start jest włączony, przemiennik częstotliwości zostanie uruchomiony natychmiast po zresetowaniu błędu, chyba że zostanie skonfigurowany do startu impulsowego. Więcej informacji znajduje się w podręczniku standardowego oprogramowania.
- Przed aktywacją funkcji programowych przemiennika częstotliwości odpowiedzialnych za automatyczne resetowanie błędów upewnić się, że nie doprowadzi to do niebezpiecznych sytuacji. Takie funkcje automatycznie resetują przemiennik częstotliwości i kontynuują działanie po błędzie.

Uwaga: Gdy miejsce sterowania nie jest ustawione na lokalne, klawisz zatrzymywania na panelu sterowania nie zatrzyma przemiennika częstotliwości.
Instrukcje bezpieczeństwa
Wprowadzenie do podręcznika

Zawartość tego rozdziału
W tym rozdziale opisano zastosowanie, docelową grupę odbiorców oraz przeznaczenie tego podręcznika, a także jego zawartość. Ten rozdział zawiera również schemat dostawy, instalowania i rozruchu przemiennika częstotliwości.

Zastosowanie
Ten podręcznik dotyczy przemienników częstotliwości ACS380.

Odbiorcy docelowi
Czytelnik musi mieć podstawową wiedzę na temat elektryczności, okablowania, elementów elektrycznych i symboli używanych na schematach elektrycznych.

Przeznaczenie podręcznika użytkownika
Ten podręcznik jest przeznaczony dla osób, które planują instalację przemiennika częstotliwości, instalują go, obsługują i serwisują.
Zawartość tego podręcznika

- **Instrukcje bezpieczeństwa** (na stronie 13) zawiera instrukcje bezpieczeństwa, których należy przestrzegać podczas instalowania, rozruchu, obsługi i serwisowania przemiennika częstotliwości.

- **Wprowadzenie do podręcznika** (na stronie 21) opisuje zastosowanie, docelową grupę odbiorców, cel oraz zawartość tego podręcznika.

- **Opis sprzętu** (na stronie 27) opisuje zasadę działania, układ, podłączenia zasilania i interfejsy sterowania oraz informacje o specyfikacji.

- **Montaż mechaniczny** (na stronie 41) opisuje sposób kontroli miejsca instalacji, rozpakowania, sprawdzenia dostawy i mechanicznej instalacji przemiennika częstotliwości.

- **Planowanie instalacji elektrycznej** (na stronie 47) opisuje, jak zaplanować elektryczną instalację przemiennika częstotliwości.

- **Instalacja elektryczna** (na stronie 61) opisuje pomiar izolacji zespołu oraz kompatybilność z sieciami IT (bez uziemienia) i sieciami TN (z uziemieniem wierzchołkowym). Opisano tam sposób podłączania kabli zasilania i sterowania, instalowanie modułów opcjonalnych i podłączanie komputera.

- **Lista czynności sprawdzających po instalacji** (na stronie 77) zawiera listę kontronną dotyczącą montażu mechanicznego i elektrycznego przemiennika częstotliwości przed rozruchem.

- **Konserwacja** (na stronie 79) zawiera instrukcje konserwacji zapobiegawczej oraz opisy wskaźników LED.

- **Dane techniczne** (na stronie 87) zawiera specyfikacje techniczne przemiennika częstotliwości.

- **Rysunki wymiarowe** (na stronie 119) zawiera rysunki wymiarowe przemiennika częstotliwości.

- **Hamowanie rezystorowe** (na stronie 129) opisuje sposób wyboru rezystora hamowania.

- **Funkcja bezpiecznego wyłączania momentu (STO)** (na stronie 137) opisuje funkcje STO, instalację i dane techniczne.

- **Moduł interfejsu enkodera impulsów BTAC-02** (na stronie 151) opisuje opcjonalny moduł BTAC-02.

- **Moduł rozszerzeń wyjść przekaźnikowych BREL-01** (na stronie 169) opisuje opcjonalny moduł BREL-01.

- **Moduł rozszerzeń zasilania BAPO-01** (na stronie 177) opisuje opcjonalny moduł BAPO-01.

Powiązane dokumenty

Więcej informacji zawiera sekcja **Lista powiązanych podręczników użytkownika** na stronie 2 (wewnętrzna strona okładki).
Kategoryzacja według obudowy (rozmiar)

Przemiennik częstotliwości jest produkowany w kilku rozmiarach obudów, takich jak R0, R1, R2. Niektóre instrukcje i inne informacje, które dotyczą tylko określonych rozmiarów obudowy, oznaczono symbolem tego rozmiaru. Rozmiar obudowy jest wskazywany na tabliczce znamionowej przemiennika częstotliwości. Więcej informacji zawiera sekcja Etykiety przemiennika częstotliwości na stronie 33.
Schemat skróconej instrukcji montażu i rozruchu

<table>
<thead>
<tr>
<th>Zadanie</th>
<th>Rozdział z informacjami</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identyfikowanie rozmiaru obudowy: R0, R1, R2 itp.</td>
<td>Kod typu na str. 35.</td>
</tr>
<tr>
<td>Planowanie instalacji.</td>
<td>Planowanie instalacji elektrycznej na str. 47.</td>
</tr>
<tr>
<td>Skontrolować warunki otoczenia, wartości znamionowe i wymagane powietrze chłodzące.</td>
<td>Dane techniczne na str. 87.</td>
</tr>
<tr>
<td>Rozpakować i sprawdzić przemiennik częstotliwości.</td>
<td>Rozpakowywanie produktu na str. 43.</td>
</tr>
<tr>
<td>Upewnić się, że wewnętrzny filtr EMC nie jest podłączony w przypadku przemienników częstotliwości, które mają być podłączone do sieci IT (bez uziemienia) lub sieci TN z uziemieniem wierzchołkowym.</td>
<td>Kod typu na str. 35.</td>
</tr>
<tr>
<td>Zgodność z sieciami IT (bez uziemienia) i sieciami TN z uziemieniem wierzchołkowym na str. 63.</td>
<td>Montaż przemiennika częstotliwości na str. 44.</td>
</tr>
<tr>
<td>Zamontować przemiennik częstotliwości.</td>
<td></td>
</tr>
<tr>
<td>Poprowadzić kable.</td>
<td>Prowadzenie kabli na str. 55.</td>
</tr>
<tr>
<td>Zmierzyć izolację kabla wejściowego, silnika i kabla silnika.</td>
<td>Pomiar izolacji na str. 62.</td>
</tr>
<tr>
<td>Podłączyć kable zasilania.</td>
<td>Podłączanie kabli zasilania na str. 65.</td>
</tr>
<tr>
<td>Podłączyć kable sterowania.</td>
<td>Podłączanie kabli sterowania na str. 67.</td>
</tr>
<tr>
<td>Sprawdzić miejsce montażu.</td>
<td>Lista czynności sprawdzających po instalacji na str. 77.</td>
</tr>
<tr>
<td>Wykonać rozruch przemiennika częstotliwości.</td>
<td>Więcej informacji zawierają dokumenty ACS380 Quick installation and start-up guide (3AXD50000018553 [j. ang.]) i ACS380 Firmware manual (3AXD50000029275 [j. ang.]).</td>
</tr>
</tbody>
</table>
Wyrażenia i skróty

<table>
<thead>
<tr>
<th>Wyrażenie/skrót</th>
<th>Wyjaśnienie</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS-AP-x</td>
<td>Panel sterowania z asystentami. Zaawansowana klawiatura operatora służąca do komunikacji z przemiennikiem częstotliwości.</td>
</tr>
<tr>
<td>Czoper hamowania</td>
<td>Gdy to konieczne, przesyła nadwyżkę energii z pośredniego obwodu przemiennika częstotliwości do rezystora hamowania. Czoper jest aktywowany, gdy napięcie łącza DC przekracza określoną wartość maksymalną. Wzrost napięcia jest zazwyczaj powodowany zwalnianiem (hamowaniem) silnika o wysokiej bezwładności.</td>
</tr>
<tr>
<td>Bateria kondensatorów</td>
<td>Więcej informacji zawiera rozdział Kondensatory łącza DC.</td>
</tr>
<tr>
<td>Karta sterowania</td>
<td>Karta, na której działa program sterujący.</td>
</tr>
<tr>
<td>BAPO-01</td>
<td>Opcyjonalny moduł rozszerzeń zasilania pomocniczego montowany z boku</td>
</tr>
<tr>
<td>BCAN-11</td>
<td>Opcyjonalny interfejs CANopen</td>
</tr>
<tr>
<td>BCBL-01</td>
<td>Opcyjonalny kabel USB–RJ45</td>
</tr>
<tr>
<td>BREL-01</td>
<td>Opcyjonalny moduł rozszerzeń wyjść przekaźnikowych montowany z boku</td>
</tr>
<tr>
<td>BTAC-02</td>
<td>Opcyjonalny moduł interfejsu enkodera impulsu montowany z boku</td>
</tr>
<tr>
<td>CCA-01</td>
<td>Opcyjonalny adapter konfiguracji niezasilonego napędu</td>
</tr>
<tr>
<td>Łącze DC</td>
<td>Obwód DC między prostownikiem i inwerterem</td>
</tr>
<tr>
<td>Kondensatory łącza DC</td>
<td>Magazyn energii, który stabilizuje napięcie pośredniego obwodu DC</td>
</tr>
<tr>
<td>Przemiennik częstotliwości</td>
<td>Przemiennik częstotliwości do sterowania silnikami AC</td>
</tr>
<tr>
<td>EFB</td>
<td>Wbudowana magistrala komunikacyjna</td>
</tr>
<tr>
<td>EMC</td>
<td>Kompatybilność elektromagnetyczna</td>
</tr>
<tr>
<td>FBA</td>
<td>Adapter komunikacyjny</td>
</tr>
<tr>
<td>FCAN-01</td>
<td>Opcyjonalny moduł adaptera CANopen</td>
</tr>
<tr>
<td>FCNA-01</td>
<td>Opcyjonalny moduł adaptera ControlNet</td>
</tr>
<tr>
<td>FDNA-01</td>
<td>Opcyjonalny moduł adaptera DeviceNet</td>
</tr>
<tr>
<td>FECA-01</td>
<td>Opcyjonalny moduł adaptera EtherCAT</td>
</tr>
<tr>
<td>FENA-11/-21</td>
<td>Opcyjonalny moduł adaptera Ethernet do obsługi protokołów EtherNet/IP, Modbus TCP i PROFINET IO</td>
</tr>
<tr>
<td>FEPL-02</td>
<td>Opcyjonalny moduł adaptera Ethernet POWERLINK</td>
</tr>
<tr>
<td>FPBA-01</td>
<td>Opcyjonalny moduł adaptera PROFIBUS DP</td>
</tr>
<tr>
<td>Wyrażenie/skrót</td>
<td>Wyjaśnienie</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Rozmiar obudowy</td>
<td>Dotyczy fizycznego rozmiaru przemiennika częstotliwości, np. R0 i R1. Informacje o obudowie można znaleźć na tabliczce znamionowej przy-mocowanej do przemiennika częstotliwości. Więcej informacji zawiera sekcja Kod typu na stronie 35.</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/Output, wejście/wyjście</td>
</tr>
<tr>
<td>IGBT</td>
<td>Tranzystor bipolarny z izolowaną bramką</td>
</tr>
<tr>
<td>Obwód pośredni</td>
<td>Więcej informacji zawiera rozdział Łącze DC.</td>
</tr>
<tr>
<td>Inwerter</td>
<td>Przetwarza natężenie i napięcie prądu stałego w natężenie i napięcie prądu przemiennego.</td>
</tr>
<tr>
<td>LRFI</td>
<td>Seria opcjonalnych filtrów EMC</td>
</tr>
<tr>
<td>Makro</td>
<td>Zdefiniowane wstępnie wartości parametrów w programie sterowania przemiennikiem częstotliwości. Każde makro jest przeznaczone do określonego zastosowania.</td>
</tr>
<tr>
<td>NETA-21</td>
<td>Opcjonalne narzędzie do zdalnego monitorowania</td>
</tr>
<tr>
<td>Sterowanie przez sieć</td>
<td>Wraz z protokolami komunikacyjnymi bazującymi na protokole Common Industrial Protocol (CIP™), takimi jak DeviceNet i Ethernet/IP, oznacza sterowanie przemiennikiem częstotliwości za pomocą obiektów Net Ctrl i Net Ref profilu przemiennika częstotliwości ODVAAC/DC. Więcej informacji można znaleźć na stronie www.odva.org i w następujących podręcznikach:</td>
</tr>
<tr>
<td>Parametr</td>
<td>Instrukcja działania dla przemiennika częstotliwości, którą użytkownik może dostosować, lub sygnał zmierzony albo obliczony przez przemiennik</td>
</tr>
<tr>
<td>Sterownik PLC</td>
<td>Programmable Logic Controller, programowalny sterownik logiczny</td>
</tr>
<tr>
<td>PROFIBUS,</td>
<td>Zastrzeżone znaki towarowe spółki PI - PROFIBUS & PROFINET International</td>
</tr>
<tr>
<td>PROFIBUS DP,</td>
<td></td>
</tr>
<tr>
<td>PROFINET IO</td>
<td></td>
</tr>
<tr>
<td>R0, R1, …</td>
<td>Rozmiar obudowy (obudowa)</td>
</tr>
<tr>
<td>RCD</td>
<td>Zabezpieczenia różnicowo-prądowe</td>
</tr>
<tr>
<td>Prostownik</td>
<td>Przetwarza natężenie i napięcie prądu przemiennego w natężenie i napięcie prądu stałego.</td>
</tr>
<tr>
<td>RFI</td>
<td>Zablokowania radiowe</td>
</tr>
<tr>
<td>SIL</td>
<td>Poziom nienaruszalności bezpieczeństwa. Więcej informacji podano w sekcji Funkcja bezpiecznego wyłączania momentu (STO) na str. 137.</td>
</tr>
</tbody>
</table>
| STO | Bezpieczne wyłączanie momentu (STO). Więcej informacji podano w sekcji **Funkcja bezpiecznego wyłączania momentu (STO)** na str. 137.
Opis sprzętu

Zawartość tego rozdziału

W tym rozdziale opisano podstawy obsługi, układ, tabliczkę znamionową oraz informacje dotyczące oznaczenia typu. Zawarto tu również ogólny wykres połączenia zasilania oraz interfejsów sterujących.

Ogólny opis

Urządzenie ACS380 to przemiennik częstotliwości przeznaczony do sterowania asynchronicznymi silnikami indukcyjnymi AC, silnikami synchronicznymi z magnesami trwałymi i synchronicznymi silnikami reluctancenymi ABB (silnikami SynRM). To urządzenie jest dostosowane do montażu w szafie.

Warianty produktu

Ten przemiennik częstotliwości jest dostępny w trzech podstawowych wariantach:

• Standardowy (ACS380-04xS) z modułem rozszerzeń we/wy i Modbus
• Skonfigurowany (ACS380-04xC), dla którego moduł rozszerzeń, na przykład wstępnie skonfigurowany adapter magistrali komunikacyjnej, jest wybierany podczas zamówienia
• Podstawowy (ACS380-04xN) bez wstępnie zainstalowanych modułów rozszerzeń

Więcej informacji zawiera sekcja *Kod typu* na stronie 35.
Opis sprzętu

<table>
<thead>
<tr>
<th>Numeryacja</th>
<th>Opis</th>
<th>Numeryacja</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Przednie moduły opcjonalne (dostępny moduł we/wy i Modbus lub komunikacyjny zależy od wariantu)</td>
<td>9</td>
<td>Śruba uziemienia warystora</td>
</tr>
<tr>
<td>2</td>
<td>Zacisk połączeniowy kabla zasilania</td>
<td>10</td>
<td>Połączenie PE (silnik)</td>
</tr>
<tr>
<td>3</td>
<td>Zacisk połączeniowy kabla silnika i rezystora hamowania</td>
<td>11</td>
<td>Panel sterowania, wyświetlacz i diody LED stanu</td>
</tr>
<tr>
<td>4</td>
<td>Wentylator chłodzący</td>
<td>12</td>
<td>Zaciski zintegrowanych przyłącza sterowania</td>
</tr>
<tr>
<td>5</td>
<td>Gniazdo panelu i narzędzia PC (RJ45)</td>
<td>13</td>
<td>Gniazdo 1 dla opcjonalnych modułów komunikacyjnych (we/wy lub magistrali komunikacyjnej)</td>
</tr>
<tr>
<td>6</td>
<td>Etykieta z informacjami o modelu</td>
<td>14</td>
<td>Złącze dla adaptera konfiguracji CCA-01</td>
</tr>
<tr>
<td>7</td>
<td>Śruba uziemienia filtra EMC*</td>
<td>15</td>
<td>Gniazdo 2 dla opcjonalnych modułów montowanych z boku</td>
</tr>
<tr>
<td>8</td>
<td>Tabliczka znamionowa</td>
<td>16</td>
<td>Przednia osłona</td>
</tr>
</tbody>
</table>

*Urządzenia o kodzie typu ACS380-040x-xxxx-1/2 nie mają śruby EMC.
Przyłącza sterowania

Oprócz zintegrowanych przyłączów sterowania w jednostce podstawowej dostępne są inne przyłącza sterowania, które są uzależnione od wariantu przemiennika częstotliwości.

- **Wariant standardowy (we/wy i Modbus – ACS380-04xS)**

 Wariant standardowy jest oznaczony kodem typu: ACS380-04xS. Więcej informacji zawiera sekcja *Kod typu* na stronie 35.

 Przyłącza:
 1. Wyjścia napięcia pomocniczego
 2. Wejścia cyfrowe
 3. Przyłącza funkcji bezpiecznego wyłączania momentu
 4. Przyłącze wyjścia przekaźnikowego
 5. Złącze dla adaptera konfiguracji CCA-01
 6. Wejścia i wyjścia cyfrowe
 7. Wejścia i wyjścia analogowe
 8. EIA-485 Modbus RTU
Wariant skonfigurowany (ACS380-04xC)

Przyłącza:

1. Wyjścia napięcia pomocniczego
2. Wejścia cyfrowe
3. Przyłącza funkcji bezpiecznego wyłączania momentu
4. Przyłącze wyjść przekaźnikowego
5. Złącze dla adaptera konfiguracji CCA-01
6. Przyłącza magistrali komunikacyjnej (zależne od modułu)
Wariant podstawowy (ACS380-04xN)

Przyłącza jednostki podstawowej:

1. Wyjścia napięcia pomocniczego
2. Wejścia cyfrowe
3. Przyłącza funkcji bezpiecznego wyłączania momentu
4. Przyłącze wyjścia przekaźnikowego
5. Złącze dla adaptera konfiguracji CCA-01
6. Gniazdo modułu opcjonalnego 1
Opcje montowane z boku

Informacje o opcjonalnych modułach rozszerzeń montowanych z boku:

- **Moduł interfejsu enkodera impulsów BTAC-02** na str. 151
- **Moduł rozszerzeń wyjść przekaźnikowych BREL-01** na str. 169
- **Moduł rozszerzeń zasilania BAPO-01** na str. 177

Opcje panelu sterowania

Przemiennik częstotliwości obsługuje poniższe panele sterowania:

- ACS-AP-I
- ACS-AP-S
- ACS-AP-W
- ACS-BP-S

Połączenie z komputerem

Aby podłączyć przemiennik częstotliwości do komputera, należy użyć przejściówek między interfejsami USB i RJ45. Istnieją 2 alternatywy:

1. Użycie panelu sterowania z asystentami ACS-AP-I/S/W jako przejściówki.
2. Użycie kabla USB–RJ45. Można go zamówić w firmie ABB (BCBL-01, 3AXD50000032449).

Podłączyć kabel do panelu i gniazda narzędzia komputerowego (RJ45) u góry prze- miennika częstotliwości. Więcej informacji zawiera sekcja *Opis sprzętu* na stronie 28.

Informacje na temat obsługi programu komputerowego Drive Composer można znaleźć w dokumencie *Drive composer PC tool user's manual* (3AUA0000094606 [j. ang.]).
Etykiety przemiennika częstotliwości

Na przemienniku częstotliwości znajdują się dwie etykiety:

- Etykieta z informacjami o modelu u góry przemiennika
- Tabliczka znamionowa z lewej strony przemiennika

Etykieta z informacjami o modelu

<table>
<thead>
<tr>
<th>Nr</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Typ przemiennika częstotliwości</td>
</tr>
<tr>
<td>2</td>
<td>Rozmiar obudowy i wartości znamionowe</td>
</tr>
<tr>
<td>3</td>
<td>Numer seryjny</td>
</tr>
<tr>
<td>4</td>
<td>Kod QR umożliwiający zarejestrowanie przemiennika</td>
</tr>
</tbody>
</table>

ACS380

3~ 400/480 V (Frame R1)

Pld: 1.5 kW (2 hp)

Phd: 1.1 kW (1.5 hp)

S/N: M171300003

Register with Drivebase app
Tabliczka znamionowa

Oto przykładowa tabliczka znamionowa

![ABB ACS380-0405-04A0-4](image)

<table>
<thead>
<tr>
<th>Nr</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Informacja o typie (więcej informacji zawiera rozdział Kod typu na str. 35.)</td>
</tr>
<tr>
<td>2</td>
<td>Rozmiar obudowy</td>
</tr>
<tr>
<td>3</td>
<td>Stopień ochrony</td>
</tr>
<tr>
<td>4</td>
<td>Wartości znamionowe (więcej informacji zawiera rozdział Wartości znamionowe na stronie 88).</td>
</tr>
<tr>
<td>5</td>
<td>Oznakowanie</td>
</tr>
<tr>
<td>6</td>
<td>Dane UL/CSA. Więcej informacji podano w sekcji Specyfikacja sieci elektroenergetycznej na str. 103.</td>
</tr>
<tr>
<td>7</td>
<td>S/N: Numer seryjny w formacie PRRTTXXXX, gdzie</td>
</tr>
<tr>
<td></td>
<td>P: Producent</td>
</tr>
<tr>
<td></td>
<td>RR: Rok produkcji: 15, 16, 17, … oznacza 2015, 2016, 2017, …</td>
</tr>
<tr>
<td></td>
<td>TT: Tydzień produkcji: 01, 02, 03, … oznacza 1 tydzień, 2 tydzień, 3 tydzień, …</td>
</tr>
<tr>
<td></td>
<td>XXXX: Numer wyprodukowanego egzemplarza rozpoczynający się od 0001 w każdym tygodniu.</td>
</tr>
</tbody>
</table>
Kod typu

Kod typu zawiera informacje o specyfikacji i konfiguracji przemiennika częstotliwości. W tabeli przedstawiono główne warianty przemiennika częstotliwości.

Przykładowy kod typu: ACS380-042C-02A6-4+K475+L535

<table>
<thead>
<tr>
<th>Segment</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS380</td>
<td>-</td>
<td>04</td>
<td>2</td>
<td>C</td>
<td>-</td>
<td>02A6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kody opcji</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kod</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Budowa 04 = moduł, IP20</td>
</tr>
<tr>
<td>B</td>
<td>Filtr EMC 0 = (wariant 400 V) lub C4 (wariant 200 V) 2 = wysoki poziom filtracji dla pierwszego środowiska (EN 61800-3, klasa C2)</td>
</tr>
<tr>
<td>C</td>
<td>Podłączenia S = wariant standardowy (we/wy i Modbus) C = wariant skonfigurowany</td>
</tr>
<tr>
<td>D</td>
<td>Znamionowa wartość prądu Na przykład 02A6 oznacza znamionową wartość prądu wyjściowego wynoszącą 2.6 A.</td>
</tr>
<tr>
<td>E</td>
<td>Napięcie znamionowe 1 = 1-fazowe, od 200 do 240 V 2 = 3-fazowe, od 200 do 240 V 4 = 3-fazowe, od 380 do 480 V</td>
</tr>
<tr>
<td>F</td>
<td>Kody opcji</td>
</tr>
<tr>
<td></td>
<td>We/wy +L511 BREL-01 opcjonalny moduł wyjść przekaźnikowych (4 przekaźniki, montaż z boku) +L534 BAPO-01 zewnętrzne zasilanie 24 V DC (montaż z boku) +L535 BTAC-02 interfejs enkodera HTL + zewnętrzne zasilanie 24 V DC (montaż z boku) +L538 moduł rozszerzeń we/wy i Modbus (montaż z przodu) +L535 BIO-01 I/O moduł rozszerzeń we/wy (montaż z przodu, można używać z magistralą komunikacyjną)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Segment</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS380</td>
<td>-</td>
<td>04</td>
<td>2</td>
<td>C</td>
<td>-</td>
<td>02A6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kody opcji</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kod</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Budowa 04 = moduł, IP20</td>
</tr>
<tr>
<td>B</td>
<td>Filtr EMC 0 = (wariant 400 V) lub C4 (wariant 200 V) 2 = wysoki poziom filtracji dla pierwszego środowiska (EN 61800-3, klasa C2)</td>
</tr>
<tr>
<td>C</td>
<td>Podłączenia S = wariant standardowy (we/wy i Modbus) C = wariant skonfigurowany</td>
</tr>
<tr>
<td>D</td>
<td>Znamionowa wartość prądu Na przykład 02A6 oznacza znamionową wartość prądu wyjściowego wynoszącą 2.6 A.</td>
</tr>
<tr>
<td>E</td>
<td>Napięcie znamionowe 1 = 1-fazowe, od 200 do 240 V 2 = 3-fazowe, od 200 do 240 V 4 = 3-fazowe, od 380 do 480 V</td>
</tr>
<tr>
<td>F</td>
<td>Kody opcji</td>
</tr>
<tr>
<td></td>
<td>We/wy +L511 BREL-01 opcjonalny moduł wyjść przekaźnikowych (4 przekaźniki, montaż z boku) +L534 BAPO-01 zewnętrzne zasilanie 24 V DC (montaż z boku) +L535 BTAC-02 interfejs enkodera HTL + zewnętrzne zasilanie 24 V DC (montaż z boku) +L538 moduł rozszerzeń we/wy i Modbus (montaż z przodu) +L535 BIO-01 I/O moduł rozszerzeń we/wy (montaż z przodu, można używać z magistralą komunikacyjną)</td>
</tr>
<tr>
<td>Kod</td>
<td>Opis</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------</td>
</tr>
<tr>
<td>+R700</td>
<td>j. angielski</td>
</tr>
<tr>
<td>+R701</td>
<td>j. niemiecki</td>
</tr>
<tr>
<td>+R702</td>
<td>j. włoski</td>
</tr>
<tr>
<td>+R703</td>
<td>j. holenderski</td>
</tr>
<tr>
<td>+R704</td>
<td>j. duński</td>
</tr>
<tr>
<td>+R705</td>
<td>j. szwedzki</td>
</tr>
<tr>
<td>+R706</td>
<td>j. fiński</td>
</tr>
<tr>
<td>+R707</td>
<td>j. francuski</td>
</tr>
<tr>
<td>+R708</td>
<td>j. hiszpański</td>
</tr>
<tr>
<td>+R709</td>
<td>j. portugalski (w Portugalii)</td>
</tr>
<tr>
<td>+R711</td>
<td>j. rosyjski</td>
</tr>
<tr>
<td>+R712</td>
<td>j. chiński</td>
</tr>
<tr>
<td>+R714</td>
<td>j. turecki</td>
</tr>
</tbody>
</table>

Ten kod opcji określa wersje językową dokumentów *Hardware manual* i *Firmware manual*.

W opakowaniu produktu zawarte są dokumenty *User interface guide* i *Quick installation and start-up guide* w języku angielskim, francuskim, hiszpańskim, niemieckim i włoskim oraz w języku lokalnym (jeśli są dostępne).
Podstawy obsługi

Ten rysunek przedstawia uproszczony schemat głównego obwodu przemiennika częstotliwości.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Prostownik. Przetwarza natężenie i napięcie prądu przemiennego w natężenie i napięcie prądu stałego.</td>
</tr>
<tr>
<td>2</td>
<td>Łącze DC. Obwód DC między prostownikiem a inwerterem.</td>
</tr>
<tr>
<td>3</td>
<td>Inwerter. Przetwarza natężenie i napięcie prądu stałego w natężenie i napięcie prądu przemiennego.</td>
</tr>
<tr>
<td>4</td>
<td>Czoper hamowania. W razie potrzeby przesyła nadwyżkę energii z pośredniego obwodu DC przemiennika częstotliwości do rezystora hamowania, jeśli taki rezystor jest podłączony do przemiennika. Czoper jest aktywowany, gdy napięcie łącza DC przekracza określoną wartość maksymalną. Wzrost napięcia jest zazwyczaj powodowany zwalnianiem (hamowaniem) silnika. Użytkownik może zainstalować rezystor hamowania, jeśli jest taka potrzeba.</td>
</tr>
<tr>
<td>5</td>
<td>Przyłącza DC (UDC+, UDC-).</td>
</tr>
</tbody>
</table>
Panel sterowania

Przemiennik częstotliwości ma zintegrowany panel sterowania z wyświetlaczem i przyciskami sterującymi.

Skrócony opis tego panelu jest zawarty w dokumencie ACS380 User interface guide (3AXD50000022224 [j. ang.]) pod główną pokrywą przemiennika.

W dokumencie ACS380 Firmware manual (3AXD50000029275 [j.ang.]) opisano sposób korzystania z interfejsu, uruchamiania przemiennika oraz modyfikowania jego ustawień i parametrów.

Wyświetlacz (widok główny):
- a) Miejsce sterowania: lokalne lub zdalne
- b) Ikony stanu
- c) Docelowa wartość zadana
- d) Bieżąca wartość zmierzona
- e) Czynności przypisane do lewego i prawego przycisku

Przycisk Back
- (otwiera widok Opcje w widoku głównym)

Przycisk OK
- (otwiera Menu w widoku głównym)

Przyciski strzałek
- (do nawigowania w menu i ustawiania wartości)

Przycisk Stop
- (gdy przemiennik jest sterowany lokalnie)

Przycisk Start
- (gdy przemiennik jest sterowany lokalnie)

Dioda LED stanu:
- Zielone ciągłe światło: Normalna praca
- Zielone migające światło: Aktywne ostrzeżenie
- Czerwone ciągłe światło: Aktywny błąd
- Czerwone migające światło: Aktywny błąd (wyłączyć zasilanie, aby zresetować przemiennik)
Krótki opis interfejsu użytkownika:

- W widoku głównym nacisnąć przycisk Wstecz, aby otworzyć widok Opcje.
- W widoku głównym nacisnąć przycisk OK, aby otworzyć Menu.
- Przyciski strzałek pozwalają poruszać się po widokach.
- Nacisnąć przycisk OK, aby otworzyć wybrane ustawienie lub element.
- Użyć przycisków strzałek w lewo i w prawo, aby wybrać wartość.
- Użyć przycisków strzałek w górę i w dół, aby ustawić wartość.
- Nacisnąć przycisk Wstecz, aby anulować ustawienie lub powrócić do poprzedniego widoku.

Widok główny

W widoku głównym pokazywany jest pomiar jednego z mierzonych sygnałów. Aby wybrać stronę, należy użyć przycisków strzałek w lewo i w prawo.

Pasek stanu u góry widoku głównego pokazuje te informacje:

- Miejsce sterowania (Loc — sterowanie lokalne lub Rem — sterowanie zdalne)
- Ikony stanu
- Docelowa wartość zadana

Naciśnięcie przycisku Wstecz na ekranie głównym pozwala otworzyć widok Opcje. Natomiast przycisk OK otwiera Menu.

Korzystając z przycisków strzałek w górę i w dół, można dostosować bieżącą wartość zadaną.

Ikony stanu

Ikony stanu opisują działanie przemiennika częstotliwości:

<table>
<thead>
<tr>
<th>Ikona</th>
<th>Animacja</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>![brak]</td>
<td>Brak</td>
<td>Lokalne uruchamianie / wyłączanie — włączone</td>
</tr>
<tr>
<td>![brak]</td>
<td>Brak</td>
<td>Zatrzymanie</td>
</tr>
<tr>
<td>![brak]</td>
<td>Brak</td>
<td>Zatrzymanie, start został przerwany</td>
</tr>
<tr>
<td>![miganie]</td>
<td>Miganie</td>
<td>Zatrzymanie, wydane polecenie startu, ale start został przerwany</td>
</tr>
<tr>
<td>![obrot]</td>
<td>Obrót</td>
<td>Działanie z wartością zadaną</td>
</tr>
<tr>
<td>![obrot]</td>
<td>Obrót</td>
<td>Działanie, ale nie z wartością zadaną</td>
</tr>
<tr>
<td>![miganie]</td>
<td>Miganie</td>
<td>Działanie z wartością zadaną, gdy wartość zadana = 0</td>
</tr>
<tr>
<td>![miganie]</td>
<td>Miganie</td>
<td>Błąd przemiennika częstotliwości</td>
</tr>
<tr>
<td>![brak]</td>
<td>Brak</td>
<td>Ustawienie lokalnych wartości zadananych — włączone</td>
</tr>
</tbody>
</table>
Widok komunikatów

Gdy wystąpi błąd lub ostrzeżenie, na wyświetlaczu pojawia się widok komunikatów. W widoku komunikatów pokazywany jest aktywny błąd w postaci ikony lub kodu błędu albo dostępna jest lista ostatnich kodów ostrzeżeń.

Listę typowych błędów i ostrzeżeń można znaleźć w dokumentach ACS380 User interface guide (3AXD50000022224 [j. ang.]) i ACS380 Quick installation and start-up guide (3AXD50000018553 [j. ang.]).

Szczegółowe informacje na temat ostrzeżeń i błędów zawarto w dokumencie ACS380 Firmware manual (3AXD50000029275 [j. ang.]).

Aby zresetować błąd, należy nacisnąć przycisk OK (gdy etykieta ekranowa to Reset?).

Widok opcji

Aby otworzyć widok Opcje, w widoku głównym należy nacisnąć przycisk Wstecz.

W widoku Opcje można:

• ustawić miejsce sterowania,
• ustawić kierunek obrotów silnika,
• ustawić wartość zadaną,
• wyświetlić aktywny błąd.
• wyświetlić listę aktywnych ostrzeżeń.

Menu

Aby otworzyć Menu, w widoku głównym należy nacisnąć przycisk OK.

Do poruszania się po Menu służą przyciski strzałek w górę i w dół.

Elementy Menu:

• Widok Dane silnika: wprowadzanie specyfikacji silnika.
• Widok Sterowanie silnikiem: ustawianie trybu sterowania silnikiem.
• Widok Makra sterowania: wybór makra sterowania.
• Widok Diagnostyka: przeglądanie aktywnych błędów i ostrzeżeń.
• Widok Wydajność energetyczna: monitorowanie wydajności przemiennika.
• Widok Parametry: otwieranie i edytowanie pełnej listy parametrów.

Szczegółowe informacje na temat interfejsu użytkownika zawarto w dokumencie ACS380 Firmware manual (3AXD50000029275 [j. ang.]).
Montaż mechaniczny

Zawartość tego rozdziału
Ten rozdział opisuje sposób kontroli miejsca montażu, rozpakowania, sprawdzenia dostawy i mechanicznej instalacji przemiennika częstotliwości.

Alternatywne instalacje
Możliwe metody montażu przemiennika częstotliwości:
• Na ścianie przy użyciu wkrętów
• Na płycie montażowej przy użyciu wkrętów
• Na szynie montażowej DIN przy użyciu zintegrowanej blokady
Wymagania dotyczące montażu:

- Pod i nad wlotami powietrza przemiennika częstotliwości należy zostawić co najmniej 75 mm wolnego miejsca na potrzeby chłodzenia.
- Można umieścić kilka przemienników obok siebie. W przypadku opcjonalnych modułów montowanych z boku należy zostawić około 20 mm wolnego miejsca z prawej strony przemiennika częstotliwości.
- Przemienniki R0 należy montować w pozycji pionowej. Ten model nie jest wyposażony w wentylator.
- Przemienniki R1, R2 i R3 można instalować pochylone o maksymalnie 90 stopni — od położenia pionowego do poziomego.

- Wylot powietrza chłodzącego u góry przemiennika musi znajdować się ponad wlotem powietrza u dołu.
- Gorące powietrze wydostające się z górnego wylotu chłodzącego przemiennika nie powinno dostawać się do wlotów powietrza chłodzącego innego sprzętu.
- Przemiennik częstotliwości ma certyfikat ochrony IP20 dla montażu w szafie.

Sprawdzanie miejsca montażu

Należy się upewnić, że:

- w miejscu montażu jest wystarczające chłodzenie Więcej informacji podano w sekcji Straty, charakterystyka chłodzenia i hałas na str. 99.
- warunki robocze w otoczeniu są zgodne ze specyfikacją podaną w rozdziale Warunki otoczenia na str. 109;
- powierzchnia montażu jest możliwie pionowa, zbudowana z niepalnego materiału i wystarczająco mocna, by utrzymać ciężar przemiennika Więcej informacji podano w sekcji Wymiary i waga na str. 98.
- pod i nad przemiennikiem znajdują się wyłącznie niepalne materiały;
- nad i pod przemiennikiem częstotliwości jest wystarczająca ilość miejsca, aby można było prowadzić prace serwisowe i konserwacyjne.
Potrzebne narzędzia

Aby przeprowadzić montaż mechaniczny przemiennika częstotliwości, potrzebne są następujące narzędzia:

• wiertarka i odpowiednie wiertła,
• wkrętak lub klucz z odpowiednimi końcówkami,
• taśma miernicza i poziomica,
• odpowiednia odzież ochronna.

Rozpakowywanie produktu

Ten rysunek przedstawia opakowanie przemiennika częstotliwości wraz z zawartością. Należy sprawdzić, czy wszystkie elementy zostały dostarczone i nie noszą śladów uszkodzeń.

Zawartość opakowania:
1. Przemiennik częstotliwości
2. Skrócona instrukcja montażu i uruchamiania
3. Akcesoria montażowe
4. Szablon montażowy (tylko obudowy R3 i R4)
Montaż przemiennika częstotliwości

Możliwe metody montażu przemiennika częstotliwości:
- Przy użyciu wkrętów na odpowiedniej powierzchni (ścienną lub płycie montażowej)
- Na szynie montażowej DIN przy użyciu zintegrowanej blokady

Montaż przemiennika częstotliwości przy użyciu wkrętów

2. Wywiercić otwory na wkręty montażowe.

3. Częściowo wkręcić wkręty w otwory montażowe.

4. Zamocować przemiennik na wkrętach montażowych.

5. Dokręcić wkręty.
Montaż przemiennika na szynie DIN

1. Przesunąć część blokującą w lewo.
2. Nacisnąć i przytrzymać przycisk blokowania.
3. Położyć wystające elementy przemiennika na górnej krawędzi szyny montażowej DIN.
4. Dopasować pozycję przemiennika do dolnej krawędzi szyny montażowej DIN.
5. Zwolnić przycisk blokowania.
6. Przesunąć część blokującą w prawo.
7. Upewnić się, że przemiennik częstotliwości jest zamontowany prawidłowo.

Aby zdjąć przemiennik z szyny DIN, należy użyć płaskiego śrubokrętu do otwarcia części blokującej.
Planowanie instalacji elektrycznej

Zawartość tego rozdziału

Ten rozdział opisuje, jak zaplanować elektryczną instalację przemiennika częstotliwości, na przykład jak sprawdzić kompatybilność silnika i przemiennika częstotliwości oraz wybrać kable, zabezpieczenia i sposób ułożenia kabli.

Instalacja musi być zawsze zaprojektowana i wykonana zgodnie ze stosownymi lokalnymi przepisami. Firma ABB nie ponosi żadnej odpowiedzialności za jakiekolwiek instalacje, które naruszają lokalne prawo i/lub inne przepisy. Jeśli nie są przestrzegane zalecenia firmy ABB, mogą wystąpić problemy z przemiennikiem częstotliwości, które nie są objęte gwarancją.

Wybór rozłącznika

Należy zainstalować obsługiwany ręcznie rozłącznik wejściowy pomiędzy źródłem zasilania prądem AC i przemiennikiem częstotliwości. Rozłącznik musi umożliwiać zablokowanie go w pozycji otwartej na potrzeby przeprowadzenia prac instalacyjnych i konserwacyjnych.
Unia Europejska

W celu zapewnienia zgodności z dyrektywami Unii Europejskiej, zgodnie z normą EN 60204-1, Bezpieczeństwo maszyn, rozłącznik musi należeć do jednego z następujących typów:

- rozłącznik izolacyjny kategorii AC-23B (EN 60947-3);
- rozłącznik z dodatkowym stykiem, który we wszystkich przypadkach powoduje przerwanie obwodu obciążenia przed otwarciem głównych styków rozłącznika (EN 60947-3);
- wyłącznik automatyczny przystosowany do izolacji zgodnie z normą EN 60947-2.

Inne regiony
Rozłącznik musi spełniać odpowiednie lokalne przepisy dotyczące bezpieczeństwa.

Sprawdzanie kompatybilności silnika i przemiennika częstotliwości

Przemiennik częstotliwości może współpracować z asynchronicznym silnikiem indukcyjnym AC, silnikiem z magnesami trwałymi oraz z synchronicznym silnikiem reluktancyjnym (SynRM). Do przemiennika częstotliwości może być podłączonych jednocześnie kilka silników indukcyjnych.

Sprawdzić, czy silnik i przemiennik częstotliwości są kompatybilne zgodnie z tabelą wartości znamionowych w sekcji Wartości znamionowe na stronie 88. Tabela przedstawia typową moc silnika dla każdego typu przemiennika częstotliwości.

Dobór kabli
Należy wybrać kable zasilania i silnika zgodnie z lokalnymi przepisami:

- Moc wejściowa oraz kable silnika muszą być w stanie wytrzymać odpowiednie prady obciążenia. Więcej informacji zawiera sekcja Wartości znamionowe na stronie 88.
- Maksymalna dopuszczalna temperatura kabla podczas pracy ciągłej powinna wynosić co najmniej 70°C. Wartości dla USA zawarto w sekcji Dodatkowe wymagania dla Stanów Zjednoczonych na stronie 52.
- Przewodność przewodów uziemiających (PE) musi być wystarczająca. Więcej informacji zawarto na stronie 49.
- Kabel 600 V AC jest dopuszczalny dla napięcia o wartości do 500 V AC.

Aby spełnić wymagania EMC znaku CE, należy użyć zatwierdzonego typu kabla. Więcej informacji podano w sekcji Zalecane typy kabli zasilania na str. 51.
Należy zastosować symetryczny kabel ekranowany, aby zredukować:

- emisję zakłóceń elektromagnetycznych układu napędowego,
- obciążenie izolacji silnika,
- prądy łożyskowe.

Przewód ochronny musi zawsze mieć odpowiednie przewodnictwo.

O ile lokalne przepisy dotyczące instalacji elektrycznych nie stanowią inaczej, pole przekroju poprzecznego przewodnika ochronnego musi być zgodne z warunkami, które wymagają automatycznego rozłączenia zasilania, opisanymi w pkt. 411.3.2. normy IEC 60364-4-41:2005, i muszą wytrzymać przewidywany prąd zwarcia w czasie rozłączania urządzenia ochronnego.

Pole przekroju poprzecznego przewodnika ochronnego można wybrać z tabeli poniżej lub obliczyć zgodnie z pkt. 543.1 normy IEC 60364-5-54.

Ta tabela przedstawia minimalne pole przekroju poprzecznego związane z rozmia- rem przewodów fazowych zgodnie z normą IEC 61800-5-1, gdy przewody fazowe i przewód ochronny wykonane są z tego samego metalu. W przeciwnym razie przekrój poprzeczny ochronnego przewodu uziomowego należy określić w sposób, w którym uzyskana przewodność jest równoważna wynikającej z zastosowania tej tabeli:

<table>
<thead>
<tr>
<th>Pole przekroju poprzecznego przewodów fazowych S (mm2)</th>
<th>Minimalne pole przekroju poprzecznego odpowiadającego przewodu ochronnego S_p (mm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S \leq 16$</td>
<td>S</td>
</tr>
<tr>
<td>$16 < S \leq 35$</td>
<td>16</td>
</tr>
<tr>
<td>$35 < S$</td>
<td>$S/2$</td>
</tr>
</tbody>
</table>

Więcej informacji zawarto na stronie 13 w opisie wymagań normy IEC/EN 61800-5-1 dotyczących uziemienia.

Typowe rozmiary kabli zasilania

Typowe pola przekroju poprzecznego kabli zasilania przemiennika częstotliwości dla prądu znamionowego:

<table>
<thead>
<tr>
<th>Typ przemiennika częstotliwości</th>
<th>Rozmiar</th>
<th>mm2 (Cu) $^{(1)}$</th>
<th>AWG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-fazowy $U_N = 200...240$ V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACS380-04xx-02A4-1</td>
<td>R0</td>
<td>3x1,5 + 1,5</td>
<td>16</td>
</tr>
<tr>
<td>ACS380-04xx-03A7-1</td>
<td>R0</td>
<td>3x1,5 + 1,5</td>
<td>16</td>
</tr>
<tr>
<td>ACS380-04xx-04A8-1</td>
<td>R1</td>
<td>3x1,5 + 1,5</td>
<td>16</td>
</tr>
<tr>
<td>ACS380-04xx-06A9-1</td>
<td>R1</td>
<td>3x1,5 + 1,5</td>
<td>16</td>
</tr>
<tr>
<td>ACS380-04xx-07A8-1</td>
<td>R1</td>
<td>3x1,5 + 1,5</td>
<td>16</td>
</tr>
<tr>
<td>ACS380-04xx-09A8-1</td>
<td>R2</td>
<td>3x6 + 6</td>
<td>10</td>
</tr>
<tr>
<td>ACS380-04xx-12A2-1</td>
<td>R2</td>
<td>3x6 + 6</td>
<td>10</td>
</tr>
<tr>
<td>3-fazowy $U_N = 380...480$ V</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Planowanie instalacji elektrycznej

Dodatkowe informacje można też znaleźć w sekcji *Charakterystyka zacisków kabli zasilania* na stronie 100.

<table>
<thead>
<tr>
<th>Typ przemiennika częstotliwości</th>
<th>Rozmiar</th>
<th>mm² (Cu) (^1)</th>
<th>AWG</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS380-04xx-01A8-4</td>
<td>R0</td>
<td>3×1,5 + 1,5</td>
<td>16</td>
</tr>
<tr>
<td>ACS380-04xx-02A6-4</td>
<td>R1</td>
<td>3×1,5 + 1,5</td>
<td>16</td>
</tr>
<tr>
<td>ACS380-04xx-03A3-4</td>
<td>R1</td>
<td>3×1,5 + 1,5</td>
<td>16</td>
</tr>
<tr>
<td>ACS380-04xx-04A0-4</td>
<td>R1</td>
<td>3×1,5 + 1,5</td>
<td>16</td>
</tr>
<tr>
<td>ACS380-04xx-05A6-4</td>
<td>R1</td>
<td>3×1,5 + 1,5</td>
<td>16</td>
</tr>
<tr>
<td>ACS380-04xx-07A2-4</td>
<td>R1</td>
<td>3×1,5 + 1,5</td>
<td>16</td>
</tr>
<tr>
<td>ACS380-04xx-09A4-4</td>
<td>R1</td>
<td>3×2,5 + 2,5</td>
<td>14</td>
</tr>
<tr>
<td>ACS380-04xx-12A6-4</td>
<td>R2</td>
<td>3×2,5 + 2,5</td>
<td>14</td>
</tr>
<tr>
<td>ACS380-04xx-17A0-4</td>
<td>R3</td>
<td>3×6 + 6</td>
<td>10</td>
</tr>
<tr>
<td>ACS380-04xx-25A0-4</td>
<td>R3</td>
<td>3×6 + 6</td>
<td>10</td>
</tr>
<tr>
<td>ACS380-04xx-032A-4</td>
<td>R4</td>
<td>3×10 + 10</td>
<td>8</td>
</tr>
<tr>
<td>ACS380-04xx-038A-4</td>
<td>R4</td>
<td>3×16 + 16</td>
<td>6</td>
</tr>
<tr>
<td>ACS380-04xx-045A-4</td>
<td>R4</td>
<td>3×25 + 16</td>
<td>4</td>
</tr>
<tr>
<td>ACS380-04xx-050A-4</td>
<td>R4</td>
<td>3×25 + 16</td>
<td>4</td>
</tr>
</tbody>
</table>

\(^1\) Typowy rozmiar kabla zasilania (symetrycznego, ekranowanego, 3-fazowego kabla miedzianego) W przypadku podłączenia wejściowego kabla zasilania zwykle wymagane są dwa oddzielne przewody PE — sam ekran nie wystarczy. Więcej informacji zawiera sekcja *Instrukcje bezpieczeństwa* na stronie 13.
Zalecane typy kabli zasilania

PE	Symetryczny kabel ekranowany z trzema przewodami fazowymi i koncentrycznym ochronnym przewodem uziomowym (PE) jako ekranem. Ekran musi spełniać wymogi normy IEC 61800-5-1 opisane na stronie 48. Dopuszczenie przewodów należy sprawdzić w lokalnych/krajowych przepisach.
PE	Symetryczny kabel ekranowany z trzema przewodami fazowymi i koncentrycznym ochronnym przewodem uziomowym (PE) jako ekranem. Wymagany jest osobny przewód uziemiający, jeśli ekran nie spełnia wymogów normy IEC 61800-5-1 opisanych na stronie 48.
PE	Symetryczny kabel ekranowany z trzema przewodami fazowymi i symetrycznym ochronnym przewodem uziomowym (PE) oraz ekranem. Przewód PE musi spełniać wymogi normy IEC 61800-5-1 opisanej na stronie 48.

Typy kabli zasilania do ograniczonego użytku

PE	System czterożyłowy (trzy przewody fazowe i ochronny przewód uziomowy w korycie kablowym) **nie jest dopuszczalny dla okablowania silnika** (jest dopuszczalny dla okablowania zasilania sieciowego).
PCV	System czterożyłowy (trzy przewody fazowe i ochronny przewód uziomowy w kanale kablowym PCV) **jest dopuszczalny dla okablowania zasilania przy przekroju przewodu fazowego mniejszym niż 10 mm² (8 AWG) lub silników < 30 kW (40 KM)**. Niedopuszczalne w Stanach Zjednoczonych.
EMT	Kabel falisty lub typu EMT z trzema przewodami fazowymi i przewodem ochronnym jest dopuszczalny do okablowania silnika z przekrojem przewodu fazowego mniejszym niż 10 mm² (8 AWG) lub dla silników ≤ 30 kW (40 KM).

Niedopuszczalne typy kabli zasilania

| PE | Symetryczny kabel ekranowany z indywidualnymi ekranami dla każdego przewodu fazowego **nie jest dopuszczalny dla żadnego rozmiaru kabla w okablowaniu zasilania lub silnika.** |
Ekran kabla silnika

Jeśli ekran kabla silnika jest używany jako jedyny ochronny przewód uziomowy silnika, należy zapewnić wystarczające przewodnictwo ekranu. Więcej informacji zawiera sekcja *Dobór kabli* na stronie 48 oraz opis normy IEC 61800-5-1.

Aby skutecznie stłumić emitowane i przewodzone zakłócenia o częstotliwościach radiowych, przewodnictwo ekranu musi być co najmniej na poziomie 1/10 przewodnictwa przewodu fazowego. Wymogi te spełniają ekrany miedziane lub aluminiowe. Ten rysunek przedstawia minimalne wymagania dotyczące ekranu kabla silnika. Ekran kabla silnika składa się z koncentrycznej warstwy drutów miedzianych owiniętych spiralnie taśmą miedziową lub przewodem miedzianym. Im lepszy i ciaśniejszy oplot ekranu, tym niższy poziom promieniowania oraz niższe prądy łożyskowe.

![Rysunek ekranu kabla silnika](attachment:ekran_kabla.png)

1	Oslona
2	Oslona przewodu miedzianego
3	Spiralny zwój taśmy miedzianej lub przewodu miedzianego
4	Wypełnianie
5	Przewody kablowe

Dodatkowe wymagania dla Stanów Zjednoczonych

Należy użyć ciągłego aluminiowego kabla zbrojonego typu MC z symetrycznym uziemieniem lub ekranowanego kabla zasilania dla kabli silnika, jeśli nie jest używany metalowy kanał kablowy. Na rynkach Ameryki Północnej kabel 600 V AC jest dopuszczalny dla napięcia o wartości do 500 V AC. Kabel 1000 V AC jest wymagany dla napięcia powyżej 500 V AC (poniżej 600 V AC). Kable zasilania muszą mieć wartość znamionową określoną przy 75°C (167°F).

Kanał kablowy

Nie należy prowadzić okablowania silnika z więcej niż jednego przemiennika częstotliwości w tym samym kanale kablowym.
Opancerzony lub ekranowany kabel zasilania

Sześciopłynowy (trzy fazy i trzy przewody uziemienia) ciągły falowany aluminiowy kabel zbrojony typu MC z symetrycznymi uziemieniami jest dostępny u następujących dostawców (nazwy handlowe w nawiasach):

- Anixter Wire & Cable (VFD)
- RSCC Wire and Cable (Gardex)
- Okonite (CLX)

Ekranowane kable zasilania są dostępne u następujących dostawców:

- Belden
- LAPPKABEL (ÖLFLEX)
- Pirelli
Dobór kabli sterowania

- **Ekranowanie**

Należy używać tylko ekranowanych kabli sterowania..

W przypadku sygnałów analogowych należy użyć podwójnie ekranowanych skrętek dwużyłowych (a). Należy użyć indywidualnie ekranowanej pary przewodów dla każdego sygnału. Nie należy używać wspólnego przewodu powrotnego dla różnych sygnałów analogowych.

Kabel podwójnie ekranowany (a) jest najlepszą alternatywą w przypadku niskonapięciowych sygnałów cyfrowych, ale dopuszczalna jest również pojedynczo ekranowana skrętka dwużyłowa (b).

![Kable ekranowane](image)

Sygnały w osobnych kablach

Sygnały analogowe i cyfrowe muszą być przesyłane osobnymi ekranowanymi kablami.

Tym samym kablem nie należy przesyłać sygnałów 24 V i 115/230 V AC.

Sygnały, które można przesyłać tym samym kablem

Jeśli napięcie nie przekracza 48 V, sygnały sterowane przekaźnikiem można przesyłać tymi samymi kablami co cyfrowe sygnały wejściowe. Sygnały sterowane przekaźnikiem powinny być przesyłane skrętką dwużyłową.

Kabel przekaźnika

Firma ABB przetestowała i zatwierdziła kabel z metalowym oplotem ekranującym (np. ÖLFLEX niemieckiej firmy LAPPKABEL).

Kabel narzędzia komputerowego Drive composer

Należy używać kabla USB typ A (PC) — typ B (panel sterowania). Maksymalna długość kabla wynosi 3 m.
Prowadzenie kabli

Kable należy poprowadzić zgodnie z poniższymi instrukcjami:

• Kabel zasilania (I), kabel silnika (M) i kable sterowania (C) należy ułożyć w osobnych korytkach
• Kabel silnika (M) powinien być oddalony od innych kabli.
• Kabel zasilania (I) powinien być oddalony od kabli sterowania (C) o co najmniej 200 mm.
• Kabel silnika (M) powinien być oddalony od kabli sterowania (C) o co najmniej 500 mm.
• Kabel zasilania (I) powinien być oddalony od kabla silnika (M) o co najmniej 300 mm.
• Jeśli kable sterowania muszą krzyżować się z kablami zasilania lub silnika, to należy je ułożyć pod kątem prostym (90°) w stosunku do siebie.
• Kilka kabli silnika może przebiegać równolegle.
• Nie należy instalować innych kabli równolegle do kabli silnika.
• Korytka kablów muszą mieć dobry kontakt elektryczny między sobą oraz z elektrodami uziemiającymi.
• Kable sterowania muszą być odpowiednio przymocowane na zewnątrz przemiennika częstotliwości, aby ograniczyć ich obciążenie.
Osobne kanały kabli sterowania
Kable sterowania 24 V i 230 V (120 V) należy poprowadzić w osobnych kanałach, chyba że kabel 24 V ma izolację dla 230 V (120 V) lub jest izolowany za pomocą osłony izolującej dla 230 V (120 V).

Ciągłość ekranu lub przepustu kabla silnika
Aby zminimalizować poziom emisji, gdy wyłączniki bezpieczeństwa, styczniki, skrzynki rozdzielcze lub podobne urządzenia są zainstalowane na kablu silnika pomiędzy przemiennikiem częstotliwości i silnikiem: należy zainstalować wyposażenie w metalowej obudowie z całkowitym uziemieniem dla ekranów zarówno kabla przychodzącego, jak i wychodzącego, lub w inny sposób połączyć ekran kabli. W przypadku ułożenia kabli w przepustach te kanały muszą być nieprzerwane.

Ochrona przed zwarciami

Ochrona przemiennika częstotliwości i kabli zasilania przed zwarciami
Przemiennik częstotliwości i kable zasilania sieciowego należy zabezpieczyć bezpiecznikami. Wartości nominalne bezpieczników opisano w rozdziale Dane techniczne na stronie 87. Bezpieczniki chronią kabel wejściowy, ograniczając uszkodzenia przemiennika częstotliwości oraz zapobiegając uszkodzeniom sąsiadujących urządzeń w przypadku zwarcia.

Informacje na temat wyłączników automatycznych zawarto w rozdziale Dane techniczne na stronie 87.

Ochrona silnika i kabla silnika przed zwarciami
Jeśli kabel silnika ma rozmiar odpowiadający prądowi znamionowemu, przemiennik częstotliwości zapewnia ochronę silnika i jego kabla w przypadku zwarcia.
Ochrona przed przecižniением cieplnym

■ Ochrona przemiennika częstotliwości, wejściowych kabli zasilania i kabla silnika przed przecižniением cieplnym

Jeśli kable mają rozmiar odpowiadający prądowi znamionowemu, przemiennik częstotliwości zapewnia ochronę swojego układu oraz kabli zasilania i silnika przed przecižniением cieplnym.

OSTRZEŻENIE! Jeśli przemiennik częstotliwości jest podłączony do wielu silników, należy użyć osobnego wyłącznika automatycznego lub bezpieczników chroniących poszczególne kable silnika i silnika przed przecižniением. Ochrona przed przecižniением przemiennika częstotliwości jest dostosowana do całkowitego obciążenia silnika. Może nie zostać wyzwolona przez przecižnięcie tylko jednego obwodu silnika.

■ Ochrona silnika przed przecižniением cieplnym

Zgodnie z przepisami silnik musi być chroniony przed przecižniением cieplnym, a w przypadku wykrycia przecižnięcia należy odciąć dopływ prądu. Przemiennik częstotliwości ma funkcję ochrony cieplnej chroniącą silnik i wyłączającą prąd w razie potrzeby. W zależności od wartości parametru przemiennika częstotliwości funkcja monitoruje obliczoną wartość temperatury lub rzeczywistą temperaturę przekazaną przez czujniki temperatury silnika. Użytkownik może lepiej dostosować model cieplny, podając dane silnika i obciążenia.

Najczęściej stosowane czujniki temperatury to:
- W przypadku rozmiarów silników IEC200…250 i większych: czujnik PTC lub Pt100.

Ochrona przemiennika częstotliwości przed zwarciami doziemnymi

Przemiennik częstotliwości jest wyposażony w funkcję chroniącą przed zwarciami doziemnymi w silniku i kablu silnika. Nie jest to funkcja ochrony przeciwporażeniowej ani przeciwpóźnarowej.

■ Kompatybilność z zabezpieczeniami różnicowo-prądowymi

Przemiennik częstotliwości jest przystosowany do pracy w instalacji z zabezpieczeniem różnicowo-prądowym typu B.

Uwaga: Wewnętrzny filtr EMC zawiera kondensatory łączące główny obwód elektryczny przemiennika częstotliwości z jego obudową. Kondensatory te oraz długie kable silnika zwiększają prąd upływowy do ziemi i mogą powodować wyzwolenie wyłączników różnicowo-prądowych.
Aktywacja funkcji zatrzymania awaryjnego

Ze względów bezpieczeństwa w każdej stacji sterowania operatora i innych stacjach obsługi muszą zostać zamontowane urządzenia zatrzymania awaryjnego. Zatrzymanie awaryjne powinno być zaprojektowane zgodnie z odpowiednimi normami.

Uwaga: Naciśnięcie przycisku Stop na panelu sterowania przemiennika częstotliwości nie spowoduje zatrzymania awaryjnego ani nie odseparuje przemiennika od niebezpiecznego potencjału.

Aktywacja funkcji Bezpiecznego wyłączania momentu (STO)

Więcej informacji podano w sekcji Funkcja bezpiecznego wyłączania momentu (STO) na str. 137.

Używanie wyłącznika bezpieczeństwa między przemiennikiem częstotliwości i silnikiem

Należy zainstalować wyłącznik bezpieczeństwa między silnikiem z magnesami trwałymi i wyjściem przemiennika częstotliwości. Taki wyłącznik pozwala odizolować silnik od przemiennika częstotliwości podczas prowadzenia prac konserwacyjnych.

Stosowanie stycznika pomiędzy przemiennikiem częstotliwości i silnikiem

Sposób kontroli nad stycznikiem wyjściowym zależy od zastosowania przemiennika częstotliwości.

W trybie wektorowego sterowania silnikiem i zatrzymywania silnika zgodnie z rampą należy otworzyć stycznik w następujący sposób:

1. Podać komendę zatrzymania do przemiennika częstotliwości.
2. Poczekać na zatrzymanie silnika przez przemiennik częstotliwości.
3. Otworzyć stycznik.

W trybie wektorowego sterowania silnikiem przy zatrzymywaniu silnika wybiegiem lub w trybie skalarnego sterowania silnikiem należy otworzyć stycznik w następujący sposób:

1. Podać komendę zatrzymania do przemiennika częstotliwości.
2. Otworzyć stycznik.

OSTRZEŻENIE! W trybie wektorowego sterowania nie wolno otwierać stycznika wyjściowego, gdy przemiennik częstotliwości steruje silnikiem.

Sterowanie wektorowe działa szybciej niż stycznik otwiera swoje złącza. Jeśli stycznik rozpocznie otwieranie, gdy przemiennik częstotliwości steruje silnikiem, sterowanie wektorowe będzie próbowało utrzymać prąd obciążeniowy, zwiększając maksymalnie napięcie wyjściowe. Może to uszkodzić stycznik.
Ochrona styków wyjść przekaźnikowych

Obciążenia indukcyjne (przekaźniki, styczniki, silniki) po wyłączeniu generują napięcia przejściowe. Napięcia przejściowe mogą spowodować pojemnościowe lub indukcyjne połączenie z innymi przewodami, co może skutkować uszkodzeniem systemu.

Aby zminimalizować promieniowanie elektromagnetyczne generowane przez obciążenia indukcyjne podczas wyłączania systemu, należy użyć obwodów tłumiących zakłócenia (warystorów, filtrów RC w przypadku prądu zmiennego lub diod w przypadku prądu stałego). Takie zabezpieczenia należy zainstalować jak najbliżej obciążenia indukcyjnego. Nie należy instalować obwodów tłumiących zakłócenia na wyjściu przekaźnikowym.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wyjście przekaźnikowe</td>
</tr>
<tr>
<td>2</td>
<td>Warystor</td>
</tr>
<tr>
<td>3</td>
<td>Filtr RC</td>
</tr>
<tr>
<td>4</td>
<td>Dioda</td>
</tr>
</tbody>
</table>
Instalacja elektryczna

Zawartość tego rozdziału

Ten rozdział opisuje sprawdzanie izolacji instalacji oraz kompatybilność z sieciami IT (bez uziemienia) i sieciami TN (z uziemieniem wierzchołkowym). Opisano tam sposób podłączania kabli zasilania i sterowania, instalowanie modułów opcjonalnych i podłączanie komputera.

Ostrzeżenia

OSTRZEŻENIE! Należy postępować zgodnie z instrukcjami w rozdziale Instrukcje bezpieczeństwa na str. 13. Nieprzestrzeganie instrukcji może skutkować obrażeniami, śmiercią lub uszkodzeniem urządzenia.

OSTRZEŻENIE! Należy się upewnić, że podczas montażu przemiennik częstotliwości nie jest podłączony do zasilania. Po odłączeniu źródła zasilania przed przystąpieniem do prac przy przemienniku częstotliwości należy zawsze poczekać 5 minut.

Potrzebne narzędzia

Aby przeprowadzić instalację elektryczną, potrzebne są następujące narzędzia:
• przyrząd do zdejmowania izolacji,
• wkrętak lub klucz z odpowiednimi końcówkami,
• miernik uniwersalny lub wykrywacz napięcia,
• odpowiednia odzież ochronna.
Pomiar izolacji

- **Przemiennik częstotliwości**

Nie należy przeprowadzać pomiarów tolerancji napięcia ani rezystancji izolacji na przemienniku. Izolacja między głównym obwodem a obudową przemiennika częstotliwości została sprawdzona w fabryce. Przemiennik jest wyposażony w obwody ograniczające napięcie, które automatycznie zmniejszają napięcie testowe.

- **Kabel zasilania**

Przed podłączeniem kabla zasilania należy zmierzyć jego izolację zgodnie z lokalnymi przepisami.

- **Silnik i kabel silnika**

Izolację silnika i kabla silnika należy sprawdzić w następujący sposób:

1. Sprawdzić, czy kabel silnika jest odłączony od zacisków wyjściowych przemiennika częstotliwości T1/U, T2/V i T3/W.

2. Zmierzyć rezystancję izolacji pomiędzy przewodami fazowymi, a następnie pomiędzy każdym przewodem fazowym i przewodem uziemiającym. Użyć napięcia pomiarowego 1 000 V DC. Rezystancja izolacji silnika ABB musi przekraczać 100 MΩ (wartość odniesienia w temperaturze 25°C lub 77°F). Wymagania dotyczące rezystancji izolacji innych silników zostały podane w dokumentacji dostarczonej przez producenta.

Wilgoć wewnątrz silnika zmniejsza rezystancję izolacji. W przypadku podejrzenia, że w silniku może być wilgoć, należy go osuszyć i powtórzyć pomiar.

- **Układ rezystora hamowania**

Izolację układu rezystora hamowania należy sprawdzić w następujący sposób:

1. Sprawdzić, czy kabel rezystora jest do niego podłączony i odłączony od zacisków wyjściowych przemiennika częstotliwości R+ i R-.

2. Po stronie przemiennika częstotliwości połączyć razem przewody kabla rezystora R+ i R-. Zmierzyć rezystancję izolacji pomiędzy połączonymi przewodami a ochronnym przewodem uziemiającym przy użyciu napięcia pomiarowego 1 kV DC. Rezystancja izolacji powinna być większa niż 1 MΩ.
Zgodność z sieciami IT (bez uziemienia) i sieciami TN z uziemieniem wierzchołkowym

■ Filtr EMC

OSTRZEŻENIE! Nie używać wewnętrznego filtra EMC przemieninika częstotliwości w sieci IT (sieci zasilania bez uziemienia lub sieci zasilania uziemionej przez rezystancję o wysokiej wartości — ponad 30 Ω). W takiej sytuacji sieć zostanie podłączona do potencjalu uziemienia za pomocą kondensatorów filtra EMC. Może to spowodować zagrożenie lub uszkodzić przemiennik częstotliwości.

OSTRZEŻENIE! Nie używać wewnętrznego filtra EMC przemieninika częstotliwości w sieci TN z uziemieniem wierzchołkowym. Może to uszkodzić przemiennik częstotliwości.

Gdy wewnętrzny filtr EMC jest odłączony, zgodność elektromagnetyczna przemieninika częstotliwości jest ograniczona. Więcej informacji podano w sekcji Długość kabla silnika na str. 104.

■ Odlączenie filtra EMC

Zawarte tu informacje dotyczą wariantów produktu, które są wyposażone w wewnętrzny filtr EMC (warianty EMC C2 i C3). Warianty z wartościami znamionowymi C4 nie mają wewnętrznego filtra EMC.

Więcej informacji zawiera sekcja Opis sprzętu na stronie 28.

Aby odłączyć filtr EMC, należy odkręcić jego wkręt uziemiający. W niektórych wariantach produktów obwód EMC jest odłączony od uziemienia elektrycznego w fabryce za pomocą nieprzewodzącej (plastikowej) śruby. Filtr EMC jest odłączony w przemiennikach częstotliwości z plastikową śrubą w lokalizacji filtra EMC. Aby podłączyć filtr, należy wykręcić plastikową śrubę i wkręcić metalową śrubę z podkładką z torby z wyposażeniem dostarczonej z przemiennikiem.
W obudowach R3 i R4 śruba uziemienia EMC znajduje się u dołu obudowy.

Warystor uziemienie-faza

Metalowa śruba warstora (VAR) łączy warstworowy obwód ochronny z uziemiением.

Aby odłączyć obwód warstora od uziemienia, należy odkręcić jego wkręt uziemiający. Więcej informacji zawiera sekcja *Opis sprzętu* na stronie 28.

W niektórych wariantach produktów obwód ochronny z warstrem jest odłączony od uziemienia elektrycznego w fabryce za pomocą nieprzewodzącej (plastikowej) śruby.

OSTRZEŻENIE! Jeśli przemiennik częstotliwości jest podłączany do sieci IT (sieci zasilania bez uziemienia lub sieci zasilania uziemionej przez rezystancję o wysokiej wartości — ponad 30 Ω), należy odłączyć warstora od uziemienia. W przeciwnym razie obwód warstora może ulec uszkodzeniu.
Podłączanie kabli zasilania

- Schemat połączeń

a. Dwa przewody uziemiające. Jeśli przekrój przewodu uziemiającego ma mniej niż 10 mm² (Cu) lub 16 mm² (Al), należy użyć dwóch przewodów (IEC/EN 61800-5-1). Można na przykład użyć ekranu kabla oprócz czwartego przewodu.

b. Oddzielny kabel uziemiający (po stronie zasilania). Należy użyć tego kabla, gdy czwarty przewód lub ekran nie zapewnia wystarczającej ochrony przez uziemienie.

c. Oddzielny kabel uziemiający (po stronie silnika). Należy go użyć, gdy ekran kabla nie zapewnia wystarczającego uziemienia lub w kablu nie ma symetrycznego przewodu uziemiającego.

Procedura podłączania

OSTRZEŻENIE! Należy postępować zgodnie z instrukcjami w rozdziale Instrukcje bezpieczeństwa na str. 13. Nieprzestrzeganie instrukcji może skutkować obrażeniami, śmiercią lub uszkodzeniem urządzenia.

OSTRZEŻENIE! Jeśli przemiennik jest połączony z sicią IT (bez uziemienia) lub sicią TN z uziemieniem wierzchołkowym, należy odłączyć wkręt uziemiający filtra EMC.

Jeśli przemiennik jest połączony z sicią IT (bez uziemienia), należy odłączyć wkręt uziemiający warstora.

Przed rozpoczęciem pracy należy zatrzymać przemiennik częstotliwości i wykonać czynności opisane w rozdziale Środki bezpieczeństwa przed rozpoczęciem prac elektrycznych na stronie 15.

Informacje na temat prowadzenia kabli zawarto w rozdziale Prowadzenie kabli na stronie 55. Informacje na temat odpowiednich momentów zawarto w rozdziale Charakterystyka zacisków kabli zasilania na stronie 100.

1. Zdjąć izolację z końcówek kabla silnika.
2. Uziemić ekran kabla silnika pod zaciskiem uziemiającym.
3. Skręcić ekran kabla silnika w wiązkę, okleić ją żółto-zieloną taśmą izolacyjną, zainstalować końcówkę kablową i podłączyć do zacisku uziemienia.
5. Jeśli ma to zastosowanie, podłączyć kabel rezystora hamowania do zacisków R- i UDC+.
6. Użyć ekranowanego kabla i uziemić ekran do zacisku uziemienia.
7. Zdjąć izolację z końcówek kabla zasilania wejściowego.
8. Jeśli kabel zasilania jest ekranowany, skręcić jego ekran w wiązkę, okleić ją żółto-zieloną taśmą izolacyjną, zainstalować końcówkę kablową i podłączyć do zacisku uziemienia.
10. Jeśli połączony przekrój ekranu kabla i przewodu uziemiającego (PE) nie jest wystarczający, użyć dodatkowego przewodu PE.
11. Podłączyć przewody fazowe kabla zasilania do zacisków wejściowych L1, L2 i L3.
Podłączanie kabli sterowania

Przed podłączeniem kabli sterowania należy zainstalować wszystkie moduły opcjonalne.

Więcej informacji o domyślnych połączeniach we/wy standardowego makra ABB zawarto w rozdziale *Schemat domyślnych połączeń we/wy (makro ABB Standard)* na stronie 68. Inne makra zostały opisane w dokumencie *ACS380 Firmware manual* (3AXD50000029275 [j. ang.]).

Kable należy podłączyć zgodnie z opisem w rozdziale *Procedura podłączenia kabla sterowania* na str. 72.

Przed rozpoczęciem pracy należy zatrzymać przemiennik częstotliwości i wykonać czynności opisane w rozdziale *Środki bezpieczeństwa przed rozpoczęciem prac elektrycznych* na stronie 15.

Zdjąć przednią osłonę.
Schemat domyślnych połączeń we/wy (makro ABB Standard)

Ten schemat podłączeń dotyczy przemienników częstotliwości z modułem rozszerzeń we/wy i Modbus:
- Wariant standardowy (ACS380-04xS)
- Wariant skonfigurowany (ACS380-04xC) z modułem rozszerzeń we/wy i Modbus (opcja +L538)

Więcej informacji zawiera sekcja Kod typu na stronie 35.

<table>
<thead>
<tr>
<th>Zaciski</th>
<th>Połączenia we/wy cyfrowych</th>
<th>Opisy</th>
</tr>
</thead>
<tbody>
<tr>
<td>+24V</td>
<td>Wyjście napięcia pomocniczego +24 V DC, maks. 200 mA</td>
<td></td>
</tr>
<tr>
<td>DGND</td>
<td>Wspólne złącze dla we/wy cyfrowych</td>
<td></td>
</tr>
<tr>
<td>DCOM</td>
<td>Stop (0) / Start (1)</td>
<td></td>
</tr>
<tr>
<td>DI1</td>
<td>Do przodu (0) / Do tyłu (1)</td>
<td></td>
</tr>
<tr>
<td>DI2</td>
<td>Wybór prędkości</td>
<td></td>
</tr>
<tr>
<td>DI3</td>
<td>Wybór prędkości</td>
<td></td>
</tr>
<tr>
<td>DI4</td>
<td>Wybór prędkości</td>
<td></td>
</tr>
<tr>
<td>DIO1</td>
<td>Wyjście cyfrowe: Rampa 1 (0) / Rampa 2 (1)</td>
<td></td>
</tr>
<tr>
<td>DIO2</td>
<td>Wyjście cyfrowe: Gotowość (0) / Brak gotowości (1)</td>
<td></td>
</tr>
<tr>
<td>DIO SRC</td>
<td>Napięcie pomocnicze wyjścia cyfrowego</td>
<td></td>
</tr>
<tr>
<td>DIO COM</td>
<td>Wspólne złącze dla we/wy cyfrowych. Oba obwody muszą być zamknięte, aby było możliwe uruchomienie przemiennika częstotliwości.</td>
<td></td>
</tr>
</tbody>
</table>

Analogowe we/wy

- Częstotliwość wyjściowa / Wartość zadana prędkości (0...10 V)
- Masa obwodu wejścia analogowego
- Nie skonfigurowano
- Masa obwodu wejścia analogowego
- Częstotliwość wyjściowa (0...20 mA)
- Masa obwodu wyjścia analogowego
- Ekran kabla sygnałowego
- Napięcie odniesienia

Bezpieczne włączanie momentu (STO)

- Funkcja bezpiecznego włączania momentu (STO). Połączenie fabryczne. Oba obwody muszą być zamknięte, aby było możliwe uruchomienie przemiennika częstotliwości.
- Więcej informacji podano w sekcji Funkcja bezpiecznego włączania momentu (STO) na str. 137.

Wyjście przekaźnikowe

- Wyjście przekaźnikowe 1
- Brak błędu [Błąd (-1)]

EIA-485 Modbus RTU

- Wbudowany adapter Modbus RTU (EIA-485)
Schemat podłączenia magistrali komunikacyjnej

<table>
<thead>
<tr>
<th>Zaciski</th>
<th>Opisy</th>
</tr>
</thead>
<tbody>
<tr>
<td>+24V</td>
<td>Wyjście napięcia pomocniczego i połączenia cyfrowe</td>
</tr>
<tr>
<td>DGND</td>
<td>Wyjście napięcia pomocniczego +24 V DC, maks. 200 mA</td>
</tr>
<tr>
<td>DCOM</td>
<td>Masa dla wyjścia napięcia pomocniczego</td>
</tr>
<tr>
<td>D11</td>
<td>Wspólne łącze dla we cyfrowych</td>
</tr>
<tr>
<td>D12</td>
<td>Resetowanie błędu</td>
</tr>
<tr>
<td>S+</td>
<td>Bezpieczne wyłączanie momentu (STO)</td>
</tr>
<tr>
<td>S1</td>
<td>Wyjście przekaźnikowe</td>
</tr>
<tr>
<td>S2</td>
<td>Wyjście przekaźnikowe 1</td>
</tr>
<tr>
<td>RC</td>
<td>Brak błędu [Błąd (-1)]</td>
</tr>
<tr>
<td>RA</td>
<td>Opcje i połączenia modułów rozszerzeń:</td>
</tr>
<tr>
<td>RB</td>
<td>+K457 FCAN-01 CANopen</td>
</tr>
<tr>
<td></td>
<td>+K454 FPBA-01 Profibus DP</td>
</tr>
<tr>
<td></td>
<td>+K469 FECA-01 EtherCAT</td>
</tr>
<tr>
<td></td>
<td>+K475 FENA-21 Ethernet/IP, Profinet, Modbus TCP</td>
</tr>
<tr>
<td></td>
<td>+K495 BCAN-11 interfejs CANopen</td>
</tr>
<tr>
<td></td>
<td>+K470 FEPL-02 łącze zasilania Ethernet (RJ45 x2)</td>
</tr>
<tr>
<td></td>
<td>+K451 FDNA-01, DeviceNet (blok zaciskowy)</td>
</tr>
</tbody>
</table>

Łączenie magistrali komunikacyjnej z przemiennikiem częstotliwości

Podłączyć magistralę komunikacyjną do zacisku EIA-485 Modbus RTU w module BMIO-01 dołączonym do jednostki sterującej przemiennika częstotliwości. Sieć EIA-485 korzysta z ekranowanej dwużyłowej skrętki do transferu danych z impedancją między 100 a 130 Ω. Rozproszone pojemność między przewodnikami jest mniejsza niż 100 pF na metr (30 pF na stopę). Rozproszone pojemność między
przewodnikami a ekranem jest mniejsza niż 200 pF na metr (60 pF na stopę). Akceptowalne są ekrany z oplotu i folii. Poniżej znajduje się schemat połączenia.

Instalacja elektryczna

1) Urządzenia na obu końcach magistrali komunikacyjnej muszą mieć włączoną terminację.
2) Jedno urządzenie, najlepiej na końcu magistrali komunikacyjnej, musi mieć włączony bias.
Przykłady połączeń czujników z dwoma i trzema przewodami

Na tych rysunkach przedstawiono przykłady połączeń czujników/przetworników z dwoma lub trzema przewodami zasilanych przez wyjściowe napięcie pomocnicze przemiennika częstotliwości.

Uwaga: Nie wolno przekraczać maksymalnych możliwości wyjścia pomocniczego — 24 V (200 mA).

Uwaga: Czujnik jest zasilany przez wyjście prądowe, a przemiennik częstotliwości podaje napięcie zasilania (+24 V). Sygnał wyjściowy musi mieć prąd 4…20 mA, a nie 0…20 mA.
Procedura podłączenia kabla sterowania

Wykonać podłączenia zgodnie z używanym makro. Podłączenie domyślnego makra przedstawiono na schemacie na stronie 68.

Pary kabla sygnałowego powinny być skręcone ze sobą możliwie najbliżej zacisków przyłączeniowych, aby zapobiec sprzężeniu indukcyjnemu.

1. Zdjąć fragment zewnętrznego ekranu kabla sterowania w celu jego uziemienia.

2. Użyć mocowania kabla w celu uziemienia zewnętrznego ekranu do elementu uziemiającego. Użyć metalowych mocowań kabla do uziemienia obwodowego (360 stopni).

3. Ściągnąć izolację ze złączy kabla sterowania.

4. Podłączyć złącza do odpowiednich zacisków sterowania. Dokręcić zaciski z momentem siły 0,5 N m.

5. Podłączyć ekrany skręconych par i przewodów uziemiających do zacisków SCR. Dokręcić zaciski z momentem siły 0,5 N m.

6. Przymocować kable sterowania na zewnątrz przemiennika częstotliwości.
Wyjście napięcia pomocniczego

Przemiennik częstotliwości jest wyposażony w wyjście napięcia pomocniczego 24 V DC (±10%). W zależności od rodzaju aplikacji, można użyć tego wyjścia do:

- dostarczania zewnętrznego zasilania do przemiennika,
- dostarczania zasilania z przemiennika do zewnętrznych modułów opcjonalnych.

Podłączyć zewnętrzne zasilanie lub moduł do złącz +24 V i DGND.

Więcej informacji o możliwościach dostarczenia zasilania pomocniczego do przemiennika częstotliwości zawarto w rozdziale Moduł rozszerzeń zasilania BAPO-01 na stronie 177.

Specyfikację wejścia napięcia opisano w rozdziale Dane połączenia sterowania na stronie 106.

W module BAPO-01 znajduje się źródło zasilania z przekształtnikiem flyback DC-DC. To źródło zasilania przyjmuje napięcie 24 V DC na wejściu i daje na wyjściu napięcie 5 V DC na kartę sterowania, aby przez cały czas podtrzymywać pracę procesora i łączy komunikacyjnych.

źródło zasilania w module BAPO-01 działa obok głównego źródła zasilania przemiennika częstotliwości i uaktywnia się wtedy, gdy główne źródło zasilania przestaje działać.
Moduły opcjonalne

Zwykle moduły opcjonalne są instalowane w fabryce zgodnie z wariantem przemiennika lub zamówieniem.

Przemiennik częstotliwości ma dwa gniazda przeznaczone do podłączania opcjonalnych modułów:
- Z przodu: gniazdo do podłączenia modułu komunikacyjnego, pod przednią osłoną.
- Z boku: gniazdo do podłączenia wielofunkcyjnego modułu rozszerzeń z boku przemiennika.

Więcej informacji na temat instalacji i okablowania można znaleźć w podręczniku modułu opcjonalnego. Informacje o modułach opcjonalnych montowanych z boku:
- *Moduł interfejsu enkodera impulsów BTAC-02* na str. 151
- *Moduł rozszerzeń wyjść przekaźnikowych BREL-01* na str. 169
- *Moduł rozszerzeń zasilania BAPO-01* na str. 177

Przed rozpoczęciem pracy należy zatrzymać przemiennik częstotliwości i wykonać czynności opisane w rozdziale *Środki bezpieczeństwa przed rozpoczęciem prac elektrycznych* na stronie 15.
Instalacja opcjonalnego modułu z przodu

1. Zdjąć przednią osłonę.
2. W przypadku posiadania opcjonalnego modułu BIO-01 można dodać do niego jeszcze jeden moduł magistrali komunikacyjnej. Użyć górnej przedniej osłony.
3. Uważnie przyłożyć moduł opcjonalny do gniazda 1 z przodu przemiennika.
5. Nacisnąć plastikowy element blokujący, aż zatrzaśnie się w odpowiednim miejscu.
6. Dokręcić wkręt montażowy.
7. Podłączyć odpowiednie kable sterowania zgodnie z opisem w rozdziale *Podłączanie kabli sterowania* na stronie 67.

Deinstalacja opcjonalnego modułu mocowanego z przodu

1. Odlączyć kable sterowania od modułu opcjonalnego.
2. Odkręcić wkręt montażowy.
3. Delikatnie pociągnąć moduł opcjonalny, aby go odłączyć. Moduł może być mocno zablokowany w miejscu.
Instalacja opcjonalnego modułu z boku

1. Odkręcić dwa wkręty przedniego zacisku uziemiającego w dolnej części przemienника częstotliwości.

2. Uważnie przyłożyć moduł opcjonalny do złączy z prawej strony przemiennika częstotliwości.

3. Wepchnąć całkowicie moduł w złącze.

4. Dokręcić śrubę montażową modułu opcjonalnego.

5. Przymocować listwę uziemiającą u dołu modułu opcjonalnego i z przodu przemiennika.

6. Podłączyć odpowiednie kable sterowania zgodnie z opisem w rozdziale *Podłączanie kabli sterowania* na stronie 67.

Deinstalacja opcjonalnego modułu mocowanego z boku

1. Odłączyć kable sterowania od modułu opcjonalnego.

2. Odkręcić wkręty listwy uziemiającej.

3. Odkręcić wkręt montażowy.

4. Delikatnie odłączyć moduł opcjonalny od przemiennika częstotliwości. Moduł może być mocno zablokowany w miejscu.
Lista czynności sprawdzających po instalacji

Zawartość tego rozdziału

Ten rozdział zawiera listę czynności sprawdzających, które należy wykonać przed uruchomieniem przemiennika częstotliwości.

Ostrżenia

Lista czynności sprawdzających

Przed rozpoczęciem pracy wykonać kroki opisane w sekcji *Środki bezpieczeństwa przed rozpoczęciem prac elektrycznych* na str. 15. Listę czynności sprawdzających należy zrealizować razem z inną osobą.

<table>
<thead>
<tr>
<th>✔</th>
<th>Należy się upewnić, że…</th>
</tr>
</thead>
<tbody>
<tr>
<td>✗</td>
<td>Warunki robocze w otoczeniu są zgodne ze specyfikacją podaną w rozdziale Warunki otoczenia na str. 109.</td>
</tr>
</tbody>
</table>
Wewnętrak filtr EMC jest odłączony, jeśli przemiennik częstotliwości będzie podłączony do sieci IT bez uziemienia lub sieci TN z uziemieniem wierzchołkowym. Jeśli przemiennik częstotliwości będzie podłączony do sieci IT bez uziemienia, należy odłączyć wkręt uziemiający warystor.

Więcej informacji podano w sekcji Zgodność z sieciami IT (bez uziemienia) i sieciami TN z uziemieniem wierzchołkowym na str. 63.

Wykonano formowanie kondensatorów elektrolitycznych DC w obwodzie DC przemiennika częstotliwości, jeśli przemiennik częstotliwości jest składowany od ponad roku. Więcej informacji podano w sekcji Serwisowanie kondensatorów na str. 85.

ISTnieje ochronny przewód uziomowy odpowiedniego rozmiaru pomiędzy przemiennikiem częstotliwości i tablicą rozdzielczą.

Wszystkie zabezpieczające przewody uziomowe są podłączone do odpowiednich zacisków, które dokręcono (należy pociągnąć za przewody aby sprawdzić ich zamocowanie).

Napięcie zasilania odpowiada znamionowemu napięciu wejściowemu przemiennika częstotliwości. Należy to sprawdzić na tabliczce znamionowej.

Wieżowe kable zasilania podłączone do odpowiednich zacisków, kolejność faz jest prawidłowa i dokręcono zaciski. Należy pociągnąć za przewody, aby sprawdzić ich zamocowanie.

Zainstalowano odpowiednie bezpieczniki i rozłącznik od strony zasilania przemiennika.

Kabel silnika podłączono do odpowiednich zacisków, kolejność faz jest prawidłowa i dokręcono zaciski. Należy pociągnąć za przewody, aby sprawdzić ich zamocowanie.

Kabel rezystora hamowania (jeśli jest obecny) podłączono do odpowiednich zacisków i dokręcono zaciski. Należy pociągnąć za przewody, aby sprawdzić ich zamocowanie.

Kabel silnika (oraz kabel rezystora hamowania, jeżeli jest obecny) poprowadzono z dala od innych kabli.

Podłączono kable sterowania (jeśli są wykorzystywane).

Jeśli używane jest połączenie by-passu: Stycznik bezpośredniego zasilania silnika oraz stycznik wyjściowy przemiennika częstotliwości są mechanicznie lub elektrycznie sprzężone (nie mogą być jednocześnie zamknięte).

Wewnątrz przemiennika częstotliwości nie znajdują się żadne narzędzia, ciała obce ani pył. W pobliżu wlotu powietrza do przemiennika częstotliwości nie ma pyłu.

Pokrywa przemiennika jest założona.

Silnik i urządzenia napędzane są gotowe do uruchomienia.
Konserwacja

Zawartość tego rozdziału

Ten rozdział zawiera instrukcje konserwacji zapobiegawczej oraz opisy wskaźników LED.
Częstotliwość konserwacji

<table>
<thead>
<tr>
<th>Zadanie/przedmiot konserwacji</th>
<th>Liczba lat od uruchomienia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Wentylatory chłodzące</td>
<td></td>
</tr>
<tr>
<td>Główny wentylator chłodzący.</td>
<td></td>
</tr>
<tr>
<td>Patrz str. 82.</td>
<td></td>
</tr>
<tr>
<td>Połączenia i środowisko</td>
<td></td>
</tr>
<tr>
<td>Jakość napięcia zasilania</td>
<td>P</td>
</tr>
<tr>
<td>Usprawnienia</td>
<td></td>
</tr>
<tr>
<td>Na podstawie informacji o produkcie</td>
<td>I</td>
</tr>
<tr>
<td>Części zapasowe</td>
<td></td>
</tr>
<tr>
<td>Magazyn części zapasowych</td>
<td>I</td>
</tr>
<tr>
<td>Formowanie kondygnatorów obwodu</td>
<td>P</td>
</tr>
<tr>
<td>DC (zapasowe moduły i zapasowe kondensatory). Patrz str. 85.</td>
<td></td>
</tr>
<tr>
<td>Inne użyteczne zadania</td>
<td></td>
</tr>
<tr>
<td>Dokręcenie zacisków kabla i szyny zbiorczej. Dokręcić w razie potrzeby.</td>
<td>I</td>
</tr>
<tr>
<td>Warunki otoczenia (zaplenie, wilgoć i temperatura)</td>
<td>I</td>
</tr>
</tbody>
</table>

Symbole

1 **Inspekcja**, podjęcie ewentualnie niezbędnych działań konserwacyjnych

(I) **Inspekcja** w trudnych warunkach*, podjęcie ewentualnie niezbędnych działań konserwacyjnych

W **Wymiana**

(W) **Wymiana** w przypadku pracy w trudnych warunkach*

P **Inne prace** (rozruch, testy, pomiary itd.)

*Temperatura powietrza w otoczeniu wynosi stałe powyżej 40°C, występuje wysokie zapylenie lub wysoka wilgotność, występuje cykliczne duże obciążenie lub stałe obciążenie znamionowe (pełne).

Aby utrzymać wydajność i niezawodność przemiennika częstotliwości, należy go kontrolować raz do roku. Raz na trzy lata należy skontaktować się z serwisem firmy ABB w celu wymiany starych części.

Zalecana częstotliwość konserwacji oraz wymiana poszczególnych części dotyczy określonych warunków otoczenia.
Czyszczenie radiatora

Na żebrach radiatora osadza się kurz pochodzący z powietrza chłodzącego. Jeśli radiator nie jest czysty, przemiennik częstotliwości może zgłaszać ostrzeżenia i błędy związane ze zbyt wysoką temperaturą.

OSTRZEŻENIE! Należy postępować zgodnie z instrukcjami w rozdziale Instrukcje bezpieczeństwa na str. 13. Nieprzestrzeganie tych instrukcji grozi obrażeniami ciała lub śmiercią bądź uszkodzeniem sprzętu.

OSTRZEŻENIE! Należy używać odkurzacza z antystatycznym wężem i dyszą. Używanie normalnego odkurzacza może spowodować powstawanie wyładowań statycznych, które mogą uszkodzić płytki drukowane.

Aby wyczyścić radiator:

1. Zatrzymać przemiennik częstotliwości i odłączyć go od zasilania.
2. Odczekać 5 minut i dokonać pomiaru w celu uzyskania pewności, że nie występuje napięcie. Więcej informacji podano w sekcji Środki bezpieczeństwa przed rozpoczęciem prac elektrycznych na str. 15.
3. Zdemontować wentylator chłodzący. Więcej informacji podano w sekcji Wymiana wentylatorów chłodzących na str. 82.
4. Wpuścić suche, czyste i niezawierające oleju sprężone powietrze od dołu radiatora w górę i jednocześnie użyć odkurzacza przy wylocie powietrza, aby przechwycić pył.
 Jeżeli istnieje ryzyko przeniesienia się pyłu na inne elementy sprzętu, czyszczenie radiatora należy wykonać w innym pomieszczeniu.
5. Zamontować wentylator chłodzący.
Wymiana wentylatorów chłodzących

Niniejsza instrukcja dotyczy wyłącznie obudów o rozmiarze R1, R2, R3 i R4. Obudowa R0 nie ma wentylatora chłodzącego.

Informacje o częstotliwości wymiany wentylatora przy normalnych warunkach pracy podano w sekcji Częstotliwość konserwacji na str. 80. Parametr 05.04 Licznik czasu włąc. went. pokazuje czas pracy wentylatora chłodzącego. Po wymianie wentylatora należy wyzerować ten licznik. Więcej informacji zawarto w dokumencie ACS380 Firmware manual (3AXD50000029275 [j. ang.]).

Zamiennik wentylatora można uzyskać od firmy ABB. Należy używać tylko części wskazanych przez firmę ABB.

Wymiana wentylatorów chłodzących w obudowach R1-R3

OSTRZEŻENIE! Należy postępować zgodnie z instrukcjami w rozdziale Instrukcje bezpieczeństwa na str. 13. Nieprzestrzeganie tych instrukcji grozi obrażeniami ciała lub śmiercią bądź uszkodzeniem sprzętu.

1. Zatrzymać przemiennik częstotliwości i odłączyć go od zasilania.
2. Odczekać 5 minut i dokonać pomiaru w celu uzyskania pewności, że nie występuje napięcie. Więcej informacji podano w sekcji Środki bezpieczeństwa przed rozpoczęciem prac elektrycznych na str. 15.
5. Wyjść kabel zasilania wentylatora z gniazda w przemienniku częstotliwości.
6. Odłączyć kabel zasilania wentylatora.
7. Zwolnić zatrzaski wentylatora i wyjąć wentylator z obudowy.

8. Włożyć nowy wentylator do obudowy. Upewnić się, czy powietrze przepływa we właściwym kierunku. Prawidłowy przepływ powietrza to wlot z dołu przemiennika i wylot z góry przemiennika.

10. Włożyć kabel zasilania wentylatora do gniazda w przemienniku częstotliwości.

12. Docisnąć pokrywę, aby zablokowała się we właściwej pozycji.

Wymiana wentylatorów chłodzących w obudowie R4

OSTRZEŻENIE! Należy postępować zgodnie z instrukcjami w rozdziale Instrukcje bezpieczeństwa na str. 13. Nieprzestrzeganie tych instrukcji grozi obrażeniami ciała lub śmiercią bądź uszkodzeniem sprzętu.
1. Odczekać 5 minut i dokonać pomiaru w celu uzyskania pewności, że nie występuje napięcie. Więcej informacji podano w sekcji Środki bezpieczeństwa przed rozpoczęciem prac elektrycznych na str. 15.

2. Zatrzymać przemiennik częstotliwości i odłączyć go od zasilania.

4. Unieść osłonę wentylatora i odłożyć ją na bok.

5. Unieść i wyciągnąć wentylator z podstawy.

6. Odlączyć przewód zasilania wentylatora od złączka kablowego rozszerzenia.

7. Ostrożnie wymienić stary wentylator.
Zadbać o poprawny kierunek instalacji wentylatora, kierując się strzałkami na wentylatorze — muszą wskazywać w górę i w lewo. Po poprawnej instalacji wentylator tworzy podciśnienie wewnątrz przemiennika częstotliwości, wyciągając z niego powietrze.

10. Docisnąć pokrywę, aby zablokowała się we właściwej pozycji.
Serwisowanie kondensatorów

Pośredni obwód DC przemiennika częstotliwości ma kondensatory elektrolityczne. Ich żywotność zależy od czasu eksploatacji przemiennika częstotliwości i temperatury powietrza w otoczeniu.

Uszkodzenie kondensatora może spowodować uszkodzenie przemiennika częstotliwości i awarię bezpieczników w układzie zasilania lub wystąpienie błędu. Jeśli obawiasz się, że doszło do awarii kondensatora, skontaktuj się z firmą ABB. Części zapasowe można uzyskać od firmy ABB. Należy używać tylko części wskazanych przez firmę ABB.

Formowanie kondensatorów

Jeśli przemiennik częstotliwości był składowany przez ponad rok, należy wykonać formowanie kondensatorów. Więcej informacji o sposobie odczytu daty produkcji z numeru seryjnego podano w sekcji Etykiety przemiennika częstotliwości na str. 33.

Aby wykonać formowanie kondensatorów, należy zapoznać się z instrukcją Converter module capacitor reforming instructions (3BFE64059629, w języku angielskim) dostępną w Internecie na stronie www.abb.com i po wpisaniu jej kodu do pola Search (Szukaj).
Dane techniczne

Zawartość tego rozdziału

Ten rozdział zawiera specyfikacje techniczne przemiennika częstotliwości, takie jak np. wartości znamionowe, rozmiary i wymogi techniczne oraz warunki niezbędne do spełnienia wymagań dotyczących CE, UL oraz innych oznakowań.
Wartości znamionowe

Wartości znamionowe IEC

<table>
<thead>
<tr>
<th>Typ ACS380-04xx</th>
<th>Znamionowy prąd wejściowy</th>
<th>Znamionowy prąd wejściowy z dławikiem</th>
<th>Wartości znamionowe wyjściowe</th>
<th>Rozmiar obudowy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I_{N}</td>
<td>I_{N}</td>
<td>I_{max}</td>
<td>I_{N}</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>kW</td>
</tr>
<tr>
<td>Jednofazowe $U_{N} = 200...240$ V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02A4-1</td>
<td>5,0</td>
<td>4,2</td>
<td>3,2</td>
<td>2,4</td>
</tr>
<tr>
<td>03A7-1</td>
<td>7,8</td>
<td>6,4</td>
<td>4,3</td>
<td>3,7</td>
</tr>
<tr>
<td>04A8-1</td>
<td>10,1</td>
<td>8,3</td>
<td>6,7</td>
<td>4,8</td>
</tr>
<tr>
<td>06A9-1</td>
<td>14,5</td>
<td>11,9</td>
<td>8,6</td>
<td>6,9</td>
</tr>
<tr>
<td>07A8-1</td>
<td>16,4</td>
<td>13,5</td>
<td>12,4</td>
<td>7,8</td>
</tr>
<tr>
<td>09A8-1</td>
<td>20,6</td>
<td>17,0</td>
<td>14,0</td>
<td>9,8</td>
</tr>
<tr>
<td>12A2-1</td>
<td>25,6</td>
<td>21,1</td>
<td>17,6</td>
<td>12,2</td>
</tr>
<tr>
<td>Trójfazowe $U_{N} = 380...480$ V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01A8-4</td>
<td>2,9</td>
<td>1,8</td>
<td>2,2</td>
<td>1,8</td>
</tr>
<tr>
<td>02A6-4</td>
<td>4,2</td>
<td>2,8</td>
<td>3,2</td>
<td>2,8</td>
</tr>
<tr>
<td>03A3-4</td>
<td>5,3</td>
<td>3,3</td>
<td>4,7</td>
<td>3,3</td>
</tr>
<tr>
<td>04A0-4</td>
<td>6,4</td>
<td>4,0</td>
<td>5,9</td>
<td>4,0</td>
</tr>
<tr>
<td>05A6-4</td>
<td>9,0</td>
<td>5,6</td>
<td>7,2</td>
<td>5,6</td>
</tr>
<tr>
<td>07A2-4</td>
<td>11,5</td>
<td>7,2</td>
<td>10,1</td>
<td>7,2</td>
</tr>
<tr>
<td>09A4-4</td>
<td>15,0</td>
<td>9,4</td>
<td>13,0</td>
<td>9,4</td>
</tr>
<tr>
<td>12A6-4</td>
<td>20,2</td>
<td>12,6</td>
<td>16,9</td>
<td>12,6</td>
</tr>
<tr>
<td>17A0-4</td>
<td>27,2</td>
<td>17,0</td>
<td>22,7</td>
<td>17,0</td>
</tr>
<tr>
<td>25A0-4</td>
<td>40,0</td>
<td>25,0</td>
<td>30,6</td>
<td>25,0</td>
</tr>
<tr>
<td>03A2-4</td>
<td>51,2</td>
<td>32,0</td>
<td>45,0</td>
<td>32,0</td>
</tr>
<tr>
<td>03B8-4</td>
<td>60,8</td>
<td>38,0</td>
<td>57,6</td>
<td>38,0</td>
</tr>
<tr>
<td>04SA-4</td>
<td>72,0</td>
<td>45,0</td>
<td>68,4</td>
<td>45,0</td>
</tr>
<tr>
<td>050A-4</td>
<td>80,0</td>
<td>50,0</td>
<td>81,0</td>
<td>50,0</td>
</tr>
</tbody>
</table>
Wartości znamionowe NEMA

<table>
<thead>
<tr>
<th>Typ ACS380-04xx-</th>
<th>Znamionowy prąd wejściowy</th>
<th>Znamionowy prąd wejściowy z dławikiem</th>
<th>Wartości znamionowe wyjściowe</th>
<th>Rozmiar obudowy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I_{1N}</td>
<td>I_{N}</td>
<td>I_{Ld}</td>
<td>P_{Ld}</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>KM</td>
</tr>
<tr>
<td>Trofażowe $U_N = 460$ V (440…480 V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01A8-4</td>
<td>2,6</td>
<td>1,6</td>
<td>1,6</td>
<td>0,75</td>
</tr>
<tr>
<td>02A6-4</td>
<td>3,4</td>
<td>2,1</td>
<td>2,1</td>
<td>1,0</td>
</tr>
<tr>
<td>03A3-4</td>
<td>4,8</td>
<td>3,0</td>
<td>3,0</td>
<td>1,5</td>
</tr>
<tr>
<td>04A0-4</td>
<td>5,4</td>
<td>3,4</td>
<td>3,4</td>
<td>2,0</td>
</tr>
<tr>
<td>05A6-4</td>
<td>7,7</td>
<td>4,8</td>
<td>4,8</td>
<td>2,0</td>
</tr>
<tr>
<td>07A2-4</td>
<td>9,6</td>
<td>6,0</td>
<td>6,0</td>
<td>3,0</td>
</tr>
<tr>
<td>09A4-4</td>
<td>12,2</td>
<td>7,6</td>
<td>7,6</td>
<td>5,0</td>
</tr>
<tr>
<td>12A6-4</td>
<td>17,6</td>
<td>11,0</td>
<td>11,0</td>
<td>7,5</td>
</tr>
<tr>
<td>17A0-4</td>
<td>22,4</td>
<td>14,0</td>
<td>14,0</td>
<td>10,0</td>
</tr>
<tr>
<td>25A0-4</td>
<td>33,6</td>
<td>21,0</td>
<td>21,0</td>
<td>15,0</td>
</tr>
<tr>
<td>03A2-4</td>
<td>43,2</td>
<td>27,0</td>
<td>27,0</td>
<td>20,0</td>
</tr>
<tr>
<td>038A-4</td>
<td>54,4</td>
<td>34,0</td>
<td>34,0</td>
<td>25,0</td>
</tr>
<tr>
<td>045A-4</td>
<td>64,0</td>
<td>40,0</td>
<td>40,0</td>
<td>30,0</td>
</tr>
<tr>
<td>050A-4</td>
<td>67,2</td>
<td>42,0</td>
<td>42,0</td>
<td>30,0</td>
</tr>
</tbody>
</table>

3AXD10000299801.xls

Definicje

- **U_N** Znamionowe napięcie zasilania
- **I_{1N}** Znamionowa wartość prądu wejściowego. Wartość skuteczna ciągłego prądu wejściowego (do doboru kabli i bezpieczników).
- **I_{max}** Maksymalny prąd wyjściowy. Dostępny przez dwie sekundy przy uruchomieniu.
- **I_N** Znamionowy prąd wyjściowy. Maksymalna dozwolona wartość skuteczna ciągłego prądu wyjściowego (bez przeciążenia).
- **P_N** Moc znamionowa przemiennika częstotliwości. Typowa moc silnika (bez przeciążenia). Wartości znamionowe podane w kilowatach mają zastosowanie do większości silników czterobiegunowych IEC. Wartości znamionowe podane w koniach mechanicznych mają zastosowanie do większości silników czterobiegunowych NEMA.
- **I_{Ld}** Prąd maksymalny z przeciążeniem 110%, dozwolony przez jedną minutę co każde dziesięć minut
- **P_{Ld}** Typowa moc silnika przy pracy z lekkim przeciążeniem (110% przeciążenia)
- **I_{Hd}** Prąd maksymalny z przeciążeniem 150%, dozwolony przez jedną minutę co każde dziesięć minut
- **P_{Hd}** Typowa moc silnika przy pracy z dużym przeciążeniem (150% przeciążenia)
Wybór rozmiaru

Rozmiar przemiennika częstotliwości dobiera się na podstawie prądu znamionowego i mocy znamionowej silnika. W celu uzyskania znamionowej mocy silnika prąd znamionowy przemiennika częstotliwości musi być większy lub równy wartości znamionowego prądu silnika. Dodatkowo moc znamionowa przemiennika częstotliwości musi być większa lub równa wartości mocy znamionowej silnika. Moc znamionowa jest taka sama niezależnie od napięcia wejściowego w jednym przedziale częstotliwości.

Wartości znamionowe mają zastosowanie przy temperaturze otoczenia 50°C (104°F) dla \(I_N \). Po wzroście temperatury należy je obniżyć.

Zaleca się dokonanie doboru przemiennika częstotliwości, silnika i przekładni zębatej z wykorzystaniem udostępnianego przez firmę ABB programu do wymiarowania DriveSize.

Obniżanie wartości znamionowych

Obciążalność \((I_{N}, I_{dL}, I_{Hd}; \text{uwaga: wartość } I_{max} \text{ nie podlega obniżeniu wartości znamionowej}) \) maleje w niektórych sytuacjach. W takich sytuacjach, gdy wymagana jest pełna moc silnika, należy zwiększyć rozmiar przemiennika częstotliwości, aby obniżona wartość znamionowa zapewniała wystarczającą moc.

Jeśli jednocześnie zachodzi kilka sytuacji, skutki obniżania wartości znamionowych kumulują się.

Przykład:

Jeśli aplikacja wymaga ciągłego prądu silnika 6,0 A \((I_{N}) \) przy częstotliwości kluczowania 8 kHz, napięcie zasilania to 400 V, a silnik jest umieszczony na wysokości 1500 m, wymagany rozmiar przemiennika częstotliwości należy obliczyć w następujący sposób:

Obniżanie wartości znamionowych ze względu na częstotliwość kluczowania (str. 91): Na podstawie tabeli minimalny wymagany rozmiar \(I_{N} = 9,4 \) A.

Obniżanie wartości znamionowych ze względu na wysokość n.p.m. (str. 92): Współczynnik obniżenia wartości znamionowych dla 1500 m to 1 - 1/10 000 m (1500 - 1000) m = 0,95. Minimalny wymagany rozmiar to zatem \(I_{N} = 9,4 \) A / 0,95 = 9,9 A.

Biorąc pod uwagę wartość \(I_{N} \) w tabelach znamionowych (od str. 88), typ przemiennika częstotliwości ACS380-04xx-12A6-4 przekracza wymaganą wartość \(I_{N} \) o wysokości 9,9 A.
Obniżanie wartości znamionowych przez temperaturę powietrza w otoczeniu, IP20

<table>
<thead>
<tr>
<th>Rozmiar obudowy</th>
<th>Temperatura</th>
<th>Obniżanie wartości znamionowych</th>
</tr>
</thead>
<tbody>
<tr>
<td>R0…R4</td>
<td>do +50°C do +122°F</td>
<td>Bez obniżenia wartości znamionowych.</td>
</tr>
<tr>
<td>R1…R3</td>
<td>+50…+60°C +122…+140°F</td>
<td>Prąd wyjściowy jest obniżany o 1% na każdy dodatkowy 1°C (1,8°F).</td>
</tr>
<tr>
<td>R4</td>
<td>+50…+60°C +122…+140°F</td>
<td>ACS380-04xx-032A-4-4 i ACS380-04xx-045A: wyjście jest obniżane o 1% na każdy dodatkowy 1°C. ACS380-04xx-038A-4 i ACS380-04xx-050A-4; prąd wyjściowy jest obniżany o 2% na każdy dodatkowy 1°C.</td>
</tr>
</tbody>
</table>

Obniżanie wartości znamionowych ze względu na częstotliwość kluczowania

<table>
<thead>
<tr>
<th>Typ ACS380-04xx</th>
<th>Prąd przy różnych częstotliwościach kluczowania (I_{2N} przy 50°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 kHz</td>
</tr>
<tr>
<td>Jednofazowe {U_N = 200...240 V}</td>
<td></td>
</tr>
<tr>
<td>02A4-1</td>
<td>2,4</td>
</tr>
<tr>
<td>03A7-1</td>
<td>3,7</td>
</tr>
<tr>
<td>04A8-1</td>
<td>4,8</td>
</tr>
<tr>
<td>06A9-1</td>
<td>6,9</td>
</tr>
<tr>
<td>07A8-1</td>
<td>7,8</td>
</tr>
<tr>
<td>09A8-1</td>
<td>9,8</td>
</tr>
<tr>
<td>12A2-1</td>
<td>12,2</td>
</tr>
<tr>
<td>Trójfazowe {U_N = 380...480 V}</td>
<td></td>
</tr>
<tr>
<td>01A8-4</td>
<td>1,8</td>
</tr>
<tr>
<td>02A6-4</td>
<td>2,6</td>
</tr>
<tr>
<td>03A3-4</td>
<td>3,3</td>
</tr>
<tr>
<td>04A0-4</td>
<td>4,0</td>
</tr>
<tr>
<td>05A6-4</td>
<td>5,6</td>
</tr>
<tr>
<td>07A2-4</td>
<td>7,2</td>
</tr>
<tr>
<td>09A4-4</td>
<td>9,4</td>
</tr>
<tr>
<td>12A6-4</td>
<td>12,6</td>
</tr>
<tr>
<td>17A0-4</td>
<td>17,0</td>
</tr>
<tr>
<td>25A0-4</td>
<td>25,0</td>
</tr>
<tr>
<td>032A-4</td>
<td>32,0</td>
</tr>
<tr>
<td>038A-4</td>
<td>38,0</td>
</tr>
<tr>
<td>045A-4</td>
<td>45,0</td>
</tr>
<tr>
<td>050A-4</td>
<td>50,0</td>
</tr>
</tbody>
</table>

Dla obudowy R4: Zachować wartość domyślną minimalnej częstotliwości kluczowania (parametr 97.02 = 1,5 kHz), jeśli aplikacja ma charakter cykliczny, a temperatura otoczenia jest stale powyżej +40°C. Zmiana tego parametru obniży żywotność produktu i/lub ograniczy wydajność w zakresie temperatur +40...60°C.
Obniżanie wartości znamionowych ze względu na wysokość n.p.m.

Urządzenia 230 V: Na wysokości od 1000 do 2000 m powyżej poziomu morza obniżenie wartości znamionowych wynosi 1% na każde 100 m (330 stóp).

Urządzenia 400 V: Na wysokości od 1000 do 4000 m powyżej poziomu morza obniżenie wartości znamionowych wynosi 1% na każde 100 m (330 stóp). Praca do wysokości 4000 m jest możliwa dla jednostek 400 V po wzięciu pod uwagę następujących warunków brzegowych:

- Maksymalne napięcie przełączania zintegrowanego wyjścia przekaźnikowego 1 to 30 V na wysokości 4000 m (oznacza to, że do wyjścia przekaźnikowego 1 nie można podłączyć napięcia 250 V).
- W przypadku korzystania z opcjonalnego modułu bocznego BREL-01 maksymalna różnica potencjałów miedzy sąsiednimi przekaźnikami wynosi 30 V (oznacza to, że do wyjścia przekaźnikowego 2 nie można podłączyć napięcia 250 V przy jednoczesnym podłączeniu napięcia 30 V do wyjścia przekaźnikowego 3).
- Jeśli te warunki nie są spełnione, maksymalna wysokość wynosi 2000 m.
- Gdy przemiennik częstotliwości ACS380 pracujący na 3-fazowym prądzie 400 V jest używany na wysokości 4000 m, przemiennik można podłączyć wyłącznie do następujących sieci zasilających: TN-S, TN-c, TN-CS, TT (nie uziemiony narożnie).

Aby obliczyć prąd wyjściowy, należy pomnożyć prąd podany w tabeli wartości znamionowych przez współczynnik obniżenia wartości znamionowych k, który dla x metrów (1000 m <= x <= 4000 m) wynosi:

\[k = 1 - \frac{1}{10000} \cdot (x - 1000) \]

Należy sprawdzić ograniczenia zgodności sieci powyżej na wysokościach powyżej 1000 m (3281 stóp). Powyżej 1000 m (3281 stóp) należy także sprawdzić ograniczenia PELV na zaciskach wyjścia przekaźnikowego.
Bezpieczniki (IEC)

W tabeli przedstawiono bezpieczniki gG, UL oraz uR i aR służące do zabezpieczenia kabla zasilania wejściowego lub przemiennika częstotliwości przed zwarciami. Można stosować oba typy, jeśli działają wystarczająco szybko. Czas działania zależy od impedancji sieci zasilającej oraz pola przekroju poprzecznego i długości kabla zasilania. Więcej informacji podano w sekcji *Ochrona przed zwarciami* na str. 56.

Nie należy używać bezpieczników o wyższym prądzie znamionowym niż podano w tabeli.

Możliwe jest użycie bezpieczników innych producentów, jeśli spełniają wartości znamionowe i krzywa topnienia bezpiecznika nie przekracza krzywej podanej w tabeli.

Bezpieczniki gG

Należy upewnić się, że czas zadziałania bezpiecznika jest krótszy niż 0,5 sekundy. Należy przestrzegać lokalnych przepisów.

<table>
<thead>
<tr>
<th>Typ ACS380-04xx</th>
<th>Prąd wejściowy</th>
<th>Minimalny prąd zwarcioowy</th>
<th>Prąd znamionowy</th>
<th>I^2t</th>
<th>Napięcie znamionowe</th>
<th>Typ ABB</th>
<th>Rozmiar IEC 60269</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A2s</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jednofazowe $U_N = 200...240$ V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02A4-1</td>
<td>5,0</td>
<td>80</td>
<td>10</td>
<td>380</td>
<td>500</td>
<td>OFAF000H10</td>
<td>000</td>
</tr>
<tr>
<td>03A7-1</td>
<td>7,8</td>
<td>80</td>
<td>10</td>
<td>380</td>
<td>500</td>
<td>OFAF000H10</td>
<td>000</td>
</tr>
<tr>
<td>04A8-1</td>
<td>10,1</td>
<td>128</td>
<td>16</td>
<td>720</td>
<td>500</td>
<td>OFAF000H16</td>
<td>000</td>
</tr>
<tr>
<td>06A9-1</td>
<td>14,5</td>
<td>200</td>
<td>20</td>
<td>1500</td>
<td>500</td>
<td>OFAF000H20</td>
<td>000</td>
</tr>
<tr>
<td>07A8-1</td>
<td>16,4</td>
<td>200</td>
<td>25</td>
<td>2500</td>
<td>500</td>
<td>OFAF000H25</td>
<td>000</td>
</tr>
<tr>
<td>09A8-1</td>
<td>20,6</td>
<td>256</td>
<td>32</td>
<td>2500</td>
<td>500</td>
<td>OFAF000H32</td>
<td>000</td>
</tr>
<tr>
<td>12A2-1</td>
<td>25,6</td>
<td>320</td>
<td>35</td>
<td>7000</td>
<td>500</td>
<td>OFAF000H35</td>
<td>000</td>
</tr>
<tr>
<td>Trójfazowe $U_N = 380...480$ V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01A8-4</td>
<td>2,9</td>
<td>32</td>
<td>4</td>
<td>55</td>
<td>500</td>
<td>OFAF000H4</td>
<td>000</td>
</tr>
<tr>
<td>02A6-4</td>
<td>4,2</td>
<td>48</td>
<td>6</td>
<td>110</td>
<td>500</td>
<td>OFAF000H6</td>
<td>000</td>
</tr>
<tr>
<td>03A3-4</td>
<td>5,3</td>
<td>48</td>
<td>6</td>
<td>110</td>
<td>500</td>
<td>OFAF000H6</td>
<td>000</td>
</tr>
<tr>
<td>04A0-4</td>
<td>6,4</td>
<td>80</td>
<td>10</td>
<td>360</td>
<td>500</td>
<td>OFAF000H10</td>
<td>000</td>
</tr>
<tr>
<td>05A6-4</td>
<td>9,0</td>
<td>80</td>
<td>10</td>
<td>360</td>
<td>500</td>
<td>OFAF000H10</td>
<td>000</td>
</tr>
<tr>
<td>07A2-4</td>
<td>11,5</td>
<td>128</td>
<td>16</td>
<td>740</td>
<td>500</td>
<td>OFAF000H16</td>
<td>000</td>
</tr>
<tr>
<td>09A4-4</td>
<td>15,0</td>
<td>128</td>
<td>16</td>
<td>740</td>
<td>500</td>
<td>OFAF000H16</td>
<td>000</td>
</tr>
<tr>
<td>12A6-4</td>
<td>20,2</td>
<td>200</td>
<td>25</td>
<td>2500</td>
<td>500</td>
<td>OFAF000H25</td>
<td>000</td>
</tr>
<tr>
<td>17A0-4</td>
<td>27,2</td>
<td>256</td>
<td>32</td>
<td>4500</td>
<td>500</td>
<td>OFAF000H32</td>
<td>000</td>
</tr>
<tr>
<td>25A0-4</td>
<td>40,0</td>
<td>400</td>
<td>50</td>
<td>15500</td>
<td>500</td>
<td>OFAF000H50</td>
<td>000</td>
</tr>
<tr>
<td>032A-4</td>
<td>51,2</td>
<td>504</td>
<td>63</td>
<td>20000</td>
<td>500</td>
<td>OFAF000H63</td>
<td>000</td>
</tr>
<tr>
<td>038A-4</td>
<td>60,8</td>
<td>640</td>
<td>80</td>
<td>36000</td>
<td>500</td>
<td>OFAF000H80</td>
<td>000</td>
</tr>
<tr>
<td>045A-4</td>
<td>72,0</td>
<td>800</td>
<td>100</td>
<td>65000</td>
<td>500</td>
<td>OFAF000H100</td>
<td>000</td>
</tr>
<tr>
<td>050A-4</td>
<td>80,0</td>
<td>800</td>
<td>100</td>
<td>65000</td>
<td>500</td>
<td>OFAF000H100</td>
<td>000</td>
</tr>
</tbody>
</table>

3AXD10000299801.xls
Bezpieczniki UL

<table>
<thead>
<tr>
<th>Typ ACS380-04xx</th>
<th>Prąd wejściowy</th>
<th>Minimalny prąd zwarcia</th>
<th>Prąd znamionowy</th>
<th>Napięcie znamionowe</th>
<th>Typ Bussmann/Edison</th>
<th>Typ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jednofazowe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$U_N = 200...240$ V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02A4-1</td>
<td>5,0</td>
<td>80</td>
<td>10</td>
<td>300</td>
<td>JJJ/TJJ10</td>
<td>Bezpiecznik UL klasy T</td>
</tr>
<tr>
<td>03A7-1</td>
<td>7,8</td>
<td>80</td>
<td>10</td>
<td>300</td>
<td>JJJ/TJJ10</td>
<td>Bezpiecznik UL klasy T</td>
</tr>
<tr>
<td>04A8-1</td>
<td>10,1</td>
<td>128</td>
<td>20</td>
<td>300</td>
<td>JJJ/TJJ20</td>
<td>Bezpiecznik UL klasy T</td>
</tr>
<tr>
<td>06A9-1</td>
<td>14,5</td>
<td>200</td>
<td>20</td>
<td>300</td>
<td>JJJ/TJJ20</td>
<td>Bezpiecznik UL klasy T</td>
</tr>
<tr>
<td>07A8-1</td>
<td>16,4</td>
<td>200</td>
<td>25</td>
<td>300</td>
<td>JJJ/TJJ25</td>
<td>Bezpiecznik UL klasy T</td>
</tr>
<tr>
<td>09A8-1</td>
<td>20,6</td>
<td>256</td>
<td>25</td>
<td>300</td>
<td>JJJ/TJJ25</td>
<td>Bezpiecznik UL klasy T</td>
</tr>
<tr>
<td>12A2-1</td>
<td>25,6</td>
<td>320</td>
<td>35</td>
<td>300</td>
<td>JJJ/TJJ35</td>
<td>Bezpiecznik UL klasy T</td>
</tr>
<tr>
<td>Trójfazowe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$U_N = 380...480$ V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01A8-4</td>
<td>2,9</td>
<td>32</td>
<td>6</td>
<td>600</td>
<td>JJJ/TJS6</td>
<td>Bezpiecznik UL klasy T</td>
</tr>
<tr>
<td>02A6-4</td>
<td>4,2</td>
<td>48</td>
<td>6</td>
<td>600</td>
<td>JJJ/TJS6</td>
<td>Bezpiecznik UL klasy T</td>
</tr>
<tr>
<td>03A3-4</td>
<td>5,3</td>
<td>48</td>
<td>6</td>
<td>600</td>
<td>JJJ/TJS6</td>
<td>Bezpiecznik UL klasy T</td>
</tr>
<tr>
<td>04A0-4</td>
<td>6,4</td>
<td>80</td>
<td>10</td>
<td>600</td>
<td>JJJ/TJS10</td>
<td>Bezpiecznik UL klasy T</td>
</tr>
<tr>
<td>05A6-4</td>
<td>9,0</td>
<td>80</td>
<td>10</td>
<td>600</td>
<td>JJJ/TJS10</td>
<td>Bezpiecznik UL klasy T</td>
</tr>
<tr>
<td>07A2-4</td>
<td>11,5</td>
<td>128</td>
<td>20</td>
<td>600</td>
<td>JJJ/TJS20</td>
<td>Bezpiecznik UL klasy T</td>
</tr>
<tr>
<td>09A4-4</td>
<td>15,0</td>
<td>128</td>
<td>20</td>
<td>600</td>
<td>JJJ/TJS20</td>
<td>Bezpiecznik UL klasy T</td>
</tr>
<tr>
<td>12A6-4</td>
<td>20,2</td>
<td>200</td>
<td>25</td>
<td>600</td>
<td>JJJ/TJS25</td>
<td>Bezpiecznik UL klasy T</td>
</tr>
<tr>
<td>17A0-4</td>
<td>27,2</td>
<td>256</td>
<td>35</td>
<td>600</td>
<td>JJJ/TJS35</td>
<td>Bezpiecznik UL klasy T</td>
</tr>
<tr>
<td>25A0-4</td>
<td>40,0</td>
<td>400</td>
<td>50</td>
<td>600</td>
<td>JJJ/TJS50</td>
<td>Bezpiecznik UL klasy T</td>
</tr>
<tr>
<td>032A-4</td>
<td>51,2</td>
<td>504</td>
<td>60</td>
<td>600</td>
<td>JJJ/TJS60</td>
<td>Bezpiecznik UL klasy T</td>
</tr>
<tr>
<td>038A-4</td>
<td>60,8</td>
<td>640</td>
<td>80</td>
<td>600</td>
<td>JJJ/TJS80</td>
<td>Bezpiecznik UL klasy T</td>
</tr>
<tr>
<td>045A-4</td>
<td>72,0</td>
<td>800</td>
<td>100</td>
<td>600</td>
<td>JJJ/TJS100</td>
<td>Bezpiecznik UL klasy T</td>
</tr>
<tr>
<td>050A-4</td>
<td>80,0</td>
<td>800</td>
<td>100</td>
<td>600</td>
<td>JJJ/TJS100</td>
<td>Bezpiecznik UL klasy T</td>
</tr>
</tbody>
</table>

3AXD10000299801.xls
Bezpieczniki gR

Alternatywa ochrona przed zwarciami

Miniature automatyczne (środowisko IEC)

Ochronna charakterystyka wyłączników automatycznych zależy od typu, budowy i ustawień wyłączników. Istnieją też ograniczenia dotyczące obciążalności zwarciochronnej sieci zasilającej. Jeśli znana jest charakterystyka sieci zasilającej, lokalny przedstawiciel ABB może pomóc w doborze typu wyłącznika.

OSTRZEŻENIE! Ze względu na zasady działania i budowę wyłączników automatycznych, niezależnie od producenta, w przypadku zwarcia z obudowy wyłącznika może wydobywać się gorący jonizowany gaz. Aby zagwarantować bezpieczną eksploatację, należy zwrócić szczególną uwagę na sposób montażu i umiejscowienie wyłączników. Należy przestrzegać instrukcji producenta.

Można korzystać z następujących wyłączników automatycznych. Użycie innych wyłączników automatycznych z przemiennikiem częstotliwości jest możliwe, o ile mają one takie same charakterystyki elektryczne. ABB nie ponosi żadnej odpowiedzialności za
poprawne działanie i ochronę w przypadku wyłączników automatycznych nie wymienionych poniżej. Dodatkowo jeśli nie są przestrzegane zalecenia firmy ABB, mogą wystąpić problemy z przemiennikiem częstotliwości, które nie są objęte gwarancją.

Uwaga: Miniaturowe wyłączniki automatyczne z bezpiecznikami lub bez nich nie zostały przetestowane do użycia jako zabezpieczenia przed zwarciami w środowiskach w USA (UL).

<table>
<thead>
<tr>
<th>Kod typu</th>
<th>Miniatury wyłącznik automatyczny ABB</th>
<th>kA 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jednofazowe $U_N = 200...240$ V (200, 208, 220, 230, 240 V)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACS380-04xx-02A4-1</td>
<td>S 201P-B 10 NA</td>
<td>5</td>
</tr>
<tr>
<td>ACS380-04xx-03A7-1</td>
<td>S 201P-B 10 NA</td>
<td>5</td>
</tr>
<tr>
<td>ACS380-04xx-04A8-1</td>
<td>S 201P-B 16 NA</td>
<td>5</td>
</tr>
<tr>
<td>ACS380-04xx-06A9-1</td>
<td>S 201P-B 20 NA</td>
<td>5</td>
</tr>
<tr>
<td>ACS380-04xx-07A8-1</td>
<td>S 201P-B 25 NA</td>
<td>5</td>
</tr>
<tr>
<td>ACS380-04xx-09A8-1</td>
<td>S 201P-B 25 NA</td>
<td>5</td>
</tr>
<tr>
<td>ACS380-04xx-12A2-1</td>
<td>S 201P-B 32 NA</td>
<td>5</td>
</tr>
<tr>
<td>Trójfazowe $U_N = 380...480$ V (380, 400, 415, 440, 460, 480 V)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACS380-04xx-01A8-4</td>
<td>S 203P-B 4</td>
<td>5</td>
</tr>
<tr>
<td>ACS380-04xx-02A6-4</td>
<td>S 203P-B 6</td>
<td>5</td>
</tr>
<tr>
<td>ACS380-04xx-03A3-4</td>
<td>S 203P-B 6</td>
<td>5</td>
</tr>
<tr>
<td>ACS380-04xx-04A0-4</td>
<td>S 203P-B 8</td>
<td>5</td>
</tr>
<tr>
<td>ACS380-04xx-05A6-4</td>
<td>S 203P-B 10</td>
<td>5</td>
</tr>
<tr>
<td>ACS380-04xx-07A2-4</td>
<td>S 203P-B 16</td>
<td>5</td>
</tr>
<tr>
<td>ACS380-04xx-09A4-4</td>
<td>S 203P-B 16</td>
<td>5</td>
</tr>
<tr>
<td>ACS380-04xx-12A6-4</td>
<td>S 203P-B 25</td>
<td>5</td>
</tr>
<tr>
<td>ACS380-04xx-17A0-4</td>
<td>S 203P-B 32</td>
<td>5</td>
</tr>
<tr>
<td>ACS380-04xx-25A0-4</td>
<td>S 203P-B 50</td>
<td>5</td>
</tr>
<tr>
<td>ACS380-04xx-032A-4</td>
<td>Należy skontaktować się z firmą ABB.</td>
<td></td>
</tr>
<tr>
<td>ACS380-04xx-038A-4</td>
<td>Należy skontaktować się z firmą ABB.</td>
<td></td>
</tr>
<tr>
<td>ACS380-04xx-045A-4</td>
<td>Należy skontaktować się z firmą ABB.</td>
<td></td>
</tr>
<tr>
<td>ACS380-04xx-050A-4</td>
<td>Należy skontaktować się z firmą ABB.</td>
<td></td>
</tr>
</tbody>
</table>

1) Maksymalna dozwolona wartość znamionowego warunkowego prądu zwarcia (IEC 61800-5-1) sieci elektrycznej

Samozabezpieczający kombinacyjny kontroler ręczny — typ E

Środowisko USA (UL)

MMP, aby sprawdzić minimalną objętość obudowy IP20 typu otwartego dla przemieni-nika ACS380 montowanego w obudowie.

<table>
<thead>
<tr>
<th>Kod typu</th>
<th>Jednofazowe $U_H = 200...240$ V (200, 208, 220, 230, 240 V)</th>
<th>Obu-</th>
<th>Typ MMP</th>
<th>Minimalna objętość obudowy 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>daw</td>
<td></td>
<td>dm³</td>
</tr>
<tr>
<td>ACS380-04xx-02A4-1</td>
<td>R0</td>
<td>MS132-6.3 & S1-M3-25 3)</td>
<td>30,2</td>
<td>1842</td>
</tr>
<tr>
<td>ACS380-04xx-03A7-1</td>
<td>R0</td>
<td>MS132-10 & S1-M3-25 3)</td>
<td>30,2</td>
<td>1842</td>
</tr>
<tr>
<td>ACS380-04xx-04A8-1</td>
<td>R1</td>
<td>MS165-16</td>
<td>30,2</td>
<td>1842</td>
</tr>
<tr>
<td>ACS380-04xx-06A9-1</td>
<td>R1</td>
<td>MS165-16</td>
<td>30,2</td>
<td>1842</td>
</tr>
<tr>
<td>ACS380-04xx-07A8-1</td>
<td>R1</td>
<td>MS165-20</td>
<td>30,2</td>
<td>1842</td>
</tr>
<tr>
<td>ACS380-04xx-09A8-1</td>
<td>R2</td>
<td>MS165-25</td>
<td>30,2</td>
<td>1842</td>
</tr>
<tr>
<td>ACS380-04xx-12A2-1</td>
<td>R2</td>
<td>MS165-32</td>
<td>30,2</td>
<td>1842</td>
</tr>
</tbody>
</table>

Trójfazowe $U_H = 380...480$ V (380, 400, 415, 440, 460, 480 V)

<table>
<thead>
<tr>
<th>Kod typu</th>
<th>Jednofazowe $U_H = 380...480$ V (380, 400, 415, 440, 460, 480 V)</th>
<th>Obu-</th>
<th>Typ MMP</th>
<th>Minimalna objętość obudowy 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>daw</td>
<td></td>
<td>dm³</td>
</tr>
<tr>
<td>ACS380-04xx-01A8-4</td>
<td>R0</td>
<td>MS132-4.0 & S1-M3-25 3)</td>
<td>30,2</td>
<td>1842</td>
</tr>
<tr>
<td>ACS380-04xx-02A6-4</td>
<td>R1</td>
<td>MS132-6.3 & S1-M3-25 3)</td>
<td>30,2</td>
<td>1842</td>
</tr>
<tr>
<td>ACS380-04xx-03A3-4</td>
<td>R1</td>
<td>MS132-6.3 & S1-M3-25 3)</td>
<td>30,2</td>
<td>1842</td>
</tr>
<tr>
<td>ACS380-04xx-04A0-4</td>
<td>R1</td>
<td>MS132-10 & S1-M3-25 3)</td>
<td>30,2</td>
<td>1842</td>
</tr>
<tr>
<td>ACS380-04xx-05A6-4</td>
<td>R1</td>
<td>MS132-10 & S1-M3-25 3)</td>
<td>30,2</td>
<td>1842</td>
</tr>
<tr>
<td>ACS380-04xx-07A2-4</td>
<td>R1</td>
<td>MS165-16</td>
<td>30,2</td>
<td>1842</td>
</tr>
<tr>
<td>ACS380-04xx-09A4-4</td>
<td>R1</td>
<td>MS165-16</td>
<td>30,2</td>
<td>1842</td>
</tr>
<tr>
<td>ACS380-04xx-12A6-4</td>
<td>R2</td>
<td>MS165-20</td>
<td>30,2</td>
<td>1842</td>
</tr>
<tr>
<td>ACS380-04xx-17A0-4</td>
<td>R3</td>
<td>MS165-32</td>
<td>30,2</td>
<td>1842</td>
</tr>
<tr>
<td>ACS380-04xx-25A0-4</td>
<td>R3</td>
<td>MS165-42</td>
<td>30,2</td>
<td>1842</td>
</tr>
</tbody>
</table>

ACS380-04xx-032A-4 | R4 | Należy skontaktować się z firmą ABB. |
ACS380-04xx-038A-4 | R4 | Należy skontaktować się z firmą ABB. |
ACS380-04xx-045A-4 | R4 | Należy skontaktować się z firmą ABB. |
ACS380-04xx-050A-4 | R4 | Należy skontaktować się z firmą ABB. |

1) Wszystkie wymienione tutaj ręczne zabezpieczenia silnika są samozabezpieczające typu E do prądu 65 kA. Patrz publikacja firmy ABB 2CDC131085M0201 – Manual Motor Starters – North American Applica-
tions, aby zapoznać się z pełnymi danymi technicznymi ręcznymi zabezpieczeń silnika ABB typu E. Aby te ręczne zabezpieczenia silnika mogły być używane do zabezpieczenia obwodu odgałęzionego, muszą być ręcznymi zabezpieczeniami silnika typu E zgodnie ze standardem UL, w przeciwien-ny rozmiar jest MS165-16).

2) Ręczne zabezpieczenia silnika mogą wymagać skorygowania limitu wyłączenia w stosunku do ustawienia fabrycznego na wartość prądu wejściowego przemiennika częstotliwości lub wyższą, aby zapobiegać niepo-
żadanemu wyłączeniu. Jeśli ręczne zabezpieczenie silnika zostanie ustawione na maksymalny poziom prądu wyłączania, to występuje niepożądane wyłączenie, należy wybrać nachy rozmiar MMP, (MS132-10 do najmniejszych rozmiarów typu E do prądu 65 kA, początkowym rozmiarem jest MS165-16). W przypadku standardu UL: W przypadku zastosowania

3) Wymaga użycia z ręcznym zabezpieczeniem silnika terminala rozprowadzającego S1-M3-25 na stronie linii w celu spełnienia wymagań klasy samoza-
bieżczeniu typu E.

4) Tylko sieci delta 480Y/277V. Urządzenia chroniące przed zwarciami z podwójnymi wartościami znamiono-
wnymi napięciami (np. 480Y/277 V AC) mogą być stosowane wyłącznie w dobrze uziemionych sieciach, w któ-
rych napięcie między linią i ziemią nie przekracza niższej z dwóch wartości znamionowych (np. 277 V AC), a napięcie linia-linia nie przekracza wyższej z dwóch wartości znamionowych (np. 480 V AC). Nisza wartość znamionowa reprezentuje zdolność do rozbicia na biegun.

z zabezpieczeniem MMP typu E firmy ABB pokazanym w tabeli minimalna objętość obudowy została wskazana w wykazie UL. Przemieniuki częstotliwości ACS380 są przeznaczone do montażu w obudowie, chyba że zostanie dodany zestaw NEMA-1.
Wymiary i waga

<table>
<thead>
<tr>
<th>Rozmiar obudowy</th>
<th>Wymiary i waga</th>
<th>IP20 / typ otwarty UL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W1</td>
<td>W2</td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td>cale</td>
</tr>
<tr>
<td>R0</td>
<td>205</td>
<td>8,07</td>
</tr>
<tr>
<td>R1</td>
<td>205</td>
<td>8,07</td>
</tr>
<tr>
<td>R2</td>
<td>205</td>
<td>8,07</td>
</tr>
<tr>
<td>R3</td>
<td>205</td>
<td>8,07</td>
</tr>
<tr>
<td>R4</td>
<td>205</td>
<td>8,07</td>
</tr>
</tbody>
</table>

Symbole

- **W1** Wysokość z tyłu
- **W2** Wysokość z tyłu
- **W3** Wysokość z przodu
- **S** Szerokość
- **D1** Głębskość
- **D2** Głębskość 2
- **M1** Odległość od otworu montażowego 1
- **M2** Odległość od otworu montażowego 2

*) D2 = opcjonalna głębsza pokrywa
Wymagane wolne miejsce

<table>
<thead>
<tr>
<th>Rozmiar obudowy</th>
<th>Wymagane wolne miejsce</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Powyżej</td>
</tr>
<tr>
<td></td>
<td>mm</td>
</tr>
<tr>
<td>R0-R4</td>
<td>75</td>
</tr>
</tbody>
</table>

1) Moduły można zainstalować obok siebie, jednak w przypadku planowania montażu bocznych elementów opcjonalnych z prawej strony modułu należy pozostawić 20 mm odstępu.

Straty, charakterystyka chłodzenia i hałas

Obudowa R0 cechuje się naturalnym chłodzeniem konwekcyjnym. Obudowy R1…R4 mają wentylator chłodzący. Kierunek przepływu powietrza to z dołu do góry.

Poniższa tabela przedstawia rozprowadzenie ciepła w głównym obwodzie przy obciążeniu znamionowym oraz w obwodzie sterowania przy minimalnym obciążeniu (I/O i panele nieużywane) oraz maksymalne obciążenie (wszystkie wejścia cyfrowe włączone, panel, magistrala komunikacyjna i wentylator używane). Łączne rozpraszanie ciepła to suma rozpraszania ciepła w głównym obwodzie i obwodzie sterowania.

<table>
<thead>
<tr>
<th>Typ ACS380-04xx</th>
<th>Rozpraszanie ciepła</th>
<th>Przepływ powietrza</th>
<th>Hałas dB(A)</th>
<th>Rozmiar obudowy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Owódnógłówny przy znamionowych I_{1N} oraz I_{2N}</td>
<td>Obwód sterowania: minimum</td>
<td>Obwód sterowania: maksimum</td>
<td>Karta sterowania i główna karta: maksimum</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
</tbody>
</table>

Jednofazowe $U_N = 200...240$ V

<table>
<thead>
<tr>
<th>Typ</th>
<th>Rozpraszanie ciepła</th>
<th>Przepływ powietrza</th>
<th>Hałas dB(A)</th>
<th>Rozmiar obudowy</th>
</tr>
</thead>
<tbody>
<tr>
<td>02A4-1</td>
<td>32</td>
<td>17</td>
<td>20</td>
<td>52</td>
</tr>
<tr>
<td>03A7-1</td>
<td>46</td>
<td>17</td>
<td>20</td>
<td>66</td>
</tr>
<tr>
<td>04A8-1</td>
<td>59</td>
<td>24</td>
<td>25</td>
<td>84</td>
</tr>
<tr>
<td>06A9-1</td>
<td>85</td>
<td>24</td>
<td>25</td>
<td>109</td>
</tr>
<tr>
<td>07A8-1</td>
<td>95</td>
<td>24</td>
<td>25</td>
<td>120</td>
</tr>
<tr>
<td>09A8-1</td>
<td>115</td>
<td>24</td>
<td>25</td>
<td>140</td>
</tr>
<tr>
<td>12A2-1</td>
<td>145</td>
<td>24</td>
<td>25</td>
<td>170</td>
</tr>
</tbody>
</table>

Trójfazowe $U_N = 380...480$ V

<table>
<thead>
<tr>
<th>Typ</th>
<th>Rozpraszanie ciepła</th>
<th>Przepływ powietrza</th>
<th>Hałas dB(A)</th>
<th>Rozmiar obudowy</th>
</tr>
</thead>
<tbody>
<tr>
<td>01A8-4</td>
<td>26</td>
<td>17</td>
<td>20</td>
<td>46</td>
</tr>
<tr>
<td>02A6-4</td>
<td>35</td>
<td>24</td>
<td>25</td>
<td>60</td>
</tr>
<tr>
<td>03A3-4</td>
<td>42</td>
<td>24</td>
<td>25</td>
<td>67</td>
</tr>
<tr>
<td>04A0-4</td>
<td>50</td>
<td>24</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>05A6-4</td>
<td>68</td>
<td>24</td>
<td>25</td>
<td>93</td>
</tr>
<tr>
<td>07A2-4</td>
<td>88</td>
<td>24</td>
<td>25</td>
<td>112</td>
</tr>
<tr>
<td>09A4-4</td>
<td>115</td>
<td>24</td>
<td>25</td>
<td>139</td>
</tr>
<tr>
<td>12A6-4</td>
<td>158</td>
<td>24</td>
<td>25</td>
<td>183</td>
</tr>
<tr>
<td>17A0-4</td>
<td>208</td>
<td>24</td>
<td>25</td>
<td>232</td>
</tr>
<tr>
<td>25A0-4</td>
<td>322</td>
<td>24</td>
<td>25</td>
<td>346</td>
</tr>
<tr>
<td>03A2-4</td>
<td>435</td>
<td>24</td>
<td>25</td>
<td>460</td>
</tr>
<tr>
<td>03A8-4</td>
<td>537</td>
<td>24</td>
<td>25</td>
<td>561</td>
</tr>
<tr>
<td>045A-4</td>
<td>638</td>
<td>24</td>
<td>25</td>
<td>663</td>
</tr>
<tr>
<td>050A-4</td>
<td>709</td>
<td>24</td>
<td>25</td>
<td>734</td>
</tr>
</tbody>
</table>
Charakterystyka zacisków kabli zasilania

IEC

<table>
<thead>
<tr>
<th>Typ ACS380-04xx-</th>
<th>Zaciski U1, V1, W1 / U2, V2, W2 / BRK+, BRK- / DC+, DC-</th>
<th>Zacisk PE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min. (jedno- i wielożyłowe)</td>
<td>Maks. (jedno- i wielożyłowe)</td>
</tr>
<tr>
<td></td>
<td>mm²</td>
<td>AWG</td>
</tr>
<tr>
<td>Jednofazowe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U_N = 200...240 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02A4-1</td>
<td>0,2/0,2</td>
<td>18</td>
</tr>
<tr>
<td>03A7-1</td>
<td>0,2/0,2</td>
<td>18</td>
</tr>
<tr>
<td>04A8-1</td>
<td>0,2/0,2</td>
<td>18</td>
</tr>
<tr>
<td>06A9-1</td>
<td>0,2/0,2</td>
<td>18</td>
</tr>
<tr>
<td>07A8-1</td>
<td>0,2/0,2</td>
<td>18</td>
</tr>
<tr>
<td>09A8-1</td>
<td>0,5/0,5</td>
<td>18</td>
</tr>
<tr>
<td>12A2-1</td>
<td>0,5/0,5</td>
<td>18</td>
</tr>
<tr>
<td>Trójfazowe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U_N = 380...480 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01A8-4</td>
<td>0,2/0,2</td>
<td>18</td>
</tr>
<tr>
<td>02A6-4</td>
<td>0,2/0,2</td>
<td>18</td>
</tr>
<tr>
<td>03A3-4</td>
<td>0,2/0,2</td>
<td>18</td>
</tr>
<tr>
<td>04A0-4</td>
<td>0,2/0,2</td>
<td>18</td>
</tr>
<tr>
<td>05A6-4</td>
<td>0,2/0,2</td>
<td>18</td>
</tr>
<tr>
<td>07A2-4</td>
<td>0,2/0,2</td>
<td>18</td>
</tr>
<tr>
<td>09A4-4</td>
<td>0,2/0,2</td>
<td>18</td>
</tr>
<tr>
<td>12A6-4</td>
<td>0,2/0,2</td>
<td>18</td>
</tr>
<tr>
<td>17A0-4</td>
<td>0,5/0,5</td>
<td>20</td>
</tr>
<tr>
<td>25A0-4</td>
<td>0,5/0,5</td>
<td>20</td>
</tr>
<tr>
<td>032A-4</td>
<td>0,5/0,5</td>
<td>20</td>
</tr>
<tr>
<td>03A8-4</td>
<td>0,5/0,5</td>
<td>20</td>
</tr>
<tr>
<td>045A-4</td>
<td>0,5/0,5</td>
<td>20</td>
</tr>
<tr>
<td>050A-4</td>
<td>0,5/0,5</td>
<td>20</td>
</tr>
</tbody>
</table>
Charakterystyka zacisków kabli sterowania

<table>
<thead>
<tr>
<th>Typ ACS380-04xx-</th>
<th>Wszystkie kable sterowania</th>
<th>Rozmiar przewodu</th>
<th>Moment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mm²</td>
<td>AWG</td>
</tr>
<tr>
<td>Jednofazowe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Un = 200...240 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02A4-1</td>
<td></td>
<td>0,14...1,5</td>
<td>26...16</td>
</tr>
<tr>
<td>03A7-1</td>
<td></td>
<td>0,14...1,5</td>
<td>26...16</td>
</tr>
<tr>
<td>04A8-1</td>
<td></td>
<td>0,14...1,5</td>
<td>26...16</td>
</tr>
<tr>
<td>06A9-1</td>
<td></td>
<td>0,14...1,5</td>
<td>26...16</td>
</tr>
<tr>
<td>07A8-1</td>
<td></td>
<td>0,14...1,5</td>
<td>26...16</td>
</tr>
<tr>
<td>09A8-1</td>
<td></td>
<td>0,14...1,5</td>
<td>26...16</td>
</tr>
<tr>
<td>12A2-1</td>
<td></td>
<td>0,14...1,5</td>
<td>26...16</td>
</tr>
<tr>
<td>Trójfazowe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Un = 380...480 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01A8-4</td>
<td></td>
<td>0,14...1,5</td>
<td>26...16</td>
</tr>
<tr>
<td>02A6-4</td>
<td></td>
<td>0,14...1,5</td>
<td>26...16</td>
</tr>
<tr>
<td>03A3-4</td>
<td></td>
<td>0,14...1,5</td>
<td>26...16</td>
</tr>
<tr>
<td>04A0-4</td>
<td></td>
<td>0,14...1,5</td>
<td>26...16</td>
</tr>
<tr>
<td>05A6-4</td>
<td></td>
<td>0,14...1,5</td>
<td>26...16</td>
</tr>
<tr>
<td>07A2-4</td>
<td></td>
<td>0,14...1,5</td>
<td>26...16</td>
</tr>
<tr>
<td>09A4-4</td>
<td></td>
<td>0,14...1,5</td>
<td>26...16</td>
</tr>
<tr>
<td>12A6-4</td>
<td></td>
<td>0,14...1,5</td>
<td>26...16</td>
</tr>
<tr>
<td>17A0-4</td>
<td></td>
<td>0,14...1,5</td>
<td>26...16</td>
</tr>
<tr>
<td>25A0-4</td>
<td></td>
<td>0,14...1,5</td>
<td>26...16</td>
</tr>
<tr>
<td>032A-4</td>
<td></td>
<td>0,14...1,5</td>
<td>26...16</td>
</tr>
<tr>
<td>038A-4</td>
<td></td>
<td>0,14...1,5</td>
<td>26...16</td>
</tr>
<tr>
<td>045A-4</td>
<td></td>
<td>0,14...1,5</td>
<td>26...16</td>
</tr>
<tr>
<td>050A-4</td>
<td></td>
<td>0,14...1,5</td>
<td>26...16</td>
</tr>
</tbody>
</table>

3AXD10000299801.xls
Filtry EMC kategorii C1

W celu zachowania zgodności z ograniczeniami elektromagnetycznymi w dyrektywie elektromagnetycznej (standard EN 61800-3) dla kategorii C1, przy maksymalnej długości przewodów i częstotliwości kluczowania 4 kHz należy użyć filtra elektromagnetycznego. Aby uzyskać informację o doborze poprawnych filtrów elektromagnetycznych, należy skontaktować się z lokalnym przedstawicielem firmy ABB.

<table>
<thead>
<tr>
<th>Typ ACS380-04xx-</th>
<th>Filtr C1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trójfazowe $U_N = 460$ V (380...480 V)</td>
<td></td>
</tr>
<tr>
<td>01A8-4</td>
<td>Schaffner FN 3268-7-44</td>
</tr>
<tr>
<td>02A6-4</td>
<td>Schaffner FN 3268-7-44</td>
</tr>
<tr>
<td>03A3-4</td>
<td>Schaffner FN 3268-7-44</td>
</tr>
<tr>
<td>04A0-4</td>
<td>Schaffner FN 3268-7-44</td>
</tr>
<tr>
<td>05A6-4</td>
<td>Schaffner FN 3268-7-44</td>
</tr>
<tr>
<td>07A2-4</td>
<td>Schaffner FN 3268-16-44</td>
</tr>
<tr>
<td>09A4-4</td>
<td>Schaffner FN 3268-16-44</td>
</tr>
<tr>
<td>12A6-4</td>
<td>Schaffner FN 3268-16-44</td>
</tr>
<tr>
<td>17A0-4</td>
<td>Schaffner FN 3268-20-33</td>
</tr>
<tr>
<td>25A0-4</td>
<td>Schaffner FN 3268-20-33</td>
</tr>
<tr>
<td>032A-4</td>
<td>Należy skontaktować się z firmą ABB.</td>
</tr>
<tr>
<td>038A-4</td>
<td>Należy skontaktować się z firmą ABB.</td>
</tr>
<tr>
<td>045A-4</td>
<td>Należy skontaktować się z firmą ABB.</td>
</tr>
<tr>
<td>050A-4</td>
<td>Należy skontaktować się z firmą ABB.</td>
</tr>
</tbody>
</table>

3AXD10000299801.xls
<table>
<thead>
<tr>
<th>Specyfikacja sieci elektroenergetycznej</th>
</tr>
</thead>
<tbody>
<tr>
<td>Napięcie (U<sub>1</sub>)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Typ sieci</td>
</tr>
<tr>
<td>Znamionowy, warunkowy prąd zwarciowy</td>
</tr>
<tr>
<td>(IEC 61439-1)</td>
</tr>
<tr>
<td>Częstotliwość (f<sub>1</sub>)</td>
</tr>
<tr>
<td>Asymetria</td>
</tr>
<tr>
<td>Podstawowy współczynnik mocy</td>
</tr>
</tbody>
</table>
Charakterystyka przyłącza silnika

<table>
<thead>
<tr>
<th>Typ silnika</th>
<th>Asynchroniczny silnik indukcyjny lub silnik synchroniczny z magnesami trwałymi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Napięcie (U_2)</td>
<td>0 do U_1, 3-fazowe symetryczne, U_{max} w punkcie osłabienia pola</td>
</tr>
<tr>
<td>Zabezpieczenie przed zwarciami (IEC 61800-5-1, UL 61800-5-1)</td>
<td>Wyjście silnika jest zabezpieczone przed prądem zwarcowym zgodnie z normami IEC 61800-5-1 i UL 61800-5-1.</td>
</tr>
<tr>
<td>Częstotliwość (f_2)</td>
<td>0…599 Hz</td>
</tr>
<tr>
<td>Rozdzielczość częstotliwości</td>
<td>0,01 Hz</td>
</tr>
<tr>
<td>Prąd</td>
<td>Patrz Wartości znamionowe na stronie 88.</td>
</tr>
<tr>
<td>Częstotliwość kluczowania</td>
<td>2, 4, 8 lub 12 kHz</td>
</tr>
</tbody>
</table>

Długość kabla silnika

Działanie i długość kabla silnika
Przemienneń częstotliwości został zaprojektowany do pracy z optymalną wydajnością przy zastosowaniu następujących maksymalnych długości kabli silnika. Kabel silnika można wydłużyć, używając dławików wyjściowych zgodnie z poniższą tabelą.

<table>
<thead>
<tr>
<th>Rozmiar obudowy</th>
<th>Maksymalna długość kabla silnika</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m</td>
</tr>
<tr>
<td>Standardowy przemienneń częstotliwości bez zewnętrznych opcji</td>
<td></td>
</tr>
<tr>
<td>R0</td>
<td>150</td>
</tr>
<tr>
<td>R1, R2</td>
<td>150</td>
</tr>
<tr>
<td>R3, R4</td>
<td>co najmniej 50</td>
</tr>
</tbody>
</table>

Uwaga: W systemach wielosilnikowych obliczona suma wszystkich długości kabla silnika nie może przekraczać maksymalnej długości kabla silnika podanej w tabeli.
Kompatybilność elektromagnetyczna i długość kabla silnika

W celu zachowania zgodności z dyrektywą elektromagnetyczną (standard IEC/EN 61800-3) przy częstotliwości kluczowania 4 kHz należy użyć przewodów o podanej maksymalnej długości.

<table>
<thead>
<tr>
<th>Wszystkie rozmiary obudowy</th>
<th>Maksymalna długość kabla silnika, 4 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m</td>
</tr>
<tr>
<td>Z wewnętrznym filtrem EMC</td>
<td></td>
</tr>
<tr>
<td>Pierwsze środowisko</td>
<td></td>
</tr>
<tr>
<td>(kategoria C2)</td>
<td>10</td>
</tr>
<tr>
<td>Drugie środowisko</td>
<td></td>
</tr>
<tr>
<td>(kategoria C3)</td>
<td>30 (1)</td>
</tr>
<tr>
<td>Z opcjonalnym zewnętrznym filtrem EMC</td>
<td></td>
</tr>
<tr>
<td>Drugie środowisko</td>
<td></td>
</tr>
<tr>
<td>(kategoria C3)</td>
<td>30 (co najmniej) (2)</td>
</tr>
<tr>
<td>Pierwsze środowisko</td>
<td></td>
</tr>
<tr>
<td>(kategoria C2)</td>
<td>10 (co najmniej) (2)</td>
</tr>
<tr>
<td>Pierwsze środowisko</td>
<td></td>
</tr>
<tr>
<td>(kategoria C1)</td>
<td>10 (co najmniej) (2)</td>
</tr>
</tbody>
</table>

1) W obudowach R2 400 V maksymalna długość kabla silnika to 20 m/66 stóp.
2) Maksymalna długość kabla silnika jest określana przez współczynniki operacyjne silnika. Aby uzyskać więcej informacji o dokładnych długościach maksymalnych z zewnętrznymi filtrami EMC, należy skontaktować się z lokalnym przedstawicielem firmy ABB.

Uwaga 1: Gdy używany jest niskoupływowy filtr prądu EMC (LRFI-XX), wewnętrzny filtr EMC należy odłączyć przez odkręcenie wkręta EMC (patrz ilustracja na str. 63).

Uwaga 2: Zakłócenia radiowe są zgodne z kategorią C2 z wewnętrznym filtrem EMC i bez niego. Aby w przemiennikach z zasilaniem 200 V spełnić ograniczenia związane z emisją zakłóceń radiowych według kategorii C2, należy użyć obudowy metalowej.

Uwaga 3: Kategoria C1 tylko z emisjami przewodzonymi. Emisje radiowe nie zachowują normy, gdy są mierzone za pomocą standardowej konfiguracji pomiaru emisji. Należy je sprawdzić lub zmierzyć oddzielnie przy poszczególnych instalacjach szafowych i maszynowych.
Dane połączenia sterowania

<table>
<thead>
<tr>
<th>Wejścia analogowe (AI1, AI2)</th>
<th>Sygnał napięcia, niesymetryczny</th>
<th>0…10 V DC (maks. przekroczenie zakresu o 10%, 11 V DC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$R_{in} = 221,6 , \Omega$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sygnał prądu, niesymetryczny</td>
<td>20 mA maks (maks. przekroczenie zakresu o 10%, 22 mA)</td>
</tr>
<tr>
<td></td>
<td>$R_{in} = 137 , \Omega$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Niedokładność</td>
<td>≤ 1,0% pełnego zakresu skali</td>
</tr>
<tr>
<td></td>
<td>Ochrona przed przepięciami</td>
<td>do 30 V DC</td>
</tr>
<tr>
<td></td>
<td>Wartość zadana potencjometru</td>
<td>10 V DC ±1%, maks. prąd obciążenia 10 mA</td>
</tr>
<tr>
<td>Wyjście analogowe (AO)</td>
<td>Tryb prądu wyjściowego</td>
<td>0...20 mA (maks. przekroczenie zakresu o 10%, 22 mA)</td>
</tr>
<tr>
<td></td>
<td>przy obciążeniu 500 Ω</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tryb napięcia wyjściowego</td>
<td>0…10 V DC (maks. przekroczenie zakresu o 10%, 11 V DC)</td>
</tr>
<tr>
<td></td>
<td>przy minimalnym obciążeniu 200 kΩ (rezystancyjne)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Niedokładność</td>
<td>≤ 1,0% pełnego zakresu skali</td>
</tr>
<tr>
<td>Wejście/wyjście napięcia pomocniczego (+24V)</td>
<td>Jako wyjście</td>
<td>+24 V DC ±10%, maks. 200 mA</td>
</tr>
<tr>
<td></td>
<td>Jako wejście</td>
<td>+24 V DC ±10%, maks. 1000 mA (razem z obciążeniem wewnętrznego wentylatora)</td>
</tr>
<tr>
<td>Wejścia cyfrowe (DI1…DI4)</td>
<td>Napięcie</td>
<td>12…24 V DC (zasilanie wewnętrzne lub zewnętrzne)</td>
</tr>
<tr>
<td></td>
<td>Typ</td>
<td>PNP i NPN</td>
</tr>
<tr>
<td></td>
<td>Impedancja wejściowa</td>
<td>$R_{in} = 2 , \Omega$</td>
</tr>
<tr>
<td>Programowalne wejście/wyjście cyfrowe (DIO1, DIO2)</td>
<td>Jako wejście</td>
<td>Napięcie 12…24 V DC zasilaniem wewnętrznym lub zewnętrznym. Maks. 30 V DC.</td>
</tr>
<tr>
<td></td>
<td>Typ</td>
<td>PNP i NPN</td>
</tr>
<tr>
<td></td>
<td>Impedancja wejściowa</td>
<td>$R_{in} = 2 , \Omega$</td>
</tr>
<tr>
<td></td>
<td>Jako wyjście</td>
<td>Typ Wyjście tranzystorowe PNP</td>
</tr>
<tr>
<td></td>
<td>Typ</td>
<td>30 V DC</td>
</tr>
<tr>
<td></td>
<td>Maksymalne napięcie przełączania</td>
<td>Maksymalny prąd przełączania 70 mA / 30 V DC, ochrona przed zwarciem</td>
</tr>
<tr>
<td></td>
<td>Częstotliwość</td>
<td>10 Hz…16 kHz</td>
</tr>
<tr>
<td></td>
<td>Rozdzielczność</td>
<td>1 Hz</td>
</tr>
<tr>
<td>Wyjście przekaźnikowe (RA, RB, RC)</td>
<td>Typ</td>
<td>1 z C (NO + NC)</td>
</tr>
<tr>
<td></td>
<td>Maksymalne napięcie przełączania</td>
<td>250 V AC / 30 V DC</td>
</tr>
<tr>
<td></td>
<td>Maksymalny prąd przełączania</td>
<td>2 A</td>
</tr>
<tr>
<td>Wejście częstotliwościowe (FI)</td>
<td>10 Hz…16 kHz</td>
<td>Wejście DI3 i DI4 można używać jako wejście cyfrowych lub częstotliwościowych.</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Wyjście częstotliwościowe (FO)</td>
<td></td>
<td>Złącza DIO1 i DIO2 można używać jako wyjście cyfrowych lub częstotliwościowych.</td>
</tr>
</tbody>
</table>
| Interfejs STO (SGND, S+, S1, S2) | | Więcej informacji podano w sekcji *Funkcja bezpiecznego wyłączania momentu (STO)* na str. 137.
Przyłącze rezystora hamowania

Zabezpieczenie przed zwarciami (IEC 61800-5-1, IEC 60439-1, UL 61800-5-1)
Wyjście rezystora hamowania jest warunkowo zabezpieczone przed prądem zwarcieowym zgodnie z normami IEC/EN 61800-5-1i UL 61800-5-1. W celu poprawnego wyboru bezpieczników należy skontaktować się z lokalnym przedstawicielem firmy ABB. Znamionowy warunkowy prąd zwarcieowy zgodnie z definicją w normie IEC 60439-1.

Sprawność

Około 98% mocy znamionowej.

Stopnie ochrony

Stopień ochrony (IEC/EN 60529)	IP20 (instalacja w szafie) / Typ otwarty UL: Standardowa obudowa. Aby spełnić wymagania ochrony przed kontaktem, przemiennik częstotliwości musi zostać zainstalowany w szafie.
Typy obudowy (UL508C) | Typ otwarty UL. Tylko do użytku we wnętrzach.
Kategoria przepięcia (IEC 60664-1) | III
Klasy ochronne (IEC/EN 61800-5-1) | I
<table>
<thead>
<tr>
<th>Warunki otoczenia</th>
<th>Praca w instalacji stacjonarnej</th>
<th>Magazynowanie w opakowaniu ochronnym</th>
<th>Transport w opakowaniu ochronnym</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wysokość miejsca instalacji</td>
<td>Urządzenia 230 V: Od 0 do 2000 m nad poziomem morza (z obniżeniem wartości znamionowych powyżej 1000 m)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Urządzenia 400 V: Od 0 do 4000 m nad poziomem morza (z obniżeniem wartości znamionowych powyżej 1000 m)</td>
<td>Więcej informacji można znaleźć na stronie 92.</td>
<td></td>
</tr>
<tr>
<td>Temperatura powietrza w otoczeniu</td>
<td>-10…+60°C (14…140°F)(^1)</td>
<td>-40…+70°C ±2% (-40…+158°F ±2%)</td>
<td>-40…+70°C ±2% (-40…+158°F ±2%)</td>
</tr>
<tr>
<td></td>
<td>Zakaz stosowania w warunkach oszronienia. Więcej informacji podano w sekcji Odniesienie wartości znamionowych na str. 90.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1) Dla obudowy R0: -10…+50°C (14…122°F).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilgotność względna</td>
<td>0…95%</td>
<td>Maks. 95%</td>
<td>Maks. 95%</td>
</tr>
<tr>
<td></td>
<td>Kondensacja pary jest niedozwolona. Maksymalna dopuszczalna wilgotność względna w obecności gazów źródłnych wynosi 60%.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Dane techniczne
Poziomy zanieczyszczenia (IEC 60721-3-3, IEC 60721-3-2, IEC 60721-3-1)

<table>
<thead>
<tr>
<th>Obecność pyłu przewodzącego jest niedopuszczalna.</th>
</tr>
</thead>
</table>
| Zgodnie z normą IEC 60721-3-3, gazy chemiczne: Klasa 3C2 cząsteczki stałe: Klasa 3S2.
Zamontować prze-
miennik częstotliwości zgodnie z klasyfikacją obudowy.
Należy upewnić się, że powietrze chłodzące jest czyste, wolne od materiałów powodują-
cych korozję i kurzu przewodzącego. |
| Zgodnie z normą IEC 60721-3-1, gazy chemiczne: Klasa 1C2 cząsteczki stałe: Klasa 1S2
Zgodnie z normą IEC 60721-3-2, gazy chemiczne: Klasa 2C2 cząsteczki stałe: Klasa 2S2 |

Stopień zanieczyszczenia (IEC 60950-1)

<table>
<thead>
<tr>
<th>Stopień zanieczyszczenia 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
</tr>
</tbody>
</table>

Wibracje sinusoidalne (IEC 60721-3-3)

| Przetestowano zgod-
nie z normą IEC 60721-3-3, warunki mechaniczne: Klasa 3M4
2…9 Hz, 3,0 mm (0,12 cala)
9…200 Hz, 10 m/s² (33 stopy/s²) |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
</tr>
</tbody>
</table>

Udary (IEC 60068-2-27, ISTA 1A)

| Niedopuszczalne
Według ISTA 1A. Maks. 100 m/s²
(330 stóp/s²), 11 ms.
Według ISTA 1A. Maks. 100 m/s²
(330 stóp/s²), 11 ms. |

Upadek swobodny

| Niedopuszczalny
76 cm (30 cali) |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>76 cm (30 cali)</td>
</tr>
</tbody>
</table>

Materiały

Obudowa przemiennika częstotliwości

- PC/ABS 2 mm, PC+10%GF 2.5…3 mm oraz PA66+25%GF 1,5 mm,
wszystko w kolorze NCS 1502-Y (RAL 9002 / PMS 420 C)
- Blacha cynkowana na gorąco o grubości od 1,5 mm, grubość
powłoki 20 mikrometrów
- Tłoczone aluminium AlSi

Opakowanie

Tektura falista.
Utylizacja

Jeżeli ponowne wykorzystanie nie jest możliwe, wszystkie części, z wyłączeniem kondensatorów elektrolitycznych i płytek obwodów drukowanych, można przekazać na wysypisko śmieci. Kondensatory DC zawierają elektrolit, który jest zaliczany do grupy odpadów niebezpiecznych na terenie Unii Europejskiej. Należy je zdemontować i zutylizować zgodnie z przepisami lokalnymi.

Więcej informacji na temat aspektów środowiskowych oraz dokładniejsze instrukcje dotyczące ponownego wykorzystania odpadów można uzyskać od lokalnego dystrybutora ABB.

Obowiązujące normy

<table>
<thead>
<tr>
<th>Norma</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN ISO 13849-1:2015</td>
<td>Bezpieczeństwo maszyn – Elementy systemów sterowania związane z bezpieczeństwem — Część 1: Zasady ogólne projektowania</td>
</tr>
<tr>
<td>ANSI/UL 61800-5-1:2007</td>
<td>Standard UL dla elektrycznych układów napędowych mocy o regulowanej prędkości — część 5-1: Wymagania dotyczące bezpieczeństwa. Wymagania elektryczne, cieplne i energetyczne</td>
</tr>
<tr>
<td>CSA C22.2 No. 274-13</td>
<td>Przemienniki o regulowanej prędkości</td>
</tr>
</tbody>
</table>
Oznakowanie CE

Znak CE został zamieszczony na przemienniku częstotliwość jako potwierdzenie spełniania wymagań europejskiej dyrektywy niskonapięciowej, dyrektywy o kompatybilności elektromagnetycznej (EMC), dyrektywy w sprawie ograniczenia stosowania niektórych niebezpiecznych substancji (RoHS) oraz dyrektywy w sprawie utylizacji odpadów elektrycznych i elektronicznych (WEEE). Oznakowanie CE potwierdza także, że przemiennik częstotliwości, w odniesieniu do jego funkcji bezpieczeństwa (takich jak bezpieczne wyłączanie momentu), jest zgodny z dyrektywą maszynową.

■ Zgodność z europejską dyrektywą niskonapięciową

Zgodność z europejską dyrektywą niskonapięciową została zweryfikowana zgodnie z normą EN 61800-5-1:2007. Deklaracja jest dostępna w Internecie.

■ Zgodność z europejską dyrektywą o kompatybilności elektromagnetycznej

■ Zgodność z europejską dyrektywą w sprawie ograniczenia stosowania niektórych niebezpiecznych substancji (RoHS)

W dyrektywie RoHS określono ograniczenia w zakresie stosowania niektórych niebezpiecznych substancji w urządzeniach elektrycznych. Deklaracja jest dostępna w Internecie.

■ Zgodność z europejską dyrektywą w sprawie utylizacji odpadów elektrycznych i elektronicznych (WEEE)

Dyrektywa WEEE wskazuje zasady utylizacji i recyklingu sprzętu elektrycznego i elektronicznego.
Zgodność z europejską dyrektywą maszynową

Przemiennik częstotliwości jest wyposażony w funkcję bezpiecznego wyłączania momentu i może być wyposażony w inne funkcje zabezpieczające, które są opisane w dyrektywie maszynowej jako komponenty zabezpieczające. Te funkcje przemiennika częstotliwości są zgodne z europejskimi normami zharmonizowanymi, takimi jak EN 61800-5-2. Więcej informacji podano w sekcji Funkcja bezpiecznego wyłączania momentu (STO) na str. 137.

EU Declaration of Conformity
Machinery Directive 2006/42/EC

We, ABB Oy
Address: Hiomotie 13, 00380 Helsinki, Finland.
Phone: +358 10 22 11

declare under our sole responsibility that the following product:
Frequency converter
AC580-04

with regard to the safety function
Safe torque off

is in conformity with all the relevant safety component requirements of EU Machinery Directive 2006/42/EC, when the listed safety function is used for safety component functionality.

The following harmonized standards have been applied:

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 61800-5-2:2007</td>
<td>Adjustable speed electrical power drive systems – Part 5-2: Safety requirements - Functional</td>
</tr>
<tr>
<td>EN ISO 13849-1:2015</td>
<td>Safety of machinery – Safety-related parts of control systems. Part 1: General requirements</td>
</tr>
</tbody>
</table>

The following other standards have been applied:

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
</table>

The product referred in this Declaration of conformity fulfills the relevant provisions of other European Union Directives which are notified in Single EU Declaration of conformity 3AXD10000495941.

Person authorized to compile the technical file:
Name and address: Risto Mynttinen, Hiomotie 13, 00380 Helsinki, Finland.

Helsinki, 22 Sep 2016

Manufacturer representative: [Signature]
Tuomo Hyytinen
Vice President, ABB Oy

- **Definicje**

Pierwsze środowisko obejmuje obiekty podłączone do sieci niskiego napięcia zasilającej budynki mieszkalne.

Drugi środowisko obejmuje obiekty podłączone do sieci, która nie zasila bezpośrednio budynków mieszkalnych.

Przemiennik częstotliwości kategorii C1: przemiennik o napięciu znamionowym poniżej 1000 V przeznaczony do stosowania w pierwszym środowisku.

Przemiennik częstotliwości kategorii C2: przemiennik o napięciu znamionowym poniżej 1000 V, który, w przypadku zastosowania w pierwszym środowisku, może zostać zainstalowany i uruchomiony wyłącznie przez uprawnionego specjalistę.

Przemiennik częstotliwości kategorii C3: przemiennik o napięciu znamionowym poniżej 1000 V przeznaczony do stosowania w drugim środowisku i nieprzeznaczony do stosowania w pierwszym środowisku.

- **Kategoria C1**

Limity emisji są zgodne z następującymi warunkami:

1. Wybrano opcjonalny filtr EMC zgodnie z dokumentacją ABB i zainstalowano go zgodnie z dokumentacją filtra.
2. Silnik i kable sterowania zostały dobrane w sposób opisany w tym podręczniku użytkownika.
3. Przemiennik częstotliwości został zainstalowany zgodnie z instrukcjami zawartymi w tym podręczniku użytkownika.
4. Przy maksymalnej długości kabla silnika i częstotliwości kluczowania 4 kHz należy zapoznać się z informacjami podanymi w sekcji *Długość kabla silnika* na str. 104.

W warunkach domowych produkt może powodować zakłócenia radiowe. Niezbędne jest wówczas podjęcie dodatkowych środków zapobiegawczych.

- **Kategoria C2**

Dotyczy przemiennika ACS380-042x z wewnętrznym filtrem EMC C2.
Limity emisji są zgodne z następującymi warunkami:

1. Silnik i kable sterowania zostały dobrane w sposób opisany w tym podręczniku użytkownika.

2. Przemiennik częstotliwości został zainstalowany zgodnie z instrukcjami zawartymi w tym podręczniku użytkownika.

3. Przy maksymalnej długości kabla silnika i częstotliwości kluczowania 4 kHz należy zapoznać się z informacjami podanymi w sekcji Długość kabla silnika na str. 104.

Przemiennik częstotliwości może powodować zakłócenia radiowe w przypadku używania w środowisku mieszkalnym lub domowym. W razie konieczności niezbędne jest podjęcie odpowiednich środków zapobiegających rozszerzających wymagania dotyczące zgodności z oznakowaniem CE.

OSTRZEżENIE! Nie należy instalować przemiennika częstotliwości z wewnętrznym filtrem EMC podłączonym w sieci IT (bez uziemienia). Sieć zasilająca zostaje połączona z potencjałem uziemienia przez wewnętrzne kondensatory filtra EMC, zagrażając w ten sposób bezpieczeństwu lub grożąc uszkodzeniem przemiennika częstotliwości. Więcej informacji o odłączaniu filtra EMC podano w sekcji Odłączanie filtra EMC na str. 63.

OSTRZEżENIE! Nie instalować przemiennika częstotliwości z podłączonym wewnętrznym filtrem EMC w sieci TN z uziemieniem wierzchołkowym, ponieważ spowoduje to uszkodzenie przemiennika częstotliwości. Więcej informacji o odłączaniu filtra EMC podano w sekcji Odłączanie filtra EMC na str. 63.

Kategoria C3

Dotyczy przemiennika ACS380-040x-4/-2 z wewnętrznym filtrem EMC C3.

Przemiennik częstotliwości jest zgodny z normą pod następującymi warunkami:

1. Silnik i kable sterowania zostały dobrane w sposób opisany w tym podręczniku użytkownika.

2. Przemiennik częstotliwości został zainstalowany zgodnie z instrukcjami zawartymi w tym podręczniku użytkownika.

3. Przy maksymalnej długości kabla silnika i częstotliwości kluczowania 4 kHz należy zapoznać się z informacjami podanymi w sekcji Długość kabla silnika na str. 104.

OSTRZEżENIE! Aby uniknąć zakłóceń radiowych, przemiennika częstotliwości kategorii C3 nie należy używać w sieci publicznej niskiego napięcia zasilającej obiekty mieszkalne.
Kategoria C4

Dotyczy przemienników częstotliwości ACS380-040x-1.

Jeżeli nie można spełnić warunków, które określa *Kategoria C3*, należy spełnić wymagania normy w następujący sposób:

1. **Należy zapewnić brak nadmiernej emisji do okolicznych sieci niskiego napięcia.**
 W niektórych przypadkach wystarczające jest naturalne tłumienie w transformato-rach i kablach. W razie wątpliwości można zastosować transformator zasilający z ekranem elektrostatycznym między uwojeniem pierwotnym a wtórnym.

```
Sieć średniego napięcia

Okoliczna sieć

Punkt pomiaru

Niskie napięcie

Przemiennik częstotliwości

Urządzenie (zakłócone)

Transformator zasilania

Ekran statyczny
```

2. **Przygotowano plan EMC mający na celu zapobieganie zakłóceniom w instalacji.**
 Szablon dostępny jest u lokalnego przedstawiciela firmy ABB.

3. **Silnik i kable sterowania zostały dobrane w sposób opisany w tym podręczniku użytkownika.**

4. **Przemiennik częstotliwości został zainstalowany zgodnie z instrukcjami zawartymi w tym podręczniku użytkownika.**

OSTRZEŻENIE! Aby uniknąć zakłóceń radiowych, przemiennika częstotliwości kategorii C4 nie należy używać w sieci publicznej niskiego napięcia zasilającej obiekty mieszkalne.
Oznaczenie UL

■ Lista czynności sprawdzających UL

- Należy upewnić się, czy tabliczka znamionowa przemiennika częstotliwości zawiera oznaczenie o umieszczeniu w wykazie cULus.
- **UWAGA — ryzyko porażenia prądem.** Po odłączeniu źródła zasilania należy zawsze poczekać 5 minut, aby kondensatory obwodu pośredniego zdażyły się rozładować przed przystąpieniem do prac przy przemienniku częstotliwości, kablu silnika lub silniku.
- Przemiennik częstotliwości powinien być używany w ogrzewanym pomieszczeniu zamkniętym o regulowanym środowisku. Przemiennik częstotliwości musi być zainstalowany w atmosferze czystej powietrza zgodnie z klasyfikacją obudowy. Powietrze chłodzące musi być czyste, wolne od materiałów powodujących korozję i kurzu przewodzące.
- Maksymalna temperatura powietrza otoczenia wynosi 50 °C (122 °F) przy prądzie znamionowym. Z wyłączeniem obudowy R0 wartość znamionowa prądu zostaje obniżona dla temperatury od 50 do 60 °C (od 122 do 140 °F).
- Przy zabezpieczeniu bezpiecznikami UL podanymi w tabeli na str. 94 przemiennik jest przystosowany do zastosowania w obwodzie, który może dostarczać nie więcej niż 100 000 A symetrycznej wartości skutecznej przy maksymalnym napięciu 480 V (lub 240 V). Prąd znamionowy opiera się na testach przeprowadzonych zgodnie z odpowiednimi standardami UL.
- Kable znajdujące się w obwodzie silnika muszą być znamionowane na co najmniej 75°C (167°F) w instalacjach zgodnych z UL.

Uwaga: W Stanach Zjednoczonych nie można stosować wyłączników automatycznych bez bezpieczników. Aby uzyskać informacje na temat odpowiednich wyłączników automatycznych, należy skontaktować się z lokalnym przedstawicielem.

- Przemiennik częstotliwości zapewnia ochronę silnika przed przeciążeniem. Więcej informacji na temat korekt zawiera podręcznik oprogramowania sprzętowego.
Oznaczenie RCM
Przemiennik częstotliwości ma oznaczenie RCM.

Oznaczenie EAC
Przemiennik częstotliwości ma oznaczenie EAC.

Chińskie oznakowanie RoHS
Norma People’s Republic of China Electronic Industry Standard (SJ/T 11364-2014) określa wymagania dotyczące znakowania substancji niebezpiecznych w produktach elektronicznych i elektrycznych. Zielony znacznik jest dołączany do przemiennika w celu potwierdzenia, że nie zawiera on substancji toksycznych ani pierwiastków w ilościach przekraczających maksymalne skoncentrowane wartości substancji niebezpiecznych, oraz że jest to produkt przyjazny dla środowiska, który można poddać recyklingowi lub ponownie wykorzystać.

Zruncanie odpowiedzialności

Ogólne zruncanie odpowiedzialności
Producent nie ma żadnych zobowiązań wynikających z niniejszego dokumentu pod względem jakiegokolwiek produktu, który: (i) został nieprawidłowo naprawiony lub zmodyfikowany; (ii) był używany nieprawidłowo, zaniedbany lub wystąpił wypadek; (iii) był używany w sposób sprzeczny z instrukcjami producenta; (iv) uległ awarii w wyniku normalnego zużycia.

Zruncanie odpowiedzialności dotyczące cyberbezpieczeństwa
Ten produkt został zaprojektowany tak, aby był połączony z interfejsem sieciowym i przy jego użyciu przesyłał informacje oraz dane. Za uzyskanie bezpiecznego połączenia między produktem a siecią Klienta lub w razie potrzeby inną siecią i utrzymanie tego połączenia odpowiada wyłącznie Klient. Klient zapewni odpowiednią ochronę (w tym między innymi w postaci zapory, mechanizmów uwierzytelniania, szyfrowania danych, oprogramowania antywirusowego itp.) produktu, sieci, systemu i interfejsu przed wszelkimi naruszeniami bezpieczeństwa, zakłóceniami i włamaniami, a także przed jakimkolwiek nieautoryzowanym dostępem oraz wyciekiem i/lub wszelką kradzieżą danych lub informacji. Firma ABB ani jej podmioty zależne nie odpowiadają za szkody i/lub straty związane z takimi naruszeniami bezpieczeństwa, zakłóceniami i włamaniami, a także przed jakimkolwiek nieautoryzowanym dostępem oraz wyciekiem i/lub wszelką kradzieżą danych lub informacji.
Rysunki wymiarowe

Rysunki wymiarowe przemiennika częstotliwości ACS380 w obudowach R0, R1, R2, R3 i R4. Wymiary podano w milimetrach i calach.
Obudowa R0 (230 V)
Obudowa R0 (400 V)
Obudowa R1 (230 V)
Obudowa R1 (400 V)
Obudowa R2 (400 V)
Obudowa R3 (400 V)
Obudowa R4 (400 V)
Hamowanie rezystorowe

Zawartość tego rozdziału
W tym rozdziale opisano sposób wyboru rezystora hamowania i jego kabli.

Zasada działania i opis sprzętu
Czoper hamowania obsługuje energię generowaną przez zwalniający silnik. Czoper łączy rezystor hamowania z pośrednim obwodem DC, gdy napięcie w obwodzie przekroczy wartość graniczną zdefiniowaną w programie sterującym. Energia pochodząca z hamowania jest wytracana w rezystorze, co z kolei obniża napięcie do poziomu, przy którym jest możliwe odłączenie rezystora.

Dobór rezystora hamowania
Przemienniki częstotliwości są standardowo wyposażone we wbudowany czoper hamowania. Rezystor hamowania jest wybierany przy użyciu tabeli i równań przedstawionych w tej sekcji.

1. Określić maksymalną moc hamowania $P_{R_{\text{max}}}$ dla aplikacji. Wartość $P_{R_{\text{max}}}$ musi być mniejsza niż wartość $P_{BR_{\text{max}}}$ podana dla użytego typu przemiennika częstotliwości w tabeli na str. 131.
2. Obliczyć rezystancję R przy użyciu równania 1.
3. Obliczyć energię $E_{R_{\text{pulse}}}$ przy użyciu równania 2.
4. Wybrać rezystor tak, aby zostały spełnione następujące warunki:
 • Moc znamionowa rezystora musi być większa lub równa wartości $P_{R_{\text{max}}}$.
 • Rezystancja R musi mieścić się między wartością R_{min} i R_{max} podaną w tabeli dla użytego typu przemiennika częstotliwości.
 • Rezystor musi mieć możliwość rozproszenia energii $E_{R_{\text{pulse}}}$ podczas cyklu hamowania T.
Równania wyboru rezystora:

Równanie 1. $U_N = 200\ldots240\ V$: $R = \frac{150\ 000}{P_{Rmax}}$

$U_N = 380\ldots415\ V$: $R = \frac{450\ 000}{P_{Rmax}}$

$U_N = 415\ldots480\ V$: $R = \frac{615\ 000}{P_{Rmax}}$

Równanie 2. $E_{Rpulse} = P_{Rmax} \cdot t_{on}$

Równanie 3. $P_{Rave} = P_{Rmax} \cdot \frac{t_{on}}{T}$

gdzie

R = obliczona wartość rezystora hamowania (Ω). Należy się upewnić, że $R_{\min} < R < R_{\max}$.

P_{Rmax} = maksymalna moc podczas cyklu hamowania (W)

P_{Rave} = średnia moc podczas cyklu hamowania (W)

E_{Rpulse} = energia przewodzona do rezystora podczas pojedynczego impulsu hamowania (J)

t_{on} = długość impulsu hamowania (s)

T = długość cyklu hamowania (s).

OSTRZEŻENIE! Nie należy używać rezystora hamowania o rezystancji poniżej wartości minimalnej określonej dla konkretnego przemiennika częstotliwości. Przemiennik częstotliwości i czoper wewnętrzny nie są w stanie poradzić sobie z przetężeniem spowodowanym przez zastosowanie zbyt niskiej rezystancji.
Referencyjne rezistory hamowania

<table>
<thead>
<tr>
<th>Typ ACS380-04xx</th>
<th>(R_{\text{min}})</th>
<th>(R_{\text{max}})</th>
<th>(P_{\text{BRcont}})</th>
<th>(P_{\text{BRmax}})</th>
<th>Referencyjne typy rezystorów</th>
<th>Czas hamowania*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\Omega)</td>
<td>(\Omega)</td>
<td>kW</td>
<td>KM</td>
<td>kW</td>
<td>KM</td>
</tr>
<tr>
<td>Jednofazowe (U_N = 200...240 \text{ V})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02A4-1</td>
<td>32.5</td>
<td>468</td>
<td>0.25</td>
<td>0.33</td>
<td>0.38</td>
<td>0.50</td>
</tr>
<tr>
<td>03A7-1</td>
<td>32.5</td>
<td>316</td>
<td>0.37</td>
<td>0.50</td>
<td>0.56</td>
<td>0.74</td>
</tr>
<tr>
<td>04A8-1</td>
<td>32.5</td>
<td>213</td>
<td>0.55</td>
<td>0.75</td>
<td>0.83</td>
<td>1.10</td>
</tr>
<tr>
<td>06A9-1</td>
<td>32.5</td>
<td>145</td>
<td>0.75</td>
<td>1.00</td>
<td>1.10</td>
<td>1.50</td>
</tr>
<tr>
<td>07A8-1</td>
<td>32.5</td>
<td>96.5</td>
<td>1.10</td>
<td>1.50</td>
<td>1.70</td>
<td>2.20</td>
</tr>
<tr>
<td>09A8-1</td>
<td>32.5</td>
<td>69.9</td>
<td>1.50</td>
<td>2.00</td>
<td>2.30</td>
<td>3.00</td>
</tr>
<tr>
<td>12A2-1</td>
<td>19.5</td>
<td>47.1</td>
<td>2.20</td>
<td>3.00</td>
<td>3.30</td>
<td>4.40</td>
</tr>
<tr>
<td>Trójfazowe (U_N = 380...480 \text{ V})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01A8-4</td>
<td>99</td>
<td>933</td>
<td>0.37</td>
<td>0.50</td>
<td>0.56</td>
<td>0.74</td>
</tr>
<tr>
<td>02A6-4</td>
<td>99</td>
<td>628</td>
<td>0.55</td>
<td>0.75</td>
<td>0.83</td>
<td>1.10</td>
</tr>
<tr>
<td>03A3-4</td>
<td>99</td>
<td>428</td>
<td>0.75</td>
<td>1.00</td>
<td>1.13</td>
<td>1.50</td>
</tr>
<tr>
<td>04A0-4</td>
<td>99</td>
<td>285</td>
<td>1.10</td>
<td>1.50</td>
<td>1.65</td>
<td>2.20</td>
</tr>
<tr>
<td>05A6-4</td>
<td>99</td>
<td>206</td>
<td>1.50</td>
<td>2.00</td>
<td>2.25</td>
<td>3.00</td>
</tr>
<tr>
<td>07A2-4</td>
<td>53</td>
<td>139</td>
<td>2.20</td>
<td>2.00</td>
<td>3.30</td>
<td>4.40</td>
</tr>
<tr>
<td>09A4-4</td>
<td>53</td>
<td>102</td>
<td>3.00</td>
<td>3.00</td>
<td>4.50</td>
<td>6.00</td>
</tr>
<tr>
<td>12A6-4</td>
<td>32</td>
<td>76</td>
<td>4.00</td>
<td>5.00</td>
<td>6.00</td>
<td>8.00</td>
</tr>
<tr>
<td>17A0-4</td>
<td>32</td>
<td>54</td>
<td>5.50</td>
<td>7.50</td>
<td>8.25</td>
<td>11.00</td>
</tr>
<tr>
<td>25A0-4</td>
<td>23</td>
<td>39</td>
<td>7.50</td>
<td>10.00</td>
<td>11.25</td>
<td>15.00</td>
</tr>
<tr>
<td>032A-4</td>
<td>6</td>
<td>29</td>
<td>11.00</td>
<td>15.00</td>
<td>17</td>
<td>22.00</td>
</tr>
<tr>
<td>038A-4</td>
<td>6</td>
<td>24</td>
<td>15.00</td>
<td>20.00</td>
<td>23</td>
<td>30.00</td>
</tr>
<tr>
<td>045A-4</td>
<td>6</td>
<td>20</td>
<td>18.50</td>
<td>25.00</td>
<td>28</td>
<td>37.00</td>
</tr>
<tr>
<td>050A-4</td>
<td>6</td>
<td>20</td>
<td>22.00</td>
<td>30.00</td>
<td>33</td>
<td>44.00</td>
</tr>
</tbody>
</table>

3AXD10000299801.xls

1) Maksymalny dopuszczalny cykl hamowania rezystora hamowania różni się od cyklu przemiennika.
\(P_{\text{BRmax}} \) — maksymalna moc hamowania przemiennika 1/10 min (\(P_{\text{BRcont}} \times 150\% \)) musi przekraczać oczekiwany moc hamowania.
\(P_{\text{BRcont}} \) — maksymalna moc hamowania przemiennika musi przekraczać oczekiwany moc hamowania.

Dobór kabli rezystora hamowania i ich kierowanie

Należy użyć ekranowanego kabla określonego w sekcji *Charakterystyka zacisków kabli zasilania* na str. 100.
Minimalizacja zakłóceń elektromagnetycznych

Realizacja poniższych wskazówek pozwoli zminimalizować zakłócenia elektromagnetyczne powodowane szybkimi zmianami prądu w kabliach rezystora:

- Kable należy ułożyć z daleka od innych kabli.
- Unikać układania kabla równolegle do innych kabli na dłuższym odcinku. Minimalna odległość między równolegle poprowadzonymi kablami powinna wynosić 0,3 metra.
- Kable należy krzyżować ze sobą pod kątem prostym.
- Aby zminimalizować emitowane promieniowanie oraz obciążenie półprzewodników mocy IGBT czopera, kabel powinien być możliwie krótki. Wraz z długością kabla rośnie ilość emitowanego promieniowania, wartość obciążenia indukcyjnego oraz wysokość pików napięcia w półprzewodnikach IGBT czopera hamowania.

Maksymalna długość kabla

Maksymalna długość kabli rezystora wynosi 10 m (33 stopy).

Zgodność EMC po zakończeniu montażu

Firma ABB nie weryfikowała, czy wymagania EMC są spełniane przy zewnętrznych, wybranych przez użytkownika rezystorach i kabliach obwodu hamowania. Zgodność EMC po zakończeniu montażu musi zostać określona przez klienta.

Umiejscowienie rezystorów hamowania

Rezystory należy zainstalować poza przemiannikiem częstotliwości w miejscu zapewniającym odpowiednie chłodzenie.

Chłodzenie rezystora należy zaplanować tak, aby:

- Nie występuje ryzyko przegrzania rezystora ani materiałów w jego pobliżu.
- Temperatura powietrza w otoczeniu nie przekracza dopuszczalnego maksymalnego limitu.

Do rezystora należy doprowadzić chłodne powietrze lub chłodną wodę zgodnie z instrukcjami producenta rezystora.

Ochrona systemu w przypadku błędów w obwodzie hamowania

- **Ochrona systemu w przypadku zwarć kabla i rezystora hamowania**

Kabel rezystora, jeśli jest identyczny z kablem zasilania przemiennika, jest chroniony przez bezpieczniki wejściowe.

- **Ochrona systemu przed przeciążeniem termicznym**

Ze względów bezpieczeństwa zdecydowanie należy wyposażyć przemiennik częstotliwości w stycznik główny. Należy go okablować tak, aby otwierał się po przegrzaniu rezystora. Jest to bardzo istotne z punktu widzenia bezpieczeństwa, ponieważ w przeciwnym razie przemiennik częstotliwości nie będzie w stanie przerwać zasilania, jeśli po wystąpieniu awarii czoper będzie w stanie przewodzenia. Poniżej został pokazany przykładowy schemat okablowania. Firma ABB zaleca używanie rezystorów wyposażonych w przełącznik termiczny (1) wewnętrz zespołu rezystora. Przełącznik ten wskazuje na zbyt wysoką temperaturę i przeciążenie.

Firma ABB zaleca również połączenie przełącznika termicznego z wejściem cyfrowym przemiennika częstotliwości.

Montaż mechaniczny

Należy zapoznać się z instrukcjami producenta rezystora.
Montaż elektryczny

- **Sprawdzanie izolacji zespołu**
 Należy postępować zgodnie z instrukcjami zawartymi w sekcji *Układ rezystora hamowania* na str. *Układ rezystora hamowania*.

- **Schemat podłączenia**
 Patrz sekcja *Podłączenie kabli zasilania* na str. *65*.

- **Procedura podłączania**
 Patrz sekcja *Podłączenie kabli zasilania* na str. *65*.

Wyłącznik termiczny rezystora hamowania należy podłączyć zgodnie z opisem w sekcji *Ochrona systemu przed przeciążeniem termicznym* na str. *133*.
Urchamianie

Należy ustawić następujące parametry:

1. Wyłączyć kontrolę przepięć w przemienniku częstotliwości za pomocą parametru 30.30 Kontrola przepięć.

2. Ustawić źródło parametru 31.01 Źródło zdarzenia zewn. 1 na wejście cyfrowe, do którego jest podłączony przełącznik termiczny rezystora hamowania.

3. Ustawić parametr 31.02 Typ zdarzenia zewn. 1 na Błąd.

4. Włączyć czoper hamowania przy użyciu parametru 43.06 Czoper hamowania wł. Jeśli zostanie wybrana opcja Wł. z modelem termicznym, należy także ustawić parametry ochrony rezystora hamowania przed przeciążeniem 43.08 i 43.09 zgodnie z określona aplikacją.

5. Sprawdzić wartość rezystancji w parametrze 43.10 Rezystancja rezystora.

Po wybraniu tych ustawień parametrów przemiennik częstotliwości będzie generował błędy oraz powodował zwalnianie wybiegiem do zatrzymania w przypadku zbyt wysokiej temperatury rezystora hamowania.

OSTRZEŻENIE! Odłączyć rezystor hamowania, jeśli nie włączono go w ustawieniach parametrów.
Hamowanie rezystorowe
Funkcja bezpiecznego wyłączania momentu (STO)

Zawartość tego rozdziału

W tym rozdziale opisano funkcję bezpiecznego wyłączania momentu (STO) przemiennika częstotliwości oraz zawarto informacje o sposobie jej użycia.

Opis

Funkcja bezpiecznego wyłączania momentu może być użyta na przykład w obwodach zabezpieczających lub nadzorujących, które zatrzymują przemiennik częstotliwości w przypadku niebezpieczeństwa. Innym możliwym zastosowaniem jest przełącznik zapobiegający nieoczekiwaniu uruchomieniu, który umożliwia wykonywanie krótkich czynności konserwacyjnych, jak np. czyszczenie lub pracę na elementach nieelektrycznych maszyny bez wyłączania zasilania przemiennika częstotliwości.

Uwaga: Funkcja bezpiecznego wyłączania momentu nie powoduje odłączenia napięcia od przemiennika częstotliwości. Należy zapoznać się z ostrzeżeniem na str. 144.

Funkcja bezpiecznego wyłączania momentu ma architekturę redundantną, czyli oba kanały muszą być używane we wdrożeniu funkcji bezpieczeństwa. Dane dotyczące bezpieczeństwa podane w niniejszym dokumencie są obliczane dla redundantnej konfiguracji i nie są poprawne, jeśli nie są używane oba kanały.
Funkcja bezpiecznego wyłączania momentu przemiennika częstotliwości jest zgodna z następującymi normami:

<table>
<thead>
<tr>
<th>Standardowa</th>
<th>Nazwa</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 61000-6-7:2014</td>
<td>Odporność elektromagnetyczna (EMC) — część 6-7: Standardy ogólne — Wymagania odporności dotyczące wyposażenia przewidzianego do wypełniania funkcji związanych z bezpieczeństwem (bezpieczeństwo funkcjonalne)</td>
</tr>
<tr>
<td>IEC 61326-3-1:2008</td>
<td>Wyposażenie elektryczne do pomiarów, sterowania i użytku w laboratoriach — Wymagania dotyczące kompatybilności elektromagnetycznej (EMC) — Część 3-1: Wymagania odporności dotyczące systemów związanych z bezpieczeństwem i wyposażenia przewidzianego do wypełniania funkcji związanych z bezpieczeństwem (bezpieczeństwo funkcjonalne) — Ogólne zastosowania przemysłowe</td>
</tr>
<tr>
<td>IEC 61508-1:2010</td>
<td>Bezpieczeństwo funkcjonalne elektrycznych/elektronicznych/programowalnych elektronicznych systemów związanych z bezpieczeństwem — Część 1: Wymagania ogólne</td>
</tr>
<tr>
<td>IEC 61511:2003</td>
<td>Bezpieczeństwo funkcjonalne — Przyrządowe systemy bezpieczeństwa dla sektora procesów przemysłowych</td>
</tr>
<tr>
<td>EN ISO 13849-1:2015</td>
<td>Bezpieczeństwo maszyn – Elementy systemów sterowania związane z bezpieczeństwem — Część 1: Zasady ogólne projektowania</td>
</tr>
</tbody>
</table>

Zgodność z europejską dyrektywą maszynową

Patrz sekcja Zgodność z europejską dyrektywą maszynową na str. 113.
Zasady podłączania

- Połączenie z zasilaniem wewnętrznym +24 V DC

- Połączenie z zasilaniem zewnętrznym +24 V DC
Przykładowe okablowanie

Poniżej znajduje się przykład okablowania funkcji bezpiecznego wyłączania momentu z zasilaniem wewnętrznym +24 V DC.

Przełącznik aktywacyjny

Na powyższym schemacie okablowania (str. 140) przełącznik aktywacyjny ma oznaczenie (K). Oznacza to komponent taki jak przełącznik ręczny, przycisk zatrzymania awaryjnego, styki przekaźnika bezpieczeństwa lub zabezpieczający sterownik PLC.

- Jeśli używany jest ręczny przełącznik aktywacyjny, musi on być takiego typu, który umożliwia zablokowanie w pozycji otwartej.
- Wejścia IN1 i IN2 muszą się otwierać i zamykać w odstępie 200 ms.
Funkcja bezpiecznego wyłączania momentu (STO) 141

■ Typy i długości kabli

• Zalecane jest użycie podwójnie ekranowanych skrętek dwużyłowych.
• Maksymalna długość kabla pomiędzy przełącznikiem aktywacyjnym (K) i jednostką sterującą przemiennika częstotliwości to 100 m (328 stopy).

Uwaga: Zwarcie w okablowaniu między przełącznikiem i zaciskiem STO powoduje niebezpieczny błąd, dlatego zalecamy użycie przekaźnika zabezpieczającego (w tym diagnostyki okablowania) lub metody okablowania (uziemienie ekranu, rozdzielenie kanałów), która zmniejsza lub eliminuje ryzyko spowodowane zwarciem.

Uwaga: Napięcie na zaciskach INx każdego przemiennika częstotliwości musi wynosić przynajmniej 13 V DC, aby zostało zinterpretowane jako wartość „1”. Tolerancja impulsów kanałów wejściowych to 1 ms.

■ Uziemienie ekranów ochronnych

• Uziemić ekran w okablowaniu pomiędzy przełącznikiem aktywacyjnym i kartą sterowania na karcie sterowania.
• Uziemić ekran okablowania między dwiema kartami sterowania tylko na jednej karcie sterowania.

Zasada działania

1. Funkcja Bezpieczne wyłączanie momentu zostaje aktywowana (otwiera się przełącznik aktywacyjny lub styki przekaźnika zabezpieczającego).

2. Wejścia STO IN1 i IN2 na karcie sterowania przemiennika częstotliwości tracą zasilanie.

3. Funkcja STO odcina napięcie sterowania tranzystorów IGBT przemiennika częstotliwości.

4. Program sterujący generuje wskazanie zdefiniowane w parametrze 31.22 Wskaźnik STO praca/zatrz.

Parametr wybiera, które wskazania są podawane, gdy jeden lub oba sygnały funkcji bezpiecznego wyłączania momentu (STO) są wyłączone lub utracone. Wskazania zależą również od tego, czy przemiennik częstotliwości działa, czy jest zatrzymany w momencie zdarzenia.

Uwaga: Ten parametr nie wpływa na obsługę samej funkcji STO. Funkcja STO będzie działała bez względu na ustawienie tego parametru: uruchomiony przemiennik częstotliwości zatrzyma się po usunięciu jednego lub obu sygnałów STO i nie zostanie uruchomiony do momentu przywrócenia obu sygnałów STO i zresetowania wszystkich błędów.
Uwaga: Utrata tylko jednego sygnału STO zawsze generuje błąd, który jest interpretowany jako nieprawidłowe działanie sprzętu lub okablowania STO.

Uruchamianie z testem akceptacyjnym

Aby zapewnić bezpieczne działanie funkcji bezpieczeństwa, wymagana jest walidacja. Wykonawca końcowego montażu maszyny ma obowiązek sprawdzić funkcję, wykonując test akceptacyjny. Test akceptacyjny należy wykonać:

- przy pierwszym uruchomieniu funkcji bezpieczeństwa
- po jakichkolwiek zmianach związanych z funkcją bezpieczeństwa (dotyczących płytek drukowanych, okablowania, komponentów, ustawień itd.);
- po wykonaniu dowolnych prac konserwacyjnych związanych z funkcją bezpieczeństwa.

Osoba uprawniona

Test akceptacyjny funkcji bezpieczeństwa musi zostać wykonany przez osobę uprawnioną, dysponującą odpowiednim doświadczeniem i wiedzą w zakresie sposobu działania funkcji bezpieczeństwa. Test musi zostać udokumentowany i podpisany przez osobę uprawnioną.

Upoważniona osoba to osoba z upoważnieniem producenta urządzenia lub użytkownika końcowego do wykonywania w jego imieniu testu sprawdzania funkcji bezpieczeństwa/akceptacji.

Raporty z testu akceptacyjnego

Podpisane raporty z testu akceptacyjnego należy przechowywać w rejestrze urządzenia. Raport powinien obejmować dokumentację czynności rozruchowych, wyniki testu, odniesienia do raportów o awariach oraz informacje o sposobie usunięcia awarii. Do rejestru należy także wprowadzać wszystkie nowe testy akceptacyjne wykonywane wskutek przeprowadzenia zmian albo prac konserwacyjnych.
Procedura testu akceptacyjnego

Po podłączeniu przewodów funkcji bezpiecznego wyłączania momentu należy sprawdzić poprawność jej działania zgodnie z poniższą listą kontrolną.

<table>
<thead>
<tr>
<th>Czynność</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Upewnić się, czy przemiennik częstotliwości można swobodnie uruchamiać i wyłączać w trakcie rozruchu.</td>
<td></td>
</tr>
<tr>
<td>Zatrzymać przemiennik częstotliwości (jeśli jest uruchomiony), wyłączyć przełącznik wejścia zasilania oraz odizolować rozłącznikiem linię zasilania.</td>
<td></td>
</tr>
<tr>
<td>Sprawdzić, czy połączenia obwodu funkcji bezpiecznego wyłączania momentu są podłączone zgodnie ze schematem okablowania.</td>
<td></td>
</tr>
<tr>
<td>Zamknąć rozłącznik i włączyć zasilanie.</td>
<td></td>
</tr>
<tr>
<td>Sprawdzić działanie funkcji STO przy wyłączonym silniku.</td>
<td></td>
</tr>
<tr>
<td>• Przesłać polecenie zatrzymania do przemiennika częstotliwości (jeśli jest uruchomiony) i poczekać na unieruchomienie wału silnika.</td>
<td></td>
</tr>
<tr>
<td>Upewnić się, że przemiennik częstotliwości pracuje zgodnie z następującą procedurą:</td>
<td></td>
</tr>
<tr>
<td>• Otworzyć obwód STO. Przemiennik częstotliwości generuje wskazanie, jeśli zdefiniowano je dla stanu zatrzymania w parametrze 31.22 Wskaźnik STO praca/zatr. Opis ostrzeżenia podano w dokumencie ACS380 Firmware manual (3AXD50000029275 [j. ang.]).</td>
<td></td>
</tr>
<tr>
<td>• Podać komendę startu, aby sprawdzić, czy funkcja STO blokuje pracę przemieninika częstotliwości. Na przemienniku częstotliwości pojawi się ostrzeżenie. Silnik nie powinien się uruchomić.</td>
<td></td>
</tr>
<tr>
<td>• Zamknąć obwód STO.</td>
<td></td>
</tr>
<tr>
<td>• Zresetować wszelkie aktywne błędy. Uruchomić ponownie przemiennik częstotliwości i sprawdzić, czy silnik pracuje prawidłowo.</td>
<td></td>
</tr>
</tbody>
</table>
Czynność

<table>
<thead>
<tr>
<th>Sprawdzić działanie funkcji STO przy uruchomionym silniku.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Uruchomić przemiennik częstotliwości i sprawdzić, czy silnik pracuje.</td>
</tr>
<tr>
<td>• Otworzyć obwód STO. Silnik powinien zatrzymać się. Przemiennik częstotliwości generuje wskazanie, jeśli zdefiniowano je dla stanu pracy w parametrze 31.22 Wskaźnik STO praca/zatr. Opis ostrzeżenia podano w dokumencie ACS380 Firmware manual (3AXD50000029275).</td>
</tr>
<tr>
<td>• Zresetować wszelkie aktywne błędy i spróbować uruchomić przemiennik częstotliwości.</td>
</tr>
<tr>
<td>• Sprawdzić, czy silnik jest unieruchomiony, a przemiennik częstotliwości działa zgodnie z opisem testowania działania przy zatrzymanym silniku zamieszczonym powyżej.</td>
</tr>
<tr>
<td>• Zamknąć obwód STO.</td>
</tr>
<tr>
<td>• Zresetować wszelkie aktywne błędy. Uruchomić ponownie przemiennik częstotliwości i sprawdzić, czy silnik pracuje prawidłowo.</td>
</tr>
</tbody>
</table>

Udokumentować i podpisać raport z testu akceptacyjnego potwierdzający bezpieczne działanie funkcji zabezpieczającej i dopuszczenie jej do działania.

Eksploatacja

1. Otworzyć przełącznik aktywacyjny lub aktywować funkcję bezpieczeństwa zintegrowaną z połączeniem STO.

2. Wejścia funkcji STO w jednostce sterującej przemiennika częstotliwości tracą zasilanie i jednostka sterująca odcina napięcie sterowania od tranzystorów IGBT przemiennika częstotliwości.

3. Program sterujący generuje wskazanie zdefiniowane w parametrze 31.22 Wskaźnik STO praca/zatr.

5. Dezaktywować funkcję STO, zamykając przełącznik aktywacyjny lub resetując funkcję bezpieczeństwa zintegrowaną z połączeniem STO.

6. Przed ponownym uruchomieniem zresetować błędy.

OSTRZEŻENIE! Funkcja bezpiecznego wyłączania momentu nie powoduje odłączenia napięcia od głównego i dodatkowego obwodu przemiennika częstotliwości. Z tego powodu prace konserwacyjne przy elementach elektrycznych przemiennika częstotliwości lub silnika mogą być wykonywane wyłącznie po odizolowaniu przemiennika częstotliwości od głównego zasilania.
OSTRZEŻENIE! (Tylko dla silników z magnesami trwałymi). W przypadku awarii wielu półprzewodników mocy IGBT przemiennik częstotliwości może wytworzyć moment wyrównujący, który może obrócić wał silnika o maks. 180° stopni mimo aktywacji funkcji bezpiecznego wyłączania momentu. P oznacza tu liczbę par biegunów.

Uwagi:
• Jeśli działający przemiennik częstotliwości zostanie zatrzymany za pomocą funkcji bezpiecznego wyłączania momentu, spowoduje to odcięcie napięcia zasilania silnika oraz jego zwalnianie wybikiem do zatrzymania. Jeśli może to być niebezpieczne lub jest niedopuszczalne, przed aktywowaniem funkcji bezpiecznego wyłączania momentu należy zatrzymać przemiennik częstotliwości i napędzane urządzenie za pomocą odpowiedniego trybu zatrzymywania.
• Funkcja bezpiecznego wyłączania momentu przestania działanie wszystkich innych funkcji przemiennika częstotliwości.
• Funkcja bezpiecznego wyłączania momentu nie stanowi zabezpieczenia przed sabotażem ani nieprawidłową obsługą.
• Funkcja bezpiecznego wyłączania momentu ma na celu ograniczenie niebezpiecznych warunków. Mimo tego nie zawsze jest możliwe wyeliminowanie wszystkich potencjalnych zagrożeń. Wykonawca montażu maszyny ma obowiązek poinformować użytkownika końcowego o zagrożeniu szczątkowym.
• Diagnostyka bezpiecznego wyłączania momentu nie jest dostępna podczas przerw w zasilaniu lub podczas zasilania przemiennika wyłącznie z modułu rozszerzeń zasilania BAPO-01 +24 V.
Konserwacja

Po sprawdzeniu działania obwodu podczas uruchamiania co jakiś czas będzie wykonywany test sprawdzający na potrzeby konserwacji funkcji STO. W przypadku pracy przy dużym zapotrzebowaniu maksymalny odstęp testu sprawdzającego wynosi 20 lat. W przypadku pracy przy małym zapotrzebowaniu maksymalny odstęp testu sprawdzającego wynosi 2 lata. Procedurę testu zawiera sekcja *Procedura testu akceptacyjnego* (str. 143).

Oprócz testu sprawdzającego warto też sprawdzać działanie tej funkcji zawsze wtedy, gdy w urządzeniu wykonywane są inne prace konserwacyjne.

Test działania funkcji bezpiecznego wyłączania momentu należy uwzględnić w planie rutynowej konserwacji urządzenia napędzanego przez przemiennik częstotliwości.

Jeśli jakakolwiek zmiana okablowania lub składników jest wymagana po uruchomieniu lub przywrócono parametry, należy wykonać testy podane w sekcji *Procedura testu akceptacyjnego* (str. 143).

Należy używać tylko części zatwierdzonych przez ABB.

Śledzenie błędów

Wskazania podawane podczas normalnej pracy funkcji bezpiecznego wyłączania momentu są wybierane za pomocą parametru 31.22 Wskaźnik STO praca/zatrz.

Diagnostyka funkcji bezpiecznego wyłączania momentu porównuje krzyżowo stany dwóch kanałów STO. Jeśli kanały nie mają tego samego stanu, wykonywana jest funkcja reakcji na błąd i przemiennik częstotliwości wyzwala błąd „Błąd urz.bezp.wyl.mom.”. Próba użycia funkcji STO w sposób nienadmiarowy, na przykład przez aktywowanie tylko jednego kanału, wyzwoli taką samą reakcję.

W podręczniku oprogramowania przemiennika częstotliwości przedstawiono wskazania generowane przez przemiennik częstotliwości oraz szczegółowe informacje o kierowaniu wskazań błędów i ostrzeżeń do wyjścia jednostki sterującej w celu diagnozy zewnętrznej.

Jakiekolwiek błędy funkcji bezpiecznego wyłączania momentu muszą zostać zgłoszone firme ABB.
Dane dotyczące bezpieczeństwa

Poniżej znajdują się informacje dotyczące bezpieczeństwa funkcji bezpiecznego wyłączania momentu (STO).

Uwaga: dane dotyczące bezpieczeństwa są obliczane dla użytku nadmiarowego i nie są poprawne, jeśli nie są używane oba kanały STO.

Dane dotyczace znamionowy

<table>
<thead>
<tr>
<th>Typ ACS380-04xx</th>
<th>IEC 61508 i IEC/EN 61800-5-2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SIL</td>
</tr>
<tr>
<td>Jednofazowe U_N = 200...240 V</td>
<td></td>
</tr>
<tr>
<td>02A4-1</td>
<td>3</td>
</tr>
<tr>
<td>03A7-1</td>
<td>3</td>
</tr>
<tr>
<td>04A8-1</td>
<td>3</td>
</tr>
<tr>
<td>06A9-1</td>
<td>3</td>
</tr>
<tr>
<td>07A8-1</td>
<td>3</td>
</tr>
<tr>
<td>09A8-1</td>
<td>3</td>
</tr>
<tr>
<td>12A2-1</td>
<td>3</td>
</tr>
<tr>
<td>Trójfazowe U_N = 380...480 V</td>
<td></td>
</tr>
<tr>
<td>01A8-4</td>
<td>3</td>
</tr>
<tr>
<td>02A6-4</td>
<td>3</td>
</tr>
<tr>
<td>03A3-4</td>
<td>3</td>
</tr>
<tr>
<td>04A0-4</td>
<td>3</td>
</tr>
<tr>
<td>05A6-4</td>
<td>3</td>
</tr>
<tr>
<td>07A2-4</td>
<td>3</td>
</tr>
<tr>
<td>09A4-4</td>
<td>3</td>
</tr>
<tr>
<td>12A6-4</td>
<td>3</td>
</tr>
<tr>
<td>17A0-4</td>
<td>3</td>
</tr>
<tr>
<td>25A0-4</td>
<td>3</td>
</tr>
<tr>
<td>032A-4</td>
<td>3</td>
</tr>
<tr>
<td>038A-4</td>
<td>3</td>
</tr>
<tr>
<td>045A-4</td>
<td>3</td>
</tr>
<tr>
<td>050A-4</td>
<td>3</td>
</tr>
</tbody>
</table>

Dane dotyczace znamionowa

<table>
<thead>
<tr>
<th>Typ ACS380-04xx</th>
<th>EN ISO 13849-1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wartość znamionowa PL</td>
</tr>
<tr>
<td>Jednofazowe U_N = 200...240 V</td>
<td></td>
</tr>
<tr>
<td>02A4-1</td>
<td>e</td>
</tr>
<tr>
<td>03A7-1</td>
<td>e</td>
</tr>
<tr>
<td>04A8-1</td>
<td>e</td>
</tr>
<tr>
<td>06A9-1</td>
<td>e</td>
</tr>
<tr>
<td>07A8-1</td>
<td>e</td>
</tr>
<tr>
<td>09A8-1</td>
<td>e</td>
</tr>
<tr>
<td>12A2-1</td>
<td>e</td>
</tr>
</tbody>
</table>

Funkcja bezpiecznego wyłączania momentu (STO) 147
1) Do obliczenia pętli bezpieczeństwa przyjąć 100 lat.

2) Zgodnie z normą EN ISO 13849-1, tabela E.1

- Poniższy profil temperaturowy jest używany do obliczeń wartości związanych z bezpieczeństwem:
 - 670 cykli włączenia/wyłączenia rocznie przy $\Delta T = 71,66^\circ C$
 - 1340 cykli włączenia/wyłączenia rocznie przy $\Delta T = 61,66^\circ C$
 - 30 cykli włączenia/wyłączenia rocznie przy $\Delta T = 10,0^\circ C$
 - Temperatura płytki 32°C przez 2,0% czasu
 - Temperatura płytki 60 °C przez 1,5% czasu
 - Temperatura płytki 85 °C przez 2,3% czasu

- Funkcja STO jest komponentem bezpieczeństwa typu A według definicji normy IEC 61508-2.

- Powiązane tryby błędów:
 - Funkcja STO jest wyzwalana nieprawidłowo (błąd bezpieczeństwa)
 - Funkcja STO nie jest aktywowana na żądanie
Wykonano wyłączenie błędu w trybie błędu „zwarcie na płytce drukowanej” (EN 13849-2, tabela D.5). Analiza opiera się na założeniu, że jednocześnie występuje jeden błąd. Nie analizowano wielu błędów jednocześnie.

- Czas reakcji STO (najkrótsza wykrywalna przerwa): 1 ms
- Czas odpowiedzi STO: 5 ms (typowo), 10 ms (maksymalnie)
- Czas wykrycia błędu: Kanały w różnych stanach przez dłużej niż 200 ms
- Czas reakcji na błąd: Czas wykrycia błędu +10 ms
- Opóźnienie wskazania błędu STO (parametr 31.22): <500 ms
- Opóźnienie wskazania ostrzenia STO (parametr 31.22): < 1000 ms
- Maksymalna długość kabla pomiędzy przełącznikiem aktywnym (K) i jednostką sterującą przemiennika częstotliwości to 100 m (328 stóp).
- Napięcie na zaciskach INx każdego przemiennika częstotliwości musi wynosić przynajmniej 13 V DC, aby zostało zinterpretowane jako wartość „1”. Tolerancja impulsów kanałów wejściowych to 1 ms.

Skróty

<table>
<thead>
<tr>
<th>Skrót</th>
<th>Dokument</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCF</td>
<td>EN ISO 13849-1</td>
<td>Awarie spowodowane typową przyczyną (%)</td>
</tr>
<tr>
<td>DC</td>
<td>EN ISO 13849-1</td>
<td>Pokrycie diagnostyczne</td>
</tr>
<tr>
<td>FIT</td>
<td>IEC 61508</td>
<td>Niezawodność w czasie: 1E-9 godzin</td>
</tr>
<tr>
<td>HFT</td>
<td>IEC 61508</td>
<td>Tolerancja awarii sprzętu</td>
</tr>
<tr>
<td>MTTFₐ</td>
<td>EN ISO 13849-1</td>
<td>Średni czas do niebezpiecznej awarii: (łączna liczba używanych jednostek) / (liczba niebezpiecznych, niewykrytych awarii) podczas danego interwału pomiaru w określonych warunkach</td>
</tr>
<tr>
<td>PFDₐᵣ</td>
<td>IEC 61508</td>
<td>Średnie prawdopodobieństwo niebezpiecznej awarii przy wykonywaniu żądania</td>
</tr>
<tr>
<td>PFH</td>
<td>IEC 61508</td>
<td>Średnia częstotliwość niebezpiecznych awarii na godzinę</td>
</tr>
<tr>
<td>PL</td>
<td>EN ISO 13849-1</td>
<td>Poziom wydajności. Poziomy a...e odpowiadają SIL</td>
</tr>
<tr>
<td>SC</td>
<td>IEC 61508</td>
<td>Możliwość systematyczna</td>
</tr>
<tr>
<td>SFF</td>
<td>IEC 61508</td>
<td>Składnik współczynnika częstości awarii (%)</td>
</tr>
<tr>
<td>SIL</td>
<td>IEC 61508</td>
<td>Poziom nienaruszalności bezpieczeństwa (1…3)</td>
</tr>
<tr>
<td>SILCL</td>
<td>EN 62061</td>
<td>Maksymalna wartość SIL (poziom 1…3), której można załączać dla funkcji bezpieczeństwa lub podsystemu</td>
</tr>
<tr>
<td>STO</td>
<td>IEC/EN 61800-5-2</td>
<td>Safe Torque Off, bezpieczne wyłączanie momentu</td>
</tr>
<tr>
<td>T1</td>
<td>IEC 61508</td>
<td>Odstęp testu sprawdzającego</td>
</tr>
</tbody>
</table>

Deklaracja zgodności

Deklaracja zgodności jest dostępna w Internecie. Dalsze informacje znajdują się w sekcji *Biblioteka dokumentów w Internecie* na wewnętrznej stronie tylnej okładki.
Funkcja bezpiecznego wyłączania momentu (STO)

- **Certyfikat**

Przemieninik częstotliwości ma certyfikat TÜV.
Moduł interfejsu enkodera impulsów BTAC-02

Zawartość tego rozdziału

W tym rozdziale opisano opcjonalny moduł interfejsu enkodera impulsów BTAC-02, przedstawiono jego dane techniczne oraz opisano sposób jego rozruchu.

Instrukcje dotyczące bezpieczeństwa

OSTRZEŻENIE! Należy postępować zgodnie z instrukcjami w rozdziale Instrukcje bezpieczeństwa na str. 13. Nieprzestrzeganie instrukcji może skutkować obrażeniami, śmiercią lub uszkodzeniem urządzenia.
Opis sprzętu

Opis produktu

Moduł BTAC posiada funkcjonalność modułu rozszerzeń zasilania pomocniczego BAPO-01. Zapewnia on pomocnicze zasilanie karty sterowania przemiennika częstotliwości. Więcej informacji podano w sekcji Moduł rozszerzeń zasilania BAPO-01 na str. 177.

Układ

1. Moduł BTAC
2. Otwór wkrętu blokującego
3. Złącze X103
4. Złącze X104
5. Złącze X105
6. Złącze X106
7. Wewnętrzne złącze X100
8. Wewnętrzne złącze X102
9. Szyna montażowa
10. Wkręt uziemiający
Montaż mechaniczny

Więcej informacji podano w sekcji *Instalacja opcjonalnego modułu z boku* na str. 76.

Montaż elektryczny

- **Okablowanie – ogólne**

Enkoder impulsów należy podłączyć do modułu BTAC za pomocą kabli wskazanych w tej tabeli.

<table>
<thead>
<tr>
<th>Kabel</th>
<th>Maks. rozmiar złącza</th>
<th>Maksymalna długość kabla</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 x (2+1) podwójnie ekranowana skrętka z oddzielnymi i wspólnymi ekranami</td>
<td>2,5 mm(^2)</td>
<td>100 m*</td>
</tr>
</tbody>
</table>

* Jeżeli napięcie zasilania enkodera wynosi mniej niż 10 V, maksymalna długość kabla wynosi 50 m.*
Oznaczenia zacisków

Interfejs użytkownika enkodera modułu BTAC składa się z 1×3-pinowej listwy zacisków.

Przy okablowywaniu modułu BTAC oraz zacisków enkodera warto referencyjnie użyć poniższej tabeli.

<table>
<thead>
<tr>
<th>Identyfikacja</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTAC</td>
<td>Enkoder</td>
</tr>
<tr>
<td>X103</td>
<td>VIN $V_{cc/PWR}$</td>
</tr>
<tr>
<td></td>
<td>VOUT $V_{cc/PWR}$</td>
</tr>
<tr>
<td></td>
<td>GND 0 V / GND</td>
</tr>
<tr>
<td>X104</td>
<td>A 1 A A+</td>
</tr>
<tr>
<td></td>
<td>A-</td>
</tr>
<tr>
<td></td>
<td>GND - - -</td>
</tr>
<tr>
<td>X105</td>
<td>B 2 B B+</td>
</tr>
<tr>
<td></td>
<td>B-</td>
</tr>
<tr>
<td></td>
<td>GND - - -</td>
</tr>
<tr>
<td>X106</td>
<td>Z 3 Z Z+</td>
</tr>
<tr>
<td></td>
<td>Z-</td>
</tr>
<tr>
<td></td>
<td>GND - - -</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kanały</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTAC</td>
<td>Enkoder</td>
</tr>
<tr>
<td>A 1 A A+</td>
<td>• Maksymalna częstotliwość sygnału: 200 kHz</td>
</tr>
<tr>
<td>A-</td>
<td>• Poziom sygnału:</td>
</tr>
<tr>
<td>B 2 B B+</td>
<td>Napiecie zasilania enkodera</td>
</tr>
<tr>
<td>B-</td>
<td>5 V</td>
</tr>
<tr>
<td>Z 3 Z Z+</td>
<td>15 V</td>
</tr>
<tr>
<td>Z-</td>
<td>24 V</td>
</tr>
<tr>
<td></td>
<td>• Poziomy decyzji są definiowane automatycznie na podstawie poziomu napięcia w zasilaniu łańcuchowym.</td>
</tr>
<tr>
<td></td>
<td>• Kanały wejściowe są odizolowane od elementów logicznych i od uziemienia.</td>
</tr>
<tr>
<td></td>
<td>• Gdy przekaźnik pracuje do przodu, kanał A poprzedza kanał B o 90° (elektrycznie).</td>
</tr>
<tr>
<td></td>
<td>• Kanał Z: Jeden impuls na obrót (używane wyłącznie przy pozycjonowaniu).</td>
</tr>
</tbody>
</table>
Okablowanie — interfejs zasilania enkodera

Zasilanie enkodera należy podłączyć przez moduł BTAC. To samo zasilanie doprowadza moc do interfejsu sygnału w modułu BTAC. Wartości znamionowe napięcia i prądu podano w rozdziale Interfejs enkodera na str. 166.

Jeśli jest używany enkoder 24 V, podłączyć zasilanie 24 V DC przemiennika częstotliwości do enkodera i modułu BTAC. Należy się upewnić, że nie przekroczyono maksymalnego obciążenia. Więcej informacji podano w sekcji Wyjście napięcia pomocniczego na str. 73.

Aby określić, czy można użyć zasilania z przemiennika częstotliwości, użyj poniższej tabeli. Dodaj brakujące wartości i zsumuj wszystko. Wartość sumowania nie może przekraczać łącznego obciążenia zasilania przemiennika częstotliwości.

<table>
<thead>
<tr>
<th>Obciążenia przy zasilaniu 24 V DC przemiennika</th>
<th>mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liczba używanych wejść cyfrowych</td>
<td>$\times 15$ mA każde</td>
</tr>
<tr>
<td>BTAC-02</td>
<td>50 mA</td>
</tr>
<tr>
<td>Wymagany prąd enkodera</td>
<td>=</td>
</tr>
<tr>
<td>Łączne wymagania innych elementów podłączonych przez użytkownika do zasilania 24 V DC przemiennika</td>
<td>=</td>
</tr>
<tr>
<td>Suma (musi być mniejsza niż maksymalne obciążenie linii zasilania 24 V DC przemiennika)</td>
<td>=</td>
</tr>
</tbody>
</table>
Okablowanie — enkoder

1. Zdejmij pokrywę złącza.

2. Okręśl konfigurację okablowania enkodera:
 • W rozdziale *Fazowanie* na str. 157 podano, czy enkoder ma normalną kolejność impulsów, tj. czy impuls enkodera z kanału A poprzedza impuls z kanału B.
 • Więcej informacji o sposobie określania typu wyjścia enkodera podano w sekcji *Typy wyjścia enkodera* na str. 158.
 • W przypadku enkoderów typu push-pull należy zapoznać się z zaleceniami producenta dotyczącymi podłączenia. Można użyć wyjść niesymetrycznego lub symetrycznego.

3. Aby wybrać odpowiedni diagram i odpowiednio okablować enkoder, zapoznaj się z rozdziałami *Schemat okablowania — wyjście enkodera typu push-pull*, *Schematy okablowania — wyjście enkodera z otwartym kolektorem (odbieranie)* lub *Schematy okablowania — wyjście enkodera z otwartym emitterem (dostarczanie)* na str. 159…162.

Uwagi:
 • Standardowo należy uziemiać ekrany kabli tylko po stronie przemiennika.
 • Nie należy prowadzić kabli enkodera równolegle do kabli zasilania (na przykład silnika).

Fazowanie

Gdy enkoder został podłączony prawidłowo, uruchomienie przemiennika w kierunku Do przodu (dodatnia wartość zadana prędkości) powinno wygenerować dodatnie sprzężenie zwrotne od prędkości enkodera.

Opcja A: Test oscyloskopu. W enkoderach inkrementalnych dwa kanały wyjściowe (przewanśnie A lub B albo 1 i 2) są przesunięte w fazie o 90°. Przy obrocie w prawo w większości enkoderów kanał A poprzedza kanał B. Aby określić kanał wiodący, należy zapoznać się z dokumentacją enkodera lub użyć oscyloskopu.

Diagram pokazujący normalne fazowanie:
Impuls A przewodzi impulsowi B (wznosi się od niego wcześniej).

Połączyć kanał wyjściowy enkodera prowadzący, gdy przemiennik częstotliwości pracuje Do przodu do zacisku A modułu BTAC, a drugi kanał wyjściowy — do zacisku B modułu BTAC.

Opcja B: Test funkcjonalny. W ramach tego testu:

• Przełącz tymczasowo przemiennik częstotliwości do trybu skalarnego [parametr 99.04 Tryb ster. silnikiem = 1 (SKALARNE)].
• Uruchom przemiennik częstotliwości w kierunku do przodu.
• Sprawdź, czy parametr 90.13 Enkoder 1: rozszerz. obrotu przyrasta w kierunku dodatnim.
• Jeśli nie, przełącz złącza A/Ā (lub 1/1).
Typy wyjścia enkodera

<table>
<thead>
<tr>
<th>Push-pull</th>
<th>Otwarty kolektor (odbieranie)</th>
<th>Otwarty emiter (podawanie)</th>
</tr>
</thead>
<tbody>
<tr>
<td>![CircuitDiagramPushPull]</td>
<td>![CircuitDiagramOpenCollector]</td>
<td>![CircuitDiagramOpenEmitter]</td>
</tr>
</tbody>
</table>

\(V_{CC} \) = Napięcie zasilania na wejściu enkodera
\(R_L \) = Rezystor obciążenia przy kanale wyjściowym enkodera
Schemat okablowania — wyjście enkodera typu push-pull

W diagramie przyjęto normalną kolejność impulsów w kierunku Do przodu: Impuls A jest wiodący.

W enkoderach z wiodącym impulsem B należy zmienić diagram:
• Złącza A i B enkodera należy podłączyć odpowiednio do zacisków B i A modułu BTAC.
• Złącza \(\overline{A} \) i \(\overline{B} \) enkodera (jeśli są obecne) należy podłączyć odpowiednio do zacisków \(\overline{B} \) i \(\overline{A} \) modułu BTAC.

Połączenie różnicowe

1. Enkoder
2. Moduł BTAC
3. Zasilanie enkodera
1. Enkoder
2. Moduł BTAC
3. Zasilanie enkodera
Schematy okablowania — wyjście enkodera z otwartym kolektorem (odbieranie)

W diagramie przyjęto normalną kolejność impulsów w kierunku Do przodu: Impuls A jest wiodący.

W enkoderach z wiodącym impulsem B należy zmienić diagram:
• Złącza A i B enkodera należy podłączyć odpowiednio do zacisków B i A modułu BTAC.

1. Enkoder
2. Moduł BTAC
3. Zasilanie enkodera
4. Trzy identyczne rezystory

Rozmiar rezystora zależy od zasilania enkodera $V_{in} = V_{OUT}$:

- $V_{in} = 30\text{ V}$ \[R_L = 2,7\ldots3,0\ \text{k}\Omega, 0,5\text{ W} \]
- $V_{in} = 24\text{ V}$ \[R_L = 1,8\ldots2,2\ \text{k}\Omega, 0,5\text{ W} \]
- $V_{in} = 15\text{ V}$ \[R_L = 1,0\ldots1,5\ \text{k}\Omega, 0,5\text{ W} \]
Moduł interfejsu enkodera impulsów BTAC-02

\[V_{in} = 5 \text{ V} \quad R_L = 390 \ldots 470 \, \Omega, \, 0,125 \, \text{W} \]

Schematy okablowania — wyjście enkodera z otwartym emiterem (dostarczanie)

W diagramie przyjęto normalną kolejność impulsów w kierunku Do przodu: Impuls A jest wiodący.

W enkoderach z wiodącym impulsem B należy zmienić diagram:

- Złącza A i B enkodera należy podłączyć odpowiednio do zacisków B i A modułu BTAC.

Rozmiar rezystora zależy od zasilania enkodera \(V_{in} = VOUT \):

\[V_{in} = 30 \text{ V} \quad R_L = 2,7 \ldots 3,0 \, k\Omega, \, 0,5 \, \text{W} \]
\[V_{in} = 24 \text{ V} \quad R_L = 1,8 \ldots 2,2 \, k\Omega, \, 0,5 \, \text{W} \]
Włączanie zasilania

1. Włącz zasilanie przemiennika.
2. Przejdź do rozdziału Uruchamianie na str. 163.

Uruchamianie

Aby skonfigurować działanie modułu BTAC:
1. Włącz przemiennik częstotliwości.
2. Ustaw parametry grupy 90 Wybór sprzężenia zwrotnego, 91 Ustawienia adaptera enkodera i 92 Konfiguracja enkodera opisane na str. 163...165.

Wybór sprzężenia zwrotnego

Za pomocą tych parametrów można wybrać sprzężenie zwrotne lub wyświetlić sprzężenie zwrotne z enkodera.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Def/FbEq16/32</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>Wybór sprzężenia zwrotnego</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90.01</td>
<td>Prędk. silnika do sterowania</td>
<td>Wyświetla szacowaną i zmierzoną prędkość silnika, która jest używana do sterowania silnika, tzn. końcowe sprzężenie zwrotne 90.41 Wybór sprz. zwr. od silnika oraz 90.42 Prędk. silnika: czas filtru. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-32768...32767</td>
<td>Prędkość silnika użyta do sterowania.</td>
<td>1=1 obr./min/100=1 obr./min</td>
</tr>
<tr>
<td>90.02</td>
<td>Pozycja silnika</td>
<td>Wyświetla pozycję silnika (w ramach jednego obrotu) otrzymaną ze źródła określonego parametrem 90.41 Wybór sprz. zwr. od silnika.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0...1 obr.</td>
<td>Pozycja silnika.</td>
<td>32767=1 obr./100000000=1 obr.</td>
</tr>
<tr>
<td>90.10</td>
<td>Prędkość enkodera 1</td>
<td>Wyświetla prędkość enkodera 1 w obr./min. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-32768...32767</td>
<td>Prędkość enkodera 1.</td>
<td>1=1 obr./min/100=1 obr./min</td>
</tr>
<tr>
<td>90.11</td>
<td>Położenie enkodera 1</td>
<td>Wyświetla aktualną pozycję enkodera 1 z dokładnością do jednego obrotu. Ten parametr jest tylko do odczytu.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0...1 obr.</td>
<td>Pozycja enkodera 1 z dokładnością do jednego obrotu.</td>
<td>32767=1 obr./100000000=1 obr.</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Def/FbEq16/32</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------------</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>90.13</td>
<td>Rozszerzenie obrotu enkodera 1</td>
<td>Wyświetla rozszerzenie licznika obrotów. Licznik jest zwiększany, gdy pozycja enkodera zmienia się w kierunku dodatnim, a zmniejszany, gdy zmienia się w kierunku ujemnym. Ten parametr ma zastosowanie tylko wtedy, gdy pozycja jest bezwzględna. Parametr jest aktualizowany dla enkodera jedno- i wieloobrotowych. Ten parametr jest tylko do odczytu.</td>
<td>na/1=1</td>
</tr>
<tr>
<td>90.41</td>
<td>Wybór sprz. zwr. od silnika</td>
<td>Wybiera źródło prędkości silnika oraz położenie silnika stosowane jako sprzężenia zwrotne do sterowania prędkością i modelowania silnika. oszacowanie</td>
<td></td>
</tr>
<tr>
<td></td>
<td>oszacowanie</td>
<td>Obliczone oszacowanie prędkości</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Enkoder 1</td>
<td>Aktualna prędkość zmierzona przez enkoder 1.</td>
<td>1</td>
</tr>
<tr>
<td>90.42</td>
<td>Czas filtru prędkości silnika</td>
<td>Definiuje czas filtrowania dla sprzężenia zwrotnego od prędkości silnika używany do sterowania.</td>
<td>3 ms</td>
</tr>
<tr>
<td></td>
<td>0…10000 ms</td>
<td>Prędk. silnika: czas filtru</td>
<td>1=1 ms/1=1 ms</td>
</tr>
<tr>
<td>90.45</td>
<td>Błąd sprz. zwr. silnika</td>
<td>Wybiera sposób, w jaki przemiennik częstotliwości reaguje na utratę zmierzonego sprzężenia zwrotnego silnika. Błąd</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Błąd</td>
<td>Przemiennik częstotliwości jest wyłączany awaryjnie z powodu wyzwolenia błędu 7301 Sprężenie zwrotne od prędkości silnika.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Ostrzeżenie</td>
<td>Przemiennik częstotliwości generuje ostrzeżenie A7B0 Sprężenie zwrotne od prędkości silnika, a następnie kontynuuje działanie przy użyciu szacowanych sprzężeń zwrotnych. Uwaga: Przed użyciem tego ustawienia należy przetestować stabilność pętli sterowania prędkością z szacowanym sprzężeniem zwrotnym, uruchamiając przemiennik częstotliwości przy użyciu szacowanego sprzężenia zwrotnego (patrz 90.41 Sprężenie zwrotne od silnika).</td>
<td></td>
</tr>
<tr>
<td>90.46</td>
<td>Wymuś otwartą pętlę</td>
<td>Definiuje sprzężenie zwrotne używane do obliczenia sterowania silnikiem.</td>
<td>Nr</td>
</tr>
<tr>
<td></td>
<td>Nr</td>
<td>Model silnika używa sprzężenia zwrotnego wybranego parametrem 90.41 Wybór sprz. zwr. od silnika.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tak</td>
<td>Model silnika używa obliczonej wartości szacunkowej prędkości, jest to niezależne od ustawienia 90.41 Wybór sprz. zwr. od silnika, które w tym przypadku wybiera tylko źródło sprzężenia zwrotnego dla kontrolera prędkości.</td>
<td></td>
</tr>
<tr>
<td>90.47</td>
<td>Wl. wykr. dryfu enkod. silnika</td>
<td>Włącza wykrywanie dryfu enkodera silnika</td>
<td>Tak</td>
</tr>
<tr>
<td></td>
<td>Nr</td>
<td>Nie generuje błędu, jeśli wykryty zostanie dryf enkodera.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tak</td>
<td>Wykrycie dryfu enkodera generuje błąd 7301 Sprężenie zwrotne od pr. silnika.</td>
<td>1</td>
</tr>
</tbody>
</table>
Ustawienia adaptera enkodera

Te parametry wyświetlają konfigurację modułów interfejsu enkodera.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Def/FbEq16/32</th>
</tr>
</thead>
<tbody>
<tr>
<td>91</td>
<td>Ustawienia karty enkodera</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91.10</td>
<td>Odświeżenie</td>
<td>Sprawdza zmienione parametry modułu interfejsu enkodera. Jest to wymagane do zastosowania zmian w parametrach z grup 90…92. Po odświeżeniu zostaje automatycznie przywrócena wartość Gotowe. Uwaga: Parametr nie można zmienić, gdy uruchomiony jest przemienik częstotliwości.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gotowe</td>
<td>Wykonano odświeżenie.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Konfiguruj</td>
<td>Odświeżanie.</td>
<td>1</td>
</tr>
</tbody>
</table>

Konfiguracja enkodera

Ta grupa parametrów pozwala wybrać ustawienia enkodera.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Def/FbEq16/32</th>
</tr>
</thead>
<tbody>
<tr>
<td>92</td>
<td>Enkoder 1: konfiguracja</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92.10</td>
<td>Impulsy/obrót</td>
<td>Definiuje liczbę impulsów TTL lub HTL na obrót.</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>0…65535</td>
<td></td>
<td>1=1</td>
</tr>
</tbody>
</table>

Diagnostyka

Za pomocą parametru 90.45 Błąd sprz. zwr. silnika można wybrać sposób reakcji przemiennika częstotliwości po wykryciu utraty sygnału enkodera.

- **90.45 = 0** (błąd) — Przemienik częstotliwości generuje błąd (7301 Sprz.zwr. od pr.silnika), a silnik zwalnia wybiegiem do zatrzymania.
- **90.45 = 1** (ostrzeżenie) — Przemienik częstotliwości generuje ostrzeżenie (A7B0 Sprz.zwr. od pr.silnika), a następnie kontynuuje działanie przy użyciu szacowanych sprzężeń zwrotnych.

Jeśli przemienik częstotliwości generuje ten błąd lub ostrzeżenie:

<table>
<thead>
<tr>
<th>Kod (szesnastkowy)</th>
<th>Błąd/Ostrzeżenie</th>
<th>Przyczyna</th>
</tr>
</thead>
<tbody>
<tr>
<td>7301</td>
<td>Sprz.zwr. od pr.silnika</td>
<td>Nie odebrano sygnału sprzężenia zwrotnego od prędkości silnika.</td>
</tr>
<tr>
<td>4</td>
<td>Wykryto dryf. Sprawdzić, czy między enkoderm i silnikiem nie występuje posilg.</td>
<td></td>
</tr>
<tr>
<td>3FC</td>
<td>Niepr. konf. sprz. zwrot. silnika</td>
<td></td>
</tr>
<tr>
<td>3FD</td>
<td>Nieprawidl. prędkość silnika</td>
<td></td>
</tr>
<tr>
<td>A7B0</td>
<td>Sprz.zwr. od pr.silnika</td>
<td>Nie odebrano sygnału sprzężenia zwrotnego od prędkości silnika</td>
</tr>
<tr>
<td>4</td>
<td>Wykryto dryfowanie enkodera. Sprawdzić, czy między enkoderm i silnikiem nie występuje posilg.</td>
<td></td>
</tr>
<tr>
<td>3FC</td>
<td>Niepr. konf. sprz. zwrot. silnika</td>
<td></td>
</tr>
<tr>
<td>3FD</td>
<td>Nieprawidl. prędkość silnika</td>
<td></td>
</tr>
</tbody>
</table>
Dane techniczne

Interfejs enkodera
Interfejs użytkownika enkodera ma wzmocnioną izolację od potencjału DC.

Typ enkodera
- Przyrostowe, enkodery TTL/HTL
- Wyjścia różnicowe, jednostronne, otwartego kolektora i otwartego emitera (patrz Typy wyjścia enkodera na str. 158)
- Trzy kanały: A, B i Z
- Maksymalna częstośc impulsów: 200 kHz
- Zakres zasilania enkodera: 5…30 V

Więcej informacji o poziomach sygnału wejścia podano w sekcji Oznaczenia zacisków na str. 154.

Złącza interfejsów enkodera
Cztery 3-pinionowe (1×3) listwy zacisków z zaciskami sprężynowymi, pokryte cyną, rozmiar przewodu 2,5 mm², odstęp 5,0 mm.

Informacje o zaciskach podano w rozdziale Oznaczenia zacisków na str. 154.

Kabel
Maksymalna dopuszczalna długość kabla to 100 metrów.

Zasilanie enkodera i modułu BTAC
- 50 mA (BTAC) + pobór prądu przez enkoder (informacje podano w arkuszu danych enkodera)
- Napięcie: 5...30 V DC (w zależności od enkodera. Informacje podano w arkuszu danych enkodera).

Zapasowe zasilanie przemiennika częstości

Więcej informacji podano w sekcji Wyjście napięcia pomocniczego na str. 73.

Złącza wewnętrzne
Złącze X102 to sygnały z interfejsu enkodera do karty sterowania przemiennika częstości.
Dane złącza X102: Głowica 1x8 bolców, odstęp 2,54 mm, wysokość 33,53 mm.

Złącze X100 służy jako interfejs zasilania między modulem BTAC oraz kartą sterowania przemiennika częstości. Zapewnia awaryjne źródło zasilania w sytuacji utraty zasilania głównego.
Dane złącza X100: Głowica 2x4 bolce, odstęp 2,54 mm, wysokość 15,75 mm.
Wymiary

3AXD50000031154 wersja A
Moduł interfejsu enkodera impulsów BTAC-02
Moduł rozszerzeń wyjść przekaźnikowych BREL-01

Zawartość tego rozdziału

W tym rozdziale opisano opcjonalny moduł rozszerzeń wyjść przekaźnikowych BREL-01 i przedstawiono jego dane techniczne.

Instrukcje dotyczące bezpieczeństwa

OSTRZEŻENIE! Należy postępować zgodnie z instrukcjami w rozdziale Instrukcje bezpieczeństwa na str. 13. Nieprzestrzeganie instrukcji może skutkować obrażeniami, śmiercią lub uszkodzeniem urządzenia.
Opis sprzętu

Opis produktu
Moduł rozszerzeń wyjść przekaźnikowych BREL-01 (opcja +L511) dodaje do przemiennika częstotliwości cztery wyjścia przekaźnikowe.

Układ

1. Moduł BREL
2. Otwór wkrętu blokującego
3. Złącze X103
4. Złącze X104
5. Złącze X105
6. Złącze X106
7. Wewnętrzne złącze X100
8. Wewnętrzne złącze X102
9. Szyna montażowa
10. Wkręt uziemiający
Montaż mechaniczny

Więcej informacji podano w sekcji *Instalacja opcjonalnego modułu z boku* na str. 76.

Montaż elektryczny

Oznaczenia zacisków

Interfejs przekaźnika modułu BREL składa się z czterech list w zacisków 1×3-piny.

Przy okablowywaniu warto referencyjnie użyć poniższej tabeli.

<table>
<thead>
<tr>
<th>Identyfikacja</th>
<th>Opis</th>
</tr>
</thead>
</table>
| X103 | Przekaźniki wyjściowe 2–5:
• Maksymalne napięcie przełączania: 250 V AC / 30 V DC
• Maksymalny prąd przełączania: 2 A
Galwanicznie izolowane. |
| X104 | Obciążenia indukcyjne (takie jak cewki styczka): Zabezpiecz styki przekaźnika zgodnie z zaleceniami w rozdziale *Ochrona styków wyjść przekaźnikowych* na str. 59. |
| X105 | |
| X106 | |

Okablowanie

Kabel 0,5 do 2,5 mm² (20 do 14 AWG) z odpowiednim napięciem znamionowym dla sygnałów cyfrowych.

Więcej informacji podano w sekcji *Oznaczenia zacisków* na str. 171. Podłącz również przewody sterowania do modułu BREL.
Włącza \[\text{nie} \text{zasilania} \]
1. Włącz zasilanie przemiennika.

\textbf{Uruchamianie}

Aby skonfigurować działanie przekaźników dodanych z modułem BREL:
1. Włącz przemiennik częstotliwości.
2. Ustaw parametr 15.01 Typ modułu rozszerzeń na 5 (BREL).
3. Użyj panelu sterowania przemiennika i ustaw parametry wyjść przekaźnikowych od 2 do 5 w grupie 15 Moduł rozszerzeń we/wy. Opis parametrów podano w dokumencie \textit{ACS380 Firmware manual} (3AXD50000029275 [j. ang.]).

\textbf{Parametry konfiguracji}

Parametry konfiguracji modułu BREL znajdują się w grupie 15 Moduł rozszerzeń we/wy.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Nazwa/wartość</th>
<th>Opis</th>
<th>Def/FbEq16/32</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Moduł rozszerzeń we/wy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.01</td>
<td>Typ modułu rozszerzeń</td>
<td>Ustawia podłączony moduł rozszerzeń montowany z boku.</td>
<td>Brak</td>
</tr>
<tr>
<td></td>
<td>BREL</td>
<td>Moduł rozszerzeń przekaźnika Basenut</td>
<td>5</td>
</tr>
<tr>
<td>15.02</td>
<td>Wykryty moduł rozszerzeń</td>
<td>W przemienniku częstotliwości wykryto moduł rozszerzeń we/wy.</td>
<td>Brak</td>
</tr>
<tr>
<td></td>
<td>BREL</td>
<td>Moduł rozszerzeń przekaźnika Basenut</td>
<td>5</td>
</tr>
<tr>
<td>15.04</td>
<td>Stan RO</td>
<td>Stan wyjść przekaźnikowych.</td>
<td>1=1</td>
</tr>
<tr>
<td></td>
<td>Bit 0 RO2</td>
<td>Stan wyjść przekaźnikowego 2. 1 = otwarte / 0 = zamknięte</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 1 RO3</td>
<td>Stan wyjść przekaźnikowego 3. 1 = otwarte / 0 = zamknięte</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 2 RO4</td>
<td>Stan wyjść przekaźnikowego 4. 1 = otwarte / 0 = zamknięte</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 3 RO5</td>
<td>Stan wyjść przekaźnikowego 5. 1 = otwarte / 0 = zamknięte</td>
<td></td>
</tr>
<tr>
<td>15.05</td>
<td>Wybór wymuszenia RO</td>
<td>Wybór wyjść przekaźnikowych do wymuszenia.</td>
<td>1=1</td>
</tr>
<tr>
<td></td>
<td>Bit 0 RO2</td>
<td>Stan wyjść przekaźnikowego 2. 1 = wybrano wymuszenie / 0 = normalny</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 1 RO3</td>
<td>Stan wyjść przekaźnikowego 3. 1 = wybrano wymuszenie / 0 = normalny</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 2 RO4</td>
<td>Stan wyjść przekaźnikowego 4. 1 = wybrano wymuszenie / 0 = normalny</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 3 RO5</td>
<td>Stan wyjść przekaźnikowego 5. 1 = wybrano wymuszenie / 0 = normalny</td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Def/FbEq16/32</td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>15.06</td>
<td>Wymuszone dane RO</td>
<td>Wymuszenie wyjścia przekaźnikowego.</td>
<td>1=1</td>
</tr>
<tr>
<td></td>
<td>Bit 0 RO2</td>
<td>Stan wyjścia przekaźnikowego 2. 1 = otwarte / 0 = zamknięte</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 1 RO3</td>
<td>Stan wyjścia przekaźnikowego 3. 1 = otwarte / 0 = zamknięte</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 2 RO4</td>
<td>Stan wyjścia przekaźnikowego 4. 1 = otwarte / 0 = zamknięte</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 3 RO5</td>
<td>Stan wyjścia przekaźnikowego 5. 1 = otwarte / 0 = zamknięte</td>
<td></td>
</tr>
<tr>
<td>15.07</td>
<td>Źródło RO2</td>
<td>Wybór źródła wyjścia przekaźnikowego 2.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wyjście przekaźnikowe 2 jest otwarte.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wyjście przekaźnikowe 2 jest zamknięte</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pełną listę parametrów podano w dokumencie ACS380 Firmware manual (3AXD50000029275 [j. ang.]).</td>
<td>...</td>
</tr>
<tr>
<td>15.08</td>
<td>Opóźnienie WL. RO2</td>
<td>Określa opóźnienie aktywacji wyjścia przekaźnikowego 2.</td>
<td>0,0 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0...3000,0 s Opóźnienie aktywacji wyjścia przekaźnikowego 2.</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>15.09</td>
<td>Opóźnienie WYŁ. RO2</td>
<td>Określa opóźnienie wyłączenia wyjścia przekaźnikowego 2.</td>
<td>0,0 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0...3000,0 s Opóźnienie wyłączenia wyjścia przekaźnikowego 2.</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>15.10</td>
<td>Źródło RO3</td>
<td>Wybór źródła wyjścia przekaźnikowego 3.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wyjście przekaźnikowe 3 jest otwarte.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wyjście przekaźnikowe 3 jest zamknięte</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pełną listę parametrów podano w dokumencie ACS380 Firmware manual (3AXD50000029275 [j. ang.]).</td>
<td>...</td>
</tr>
<tr>
<td>15.11</td>
<td>Opóźnienie WL. RO3</td>
<td>Określa opóźnienie aktywacji wyjścia przekaźnikowego 3.</td>
<td>0,0 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0...3000,0 s Opóźnienie aktywacji wyjścia przekaźnikowego 3.</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>15.12</td>
<td>Opóźnienie WYŁ. RO3</td>
<td>Określa opóźnienie wyłączenia wyjścia przekaźnikowego 3.</td>
<td>0,0 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0...3000,0 s Opóźnienie wyłączenia wyjścia przekaźnikowego 3.</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>15.13</td>
<td>Źródło RO4</td>
<td>Wybór źródła wyjścia przekaźnikowego 4.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wyjście przekaźnikowe 4 jest otwarte.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wyjście przekaźnikowe 4 jest zamknięte</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pełną listę parametrów podano w dokumencie ACS380 Firmware manual (3AXD50000029275 [j. ang.]).</td>
<td>...</td>
</tr>
<tr>
<td>15.14</td>
<td>Opóźnienie WL. RO4</td>
<td>Określa opóźnienie aktywacji wyjścia przekaźnikowego 4.</td>
<td>0,0 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0...3000,0 s Opóźnienie aktywacji wyjścia przekaźnikowego 4.</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>15.15</td>
<td>Opóźnienie WYŁ. RO4</td>
<td>Określa opóźnienie wyłączenia wyjścia przekaźnikowego 4.</td>
<td>0,0 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0...3000,0 s Opóźnienie wyłączenia wyjścia przekaźnikowego 4.</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>15.16</td>
<td>Źródło RO5</td>
<td>Wybór źródła wyjścia przekaźnikowego 5.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wyjście przekaźnikowe 5 jest otwarte.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wyjście przekaźnikowe 5 jest zamknięte</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pełną listę parametrów podano w dokumencie ACS380 Firmware manual (3AXD50000029275 [j. ang.]).</td>
<td>...</td>
</tr>
<tr>
<td>15.17</td>
<td>Opóźnienie WL. RO5</td>
<td>Określa opóźnienie aktywacji wyjścia przekaźnikowego 5.</td>
<td>0,0 s</td>
</tr>
<tr>
<td>Nr</td>
<td>Nazwa/wartość</td>
<td>Opis</td>
<td>Def/FbEq16/32</td>
</tr>
<tr>
<td>-----</td>
<td>---------------</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>0</td>
<td>0,0...3000,0 s</td>
<td>Opóźnienie aktywacji wyjścia przekaźnikowego 5.</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>15.18</td>
<td>Opóźnienie WYŁ. RO5</td>
<td>Określa opóźnienie wyłączenia wyjścia przekaźnikowego 5.</td>
<td>0,0 s</td>
</tr>
<tr>
<td></td>
<td>0,0...3000,0 s</td>
<td>Opóźnienie wyłączenia wyjścia przekaźnikowego 5.</td>
<td>10 = 1 s</td>
</tr>
</tbody>
</table>
Dane techniczne

- **Złącza zewnętrzne**
 Cztery 3-pinionowe (1×3) listwy zacisków z zaciskami sprężynowymi, pokryte cyną, rozmiar przewodu 2,5 mm², odstęp 5,0 mm.

 Oznakowanie złączy zostało podane w rozdziale *Oznaczenia zacisków* na str. 171.

- **Złącza wewnętrzne**
 Złącze X102 zapewnia przekaźnikowe sygnały sterujące przesyłane z karty sterowania: Głowica 1x8 pinów, odstępy 2,54 mm, wysokość 33,53 mm.

 Złącze X100 nie jest używane w module BREL:
 Głowica 2x4 piny, odstępy 2,54 mm, wysokość 15,75 mm.

- **Wymiary**

 ![Diagram](image-url)

 3AXD50000031148 wersja A
Moduł rozszerzeń wyjść przekaźnikowych BREL-01
Moduł rozszerzeń zasilania BAPO-01

Zawartość tego rozdziału

W tym rozdziale opisano opcjonalny moduł rozszerzeń zasilania pomocniczego BAPO-01 i przedstawiono jego dane techniczne. Rozdział zawiera także odniesienia do innej zawartości z innych sekcji instrukcji obsługi.

Instrukcje dotyczące bezpieczeństwa

OSTRZEŻENIE! Należy postępować zgodnie z instrukcjami w rozdziale Instrukcje bezpieczeństwa na str. 13. Nieprzestrzeganie instrukcji może skutkować obrażeniami, śmiercią lub uszkodzeniem urządzenia.
Opis sprzętu

Opis produktu

Moduł rozszerzający o zasilanie pomocnicze BAPO-01 (opcja +L534) pozwala na podłączenie zewnętrznego napięcia pomocniczego do przemiennika częstotliwości. Do podtrzymania pracy elektroniki przemiennika częstotliwości podczas awarii zasilania obwodów głównych potrzebne jest zewnętrzne zasilanie dodatkowe. Podłącz źródło napięcia zewnętrznego do zacisków +24V i DGND w przemienniku.

W przypadku zmiany parametrów przemiennika częstotliwości, gdy karta sterowania jest zasilana z modułu BAPO, należy wymusić zapisanie parametru, ustawiając w opcji 96.07 ZAPISZ PARAMETR wartość (1) ZAPISZ. W przeciwnym razie zmienione dane nie zostaną zapisane.

Układ

1. Moduł BAPO
2. Otwór wkrętu blokującego
3. Wewnętrzne złącze X100
4. Wewnętrzne złącze X102
5. Szyna montażowa
Montaż mechaniczny

Więcej informacji podano w sekcji *Instalacja opcjonalnego modułu z boku* na str. 76.

Montaż elektryczny

Podłącz źródło napięcia zewnętrznego do zacisków +24V i DGND w przemienniku. Więcej informacji podano w sekcji *Wyjście napięcia pomocniczego* na str. 73. Moduł BAPO ma połączenia wewnętrzne do zasilania dodatkowych kart sterowania (I/O, magistrala komunikacyjna).

Uruchamianie

Aby skonfigurować moduł BAPO:

1. Włącz zasilanie przemiennika częstotliwości.
2. W parametrze 95.04 Zasilanie karty sterowania ustaw wartość 1 (Zewnętrzne 24 V).
Dane techniczne

- **Wartości znamionowe napięcia i prądu dla zasilania pomocniczego**
 Więcej informacji podano w sekcji *Wyjście napięcia pomocniczego* na str. 73.

- **Strata zasilania**
 Straty zasilania przy maksymalnym obciążeniu 4 W.

- **Wymiary**

![diagram](image-url)
Dalsze informacje

Zapytania dotyczące produktów i serwisu
Wszystkie zapytania dotyczące produktu należy kierować do lokalnego przedstawiciela firmy ABB, podając kod typu i numer seryjny urządzenia, którego dotyczy pytanie. Spis danych kontaktowych w firmie ABB w zakresie sprzedaży, pomocy technicznej i serwisu znajduje się na stronie www.abb.com/searchchannels.

Szkolenia z zakresu obsługi produktów
Informacje o szkoleniach z zakresu obsługi produktów firmy ABB znajdują się na stronie new.abb.com/service/training.

Przesyłanie uwag dotyczących instrukcji obsługi przemienników częstotliwości ABB

Biblioteka dokumentów w Internecie
Podręczniki użytkownika i inne dokumenty na temat produktów są dostępne w Internecie w formacie PDF na stronie www.abb.com/drives/documents.
Kontakt z nami

www.abb.com/drives
www.abb.com/drivespartners

3AXD50000043464 wersja C (PL) 2017-12-11