The Company

We are an established world force in the design and manufacture of instrumentation for industrial process control, flow measurement, gas and liquid analysis and environmental applications.

As a part of ABB, a world leader in process automation technology, we offer customers application expertise, service and support worldwide.

We are committed to teamwork, high quality manufacturing, advanced technology and unrivalled service and support.

The quality, accuracy and performance of the Company’s products result from over 100 years experience, combined with a continuous program of innovative design and development to incorporate the latest technology.

The NAMAS Calibration Laboratory No. 0255 is just one of the ten flow calibration plants operated by the Company, and is indicative of our dedication to quality and accuracy.

Use of Instructions

⚠️ **Warning.**
An instruction that draws attention to the risk of injury or death.

⚠️ **Caution.**
An instruction that draws attention to the risk of damage to the product, process or surroundings.

🌟 **Note.**
Clarification of an instruction or additional information.

ℹ️ **Information.**
Further reference for more detailed information or technical details.

Although **Warning** hazards are related to personal injury, and **Caution** hazards are associated with equipment or property damage, it must be understood that operation of damaged equipment could, under certain operational conditions, result in degraded process system performance leading to personal injury or death. Therefore, comply fully with all **Warning** and **Caution** notices.

Information in this manual is intended only to assist our customers in the efficient operation of our equipment. Use of this manual for any other purpose is specifically prohibited and its contents are not to be reproduced in full or part without prior approval of the Marketing Communications Department.

Health and Safety

To ensure that our products are safe and without risk to health, the following points must be noted:

1. The relevant sections of these instructions must be read carefully before proceeding.
2. Warning labels on containers and packages must be observed.
3. Installation, operation, maintenance and servicing must only be carried out by suitably trained personnel and in accordance with the information given.
4. Normal safety precautions must be taken to avoid the possibility of an accident occurring when operating in conditions of high pressure and/or temperature.
5. Chemicals must be stored away from heat, protected from temperature extremes and powders kept dry. Normal safe handling procedures must be used.
6. When disposing of chemicals ensure that no two chemicals are mixed.

Safety advice concerning the use of the equipment described in this manual or any relevant hazard data sheets (where applicable) may be obtained from the Company address on the back cover, together with servicing and spares information.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>2 OPERATION</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Powering Up the Analyzer</td>
<td>3</td>
</tr>
<tr>
<td>2.2 Displays and Controls</td>
<td>3</td>
</tr>
<tr>
<td>2.2.1 Key Functions</td>
<td>3</td>
</tr>
<tr>
<td>2.3 Operating Page</td>
<td>6</td>
</tr>
<tr>
<td>2.3.1 Single Input Conductivity</td>
<td>6</td>
</tr>
<tr>
<td>2.3.2 Dual Input Conductivity</td>
<td>6</td>
</tr>
<tr>
<td>3 OPERATOR VIEWS</td>
<td>7</td>
</tr>
<tr>
<td>3.1 View Set Points</td>
<td>7</td>
</tr>
<tr>
<td>3.2 View Outputs</td>
<td>8</td>
</tr>
<tr>
<td>3.3 View Hardware</td>
<td>8</td>
</tr>
<tr>
<td>3.4 View Software</td>
<td>9</td>
</tr>
<tr>
<td>3.5 View Clock</td>
<td>9</td>
</tr>
<tr>
<td>4 SETUP</td>
<td>10</td>
</tr>
<tr>
<td>4.1 Sensor Calibration</td>
<td>10</td>
</tr>
<tr>
<td>5 PROGRAMMING</td>
<td>12</td>
</tr>
<tr>
<td>5.1 Security Code</td>
<td>12</td>
</tr>
<tr>
<td>5.2 Configure Display</td>
<td>13</td>
</tr>
<tr>
<td>5.3 Configure Conductivity Sensors</td>
<td>14</td>
</tr>
<tr>
<td>5.4 Configure Alarms</td>
<td>19</td>
</tr>
<tr>
<td>5.5 Configure Outputs</td>
<td>22</td>
</tr>
<tr>
<td>5.6 Output Functions</td>
<td>24</td>
</tr>
<tr>
<td>5.6.1 Bi-Linear Output</td>
<td>24</td>
</tr>
<tr>
<td>5.6.2 Logarithmic Output (2-decade)</td>
<td>25</td>
</tr>
<tr>
<td>5.6.3 Logarithmic Output (3-decade)</td>
<td>25</td>
</tr>
<tr>
<td>5.7 Configure Clock</td>
<td>26</td>
</tr>
<tr>
<td>5.8 Configure Security</td>
<td>27</td>
</tr>
<tr>
<td>5.9 Test Outputs</td>
<td>28</td>
</tr>
<tr>
<td>6 INSTALLATION</td>
<td>29</td>
</tr>
<tr>
<td>6.1 Siting Requirements</td>
<td>29</td>
</tr>
<tr>
<td>6.2 Mounting</td>
<td>30</td>
</tr>
<tr>
<td>6.2.1 Wall-/Pipe-mount Analyzers</td>
<td>30</td>
</tr>
<tr>
<td>6.2.2 Panel-mount Analyzers</td>
<td>31</td>
</tr>
<tr>
<td>6.3 Connections, General</td>
<td>32</td>
</tr>
<tr>
<td>6.3.1 Relay Contact Protection and Interference Suppression</td>
<td>33</td>
</tr>
<tr>
<td>6.3.2 Cable Entry Knockouts, Wall-/Pipe-mount Analyzer</td>
<td>34</td>
</tr>
<tr>
<td>6.4 Wall-/Pipe-mount Analyzer Connections</td>
<td>35</td>
</tr>
<tr>
<td>6.4.1 Access to Terminals</td>
<td>35</td>
</tr>
<tr>
<td>6.4.2 Connections</td>
<td>36</td>
</tr>
<tr>
<td>6.5 Panel-mount Analyzer Connections</td>
<td>37</td>
</tr>
<tr>
<td>6.5.1 Access to Terminals</td>
<td>37</td>
</tr>
<tr>
<td>6.5.2 Connections</td>
<td>38</td>
</tr>
<tr>
<td>7 CALIBRATION</td>
<td>39</td>
</tr>
<tr>
<td>7.1 Equipment Required</td>
<td>39</td>
</tr>
<tr>
<td>7.2 Preparation</td>
<td>39</td>
</tr>
<tr>
<td>7.3 Factory Settings</td>
<td>40</td>
</tr>
<tr>
<td>8 SIMPLE FAULT FINDING</td>
<td>45</td>
</tr>
<tr>
<td>8.1 Error Messages</td>
<td>45</td>
</tr>
<tr>
<td>8.2 No Response to Conductivity Changes</td>
<td>45</td>
</tr>
<tr>
<td>8.3 Checking the Temperature Input</td>
<td>45</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>46</td>
</tr>
<tr>
<td>A1 Automatic Temperature Compensation</td>
<td>46</td>
</tr>
<tr>
<td>A1.1 Calculation of Temperature Coefficient</td>
<td>47</td>
</tr>
<tr>
<td>A2 Relationship Between Conductivity and Total Dissolved Solids (TDS) Measurement</td>
<td>47</td>
</tr>
<tr>
<td>A3 Inferred pH Derived from Differential Conductivity</td>
<td>48</td>
</tr>
<tr>
<td>SPECIFICATION</td>
<td>49</td>
</tr>
</tbody>
</table>
This conductivity analyzer has been designed for continuous monitoring and control of conductivity. It is available in wall-/pipe-mount or panel-mount versions and can be used with either one or two sensors, each with a temperature input channel. When used with two sensors, readings can be compared to produce a range of extrapolated values.

When making temperature compensated measurements, the sample temperature is sensed by a resistance thermometer (Pt100 or Pt1000) mounted in the measuring cell.

Analyzer operation and programming are performed using five tactile membrane keys on the front panel. Programmed functions are protected from unauthorized alteration by a five-digit security code.
2.1 Powering Up the Analyzer

Caution. Ensure all connections are made correctly, especially to the earth stud – see Section 6.3.

1) Ensure the input sensors are connected correctly.
2) Switch on the power supply to the analyzer. A start-up screen is displayed while internal checks are performed, then the conductivity measurement readings screen (Operating Page) is displayed as conductivity measuring operation starts.

2.2 Displays and Controls
The display comprises two rows of 4 1/2 digit, 7-segment digital displays, which show the actual values of the measured parameters and alarm set points, and a 6-character dot matrix display showing the associated units. The lower display line is a 16-character dot matrix display showing the programming information.

![Fig. 2.1 Location of Controls and Displays](image)

Menu Key
Sidescroll Key
Downscroll Key
Up Key
Down Key

2.2.1 Key Functions

A – Moving Between Menus

B – Advancing to Next Page

C – Moving Between Parameters

D – Adjusting and Storing a Parameter Value

E – Selecting and Storing a Parameter Choice

![Fig. 2.2 Membrane Key Functions](image)
Use the Sidescroll Key to scroll through the Pages within each Menu

Section 2.3, Page 6
OPERATING PAGE
Use the Menu Key to scroll through the Menus
Use the Downscroll Key to scroll through the Parameters within each Page

Section 3.1, Page 7
Section 3.2, Page 8
Section 3.3, Page 8
Section 3.4, Page 9
Section 3.5, Page 9

Laboratory

Section 4.1, Page 10
SENSOR CAL.
Cal. User Code
Sensor Cal. A
Sensor Cal. B
A: Calibration
B: Calibration
A: Sensor Slope
B: Sensor Slope
A: Sensor Offset
B: Sensor Offset
A: Temp. Slope
B: Temp. Slope
A: Temp. Offset
B: Temp. Offset

Section 5.1, Page 12
Security Code

Section 5.2, Page 13
CONFIG. DISPLAY
Set Language
Set Temp. Units
Set Backlight
English
Temp. Units
LED Backlight

Section 5.3, Page 14
CONFIG. SENSORS
Config. Sensor A
Config. Sensor B
Config. Sensor B
Signal Calc.
A: Cond.Units
B: Cond.Units
A: Cell Constant
B: Cell Constant
A: Temp.Comp.
B: Temp.Comp.
A: Temp. Sensor
B: Temp. Sensor
B: Temp.Coeff.
A: TDS Factor
B: TDS Factor
A: TDS Units
B: TDS Units
A: Enable Cals.
B: Enable Cals.

To CONFIG. ALARMS
(see Fig. 2.3B)

Key
Available only if the analog option board is fitted
Dual conductivity only

Fig. 2.3A Overall Programming Chart
CONFIG. ALARMS

- **Config. Alarm 1**
 - A1: Type
 - A1: Assign
 - A1: Failsafe
 - A1: Action
 - A1: Setpoint
 - A1: Hysteresis
 - A1: Delay

- **Config. Alarm 2**
 - A2: Type
 - A2: Assign
 - A2: Failsafe
 - A2: Action
 - A2: Setpoint
 - A2: Hysteresis
 - A2: Delay

- **Config. Alarm 3**
 - A3: Assign
 - A3: Failsafe
 - A3: Action
 - A3: Setpoint
 - A3: Hysteresis

- **Config. Alarm 4**
 - A4: Type
 - A4: Assign
 - A4: Failsafe
 - A4: Action
 - A4: Setpoint
 - A4: Hysteresis
 - A4: Delay

- **Config. Alarm 5**
 - A5: Type
 - A5: Assign
 - A5: Failsafe
 - A5: Action
 - A5: Setpoint
 - A5: Hysteresis
 - A5: Delay

CONFIG. OUTPUTS

- **Config. Output 1**
 - AO1: Assign
 - AO1: Range
 - AO1: Curve
 - AO1: Span Value
 - AO1: Zero Value
 - AO1: Set X Value
 - AO1: Set Y Value
 - AO1: Default O/P
 - AO1: Default Val

- **Config. Output 2**
 - AO2: Assign
 - AO2: Range
 - AO2: Curve
 - AO2: Span Value
 - AO2: Zero Value
 - AO2: Set X Value
 - AO2: Set Y Value
 - AO2: Default O/P
 - AO2: Default Val

- **Config. Output 3**
 - AO3: Assign
 - AO3: Range
 - AO3: Curve
 - AO3: Span Value
 - AO3: Zero Value
 - AO3: Set X Value
 - AO3: Set Y Value
 - AO3: Default O/P
 - AO3: Default Val

- **Config. Output 4**
 - AO4: Assign
 - AO4: Range
 - AO4: Curve
 - AO4: Span Value
 - AO4: Zero Value
 - AO4: Set X Value
 - AO4: Set Y Value
 - AO4: Default O/P
 - AO4: Default Val

CONFIG. CLOCK

- Set Clock?
 - Format: dd/mm/yy
 - Date: 01:01:02
 - Time: 12:00

 Press ▲ To Set | Press ▼ To Abort

CONFIG. SECURITY

- Alter Sec.Code
- Alter Cal.Code

TEST/MAINTENANCE

- Test Outputs
- Test Output 1
- Test Output 2
- Test Output 3
- Test Output 4

TEST/MAINTENANCE

- Hold Outputs

To FACTORY SETTINGS

(see Section 7.3, Page 40)

Key

- Available only if the analog option board is fitted

Fig. 2.3B Overall Programming Chart
2.3 Operating Page

2.3.1 Single Input Conductivity

Measured Values
Conductivity.
Temperature.

See Section 3.1.

If sensor calibration enabled – see Section 4.1.
If Alter Sec. Code is not set to zero – see Section 5.1.
If Alter Sec. Code is set to zero – see Section 5.2.

2.3.2 Dual Input Conductivity

Measured Conductivity
Sensor A.
Sensor B.

Note. Dual Cond. is displayed only if Signal Calc. is set to No Calculation in the CONFIG. SENSORS page – see Section 5.3. See below for an explanation of calculations.

Measured Temperature
Sensor A.
Sensor B.

Calculations
A range of computed dual conductivity readings can be displayed, each showing the result of a calculation performed by the analyzer. In each case, the type of calculation is shown on the lower display line, followed by the result of the calculation.

Calculations performed are:

- Difference = A – B.
- % Rejection = (1–B/A) x 100.
- % Passage = B/A x 100
- Ratio = A/B
- Inferred pH = Uses an algorithm to calculate the pH value of the solution, inferred from its conductivity. See Appendix A3 for further information on inferred pH.

See Section 3.1.

If sensor calibration enabled – see Section 4.1.
If Alter Sec. Code is not set to zero – see Section 5.1.
If Alter Sec. Code is set to zero – see Section 5.2.
3 OPERATOR VIEWS

3.1 View Set Points

View Set Points
This page shows alarm set points. The value of each of the set points is shown, together with the name of the parameter it’s assigned to.

Set point values and relay/LED actions are programmable – see Section 5.4.

Sensor A (Conductivity), Alarm 1 Set Point

Sensor A (Temperature), Alarm 2 Set Point

Sensor B (Conductivity), Alarm 3 Set Point – Dual Input Conductivity only

Sensor B (Temperature), Alarm 4 Set Point – Dual Input Conductivity only

Note. Alarm 4 is available only if the optional analog output board is fitted.

Alarm 5 Set Point

Note. Alarm 5 is available only if the optional analog output board is fitted.

Return to main menu.

If sensor calibration enabled – see Section 4.1.
If Alter Sec. Code is not set to zero – see Section 5.1.
If Alter Sec. Code is set to zero – see Section 5.2.
3.2 View Outputs

Theoretical Analog Output
There are up to four analog outputs, each showing information for one sensor:

- **Note.** Analog outputs 3 and 4 are available only if the optional analog output board is fitted.

- **Current output.**
- **Current output as a percentage of full scale for the output range selected.**

Analog Output 1

See Section 3.3.

- If sensor calibration enabled – see Section 4.1.
- If **Alter Sec. Code** is not set to zero – see Section 5.1.
- If **Alter Sec. Code** is set to zero – see Section 5.2.

Analog Output 2 – repeat for outputs 2 to 4.

3.3 View Hardware

Sensor A Module
Shows the type of sensor connected to the analyzer’s Sensor A input.

Sensor B Module – Dual Input Conductivity only
Shows the type of sensor connected to the analyzer’s Sensor B input.

Option Board
Shows the type of option board fitted to the analyzer (if applicable).

See Section 3.4.

- If sensor calibration enabled – see Section 4.1.
- If **Alter Sec. Code** is not set to zero – see Section 5.1.
- If **Alter Sec. Code** is set to zero – see Section 5.2.
3.4 View Software

Issue
Shows the version number of the operating software.

If optional analog output board fitted – see Section 3.5.

Operating Page (if optional analog output board not fitted) – see Section 2.3.

If sensor calibration enabled – see Section 4.1.
If Alter Sec. Code is not set to zero – see Section 5.1.
If Alter Sec. Code is set to zero – see Section 5.2.

3.5 View Clock

Note. The VIEW CLOCK function is available only if the optional analog output board is fitted.

Date
Shows the current date.

Time
Shows the current time.

Operating Page – see Section 2.3.

If sensor calibration enabled – see Section 4.1.
If Alter Sec. Code is not set to zero – see Section 5.1.
If Alter Sec. Code is set to zero – see Section 5.2.
4.1 Sensor Calibration

Sensor Calibration

Note. Applicable only if Enable Cals. is set to Yes – see Section 5.3.

Sensor Calibration Security Code

Enter the required code number, between 00000 and 19999, to gain access to the sensor calibration procedure. If an incorrect value is entered, access to subsequent calibration pages is prevented and the display reverts to the SENSOR CAL. page.

Note. Applicable only if Alter Cal. Code is not set to zero – see Section 5.8.

Calibrate Sensor A

Edit or Reset Calibration

Select Edit to manually adjust the Slope and Offset values of the process and temperature sensors.

Select Reset to reset the sensor calibration data to the standard default settings:

- Sensor and Temperature Slope = 1.000
- Sensor and Temperature Offset = 0.0

Edit

If Edit selected – continued on next page...

Reset

If Reset selected – continued on next page...
4.1 Sensor Calibration

Sensor Slope
The upper display shows the measured conductivity. The lower display shows the process sensor slope.

Adjust the slope within the valid range 0.2000 to 5.000 until the conductivity reading is correct.

Sensor Offset
The upper display shows the measured conductivity. The lower display shows the process sensor offset.

Adjust the offset until the conductivity reading is correct.

Temperature Slope
The upper display shows the measured temperature. The lower display shows the temperature sensor slope.

Adjust the slope within the valid range 0.2000 to 1.500 until the temperature reading is correct.

Temperature Offset
The upper display shows the measured temperature. The lower display shows the temperature sensor offset.

Adjust the offset within the valid range –40.0 to 40.0°C (–40° to 104°F) until the temperature reading is correct.

Dual input conductivity only – Sensor B calibration is identical to Sensor A calibration.

Single input conductivity only – return to main menu.

If **Alter Sec. Code** is not set to zero – see Section 5.1.
If **Alter Sec. Code** is set to zero – see Section 5.2.

Reset Calibration
Select *Yes* and press [] to reset the calibration data.
Select *No* and press [] to abort.

Dual input conductivity only – Sensor B calibration is identical to Sensor A calibration.

Single input conductivity only – return to main menu.

If **Alter Sec. Code** is not set to zero – see Section 5.1.
If **Alter Sec. Code** is set to zero – see Section 5.2.
Enter the required code number, between 00000 and 19999, to gain access to the secure parameters. If an incorrect value is entered, access to subsequent programming pages is prevented and the display reverts to the Operating Page – see Section 2.3.

Note. This item is displayed only if Alter Sec. Code is not set to zero – see Section 5.8.

See Section 5.2.
5.2 Configure Display

Set Language

- English
- Italiano
- Espanol
- Francais
- Deutsch

Set Temp. Units

- Deg. F
- Deg. C

Set Backlight

- On
- Auto.

Language Page
Select the language to be used on all subsequent pages.

Temperature Units
Select the sample temperature display units:
°C or °F.

Backlight
Select the backlight option:
On - Backlight is always on.
Auto - Backlight comes on at each button press and switches off one minute after the last button press.

Return to main menu.

See Section 5.3.
5.3 Configure Conductivity Sensors

Configure Sensor A

- - - - - Cond.
Config. Sensor A

Dual input conductivity only – Sensor B configuration is identical to Sensor A configuration.

Config. Sensor B

Single input conductivity only – return to main menu.

A Cond. Units

Continued on next page…
5 PROGRAMMING...

...5.3 Configure Conductivity Sensors

Conductivity Units
Units can be programmed to suit the range and application. Select the required units, ensuring the range does not exceed the display limit of 10,000 µS cm⁻¹:

- M_Ohms – Megohms-cm
- TDS – Total Dissolved Solids (see Table 5.1)
- mS/m – Millisiemens m⁻¹ (0.1 µS cm⁻¹)
- mS/cm – Millisiemens cm⁻¹ (1000 µS cm⁻¹)
- uS/m – Microsiemens m⁻¹ (100 µS cm⁻¹)
- uS/cm – Microsiemens cm⁻¹

<table>
<thead>
<tr>
<th>Conductivity Cell Constant (K)</th>
<th>Maximum Conductivity Range (µS cm⁻¹)</th>
<th>Maximum Effective TDS Range (ppm, mg/kg and mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0 to 1,000</td>
<td>0 to 400 0 to 500 0 to 600 0 to 700 0 to 800</td>
</tr>
<tr>
<td>1.0</td>
<td>0 to 10,000</td>
<td>0 to 4,000 0 to 5,000 0 to 6,000 0 to 7,000 0 to 8,000</td>
</tr>
</tbody>
</table>

Table 5.1 TDS Range Limits for Different Cell Constants (K)

Cell Constant
Enter the cell constant for the type of measuring cell used – see the relevant cell manual.

Continued on next page...
5.3 Configure Conductivity Sensors

Temperature Compensation
Select the type of temperature compensation required:

None – Select when raw conductivity measurement without temperature compensation is required.

Examples
• Water for injection (WFI) for US Pharmacopoeia (USP) applications.
• Purified water for USP applications.

Linear – Select for non-standard applications monitoring and when manual addition of temperature coefficient of unknown purity is required.

* UPW – Select when temperature effect of pure water only is required or when manual addition of temperature coefficient of unknown impurity to pure water temperature effect is required – see Note below.

* HCl – Select when temperature effect of pure water with trace acids is required

Examples
• Cation exchanger in-bed and outlet applications.
• Degassed cation conductivity applications.

* NaOH – Select when temperature effect of pure water with trace caustic is required

Example
• Inferred pH in caustic-dosed waters applications.

* NaCl – Select when temperature effect of pure water with trace salts is required

Examples
• General monitoring applications.
• Mixed-bed exchanger applications.
• Final polisher effluent applications.
• Cation exchanger inlet applications.
• Anion exchanger in-bed and outlet applications.
• Reverse osmosis applications.

* NH3 – Select when temperature effect of pure water with trace ammonia is required

Examples
• Ammonia-treated make-up and boiler feed water applications.
• Condenser sampling applications.
• Hot well sampling applications.
• Before-cation column applications.
• Inferred pH in ammonia-dosed waters applications.

* Applicable only on conductivities up to 10µS cm⁻¹

Notes.
1) If UPW is selected, the temperature coefficient (α x 100) of the solution must be calculated if unknown – see Appendix A1.1.

2) Source data is based on IEC International Standard 65D/85/FD15

Continued on next page...
5.3 Configure Conductivity Sensors

Temperature Sensor
Select the type of temperature sensor used, Pt100 or Pt1000.

Temperature Coefficient
Note. Displayed only if Temp.Comp. is set to Linear or UPW – see previous page.

Enter the temperature coefficient (α x 100) of the solution (0.01 to 5.0%/°C). If unknown, the temperature coefficient (α) of the solution must be calculated – see Appendix A1.1.

If the value has not yet been calculated, set it to 2%/°C provisionally.

TDS Factor
Note. Displayed only if Cond.Units is set to TDS – see page 15.

The TDS factor must be programmed to suit the particular application – see Appendix A2.

Enter the required TDS factor between 0.4 and 0.8.

For salinity applications, set the TDS factor to 0.5.

TDS Units
Note. Displayed only if Cond.Units is set to TDS – see page 15.

Select the TDS units (ppm, mg/l or mg/kg).

Enable Calibration
If Sensor Calibration is required, select Yes. If No is selected the sensor calibration menus for Sensor A are disabled.

Dual input conductivity only – Sensor B configuration is identical to Sensor A configuration.

Single input conductivity only – return to main menu.

See Section 5.4.
...5 PROGRAMMING

...5.3 Configure Conductivity Sensors

Configure Sensor B (Dual Input Conductivity only)
Sensor B configuration is identical to Sensor A configuration.

Signal Calculation (Dual Input Conductivity only)

- Inferred pH – Calculates a pH value based on the conductivity readings (see Appendix A3 for further information on inferred pH).
- Ratio A/B – Calculates the ratio of the two conductivity inputs.
- Difference A-B – Calculates the difference between the two conductivity inputs.
- % Passage – Calculates the amount of conductivity as a percentage that passes through the cation exchange unit.
- % Rejection – Calculates the amount of conductivity as a percentage that is absorbed in the cation exchange unit.
- No Calculation – No calculation is performed and the conductivity readings are displayed directly.

After-cation Limit
Set the required after-cation conductivity limit between 0.060 and 1.000 µS cm⁻¹ in 0.001 steps.

- Applicable only if Signal Calc. is set to Inferred pH.

Return to main menu.

See Section 5.4.
5.4 Configure Alarms

Configure Alarm 1

Alarm 2 (and Alarms 3 and 4 if optional analog output board is fitted) configuration is identical to Alarm 1.

Alarm 1 Type
Select the type of alarm required:

- **Off** – The alarm is disabled, the alarm LED is off and the relay is de-energized at all times.
- **Alarm** – The analyzer is configured using the Assign parameter (following) to generate an alarm in response to a specified sensor reading.
- **Status** – The analyzer alerts the operator to either a power failure or a condition that causes an error message to be displayed – see Table 8.1.

Alarm 1 Assign
When Alarm 1 Type is set to **Alarm**, this enables the alarm to alert the operator to one of two alarm conditions for a specified sensor:

- **Temp.A** – The analyzer alerts the operator if the temperature of the process fluid measured by the selected sensor exceeds or drops below the value set in the **Alarm 1 Set Point** parameter (see next page), depending on the type of **Alarm 1 Action** selected – see next page.
- **Sen.A** – The analyzer alerts the operator if the conductivity of the process fluid measured by the selected sensor exceeds or drops below the value set in the **Alarm 1 Set Point** parameter (see next page), depending on the type of **Alarm 1 Action** selected opposite – see next page.

Notes.
1) Sensor B alarms and signal calculation are applicable only to dual input conductivity.

2) If **Signal Calc.** is set to any parameter other than **No Calculation** (see opposite), the display shows the selected parameter:

- **% Pass** – If **Signal Calc.** is set to **% Passage**
- **% Rej** – If **Signal Calc.** is set to **% Rejection**
- **A – B** – If **Signal Calc.** is set to **Difference A – B**
- **A/B** – If **Signal Calc.** is set to **Ratio A/B**
- **pH** – If **Signal Calc.** is set to **Inferred pH** (see Appendix A3 for further information on inferred pH)

The analyzer alerts the operator if the value of the calculation exceeds or drops below the value set in the **Alarm 1 Set Point** parameter (see next page), depending on the type of **Alarm 1 Action** selected – see next page.

Continued on next page...
...5 PROGRAMMING

...5.4 Configure Alarms

Alarm 1 Failsafe
If failsafe action is required select Yes, otherwise select No.

Alarm 1 Action
Select the alarm action required, High or Low.

Alarm 1 Set Point
The alarm 1 set point can be set to any value within the input range being displayed. Set the alarm set point to the required value – see table 5.2.

Alarm 1 Hysteresis
A differential set point can be defined between 0 and 5% of the alarm set point value. Set the required hysteresis, adjustable in steps of 0.1%.

Alarm 1 Delay
When an alarm condition occurs, the activation of the relays and LEDs is delayed for the specified time period. If the alarm clears within the period, the alarm is not activated. Set the required delay, in the range 0 to 60 seconds in steps of 1 second.

Alarm 2 (and Alarms 3 and 4 if optional analog output board is fitted) configuration is identical to Alarm 1.

See Section 5.5.
5.4 Configure Alarms

Fig. 5.1 High Failsafe Alarm without Hysteresis and Delay

Fig. 5.2 High Failsafe Alarm with Hysteresis but no Delay

Fig. 5.3 High Failsafe Alarm with Hysteresis and Delay

Fig. 5.4 High Non-Failsafe Alarm without Delay and Hysteresis

Fig. 5.5 High Failsafe Alarm with Delay but no Hysteresis
5.5 Configure Outputs

Configure Output 1

Assign
Select the sensor and analog output required:
- Temp – Temperature for the selected sensor
- Sen – Conductivity for the selected sensor

Notes.
1) Sensor B outputs and signal calculation are applicable only to dual input conductivity.
2) If Signal Calc. is set to any parameter other than No Calculation (see page 18), the display shows the selected parameter:
 - % Pass – If Signal Calc. is set to % Passage
 - % Rej – If Signal Calc. is set to % Rejection
 - A – B – If Signal Calc. is set to Difference A – B
 - A/B – If Signal Calc. is set to Ratio A/B
 - pH – If Signal Calc. is set to Inferred pH (see Appendix A3 for further information on inferred pH)

Range
Set the analog output current range for the selected output.

Curve
Select the analog output scale required.
- Linear – Straight line between zero and span
- Bi-Lin – Bi-linear – see Fig. 5.6
- Log. 2 – Logarithmic, 2-decades – see Fig. 5.7
- Log. 3 – Logarithmic, 3-decades – see Fig. 5.8

Note. The curve is fixed to Linear if:
a) the analog output is assigned to temperature
or
b) the analog output is assigned to Sensor A or Sensor B (dual input conductivity only) and Cond.Units is set to M_Ohms (see Section 5.3).

AO1: Span Value
Continued on next page...
5 PROGRAMMING...

...5.5 Configure Outputs

Span Value
Span value – set the required span value.

Zero value.

Zero Value
Span value.
Zero value – set the required zero value – see Fig. 5.6.

Note. Applicable only if the Curve parameter is set to Linear or Bi-Lin – see opposite. When set to Log. 2 and Log. 3, the zero value is set automatically.

Set Breakpoint X Value
Set the breakpoint value, which is the conductivity at which the breakpoint occurs.

Current at which the breakpoint occurs. This is Point B in Fig. 5.6.

Note. Applicable only if the Curve parameter is set to Bi-Lin – see opposite.

Set Breakpoint Y Value
Conductivity at which the breakpoint occurs.

Set the current at which the breakpoint occurs. This is Point C in Fig. 5.6.

Note. Applicable only if the Curve parameter is set to Bi-Lin – see opposite.

Default Output
Set the system reaction to failure:
Off – Ignore failure and continue operation.
On – Stop on failure. This drives the analog output to the level set in the Default Val parameter below.
Hold – Hold the analog output at the value prior to the failure.

Default Value
The level to which the analog output is driven if a failure occurs.

Output 2 configuration (and Outputs 3 and 4 if optional analog output board is fitted) is identical to Output 1 configuration.

If optional analog output board fitted – see Section 5.7.

If optional analog output board not fitted – see Section 5.8.
...5 PROGRAMMING

...5.5 Configure Outputs

<table>
<thead>
<tr>
<th>Analog Output Assignment</th>
<th>Analog Output Span</th>
<th>Analog Output Zero</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductivity</td>
<td>Programmable between 0.1% and 100% of conductivity span (Table 5.1)</td>
<td>Set automatically according to selected Analog Output Scale:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linear</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subject to a minimum range as per Table 5.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bi-lin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subject to a minimum range as per Table 5.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Log. 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0% of Analog Output Span</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Log. 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.1% of Analog Output Span</td>
</tr>
</tbody>
</table>

If Conductivity Units = MΩ-cm

- 20.00 (maximum), 2.00 (minimum)
- Subject to minimum range of 1.00 MΩ-cm

Temperature (°C)

- 150 (maximum), –10 (minimum)
- Subject to minimum range of 20°C

Temperature (°F)

- 302 (maximum), 14 (minimum)
- Subject to minimum range of 36°F

Table 5.3 Analog Outputs

5.6 Output Functions

5.6.1 Bi-Linear Output – Fig. 5.6

Fig. 5.6 Bi-Linear Output
5.6 Output Functions

5.6.2 Logarithmic Output (2-decade) – Fig. 5.7

Fig. 5.7 Logarithmic Output (2-Decade)

5.6.3 Logarithmic Output (3-decade) – Fig. 5.8

Fig. 5.8 Logarithmic Output (3-Decade)
5.7 Configure Clock

Note. Available only if the optional analog output board is fitted.

Set Clock
Set the system clock.

Format
Select the required clock format.

Date
Set the date in the form dd:mm:yy.
Press to move between the day, month and year fields.
Press or to adjust each field.

Time
Set the time in the form hh:mm.
Press to move between hours and minute fields.
Press or to adjust each field.
Press the appropriate button to set the clock or abort the changes.

Note. Press to Set and Press to Abort are displayed alternately on the lower display line.

Return to main menu.

See Section 5.8.
5.8 Configure Security

Alter Security Code
Set the security code to a value between 0000 and 19999.

Alter Calibration Code
Set the sensor calibration access code to a value between 0000 and 19999.

Return to main menu.
See Section 5.9.
5.9 Test Outputs

Test Outputs
Displays the output test details for the four channels. Test Output 1 only is shown; the remaining outputs are identical.

Note. Outputs 3 and 4 are available only if the optional analog output board is fitted.

The theoretical output current value.

Output current as a percentage of the full range current.

Test remaining outputs.

Maintenance

Hold Outputs
Enables the relay action and analog outputs to be maintained.

On – Changes in relay action and analog outputs are inhibited.
Off – Changes in relay action and analog outputs are not inhibited.
Auto – Hold is released automatically after six hours.

Note. The LEDs flash while the analyzer is in Hold mode.

Return to main menu.

See Section 7.3.
6 INSTALLATION

6.1 Siting Requirements

Caution.
• Mount in a location free from excessive vibration.
• Mount away from harmful vapours and/or dripping fluids.

Information. It is preferable to mount the analyzer at eye level, allowing an unrestricted view of the front panel displays and controls.

Fig. 6.1 Siting Requirements

A – Maximum Distance Between Analyzer and Cell

B – Within Temperature Limits

C – Within Environmental Limits

IP66
NEMA 4X
6.2 Mounting

6.2.1 Wall-/Pipe-mount Analyzers – Figs. 6.2 and 6.3

Fig. 6.2 Overall Dimensions

Fig. 6.3 Wall-/Pipe-mounting

A – Wall-mounting

B – Pipe-mounting
...6.2 Mounting

6.2.2 Panel-mount Analyzers – Figs. 6.4 and 6.5

Dimensions in mm (in.)

```
<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>96 (3.78)</td>
</tr>
<tr>
<td>Height</td>
<td>96 (3.78)</td>
</tr>
<tr>
<td>Depth</td>
<td>5.40 (0.2)</td>
</tr>
<tr>
<td>Width</td>
<td>91.60 (3.6)</td>
</tr>
<tr>
<td>Height</td>
<td>137.50 (5.41)</td>
</tr>
<tr>
<td>Depth</td>
<td>25 (0.98)</td>
</tr>
<tr>
<td>Panel Cut-out</td>
<td>92 (3.62)</td>
</tr>
<tr>
<td></td>
<td>+0.03</td>
</tr>
<tr>
<td></td>
<td>–0</td>
</tr>
</tbody>
</table>
```

Fig. 6.4 Overall Dimensions

```
1. Cut a hole in the panel (see Fig. 6.4 for dimensions). Instruments may be close stacked to DIN 43835.
2. Loosen the retaining screw on each panel clamp.
3. Remove the panel clamp and anchors from the instrument case.
4. Insert the instrument into the panel cut-out.
5. Refit the panel clamps to the case, ensuring that the panel clamp anchors are located correctly in their slots.
6. Secure the analyzer by tightening the panel clamp retaining screws.

Caution: The clamp must fit flat on the analyzer casing. If the clamp is bowed, the securing screw is overtight and sealing problems may occur.
```

Fig. 6.5 Panel-mounting
6.3 Connections, General

⚠️ Warning. The power supply earth (ground) must be connected to ensure safety to personnel, reduction of the effects of RFI interference and correct operation of the power supply interference filter.

❗ Caution. The metal braid in the conductivity cell connecting cable must not be earthed, or allowed to touch earthed components, and must be cut back to the insulation at the conductivity cell end.

ℹ Information.

- **Earthing (grounding)** – stud terminal(s) is fitted to the analyzer case for bus-bar earth (ground) connection – see Fig. 6.8 (wall-/pipe-mount analyzers) or Fig. 6.10 (panel-mount analyzers).

- **Cable lengths** – the integral cable may be extended using a suitable junction box, but the total cable length must not exceed 50m (137.5 ft) for cells with a constant of <0.1 or 100m (275 ft) for cells with a constant of 0.1.

- **Cable routing** – always route signal output/conductivity cell cable leads and mains-carrying/relay cables separately, ideally in earthed metal conduit. Use twisted pair output leads or screened cable with the screen connected to the case earth stud. Ensure that the cables enter the analyzer through the glands nearest the appropriate screw terminals and are short and direct. Do not tuck excess cable into the terminal compartment.

- **Cable glands & conduit fittings** – ensure that the NEMA4X/IP66 rating is not compromised when using cable glands, conduit fittings and blanking plugs/bungs (M20 holes). The M20 glands accept cable of between 5 and 9mm (0.2 and 0.35 in.) diameter.

- **Relays** – the relay contacts are voltage-free and must be appropriately connected in series with the power supply and the alarm/control device which they are to actuate. Ensure that the contact rating is not exceeded. Refer also to Section 6.3.1 for relay contact protection details when the relays are to be used for switching loads.

- **Analog output** – Do not exceed the maximum load specification for the selected analog output range. Since the analog output is isolated, the –ve terminal must be connected to earth (ground) if connecting to the isolated input of another device.
6.3 Connections, General

6.3.1 Relay Contact Protection and Interference Suppression – Fig. 6.6

If the relays are used to switch loads on and off, the relay contacts can become eroded due to arcing. Arcing also generates radio frequency interference (RFI) which can result in analyzer malfunctions and incorrect readings. To minimize the effects of RFI, arc suppression components are required; resistor/capacitor networks for a.c. applications or diodes for d.c. applications. These components can be connected either across the load or directly across the relay contacts. The RFI components must be fitted to the relay terminal block along with the supply and load wires – see Fig 6.6.

For AC applications the value of the resistor/capacitor network depends on the load current and inductance that is switched. Initially, fit a 100R/0.022µF RC suppressor unit (part no. B9303) as shown in Fig. 6.6A. If the analyzer malfunctions (locks up, display goes blank, resets etc.) the value of the RC network is too low for suppression and an alternative value must be used. If the correct value cannot be obtained, contact the manufacturer of the switched device for details on the RC unit required.

For DC applications fit a diode as shown in Fig. 6.6B. For general applications use an IN5406 type (600V peak inverse voltage at 3A – part no. B7363).

✶ Note. For reliable switching the minimum voltage must be greater than 12V and the minimum current greater than 100mA.

![Fig. 6.6 Relay Contact Protection](image-url)
6.3.2 Cable Entry Knockouts, Wall-/Pipe-mount Analyzer – Fig. 6.7
The analyzer is supplied with 7 cable glands, one fitted and six to be fitted, as required, by the user – see Fig. 6.7.

1. Release the captive screws and remove the terminal cover plate

2. Place the blade of a small, flat bladed screwdriver into the knockout groove and tap the screwdriver smartly to remove the knockout

3. Smooth the edges of the hole with a small round or half round file.

4. Fit an ‘O’ ring seal to the the cable gland

5. Insert the cable gland into the hole in the analyzer case from the outside

6. Secure the cable gland with the securing nut

Caution. When removing knockouts, take great care not to damage wiring and components within the analyzer.

Fig. 6.7 Cable Entry Knockouts, Wall-/Pipe-mount Analyzer
Warning. Before making any connections, ensure that the power supply, any high voltage-operated control circuits and high common mode voltages are switched off.

6.4 Wall-/Pipe-mount Analyzer Connections

6.4.1 Access to Terminals – Fig. 6.8

Fig. 6.8 Access to Terminals, Wall-/Pipe-mount Analyzer
INSTALLATION

6.4 Wall-/Pipe-mount Analyzer Connections

6.4.2 Connections – Fig. 6.9

![Diagram of Wall-/Pipe-mount Analyzer Connections](image)

<table>
<thead>
<tr>
<th>Terminal Block B</th>
<th>Conductivity Cell Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor B*</td>
<td>Sensor A</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>

* Dual Conductivity Only
** When a 2-wire Pt100, Pt1000 or ‘balco 3k’ temperature compensator is fitted. TC = Temperature Compensator.

Fig. 6.9 Connections, Wall-/Pipe-mount Analyzer
Warning. Before making any connections, ensure that the power supply, any high voltage-operated control circuits and high common mode voltages are switched off.

6.5 Panel-mount Analyzer Connections

6.5.1 Access to Terminals – Fig. 6.10

Fig. 6.10 Access to Terminals, Panel-mount Analyzers
6.5 Panel-mount Analyzer Connections

6.5.2 Connections – Fig. 6.11

Terminal Block A
- L: Line
- N: Neutral
- E: Earth (Ground)
- A4: C (Relay 1)
- A5: NC
- A6: NO
- A7: C
- A8: NC (Relay 2)
- A9: NO
- A10: C
- A11: NC
- A12: NO
- A13: + Analog Output 1
- A14: –
- A15: +
- A16: –

Terminal Block C
- C1
- C2
- C3
- C4
- C5
- C6: Earth (Ground)
- C7: C
- C8: NC
- C9: NO
- C10: C
- C11: NC
- C12: NO
- C13: + Analog Output 3
- C14: –
- C15: + Analog Output 4
- C16: –

Terminal Block B
- B1
- B2
- B3
- B4
- B5
- B6
- B7
- B8
- B9
- B10
- B11
- B12
- B13
- B14
- B15
- B16

Terminal Block B Connections

<table>
<thead>
<tr>
<th>Sensor B*</th>
<th>Sensor A</th>
<th>Conductivity Cell Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>TC Common, Link B1 to B2 (Dual Conductivity Only) / B9 to B10**</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>TC Third Lead</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>TC</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>Screen</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>Cell (Cell Electrode)</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>Cell (Earth Electrode)</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>Not Used</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>Not Used</td>
</tr>
</tbody>
</table>

* Dual Conductivity Only
** When a 2-wire Pt100, Pt1000 or ‘balco 3k’ temperature compensator is fitted.
TC = Temperature Compensator.

Fig. 6.11 Connections, Panel-mount Analyzers
7 CALIBRATION

Notes.
• The analyzer is calibrated by the Company prior to dispatch and routine recalibration is not necessary. High stability components are used in the analyzer’s input circuitry and, once calibrated, the Analog to Digital converter chip self-compensates for zero and span drift. It is therefore unlikely that the calibration will change over time. It is not advisable to attempt recalibration unless the input board has been replaced or the calibration tampered with.
• Prior to attempting recalibration, test the analyzer’s accuracy using suitably calibrated test equipment – see Sections 7.2 and 7.3.

7.1 Equipment Required
a) Decade resistance box (conductivity cell input simulator): 0 to 10k (in increments of 0.1), accuracy ±0.1%.
b) Decade resistance box (Pt100/Pt1000 temperature input simulator): 0 to 1k (in increments of 0.01), accuracy ±0.1%.
c) Digital milliammeter (current output measurement): 0 to 20mA.

Note. Resistance boxes have an inherent residual resistance which may range from a few m up to 1. This value must be taken into account when simulating input levels, as should the overall tolerance of the resistors within the boxes.

7.2 Preparation
a) Switch off the supply and disconnect the conductivity cell(s), temperature compensator(s) and current output(s) from the analyzer’s terminal blocks.
b) Sensor A:
 1) Link terminals B9 and B10.
 2) Link terminal B12 to the Case Earth Stud – see Fig. 6.8.
 3) Connect the 0 to 10k decade resistance box to terminals B13 and B14 to simulate the conductivity cell. Connect the decade box earth to the Case Earth Stud.
 4) Connect the 0 to 1k decade resistance box to terminals B11 and B9 to simulate the Pt100/Pt1000.

Sensor B (dual input conductivity only):
 1) Link terminals B1 and B2.
 2) Link terminal B4 to the Case Earth Stud – see Fig. 6.8.
 3) Connect the 0 to 10k decade resistance box to terminals B5 and B6 to simulate the conductivity cell. Connect the decade box earth to the Case Earth Stud.
 4) Connect the 0 to 1k decade resistance box to terminals B3 and B1 to simulate the Pt100/Pt1000.
c) Connect the milliammeter to the analog output terminals.
d) Switch on the supply and allow ten minutes for the circuits to stabilize.
d) Select the FACTORY SETTINGS page and carry out Section 7.3.

Fig. 7.1 Analyzer Terminal Links and Decade Resistance Box Connections
7.3 Factory Settings

Fig. 7.2 Overall Factory Settings Chart
...7.3 Factory Settings

Factory Settings Access Code
Enter the required code number, between 00000 and 19999, to gain access to the factory settings. If an incorrect value is entered, access to subsequent parameters is prevented and the display reverts to the top of the Factory Settings Page.

Calibrate Sensor A
✶ Note. The values in the display lines for sensor calibration are shown only as examples – the actual values obtained will differ.

Dual input conductivity only – Sensor B calibration is identical to Sensor A calibration.
Single input conductivity only – see page 43.

Resistance Zero (Open Circuit)
Open circuit the cell simulator.

The display advances automatically to the next step once a stable and valid value is recorded.

✶ Note. The upper 6-segment display shows the measured input voltage. Once the signal is within range the lower 6-segment display shows the same value and Calib is displayed to indicate that calibration is in progress.

Resistance Span (2k)
Set the cell simulator to 2k

The display advances automatically to the next step once a stable and valid value is recorded.

Resistance Zero (Open Circuit)
Open circuit the cell simulator.

The display advances automatically to the next step once a stable and valid value is recorded.

Continued on next page...
...7.3 Factory Settings

Resistance Span (20)
Set the cell simulator to 20
The display advances automatically to the next step once a stable and valid value is recorded.

Resistance Reference Voltage
The analyzer calibrates the internal reference voltage automatically.
The display advances automatically to the next step once a stable and valid value is recorded.

Temperature Zero (100R)
Set the temperature simulator to 100
The display advances automatically to the next step once a stable and valid value is recorded.

Temperature Span (150R)
Set the temperature simulator to 150
The display advances automatically to the next step once a stable and valid value is recorded.

Temperature Zero (1k)
Set the temperature simulator to 1000
The display advances automatically to the next step once a stable and valid value is recorded.

Temperature Span (1k5)
Set the temperature simulator to 1500
The display returns automatically to Cal. Sensor A once a stable and valid value is recorded.
7.3 Factory Settings

Calibrate Output 1

Note. When adjusting the 4 and 20mA outputs, the display reading is unimportant and is used only to indicate that the output is changing when the ↑ and ↓ keys are pressed.

Adjust 4mA
Set the milliammeter reading to 4mA.

Note. The analog output range selected in Configure Outputs (see Section 5.5) does not affect the reading.

Adjust 20mA
Set the milliammeter reading to 20mA.

Note. The analog output range selected in Configure Outputs (see Section 5.5) does not affect the reading.

Calibrate Output 2

Note. Output 2 (and outputs 3 and 4 if optional analog output board is fitted) calibration is identical to Output 1 calibration.

If optional analog output board is fitted.

Optional analog output board not fitted – see page 44.

If optional analog output board is fitted.

Optional analog output board not fitted – see page 44.

Return to Operating Page.
...7 CALIBRATION

...7.3 Factory Settings

Load/Save Configuration
Select whether a configuration is to be loaded or saved.

Note. If No is selected, pressing the [a] key has no effect.

Load Factory Configuration

Note. Applicable only if Load/Save Config is set to Yes.

Load Factory Config. – resets all the parameters in the Configuration Pages to the Company Standard.
Save User Config. – saves the current configuration into memory.
Load User Config. – reads the saved user configuration into memory.

Notes.
1) Load User Config. is displayed only if a User Configuration has been saved previously.
2) Press ▲ to Set and Press ▼ to Abort are displayed alternately on the lower display line.

Alter Factory Code
Set the factory settings access code to a value between 00000 and 19999.

Return to main menu.

Return to Operating Page.
8 SIMPE FAULT FINDING

8.1 Error Messages
If erroneous or unexpected results are obtained the fault may be indicated by an error message – see Table 8.1. However, some faults may cause problems with analyzer calibration or give discrepancies when compared with independent laboratory measurements.

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Possible Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: FAULTY Pt100 A: FAULTY Pt1000</td>
<td>Temperature compensator/associated connections for Sensor A are either open circuit or short circuit.</td>
</tr>
<tr>
<td>B: FAULTY Pt100 B: FAULTY Pt1000</td>
<td>Temperature compensator/associated connections for Sensor B are either open circuit or short circuit.</td>
</tr>
<tr>
<td>BEFORE CAT. HIGH</td>
<td>The conductivity value before the cation exchange unit has exceeded 10μS/cm.</td>
</tr>
<tr>
<td>AFTER CAT. HIGH</td>
<td>The conductivity value after the cation exchange unit has exceeded the programmed limit.</td>
</tr>
</tbody>
</table>

Table 8.1 Error Messages

8.2 No Response to Conductivity Changes
The majority of problems are associated with the conductivity cell which must be cleaned as an initial check. It is also important that all program parameters have been set correctly and have not been altered inadvertently – see Section 5.

If the above checks do not resolve the fault:

a) Check the analyzer responds to a resistance input. Disconnect the conductivity cell cable and connect a suitable resistance box directly to the analyzer input – see Section 6.4. Select the CONFIG. SENSORS page and set Temp.Comp. to None – see Section 5.3. Check the analyzer displays the correct values as set on the resistance box – see Table 8.2 or use the expression:

\[R = \frac{K \times 10^6}{G} \]

Where: \(R \) = resistance
\(K \) = cell constant
\(G \) = conductivity

Failure to respond to the input indicates a fault with the analyzer which must be returned to the Company for repair. A response, but with incorrect readings, usually indicates an electrical calibration problem. Re-calibrate the analyzer as detailed in Section 7.3.

b) If the response in a) is correct, reconnect the conductivity cell cable and connect the resistance box to the cell end. Check the analyzer displays the correct values as set on the resistance box in this configuration.

If the analyzer passes check a) but fails check b), check the cable connections and condition. If the response for both checks is correct, replace the conductivity cell.

<table>
<thead>
<tr>
<th>Conductivity (\mu \text{S cm}^{-1}) (G)</th>
<th>Cell Constant (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Table 8.2 Conductivity Readings for Resistance Inputs

8.3 Checking the Temperature Input
Check the analyzer responds to a temperature input. Disconnect the Pt100/Pt1000 leads and connect a suitable resistance box directly to the analyzer inputs – see Section 6.4. Check the analyzer displays the correct values as set on the resistance box – see Table 8.3.

Incorrect readings usually indicate an electrical calibration problem. Re-calibrate the analyzer as detailed in Section 7.3.

<table>
<thead>
<tr>
<th>Temperature (^\circ\text{C})</th>
<th>Input Resistance (Ω) Pt100</th>
<th>Input Resistance (Ω) Pt1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100.00</td>
<td>1000.00</td>
</tr>
<tr>
<td>10</td>
<td>103.90</td>
<td>1039.00</td>
</tr>
<tr>
<td>20</td>
<td>107.79</td>
<td>1077.90</td>
</tr>
<tr>
<td>25</td>
<td>109.73</td>
<td>1097.30</td>
</tr>
<tr>
<td>30</td>
<td>111.67</td>
<td>1116.70</td>
</tr>
<tr>
<td>40</td>
<td>115.54</td>
<td>1155.40</td>
</tr>
<tr>
<td>50</td>
<td>119.40</td>
<td>1194.00</td>
</tr>
<tr>
<td>60</td>
<td>123.24</td>
<td>1232.40</td>
</tr>
<tr>
<td>70</td>
<td>127.07</td>
<td>1270.70</td>
</tr>
<tr>
<td>80</td>
<td>130.89</td>
<td>1308.90</td>
</tr>
<tr>
<td>90</td>
<td>134.70</td>
<td>1347.00</td>
</tr>
<tr>
<td>100</td>
<td>138.50</td>
<td>1385.00</td>
</tr>
<tr>
<td>130.5</td>
<td>150.00</td>
<td>1500.00</td>
</tr>
</tbody>
</table>

Table 8.3 Temperature Readings for Resistance Inputs
A1 Automatic Temperature Compensation

The conductivities of electrolytic solutions are influenced considerably by temperature variations. Thus, when significant temperature fluctuations occur, it is general practice to correct automatically the measured, prevailing conductivity to the value that would apply if the solution temperature were 25°C, the internationally accepted standard.

Most commonplace, weak aqueous solutions have temperature coefficients of conductance of the order of 2% per °C (i.e. the conductivities of the solutions increase progressively by 2% per °C rise in temperature); at higher concentrations the coefficient tends to become less.

At low conductivity levels, approaching that of ultra-pure water, dissociation of the H₂O molecule takes place and it separates into the ions H⁺ and OH⁻. Since conduction occurs only in the presence of ions, there is a theoretical conductivity level for ultra-pure water which can be calculated mathematically. In practice, correlation between the calculated and actual measured conductivity of ultra-pure water is very good.

Fig. A1 shows the relationship between the theoretical conductivity for ultra-pure water and that of high purity water (ultra-pure water with a slight impurity), when plotted against temperature. The figure also illustrates how a small temperature variation considerably changes the conductivity. Subsequently, it is essential that this temperature effect is eliminated at conductivities approaching that of ultra-pure water, in order to ascertain whether a conductivity variation is due to a change in impurity level or in temperature.

For conductivity levels above 1µS cm⁻¹, the generally accepted expression relating conductivity and temperature is:

\[G_t = G_{25} \left[1 + \alpha (t - 25) \right] \]

Where: \(G_t \) = conductivity at the temperature t°C
\(G_{25} \) = conductivity at the standard temperature (25°C)
\(\alpha \) = temperature coefficient per °C

At conductivities between 1µS cm⁻¹ and 1,000µS cm⁻¹, \(\alpha \) lies generally between 0.015/°C and 0.025/°C. When making temperature compensated measurements, a conductivity analyzer must carry out the following computation to obtain \(G_{25} \):

\[G_{25} = \frac{G_t - G_{upw}}{\left[1 + \alpha (t - 25) \right]} + 0.055 \]

Where: \(G_t \) = conductivity at temperature t°C
\(G_{upw} \) = ultra-pure water conductivity at temperature t°C
\(\alpha \) = impurity temperature coefficient
0.055 = conductivity in µS cm⁻¹ of ultra-pure water at 25°C

The expression is simplified as follows:

\[G_{25} = \frac{G_{imp}}{\left[1 + \alpha (t - 25) \right]} + 0.055 \]

Where: \(G_{imp} \) = impurity conductivity at temperature t°C

At high purity water conductivity levels, the conductivity/temperature relationship is made up of two components: the first component, due to the impurities present, generally has a temperature coefficient of approximately 0.02/°C; and the second, which arises from the effect of the H⁺ and OH⁻ ions, becomes predominant as the ultra-pure water level is approached.

Consequently, to achieve full automatic temperature compensation, the above two components must be compensated for separately according to the following expression:

\[G_{25} = \frac{G_t - G_{upw}}{\left[1 + \alpha (t - 25) \right]} + 0.055 \]

The conductivity analyzer utilizes the computational ability of a microprocessor to achieve ultra-pure water temperature compensation using only a single platinum resistance thermometer and mathematically calculating the temperature compensation required to give the correct conductivity at the reference temperature.
A1.1 Calculation of Temperature Coefficient

The temperature coefficient of a solution can be obtained experimentally by taking non-temperature compensated conductivity measurements at two temperatures and applying the following expression:

\[
\alpha = \frac{G_{t_2} - G_{t_1}}{G_{t_1} (t_2 - 25) - G_{t_2} (t_1 - 25)}
\]

Where: \(G_{t_2} \) = conductivity measurement at a temperature of \(t_2 \) °C
\(G_{t_1} \) = conductivity measurement at a temperature of \(t_1 \) °C

One of these measurements could be made at the ambient temperature and the other obtained by heating the sample.

Temperature coefficient (%/°C) = \(\alpha \times 100 \).

For ultra pure water applications the temperature compensation equation becomes,

\[
\alpha = \frac{G_{imp1} - G_{imp2}}{[G_{imp2} (t_1 - 25) - G_{imp1} (t_2 - 25)]}
\]

Where: \(G_{imp1} \) = \(G_{t_1} - G_{upw1} \)
\(G_{imp2} \) = \(G_{t_2} - G_{upw2} \)

A2 Relationship Between Conductivity and Total Dissolved Solids (TDS) Measurement

The TDS factor (i.e. the relationship between conductivity (µS cm\(^{-1}\)) and TDS in p.p.m.) is totally dependent on the properties of the solution being measured.

In simple solutions where only one electrolyte is present, the ratio can easily be ascertained, e.g. 0.5 in the case of sodium chloride. However, in complex solutions where more than one electrolyte is present, the ratio is not easily calculated and can only be reliably determined by laboratory testing (e.g. precipitation and weighing). The ratio in these cases is found to vary between approximately 0.4 and 0.8, depending on the chemical constituents, and is constant only when the chemical ratios remain constant throughout a particular process.

In cases where the TDS factor cannot be determined easily, refer to the supplier of the particular chemical treatment being used.
A3 Inferred pH Derived from Differential Conductivity

Where cation resin columns are used to remove the effects on the conductivity measurement of alkaline and hydrazine chemical treatment on boilers, it is common practice to measure both before- (specific conductivity) and after-cation conductivity. The sensitivity of the conductivity measurement to chemical contaminants resulting from condenser leaks or poor boiler-feed make-up water is increased by passing the sample through the cation column. Both measurements can be made on one dual conductivity input analyzer.

If it is known that a sample contains only one impurity, e.g., ammonia, the conductivity measurement now becomes an indication of the concentration of that impurity. It is now possible to calculate the pH of the sample from the concentration data and the result is referred to as 'inferred pH'.

It is stressed that the inferred pH value is valid only if there are no other impurities present. To ensure this, the chemist looks at the after-cation conductivity (which is a sensitive method of detecting impurities in the sample) and only after establishing that it is low is the inferred pH value validated.

The dual input conductivity analyzer, when used to monitor direct and after-cation conductivities on a sample, automatically calculates the inferred pH for the most commonly used pH correction chemicals when programmed to do so. The user-configurable after-cation conductivity alarm is used to detect other impurities in the sample and can thus inform the user of the validity of the inferred pH value.

The maximum after-cation conductivity value is programmable between 0.060 and 1.000µS cm\(^{-1}\) dependent on local conditions. Values above this level generate an AFTER CAT. HIGH alarm and before-cation conductivity above 10.000µS cm\(^{-1}\) generates a BEFORE CAT. HIGH alarm.

\[\text{Note. Both conductivity inputs must be configured as } \mu \text{s cm}^{-1} \text{ in order to calculate inferred pH.} \]

The inferred pH feature can be used only in the following circumstances:

a) On steam raising plant.

b) For boiler chemical treatment such as ammonia, sodium hydroxide, and/or hydrazine. For this application, either NH\(_3\) or NaOH temperature compensation must be selected – see Section 7.3.

\[\text{Note. Inferred pH measurement is inappropriate to chemical treatments such as phosphate, morpholine and quinhydrone.} \]

c) Where the after-cation conductivity value is an insignificant value to the before-cation value, or is greater than 1.0µS cm\(^{-1}\).
SPECIFICATION

Conductivity
Range
Programmable 0 to 0.5 to 0 to 10000 µS/cm
(with various cell constants)
Units of measure
µS/cm, µS/m, mS/cm, mS/m, M -cm and TDS
Accuracy
Better than ±1% of reading
Operating temperature range
–10 to 150°C (14 to 302°F)
Temperature compensation
–10 to 150°C (14 to 302°F)
Temperature coefficient
Programmable 0 to 5%/°C and fixed temperature compensation curves (programmable) for acids, neutral salts and ammonia
Temperature sensor
Programmable Pt100 /Pt1000
Reference Temperature
25°C (77°F)

Display
Type
Dual 5-digit, 7-segment backlit LCD
Information
16-character, single line dot-matrix

Environmental Data
Operating temperature limits
–20 to 65°C (–4 to 149°F)
Storage temperature limits
–25 to 75°C (–13 to 167°F)
Operating humidity limits
Up to 95%RH non condensing

EMC
Emissions and immunity
Meets requirements of:
EN61326 (for an industrial environment)
EN50081-2
EN50082-2

Analog Retransmission
Number of signals
Two, fully-isolated outputs supplied as standard
Four, fully-isolated outputs when ordered with option card
Output current
0 to10mA, 0 to 20mA or 4 to 20mA
Analog output programmable to any value between 0 and 22mA to indicate system failure
Accuracy
±0.25% FSD, ±5% of reading
Resolution
0.1% at 10mA 0.05% at 20mA
Maximum load resistance
750 at 20mA
Configuration
Can be assigned to either measured variable or either sample temperature
Relay Outputs

Number of relays
- Three, supplied as standard
- Five, when ordered with option card

Set point adjustment
- Fully programmable

Hysteresis
- Programmable 0 to 5% in 0.1% increments

Delay
- Programmable 0 to 60s in 1s intervals

Relay contacts
- Single-pole changeover
- Rating 5A, 115/230V AC, 5A DC

Insulation
- 2kv RMS contacts to earth/ground

Power supply

Voltage requirements
- 85 to 265V AC 50/60 Hz
- 24V AC or 12 to 30V DC (optional)

Power consumption
- <10VA

Insulation
- Mains to earth (line to ground) 2kV RMS

Safety

General safety
- EN61010-1
- Overvoltage Class II on inputs and outputs
- Pollution category 2

Hazardous area approvals
- ATEX Type n Pending
- FM non-incendive Class I Division 2 Pending
- CSA non-incendive Class I Division 2 Pending

Mechanical Data

Panel-mount versions
- IP66/NEMA4X
- Dimensions 192mm high x 230mm wide x 94mm deep
 (7.56 in. high x 9.06 in. wide x 3.7 in. deep)
- Weight 1kg (2.2 lb)

Panel-mount versions
- IP66/NEMA4X (front only)
- Dimensions 96mm x 96mm x 162mm deep
 (3.78 in. x 3.78 in. x 6.38 in. deep)
- Weight 0.6kg (13.2 lb)
PRODUCTS & CUSTOMER SUPPORT

Products

Automation Systems
- for the following industries:
 - Chemical & Pharmaceutical
 - Food & Beverage
 - Manufacturing
 - Metals and Minerals
 - Oil, Gas & Petrochemical
 - Pulp and Paper

Drives and Motors
- AC and DC Drives, AC and DC Machines, AC motors to 1kV
- Drive systems
- Force Measurement
- Servo Drives

Controllers & Recorders
- Single and Multi-loop Controllers
- Circular Chart, Strip Chart and Paperless Recorders
- Paperless Recorders
- Process Indicators

Flexible Automation
- Industrial Robots and Robot Systems

Flow Measurement
- Electromagnetic Magnetic Flowmeters
- Mass Flow Meters
- Turbine Flowmeters
- Wedge Flow Elements

Marine Systems & Turbochargers
- Electrical Systems
- Marine Equipment
- Offshore Retrofit and Refurbishment

Process Analytics
- Process Gas Analysis
- Systems Integration

Transmitters
- Pressure
- Temperature
- Level
- Interface Modules

Valves, Actuators and Positioners
- Control Valves
- Actuators
- Positioners

Water, Gas & Industrial Analytics Instrumentation
- pH, conductivity, and dissolved oxygen transmitters and sensors
- ammonia, nitrate, phosphate, silica, sodium, chloride, fluoride, dissolved oxygen and hydrazine analyzers.
- Zirconia oxygen analyzers, katharometers, hydrogen purity and purge-gas monitors, thermal conductivity.

Customer Support

We provide a comprehensive after sales service via a Worldwide Service Organization. Contact one of the following offices for details on your nearest Service and Repair Centre.

United Kingdom
ABB Limited
Tel: +44 (0)1453 826661
Fax: +44 (0)1453 827856

United States of America
ABB Inc.
Tel: +1 (0) 755 883 4366
Fax: +1 (0) 755 883 4373

Client Warranty
Prior to installation, the equipment referred to in this manual must be stored in a clean, dry environment, in accordance with the Company’s published specification. Periodic checks must be made on the equipment’s condition.

In the event of a failure under warranty, the following documentation must be provided as substantiation:

1. A listing evidencing process operation and alarm logs at time of failure.
2. Copies of operating and maintenance records relating to the alleged faulty unit.