Caractéristiques du produit
Système de commande de robot
S4Cplus
M2000
Caractéristiques du produit

Système de commande de robot

S4Cplus
M2000
3HAC 10338-1
Révision 6
Les informations contenues dans ce manuel peuvent être modifiées sans préavis et ne doivent pas être interprétées comme un engagement de la part d'ABB. La responsabilité d'ABB ne sera pas engagée par suite d'erreurs contenues dans ce manuel.

Sauf stipulation expresse du présent manuel, aucune des informations ne pourra être interprétée comme une garantie d'ABB couvrant les risques de perte, de dommages corporels ou matériels, l'adaptation à un usage particulier, ou toute autre garantie que ce soit.

En aucun cas, la responsabilité d'ABB ne pourra être engagée à la suite de dommages fortuits ou liés à l'utilisation du présent manuel ou des produits décrits dans ce manuel.

Le présent manuel ne doit pas être reproduit ou copié intégralement ou en partie sans la permission écrite d'ABB, et son contenu ne doit ni être divulgué à des tiers, ni être utilisé à des fins non autorisées. Les contrevenants seront poursuivis.

D'autres exemplaires de ce manuel peuvent être obtenus auprès d'ABB, au prix en vigueur.

© Copyright 2004 ABB. Tous droits réservés.

ABB Automation Technologies AB
Robotics
SE-721 68 Västerås
Suède
Table des matières

1 Description ... 7
 1.1 Structure ... 7
 Généralités ... 7
 1.2 Sécurité/Normes ... 10
 Normes de santé et de sécurité .. 10
 Système de sécurité basé sur un circuit à deux canaux 10
 Catégorie de sécurité 3 ... 10
 Sélection du mode de fonctionnement 10
 Vitesse réduite ... 11
 Gâchette de validation à trois positions 11
 Mouvement manuel en toute sécurité .. 11
 Protection survitesse ... 11
 Arrêt d'urgence ... 11
 Arrêt de l'espace de sécurité ... 11
 Arrêt retardé de l'espace de sécurité .. 11
 Détection de collision ... 11
 Limite de l'espace de travail .. 11
 Commande Hold-to-run (nécessitant une action maintenue) 12
 Sécurité incendie ... 12
 Lampe de sécurité .. 12
 1.3 Fonctionnement ... 13
 Généralités ... 13
 Pupitre mobile d'apprentissage ... 14
 Déviation du joystick .. 15
 Tâches utilisateur .. 15
 Panneau de commande .. 16
 Moteurs en marche ... 16
 Sélecteur de mode de fonctionnement 16
 Montage externe ... 17
 Commande à distance ... 17
 1.4 Mémoire ... 18
 Mémoire disponible ... 18
 Mémoire DRAM .. 18
 Mémoire du disque à mémorisation instantanée 18
 Installation de différents systèmes dans le système de commande .. 19
 Consommation de la mémoire RAPID 19
 Options logicielles supplémentaires .. 19
 1.5 Installation ... 20
 Configuration du manipulateur correspondant 20
 Conditions d'exploitation ... 20
 Alimentation .. 20
 Puissance nominale ... 21
 Fusion de ligne maximale recommandée 21
 Système informatique .. 21
 Configuration ... 22
 1.6 Programmation ... 23
 Généralités ... 23
 Environnement de programmation .. 23
 Mouvements .. 23
 Vitesse .. 24
 Gestion des programmes ... 24
 Modification de programmes .. 24
 Modification de la position du robot 24
 Test de programmes ... 24
 1.7 Fonctionnement automatique .. 25
 Généralités ... 25
 Position d'entretien ... 25
 Routines spéciales .. 25
 Mesure absolue .. 25
<table>
<thead>
<tr>
<th></th>
<th>Langage et environnement RAPID</th>
<th>Maintenance et dépannage</th>
<th>Mouvements du robot</th>
<th>Axes externes</th>
<th>Système d'E/S</th>
<th>Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td>Généralités</td>
<td>Entretien facile</td>
<td>QuickMoveTM</td>
<td>Généralités</td>
<td>Généralités</td>
<td>Généralités</td>
</tr>
<tr>
<td>1.9</td>
<td>Généralités</td>
<td>Détection des erreurs</td>
<td>TrueMoveTM</td>
<td>Moteur à courant alternatif</td>
<td>Unités d'entrée et de sortie</td>
<td>Généralités</td>
</tr>
<tr>
<td>1.10</td>
<td></td>
<td></td>
<td>Systèmes de coordonnées</td>
<td>Position absolue</td>
<td>I/O Plus</td>
<td>Configuration des entrées et des sorties</td>
</tr>
<tr>
<td>1.11</td>
<td></td>
<td></td>
<td>Exécution du programme</td>
<td>Axes externes</td>
<td>Automate programmable</td>
<td>Fonctions manuelles disponibles</td>
</tr>
<tr>
<td>1.12</td>
<td></td>
<td></td>
<td>Mode Soft servo</td>
<td>Charge client autorisée</td>
<td>Types de connexion</td>
<td>Types de connexion</td>
</tr>
<tr>
<td>1.13</td>
<td></td>
<td></td>
<td>Positions diverses</td>
<td>Entrées numériques 24 VCC (option 61-1/option 58-1/option 63-1)</td>
<td>Unités d'E/S ABB (types de noeud)</td>
<td>Entrées numériques 24 VCC (option 61-1/58-1)</td>
</tr>
<tr>
<td>1.14</td>
<td></td>
<td></td>
<td>Pilotage manuel</td>
<td>Sorties numériques 24 VCC (option 61-1)</td>
<td>E/S distribuées</td>
<td>Sorties numériques 120 VCA (option 60-1)</td>
</tr>
</tbody>
</table>

Table des matières

<table>
<thead>
<tr>
<th></th>
<th>Langage et environnement RAPID</th>
<th>Maintenance et dépannage</th>
<th>Mouvements du robot</th>
<th>Axes externes</th>
<th>Système d'E/S</th>
<th>Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td>Généralités</td>
<td>Entretien facile</td>
<td>QuickMoveTM</td>
<td>Généralités</td>
<td>Généralités</td>
<td>Généralités</td>
</tr>
<tr>
<td>1.9</td>
<td>Généralités</td>
<td>Détection des erreurs</td>
<td>TrueMoveTM</td>
<td>Moteur à courant alternatif</td>
<td>Unités d'entrée et de sortie</td>
<td>Généralités</td>
</tr>
<tr>
<td>1.10</td>
<td></td>
<td></td>
<td>Systèmes de coordonnées</td>
<td>Position absolue</td>
<td>I/O Plus</td>
<td>Configuration des entrées et des sorties</td>
</tr>
<tr>
<td>1.11</td>
<td></td>
<td></td>
<td>Exécution du programme</td>
<td>Axes externes</td>
<td>Automate programmable</td>
<td>Fonctions manuelles disponibles</td>
</tr>
<tr>
<td>1.12</td>
<td></td>
<td></td>
<td>Mode Soft servo</td>
<td>Charge client autorisée</td>
<td>Types de connexion</td>
<td>Types de connexion</td>
</tr>
<tr>
<td>1.13</td>
<td></td>
<td></td>
<td>Positions diverses</td>
<td>Entrées numériques 24 VCC (option 61-1/option 58-1/option 63-1)</td>
<td>Unités d'E/S ABB (types de noeud)</td>
<td>Entrées numériques 24 VCC (option 61-1/58-1)</td>
</tr>
<tr>
<td>1.14</td>
<td></td>
<td></td>
<td>Pilotage manuel</td>
<td>Sorties numériques 24 VCC (option 61-1)</td>
<td>Sorties numériques 120 VCA (option 60-1)</td>
<td>Sorties analogiques (option 54-1)</td>
</tr>
</tbody>
</table>

Table des matières

<table>
<thead>
<tr>
<th></th>
<th>Langage et environnement RAPID</th>
<th>Maintenance et dépannage</th>
<th>Mouvements du robot</th>
<th>Axes externes</th>
<th>Système d'E/S</th>
<th>Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td>Généralités</td>
<td>Entretien facile</td>
<td>QuickMoveTM</td>
<td>Généralités</td>
<td>Généralités</td>
<td>Généralités</td>
</tr>
<tr>
<td>1.9</td>
<td>Généralités</td>
<td>Détection des erreurs</td>
<td>TrueMoveTM</td>
<td>Moteur à courant alternatif</td>
<td>Unités d'entrée et de sortie</td>
<td>Généralités</td>
</tr>
<tr>
<td>1.10</td>
<td></td>
<td></td>
<td>Systèmes de coordonnées</td>
<td>Position absolue</td>
<td>I/O Plus</td>
<td>Configuration des entrées et des sorties</td>
</tr>
<tr>
<td>1.11</td>
<td></td>
<td></td>
<td>Exécution du programme</td>
<td>Axes externes</td>
<td>Automate programmable</td>
<td>Fonctions manuelles disponibles</td>
</tr>
<tr>
<td>1.12</td>
<td></td>
<td></td>
<td>Mode Soft servo</td>
<td>Charge client autorisée</td>
<td>Types de connexion</td>
<td>Types de connexion</td>
</tr>
<tr>
<td>1.13</td>
<td></td>
<td></td>
<td>Positions diverses</td>
<td>Entrées numériques 24 VCC (option 61-1/option 58-1/option 63-1)</td>
<td>Unités d'E/S ABB (types de noeud)</td>
<td>Entrées numériques 24 VCC (option 61-1/58-1)</td>
</tr>
<tr>
<td>1.14</td>
<td></td>
<td></td>
<td>Pilotage manuel</td>
<td>Sorties numériques 24 VCC (option 61-1)</td>
<td>Sorties numériques 120 VCA (option 60-1)</td>
<td>Sorties analogiques (option 54-1)</td>
</tr>
</tbody>
</table>
Table des matières

2 Spécification des variantes et des options

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction ..</td>
<td>45</td>
</tr>
<tr>
<td>Généralités ...</td>
<td>45</td>
</tr>
<tr>
<td>2.2 Normes de sécurité ...</td>
<td>45</td>
</tr>
<tr>
<td>UE – Compatibilité électromagnétique ...</td>
<td>45</td>
</tr>
<tr>
<td>Underwriters Laboratories ..</td>
<td>45</td>
</tr>
<tr>
<td>2.3 Système de commande ..</td>
<td>46</td>
</tr>
<tr>
<td>Armoire ..</td>
<td>46</td>
</tr>
<tr>
<td>Hauteur d’armoire ..</td>
<td>46</td>
</tr>
<tr>
<td>Armoire sur roues ..</td>
<td>47</td>
</tr>
<tr>
<td>Panneau de commande ..</td>
<td>47</td>
</tr>
<tr>
<td>Câble du panneau de commande ..</td>
<td>50</td>
</tr>
<tr>
<td>Insert de blocage de porte ..</td>
<td>50</td>
</tr>
<tr>
<td>Sélecteur de mode de fonctionnement ..</td>
<td>50</td>
</tr>
<tr>
<td>Refroidissement du système de commande</td>
<td>50</td>
</tr>
<tr>
<td>Pupitre mobile d’apprentissage ...</td>
<td>50</td>
</tr>
<tr>
<td>Tension de secteur ...</td>
<td>51</td>
</tr>
<tr>
<td>IRB 6000, IRB 6650, IRB 7600 ..</td>
<td>51</td>
</tr>
<tr>
<td>Type de connexion secteur ..</td>
<td>53</td>
</tr>
<tr>
<td>Interrupteur secteur ..</td>
<td>54</td>
</tr>
<tr>
<td>Interfaces avec les E/S ..</td>
<td>55</td>
</tr>
<tr>
<td>Entrées/sorties. ..</td>
<td>57</td>
</tr>
<tr>
<td>Connexion d'E/S ..</td>
<td>57</td>
</tr>
<tr>
<td>Signaux de sécurité ..</td>
<td>57</td>
</tr>
<tr>
<td>Bus terrain et communication ..</td>
<td>58</td>
</tr>
<tr>
<td>Variantes ..</td>
<td>59</td>
</tr>
<tr>
<td>Passerelles ..</td>
<td>59</td>
</tr>
<tr>
<td>Unités d'E/S externes ...</td>
<td>60</td>
</tr>
<tr>
<td>Passerelles externes ...</td>
<td>60</td>
</tr>
<tr>
<td>Axes externes de l'armoire du robot ..</td>
<td>61</td>
</tr>
<tr>
<td>Unités d'entraînement ..</td>
<td>62</td>
</tr>
<tr>
<td>Interface du servopistolet ..</td>
<td>63</td>
</tr>
<tr>
<td>Stationary Gun (SG) ...</td>
<td>63</td>
</tr>
<tr>
<td>Robot Gun (RG) ..</td>
<td>64</td>
</tr>
<tr>
<td>Un SG et un RG ..</td>
<td>64</td>
</tr>
<tr>
<td>Twin SG ..</td>
<td>64</td>
</tr>
<tr>
<td>SG et Track Motion ..</td>
<td>66</td>
</tr>
<tr>
<td>RG et T. ..</td>
<td>66</td>
</tr>
<tr>
<td>Carte de mesure des axes externes ...</td>
<td>68</td>
</tr>
<tr>
<td>Axes externes - armoire distincte ..</td>
<td>68</td>
</tr>
<tr>
<td>Tableau Sélection du moteur ..</td>
<td>69</td>
</tr>
<tr>
<td>Unité d'entraînement ..</td>
<td>70</td>
</tr>
<tr>
<td>Unité d'entraînement DDU-VW/DDU-V/DDU-W</td>
<td>70</td>
</tr>
<tr>
<td>Equipement ...</td>
<td>72</td>
</tr>
<tr>
<td>Longueur du câble ..</td>
<td>72</td>
</tr>
<tr>
<td>Protection du câble du manipulateur ..</td>
<td>72</td>
</tr>
<tr>
<td>Prise d'entretien ..</td>
<td>72</td>
</tr>
<tr>
<td>Alimentation ..</td>
<td>72</td>
</tr>
<tr>
<td>Mémoire ..</td>
<td>73</td>
</tr>
</tbody>
</table>
1 Description

1.1 Structure

Généralités

Le système de commande contient l'électronique nécessaire à la commande du manipulateur, des axes externes et des équipements périphériques.

Le système de commande contient également le logiciel du système, à savoir le système d'exploitation BaseWare, qui regroupe toutes les fonctions de base d'utilisation et de programmation.

<table>
<thead>
<tr>
<th>Données</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poids du système de commande</td>
<td>250 kg</td>
</tr>
<tr>
<td>Dimensions du système de commande</td>
<td>950 x 800 x 620 mm</td>
</tr>
<tr>
<td>Niveau de bruit aérien</td>
<td>Niveau de pression acoustique en dehors de l'espace de travail < 70 dB (A) (conformément à la directive Machine 98/37/CEE)</td>
</tr>
</tbody>
</table>

Figure 1 Le système de commande est spécifiquement conçu pour commander les robots. Il offre à ce titre des fonctions et des performances optimales.
Figure 2 Vue du dessus du système de commande (dimensions en mm).
Figure 3 Vues de devant et de côté du système de commande (dimensions en mm).
1 Description

1.2 Sécurité/Normes

Le robot est conforme aux normes suivantes :

<table>
<thead>
<tr>
<th>Normes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 292-1</td>
<td>Sécurité des machines, terminologie</td>
</tr>
<tr>
<td>EN 292-2</td>
<td>Sécurité des machines, caractéristiques techniques</td>
</tr>
<tr>
<td>EN 954-1</td>
<td>Sécurité des machines, pièces des systèmes de commande liées à la sécurité</td>
</tr>
<tr>
<td>EN 60204</td>
<td>Équipement électrique des machines industrielles</td>
</tr>
<tr>
<td>CEI 204-1</td>
<td>Équipement électrique des machines industrielles</td>
</tr>
<tr>
<td>ISO 10218, EN 775</td>
<td>Robots manipulateurs industriels, sécurité</td>
</tr>
<tr>
<td>ANSI/RIA 15/06/1999</td>
<td>Robots industriels, exigences de sécurité</td>
</tr>
<tr>
<td>ISO 9787</td>
<td>Robots manipulateurs industriels, systèmes de coordonnées et nomenclatures de mouvements</td>
</tr>
<tr>
<td>CEI 529</td>
<td>Degrés de protection fournis par les enveloppes</td>
</tr>
<tr>
<td>EN 61000-6-4</td>
<td>Compatibilité électromagnétique, normes d'émission générique</td>
</tr>
<tr>
<td>EN 61000-6-2</td>
<td>Compatibilité électromagnétique, normes d'immunité générique</td>
</tr>
<tr>
<td>ANSI/UL 1740-1998 (option)</td>
<td>Norme relative aux robots industriels et aux équipements de robotique</td>
</tr>
<tr>
<td>CAN/CSA Z 434-94 (option)</td>
<td>Robots industriels et systèmes de robot - Consignes générales de sécurité</td>
</tr>
</tbody>
</table>

Normes de santé et de sécurité

Le robot est entièrement conforme aux normes de santé et de sécurité stipulées dans les directives sur les machines de l'Union Européenne.

Système de sécurité basé sur un circuit à deux canaux

Le système de commande du robot est conçu pour une sécurité absolue. Il dispose de son propre système de sécurité, basé sur un circuit à deux canaux surveillé en permanence. Si un problème se produit sur l'un des composants, l'alimentation électrique fournie aux moteurs est coupée et les freins s'enclenchent.

Catégorie de sécurité 3

Le dysfonctionnement d'un composant, comme le collage d'un relais, est détecté lors de l'opération MOTEUR EN MARCHE/MOTEUR À L'ARRÊT suivante. L'opération MOTEUR EN MARCHE ne peut avoir lieu et la section défectueuse est signalée. Ceci est conforme à la catégorie 3 de la norme EN 954-1, Sécurité des machines, pièces des systèmes de commande liées à la sécurité – Première partie.

Séléction du mode de fonctionnement

Le robot peut faire l'objet d'une utilisation manuelle ou automatique. En mode manuel, le robot ne peut être utilisé que par l'intermédiaire du pupitre mobile d'apprentissage et non par un équipement externe.
1 Description

Vitesse réduite	En mode manuel, la vitesse est limitée à 250 mm/s maximum. La limitation de vitesse s'applique non seulement au point d'outil (TCP), mais également à tous les composants du robot. Il est également possible de commander la vitesse de l'équipement monté sur le robot.
Gâchette de validation à trois positions	La gâchette de validation du pupitre mobile d'apprentissage permet de déplacer le robot en mode manuel. La gâchette de validation comporte un interrupteur avec trois positions, ce qui signifie que les mouvements du robot cessent lorsque la gâchette de validation est complètement enfoncée ou relâchée. L'utilisation du robot est ainsi plus sûre.
Mouvement manuel en toute sécurité	Le robot est déplacé à l'aide d'un joystick ; l'opérateur n'a pas besoin de rechercher la bonne touche sur le pupitre mobile d'apprentissage.
Protection survitesse	La vitesse du robot est contrôlée par deux ordinateurs indépendants.
Arrêt d'urgence	Le système de commande et le pupitre mobile d'apprentissage comportent tous deux un bouton d'arrêt d'urgence. Des boutons d'arrêt d'urgence supplémentaires peuvent être connectés au circuit de chaîne de sécurité du robot.
Arrêt de l'espace de sécurité	Le système de commande comporte un certain nombre d'entrées électriques qui peuvent être utilisées pour la connexion d'équipements de sécurité externes, comme des barrières de sécurité et des rideaux de lumière. Les fonctions de sécurité du robot peuvent ainsi être activées par les équipements périphériques et par le robot lui-même.
Arrêt retardé de l'espace de sécurité	Un arrêt retardé est progressif. Le robot s'arrête de la même manière que pour un arrêt normal du programme, sans dévier de la trajectoire programmée. Après environ 1 seconde, l'alimentation des moteurs est coupée.
Détection de collision	En cas de perturbation mécanique inattendue (collision, collage d'électrode, etc.), le robot s'arrête et recule légèrement par rapport à sa position d'arrêt.
Limitation de l'espace de travail	Le mouvement de chaque axe peut être restreint à l'aide de limites logicielles. Des arrêts de l'espace de sécurité sont disponibles pour la connexion d'interrupteurs de position afin de restreindre l'espace de travail. Les axes 1 à 3 de certains robots peuvent également être restreints par le biais de butées mécaniques.
1 Description

Commande

Hold-to-run (nécessitant une action maintenue)

Hold-to-run (nécessitant une action maintenue) signifie que vous devez appuyer sur le bouton de démarrage pour déplacer le robot. Lorsque vous relâchez le bouton, le robot s'arrête. La fonction Hold-to-run (nécessitant une action maintenue) sécurise le test des programmes.

Sécurité incendie

Le manipulateur et le système de commande répondent aux exigences strictes d'Underwriters Laboratories en matière de sécurité incendie.

Lampe de sécurité

Le robot peut être équipé, en option, d'une lampe de sécurité montée sur le manipulateur. Cette lampe est activée lorsque le système de commande présente l'état MOTEURS EN MARCHE.
1.3 Fonctionnement

Généralités

Toutes les fonctions d'utilisation et de programmation peuvent être exécutées à l'aide du pupitre mobile d'apprentissage (reportez-vous à la Figure 4) et du panneau de commande (reportez-vous à Sélecteur de mode de fonctionnement).

Figure 4 Le pupitre mobile d'apprentissage possède un grand écran qui affiche des invites, des informations, des messages d'erreur et d'autres informations.

Les informations sont présentées à l'écran via des fenêtres, des menus déroulants, des boîtes de dialogue et des touches de fonction. Aucune expérience en matière de programmation ou d'informatique n'est requise pour faire fonctionner le robot. Toutes les opérations pouvant être exécutées à partir du pupitre mobile d'apprentissage, aucun clavier supplémentaire n'est nécessaire. Toutes les informations, y compris le langage de programmation complet, sont en anglais ou, à votre convenance, dans l'une des langues les plus courantes. (Pour connaître les langues disponibles, reportez-vous aux options des Voir à la section Voir 2.)
Description

Pupitre mobile d'apprentissage

<table>
<thead>
<tr>
<th>Fonctions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Écran</td>
<td>Affiche toutes les informations lors de la programmation, pour changer les programmes, etc. 16 lignes de texte (40 caractères par ligne).</td>
</tr>
<tr>
<td>Touches de mouvement</td>
<td>Sélectionnez le type de mouvement lors du pilotage manuel.</td>
</tr>
<tr>
<td>Touches de navigation</td>
<td>Utilisez ces touches pour déplacer le curseur dans une fenêtre afin de saisir des données.</td>
</tr>
<tr>
<td>Touches de menu</td>
<td>Permettent d’afficher des menus déroulants. Reportez-vous à la Figure 5.</td>
</tr>
<tr>
<td>Touches de fonction</td>
<td>Permettent de sélectionner les commandes les plus utilisées.</td>
</tr>
<tr>
<td>Touches de fenêtre</td>
<td>Permettent d’afficher les différentes fenêtres du robot. Ces fenêtres permettent de contrôler différentes fonctions :</td>
</tr>
<tr>
<td></td>
<td>- Pilotage manuel</td>
</tr>
<tr>
<td></td>
<td>- Programmation, modification et test d’un programme</td>
</tr>
<tr>
<td></td>
<td>- Gestion des entrées/sorties manuelles</td>
</tr>
<tr>
<td></td>
<td>- Gestion de fichiers</td>
</tr>
<tr>
<td></td>
<td>- Configuration du système</td>
</tr>
<tr>
<td></td>
<td>- Maintenance et dépannage</td>
</tr>
<tr>
<td></td>
<td>- Fonctionnement automatique</td>
</tr>
<tr>
<td>Touches définies par l'utilisateur (P1-P5)</td>
<td>Cinq touches définies par l’utilisateur et pouvant être configurées pour définir ou réinitialiser une sortie (par exemple, ouverture/fermeture de l’appareil de préhension), ou pour activer une entrée système.</td>
</tr>
<tr>
<td>Commande Hold-to-run</td>
<td>Bouton-poussoir à utiliser lors de l’exécution du programme en mode manuel à pleine vitesse.</td>
</tr>
<tr>
<td>Gâchette de validation</td>
<td>Enfoncé à moitié, ce bouton-poussoir fait passer le système sur MOTEURS EN MARCHE. Lorsqu’il est relâché ou complètement enfoncé, le robot passe en mode MOTEURS À L’ARRÊT.</td>
</tr>
<tr>
<td>Joystick</td>
<td>Le joystick est utilisé pour déplacer le robot manuellement (par exemple, lors de sa programmation).</td>
</tr>
<tr>
<td>Bouton d’arrêt d’urgence</td>
<td>Le robot s’arrête immédiatement lorsque vous appuyez sur ce bouton.</td>
</tr>
</tbody>
</table>
Figure 5 Fenêtre relative au fonctionnement manuel des signaux d'entrée et de sortie.

Déviation du joystick
Le joystick permet de déplacer le robot manuellement. L'utilisateur détermine la vitesse du mouvement. De grandes déviations du joystick déplacent le robot rapidement, tandis que des déviations moins importantes permettent de le déplacer plus lentement.

Tâches utilisateur
Le robot prend en charge différentes tâches utilisateur, avec les fenêtres destinées aux opérations suivantes :
- Production
- Programmation
- Configuration du système
- Maintenance et installation
1 Description

Panneau de commande

Bouton MOTEURS EN MARCHE et voyant lumineux

Sélecteur de mode de fonctionnement

Bouton d'arrêt d'urgence à relâcher s'il est enfoncé

Compteur horaire. Indique la durée de fonctionnement du manipulateur (freins desserrés)

Moteurs en marche

<table>
<thead>
<tr>
<th>MOTEURS EN MARCHE</th>
<th>Fonctionnement</th>
<th>Remarque</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voyant lumineux continu</td>
<td>Prêt à exécuter le programme</td>
<td></td>
</tr>
<tr>
<td>Voyant lumineux clignotant rapidement (4 Hz)</td>
<td>Le robot n'est pas étalonné ou les compte-tours n'ont pas été mis à jour</td>
<td>Les moteurs ont été démarrés</td>
</tr>
<tr>
<td>Voyant lumineux clignotant lentement (1 Hz)</td>
<td>L'un des arrêts de l'espace de sécurité est actif</td>
<td>Les moteurs ont été arrêtés</td>
</tr>
</tbody>
</table>

Sélecteur de mode de fonctionnement

Un interrupteur à clé permet de verrouiller le robot sur deux (ou trois) modes de fonctionnement, selon le sélecteur de mode choisi.

<table>
<thead>
<tr>
<th>Mode de fonctionnement</th>
<th>Description</th>
<th>Indication</th>
<th>Description</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode automatique</td>
<td>Production en cours</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode manuel à vitesse réduite</td>
<td>Programmation et configuration</td>
<td></td>
<td>Vitesse maximale : 250 mm/s</td>
<td></td>
</tr>
<tr>
<td>En option</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode manuel à pleine vitesse</td>
<td>Test à pleine vitesse</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Un robot doté de ce mode n'est pas conforme à la norme ANSI/UL.
Le mode de fonctionnement est sélectionné à l'aide du panneau de commande situé sur le système de commande.

Montage externe
Le panneau de commande et le pupitre mobile d'apprentissage peuvent être montés de façon externe, c'est-à-dire en dehors de l'armoire. Le robot peut être contrôlé à partir de ce point.

Commande à distance
Le robot peut être commandé à distance à partir d'un ordinateur, d'un automate programmable ou du panneau de commande d'un client via une communication série ou des signaux système numériques.

Pour plus d'informations sur le fonctionnement du robot, reportez-vous au guide de l'utilisateur.
1.4 Mémoire

Le système de commande possède deux mémoires différentes :

<table>
<thead>
<tr>
<th>Mémoire</th>
<th>Taille</th>
<th>Utilisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mémoire DRAM fixe</td>
<td>32 Mo</td>
<td>mémoire de travail</td>
</tr>
<tr>
<td>Mémoire du disque à mémorisation instantanée</td>
<td>64 Mo, standard</td>
<td>mémoire de masse</td>
</tr>
<tr>
<td>Mémoire du disque à mémorisation instantanée</td>
<td>128 Mo, en option</td>
<td>mémoire de masse</td>
</tr>
</tbody>
</table>

La mémoire DRAM est utilisée pour exécuter le logiciel du système et les programmes de l'utilisateur ; elle est par conséquent divisée en trois zones :

<table>
<thead>
<tr>
<th>Mémoire DRAM</th>
<th>Taille</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logiciel du système</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Données d'exécution du logiciel du système</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utilisateur RAPID (reportez-vous à la Figure 6)</td>
<td>5,5 Mo</td>
<td>La mémoire programme de l'utilisateur diminue au fur et à mesure de l'installation des différentes options.</td>
</tr>
<tr>
<td></td>
<td>0,7 Mo (maximum)</td>
<td></td>
</tr>
</tbody>
</table>

Le disque à mémorisation instantanée est divisé en quatre zones :

<table>
<thead>
<tr>
<th>Zones principales</th>
<th>Taille</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone de base</td>
<td>5 Mo</td>
<td>Code permanent pour le démarrage</td>
</tr>
<tr>
<td>Zone de version</td>
<td>20 Mo</td>
<td>Le code d'une version spécifique est stocké.</td>
</tr>
<tr>
<td>Zone des données propres au système</td>
<td>10 Mo</td>
<td>Les données propres à l'exécution, y compris le programme utilisateur d'un système, sont stockées lors de la sauvegarde.</td>
</tr>
<tr>
<td>Zone de mémoire de masse de l'utilisateur</td>
<td></td>
<td>Permet de stocker des programmes RAPID, des données, des fichiers journaux, etc.</td>
</tr>
</tbody>
</table>

Le disque à mémorisation instantanée est utilisé pour les sauvegardes. Par exemple, lors d'une coupure de courant ou d'une mise hors tension, toutes les données propres au système, y compris le programme utilisateur (reportez-vous à la Figure 6) sont stockées sur le disque à mémorisation instantanée et restaurées lors de la mise sous tension. Un système d'alimentation de secours (UPS) garantit la fonction de stockage automatique.
Différents systèmes (applications de processus) peuvent être installés simultanément dans le système de commande. Parmi ces systèmes, un seul peut être actif. Chaque application occupe 10 Mo supplémentaires de la mémoire flash des données système. La zone de stockage de la version reste commune tant que les applications de processus sont basées sur la même version. Si vous devez charger deux versions différentes, vous devez également doubler la zone de stockage de la version.

Pour obtenir des informations sur la consommation de la mémoire RAPID, reportez-vous au manuel du développeur RAPID. Par exemple, l'instruction MoveL ou MoveJ consomme 236 octets lorsqu'elle contient la variable robtarget (signalée par un astérisque) et 168 octets si une variable robtarget nommée est utilisée. Dans ce dernier cas, la déclaration CONST de la variable robtarget nommée consomme 280 octets supplémentaires.

L'installation d'options logicielles supplémentaires réduit la mémoire programme disponible de l'utilisateur, le plus souvent très légèrement. La zone de programme de l'utilisateur est approximativement de 5,5 Mo. Seule l'option SpotWare réduit la mémoire de façon significative (environ 4,8 Mo) selon le nombre de pistolets de soudage utilisés simultanément.
1 Description

1.5 Installation

Configuration du manipulateur correspondant

Le système de commande est fourni avec la configuration standard pour le manipulateur correspondant et peut être utilisé immédiatement après installation. Sa configuration est affichée en langage clair et peut être facilement modifiée à l'aide du pupitre mobile d'apprentissage.

Conditions d'exploitation

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEI 529</td>
<td>Électronique du système de commande IP 54</td>
</tr>
<tr>
<td>Environnements explosifs</td>
<td>Le système de commande ne doit pas être placé ou manipulé dans un environnement explosif.</td>
</tr>
</tbody>
</table>
| Température ambiante pendant le fonctionnement | option 85-1 (+5 °C à +45 °C)
option 85-2 (+52 °C) |
| Température ambiante pendant le transport et le stockage | -25 °C à +55 °C
Pendant de courtes périodes (ne dépassant pas 24 heures) jusqu’à +70 °C |
| Humidité relative, transport, stockage et fonctionnement | 95 % max. à température constante |
| Vibration pendant le transport et le stockage | 0-55 Hz : ±0,15 mm maximum
55-150 Hz : 20 m/s² maximum |
| Chocs pendant le transport et le stockage | 100 m/s² maximum (4-7 ms) |

Alimentation

<table>
<thead>
<tr>
<th>Description</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension de secteur</td>
<td>400-600 V, 3ph (3ph + N pour certaines options)</td>
</tr>
<tr>
<td>Tolérance de la tension de secteur</td>
<td>+10 %, -15 %</td>
</tr>
<tr>
<td>Fréquence secteur</td>
<td>De 48,5 à 61,8 Hz</td>
</tr>
</tbody>
</table>
Puissance nominale

<table>
<thead>
<tr>
<th>Robot</th>
<th>Valeurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRB 140, 1400, 2400</td>
<td>standard 4,5 kVA (taille du transformateur)</td>
</tr>
<tr>
<td>IRB 140, 1400, 2400</td>
<td>axes externes 8,3 kVA (taille du transformateur)</td>
</tr>
<tr>
<td>IRB 340, 4400, 640, 6400, 940</td>
<td>8,3 kVA (taille du transformateur)</td>
</tr>
<tr>
<td>IRB 6600-225/2,55</td>
<td>6 kVA (ISO 9283)</td>
</tr>
<tr>
<td>IRB 7600-400/2,55</td>
<td>7,1 kVA (ISO 9283)</td>
</tr>
</tbody>
</table>

Fusion de ligne maximale recommandée

Fusion de ligne recommandée (sans disjoncteur)

<table>
<thead>
<tr>
<th>Robot</th>
<th>Tension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRB 140-940</td>
<td>à 400-600 V</td>
<td>Fusible à action retardée 3x16 A</td>
</tr>
<tr>
<td></td>
<td>à 200-220 V</td>
<td>Fusible à action retardée 3 x 25 A3 x 25 A</td>
</tr>
<tr>
<td>IRB 6600-7600</td>
<td>à 400-600 V</td>
<td>Fusible à action retardée 3 x 25 A</td>
</tr>
<tr>
<td></td>
<td>à 200-220 V</td>
<td>Fusible à action retardée 3 x 35 A</td>
</tr>
</tbody>
</table>

Système informatique

<table>
<thead>
<tr>
<th>Description</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacité de sauvegarde lors d'une coupure de courant</td>
<td>20 s (batterie rechargeable)</td>
</tr>
</tbody>
</table>
Configuration

Le robot étant très flexible, il est facile de le configurer (à l'aide du pupitre mobile d'apprentissage) pour l'adapter aux besoins de chaque utilisateur.

<table>
<thead>
<tr>
<th>Besoins de l'utilisateur</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autorisation</td>
<td>Protection par mot de passe pour la fenêtre de configuration et de programme</td>
</tr>
<tr>
<td>Signaux d'E/S les plus courants</td>
<td>Listes de signaux d'E/S définies par l'utilisateur</td>
</tr>
<tr>
<td>Liste de sélection des instructions</td>
<td>Ensemble d'instructions défini par l'utilisateur</td>
</tr>
<tr>
<td>Générateur d'instructions</td>
<td>Instructions définies par l'utilisateur</td>
</tr>
<tr>
<td>Boîtes de dialogue opérateur</td>
<td>Boîtes de dialogue opérateur personnalisées</td>
</tr>
<tr>
<td>Langue</td>
<td>Le texte qui apparaît sur le pupitre mobile d'apprentissage est disponible en plusieurs langues.</td>
</tr>
<tr>
<td>Date et heure</td>
<td>Prise en charge du calendrier</td>
</tr>
<tr>
<td>Séquence de mise sous tension</td>
<td>Action entreprise lors de la mise sous tension</td>
</tr>
<tr>
<td>Séquence d'arrêt d'urgence1</td>
<td>Action entreprise lors d'un arrêt d'urgence</td>
</tr>
<tr>
<td>Séquence de démarrage</td>
<td>Action entreprise lorsque le programme démarre depuis le début</td>
</tr>
<tr>
<td>Séquence de démarrage du programme</td>
<td>Action entreprise au démarrage du programme</td>
</tr>
<tr>
<td>Séquence d'arrêt du programme</td>
<td>Action entreprise à l'arrêt du programme</td>
</tr>
<tr>
<td>Séquence de changement de programme</td>
<td>Action entreprise au chargement d'un nouveau programme</td>
</tr>
<tr>
<td>Espace de travail</td>
<td>Limitations relatives à l'espace de travail</td>
</tr>
<tr>
<td>Axes externes</td>
<td>Nombre, type, unité d'entraînement commune, unités mécaniques</td>
</tr>
<tr>
<td>Délai de freinage</td>
<td>Temps d'attente avant serrage des freins</td>
</tr>
<tr>
<td>Signal d'E/S</td>
<td>Noms logiques des cartes et des signaux, mappage d'E/S, interconnexions, polarité, facteur d'échelle, valeur par défaut au démarrage, interruptions, groupe d'E/S</td>
</tr>
<tr>
<td>Communication série</td>
<td>Configuration</td>
</tr>
</tbody>
</table>

Pour obtenir la description détaillée de la procédure d'installation, reportez-vous au manuel du produit, Installation et mise en service.
1.6 Programmation

Généralités

La programmation du robot nécessite la sélection d'instructions et d'arguments dans des listes de solutions appropriées. Les utilisateurs n'ont pas besoin de retenir le format des instructions car celles-ci sont formulées en anglais. « See and pick » est utilisé à la place de « remember and type ».

Environnement de programmation

L'environnement de programmation peut être facilement personnalisé à l'aide du pupitre mobile d'apprentissage.

- Vous pouvez utiliser la terminologie d'atelier pour nommer les programmes, les signaux, les compteurs, etc.
- Vous pouvez facilement écrire de nouvelles instructions.
- Les instructions les plus communes peuvent être regroupées dans des listes de sélection faciles à utiliser.
- Vous pouvez créer des positions, des registres, des données d'outils ou d'autres données.

Vous pouvez immédiatement tester un programme, une partie de programme ou une modification sans avoir à compiler le programme.

Mouvements

Une séquence de mouvements est programmée sous forme de mouvements partiels sur la distance que doit parcourir le robot.

Pour sélectionner la position finale d'un mouvement, pilotez manuellement le robot jusqu'à la position souhaitée à l'aide du joystick ou indiquez une position précédemment définie.

La position exacte peut être définie (reportez-vous à la Figure 7) de la façon suivante :

- un point d'arrêt (le robot atteint la position programmée)
- ou
- un point de survol (le robot passe à proximité de la position programmée) La déviation est définie indépendamment du point d'outil, de l'orientation de l'outil et des axes externes.

![Distance pouvant être définie par l'utilisateur (en mm)](image)

Figure 7 Le point de survol réduit le temps de cycle car le robot ne s'arrête pas au point programmé. La trajectoire ne tient pas compte de la vitesse.
1 Description

Vitesse

Vous pouvez définir la vitesse avec les unités suivantes :

<table>
<thead>
<tr>
<th>Unités</th>
<th>Vitesse</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm/s</td>
<td>temps nécessaire pour atteindre la position programmée suivante</td>
</tr>
<tr>
<td>secondes</td>
<td>réorientation de l'outil ou rotation d'un axe externe</td>
</tr>
</tbody>
</table>

Gestion des programmes

Pour plus de commodité, les programmes peuvent être nommés et stockés dans différents répertoires.

La mémoire de masse peut également être utilisée pour stocker des programmes. Les programmes peuvent être téléchargés automatiquement à l'aide d'une instruction de programme. Vous pouvez transférer un programme complet ou des parties de programme vers ou depuis un réseau/une disquette.

Le programme est stocké sous forme de fichier texte PC classique. Vous pouvez donc le modifier à l'aide d'un PC standard.

Modification de programmes

Vous pouvez modifier les programmes à l'aide de commandes de modification standard (par exemple, copier-coller, copier, supprimer, annuler, etc.). Ces commandes permettent également de modifier des arguments d'une instruction.

Aucune reprogrammation n'est nécessaire lorsque vous traitez les pièces de gauche et de droite car le programme peut disposer d'une image miroir pour tous les plans.

Modification de la position du robot

Pour modifier facilement la position du robot, effectuez l'une des deux opérations suivantes :

- Pilotez manuellement le robot à l'aide du joystick jusqu'à une nouvelle position, puis appuyez sur la touche ModPos (la nouvelle position est enregistrée).
- ou
- Entrez ou modifiez des valeurs numériques.

Pour empêcher les personnes non autorisées d'apporter des modifications au programme, vous pouvez utiliser des mots de passe.

Test de programmes

Vous pouvez utiliser différentes fonctions lors du test de programmes. Par exemple, vous pouvez effectuer les opérations suivantes :

- démarrer à partir de n'importe quelle instruction,
- exécuter un programme incomplet,
- exécuter un cycle unique,
- exécuter une instruction étape par étape vers l'avant/l'arrière,
- simuler des conditions d'attente,
- réduire temporairement la vitesse,
- modifier une position,
- régler (déplacer) une position lors de l'exécution du programme.

Pour plus d'informations, reportez-vous au guide de l'utilisateur et au manuel de référence RAPID.
1.7 Fonctionnement automatique

Généralités
Une fenêtre de production contenant des commandes et des informations nécessaires à l'opérateur apparaît automatiquement lors du fonctionnement automatique. La procédure de fonctionnement peut être personnalisée en fonction de l'installation du robot via des boîtes de dialogue définies par l'utilisateur.

![Figure 8](#) Vous pouvez facilement personnaliser les boîtes de dialogue de l'opérateur.

Position d'entretien
Vous pouvez définir une entrée spéciale pour indiquer au robot de se placer en position d'entretien. Une fois l'entretien effectué, le robot retourne vers la trajectoire programmée et l'exécution du programme se poursuit.

Routines spéciales
Vous pouvez également créer des routines spéciales qui s'exécutent automatiquement à la mise sous tension, au démarrage du programme et dans d'autres occasions. Vous pouvez ainsi personnaliser chaque installation et vous assurer que le robot démarre de façon contrôlée.

Mesure absolue
Le robot possède un système de mesure absolue. Ce système permet de faire fonctionner le robot directement lors de la mise sous tension. Pour plus de commodité, le robot enregistre la trajectoire utilisée, les données du programme et les paramètres de configuration afin que vous puissiez redémarrer facilement le programme à l'endroit où vous vous êtes arrêté. Des sorties numériques sont également paramétrées automatiquement sur la valeur antérieure à la coupure de courant.
1.8 Langage et environnement RAPID

Généralités

Le langage RAPID est un mélange savamment dosé de simplicité, de flexibilité et de puissance. Il s’articule autour des concepts suivants :

- Structure de programme hiérarchique et modulaire afin de disposer d’une programmation et d’une réutilisation structurées.
- Les routines peuvent être des fonctions ou des procédures.
- Données et routines locales ou globales.
- Saisie de données, y compris les types de données tableau et les types structurés.
- Noms définis par l'utilisateur (langage d'atelier) pour les variables, les routines et les E/S.
- Commande étendue du déroulement du programme.
- Expressions arithmétiques et logiques.
- Gestion des interruptions.
- Gestion des erreurs (pour la gestion des exceptions en général, reportez-vous à Gestion des exceptions).
- Instructions définies par l'utilisateur (partie essentielle du système).
- Gestionnaire amont (l'utilisateur définit le comportement d'une procédure vers l'arrière).
- Nombreuses fonctions intégrées puissantes (fonctions mathématiques et propres au robot).
- Langage illimité (nombre de variables illimité, seule la mémoire étant limitée).

Interface homme-machine basée sur Windows avec prise en charge RAPID intégrée (par exemple, listes de sélection définies par l'utilisateur).

1.9 Gestion des exceptions

Généralités

De nombreuses fonctions avancées permettent de récupérer rapidement les erreurs. Les fonctions de récupération d'erreurs s'adaptent facilement aux différentes installations et réduisent ainsi les temps d'arrêt. Exemples :

- Gestionnaires d'erreurs (récupération automatique souvent possible sans arrêter la production).
- Redémarrage sur la trajectoire.
- Redémarrage après coupure de courant.
- Routines d'entretien.
- Messages d'erreur : texte clair comprenant des solutions, des messages définis par l'utilisateur, etc.
- Tests de diagnostic.
- Consignation des événements.
1.10 Maintenance et dépannage

Entretien facile
Le système de commande ne nécessite qu'un entretien minimal en cours de fonctionnement. Il a été conçu pour un entretien aussi simple que possible :

- Le système de commande est encastré, ce qui signifie que les circuits électroniques sont protégés dans le cadre d'un fonctionnement dans un environnement d'atelier normal.
- La température, les ventilateurs et le niveau de la batterie sont surveillés.

Détection des erreurs
Le système de commande possède différentes fonctions permettant de disposer de diagnostics et de rapports d'erreurs efficaces :

- Un contrôle automatique est effectué à la mise sous tension.
- Voyants d'état de l'ordinateur et console (canal série) pour prise en charge de la recherche des pannes.
- Les erreurs sont signalées par un message clair. Le message contient la raison de l'erreur et suggère une action de récupération.
- Les erreurs et événements principaux sont consignés et horodatés. Cette opération permet de détecter les chaines d'erreur et d'obtenir des informations au sujet de tout arrêt. Le fichier journal peut être consulté sur le pupitre mobile d'apprentissage, stocké dans un fichier ou imprimé.
- Le programme RAPID possède des commandes et des programmes d'entretien pour tester les unités et les fonctions.
- Les voyants du panneau indiquent l'état des interrupteurs de sécurité.

La plupart des erreurs détectées par le programme utilisateur peuvent être traitées par le système d'erreurs standard. Les messages d'erreur et les procédures de récupération sont disponibles en langage clair.

Pour obtenir des informations détaillées sur les procédures de maintenance, reportez-vous à la section Maintenance du manuel du produit.

1.11 Mouvements du robot

QuickMove™
Le concept QuickMove™ signifie qu'une commande des mouvements auto-optimalisante est utilisée. Le robot optimise automatiquement les servoparamètres pour obtenir les meilleures performances possibles durant le cycle, en se basant sur les propriétés de charge, l'emplacement dans la zone de travail, la vitesse et la direction du mouvement.

- Aucun paramètre ne doit être réglé pour obtenir la trajectoire, l'orientation et la vitesse correctes.
- L'accélération maximale est toujours obtenue (l'accélération peut être réduite, par exemple lors de la manipulation de pièces fragiles).
- Le nombre de réglages à effectuer pour obtenir le cycle de temps le plus court possible est réduit.
1 Description

TrueMove™

Le concept TrueMove™ signifie que la trajectoire programmée est suivie (quels qu' soient le mode de fonctionnement et la vitesse), y compris après un arrêt d'urgence, de sécurité, de processus, de programme ou une coupure de courant.

La trajectoire et la vitesse très précisées sont basées sur la modélisation dynamique avancée.

Systèmes de coordonnées

BaseWare inclut un concept très puissant de systèmes de coordonnées multiples qui facilite le pilotage manuel, le réglage du programme, la copie entre robots, la programmation hors ligne, les applications basées sur des capteurs, la coordination des axes externes, etc. Le point d'outil (TCP) fixé au robot ou à la cellule (point d'outil fixe) est pris en charge.

Figure 9 Systèmes de coordonnées utilisés pour faciliter le pilotage manuel et la programmation hors ligne.
1 Description

Figure 10 Systèmes de coordonnées utilisés pour faciliter le pilotage manuel et la programmation hors ligne.

Figure 11 Systèmes de coordonnées utilisés pour faciliter le pilotage manuel et la programmation hors ligne.

<table>
<thead>
<tr>
<th>Systèmes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Système de coordonnées de l'atelier</td>
<td>Le système de coordonnées de l'atelier définit un point de référence au sol, qui constitue le point de départ des autres systèmes de coordonnées. Ce système de coordonnées permet d'associer la position du robot à un point fixe de l'atelier. Le système de coordonnées de l'atelier est également très utile lorsque deux robots travaillent simultanément ou lorsque vous utilisez un portique de robot.</td>
</tr>
<tr>
<td>Système de coordonnées de la base</td>
<td>Le système de coordonnées de la base est associé au socle de montage du robot.</td>
</tr>
<tr>
<td>Système de coordonnées de l'outil</td>
<td>Le système de coordonnées de l'outil définit le point d'outil et l'orientation de l'outil.</td>
</tr>
<tr>
<td>Système de coordonnées de l'utilisateur</td>
<td>Le système de coordonnées de l'utilisateur définit la position d'un dispositif de fixation ou d'un manipulateur de pièce de travail.</td>
</tr>
<tr>
<td>Système de coordonnées de l'objet</td>
<td>Le système de coordonnées de l'objet permet de définir la position d'une pièce de travail dans un dispositif de fixation ou un manipulateur de pièce de travail.</td>
</tr>
</tbody>
</table>
Exécution du programme

Le robot peut se déplacer de l'une des façons suivantes :

<table>
<thead>
<tr>
<th>Mouvement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouvement articulaire</td>
<td>Tous les axes se déplacent de façon indépendante et atteignent la position programmée en même temps.</td>
</tr>
<tr>
<td>Mouvement linéaire</td>
<td>Le TCP se déplace selon une trajectoire linéaire.</td>
</tr>
<tr>
<td>Mouvement circulaire</td>
<td>Le TCP se déplace selon une trajectoire circulaire.</td>
</tr>
</tbody>
</table>

Mode Soft servo

Le mode Soft servo permet à des forces externes de générer des déviations par rapport à la position programmée. Il s'agit d'une alternative à la conformité mécanique des appareils de préhension, qui peuvent présenter des lacunes au niveau du traitement des objets.

Tout axe (même externe) peut basculer en mode Soft servo et, par conséquent, adopter le comportement d'un ressort.

Positions diverses

Si la position d'une pièce de travail varie de temps en temps, le robot peut la retrouver à l'aide d'un capteur numérique. Le programme du robot peut alors être modifié afin de régler le mouvement en fonction de la position de la pièce.
Le robot peut être piloté manuellement de l’une des façons suivantes :

<table>
<thead>
<tr>
<th>Fonctionnement manuel</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axe par axe</td>
<td>Un axe à la fois</td>
</tr>
<tr>
<td>De façon linéaire</td>
<td>Le TCP se déplace selon une trajectoire linéaire (par rapport à l’un des systèmes de coordonnées mentionnés ci-dessus).</td>
</tr>
<tr>
<td>Pilotage réorienté</td>
<td>Autour du TCP</td>
</tr>
</tbody>
</table>

Il est possible de sélectionner la taille du palier du pilotage manuel incrémentiel. Le pilotage manuel incrémentiel peut être utilisé pour positionner le robot avec une précision extrême. En effet, le robot se déplace sur une courte distance chaque fois que le joystick est actionné.

Lors du fonctionnement manuel, la position du robot et des axes externes peut être affichée sur le pupitre mobile d’apprentissage.

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestion de la singularité</td>
</tr>
<tr>
<td>Surveillance des mouvements</td>
</tr>
<tr>
<td>Axes externes</td>
</tr>
<tr>
<td>Inertie importante</td>
</tr>
</tbody>
</table>
1.12 Axes externes

Généralités
Le système de commande peut contrôler jusqu'à six axes externes. Ces axes sont programmés et déplacés à l'aide du pupitre mobile d'apprentissage de la même façon que les axes du robot.

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unités mécaniques</td>
</tr>
<tr>
<td>Coordination</td>
</tr>
<tr>
<td>Activation/Désactivation</td>
</tr>
</tbody>
</table>

Moteur à courant alternatif
Un axe externe est un moteur à courant alternatif (type de moteur IRB ou similaire) commandé via une unité d'entraînement installée dans l’armoire du robot ou dans un boîtier externe. Reportez-vous à Spécification des variantes et des options.

<table>
<thead>
<tr>
<th>Spécification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Résolveur</td>
<td>Directement connecté à l’arbre du moteur Résolveur de type émetteur Rapport de tension 2:1 (rotor/stator)</td>
</tr>
<tr>
<td>Alimentation du résolveur</td>
<td>5 V/4 kHz</td>
</tr>
</tbody>
</table>

Position absolue
La position absolue est obtenue par les compte-tours du résolveur alimentés par batterie de la carte de mesure série. La carte de mesure série se situe à proximité des moteurs, comme l’indique la Figure 12.

Pour plus d'informations sur l'installation d'un axe externe, reportez-vous au guide de l'utilisateur consacré aux axes externes.

Axes externes

<table>
<thead>
<tr>
<th>Type de robot</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRB 4400 et IRB 6400X</td>
<td>Lorsque plusieurs axes externes sont utilisés, les unités d'entraînement de l'axe externe 2 et des axes supérieurs doivent se situer dans une armoire différente, comme l'indique la Figure 12.</td>
</tr>
<tr>
<td>IRB 140, IRB 1400 et IRB 2400</td>
<td>Lorsque plus de trois axes externes sont utilisés, les unités d'entraînement de l'axe externe 4 et des axes supérieurs doivent se situer dans une armoire différente, comme l'indique la Figure 12.</td>
</tr>
<tr>
<td>IRB 6600 et IRB 7600</td>
<td>Les unités d'entraînement de tous les axes externes doivent se situer dans une armoire différente, comme l'indique la Figure 12.</td>
</tr>
</tbody>
</table>
Figure 12 Schéma général, axes externes.
1.13 Système d'E/S

Généralités

Le système d'E/S distribuées utilisé est basé sur la norme de bus de terrain CAN/DeviceNet. Il est ainsi possible d'installer les unités d'E/S à l'intérieur ou à l'extérieur de l'armoire grâce à un câble reliant l'unité d'E/S à l'armoire.

Deux bus CAN/DeviceNet autorisent différentes possibilités de prise en charge d'E/S. Les deux canaux peuvent fonctionner en tant que maître ou esclave. Le bus CAN1 fonctionne avec un débit de données fixe et le bus CAN2 (accessible via l'option logicielle I/O Plus) avec différents débits de données.

![Diagramme du bus DeviceNet](image)

Figure 13 Exemple d'un bus DeviceNet courant.

Unités d'entrée et de sortie

Vous pouvez installer plusieurs unités d'entrée et de sortie :
- Entrées et sorties numériques.
- Entrées et sorties analogiques.
- Passerelle (esclave) pour E/S déportées Allen-Bradley.
- Passerelle (esclave) pour esclave Interbus.
- Passerelle (esclave) pour esclave Profibus DP.

I/O Plus

S4Cplus et l'option I/O Plus peuvent être adaptés aux unités de bus de terrain d'autres fournisseurs. Pour plus d'informations, reportez-vous à Caractéristiques du produit - Options RobotWare.

Configuration des entrées et des sorties

Vous pouvez configurer les entrées et les sorties pour les adapter à votre installation :
- Vous pouvez attribuer un nom aux signaux et aux unités (appareil de préhension, dispositif d'alimentation, etc.).
- Mappage d'E/S (une connexion physique pour chaque signal).
- Polarité (activité élevée ou faible).
- Interconnexions.
- Jusqu'à 16 signaux numériques peuvent être regroupés et utilisés sous la forme d'un seul signal (par exemple, lors de la saisie d'un code à barres).
- Gestion avancée des erreurs.
- Niveau de confiance sélectionnable (quelle action entreprendre lorsqu'une unité est « perdue » ?).
- Activation/désactivation des unités d'E/S à partir du programme.
- Mise à l'échelle des signaux analogiques.
- Filtrage.
- Définition de la polarité.
- Émission d'impulsions.
- Signal analogique proportionnel au TCP.
- Délais programmables.
- E/S simulées (pour créer des interconnexions ou des conditions logiques sans matériel physique).
- Coordination précise avec les mouvements.

Automate programmable

Des signaux peuvent être affectés à des fonctions système spéciales, telles que le démarrage du programme, afin de commander le robot à partir d'un panneau externe ou d'un automate programmable.

Le robot peut fonctionner en tant qu'automate programmable en surveillant et contrôlant les signaux d'E/S :
- Les instructions d'E/S sont exécutées en même temps que les mouvements du robot.
- Les entrées peuvent être connectées à des routines d'interruption. (Lorsqu'une telle entrée est définie, la routine d'interruption démarre. Le programme démarre ensuite. Dans la plupart des cas, aucun effet visible n'est constaté sur les mouvements du robot. Ce point se vérifie surtout lorsqu'un nombre limité d'instructions est exécuté dans la routine d'interruption.)

Fonctions manuelles disponibles

- Répertorier toutes les valeurs de signal.
- Créer la liste des signaux les plus importants.
- Modifier manuellement l'état d'un signal de sortie.
- Imprimer les informations du signal.

Types de connexion

Les types de connexion suivants sont disponibles :
- « Bornes à vis » sur les unités d'E/S
- Connecteurs industriels sur la paroi de l'armoire
- Connexions d'E/S distribuées à l'intérieur de l'armoire ou sur la paroi

Pour plus d'informations, reportez-vous au chapitre 2 (Spécification des variantes et des options).
Plusieurs unités d'E/S peuvent être utilisées. Le tableau suivant indique le nombre maximal de signaux physiques pouvant être utilisés sur chaque unité. Le débit des données est fixé à 500 Kbits/s.

<table>
<thead>
<tr>
<th>Type d'unité</th>
<th>DSQC</th>
<th>Numéro d'option</th>
<th>Numérique</th>
<th>Analogique</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Entrée</td>
<td>Sortie</td>
</tr>
<tr>
<td>E/S numériques 24 VCC</td>
<td>328</td>
<td>61-1</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>E/S numériques 120 VCA</td>
<td>320</td>
<td>60-1</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>E/S analogiques</td>
<td>355</td>
<td>54-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E/S Combi AL</td>
<td>327</td>
<td>58-1</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>E/S avec relais</td>
<td>332</td>
<td>63-1</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Esclave E/S déportées Allen-Bradley</td>
<td>350</td>
<td>13-1</td>
<td>128²</td>
<td>128²</td>
</tr>
<tr>
<td>Esclave Interbus</td>
<td>351</td>
<td>178-1</td>
<td>64²</td>
<td>64²</td>
</tr>
<tr>
<td>Esclave Profbus DP</td>
<td>352</td>
<td>251-1</td>
<td>128³</td>
<td>128³</td>
</tr>
<tr>
<td>E/S simulées³</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unité d'interface avec l'encodeur ⁴</td>
<td>354</td>
<td>79-1</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Unité d'interface avec l'encodeur ⁵</td>
<td>377</td>
<td>80-1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

1. Les signaux numériques sont fournis sous forme de groupes, chaque groupe disposant de 8 entrées ou sorties.
2. Pour calculer le nombre de signaux logiques, ajoutez deux signaux d'état pour l'unité d'E/S déportées Allen-Bradley, et 1 signal d'état pour Interbus et Profbus DP.
3. Une unité d'E/S non physique peut être utilisée pour créer des interconnexions et des conditions logiques sans câblage physique. Le nombre de signaux doit être défini. Certaines unités ProcessWare incluent l'unité SIM. Le nombre maximal d'entrées et de sorties s'élève à 200 sur RW 4.0.40 et à 512 sur RW 4.0.100.
4. Pour le suivi du convoyeur uniquement.
5. Uniquement pour PickMaster 4.0.
E/S distribuées

Le nombre maximal de signaux logiques est de 1 024 pour les bus CAN/DeviceNet (entrées ou sorties, E/S de groupe, E/S analogiques et numériques, bus terrain inclus).

<table>
<thead>
<tr>
<th>Unités</th>
<th>CAN1</th>
<th>CAN2 (option)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre maximal d'unités<sup>1</sup></td>
<td>20 (unités SIM incluses)</td>
<td>20</td>
</tr>
<tr>
<td>Débit de données (fixe)</td>
<td>500 Kbits/s</td>
<td>125/250/500 Kbits/s</td>
</tr>
<tr>
<td>Longueur maximale du câble</td>
<td>100 m (jonction) + 39 m (branche)</td>
<td>jusqu'à 500 m</td>
</tr>
<tr>
<td>Type de câble (non inclus)</td>
<td>Conforme aux spécifications DeviceNet version 1.2</td>
<td>Conforme aux spécifications DeviceNet version 1.2</td>
</tr>
</tbody>
</table>

1. Quatre unités maximum peuvent être installées dans l’armoire. Ce nombre est de trois pour les robots IRB 6600/7600 dotés de l’option 85-2 (+52 °C).

Charge client autorisée

<table>
<thead>
<tr>
<th>Charge</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 VCC</td>
<td>7,5 A max.</td>
</tr>
</tbody>
</table>

Entrées numériques

24 VCC (option 61-1/option 58-1/option 63-1)

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolation optique</td>
<td>24 VCC</td>
</tr>
<tr>
<td>Tension nominale</td>
<td>24 VCC</td>
</tr>
<tr>
<td>Niveaux de tension logiques « 1 »</td>
<td>De 15 à 35 V</td>
</tr>
<tr>
<td>Niveaux de tension logiques « 0 »</td>
<td>De -35 à 5 V</td>
</tr>
<tr>
<td>Courant d'entrée à la tension d'entrée nominale</td>
<td>6 mA</td>
</tr>
<tr>
<td>Différence de potentiel</td>
<td>500 V max.</td>
</tr>
<tr>
<td>Délais, matériel</td>
<td>5-15 ms</td>
</tr>
<tr>
<td>Délais, logiciel</td>
<td>≤ 3 ms</td>
</tr>
<tr>
<td>Variations de temps</td>
<td>± 2 ms</td>
</tr>
</tbody>
</table>

Sorties numériques

24 VCC (option 61-1/58-1)

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolation optique, protection contre les courts-circuits, protection de la polarité de l'alimentation</td>
<td></td>
</tr>
<tr>
<td>Alimentation</td>
<td>De 19 à 35 V</td>
</tr>
<tr>
<td>Tension nominale</td>
<td>24 VCC</td>
</tr>
<tr>
<td>Niveaux de tension logiques « 1 »</td>
<td>De 18 à 34 V</td>
</tr>
<tr>
<td>Niveaux de tension logiques « 0 »</td>
<td>< 7 V</td>
</tr>
<tr>
<td>Courant de sortie</td>
<td>0,5 A max.</td>
</tr>
<tr>
<td>Différence de potentiel</td>
<td>500 V max.</td>
</tr>
</tbody>
</table>
1 Description

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Délais matériel</td>
<td>≤ 1 ms</td>
</tr>
<tr>
<td>Délais logiciel</td>
<td>≤ 2 ms</td>
</tr>
<tr>
<td>Variations de temps</td>
<td>± 2 ms</td>
</tr>
</tbody>
</table>
Sorties avec relais (option 63-1)

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relais unipolaires avec une fermeture contact (normalement ouverte)</td>
<td></td>
</tr>
<tr>
<td>Tension nominale</td>
<td>24 VCC, 120 VCA</td>
</tr>
<tr>
<td>Plage de tensions</td>
<td>De 19 à 35 VCC</td>
</tr>
<tr>
<td></td>
<td>De 24 à 140 VCA</td>
</tr>
<tr>
<td>Courant de sortie</td>
<td>2 A max.</td>
</tr>
<tr>
<td>Différence de potentiel</td>
<td>500 V max.</td>
</tr>
<tr>
<td>Intervals</td>
<td>matériel (signal défini) : 13 ms</td>
</tr>
<tr>
<td></td>
<td>matériel (signal réinitialisé) : 8 ms</td>
</tr>
<tr>
<td></td>
<td>logiciel : ≤ 4 μσ</td>
</tr>
</tbody>
</table>

Entrées numériques 120 VCA (option 60-1)

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolation optique</td>
<td>120 VCA</td>
</tr>
<tr>
<td>Tension nominale</td>
<td></td>
</tr>
<tr>
<td>Plage de tensions d'entrée : « 1 »</td>
<td>De 90 à 140 VCA</td>
</tr>
<tr>
<td>Plage de tensions d'entrée : « 0 »</td>
<td>De 0 à 45 VCA</td>
</tr>
<tr>
<td>Courant d'entrée (standard)</td>
<td>7,5 mA</td>
</tr>
<tr>
<td>Intervals</td>
<td>matériel : ≤ 20 ms</td>
</tr>
<tr>
<td></td>
<td>logiciel : ≤ 4 μσ</td>
</tr>
</tbody>
</table>

Sorties numériques 120 VCA (option 60-1)

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolation optique, protection contre les pointes de tension</td>
<td>120 VCA</td>
</tr>
<tr>
<td>Tension nominale</td>
<td></td>
</tr>
<tr>
<td>Courant de sortie</td>
<td>1 A/canal maximum, 12 A 16 canaux</td>
</tr>
<tr>
<td>Courant de sortie</td>
<td>2 A/canal maximum, 10 A 16 canaux (56 A en 20 ms)</td>
</tr>
<tr>
<td>Courant de sortie</td>
<td>30 mA minimum</td>
</tr>
<tr>
<td>Plage de tensions</td>
<td>De 24 à 140 VCA</td>
</tr>
<tr>
<td>Différence de potentiel</td>
<td>500 V max.</td>
</tr>
<tr>
<td>Courant de fuite à l'arrêt</td>
<td>2 mA eff. max.</td>
</tr>
<tr>
<td>Chute de tension en marche</td>
<td>1,5 V max.</td>
</tr>
<tr>
<td>Intervals</td>
<td>matériel : ≤ 12 ms</td>
</tr>
<tr>
<td></td>
<td>logiciel : ≤ 4 μσ</td>
</tr>
<tr>
<td>Paragraphe</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Entrées analogiques (option 54-1)</td>
<td></td>
</tr>
<tr>
<td>Tension</td>
<td>Tension d'entrée</td>
</tr>
<tr>
<td>Tension</td>
<td>Impédance d'entrée</td>
</tr>
<tr>
<td>Tension</td>
<td>Résolution</td>
</tr>
<tr>
<td>Précision</td>
<td></td>
</tr>
<tr>
<td>Sorties analogiques (option 54-1)</td>
<td></td>
</tr>
<tr>
<td>Tension</td>
<td>Tension de sortie</td>
</tr>
<tr>
<td>Tension</td>
<td>Impédance de charge</td>
</tr>
<tr>
<td>Tension</td>
<td>Résolution</td>
</tr>
<tr>
<td>Courant</td>
<td>Courant de sortie</td>
</tr>
<tr>
<td>Courant</td>
<td>Impédance de charge</td>
</tr>
<tr>
<td>Courant</td>
<td>Résolution</td>
</tr>
<tr>
<td>Précision</td>
<td></td>
</tr>
<tr>
<td>Sorties analogiques (option 58-1)</td>
<td></td>
</tr>
<tr>
<td>Tension de sortie isolée galvaniquement</td>
<td>De 0 à +10 V</td>
</tr>
<tr>
<td>Impédance de charge</td>
<td>2 Kohms min.</td>
</tr>
<tr>
<td>Résolution</td>
<td>2,44 mV (12 bits)</td>
</tr>
<tr>
<td>Précision</td>
<td>±25 mV, ±0,5 % de la tension de sortie</td>
</tr>
<tr>
<td>Différence de potentiel</td>
<td>500 V max.</td>
</tr>
<tr>
<td>Intervalle matériel</td>
<td>≤ 2 ms</td>
</tr>
<tr>
<td>Intervalle logiciel</td>
<td>≤ 4 ms</td>
</tr>
</tbody>
</table>
Signaux système

Les signaux peuvent être affectés à des fonctions systèmes spéciales. Plusieurs signaux peuvent avoir la même fonctionnalité. Sorties numériques Moteurs en marche/à l'arrêt

<table>
<thead>
<tr>
<th>Sorties numériques</th>
<th>Entrées numériques</th>
<th>Sortie analogique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moteurs en marche/à l'arrêt</td>
<td>Moteurs en marche/à l'arrêt</td>
<td>Signal de vitesse du TCP</td>
</tr>
<tr>
<td>Exécute le programme</td>
<td>Démarre le programme à l'endroit où il se trouve</td>
<td></td>
</tr>
<tr>
<td>Erreur</td>
<td>Moteurs en marche et démarrage du programme</td>
<td></td>
</tr>
<tr>
<td>Mode automatique</td>
<td>Démarre le programme depuis le début</td>
<td></td>
</tr>
<tr>
<td>Arrêt d'urgence</td>
<td>Arrête le programme</td>
<td></td>
</tr>
<tr>
<td>Redémarrage impossible</td>
<td>Arrête le programme lorsque son cycle est prêt</td>
<td></td>
</tr>
<tr>
<td>Chaîne d'exécution fermée</td>
<td>Arrête le programme après l'instruction en cours</td>
<td></td>
</tr>
</tbody>
</table>

Exécute la "routine d'interruption" sans aucune incidence sur l'état du programme normal arrêté

Charge et démarre le programme depuis le début

Réinitialise l'erreur

Réinitialise l'arrêt d'urgence

Réinitialisation du système

1. Le programme peut être déterminé lors de la configuration du robot.

Pour plus d'informations sur les signaux système, reportez-vous au chapitre Paramètres système du guide de l'utilisateur.
1.14 Communication

Le système de commande dispose de trois canaux série utilisables en permanence (deux RS232 et un RS422 duplex), et pouvant être utilisés dans le cadre d’une communication point à point avec des imprimantes, des terminaux, des ordinateurs et tout autre matériel. Pour des utilisations temporaires, telles que l'entretien, deux canaux RS232 supplémentaires sont disponibles.

La vitesse des canaux série peut atteindre 19 200 bits/s (1 canal uniquement à cette vitesse).

Le système de commande dispose de deux canaux Ethernet. Ces canaux peuvent être utilisés à 10 ou 100 Mbits/s. La vitesse de communication est définie automatiquement.

Figure 14 Communication point à point.
La communication comprend la prise en charge TCP/IP et de nombreuses possibilités de configuration réseau, telles que :

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS, DHCP, etc.</td>
<td>Introduction d’une passerelle multiple</td>
</tr>
<tr>
<td>Network File System</td>
<td>Accès à l’aide du client FTP/NFS et du serveur FTP</td>
</tr>
<tr>
<td>Contrôle et/ou surveillance des systèmes de commande à l’aide du protocole RAP</td>
<td>Possibilité d’utiliser OPC, ActiveX et d’autres interfaces de programmation pour l’intégration aux applications Windows</td>
</tr>
<tr>
<td>Amorçage/mise à niveau du logiciel du système de commande</td>
<td>Via le réseau ou un ordinateur portable</td>
</tr>
</tbody>
</table>

Figure 15 Communication réseau (local).
2 Spécification des variantes et des options

2.1 Introduction

Généralités

Les différentes variantes et options du système de commande sont décrites ci-dessous.
Les numéros utilisés ici sont les mêmes que ceux utilisés dans la fiche technique.
Pour connaître les options du manipulateur, reportez-vous aux caractéristiques du produit.
Pour connaître les options logicielles, reportez-vous à Caractéristiques du produit – Options RobotWare.

2.2 Normes de sécurité

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>129-1</td>
<td>Le système de commande est conforme à la directive de l'Union européenne « Compatibilité électromagnétique » 89/336/CEE. Cette option est obligatoire pour les utilisateurs finaux de l'Union européenne.</td>
</tr>
<tr>
<td>429-1UL/CSA</td>
<td>Underwriters Laboratories certifie que le robot est conforme aux normes de sécurité ANSI/UL 1740-1996 (robots industriels et équipement robotique) et CAN/CSA Z 434-94. La certification UL/UR est obligatoire dans certains états des États-Unis et au Canada. La certification UL (UL/CSA) concerne un produit complet alors que la certification UR (composant reconnu UL) concerne un composant ou un produit incomplet. Les options suivantes sont obligatoires : lampe de sécurité (213-1), verrouillage de porte (188-1, 207-1 ou 207-8), sélecteur de mode de fonctionnement standard 2 modes (241-1). Armoire de 950 mm sans couvercle supérieur (64-5), Armoire de 1 200 mm (64-1), Armoire de 1 750 mm (64-3), Armoire préparée pour Arcitec (66-1), Connecteur secteur CEE17 (206-3, 206-2), Prise d'entretien 230 V Europe (328-1).</td>
</tr>
<tr>
<td>429-2UR (reconnu UL)</td>
<td>Underwriters Laboratories certifie que le robot est conforme à la norme de sécurité UL 1740 (robots industriels et équipement de robotique). La certification UL/UR est obligatoire dans certains états des États-Unis et au Canada. La certification UL (liste UL) concerne un produit complet alors que la certification UR (composant reconnu UL) concerne un composant ou un produit incomplet. Les options suivantes sont obligatoires : lampe de sécurité (213-1), verrouillage de porte (188-1 ou 207-1), sélecteur de mode de fonctionnement standard 2 modes (241-1). Non disponible avec les options Armoire préparée pour Arcitec (66-1), Connecteur secteur CEE17 (206-3, 206-2), Prise d'entretien 230 V Europe (328-1).</td>
</tr>
</tbody>
</table>
2 Spécification des variantes et des options

2.3 Système de commande

Armoire

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>66-2</td>
<td>Armoire standard avec couvercle supérieur.</td>
</tr>
<tr>
<td>66-1</td>
<td>Les options Préparé pour interrupteur rotatif Arcitec 80 A (207-5), Disjoncteur standard (70-2) et Arcitec 4.0 (18-1) sont obligatoires. Non disponible avec les options Roues (67-1), Connecteur secteur CEE17 (206-3, 206-2), 6HSB (206-4), Déconnecteur de bride d'interrupteur secteur (207-1), Servodéconnecteur (320-1), UL (429-1) et UR (429-2).</td>
</tr>
</tbody>
</table>

Hauteur d'armoire

La hauteur ne tient pas compte des roues.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>64-4</td>
<td>Armoire standard 950 mm avec couvercle supérieur.</td>
</tr>
<tr>
<td>64-5</td>
<td>Armoire standard 950 mm sans couvercle supérieur. À utiliser une fois l'extension installée en haut de l'armoire. Non disponible avec les options Verrouillage de porte (188-1), UL (429-1) et UR (429-2).</td>
</tr>
<tr>
<td>64-1</td>
<td>Armoire standard avec extension de 250 mm. La hauteur du couvercle permet d'installer des équipements externes dans l'armoire. Non disponible avec l'option UL (429-1).</td>
</tr>
<tr>
<td>64-3</td>
<td>Armoire standard avec extension de 800 mm. L'extension est montée au-dessus de l'armoire standard. Une plaque de fixation se trouve à l'intérieur de l'extension (reportez-vous à la figure située au-dessous de la Figure 16). L'extension de l'armoire s'ouvre par l'avant et ne possède pas de fond. La partie supérieure de l'armoire standard est par conséquent accessible. Non disponible avec l'option UL (429-1).</td>
</tr>
</tbody>
</table>

![Figure 16 Plaque de fixation de l'équipement (dimensions en mm)](image)
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>67-1</td>
<td>Armoire sur roues. La hauteur augmente de 30 mm. Non disponible avec l'option Préparé pour Arcitec (66-1).</td>
</tr>
</tbody>
</table>

Panneau de commande

Le panneau de commande et le pupitre mobile d’apprentissage peuvent être installés de différentes façons.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>242-6</td>
<td>Standard (partie avant de l’armoire).</td>
</tr>
<tr>
<td>242-1</td>
<td>Externe (dans une unité de commande distincte). (Reportez-vous à la Figure 17 pour connaître la préparation nécessaire.) Le câblage, les brides, les bandes d’étanchéité, les vis et les connecteurs sont fournis. Le coffret externe n’est pas fourni.</td>
</tr>
<tr>
<td>242-4</td>
<td>Externe, installé dans un boîtier. (Voir Figure 18.)</td>
</tr>
</tbody>
</table>
Figure 17 Préparation requise pour le boîtier du panneau externe (dimensions en mm).
2 Spécification des variantes et des options

Figure 18 Panneau de commande installé dans un boîtier (dimensions en mm).

Taille du boîtier : L = 400
l = 300
H = 205

M5 (x4) pour la fixation du boîtier
Bride de connexion
Câble du panneau de commande

<table>
<thead>
<tr>
<th>Option</th>
<th>Longueur</th>
</tr>
</thead>
<tbody>
<tr>
<td>240-1</td>
<td>15 m</td>
</tr>
<tr>
<td>240-2</td>
<td>22 m</td>
</tr>
<tr>
<td>240-3</td>
<td>30 m</td>
</tr>
</tbody>
</table>

Insert de blocage de porte

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>65-6</td>
<td>Standard</td>
</tr>
<tr>
<td>65-1</td>
<td>Doppelbart</td>
</tr>
<tr>
<td>65-5</td>
<td>Carrée à l'extérieur 7 mm</td>
</tr>
<tr>
<td>65-2</td>
<td>EMKA DB</td>
</tr>
<tr>
<td>65-4</td>
<td>Cylindre de verrouillage 3524</td>
</tr>
</tbody>
</table>

Sélecteur de mode de fonctionnement

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-1</td>
<td>Standard, 2 modes : manuel et automatique.</td>
</tr>
<tr>
<td>241-2</td>
<td>Standard, 3 modes : manuel, manuel à pleine vitesse et automatique. Non conforme avec les normes de sécurité UL et UR.</td>
</tr>
</tbody>
</table>

Refroidissement du système de commande

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>85-1</td>
<td>Température ambiante jusqu'à 45 °C (conception standard). L'unité informatique est fournie avec un échangeur de chaleur passif (aillettes de refroidissement situées à l'arrière du boîtier).</td>
</tr>
<tr>
<td>85-2</td>
<td>Température ambiante jusqu'à 52 °C. L'unité informatique dispose d'un équipement de refroidissement Peltier actif (à la place des ailettes de refroidissement de l'option 85-1).</td>
</tr>
</tbody>
</table>

Pupitre mobile d'apprentissage

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>370-1</td>
<td>Pupitre mobile d'apprentissage avec rétroéclairage, câble de connexion de 10 m.</td>
</tr>
</tbody>
</table>

Langue du pupitre mobile d'apprentissage

<table>
<thead>
<tr>
<th>Option</th>
<th>Langue du pupitre mobile d'apprentissage</th>
</tr>
</thead>
<tbody>
<tr>
<td>413-1</td>
<td>Anglais</td>
</tr>
<tr>
<td>419-1</td>
<td>Suédois</td>
</tr>
</tbody>
</table>
Câble d'extension du pupitre mobile d'apprentissage

<table>
<thead>
<tr>
<th>Option</th>
<th>Longueur</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>373-1</td>
<td>10 m</td>
<td>Un câble d'extension peut être connecté entre le système de commande et le pupitre mobile d'apprentissage. La longueur totale du câble entre le système de commande et le pupitre mobile d'apprentissage ne doit pas dépasser 40 m. La longueur du câble du panneau de commande facultatif doit être incluse dans la limitation.</td>
</tr>
<tr>
<td>373-2</td>
<td>20 m</td>
<td></td>
</tr>
</tbody>
</table>

Tension de secteur

Le système de commande peut être connecté suivant une tension nominale comprise entre 200 et 600 V (triphasé et terre de protection). Une fluctuation de tension comprise entre +10 et -15 % est autorisée.

<table>
<thead>
<tr>
<th>Option</th>
<th>Tension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>208-1</td>
<td>200 V</td>
<td>Un transformateur externe est fourni (reportez-vous à la Figure 19).</td>
</tr>
<tr>
<td>208-2</td>
<td>220 V</td>
<td>Un transformateur externe est fourni (reportez-vous à la Figure 19).</td>
</tr>
<tr>
<td>208-3</td>
<td>400 V</td>
<td></td>
</tr>
<tr>
<td>208-4</td>
<td>440 V</td>
<td></td>
</tr>
<tr>
<td>208-5</td>
<td>475 V</td>
<td></td>
</tr>
<tr>
<td>208-7</td>
<td>500 V</td>
<td></td>
</tr>
<tr>
<td>208-8</td>
<td>525 V</td>
<td></td>
</tr>
<tr>
<td>208-9</td>
<td>600 V</td>
<td></td>
</tr>
</tbody>
</table>
2 Spécification des variantes et des options

Figure 19 Transformateur (dimensions en mm).
2 Spécification des variantes et des options

IRB 140,
IRB 1400,
IRB 2400,
IRB 4400,
IRB 6400,
IRB 340, IRB 640,
IRB 940

<table>
<thead>
<tr>
<th>Option</th>
<th>Tension</th>
</tr>
</thead>
<tbody>
<tr>
<td>208-1</td>
<td>200 V</td>
</tr>
<tr>
<td>208-2</td>
<td>220 V</td>
</tr>
<tr>
<td>208-3</td>
<td>400 V</td>
</tr>
<tr>
<td>208-4</td>
<td>440 V</td>
</tr>
<tr>
<td>208-5</td>
<td>475 V</td>
</tr>
<tr>
<td>208-7</td>
<td>500 V</td>
</tr>
<tr>
<td>208-8</td>
<td>525 V</td>
</tr>
<tr>
<td>208-9</td>
<td>600 V</td>
</tr>
</tbody>
</table>

Outre la sélection ci-dessus, la plage de tensions doit être définie. Vous pouvez ainsi effectuer votre choix parmi trois transformateurs.

<table>
<thead>
<tr>
<th>Option</th>
<th>Plage de tensions</th>
<th>Marché</th>
</tr>
</thead>
<tbody>
<tr>
<td>442-1</td>
<td>200, 220, 400, 440 V</td>
<td>Marché asiatique</td>
</tr>
<tr>
<td>442-2</td>
<td>400, 440, 475, 500 V</td>
<td>Marché européen</td>
</tr>
<tr>
<td>442-3</td>
<td>475, 500, 525, 600 V</td>
<td>Marché nord-américain</td>
</tr>
</tbody>
</table>

L'alimentation est connectée à l'intérieur de l'armoire ou à un connecteur situé sur le côté gauche de l'armoire. Le câble n'est pas fourni. Si l'option 206-2--4 est sélectionnée, le connecteur femelle (pièce de câble) est inclus.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>206-1</td>
<td>Presse-étoupe pour connexion interne. Diamètre du câble : 11-12 mm. Figure 20 Connecteur mâle CEE</td>
</tr>
<tr>
<td>206-3</td>
<td>Connecteur CEE17 32 A, 380-415 V, 3p + PE (reportez-vous à la Figure 20). Non disponible avec les options Déconnecteur de bride (207-1), UL/UR (429-1/429-2) et Alimentation pour prise d'entretien (331-2). Non disponible pour IRB 6600/7600.</td>
</tr>
<tr>
<td>206-2</td>
<td>32 A, 380-415 V, 3p + N + PE (reportez-vous à la Figure 20). Non disponible avec les options Déconnecteur de bride (207-1) et UL/UR (429-1/429-2). Non disponible pour IRB 6600/7600.</td>
</tr>
</tbody>
</table>
Spécification des variantes et des options

Interrupteur secteur

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>206-4</td>
<td>Connexion via un connecteur industriel Harting 6HSB conformément à la norme DIN 41640. 35 A, 600 V, 6p + PE (reportez-vous à la Figure 21). Ne peut pas être associée à l'option Déconnecteur de bride (207-1).</td>
</tr>
<tr>
<td>207-4</td>
<td>Interrupteur rotatif 40 A conforme à la norme de la section 1.2 et à la norme CEI 337-1, VDE 0113. Fusibles client obligatoires pour la protection des câbles.</td>
</tr>
<tr>
<td>207-1</td>
<td>Déconnecteur de bride conforme à la norme de la section 1.2. Inclut le verrouillage de porte pour déconnecteur de bride et un disjoncteur de 20 A possédant une capacité d'interruption de 14 kA.</td>
</tr>
<tr>
<td>207-8</td>
<td>Déconnecteur de bride conforme à la norme de la section 1.2. Inclut le verrouillage de porte pour déconnecteur de bride, et un disjoncteur de 20 A possédant une capacité d'interruption de 65 kA à 400 V et de 25 kA à 600 V.</td>
</tr>
<tr>
<td>207-5</td>
<td>Interrupteur rotatif 80 A. Fusibles client obligatoires pour la protection des câbles. Inclus dans l'option Préparé pour Arcitec (66-1).</td>
</tr>
<tr>
<td>320-1</td>
<td>Servodéconnecteur. Cette option permet d’ajouter un interrupteur rotatif 40 A aux deux contacteurs de l'alimentation CA du système d' entraînement. La poignée peut être verrouillée par un cadenas (en position ouverte ou fermée).</td>
</tr>
<tr>
<td>188-1</td>
<td>Verrouillage de porte pour interrupteur rotatif. Inclus dans les options UL/CSA/UR (429-1, 429-2) et Servodéconnecteur (320-1).</td>
</tr>
<tr>
<td>70-2</td>
<td>Disjoncteur pour interrupteur rotatif. Disjoncteur de courant nominal 16 A (option 442-2, -3) ou 25 A (option 442-2) permettant de protéger les câbles principaux de l’armoire contre les courts-circuits. Disjoncteur approuvé conformément à la norme CEI 898, VDE 0660. Capacité d'interruption de 30 kA à 400 V.</td>
</tr>
</tbody>
</table>

Pour les robots IRB 7600 et IRB 6600, le courant nominal du disjoncteur de l’armoire est toujours de 25 A.

Lorsqu’un transformateur externe est fourni, le disjoncteur se situe dans le transformateur.
L’armoire standard peut contenir un maximum de 4 unités d'E/S. Pour plus d'informations, reportez-vous à Système d'E/S à la page 34.

Figure 22 Emplacement des unités d'E/S et des bornes à vis
Figure 23 Emplacement des unités d'E/S et des bornes à vis
Entrées/sorties

<table>
<thead>
<tr>
<th>Option</th>
<th>Entrées/sorties</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>61-1</td>
<td>E/S numériques 24 VCC</td>
<td>16 entrées/16 sorties</td>
</tr>
<tr>
<td>54-1</td>
<td>E/S analogues</td>
<td>4 entrées/4 sorties</td>
</tr>
<tr>
<td>58-1</td>
<td>E/S Combi AL</td>
<td>16 entrées numériques/16 sorties numériques et 2 sorties analogiques (0-10 V)</td>
</tr>
<tr>
<td>60-1</td>
<td>E/S numériques 120 VCA</td>
<td>16 entrées/16 sorties</td>
</tr>
<tr>
<td>63-1</td>
<td>E/S numériques avec sorties à relais</td>
<td>16 entrées/16 sorties. Sorties à relais à utiliser lorsque la tension ou le courant sont insuffisants au niveau des sorties numériques. Les entrées ne sont pas séparées par des relais.</td>
</tr>
</tbody>
</table>

Connexion d'E/S

<table>
<thead>
<tr>
<th>Option</th>
<th>Connexion</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>191-3</td>
<td>Connexion interne (options 61-1, 54-1, 58-1, 60-1, 63-1)</td>
<td>Les signaux sont connectés directement aux bornes à vis sur les unités d'E/S, dans la partie supérieure de l'armoire (reportez-vous à la Figure 23).</td>
</tr>
<tr>
<td>191-2</td>
<td>Connexion externe</td>
<td>Les signaux sont connectés via un connecteur industriel 64 pôles conformément à la norme DIN 43652. Ce connecteur se situe sur le côté gauche du système de commande. La pièce client correspondante est incluse.</td>
</tr>
<tr>
<td>225-1</td>
<td>Préparée pour 4 unités d'E/S</td>
<td>Le câblage interne CAN/DeviceNet vers les unités d'E/S existe en deux versions : pour deux et quatre unités d'E/S. Les versions sont sélectionnées pour correspondre au nombre d'unités d'E/S commandées. Cette option permet d'obtenir la version pour quatre unités, même si vous ne commandez qu'une ou deux unités d'E/S.</td>
</tr>
</tbody>
</table>

Signaux de sécurité

<table>
<thead>
<tr>
<th>Option</th>
<th>Connexion</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>309-3</td>
<td>Connexion interne</td>
<td>Les signaux sont connectés directement aux bornes à vis dans la partie supérieure de l'armoire (reportez-vous à la Figure 23).</td>
</tr>
<tr>
<td>309-2</td>
<td>Connexion externe</td>
<td>Les signaux sont connectés via un connecteur industriel 64 pôles conformément à la norme DIN 43652. Ce connecteur se situe sur le côté gauche du système de commande. La pièce client correspondante est incluse.</td>
</tr>
</tbody>
</table>
Bus terrain et communication

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>108-1</td>
<td>CAN/DeviceNet</td>
</tr>
<tr>
<td></td>
<td>Connexion sur le côté gauche à deux connecteurs femelle 5 pôles conformément à la norme ANSI. Les connecteurs mâle sont fournis.</td>
</tr>
<tr>
<td>126-1</td>
<td>Réseau local/ Ethernet</td>
</tr>
<tr>
<td></td>
<td>Connecteur RJ45 à utiliser comme connecteur de réseau local. Lorsque le connecteur n'est pas utilisé, un capot de protection le recouvre.</td>
</tr>
<tr>
<td>250-1</td>
<td>Maître/esclave Profibus DP</td>
</tr>
<tr>
<td></td>
<td>Le matériel du bus terrain Profibus-DP se compose d'une unité maître/esclave (DSQC 510) et d'unités d'E/S distribuées nommées unités esclave. L'unité DSQC 510 est installée dans le système informatique de S4Cplus, où elle est connectée au bus PCI. Les unités esclave sont connectées au réseau du bus terrain. Les unités esclave peuvent être des unités d'E/S dotées de signaux numériques et/ou analogiques. Elles sont commandées via la pièce maître de l'unité DSQC 510. La pièce esclave de l'unité DSQC 510 est normalement contrôlée par un maître externe situé sur un réseau Profibus-DP distinct. Ce réseau est différent de celui contenant les unités esclave de la pièce maître de la carte. La pièce esclave est une unité d'E/S pouvant disposer d'un maximum de 512 signaux numériques d'entrée et de sortie. Les signaux sont connectés à l'avant de la carte (deux connecteurs 9 pôles D-sub). L'outil Profibus DP M/S CFG (option 285-1) est nécessaire pour configurer la pièce maître ou modifier le nombre de signaux de la pièce esclave. Pour plus d'informations, reportez-vous à Caractéristiques du produit – Options RobotWare.</td>
</tr>
<tr>
<td>177-3/177-1</td>
<td>Maître/esclave Interbus</td>
</tr>
<tr>
<td></td>
<td>Le matériel du bus terrain Interbus se compose d'une unité maître/esclave (DSQC 512/529) et d'unités d'E/S distribuées. Les unités maître et esclave sont deux cartes distinctes reliées par un câble plat. L'unité DSQC 512/529 est connectée au bus PCI du système de commande du robot SC4plus, tandis que les unités d'E/S sont connectées au réseau du bus terrain. Les unités d'E/S peuvent être des modules numériques ou analogiques. Elles sont toutes commandées par la pièce maître de l'unité DSQC 512/529. La pièce esclave de l'unité DSQC 512/529 est normalement commandée par un maître externe situé sur un réseau Interbus distinct. Ce réseau est différent de celui contenant les unités d'E/S de la pièce maître de la carte. La pièce esclave est une unité d'E/S numérique pouvant disposer d'un maximum de 160 signaux numériques d'entrée et de sortie.</td>
</tr>
</tbody>
</table>
Deux variantes sont disponibles.

<table>
<thead>
<tr>
<th>Option</th>
<th>Variantes</th>
</tr>
</thead>
<tbody>
<tr>
<td>177-3</td>
<td>Pour une connexion par fibre optique (DSQC 512)</td>
</tr>
<tr>
<td>177-1</td>
<td>Pour une connexion par fil de cuivre (DSQC 529)</td>
</tr>
</tbody>
</table>

L’outil Interbus M/S CFG (option 185-1) est nécessaire pour configurer la pièce maître ou pour modifier le nombre de signaux de la pièce esclave. Pour plus d’informations, reportez-vous à Caractéristiques du produit – Options RobotWare.

Pour plus d’informations, reportez-vous à Système d’E/S à la page 34.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-1</td>
<td>E/S déportées Allen-Bradley 128 entrées et sorties numériques maximum, réparties en groupes de 32, peuvent être transférées en série vers un automate programmable doté d’un adaptateur de noeud Allen-Bradley 1771 RIO. L’unité réduit de 1 le nombre d’unités d’E/S pouvant être installées dans l’armoire. Les câbles du bus terrain sont connectés directement à l’unité esclave Interbus (deux connecteurs 9 pôles D-sub) dans la partie supérieure de l’armoire.</td>
</tr>
<tr>
<td>178-1</td>
<td>Esclave Interbus 64 entrées et sorties numériques maximum peuvent être transférées en série vers un automate programmable doté d’une interface Interbus. L’unité réduit de un le nombre d’unités d’E/S pouvant être installées dans l’armoire. Les signaux sont connectés directement à l’unité esclave Interbus (deux connecteurs 9 pôles D-sub) dans la partie supérieure de l’armoire.</td>
</tr>
<tr>
<td>251-1</td>
<td>Esclave Profibus DP 128 entrées et sorties numériques maximum peuvent être transférées vers un automate programmable doté d’une interface Profibus DP. L’unité réduit de un le nombre d’unités d’E/S pouvant être installées dans l’armoire. Les signaux sont connectés directement à l’unité esclave Profibus DP (un connecteur 9 pôles D-sub) dans la partie supérieure de l’armoire.</td>
</tr>
<tr>
<td>79-1</td>
<td>Unité d’interface avec l’encodeur pour suivi de convoyeur (DSQC 354) Le suivi de convoyeur (option RobotWare 83-1) est la fonction permettant au robot de suivre un repère objet monté sur un convoyeur en mouvement. L’encodeur client et les câbles de l’interrupteur de synchronisation sont connectés directement à l’unité de l’encodeur, dans la partie supérieure de l’armoire (reportez-vous à la Figure 23). Un connecteur à vis est inclus. Cette option est également nécessaire pour la fonction Sensor Synch (option RobotWare 316-1).</td>
</tr>
<tr>
<td>80-1</td>
<td>Unité d’interface avec l’encodeur pour suivi de convoyeur (DSQC 377) Cette option permet d’ajouter les fonctions requises pour PickMaster 4.0. Physiquement similaire à DSQC 354.</td>
</tr>
</tbody>
</table>
2 Spécification des variantes et des options

Unités d'E/S externes

Les unités d'E/S peuvent être fournies séparément. Ces unités peuvent être installées à l'extérieur de l'armoire ou dans l'extension de celle-ci. Elles sont connectées en chaîne à un connecteur (CAN 3 ou CAN 2, reportez-vous à la Figure 23) dans la partie supérieure de l'armoire. Les connecteurs des unités d'E/S et un connecteur d'armoire (Phoenix MSTB 2.5/xx-ST-5.08) sont fournis. Par contre, le câblage n'est pas fourni. Pour connaître les dimensions, reportez-vous à la Figure 24 et à la Figure 25. Pour plus d'informations, reportez-vous à Système d'E/S à la page 34.

<table>
<thead>
<tr>
<th>Option</th>
<th>Entrées/sorties</th>
</tr>
</thead>
<tbody>
<tr>
<td>137-1</td>
<td>E/S numériques 24 VCC 16 entrées/16 sorties</td>
</tr>
<tr>
<td>132-1</td>
<td>E/S analogiques</td>
</tr>
<tr>
<td>130-1</td>
<td>E/S Combi AL 16 entrées numériques/16 sorties numériques et 2 sorties analogiques (0-10 V)</td>
</tr>
<tr>
<td>136-1</td>
<td>E/S numériques 120 VCA 16 entrées/16 sorties</td>
</tr>
<tr>
<td>138-1</td>
<td>E/S numériques avec sorties à relais 16 entrées/16 sorties</td>
</tr>
</tbody>
</table>

Passerelles externes

<table>
<thead>
<tr>
<th>Option</th>
<th>Unités</th>
</tr>
</thead>
<tbody>
<tr>
<td>131-1</td>
<td>E/S déportées Allen-Bradley</td>
</tr>
<tr>
<td>142-1</td>
<td>Esclave Interbus</td>
</tr>
<tr>
<td>144-1</td>
<td>Esclave Profibus DP</td>
</tr>
<tr>
<td>134-1</td>
<td>Unité d'interface avec l'encodeur DSQC 354</td>
</tr>
<tr>
<td>135-1</td>
<td>Unité d'interface avec l'encodeur DSQC 377</td>
</tr>
</tbody>
</table>

Figure 24 Dimensions des unités d'E/S.
Figure 25 Dimensions des passerelles.

Axes externes de l’armoire du robot

Non disponible pour IRB 340, IRB 6400PE, IRB 6600, IRB 7600.
Vous pouvez équiper le système de commande d'unités d’entraînement pour axes externes. Les moteurs sont connectés à un connecteur femelle 64 broches standard, conforme à la norme DIN 43652, sur le côté gauche de l’armoire. Le connecteur mâle est également fourni.

<table>
<thead>
<tr>
<th>Option</th>
<th>Unités d'entraînement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>52-1</td>
<td>Unité d'entraînement C</td>
<td>L'unité d'entraînement fait partie de la liaison CC. Pour connaître le type de moteur recommandé, reportez-vous à Tableau Sélection du moteur à la page 69. Non disponible pour IRB 640.</td>
</tr>
<tr>
<td>52-7</td>
<td>Unité d'entraînement T</td>
<td>L'unité d'entraînement fait partie de la liaison CC. Pour connaître le type de moteur recommandé, reportez-vous à Tableau Sélection du moteur à la page 69. Non disponible pour IRB 640, 6400R.</td>
</tr>
<tr>
<td>52-9</td>
<td>Unité d'entraînement U</td>
<td>L'unité d'entraînement fait partie de la liaison CC. Pour connaître les types de moteur recommandés, reportez-vous à Tableau Sélection du moteur à la page 69. Non disponible pour IRB 4400, 6400S, 6400PE, 640. Pour les robots IRB 140, 1400 et 2400, l’option se compose d’un transformateur plus important, d’une liaison CC DC4U avec unité d’entraînement U intégrée et d’un ordinateur des axes supplémentaire avec sa carte de connexion. Aucun câblage entre l'unité d'entraînement U et l'armoire n'est inclus. Pour le robot IRB 6400R, l'option se compose d'une liaison CC DC4U dotée d'une unité d'entraînement U intégrée et du câblage à l'armoire.</td>
</tr>
<tr>
<td>52-3</td>
<td>Unité d'entraînement GT</td>
<td>Unité d'entraînement séparée contenant deux entraînements. Pour connaître le type de moteur recommandé, reportez-vous à Tableau Sélection du moteur à la page 69. Non disponible pour IRB 4400, 6400R, 6400S.</td>
</tr>
<tr>
<td>52-4</td>
<td>Préparée pour l'entraînement GT</td>
<td>Identique à l’option 52-3, mais sans le module d’entraînement GT. L’option se compose d'un transformateur plus important, d'une liaison CC DC2 plus importante et d'un ordinateur des axes supplémentaire avec sa carte de connexion. Non disponible pour IRB 4400, 640, 6400R, 6400S.</td>
</tr>
<tr>
<td>52-6</td>
<td>Préparée pour l'entraînement GT</td>
<td>Identique à l’option 52-4 mais sans l'ordinateur des axes supplémentaire et sa carte de connexion.</td>
</tr>
<tr>
<td>52-5</td>
<td>Préparée pour l'entraînement GU</td>
<td>Identique à l’option 52-4 mais destinée à un module d'entraînement GU. L’option se compose d'un transformateur plus important, d'une liaison CC DC4 plus importante et d'un ordinateur des axes supplémentaire avec sa carte de connexion. Non disponible pour IRB 4400, 640, 6400R, 6400S.</td>
</tr>
<tr>
<td>52-8</td>
<td>Unité d'entraînement T+GT</td>
<td>Combinaison des options 52-7 et 52-3. Non disponible pour IRB 4400, 640, 6400R, 6400S.</td>
</tr>
</tbody>
</table>
2 Spécification des variantes et des options

Interface du servopistolet

<table>
<thead>
<tr>
<th>Option</th>
<th>Unités</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>323-1--6</td>
<td>IRB 6400R, IRB 6600 et 7600</td>
<td>Pour plus d'informations, reportez-vous à Caractéristiques du produit IRB 6400R – chapitre Servopistolet ou à Caractéristiques du produit IRB 6600 – chapitre Servopistolet (présentation), ainsi qu'à Caractéristiques du produit – Options RobotWare (description des fonctions).</td>
</tr>
</tbody>
</table>

Stationary Gun (SG)

<table>
<thead>
<tr>
<th>Option</th>
<th>Robot</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>323-5</td>
<td>IRB 6400R</td>
<td>L'option se compose d'une carte de mesure série encapsulée et du câblage situé à l'intérieur du système de commande. Le câble reliant la carte de mesure série et le système de commande est sélectionné dans la plage d'options 95-1--4. L'unité d'entraînement 52-9 est obligatoire.</td>
</tr>
<tr>
<td>323-5</td>
<td>IRB 6600/7600</td>
<td>Cette option permet d'ajouter un câble de résolveur au câble de manipulateur 476-1 (ou 467-1), et un câble de résolveur de 7 m entre le manipulateur et la colonne du pistolet de soudage. Le connecteur client de ce câble doit être un connecteur Burndy 8 broches branché conformément aux spécifications du moteur. Le câble reliant la DDU du système de commande et la colonne du pistolet de soudage est sélectionné dans la plage d'options 95-1--4 (longueurs différentes). Le connecteur client de ce câble doit être un multi-connecteur industriel conforme au manipulateur CP/CS (reportez-vous à Caractéristiques du produit IRB 6600/7600). Outre le câblage moteur nécessaire, 12 fils pour E/S de pistolet (accessibles sur les bornes à vis de l'armoire) sont disponibles. L'unité d'entraînement 53-2 ou 53-3 (DDU-V ou -W) doit être sélectionnée.</td>
</tr>
</tbody>
</table>
2 Spécification des variantes et des options

Robot Gun (RG)

<table>
<thead>
<tr>
<th>Option</th>
<th>Robot</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>323-1</td>
<td>IRB 6400R</td>
<td>Cette option se compose d'une carte de mesure série encapsulée et du câblage situé à l'intérieur du système de commande. Elle contient également le support de fixation pour l'installation du pied 6400R du boîtier SMB et le câblage entre ce boîtier et le manipulateur. Le câble reliant la carte de mesure série et le système de commande est sélectionné dans la plage d'options 93-1--4. L'unité d'entraînement 52-9 est obligatoire.</td>
</tr>
<tr>
<td>323-1</td>
<td>IRB 6600/7600</td>
<td>Cette option permet d'ajouter des câbles de résolveur au câble de manipulateur 476-1. Le câble reliant le système de commande et le manipulateur est sélectionné dans la plage d'options 450-1, -2, -4. Outre le câblage moteur nécessaire, 22 fils pour E/S de pistolet et bus terrain CAN/DeviceNet sont disponibles. Le câblage d'E/S est accessible au niveau des bornes à vis de l'armoire. L'unité d'entraînement 53-2 (DDU-V) doit être sélectionnée.</td>
</tr>
</tbody>
</table>

Un SG et un RG

<table>
<thead>
<tr>
<th>Option</th>
<th>Robot</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>323-3</td>
<td>IRB 6400R</td>
<td>Cette option est une combinaison des options 523-5 et 523-1. Une unité d'entraînement distribué (DDU) commande le moteur SG. Le câblage reliant la carte de mesure série SG et le système de commande est sélectionné dans la plage d'options 95-1--4. Le câblage reliant la carte de mesure série RG et le système de commande est sélectionné dans la plage d'options 93-1--4. Les unités d'entraînement 52-9 (pour RG) et 53-1 (pour SG) sont obligatoires.</td>
</tr>
</tbody>
</table>
Cette option permet d'ajouter un câble de résolveur au câble de manipulateur 476-1. Le câble reliant le système de commande et la colonne du pistolet de soudage est sélectionné dans la plage d'options 95-1--4. Le connecteur client de ce câble doit être un multi-connecteur industriel conforme au manipulateur CP-CS (reportez-vous à Caractéristiques du produit IRB 6600/7600). Outre le câblage moteur nécessaire, 12 fils pour E/S de pistolet (accessibles sur les bornes à vis de l'armoire) sont disponibles.

Le câble reliant le système de commande et le manipulateur (pour RG) est sélectionné dans la plage d'options 450-1, -2, -4. Outre le câblage moteur nécessaire, 22 fils pour E/S de pistolet et bus terrain CAN/DeviceNet sont disponibles.

Cette option contient également un boîtier SMB pour deux résolveurs, un câble série reliant ce boîtier et le système de commande (même longueur que dans la plage d'options 210-22--5) et deux câbles de résolveur (1,5 m pour RG et 7 m pour SG). Le connecteur client du câble SG doit être un connecteur Burndy 8 broches branché conformément aux spécifications du moteur. Le boîtier SMB doit être installé à proximité du pied du manipulateur. Les informations relatives aux dimensions et à l'installation sont disponibles dans Caractéristiques du produit – Moteur.

L'unité d'entraînement 53-4 (DDU-VW) doit être sélectionnée.

<table>
<thead>
<tr>
<th>Option</th>
<th>Robot</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>323-3</td>
<td>IRB 6600/7600</td>
<td>Cette option permet d'ajouter un câble de résolveur au câble de manipulateur 476-1. Le câble reliant le système de commande et la colonne du pistolet de soudage est sélectionné dans la plage d'options 95-1--4. Le connecteur client de ce câble doit être un multi-connecteur industriel conforme au manipulateur CP-CS (reportez-vous à Caractéristiques du produit IRB 6600/7600). Outre le câblage moteur nécessaire, 12 fils pour E/S de pistolet (accessibles sur les bornes à vis de l'armoire) sont disponibles. Le câble reliant le système de commande et le manipulateur (pour RG) est sélectionné dans la plage d'options 450-1, -2, -4. Outre le câblage moteur nécessaire, 22 fils pour E/S de pistolet et bus terrain CAN/DeviceNet sont disponibles. Cette option contient également un boîtier SMB pour deux résolveurs, un câble série reliant ce boîtier et le système de commande (même longueur que dans la plage d'options 210-22--5) et deux câbles de résolveur (1,5 m pour RG et 7 m pour SG). Le connecteur client du câble SG doit être un connecteur Burndy 8 broches branché conformément aux spécifications du moteur. Le boîtier SMB doit être installé à proximité du pied du manipulateur. Les informations relatives aux dimensions et à l'installation sont disponibles dans Caractéristiques du produit – Moteur. L'unité d'entraînement 53-4 (DDU-VW) doit être sélectionnée.</td>
</tr>
</tbody>
</table>
Twin SG

<table>
<thead>
<tr>
<th>Option</th>
<th>Robot</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>323-6</td>
<td>IRB 6400R</td>
<td>Cette option est une combinaison de deux options 323-5. Une unité d'entraînement distribué commande le second moteur SG. Le câblage reliant les cartes de mesure série SG et le système de commande est sélectionné dans la plage d'options 95-1--4. Les unités d'entraînement 52-9 (pour un SG) et 53-1 (pour le second SG) sont obligatoires.</td>
</tr>
<tr>
<td>Twin SG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>323-6</td>
<td>IRB 6600/7600</td>
<td>L'option se compose d'un boîtier SMB pour deux résolveurs, d'un câble série reliant ce boîtier et le système de commande (même longueur que l'option 686-689) et de deux câbles de résolveur de 7 m. Le connecteur client du câble SG doit être un connecteur Burndy 8 broches branché conformément aux spécifications du moteur. Le boîtier SMB doit être installé à proximité du pied du manipulateur. Les informations relatives aux dimensions et à l'installation sont disponibles dans Caractéristiques du produit - Moteur. Les deux câbles reliant le système de commande et les colonnes sont sélectionnés dans la plage d'options 95-1--2. Les connecteurs client des câbles doivent être des multi-connecteurs industriels conformes au manipulateur CP/CS (reportez-vous à Caractéristiques du produit IRB 6600/7600). Outre le câblage moteur nécessaire, 12 fils pour E/S de pistolet sont disponibles. Ces fils sont accessibles sur les bornes à vis de l'armoire (axe 7 SG) ou au niveau du multi-connecteur (axe 8 SG) situé à l'intérieur de la DDU. L'unité d'entraînement 53-4 (DDU-VW) doit être sélectionnée.</td>
</tr>
</tbody>
</table>

SG et Track Motion

<table>
<thead>
<tr>
<th>Option</th>
<th>Robot</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>323-4</td>
<td>IRB 6400R</td>
<td>Cette option est une combinaison de l'option 323-5 et d'un Track Motion IRBT 6002S contrôlé par une unité d'entraînement distribué. Le câblage reliant la carte de mesure série SG et le système de commande est sélectionné dans la plage d'options 95-1--4. Les unités d'entraînement 52-9 (pour SG) et 53-1 (pour T) sont obligatoires.</td>
</tr>
<tr>
<td>SG et Track</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motion (T)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Un câble de résolveur de 7 m pour SG est inclus dans l'option. Le connecteur client du câble doit être un connecteur Burndy 8 broches branché conformément aux spécifications du moteur. Le câble reliant le système de commande et la colonne du pistolet de soudage est sélectionné dans la plage d'options 95-1--2. Le connecteur client de ce câble doit être un multi-connecteur industriel conforme au manipulateur CP/CS (reportez-vous à Caractéristiques du produit IRB 6600/7600). Outre le câblage moteur nécessaire, 12 fils pour E/S de pistolet (accessibles sur les bornes à vis de l'armoire) sont disponibles. Le boîtier SMB et le câble d'alimentation reliant le système de commande et Track Motion sont inclus dans Track Motion. Le câble de mesure série reliant le système de commande et Track Motion est inclus dans l'option 323-4 (longueur différente selon les options 210-2, -3). L'unité d'entraînement 53-4 (DDU-VW) doit être sélectionnée.

<table>
<thead>
<tr>
<th>Option</th>
<th>Robot</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>323-4 SG et Track Motion (T)</td>
<td>IRB 6600/7600</td>
<td>Un câble de résolveur de 7 m pour SG est inclus dans l'option. Le connecteur client du câble doit être un connecteur Burndy 8 broches branché conformément aux spécifications du moteur. Le câble reliant le système de commande et la colonne du pistolet de soudage est sélectionné dans la plage d'options 95-1--2. Le connecteur client de ce câble doit être un multi-connecteur industriel conforme au manipulateur CP/CS (reportez-vous à Caractéristiques du produit IRB 6600/7600). Outre le câblage moteur nécessaire, 12 fils pour E/S de pistolet (accessibles sur les bornes à vis de l'armoire) sont disponibles. Le boîtier SMB et le câble d'alimentation reliant le système de commande et Track Motion sont inclus dans Track Motion. Le câble de mesure série reliant le système de commande et Track Motion est inclus dans l'option 323-4 (longueur différente selon les options 210-2, -3). L'unité d'entraînement 53-4 (DDU-VW) doit être sélectionnée.</td>
</tr>
</tbody>
</table>
RG et T

<table>
<thead>
<tr>
<th>Option</th>
<th>Robot</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>323-2 RG et T</td>
<td>IRB 6400R</td>
<td>Cette option est une combinaison de l'option 323-1 et d'un Track Motion IRBT 6002S contrôlé par une unité d'entraînement distribué. Le câblage reliant la carte de mesure série RG et le système de commande est sélectionné dans la plage d'options 93-1--4. Les unités d'entraînement 52-9 (pour SG) et 53-1 (pour T) sont obligatoires.</td>
</tr>
<tr>
<td>323-2 RG et T</td>
<td>IRB 6600/7600</td>
<td>Cette option permet d'ajouter un câble de résolveur au câble de manipulateur 2200. Le câble RG reliant le système de commande et Track Motion est sélectionné dans la plage d'options 450-1, -2, -4, à l'exception du câble suivi moteur qui est inclus dans Track Motion. Outre le câblage moteur nécessaire, le câble RG contient également 22 fils pour E/S de pistolet et bus terrain CAN/DeviceNet. L'option se compose également d'un câble de résolveur de 1,5 m pour RG, à connecter au boîtier SMB installé sur Track Motion. L'unité d'entraînement 53-4 (DDU-VW) doit être sélectionnée.</td>
</tr>
</tbody>
</table>

Carte de mesure des axes externes

Non disponible pour IRB 340, IRB 6400PE.

Les résolveurs peuvent être connectés à une carte de mesure série extérieure au système de commande.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>317-2</td>
<td>Carte de mesure série indépendante</td>
</tr>
</tbody>
</table>

Axes externes - armoire distincte

Basse tension

Non disponible pour IRB 340, IRB 6400PE.

Une armoire externe peut être fournie en cas d'espace insuffisant dans l'armoire standard. L'armoire externe est connectée à un connecteur Harting (câble de 7 m) sur le côté gauche du système de commande du robot.
Le verrouillage de porte, la connexion secteur, la tension secteur et le filtre secteur sont conformes au système de commande du robot. Un transformateur et un interrupteur secteur sont inclus.

Figure 26

Pour connaître les types de moteur recommandés, reportez-vous au tableau Sélection du moteur ci-dessous.

<table>
<thead>
<tr>
<th>Option</th>
<th>Unité d’entraînement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>53-7/53-9</td>
<td>Unité d’entraînement GT</td>
<td>Pour 4 ou 6 moteurs</td>
</tr>
<tr>
<td>53-5</td>
<td>Unité d’entraînement ECB</td>
<td>Pour 6 moteurs</td>
</tr>
<tr>
<td>53-6</td>
<td>Unité d’entraînement GT + ECB</td>
<td>Pour 5 moteurs</td>
</tr>
<tr>
<td>53-8</td>
<td>Unité d’entraînement GT + GT + ECB</td>
<td>Pour 6 moteurs</td>
</tr>
</tbody>
</table>

Types de moteur conformes à Caractéristiques du produit – Moteur

<table>
<thead>
<tr>
<th>Tension d'entraînement</th>
<th>Identification de l'unité d'entraînement</th>
<th>Courant max. du moteur A_{eff}</th>
<th>Courant nominal de l'unité d'entraînement A_{eff}</th>
<th>Type de moteur adapté</th>
</tr>
</thead>
<tbody>
<tr>
<td>Élevée</td>
<td>W</td>
<td>11,5-57</td>
<td>30</td>
<td>MU30</td>
</tr>
<tr>
<td>Élevée</td>
<td>V</td>
<td>5,5-26</td>
<td>14,5</td>
<td>MU20</td>
</tr>
<tr>
<td>Faible</td>
<td>U</td>
<td>11-55</td>
<td>24</td>
<td>MU30</td>
</tr>
<tr>
<td>Faible</td>
<td>T</td>
<td>7,5-37</td>
<td>20</td>
<td>MU30</td>
</tr>
<tr>
<td>Faible</td>
<td>G</td>
<td>6-30</td>
<td>16</td>
<td>MU20</td>
</tr>
<tr>
<td>Faible</td>
<td>E</td>
<td>4-19</td>
<td>8,4</td>
<td>MU20</td>
</tr>
<tr>
<td>Faible</td>
<td>C</td>
<td>2,5-11</td>
<td>5</td>
<td>MU10</td>
</tr>
<tr>
<td>Faible</td>
<td>B</td>
<td>1,5-7</td>
<td>4</td>
<td>MU10</td>
</tr>
</tbody>
</table>
Unité d'entraînement

<table>
<thead>
<tr>
<th>Option</th>
<th>Unité d'entraînement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>53-1</td>
<td>Unité d'entraînement DDU-U (basse tension)</td>
<td>Boîtier séparé (L = 500 mm, l = 300 mm, H = 250 mm) comprenant une liaison CC DC4 et une unité d'entraînement GU dont la partie U est utilisée (la partie G n'est pas connectée). La DDU-U fonctionne à partir d'un ordinateur des axes supplémentaire, inclus dans l'option. La DDU-U est principalement destinée aux solutions SG des options 323-3, -4, -6. Elle est disponible pour les robots IRB 4400 et 6400R.</td>
</tr>
<tr>
<td>53-2</td>
<td>Unité d'entraînement DDU-V</td>
<td>IRB 6600/7600</td>
</tr>
<tr>
<td>53-4</td>
<td>Unité d'entraînement DDU-VW</td>
<td>IRB 6600/7600</td>
</tr>
<tr>
<td>53-3</td>
<td>Unité d'entraînement DDU-W</td>
<td>IRB 6600/7600</td>
</tr>
</tbody>
</table>

Boîtier séparé (L = 500 mm, l = 300 mm, H = 250 mm) comprenant une liaison CC DC5 et une unité d'entraînement VW.

Ce boîtier dispose de 4 trous (à l'arrière de l'encapsulation) qui permettent de le fixer au mur ou à une enceinte, connexions vers le bas. Le câblage de connexion (5 m) au système de commande est inclus.

La DDU-VW fonctionne à partir d'un ordinateur des axes supplémentaire inclus dans l'option, tandis que la DDU-V et la DDU-W fonctionnent à partir de l'ordinateur des axes du robot de base.

Les options comprennent également le câblage approprié à l'intérieur du manipulateur pour différentes configurations de résolveur. Reportez-vous à Caractéristiques du produit IRB 6600 – chapitre Servopistolet. 7 applications d'axes utilisent la carte SMB intégrée à 7 résolveurs.
La DDU-V et la DDU-VW sont principalement destinées aux solutions SG des options 323-1--6.
La DDU-W est destinée à Track Motion sans SG.

Figure 28
Pour l'utilisation générale d'un axe externe dans IRB 6600 ou IRB 7600, sélectionnez l'option 476-1 ou 467-1 de DressPack pour le câblage du résolveur à la carte de mesure série 7 canaux intégrée.

Équipement

Câble du manipulateur

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>212-2</td>
<td>Standard</td>
</tr>
</tbody>
</table>

Longueur du câble

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>210-2</td>
<td>7 m</td>
</tr>
<tr>
<td>210-3</td>
<td>15 m, non disponible pour IRB 140</td>
</tr>
<tr>
<td>210-4</td>
<td>22 m, non disponible pour IRB 140</td>
</tr>
<tr>
<td>210-5</td>
<td>30 m, non disponible pour IRB 140</td>
</tr>
<tr>
<td>210-1</td>
<td>3 m, uniquement disponible pour IRB 140</td>
</tr>
</tbody>
</table>

Protection du câble du manipulateur

Non disponible pour IRB 6600/7600.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>288-1</td>
<td>La longueur de chaque unité est de 2 m. Vous pouvez indiquer jusqu'à 40 m de protection.</td>
</tr>
</tbody>
</table>

Prise d'entretien

Les prises standard suivantes dotées d'une terre de protection peuvent être choisies à des fins de maintenance.

La charge maximale autorisée est de 500 W (100 W maximum à l'intérieur de l'armoire).

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>328-6</td>
<td>120 V conformément à la norme américaine, prise unique, Harvey Hubble.</td>
</tr>
<tr>
<td>328-1</td>
<td>Prise secteur de 230 V conformément à la norme DIN VDE 0620, prise unique adaptée aux pays de l'Union européenne.</td>
</tr>
</tbody>
</table>

Alimentation

à la prise d'entretien

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>331-3</td>
<td>Connexion à partir du transformateur secteur. La tension est activée/désactivée à l'aide de l'interrupteur secteur situé sur la partie avant de l'armoire.</td>
</tr>
</tbody>
</table>
2 Spécification des variantes et des options

Option Description

331-2 Connexion située avant l'interrupteur secteur, ce qui signifie que la tension est toujours disponible. Cela ne s'applique que lorsque la tension d'alimentation de l'armoire est de 400 V, que la connexion dispose de trois phases et d'un neutre, et qu'une prise d'entretien de 230 V est disponible.

Une connexion avant l'interrupteur secteur n'est pas conforme avec certaines normes nationales, telles que la norme NFPL 79. L'option 331-2 n'est pas disponible pour IRB 6600/7600.

Mémoire

Mémoire de masse amovible

Option Mémoire Description

215-1 Lecteur de disquette Le lecteur de disquette fonctionne correctement jusqu'à 40 °C. Il n'est pas endommagé avec des températures supérieures, mais celles-ci risquent d'augmenter le nombre de problèmes de lecture et d'écriture.

581-2 Interface de disque à mémorisation instantanée USB Connecteur externe situé à côté du port de service Ethernet standard. Les types de disque à mémorisation instantanée USB suivants sont acceptés :
SanDisk 512 Mo
Iomega 128 Mo
Kingston 256 Mo
Pen Drive 256 Mo

Mémoire de masse étendue

Option Description

140-1 Disque à mémorisation instantanée de 128 Mo. Le disque standard dispose de 64 Mo.
A
alimentation secteur, 53
arrêt d'urgence, 11, 13
arrêt de l'espace de sécurité, 11
retardé, 11
atelier, système de coordonnées, 29
axes externes, 31, 32

B
base, système de coordonnées, 29
bouton d'arrêt d'urgence, 14

C
câble du manipulateur, 72
longueur, 72
protection, 72
CAN/DeviceNet, 58
commande Hold-to-run (nécessitant une action maintenue), 12
communication, 42
communication série, 42
conditions d'exploitation, 20
configuration, 22, 34
connexion, 72
alimentation secteur, 53
coordonnées, systèmes, 28
curseur, 13

D
dépannage, 27
détection de collision, 11
diagnostics, 27
dimensions, 7
dispositif de refroidissement, 7

E
E/S déportées Allen-Bradley, 34, 36, 59
E/S distribuées, 37
E/S fixes, 35
E/S simultanées, 35
éclairage
connexion, 72
pupitre mobile d'apprentissage, 50
effet miroir, 24
entrées, 34
entretien, 27
esclave Interbus, 34, 36, 59
esclave Profibus DP, 34, 36, 59
dimension de travail
 limitation, 11
exigences d'encombrement, 7

F
fenêtre de production, 25
fenêtres, 13
fonctionnement, 13
fonctionnement automatique, 25
fonctions de l'automate programmable, 35

G
gâchette de validation, 11, 14
crâne, 13
gestion de la singularité, 31

H
humidité, 20

I
inertie importante, 31
installation, 20
interconnexions, 34
interrupteur secteur, 54
interruption, 35
joystick, 14, 15

L
lampe de sécurité, 12
langage RAPID, 26
langue, 22

M
maintenance, 27
mémoire
disque à mémorisation instantanée, 18
étendue, 18
mémoire DRAM, 18
sauvegarde, 18
stockage de masse, 18
mémoire de masse, 18
mémoire du disque à mémorisation instantanée, 18
mémoire étendue, 18
mesure absolue, 25
mode de fonctionnement, 17
modification
 position, 24
programmes, 24
mot de passe, 24
mouvements, 27
mouvements manuels en toute sécurité, 11
Multitasking, 35

N
niveau de bruit, 7
normes, 10

O
objet, système de coordonnées, 29
options, 45

P
panneau de commande, 16
pilotage manuel, 31
pilotage manuel incrémentiel, 31
Index

point d'arrêt, 23
point d'outil, 29
point de survol, 23
position
 exécution, 30
 modification, 24
 programmation, 23, 30
prises d'entretien, 72
Profibus, 58
programmation, 23
programme
 modification, 24
 test, 24
protection survitesse, 11
pupitre mobile d'apprentissage, 13
câble, 51
eclairage, 50

R
réseau local/Ethernet, 58
roues de l'armoire, 47
routine d'événement, 25
routines d'interruption, 35

S
sauvegarde
 mémoire, 18
 sauvegarde du système informatique, 21
sécurité, 10
sécurité incendie, 12
sélecteur de mode de fonctionnement, 16, 50
signaux analogiques, 34, 39
signaux numériques, 34
signaux système, 41
sorties, 34
structure, 7
surveillance des mouvements, 31
système d'E/S, 34
système de coordonnées de l'outil, 29

T
TCP, 29
TCP fixe, 30
tension de secteur, 51
test de programmes, 24
touches de fenêtre, 14
touches de fonction, 14
touches de mouvement, 14
touches de navigation, 14
TrueMove, 28

U
unité d'interface avec l'encodeur, 36, 59
unités d'E/S, 36
utilisateur, système de coordonnées, 29

V
variantes, 45
tvitesse réduite, 11