Side Mounting

Application

The auxiliary contact blocks are used for the operation of auxiliary circuits and control circuits.

Description

Type of auxiliary contact block in standard version for general use:

- CAL18 2-pole block instantaneous N.O. + N.C. contacts.

The auxiliary contact block is:

- Equipped with screw type connecting terminals delivered open.
- Protected against accidental direct contact.
- Marked in accordance with relevant standards.

Mirror contacts

The auxiliary contact block is designed to meet the requirements in IEC 60947-4-1. In short this means: A normally closed auxiliary contact which can not be in closed position simultaneously with the normally open main contact.
(AF1350/1650: Use two N.C. auxiliary contacts in series for mirror contacts, one block on each side of the contactor).

Fitting Details

Clipped onto the right and/or lefthand side of the contactors.
The CAL18-11B is a second block for mounting in addition to a first CAL18-11 block, right and/or lefthand of the A145 ... A300 and AF145 ... AF1650 contactors.

Ordering Details

${ }^{(1)} 2$ blocks CAL 18-11 + 2 blocks CAL 18-11B

Auxiliary device including an insertion contact and a varistor. To be used only with AE 95/110 and TAE 95/110.

AE95, AE110 TAE95, TAE110	$\}$	CCL18-01	1SFN014328R1001	1	0,040

Auxiliary Contact Blocks

Side Mounting

Technical Data

Types	CAL18-11 CAL18-11B
Compliance with standards	IEC 60947-5-1, EN 60947-5-1
Certification and approvals	CE, UL, CSA, CCC
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$ according to IEC 60947-5-1 according to UL/CSA	690
Rated operational voltage $\mathrm{U}_{\mathrm{e}} \quad \mathrm{V}$ a.c.	24 to 690
Conventional free air thermal current $\mathrm{I}_{\text {th }} \quad$ A	16
Rated operational current I_{e} acc. to IEC 60947-5-1	
AC-15 $24-127$ V a.c. \mathbf{A} $220-240$ V a.c. \mathbf{A} $380-440$ V a.c. \mathbf{A} $500-690$ V a.c. \mathbf{A}	$\begin{aligned} & 6 \\ & 4 \\ & 3 \\ & 2 \end{aligned}$
DC-13 24 V d.c. A 48 V d.c. \mathbf{A} 72 V d.c. \mathbf{A} 125 V d.c. \mathbf{A} 250 V d.c. \mathbf{A}	$\begin{aligned} & 6 \\ & 2.8 \\ & 1 \\ & 0.55 \\ & 0.3 \end{aligned}$
Short-circuit protection-gG type fuses A	10
Rated making capacity	$10 \times \mathrm{I}_{\text {e }}$ AC-15
Rated breaking capacity	$10 \times \mathrm{I}_{\mathrm{e}}$ AC-15
$\begin{array}{lrr} \hline \text { Rated short-time withstand current } \mathrm{I}_{\mathrm{cw}} & 1 \mathrm{~s} & \mathbf{A} \\ \theta=40^{\circ} \mathrm{C} & 0.1 \mathrm{~s} & \mathbf{A} \end{array}$	100 140
Power loss per pole at 6 A W	0.15
Min. switching capacity \quad V/mA	24 / 50 (0.5 millions of operating cycles)
Mechanical durability - millions of operating cycles - max. mech. switching frequency cycles / h	$\begin{aligned} & 5 \text { (A/AF95 ... A/AF185), } 3 \text { (A/AF210 ... AF750), } 0.5 \text { (AF1350/AF1650) } \\ & 3600 \end{aligned}$
Electrical durability - millions of operating cycles - max. elec. switching frequency cycles / h	see diagram below 1200
Connecting terminals (Delivered in open position. Terminal screws not used should be tightened.)	M3.5 (+,-) pozidriv 2 screw with cable clamp
Tightening torque - recommended - max. Nm	$\begin{aligned} & 1.00 \\ & 1.20 \end{aligned}$
Connecting capacity (min. ... max.)	
Rigid solid $\quad \square$ 1 or $2 \times$ mm ${ }^{2}$	1... 4
Flexible with cable end $\quad \square \square 1$ or $2 \times \mathrm{mm}^{2}$	0.75 ... 2.5
	8 3.7 19
Degree of protection according to IEC 60529, IEC 60144	IP 20

Electrical Durability for AC-15 Utilization Category

AC-15 utilization category according to IEC 60947-5-1 / EN 60947-5-1:

- making current: $10 \times \mathbf{I}_{\mathrm{e}}$ with $\cos \varphi=0.7$ and \mathbf{U}_{e}
- breaking current: \mathbf{I}_{e} with $\cos \varphi=0.4$ and \mathbf{U}_{e}

These curves represent the electrical durability of the add-on auxiliary contacts in relation to the breaking current.

These curves are valid for resistive and inductive loads up to 690 V, $40 \ldots 60 \mathrm{~Hz}$.

