AUXILIARY CONVERTER

BORDLINE® M30 DC_750V
Auxiliary converter and battery charger (BORDLINE® M10) for mass transportation retrofit project

Replacement of obsolete thyristor technology and integration of BORDLINE® M30 DC converter module into existing space.

System overview
The BORDLINE® M30 DC converter is based on modern IGBT technology.

The system is composed by:
- N°1 input stage consisting of input filter, disconnecting and pre charge unit
- N°1 DC/AC inverter with adjustable output frequency up to 50Hz (Catenary/380 Vac 50 Hz 3ph) to supply AC loads on the vehicle
- The system includes also a stand-alone battery charger (BORDLINE® M10) that is a passively operated unit M30 DC_750V is composed by:
 - N°1 potential separation transformer
 - N°1 diode bridge rectifier
 - N°1 sensors and protection devices

Functionality
M30 DC auxiliary converter
(750 Vdc / 400 Vac 50 Hz 3ph)
The three-phase inverter, due to the installed sine-filter, generates a sine wave three-phase voltage at the converter output. The V/F control is implemented to limit the inrush current when a heavy load is powered (e.g. compressors).

M10 AC battery charger
(380 Vac 50 Hz 3ph / 110 Vdc)
It is fed by a three-phase AC input and generates a DC voltage to charge the vehicle batteries and/or supply DC loads. M10 is controlled by M30 auxiliary converter. Charging characteristics can be made battery temperature dependent using the provided temperature sensing input.

Characteristics
- IGBT technology
- Compact and robust design
- Integrated sine filter
- M30: fed by 600 Vdc, 750 Vdc catenary (500 Vdc - 1000 Vdc)
- M10: fed by 380 Vac 50 Hz 3ph
- Full digital control
- Underframe installation

Technical data

<table>
<thead>
<tr>
<th>BORDLINE® M30 DC_750V</th>
<th>Dc Voltage Input</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>600 Vdc, 750 Vdc catenary</td>
</tr>
<tr>
<td>AC Voltage Output</td>
<td>380 50 Hz 3ph</td>
</tr>
<tr>
<td>Max Output Power</td>
<td>30 kVA</td>
</tr>
<tr>
<td>Protection degree</td>
<td>IP65</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>-20°C...+40°C</td>
</tr>
<tr>
<td>Control interface</td>
<td>Binary signal</td>
</tr>
<tr>
<td>Dimension</td>
<td>974 x 680 x 600 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>140 kg</td>
</tr>
</tbody>
</table>
Mechanical design
The metal structure gives IP65 protection and it has been designed for underframe mounting. As the converter has been developed for a revamping project, it has a high-customized mechanical design.

Diagnostics and service
The service-friendly modular design with highly standardized components ensures high reliability, excellent spare parts availability, and optimized life-cycle costs. They permit to monitor converter status and alarms history.

Application example
BORDLINE® M30 DC_750V and BORDLINE M10 AC_380V battery charger are mounted on electrical multiple units running in Germany. ABB converter has been designed for a revamping project and it’s fully compatible with the existing electro-mechanical interfaces.

Control and monitoring
The main control is based on ABB’s AC 800PEC control platform electronics. The output is short-circuit proof. The control electronics also monitors voltages, currents and internal temperatures.

Control interface
Monitoring and control of the auxiliary converter is provided by means of binary signals. For diagnostic, an additional Ethernet interface is available.

Cooling system
BORDLINE M30 DC unit is cooled by forced air. The fan is integrated in the converter.
BORDLINE M10 AC unit is passive air-cooled.

01 Electric multiple unit for S-Bahn Berlin, Germany
Photo: DB AG, Volker Emersleben

02 Block diagram of BORDLINE® M30 DC_750V and M10 AC_380V

Technical data

<table>
<thead>
<tr>
<th>BORDLINE® M10 AC_380V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dc Voltage Input</td>
</tr>
<tr>
<td>AC Voltage Output</td>
</tr>
<tr>
<td>Max Output Power</td>
</tr>
<tr>
<td>Protection degree</td>
</tr>
<tr>
<td>Dimension</td>
</tr>
<tr>
<td>Weight</td>
</tr>
</tbody>
</table>

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail.
ABB AG does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB AG.
Copyright © 2018 ABB All rights reserved