OPTIONS FOR ABB INDUSTRIAL DRIVES

ATEX-certified Safe disconnection function, Ex II (2) GD for ACS880 drives (option +Q971)

Application guide
ATEX-certified Safe disconnection function, Ex II (2) GD for ACS880 drives (option +Q971)

Application guide

Table of contents

1. Safety instructions

5. Start-up and validation test
Table of contents

1 Safety instructions

<table>
<thead>
<tr>
<th>Contents of this chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of warnings and notes</td>
<td>7</td>
</tr>
<tr>
<td>ATEX-certified motor thermal protection functions</td>
<td>7</td>
</tr>
<tr>
<td>Instructions for functional safety circuits</td>
<td>8</td>
</tr>
<tr>
<td>Electrical safety precautions</td>
<td>9</td>
</tr>
</tbody>
</table>

2 Introduction

<table>
<thead>
<tr>
<th>Contents of this chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicability</td>
<td>11</td>
</tr>
<tr>
<td>Target audience</td>
<td>11</td>
</tr>
<tr>
<td>The ATEX-certified Safe disconnection function</td>
<td>11</td>
</tr>
<tr>
<td>Commissioning the drive for a motor in a hazardous area</td>
<td>11</td>
</tr>
<tr>
<td>Compliance with the European ATEX Product Directive 2014/34/EU</td>
<td>12</td>
</tr>
<tr>
<td>Exclusion of liability</td>
<td>12</td>
</tr>
<tr>
<td>Quick reference guide for implementing a safety system</td>
<td>12</td>
</tr>
<tr>
<td>Terms and abbreviations</td>
<td>12</td>
</tr>
<tr>
<td>Related manuals</td>
<td>13</td>
</tr>
</tbody>
</table>

3 Implementing a motor thermal protection circuit

<table>
<thead>
<tr>
<th>Contents of this chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>15</td>
</tr>
<tr>
<td>Operation principle</td>
<td>15</td>
</tr>
<tr>
<td>Without an FSO module</td>
<td>16</td>
</tr>
<tr>
<td>With an FSO module</td>
<td>16</td>
</tr>
<tr>
<td>Two-channel connection to drive STO terminals</td>
<td>16</td>
</tr>
<tr>
<td>General</td>
<td>16</td>
</tr>
<tr>
<td>Implementing the reset of the safety function</td>
<td>16</td>
</tr>
<tr>
<td>Indications of the safety function</td>
<td>16</td>
</tr>
<tr>
<td>Connection diagram</td>
<td>17</td>
</tr>
<tr>
<td>One-channel connection to drive STO terminals</td>
<td>18</td>
</tr>
<tr>
<td>General</td>
<td>18</td>
</tr>
<tr>
<td>Implementing the reset of the safety function</td>
<td>18</td>
</tr>
<tr>
<td>Indications of the safety function</td>
<td>18</td>
</tr>
<tr>
<td>Connection diagram</td>
<td>19</td>
</tr>
<tr>
<td>One-channel or two-channel connection to an FSO module</td>
<td>20</td>
</tr>
<tr>
<td>General</td>
<td>20</td>
</tr>
<tr>
<td>Implementing the reset of the safety function</td>
<td>20</td>
</tr>
<tr>
<td>Indications of the safety function</td>
<td>20</td>
</tr>
<tr>
<td>Connection diagram (two-channel connection)</td>
<td>21</td>
</tr>
<tr>
<td>Connection diagram (one-channel connection)</td>
<td>22</td>
</tr>
<tr>
<td>Sensors</td>
<td>22</td>
</tr>
<tr>
<td>Protection relays</td>
<td>23</td>
</tr>
<tr>
<td>Wiring</td>
<td>23</td>
</tr>
<tr>
<td>Insulation of the sensor circuit</td>
<td>23</td>
</tr>
</tbody>
</table>
6 Table of contents

General wiring instructions ... 23

4 Parameter settings
Contents of this chapter .. 25
Drive / inverter .. 25
 Switching frequency limitation .. 25
 Reset method and status indications .. 25
 31.22 STO indication run/stop .. 25
 Motor overtemperature indication .. 26
 31.11 Fault reset selection ... 26
 Other recommended settings .. 26
FSO module .. 27
 General parameters ... 28
 Parameters for the STO function .. 29
 Parameters for the SSE function .. 31
 Parameters for the SS1 function .. 31
 SS1 ramp parameters in the drive/inverter unit 33
 FSE module and safety encoder parameters 33
Mechanical brake control .. 34

5 Start-up and validation test
Contents of this chapter .. 35
Validation of the safety functions .. 35
 Competence .. 35
 Validation procedure ... 35
 Validation test reports ... 36
Start-up and validation test .. 36

6 Technical data
Contents of this chapter .. 39
Related standards and directives .. 39
Safety data .. 39
 Drive/inverter module STO function .. 39
 Drive/inverter module STO function and an FSO module 40
 Safety block diagrams .. 40
 Response times .. 41
Markings of the drive/inverter module .. 42
ATEX certificate .. 43
Declaration of Conformity .. 45

Further information
Safety instructions

Contents of this chapter
This chapter contains the safety instructions which you must obey when you install, operate and do maintenance on the safety functions of a drive.

Use of warnings and notes
Warnings tell you about conditions which can cause injury or death, or damage to the equipment. They also tell you how to prevent the danger. Notes draw attention to a particular condition or fact, or give information on a subject.

The manual uses these warning symbols:

<table>
<thead>
<tr>
<th>WARNING!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity warning tells about hazards from electricity which can cause injury or death, or damage to the equipment.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WARNING!</th>
</tr>
</thead>
<tbody>
<tr>
<td>General warning tells about conditions, other than those caused by electricity, which can cause injury or death, or damage to the equipment.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WARNING!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrostatic sensitive devices warning tells you about the risk of electrostatic discharge which can cause damage to the equipment.</td>
</tr>
</tbody>
</table>

ATEX-certified motor thermal protection functions
Only qualified specialists are permitted to install, control and maintain the ATEX-certified motor thermal protection functions (see IEC/EN 60079-14). Obey all safety regulations
required with application of Ex motors in Zone 1/21 (equipment category 2) or Zone 2/22 (equipment category 2 or 3).

Instructions for functional safety circuits

WARNING!
Obey the safety instructions of the drive. If you ignore them, injury or death, or damage to the equipment can occur.

This manual does not contain the complete safety instructions of the drive. It only includes the instructions related to the scope of this manual. The general instructions are given in this section and the option-specific instructions in the applicable chapter.

In addition to this manual:

- for ACS880 single drives, see the drive hardware manual
- for ACS880 air-cooled multidrives, multidrive modules and single drive modules, see ACS880 multidrive cabinets and modules safety instructions ([3AUA0000102301][English])
- for ACS880 liquid-cooled multidrives, multidrive modules and single drive modules, see ACS880 liquid-cooled multidrive cabinets and modules safety instructions ([3AXD50000048633][English]).

WARNING!
The safety function described in this manual does not isolate the main circuit or auxiliary circuit from the power supply. Do not do work on the drive, motor cable or motor before you have isolated the drive system from all power supplies and measured that there are no dangerous voltages. Before you start the work, do the steps in section *Electrical safety precautions (page 9)*.

WARNING!
If a short-circuit occurs in the output stage of the drive, the STO function does not prevent the intermediate DC current from flowing through and heating up the motor. The system integrator must take this into account when planning the protection of the installation.
Electrical safety precautions

These electrical safety precautions are for all personnel who do work on the drive, motor cable or motor.

WARNING!

Obey these instructions. If you ignore them, injury or death, or damage to the equipment can occur.

- If you are not a qualified electrical professional, do not do installation or maintenance work.
- Go through these steps before you begin any installation or maintenance work.

1. Clearly identify the work location and equipment.

2. Disconnect all possible voltage sources. Make sure that re-connection is not possible. Lock out and tag out.
 - Open the main disconnecting device of the drive.
 - Open the charging switch if present.
 - Open the disconnector of the supply transformer. (The main disconnecting device in the drive cabinet does not disconnect the voltage from the AC input power busbars of the drive cabinet.)
 - Open the auxiliary voltage switch-disconnector (if present), and all other possible disconnecting devices that isolate the drive from dangerous voltage sources.
 - If you have a permanent magnet motor connected to the drive, disconnect the motor from the drive with a safety switch or by other means.
 - Disconnect all dangerous external voltages from the control circuits.
 - After you disconnect power from the drive, always wait 5 minutes to let the intermediate circuit capacitors discharge before you continue.

3. Protect any other energized parts in the work location against contact.

4. Take special precautions when close to bare conductors.

5. Measure that the installation is de-energized. If the measurement requires removal or disassembly of shrouding or other cabinet structures, obey the local laws and regulations applicable to live working (including – but not limited to – electric shock and arc protection).
 - Before and after measuring the installation, verify the operation of the voltage tester on a known voltage source.
 - Make sure that the voltage between the drive input power terminals (L1, L2, L3) and the grounding (PE) busbar is zero.
 - Make sure that the voltage between the drive output terminals (T1/U, T2/V, T3/W) and the grounding (PE) busbar is zero.
 - Make sure that the voltage between the drive DC terminals (UDC+ and UDC-) and the grounding (PE) terminal is zero.

6. Install temporary grounding as required by the local regulations.

7. Ask the person in control of the electrical installation work for a permit to work.
Introduction

Contents of this chapter
This chapter contains information on the manual and gives other general information for the reader.

Applicability
This manual is applicable to ACS880 drives, drive modules and inverter modules with the ATEX-certified Safe disconnection function (option +Q971).

Target audience
This manual is intended for people who install, commission, use and service the ATEX-certified Safe disconnection function (option +Q971) of the drive. Read the manual before working on the drive. You are expected to know the fundamentals of electricity, wiring, electrical components, electrical schematic symbols, functional safety, and ATEX/Ex regulations.

The ATEX-certified Safe disconnection function
When the drive/inverter module is equipped with the option +Q971, its Safe torque off (STO) function is certified as a Safe disconnection function. It can be used as a protective system to protect equipment in potentially explosive atmospheres. The certificate is an EU Type examination certificate in accordance with the ATEX Product Directive 2014/34/EU.

Commissioning the drive for a motor in a hazardous area
Commission the drive according to the requirements and limitations set by the application, the motor manufacturer’s instructions, drive firmware manual, local laws and regulations and this manual.
The certificate of the Ex motor typically requires that you set a minimum limit for the output switching frequency of the drive. Make sure that the Ex motor is operated above the minimum output switching frequency specified by the motor manufacturer.

Compliance with the European ATEX Product Directive 2014/34/EU

The system integrator is responsible for the compliance of the complete motor thermal protection circuit with the European ATEX Product Directive 2014/34/EU. If the compliance of the system with the ATEX Product Directive requires the motor thermal protection, make sure that:

- the drive/inverter module is equipped with the ATEX-certified Safe disconnection function (option +Q971)
- the motor thermal protection relay is ATEX-compliant
- the motor thermal protection circuit is wired according to the instructions given in this manual and in the motor manual and according to the installation requirements of the relevant standard(s) of IEC/EN 60079 series.

Exclusion of liability

ABB is not responsible for the implementation, verification and validation of the overall safety system. It is the responsibility of the system integrator (or other party) who is responsible for the overall system and system safety.

The system integrator (or other responsible party) must make sure that the entire implementation complies with the instructions in this manual, all relevant standards, directives and local electrical code, and that the system is tested, verified and validated correctly.

Quick reference guide for implementing a safety system

| Task |
|---|---|
| Obey the requirements of the relevant standard(s) of the IEC/EN 60079 series for implementing the temperature protection function of the Ex motor. | ☑ |
| Select an ATEX-compliant protection relay that is compatible with the motor temperature sensor(s). | ☐ |
| Design the safety system. | ☐ |
| Connect the wiring. See the wiring instructions in this manual. | ☐ |
| Set the parameters related to the safety function (as listed in this manual). | ☐ |
| Do the validation test. You can find instructions for the validation test in this manual. | ☐ |
| Document the validation test procedure. You can find the guidelines for the validation test report in this manual. | ☐ |

Terms and abbreviations

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATEX</td>
<td>Directives 2014/34/EU and 1999/92/EC are commonly referred to as the ATEX directives (from “Atmosphères Explosibles”)</td>
</tr>
<tr>
<td>Drive</td>
<td>Frequency converter for controlling AC motors</td>
</tr>
<tr>
<td>Drive module</td>
<td>Frequency converter enclosed in a metal frame or enclosure. Intended for cabinet installation.</td>
</tr>
</tbody>
</table>
An IEC term used in the context of explosive atmospheres (IEC 60079)

Ex d Type of protection, flameproof enclosures (IEC/EN 60079-1)

Ex eb, Ex ec Types of protection, increased safety (IEC/EN 60079-7)

Ex motors Motors used in explosive atmospheres

FSE-31 Optional pulse encoder interface module for safety encoder

FSO-21 Safety functions module which supports the FSE-31 module and the use of safety encoders

FSO-12 Safety functions module which does not support the use of encoders

HFT Hardware fault tolerance (IEC 61508)

Inverter module Inverter bridge, related components and drive DC link capacitors enclosed in a metal frame or enclosure. Intended for cabinet installation.

Inverter unit Inverter module(s) under control of one control unit, and related components. One inverter unit typically controls one motor.

PFD Average probability of dangerous failure on demand (IEC 61508)

PFH Average frequency of dangerous failures per hour (IEC 61508)

Proof test Periodic test performed to detect failures in the safety function. The target of the proof test is to ensure that the safety function still operates correctly and is able to achieve the safe state. (IEC 61508, IEC 62061)

SAR Safe acceleration range

SBC Safe brake control

SFF Safe failure fraction (%) (IEC 61508)

SIL Safety integrity level (1...3) (IEC 61508)

SS1 Safe stop 1 (IEC/EN 61800-5-2)

SSE Safe stop emergency

STO Safe torque off (IEC/EN 61800-5-2)

Stop category There are three categories of stop functions defined by IEC/EN 60204-1:

- stop category 0: an uncontrolled stop where power to the machine actuators is removed immediately (for example, STO)
- stop category 1: a controlled stop where the machine actuators have power for stopping, after which the power is removed (SS1)
- stop category 2: a controlled stop where the machine actuators continue to have power (SS2).

T sub 1 Proof test interval. Defines the probabilistic failure rate (PFH or PFD avg) for the safety function or subsystem. Performing a proof test at a maximum interval of **T** sub 1 is required to keep the SIL capability valid. Note that any **T** sub 1 values given cannot be regarded as a guarantee or warranty.

T sub M Mission time: the period of time covering the intended use of the safety function/device. After the mission time elapses, the safety device must be replaced. Note that any **T** sub M values given cannot be regarded as a guarantee or warranty. (IEC 61800-5-2)

Zone Potentially explosive atmosphere. Hazardous areas are divided into zones, based on the frequency and duration of the occurrence of an explosive atmosphere. (IEC/EN 60079)

Later in this manual, the term “drive” is used to refer to drives, drive modules and inverter modules.

Related manuals

<table>
<thead>
<tr>
<th>Manual</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive hardware</td>
<td></td>
</tr>
<tr>
<td>ACS880-01 drives (0.55 to 250 kW) hardware manual</td>
<td>3AUA0000078093</td>
</tr>
<tr>
<td>ACS880-04 drive modules (200 to 710 kW, 300 to 700 hp) hardware manual</td>
<td>3AUA0000128301</td>
</tr>
<tr>
<td>ACS880-04 single drive module packages hardware manual</td>
<td>3AUA0000138495</td>
</tr>
</tbody>
</table>
14 Introduction

<table>
<thead>
<tr>
<th>Manual</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS880-04XT drive modules (500 to 1200 kW) hardware manual</td>
<td>3AXD50000025169</td>
</tr>
<tr>
<td>ACS880-04F drive modules hardware manual</td>
<td>3AXD50000034664</td>
</tr>
<tr>
<td>ACS880-04FX drive module packages hardware manual</td>
<td>3AXD500000274444</td>
</tr>
<tr>
<td>ACS880-M04 Machinery drive hardware manual</td>
<td>3AXD50000028613</td>
</tr>
<tr>
<td>ACS880-11 hardware manual</td>
<td>3AXD50000045932</td>
</tr>
<tr>
<td>ACS880-31 hardware manual</td>
<td>3AXD50000045933</td>
</tr>
<tr>
<td>ACS880-14 and -34 single drive module packages hardware manual</td>
<td>3AXD50000022021</td>
</tr>
<tr>
<td>ACS880 multidrive cabinets and modules electrical planning instructions</td>
<td>3AUA0000102324</td>
</tr>
<tr>
<td>ACS880 liquid-cooled multidrive cabinets and modules electrical planning</td>
<td>3AXD50000048634</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inverter hardware</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS880-104 inverter modules hardware manual</td>
<td>3AUA00000104271</td>
</tr>
<tr>
<td>ACS880-104LC inverter modules hardware manual</td>
<td>3AXD50000045610</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drive firmware</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS880 primary control program firmware manual</td>
<td>3AUA00000085967</td>
</tr>
<tr>
<td>ACS880 primary control program quick start-up guide</td>
<td>3AUA0000098062</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PC tools</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive composer start-up and maintenance PC tool user's manual</td>
<td>3AUA0000094606</td>
</tr>
<tr>
<td>Functional safety design tool user's manual</td>
<td>TT20131211015</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Safety</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS880 multidrive cabinets and modules safety instructions</td>
<td>3AUA0000102301</td>
</tr>
<tr>
<td>ACS880 liquid-cooled multidrive cabinets and modules safety instructions</td>
<td>3AXD50000048633</td>
</tr>
<tr>
<td>Functional safety; Technical guide No. 10</td>
<td>3AUA0000048753</td>
</tr>
<tr>
<td>ABB Safety information and solutions</td>
<td>www.abb.com/safety</td>
</tr>
<tr>
<td>Motors and drives in potentially explosive atmospheres - What you need to know</td>
<td>3AUA0000037223</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Options</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACX-AP-x assistant control panels user’s manual</td>
<td>3AUA0000085685</td>
</tr>
<tr>
<td>ATEX-certified Safe disconnection function, Ex II (2) GD for ACS880 drives (option +Q971)</td>
<td>3AUA0000132321</td>
</tr>
<tr>
<td>FSO-12 safety functions module user’s manual</td>
<td>3AXD50000015612</td>
</tr>
<tr>
<td>FSO-21 safety functions module user’s manual</td>
<td>3AXD50000015614</td>
</tr>
<tr>
<td>FSE-31 pulse encoder interface module user’s manual</td>
<td>3AXD50000016597</td>
</tr>
<tr>
<td>FPTC-02 ATEX-certified thermistor protection module, Ex II (2) GD (option +L537+Q971) for ACS880 drives user's manual</td>
<td>3AXD50000027782</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other documents</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit diagrams</td>
<td>Delivered with the drive</td>
</tr>
<tr>
<td>Part lists</td>
<td>Delivered with the drive</td>
</tr>
</tbody>
</table>

Implementing a motor thermal protection circuit

Contents of this chapter

This chapter contains instructions on how to implement an ATEX-compliant motor thermal protection circuit with the ATEX-certified Safe disconnection function (option +Q971) of the drive.

Overview

You can use the ATEX-certified Safe disconnection function (option +Q971) to implement an ATEX-compliant motor thermal protection circuit. The ATEX-certified Safe disconnection function uses the drive/inverter Safe torque off (STO) function. For a description of the STO function, see the drive/inverter hardware manual. To comply with ATEX certification requirements, you must obey the instructions for the STO function in the drive/inverter hardware manual.

You can implement the motor thermal protection circuit with or without an FSO module. The FSO module (FSO-12 or FSO-21) is an optional device used with ACS880 drives to implement additional safety functions. When an FSO module is installed, it reserves the standard STO connection of the drive. With the safety function shown in this manual, the FSO module activates the drive STO function immediately (STO) or after a deceleration ramp (SS1). You can configure several different safety functions in the FSO module at the same time. The wiring and parameter settings in this manual show how to configure the ATEX-certified Safe disconnection function as a safety function in the FSO module. For more information on the FSO module, see the FSO module user's manuals.

In applications with Ex motor(s), multi-motor operation with a single drive or inverter unit is not permitted. Each drive or inverter unit, including the motor thermal protection circuit, can only control one motor.
You cannot connect the motor temperature sensor directly to the drive or FSO module. You must use an ATEX-compliant protection relay in between.

As an alternative to an ATEX-compliant protection relay, you can use the FPTC-02 ATEX-certified thermistor protection module, Ex II (2) GD (option +L537+Q971) to implement the ATEX-compliant motor thermal protection function. For more information, see the FPTC-02 user's manual.

Note: The FPTC-02 module is compatible only with PTC sensors.

Operation principle

- **Without an FSO module**

 When the protection relay detects overtemperature in the motor, it opens the STO circuit of the drive. The motor coasts to a stop. The motor cannot start while the STO function is active. For example diagrams, see sections Two-channel connection to drive STO terminals (page 16) and One-channel connection to drive STO terminals (page 18).

- **With an FSO module**

 When the protection relay detects overtemperature in the motor, it de-energizes the FSO inputs, which activates the STO function (stop category 0) or SS1 function (stop category 1) of the FSO module. You must select the stop category according to the system risk assessment.

 STO function: The FSO module opens the STO circuit of the drive. The motor coasts to a stop. The motor cannot start while the STO function is active.

 SS1 function: The drive decelerates the motor to zero speed according to a user-defined ramp. The FSO module then opens the STO circuit of the drive. The motor cannot start while the STO function is active.

 For example diagrams, see section One-channel or two-channel connection to an FSO module (page 20).

Two-channel connection to drive STO terminals

- **General**

 This section describes an implementation of the ATEX-compliant motor thermal protection circuit. The circuit uses the ATEX-certified Safe disconnection function (option +Q971) of the drive and a two-channel (redundant) connection to the drive STO terminals.

- **Implementing the reset of the safety function**

 A manual reset is mandatory in the motor thermal protection function, if it is required for ensuring the compliance of the system with Ex/ATEX regulations. After the motor thermal protection function activates, the motor must not restart before a manual reset command is given. You can implement a manual reset in the ATEX-compliant protection relay (recommended). Use the reset button of the relay, or connect an external reset button to the relay. You can also configure a manual reset in the drive.

- **Indications of the safety function**

 In this example, you can use the drive STO indication to indicate the motor overtemperature. Make sure that this indication generates a fault if the protection relay does not contain a manual reset. See section Reset method and status indications (page 25).
Connection diagram

The diagram below shows the connections. The system integrator must get the components and do the installations drawn outside the drive border line.

Notes and Abbreviations

- **1** Drive
- **2** ATEX-compliant protection relay. The relay monitors a sensor circuit, and de-energizes the XSTO inputs when necessary.
- **3** Motor temperature sensor
- **4** Potentially explosive atmosphere
- **a)** You can use the drive STO function for more than one external safety function at the same time (for example, ATEX-compliant motor thermal protection and emergency stop). You must connect the STO activation switches or relays used in other safety functions in series with the protection relay.

Note: If you use the drive STO function to implement several safety functions, all of them will generate the same STO indication when activated (defined by parameter 31.22). If each safety function has a dedicated manual reset circuit in its safety relay, it is not necessary to configure an additional reset in the drive. If the ATEX-compliant protection relay does not have a manual reset, parameter 31.22 must be set to Fault/Fault.
One-channel connection to drive STO terminals

- **General**

 This section describes an implementation of the ATEX-compliant motor thermal protection circuit:

 - The circuit uses the ATEX-certified Safe disconnection function (option +Q971) of the drive.

 - There is a one-channel (non-redundant) connection from the protection relay to the drive STO terminals. Both STO inputs of the drive are connected to same output contact of the protection relay.

 - One output contact of the protection relay is connected to a digital input of the drive.

 - The drive shows an overtemperature indication when the digital input is de-energized (the protection relay trips).

 If you plan to use a one-channel (non-redundant) connection, make sure that you can reach the necessary safety integrity level (SIL). According to EN 50495, SIL1 is sufficient for the protection of category 2 and 3 equipment.

- **Implementing the reset of the safety function**

 A manual reset is mandatory in the motor thermal protection function, if it is required for ensuring the compliance of the system with Ex/ATEX regulations. After the motor thermal protection function activates, the motor must not restart before a manual reset command is given. You can implement a manual reset in the ATEX-compliant protection relay (recommended). Use the reset button of the relay, or connect an external reset button to the relay. You can also configure a manual reset in the drive.

- **Indications of the safety function**

 In this example, the indication of the safety function can come from these sources:

 - the motor overtemperature indication (parameters 31.01…31.02, 35.11…35.12)

 - the STO indication (parameter 31.22 STO indication run/stop)

 To prevent parallel indications, you can set some indication parameters to value *No indication*, *None* or *Event*.

 Make sure that at least one of these indications generates a fault if the protection relay does not contain a manual reset. See section *Reset method and status indications (page 25)*.
Connection diagram

The diagram below shows the connections. The system integrator must get the components and do the installations drawn outside the drive border line.

1. Drive
2. ATEX-compliant protection relay. The relay monitors a sensor circuit, and de-energizes the XSTO inputs when necessary.
3. Motor temperature sensor
4. Potentially explosive atmosphere

a) You can use the drive STO function for more than one external safety function at the same time (for example, ATEX-compliant motor thermal protection and emergency stop). You must connect the STO activation switches or relays used in other safety functions in series with the protection relay.

Note: If you use the drive STO function to implement several safety functions, all of them will generate the same STO indication when activated (defined by parameter 31.22). If each safety function has a dedicated manual reset circuit in its safety relay, it is not necessary to configure an additional reset in the drive. If the ATEX-compliant protection relay does not have a manual reset, parameter 31.22 must be set to Fault/Fault.

b) The STO function of the drive must always have a redundant connection. Connect the XSTO terminals 3 and 4 as shown in this figure.

c) Connect to a digital input on the control unit for the protection relay status indication. In this example, digital input DI6 is used.
One-channel or two-channel connection to an FSO module

General

This section describes two implementations of the ATEX-compliant motor thermal protection circuit with an FSO module:

- The circuit uses the ATEX-certified Safe disconnection function (option +Q971) of the drive.
- The FSO module (FSO-12 or FSO-21) is connected to the drive STO terminals.
- The protection relay is connected to the FSO module either with:
 - a two-channel (redundant) connection, or
 - a one-channel (non-redundant) connection. In this case, one output contact of the protection relay is used for monitoring the status of the relay.

If you plan to use the one-channel connection in the protection relay, make sure that you can reach the necessary safety integrity level (SIL). According to standard EN 50495, SIL1 is sufficient for the protection of category 2 and 3 equipment.

Implementing the reset of the safety function

A manual reset is mandatory in the motor thermal protection function, if it is required for ensuring the compliance of the system with Ex/ATEX regulations. After the motor thermal protection function activates, the motor must not restart before a manual reset command is given. You can implement a manual reset in the ATEX-compliant protection relay (recommended). Use the reset button of the relay, or connect an external reset button to the relay. You can also configure a manual reset in the drive.

Indications of the safety function

In this example, the indication of the safety function can come from these sources:

- the motor overtemperature indication (parameters 31.01…31.02, 35.11…35.12)
- the STO indication (parameter 31.22 STO indication run/stop)
- the STO indication in the FSO module (FSO parameter FSOGEN.61 STO indication ext request).

To prevent parallel indications, you can set some indication parameters to value No indication, None or Event.

Make sure that at least one of these indications generates a fault if:

- the protection relay does not contain a manual reset, and
- the FSO module is not configured for a manual reset.

See sections Reset method and status indications (page 25) and FSO module (page 27).
Connection diagram (two-channel connection)

The diagram below shows the wiring of the two-channel connection. The system integrator must get the components and do the installations drawn outside the drive border line.

1 Drive
2 FSO module
3 ATEX-compliant protection relay. The relay monitors a sensor circuit, and de-energizes the FSO module inputs when necessary.
4 Motor temperature sensor
5 Potentially explosive atmosphere
Connection diagram (one-channel connection)

The diagram below shows the wiring of the one-channel connection. The system integrator must get the components and do the installations drawn outside the drive border line.

In this one-channel connection, there is no redundant connection between the protection relay and FSO module. But the STO connection signal between the FSO module and STO circuit is redundant.

Sensors

Make sure that the sensor type and the on-off resistances of the used sensors agree with the protection relay specifications. See the requirements for sensors and installation from the documentation of the protection relay.
Protection relays

The protection relay monitors the motor equipped with temperature sensors. The sensor indicates the motor temperature for the protection relay. For example, with a PTC thermistor, when the motor temperature reaches the wake-up level of the sensor, the resistance of the temperature sensor increases sharply. The relay detects the change and indicates motor overtemperature through its output contacts. The opening contacts open the STO circuit of the drive. This disconnects the power supply from the motor.

Use an ATEX-compliant protection relay only. The example uses an ABB CM-MSS.41 thermistor motor protection relay. You can find more information in the CM-MSS.41 data sheet (2CDC112216D0201 [English]). In this thermistor relay, it is possible to implement a manual reset.

Include the protection relay test to the start-up and acceptance test of the motor thermal protection circuit. See the relay documentation for the relay tests.

Wiring

When you install the motor thermal protection circuit, keep the switching (safety) signal isolated from all other signals.

- **Insulation of the sensor circuit**

 When you connect the temperature sensor(s) of the Ex motor to the drive STO terminals through a relay, make sure that there is reinforced (double) insulation between the main circuit (motor) and the drive control unit as required by IEC 61800-5-1. The insulation of the temperature sensor in the Ex motor and the insulation of the protection relay form the insulation of the whole circuit. All Ex motors manufactured by ABB have basic insulation between the main circuit and the temperature sensor.

- **General wiring instructions**

 1. Install only the sensor circuit into the potentially explosive atmosphere.

 The sensor circuit in the Ex Zone must comply with the requirements for the applicable type of protection, such as:

 - Ex d (IEC/EN 60079-1)
 - Ex eb (IEC/EN 60079-7, Ex e in EN 60079-7:2007 and IEC 60079-7:2006)

 2. Install the drive or inverter unit, including the components of the ATEX-certified motor thermal protection function, outside the potentially explosive atmosphere.

 3. For the sensor connection, ABB recommends to use shielded twisted-pair cable. This type of cable decreases electromagnetic interference in the sensor circuit.

 4. Route the sensor cables away from the motor cable. Power cables can cause electromagnetic interference in the sensor circuit.

 5. Ground all sensor cable shields to a single grounding point outside the potentially explosive atmosphere. 360-degree grounding of the cable shields at the cable entry of the drive is recommended. Do not connect the cable shields to ground at the sensor end of the cable.

 6. Connect the control cable shields to the chassis only.
Note: ABB recommends to use shielded twisted-pair cable for the connection between the protection relay and drive control unit when:

- the drive is not installed into a cabinet, or
- the drive is not installed into the same cabinet as the protection relay.
Parameter settings

Contents of this chapter
This chapter lists the parameters that you have to set for the ATEX-certified motor thermal protection functions in this manual.

Drive / inverter

■ Switching frequency limitation
The certificate of the Ex motor typically requires that you set a minimum limit for the switching frequency of the drive.

For ABB Ex motors, use parameter 95.15 to set the required minimum switching frequency. For more information, see the drive firmware manual.

For Ex motors supplied by other motor manufacturers, contact the motor manufacturer for the correct value and your local ABB representative for instructions on how to make the parameter setting in the drive.

■ Reset method and status indications
To configure a manual reset for the temperature protection function in the drive, you can set either the STO indication (parameter 31.22 STO indication run/stop) or the motor temperature indication so that it generates a fault.

31.22 STO indication run/stop
Set this parameter to value Fault/Fault or Fault/Warning.

• Fault/Fault: This generates a fault in the drive/inverter unit when STO is activated.
• Fault/Warning: This generates a fault in the drive/inverter unit when the drive is running and warning when the drive is stopped.
When the drive/inverter unit generates a fault indication because of STO activation, you must reset the drive/inverter unit before you can restart the drive.

Note: You can also configure the FSO module so that it sends a fault to the drive each time it activates the drive STO function. See parameter `FSOGEN.61`.

Motor overtemperature indication

There are two ways to configure the motor overtemperature indication.

Example 1

The ACS880 primary control program has two separate temperature monitoring functions. In this example, one of these functions (External event 1) is configured to monitor digital input DI6. When the input is de-energized (0), the function triggers the user-selected indication and shows the user-defined message. To configure the motor overtemperature indication in the drive:

1. Select the digital input which shows the status of the external event: set parameter 31.01 `External event 1 source` to DI6. You can also use another digital input.
2. Select the type of the `External event 1`: set parameter 31.02 `External event 1 type` to `Fault`, `Warning` or `Warning/Fault`. If you set this parameter to `Fault`, the drive trips due to overtemperature and you must reset the drive with a manual reset command before you can restart the drive. If you use an FSO module and parameter 31.02 is set to `Fault`, you must configure the safety function in the FSO module so that it activates the STO function (stop category 0).
3. If necessary, edit the indication message. You can use the control panel or Drive composer PC tool to edit messages.

Example 2

In this example, the motor temperature is read from digital input DI6.

1. Select `PTC DI6` as the source of the temperature with parameter 35.11 `Temperature 1 source`. Use the same setting also with Pt100 sensors.
2. By default, a temperature that is too high will generate a warning. To generate a fault instead, set parameter 35.12 `Temperature 1 fault limit` to 4000 ohm.
3. If necessary, edit the indication message. You can use the control panel or Drive composer PC tool to edit messages.

For more information, see *ACS880 primary control program firmware manual* (3AUA0000085967 [English]).

31.11 Fault reset selection

Select the correct source of an external fault reset signal with parameter 31.11 `Fault reset selection`.

- **Other recommended settings**

 ABB recommends that you also set these parameters to improve the safety of the application:

 - minimum and maximum speeds (parameter group 30)
 - maximum current, power and torque (group 30)
 - acceleration and deceleration times
 - stall protection (parameters 31.24…31.28)
• motor load curve (parameters 35.50…35.55)
• motor cable protection (parameters 35.60…35.62)

For more information, see the drive firmware manual.

FSO module

If you use an FSO module in the safety system configuration, set the parameters according to the system requirements. Example values are shown in this section.

The person who configures the safety functions in the FSO module must be a competent person as required by IEC 61508-1 clause 6. In this context, the person must have expertise and knowledge of functional safety, the safety functions and the configuration of the FSO module. ABB has training courses on the FSO module.

You must use the Drive composer pro PC tool to set the FSO module parameters. You also need a password to be able to download the configuration to the FSO module from Drive composer pro. For the default password of the FSO module, see the applicable FSO module user’s manual. For more information on the Drive composer pro PC tool, see *Drive composer start-up and maintenance PC tool user’s manual* (3AUA0000094606 [English]).

Note: When the motor is running, you cannot change the password, adjust parameter values, or upload or download the FSO configuration file.

Follow the configuration steps described in the applicable FSO module user’s manual, chapter *Configuration*.

There are parameters that you must always set when you use the FSO module, and parameters that are related only to some safety functions. This section lists the parameters that are related to option +Q971. The example values are applicable to the two-channel wiring example in section *Connection diagram (two-channel connection) (page 21)*. The protection relay is connected to digital inputs X113:1 and X114:1 of the FSO module.

If you use an FSO-21 module with a FSE-31 pulse encoder interface module and safety encoder, set the parameters listed in section *FSE module and safety encoder parameters (page 33)*.

You can configure the FSO module so that it opens the drive or inverter STO circuit immediately (STO function in the FSO module, stop category 0) or after a deceleration ramp (SS1 function in the FSO module, stop category 1). In the first case, the FSO module activates the STO function in the FSO module. In the second case, it activates the SS1 function. Example values are given for both cases. Select the stop category according to the system risk assessment. Do not configure the STO function and the SS1 function to the same input at the same time.

Note: Setting parameters related to STO, SSE and SS1 can also have an effect on other safety functions. You must take all safety functions into consideration when you configure the FSO module. See the applicable FSO module user’s manual and safety option user’s manual.

Note: The FSO module has a factory reset button. The factory reset button clears the configuration and sets the parameters to the factory default values. These values are not the same as the pre-set values in an FSO module that was ordered as an option (with a plus code). You cannot restart the drive with the factory default values. If you do a factory reset of the FSO module, you must reconfigure the FSO module and set all applicable parameters. Because of this, it is recommended to save the FSO safety file with the button *Save safety file* in the Drive composer pro PC tool. For more information, see the FSO module user’s manual and the Drive composer PC tool user’s manual.
General parameters

These parameters are common to all safety functions in the FSO module.

<table>
<thead>
<tr>
<th>Index</th>
<th>Name</th>
<th>Example value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSOGEN.11</td>
<td>Stop completed output</td>
<td>None</td>
<td>Sets the digital output that indicates the completion of any stop function. Active when the FSO module has completed the STO, SSE or SS1 function.</td>
</tr>
<tr>
<td>FSOGEN.21</td>
<td>Motor nominal speed</td>
<td>1500.0 rpm</td>
<td>Sets the nominal motor speed. Adjust the default value to meet the ratings of the motor in use.</td>
</tr>
<tr>
<td>FSOGEN.22</td>
<td>Motor nominal frequency</td>
<td>50.00 Hz</td>
<td>Sets the nominal motor frequency. Adjust the default value to meet the ratings of the motor in use.</td>
</tr>
<tr>
<td>FSOGEN.41</td>
<td>Power-up acknowledgement</td>
<td>Automatic</td>
<td>Sets the power-up acknowledgement method of the FSO module.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Automatic: You do not need to push a reset button after switching on the FSO module. The FSO module generates the acknowledgement signal automatically after the power-up.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Manual: The FSO module reads the external acknowledgement signal through the digital input defined by parameter FSOGEN.42. Make sure that the value is Automatic.</td>
</tr>
<tr>
<td>FSOGEN.42</td>
<td>Acknowledgement button input</td>
<td>None or eg.</td>
<td>Sets the digital input for the acknowledgement signal when parameter STO.02 has value Manual.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI X113:2</td>
<td>None: No acknowledgement signal connected/required (parameter STO.02 has value Automatic).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DI X113:2: The acknowledgement signal (reset circuit) is connected to this digital input.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>In the safety function described in this manual, you can use this parameter to implement a manual reset in the FSO module.</td>
</tr>
<tr>
<td>FSOGEN.51</td>
<td>Zero speed without encoder</td>
<td>90.0 rpm</td>
<td>Sets the general zero speed limit for safety functions when a safety encoder is not used.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STO function: The value has no effect.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SS1 function: The FSO module activates the drive STO function when the drive decelerates the motor speed below this value. Adjust the default value according to application requirements.</td>
</tr>
<tr>
<td>FSOGEN.52</td>
<td>Zero speed with encoder</td>
<td>0.0 rpm</td>
<td>Sets the general zero speed limit for safety functions when a safety encoder is used.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STO function: The drive STO function is active (cannot be reset) until the motor speed is less than or equal to this value.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SS1 function: The FSO module activates the drive STO function when the drive decelerates the motor speed below this value. Adjust the default value according to application requirements.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Note: This parameter is used only with FSO-21 and when a safety encoder is used in the application.</td>
</tr>
</tbody>
</table>
Parameters for the STO function

These parameters are related to the STO function of the FSO module. With stop category 0, the FSO module activates the STO function in overtemperature situations. Also, the FSO module can activate the STO function in fault situations.

<table>
<thead>
<tr>
<th>Index</th>
<th>Name</th>
<th>Example value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STO.02</td>
<td>STO acknowledge-</td>
<td>Automatic or</td>
<td>Sets the acknowledgement method used in the STO,</td>
</tr>
<tr>
<td></td>
<td>ment</td>
<td>Manual</td>
<td>SSE and SS1 functions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Automatic: The FSO module resets the STO function automatically after the STO request is removed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Manual: The FSO module reads the external acknowledgement signal through the digital input defined by parameter FSOGEN.42. In the safety functions described in this manual, you can use this setting to implement a manual reset for the motor temperature protection function in the FSO module.</td>
</tr>
<tr>
<td>STO.11</td>
<td>STO input A</td>
<td>STO: DI X113:1 & X114:1 SS1: None</td>
<td>Sets the digital input that is connected to the primary input of the STO function.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If you set this parameter to DI X113:1 & X114:1, set parameter SS1.11 to None.</td>
</tr>
<tr>
<td>STO.12</td>
<td>STO input B</td>
<td>None</td>
<td>Sets the digital input that is connected to the secondary input of the STO function.</td>
</tr>
<tr>
<td>STO.13</td>
<td>Restart delay after STO</td>
<td>2000 ms</td>
<td>Sets the time after which the drive can restart when the FSO module has activated the STO function and opened the drive STO circuit. With this parameter, you can let the drive restart before the motor has stopped (fly-start). This parameter is relevant only if the STO function is requested from STO input A (STO.11) or STO input B (STO.12).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STO function: Adjust the value when necessary. If you do not use the fly-start feature, set this parameter to the same value as parameter STO.14.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SS1 function: This value has no effect.</td>
</tr>
</tbody>
</table>
Parameter settings

<table>
<thead>
<tr>
<th>Index</th>
<th>Name</th>
<th>Example value</th>
<th>Description</th>
</tr>
</thead>
</table>
| STO.14 | Time to zero speed with STO and modoff | 2000 ms | Sets the time that is needed to coast the motor to a standstill from maximum process speed. If this time is not known, it can be measured with Drive composer pro PC tool when an encoder is used for motor control (otherwise you have to make sure that the motor shaft has stopped rotating by other means, eg, visually). Acknowledgement is allowed after coast stop in the STO, SSE and SS1 functions (when SBC is not used). If the drive STO is activated or modulation stopped while a monitoring safety function is indicating “unsafe”, after this time acknowledgement is allowed. For example, if the drive modulation is lost during SLS deceleration ramp, SLS OK will be indicated after this time has elapsed.
STO function: This parameter sets the time after which the STO function is completed and the STO completed indication goes on. Parameter STO.13 defines the time after which the acknowledgement is allowed. Adjust the value according to application requirements.
SS1 function: This parameter is used only when the motor speed does not follow the ramp settings or the time monitoring limit is exceeded and the FSO module activates the STO function. Adjust the value according to application requirements.
When an encoder is used: This parameter is relevant only if there is an encoder failure and the FSO module activates the STO function. |

SBC usage

| SBC.11 | STO SBC usage | None | Sets how the mechanical brake is used together with the STO function.
In the safety functions described in this manual, this feature is not used and this parameter has value None. |

I/O settings

| SAFEIO.33 | DI X113:1 diag pulse on/off | On 1) | Sets the diagnostic pulse of digital input X113:1 on or off. On: The input monitors that it receives test pulses. In this example, the STO/SS1 request is connected to this digital input. |
| SAFEIO.37 | DI X114:1 diag pulse on/off | On 1) | Sets the diagnostic pulse of digital input X114:1 on or off. On: The input monitors that it receives test pulses. In this example, the STO/SS1 request is connected to this digital input. |

1) The safety data in this manual is based on the assumption that this diagnostic measure for the wiring is active (On). If pulsing is disabled, you must consider other measures to avoid failures in wiring.
Parameters for the SSE function

These parameters are related to the Safe stop emergency (SSE) function of the FSO module. The safety functions described in this manual do not use this function, but the FSO module can activate the SSE function in internal fault situations.

<table>
<thead>
<tr>
<th>Index</th>
<th>Name</th>
<th>Example value</th>
<th>Description</th>
</tr>
</thead>
</table>
| SSE.13 | SSE function | Immediate STO or Emergency ramp | Sets the type of the SSE function.
Immediate STO: The FSO module activates the drive STO function immediately after the SSE request (stop category 0).
Emergency ramp: The FSO module first ramps down the motor speed and when the speed is below the zero speed limit (parameter `FSOGEN.51` or `FSOGEN.52`) it activates the STO function (stop category 1). SAR0 parameters define the deceleration ramp (for more information, see the FSO module user’s manual). |

SBC usage

<table>
<thead>
<tr>
<th>Index</th>
<th>Name</th>
<th>Example value</th>
<th>Description</th>
</tr>
</thead>
</table>
| SBC.15 | SSE/SS1 SBC speed | 0.0 rpm | Sets the absolute speed below which the FSO module activates the brake (SBC) while ramping.
0.0 rpm: The feature is not in use.
In the safety functions described in this manual, this feature is not used. Make sure that the value is **0.0 rpm**. |

Parameters for the SS1 function

Set these parameters only if you want that the FSO module activates the SS1 function in overtemperature situations (stop category 1).

<table>
<thead>
<tr>
<th>Index</th>
<th>Name</th>
<th>Example value</th>
<th>Description</th>
</tr>
</thead>
</table>
| SS1.01 | SS1 activity and version | Version 1 | Activates or deactivates the SS1 function and shows the version of the SS1 function.
Version 1: Activates version 1 of the SS1 function. For more information, see the FSO module user’s manual. |
| SS1.11 | SS1 input A | STO: None | Sets the digital input that is connected to the primary input of the SS1 function.
If you set this parameter to `DI X113:1 & X114:1`, set parameter `STO.11` to `None`. |
| SS1.12 | SS1 input B | None | Sets the digital input that is connected to the secondary input of the SS1 function. |
| SS1.13 | SS1 type | SS1-t or SS1-r| Sets the method used for the SS1 monitoring. Adjust the default value when necessary.
Time monitoring (SS1-t): The FSO module monitors that a user-defined deceleration time limit is not exceeded. (See parameter `SS1.14`.)
Ramp monitoring (SS1-r): The FSO module monitors that the motor decelerates along a user-defined stop ramp. (See SAR1 ramp parameters `200.112`, `SARx.21`, `SARx.22` and `SARx.02`). |
32 Parameter settings

<table>
<thead>
<tr>
<th>Index</th>
<th>Name</th>
<th>Example value</th>
<th>Description</th>
</tr>
</thead>
</table>
| SS1.14| SS1-t delay for STO | 20000 ms | Sets the monitoring delay after which the FSO module activates the drive STO and SBC at the latest, if the motor speed has not gone below the zero speed limit (parameter `FSOGEN.51` or `FSOGEN.52`) yet.
 Time monitoring: This value sets the security delay that the FSO module monitors. Adjust the default value when necessary.
 Ramp monitoring: This value has no effect in the operation. |

SAR1 ramp settings

| 200.112| SAR1 ramp time to zero | 2000 ms | Sets the target time for the stop ramp SAR1 that is used in the SS1 and function. Adjust the default value when necessary.
 The target time is the time in which the drive decelerates the motor from the speed defined by parameter `200.202` to zero.
 Note: With value 0 ms, the drive uses the emergency stop ramp set by drive parameter 23.23. See *SS1 ramp parameters in the drive/inverter unit* (page 33). Also in this case, the FSO module only monitors the actual ramp (ramp monitoring or time monitoring). |
| 200.202| SAR speed scaling | 1500 rpm | Sets a speed value that the FSO module uses as a reference point in ramp parameter calculations. See SAR1 ramp parameters `200.112`, `SARx.21`, `SARx.22` and `SARx.02`. Adjust the default value when necessary. |
| SARx.02| SAR initial allowed range | 100 ms | Sets the initial allowed range for the SAR0/SAR1 ramp. This parameter moves the location of the maximum monitoring ramp forward on the time axis, when monitoring is started. The slope of the ramp stays the same as defined with parameters `200.202` and `SARx.22`. For more information, see the FSO module user’s manual.
 Time monitoring: This value has no effect in the operation.
 Ramp monitoring: Adjust the default value when necessary. |
| SARx.21| SAR1 min ramp time to zero | 1000 ms | Sets the minimum ramp time for the SAR1 ramp monitoring.
 Time monitoring: This value has no effect in the operation.
 Ramp monitoring: Sets the minimum stop ramp time for the emergency stop. Adjust the default value when necessary.
 Note: With value 0 ms, the minimum ramp is not monitored. |
| SARx.22| SAR1 max ramp time to zero | 3000 ms | Sets the maximum ramp time for the SAR1 ramp monitoring.
 Time monitoring: This value has no effect in the operation.
 Ramp monitoring: Sets the maximum stop ramp time for the emergency stop. Adjust the default value when necessary. |
SS1 ramp parameters in the drive/inverter unit
If you use the SS1 function (stop category 1) and set FSO parameter 200.112 to 0 ms, also set the drive parameters as follows:

- set 21.04 Emergency stop mode to Eme ramp stop (Off3)
- set 23.23 Emergency stop time according to application requirements.

If FSO parameter 200.112 is set to 0 ms, drive parameters define the stop ramp that is used in the SS1 function. Also, the FSO module monitors the actual stop ramp (ramp monitoring or time monitoring). For more information, see the drive firmware manual and FSO module user's manual.

FSE module and safety encoder parameters

Set these parameters only when you use a safety pulse encoder and the FSE-31 pulse encoder interface module with the FSO-21 module.

<table>
<thead>
<tr>
<th>Index</th>
<th>Name</th>
<th>Example value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.231</td>
<td>FSE 3X act and par version</td>
<td>Version 1</td>
<td>Activates the FSE-31 encoder interface and shows the version of the encoder parameter groups (91 and 92).</td>
</tr>
<tr>
<td>200.232</td>
<td>Number of encoders</td>
<td>Single encoder CH1</td>
<td>Shows the number of safety encoders connected to the FSE module.</td>
</tr>
<tr>
<td>S_ENCGEN.01</td>
<td>Safe pulse encoder version</td>
<td>Version 1</td>
<td>Activates the safety encoder and shows the version parameter group S_ENCGEN.</td>
</tr>
<tr>
<td>S_ENCGEN.11</td>
<td>FSE diagnostic failure reaction</td>
<td>STO</td>
<td>Sets the action taken when there is a problem with the FSE module or the safety encoder. STO: The FSO module goes into the Fail-safe mode and activates the drive STO function.</td>
</tr>
<tr>
<td>S_ENCGEN.14</td>
<td>Enc speed cross comp tolerance</td>
<td>1.0 rpm</td>
<td>Sets the encoder speed cross comparison tolerance. This defines how much the axle speed of the motor can change within 1 ms. Adjust the default value to meet the motor in use. This parameter is used for the encoder diagnostic. It defines the maximum difference between the speed information from channel A and B of the encoder. If the difference of these two values is more than defined by this parameter, FSO will safely stop the system (STO). The suitable value depends on the configuration (motor and load). Typically this value is between 2…10 rpm. A value that is too small will cause an encoder fault (A7D8). A value that is too big will prevent the encoder diagnostic related to this parameter.</td>
</tr>
<tr>
<td>S_ENCGEN.41</td>
<td>Gear numerator encoder 1</td>
<td>1</td>
<td>Sets the rotation direction for the safety encoder. With this parameter, you can change the rotation direction of the motor. Adjust the default value if necessary.</td>
</tr>
<tr>
<td>91.11</td>
<td>Module 1 type</td>
<td>FSE-31</td>
<td>Sets the type of the safety encoder interface module 1.</td>
</tr>
</tbody>
</table>
Parameter settings

<table>
<thead>
<tr>
<th>Index</th>
<th>Name</th>
<th>Example value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>91.12</td>
<td>Module 1 location</td>
<td>2</td>
<td>Sets the slot in which the safety encoder interface module 1 is located.</td>
</tr>
<tr>
<td>92.01</td>
<td>Encoder 1 type</td>
<td>HTL1</td>
<td>Activates or deactivates the communication with the safety encoder interface module 1 and sets the type for the safety encoder.</td>
</tr>
<tr>
<td>92.02</td>
<td>Encoder 1 source</td>
<td>Module 1</td>
<td>Sets the safety encoder interface module that the safety encoder 1 is connected to.</td>
</tr>
<tr>
<td>92.10</td>
<td>Pulses/revolution</td>
<td>2048</td>
<td>Sets the number of HTL pulses per revolution for safety encoder 1. Adjust the default value to meet the safety encoder in use. Make sure that the value is according to the encoder nameplate.</td>
</tr>
<tr>
<td>92.17</td>
<td>Accepted pulse freq of encoder 1</td>
<td>300 kHz</td>
<td>Sets the maximum pulse frequency range of encoder 1. Adjust the default value to meet the motor and safety encoder in use. You can use this formula to define the value: $r_{\text{max}} \cdot ppr_{\text{enc}} + 10%$, where r_{max}: the maximum motor speed (rpm) used in the application (or the motor nominal speed) ppr_{enc}: pulses/revolution of the safety encoder (parameter 92.10).</td>
</tr>
</tbody>
</table>

Mechanical brake control

If you use a mechanical brake with the motor thermal protection circuit, pay special attention to the control of the mechanical brake.

If the motor deceleration by the mechanical brake causes extra heat generation in the Ex zone, make sure that the use of the brake does not increase the temperature too much. In this case, make sure that the mechanical brake is activated only at zero speed (see parameters SBC.11, SBC.15 and FSOGEN.51 or FSOGEN.52).

In some cases you cannot use the brake for the motor deceleration when the motor thermal protection circuit has tripped and the motor temperature is too high.

For more information, see the drive firmware manual (or the FSO module user’s manual if you use the Safe brake control (SBC) function of the FSO module).
Start-up and validation test

Contents of this chapter
This chapter describes the start-up, validation test procedure, and validation of the safety function.

Validation of the safety functions
You must do a validation test to validate the correct operation of safety functions.

- Competence
 The person who does the validation test of the safety function must be a competent person with expertise and knowledge of the safety function and functional safety, as required by IEC 61508-1 clause 6, and ATEX/Ex regulations. This person must document and sign the test procedures and report.

- Validation procedure
 If you use an FSO module in the safety system, you must validate the general settings of the FSO module and the safety encoder (if used) before you validate the safety function. See the FSO module user’s manual, chapter Verification and validation.

 You must do the validation test using the checklist given in this manual:
 - at the initial start-up of the safety function
 - after changes related to the safety function (wiring, components, safety function-related parameter settings, etc.)
 - after maintenance work related to the safety function
 - at the proof test of the safety function.

 The validation test must include at least the following steps:
you must have a validation test plan
- you must test all commissioned functions for proper operation, from each operation location
- you must document all validation tests
- you must sign and store the validation test report for further reference.

Validation test reports

You must store the signed validation test reports in the logbook of the machine and in the explosion protection document under the scope of the ATEX User Directive 1999/92/EC. The report must include, as required by the referred standards:
- a description of the safety application (including a figure)
- a description and revisions of safety components that are used in the safety application
- a list of all safety functions that are used in the safety application
- a list of all safety-related parameters and their values
- documentation of start-up activities, references to failure reports and resolution of failures
- the test results for each safety function, checksums, date of the tests, and confirmation by the test personnel.

You must store any new validation test reports done due to changes or maintenance in the logbook of the machine and in the explosion protection document under the scope of the ATEX User Directive 1999/92/EC.

Start-up and validation test

Use the Drive composer PC tool or a control panel to do the validation test. If you use an FSO module, you must use the Drive composer pro PC tool.

| Action |
| --- | --- |
| **WARNING!**
Obey the safety instructions of the drive. If you ignore them, injury or death, or damage to the equipment can occur. | ☐ |

Initial status

- Make sure that there is a safety requirement specification and a validation plan for the safety system. ☐
- Make sure that the required SIL level is achieved. ☐

With an FSO-21 and FSE-31 module: If you use a safety encoder in the safety application, validate the safety encoder interface as described in *FSO-21 safety functions module user’s manual* (3AXD50000015614 [English]), chapter Verification and validation. ☐

- Make sure that the drive is ready for use, that is, you have done the tasks of the drive start-up procedure. See the hardware manual. ☐
- Make sure that the drive STO function is configured and validated. See the hardware manual. ☐
Action

With an FSO module: Make sure that the FSO STO function is configured and validated.

Internal monitoring of the FSO module can trigger the STO function even if you have not defined an external request signal. The STO function must be validated before other safety functions.

Note: If you use a safety encoder, and parameter S_ENCGEN.11 is set to *Est switch not active load*, both STO function with speed estimate and STO function with encoder feedback must be tested - most importantly, the value of parameter STO.14 must be set according to the application requirements.

Checks and settings with no voltage connected

Stop the drive and do the steps in section *Electrical safety precautions (page 9)* before you start the work.

Make sure that the classification of the motor thermal protection function (ATEX-certified temperature protection relay and Safe disconnection function) corresponds to the Ex classification of the environment and the Ex motor.

The motor manufacturer selects the sensors for the motor temperature measurement. Make sure that the temperature on-off resistances match those of the protection relay. Also make sure that there is basic or reinforced insulation between the sensor and the motor main circuit.

Make sure that the installation of the motor temperature sensor complies with the requirements for the applicable type of protection. See section *Wiring (page 23).*

Make sure that the wires are connected to the correct terminals and that the terminal connections are tightened to the correct torque.

Settings with voltage connected

Set the parameters related to the safety function. See chapter *Parameter settings (page 25).*

Configure the motor overtemperature and STO indications. See section *Reset method and status indications (page 25).*

If a manual reset is not implemented in the protection relay(s), make sure that the drive (or FSO module) is configured for a manual reset of the safety function.

Validation test

Make sure that the drive STO is activated and that the correct indications are shown.

Inverter units with parallel R8i inverter modules: Make sure that STO is activated in each inverter module.

Do a wire break detection test: disconnect the sensor circuit.

Make sure that the drive STO is activated and that the correct indications are shown.

Inverter units with parallel R8i inverter modules: Make sure that STO is activated in each inverter module.

Do an overtemperature monitoring test: increase the resistance of the sensor circuit above the trip limit.

Make sure that the drive STO is activated and that the correct indications are shown.

Inverter units with parallel R8i inverter modules: Make sure that STO is activated in each inverter module.

With the drive in the tripped state, try to start the drive. Make sure that it does not start before you have reset the protection relay and/or the faults in the drive.
Action

Make sure that the drive generates none of these faults:
- STO hardware failure (5090)
- Safe torque off 1 loss (FA81)
- Safe torque off 2 loss (FA82)

If the drive generates these faults, refer to *ACS880 primary control program firmware manual (3AUA0000085967 [English]).*

Create a backup file of the drive parameters with the Drive composer PC tool or control panel.

If you use an FSO module, save the FSO safety file (button **Save safety file** in the Drive composer pro PC tool).

Fill in and sign the validation test report. Store the report in the logbook of the machine.
Technical data

Contents of this chapter

This chapter contains a list of related standards and directives, safety data and the drive ATEX certificates and Declaration of Conformity documents.

Related standards and directives

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 50495:2010</td>
<td>Safety devices required for the safe functioning of equipment with respect to explosion risks</td>
</tr>
</tbody>
</table>
Part 1 – General Requirements
Part 2 – Requirements for electrical/electronic/programmable electronic safety-related systems |
| EN 61800-5-2:2007
IEC 61800-5-2:2016 | Adjustable speed electrical power drive systems – Part 5-2: Safety requirements – Functional |
| IEC 61511-1:2017 Ed.2.1 | Functional safety – Safety instrumented systems for the process industry sector – Part 1: Framework, definitions, system, hardware and application programming requirements |
| 2014/34/EU | European ATEX Product Directive |

Safety data

- Drive/inverter module STO function

The drive/inverter module hardware manual contains the safety data for the internal Safe torque off function (STO).
Drive/inverter module STO function and an FSO module

The table below lists the safety data for the Safe disconnection function, including the safety data of the FSO module, the FSE-31 module (optional) and the safety data of worst case ACS880 Safe torque off (STO). See One-channel or two-channel connection to an FSO module (page 20).

Note:

- The PFD values of the drive STO and the FSO and FSE-31 modules are based on T1 (proof test interval) of 2 or 5 years. The safety data and SIL capability are valid only when proof testing is done with an interval of maximum 2 or 5 years.
- The safety data in the table is valid only when parameter settings for the FSO digital inputs are done according to section FSO module (page 27) in chapter Parameter settings.
- The FSE-31 module is included in the calculations for the FSO module.
- The safety integrity of the protection function must be verified as required in EN 50495. The SIL capability of the drive/inverter module internal STO and the FSO and FSE-31 modules is up to SIL3 when parameter settings for the FSO digital inputs are done according to section FSO module (page 27) in chapter Parameter settings.
- The PFD value defines the safety integrity for a low-demand application (demand rate < 1/year) in respect to random failure rate.
- The safety data below contains the failure rates (PFD) of the FSO and FSE-31 modules and the drive internal STO.

<table>
<thead>
<tr>
<th></th>
<th>One-channel pulsed digital input</th>
<th>Two-channel pulsed digital input</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIL capability</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PFH (1/h, T₁ = 20 a)</td>
<td>1.10E-08</td>
<td>1.05E-08</td>
</tr>
<tr>
<td>PFDavg (T₁ = 2 a)</td>
<td>9.05E-05</td>
<td>8.57E-05</td>
</tr>
<tr>
<td>PFDavg (T₁ = 5 a)</td>
<td>2.17E-04</td>
<td>2.06E-04</td>
</tr>
<tr>
<td>SFF (%)</td>
<td>> 99</td>
<td>> 99</td>
</tr>
<tr>
<td>HFT</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>T_M (a)</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Safety block diagrams

The safety block diagrams show the components that are included in the safety data calculations. The dashed line identifies a component that is not included in the safety data calculations shown in this manual. See One-channel or two-channel connection to an FSO module (page 20).
One-channel digital input

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

1 Customer motor sensor(s)
2 Customer protection relay(s)
3 FSO module (and FSE-31 module, if used)
4 Drive STO

Two-channel digital input

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

1 Customer motor sensor(s)
2 Customer protection relay(s)
3 FSO module (and FSE-31 module, if used)
4 Drive STO

Response times

The response time of the Safe disconnection (STO) function is < 50 ms for all ACS880 drives. For the exact response times for each drive/inverter module type, see the drive/inverter module hardware manual.

When the function contains the FSO module, the response time of the Safe disconnection function is < 100 ms.
Markings of the drive/inverter module

2. Specific marking of explosion protection

3. Equipment group II: Product for surface industry (other than mining applications)

4. Equipment category 2. Parentheses show that the drive (or inverter unit) must be installed outside the potentially explosive atmosphere.

5. Certified for use in explosive atmospheres caused by: G = gases, vapors or mists, D = dust.

6. Certificate reference
ATEX certificate

EU-TYPE EXAMINATION CERTIFICATE

1. Equipment or Protective System Intended for use in Potentially explosive atmospheres
 Directive 2014/34/EU

2. EU-Type Examination Certificate Number: EESF 20 ATEX 048X

3. Product: Safe Disconnection Function for converter drive
 Certified types:
 - ACS880/ACS880LC +Q971
 - ACS880/ACS880LC +Q971 +Q973 (FSO-12)
 - ACS880/ACS880LC +Q971 +Q972 (FSO-21)
 - ACS880/ACS880LC +Q971 +Q972 +L521 (FSO-21 & FSE-31)

4. Manufacturer: ABB Oy Drives

5. Address: Hiomotie 13, 00380 Helsinki, Finland
 Additional manufacturing locations:
 - ABB AS, Drives, Aruküla tee 59, Rae vald, 75301 Harjumaa, Estonia

6. This product and any acceptable variation thereto is specified in the schedule to this certificate and the documents therein referred to.

7. Eurofins Expert Services Oy, Notified Body number 0537, in accordance with Article 17 of Directive 2014/34/EU of the European Parliament and of the Council, dated 26 February 2014, certifies that this product has been found to comply with the Essential Health and Safety Requirements relating to the design and construction of products intended for use in potentially explosive atmospheres given in Annex II to the Directive.

 The examination and test results are recorded in confidential report No. EUFI29-20001227-T1.

8. Compliance with the Essential Health and Safety Requirements has been assured by compliance with:
 - EN 50495:2010

9. If the sign “X” is placed after the certificate number, it indicates that the product is subject to the Specific Conditions of Use specified in the schedule to this certificate.

10. This EU-Type Examination Certificate relates only to the design and construction of the specified product. Further requirements of the Directive apply to the manufacturing process and supply of this product. These are not covered by this certificate.

11. The marking of the product shall include the following:

 II (2) GD

Espoo, 30.10.2020
Eurofins Expert Services Oy

Kari Koskela
Senior Expert

Jenni Hirvelä
Senior Expert

This document is digitally signed.

This certificate, including the schedule, may only be reproduced in its entirety and without any change.

Eurofins Expert Services Oy, Koviimäentie 4, FI-02150 Espoo, Finland
www.eurofins.fi/expertservices
13. Schedule

14. EU-Type Examination Certificate EESF 20 ATEX 048X

15. Description of Product

Thermal protection consists of the Safe Torque Off (STO) function which is subject to this certification, and an ATEX-compliant protection relay which shall be acquired by system builder. The relay monitors a sensor circuit, and activates the SIL 3 certified “Safe Torque Off” (STO) function which is integrated in the standard drive as an internal hardware solution. Power that can cause rotation is not applied to the motor. The safety related part of the adjustable speed electrical power drive system PDS (SR) will not provide energy to the motor which can generate torque.

16. Report Number

EUF29-20001227-T1

17. Specific Conditions of Use

An ATEX-compliant protection relay shall be acquired and it shall be installed according to manufacturer’s instructions.

18. Essential Health and Safety Requirements

Assessment using standard referred in point 9 have confirmed compliance with the Directive 2014/34/EU, Annex II and particular point 1.5.

19. Drawings and Documents

FSO-xx+ACS880 Safety data in ATEX-Certified Safe Disconnection Function, doc 3AXD10000113948, rev G
Certificate No. SEBS-A.093457/16 V1.0 by TÜV Nord
Certificate No. 1435.IM.153902/19 V1.0 by TÜV Nord

20. Certificate History

<table>
<thead>
<tr>
<th>Issue</th>
<th>Date</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTT 12 ATEX 053X</td>
<td>3.5.2013</td>
<td>Prime certificate</td>
</tr>
<tr>
<td>VTT 12 ATEX 053X</td>
<td>15.10.2014</td>
<td>Adding safety functions module FSO-12 and deleting two type designations covered by another certificate.</td>
</tr>
<tr>
<td>VTT 12 ATEX 053X</td>
<td>1.3.2016</td>
<td>The introduction of new manufacturing places and a new safety functions module FSO-21</td>
</tr>
<tr>
<td>VTT 12 ATEX 053X</td>
<td>30.6.2017</td>
<td>The introduction of a new converter type and deleting one manufacturing place. Updating the certificate according to the new directive.</td>
</tr>
<tr>
<td>EESF 20 ATEX 048X</td>
<td>30.10.2020</td>
<td>Updates to safety data document, FSO-12 and FSO-21 TÜV Nord certificates have been combined into one certificate, one manufacturing location has been removed.</td>
</tr>
</tbody>
</table>
Declaration of Conformity

EU Declaration of Conformity

ATEX Directive 2014/34/EU

We
Manufacturer: ABB Oy
Address: Hietaniemi 13, 00380 Helsinki, Finland.
Phone: +358 10 22 11

declare under our sole responsibility that the following products:

Frequency converters and frequency converter components
ACS880-01, -11, -31
ACS880-04, -04XT, -04F, -04FXT, -M04, -14, -34
ACS880-104, -104LC

identified with serial numbers beginning with 1 or 8

with regard to the safety function

ATEX certified safe disconnection function (option code +Q971)

are in conformity with all the relevant requirements for protective system of EU Directive for Equipment for Explosive atmospheres 2014/34/EU.

Specific marking of explosion protection

The following harmonized standard has been applied:

| EN 50495:2010 | Safety devices required for the safe functioning of equipment with respect to explosion risks |

The following other standards have been applied:

| EN 61800-5-2:2007 | Adjustable speed electrical power drive systems – Part 5-2: Safety requirements - Functional |
| IEC 61800-5-2:2016 | Adjustable speed electrical power drive systems – Part 5-2: Safety requirements - Functional |

Notified Body: Eurofins Expert Services Oy, Notified Body number: 0537, Address: Kivistiehenkatu 4, 02150 Espoo, Finland

has assessed the conformity of the “ATEX certified thermal motor protection” function and has issued the certificate EESF 20 ATEX 048X.
The products referred in this Declaration of conformity fulfil the relevant provisions of other European Union Directives which are notified in Single EU Declarations of conformity 3AXD10000497305 and 3AXD10000497831.

Helsinki, 12 Oct 2020
Signed for and on behalf of:

[Signature]
Peter Lindgren
Vice President, ABB oy

[Signature]
Tuomo Tarula
Vice President, ABB oy
Further information

Product and service inquires
Address any inquiries about the product to your local ABB representative, quoting the type designation and serial number of the unit in question. A listing of ABB sales, support and service contacts can be found by navigating to www.abb.com/searchchannels.

Product training
For information on ABB product training, navigate to new.abb.com/service/training.

Providing feedback on ABB manuals
Your comments on our manuals are welcome. Navigate to new.abb.com/drives/manuals-feedback-form.

Document library on the Internet
You can find manuals and other product documents in PDF format on the Internet at www.abb.com/drives/documents.