Instruction Manual for Dodge® Raptor Couplings

These instructions must be read thoroughly before installation or operation. This instruction manual was accurate at the time of printing. Please see baldor.com for updated instruction manuals.

Note! The manufacturer of these products, Baldor Electric Company, became ABB Motors and Mechanical Inc. on March 1, 2018. Nameplates, Declaration of Conformity and other collateral material may contain the company name of Baldor Electric Company and the brand names of Baldor-Dodge and Baldor-Reliance until such time as all materials have been updated to reflect our new corporate identity.

WARNING: To ensure the drive is not unexpectedly started, turn off and lock-out or tag power source before proceeding. Failure to observe these precautions could result in bodily injury.

WARNING: All products over 25 kg (55 lbs) are noted on the shipping package. Proper lifting practices are required for these products.

Installation Instructions

Step 1 - HUB INSTALLATION

Before installing the hubs, ensure that shafts have been cleaned and are free of dirt, grease, and burrs. Verify that keys fit shafts properly.

FINISHED BORE CLEARANCE FIT

1. Hubs may be oriented as seen in Figure 2. Depending on shaft spacing requirements, determine the best hub orientation using Table 1.
2. If needed, hubs can be mounted with the shaft extending past the hub, flush, or recessed within the hub as seen in Figure 1.

1. Use a half element to set proper hub spacing, or reference Table 1 to set appropriate shaft spacing. Depending upon shaft spacing requirements, hubs may be oriented as seen in Figure 2 where A is the dimension between hub faces.
2. When hubs are properly spaced, tighten set screws to the torque value given in Table 1.
FINISHED BORE INTERFERENCE FIT

1. Hubs may be oriented as seen in Figure 2. Depending on shaft spacing requirements, determine the best hub orientation using Table 1.

2. If needed, hubs can be mounted with the shaft extending past the hub, flush, or recessed within the hub as seen in Figure 1.

3. Use a scribe to mark the desired hub location on shafts.
 a. Using an oven or oil bath, heat hubs evenly to 350°F (204°C) Do NOT exceed 450°F (232°C).
 b. An open flame or torch does not provide even heating and is NOT recommended.

4. Slide heated hubs onto shafts and align with the scribed marks.

5. Allow the hubs to cool to room temperature before installing element halves.

TAPER-LOCK & QD BUSHED HUBS

1. Hubs may be oriented as seen in Figure 2. Depending on shaft spacing requirements, determine the best hub orientation using Table 1.

2. Hubs must be mounted with 100% keyseat and shaft engagement, as seen in “A” or “B” of Figure 1.

3. Install bushings in hubs per bushing instructions:
 a. Taper-Lock – MN4044
 b. QD – MN4049

A - Shaft extended past hub (without contacting other shaft)
B - Shaft flush with hub
C - Shaft recessed in hub (requires 80% keyseat and shaft engagement)

Figure 1 - Hub Mounting Options

Outboard Method
Inboard Method
Hybrid Method

Figure 2 - Hub Orientation Options
Table 1 - Hub Spacing Between Shaft End Dimensions

<table>
<thead>
<tr>
<th>Hub Type</th>
<th>Straight Bore</th>
<th>QD</th>
<th>Taper-Lock</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Outboard</td>
<td>Inboard</td>
<td>Hybrid</td>
</tr>
<tr>
<td>Orientation</td>
<td>in.</td>
<td>mm</td>
<td>in.</td>
</tr>
<tr>
<td>E2</td>
<td>1.9</td>
<td>48</td>
<td>1.34</td>
</tr>
<tr>
<td>E3</td>
<td>1.34</td>
<td>34</td>
<td>0.78</td>
</tr>
<tr>
<td>E4</td>
<td>1.34</td>
<td>34</td>
<td>0.42</td>
</tr>
<tr>
<td>E5</td>
<td>1.84</td>
<td>47</td>
<td>0.78</td>
</tr>
<tr>
<td>E10</td>
<td>1.84</td>
<td>47</td>
<td>0.52</td>
</tr>
<tr>
<td>E20</td>
<td>2.66</td>
<td>68</td>
<td>0.22</td>
</tr>
<tr>
<td>E30</td>
<td>2.97</td>
<td>75</td>
<td>0.03</td>
</tr>
<tr>
<td>E40</td>
<td>3.29</td>
<td>84</td>
<td>0.43</td>
</tr>
<tr>
<td>E50</td>
<td>3.91</td>
<td>99</td>
<td>0.09</td>
</tr>
<tr>
<td>E60</td>
<td>4.23</td>
<td>107</td>
<td>0.49</td>
</tr>
<tr>
<td>E70</td>
<td>4.8</td>
<td>122</td>
<td>0.52</td>
</tr>
<tr>
<td>E80</td>
<td>6.67</td>
<td>169</td>
<td>0.75</td>
</tr>
<tr>
<td>E100</td>
<td>3.77</td>
<td>96</td>
<td>1.77</td>
</tr>
<tr>
<td>E120</td>
<td>4.9</td>
<td>124</td>
<td>2.26</td>
</tr>
<tr>
<td>E140</td>
<td>5.02</td>
<td>128</td>
<td>3.02</td>
</tr>
</tbody>
</table>

1. All inch fasteners are Grade 8.
2. All metric fasteners are ISO Class 10.9.
3. Fasteners are recommended for one time use only.
4. All fasteners use thread locking patches.

Table 2 - Set Screw Installation Torque for Clearance Fit Hubs

<table>
<thead>
<tr>
<th>Bore Size (inches)</th>
<th>0.500-0.5625</th>
<th>0.625-0.6755</th>
<th>0.9375-1.25</th>
<th>1.3125-1.75</th>
<th>1.8125-2.75</th>
<th>2.8125-3.25</th>
<th>3.125-4.000</th>
<th>11-34</th>
<th>35-47</th>
<th>48-69</th>
<th>70-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setscrew Size</td>
<td>10-24NC</td>
<td>1/4-20NC</td>
<td>5/16-18NC</td>
<td>3/8-16NC</td>
<td>1/2-13NC</td>
<td>5/8-11NC</td>
<td>3/4-10NC</td>
<td>1.0</td>
<td>1.25</td>
<td>1.75</td>
<td>2.0</td>
</tr>
<tr>
<td>Torque (in-lb)</td>
<td>36</td>
<td>87</td>
<td>165</td>
<td>260</td>
<td>320</td>
<td>400</td>
<td>500</td>
<td>64</td>
<td>150</td>
<td>480</td>
<td>1185</td>
</tr>
<tr>
<td>Torque (ft-lb)</td>
<td>3</td>
<td>7</td>
<td>14</td>
<td>24</td>
<td>52</td>
<td>110</td>
<td>200</td>
<td>5</td>
<td>13</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>Torque (Nm)</td>
<td>4</td>
<td>9.8</td>
<td>19</td>
<td>33</td>
<td>70</td>
<td>150</td>
<td>271</td>
<td>7.2</td>
<td>17</td>
<td>54</td>
<td>134</td>
</tr>
</tbody>
</table>

Step 2 – VERIFY ALIGNMENT

1. Adjust equipment to achieve the desired distance between hub ends. Refer to dimension “A” in Figure 2 and Table 1.

Figure 3 - Angular Misalignment

Coupling hubs should be aligned using scales, straight edges, or calipers. Dial indicators, laser alignment tools, or other precision alignment equipment can be used but are not required.

- Using scales or calipers, check the angular misalignment by measuring dimension “B” at four places on the outer diameter of the hub 90° apart, as seen in Figure 3. Use the “B1” and “B2” measurements to calculate “C”. Adjust the equipment until the “C” measurements do not exceed the value in Table 3.

Figure 4 - Parallel Misalignment

Check parallel misalignment by placing a straight edge across the outside diameter of the hubs and measuring the gap between the straight edge and the hub at four locations 90° apart, as seen in Figure 4. Adjust equipment until the gap does not exceed the value shown in Table 3.

Step 3 - ELEMENT INSTALLATION

1. Place first element half on hubs and hand-tighten the flange head bolts.

NOTE - When tightening the bolts, start at the center bolt hole and then install the bolts on the neighboring holes.

2. Place the second half of the element on the hubs and follow the same procedure. Hand-tighten the flange head bolts.

3. Use a torque wrench to tighten all fasteners to the torque values listed in Table 4.
<table>
<thead>
<tr>
<th>Coupling Size</th>
<th>E2</th>
<th>E3</th>
<th>E4</th>
<th>E5</th>
<th>E10</th>
<th>E20</th>
<th>E30</th>
<th>E40</th>
<th>E50</th>
<th>E60</th>
<th>E70</th>
<th>E80</th>
<th>E100</th>
<th>E120</th>
<th>E140</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angular</td>
<td>0.129</td>
<td>0.162</td>
<td>0.182</td>
<td>0.219</td>
<td>0.235</td>
<td>0.284</td>
<td>0.347</td>
<td>0.426</td>
<td>0.306</td>
<td>0.323</td>
<td>0.393</td>
<td>0.370</td>
<td>0.462</td>
<td>0.547</td>
<td></td>
</tr>
<tr>
<td>mm</td>
<td>3.3</td>
<td>4.1</td>
<td>4.6</td>
<td>5.6</td>
<td>6</td>
<td>7.2</td>
<td>8.8</td>
<td>10.8</td>
<td>7.8</td>
<td>8.2</td>
<td>10</td>
<td>9.4</td>
<td>11.7</td>
<td>13.9</td>
<td></td>
</tr>
<tr>
<td>Parallel</td>
<td>0.188</td>
<td></td>
</tr>
<tr>
<td>mm</td>
<td>4.8</td>
<td></td>
</tr>
</tbody>
</table>

Table 4 - Hardware

<table>
<thead>
<tr>
<th>Size</th>
<th>Bolt Size (inches)</th>
<th>Capscrew Torque</th>
<th>Hardware Quantity</th>
<th>Imperial Hardware</th>
<th>Metric Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Imperial Hardware</td>
<td></td>
<td>Metric Hardware</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bolt Size</td>
<td>in-lbs</td>
<td>ft-lbs</td>
<td>in-lbs</td>
</tr>
<tr>
<td>E2</td>
<td>1/4</td>
<td>147</td>
<td>12</td>
<td>17</td>
<td>11</td>
</tr>
<tr>
<td>E3-E5</td>
<td>1/4</td>
<td>147</td>
<td>12</td>
<td>17</td>
<td>11</td>
</tr>
<tr>
<td>E10</td>
<td>1/4</td>
<td>147</td>
<td>12</td>
<td>17</td>
<td>11</td>
</tr>
<tr>
<td>E20-E30</td>
<td>3/8</td>
<td>502</td>
<td>42</td>
<td>57</td>
<td>50</td>
</tr>
<tr>
<td>E40-E50</td>
<td>3/8</td>
<td>502</td>
<td>42</td>
<td>57</td>
<td>50</td>
</tr>
<tr>
<td>E60-E80</td>
<td>1/2</td>
<td>1178</td>
<td>98</td>
<td>133</td>
<td>85</td>
</tr>
<tr>
<td>E100</td>
<td>3/4</td>
<td>3,846</td>
<td>321</td>
<td>435</td>
<td>382</td>
</tr>
<tr>
<td>E120</td>
<td>3/4</td>
<td>3,846</td>
<td>321</td>
<td>435</td>
<td>382</td>
</tr>
<tr>
<td>E140</td>
<td>1</td>
<td>9,078</td>
<td>756</td>
<td>1,026</td>
<td>650</td>
</tr>
</tbody>
</table>
ATEX CERTIFICATION

These instructions do not cover all details or variations in equipment nor provide every possible contingency or hazard to be met in connection with installation, operation, and maintenance. Should further information be desired, or should particular problems arise which are not covered in this manual, the matter should be referred to your local representative.

Dodge Raptor couplings are manufactured under guidelines of the ATEX directive 2014/34/EU. Dodge Raptor couplings are suitable for ATEX category 2 and M2, Group II and I for gas and dust environments and are also suitable for ATEX category 3 for all gas or dust environments with ignition temperatures higher than T5 = 100°C. A UL Certified adhesive label indicating ATEX certification will be attached to the product and will contain the following depending on size and ambient temperature:

ATEX Marking Information

- I M2
- Ex h I Mb
- II 2GD
- Ex h IIC T5 Gb
- Tamb -30°C to +50°C
- SIRA 15 ATEX 6170X
- Dodge Raptor Coupling
- MFG by ABB Motors and Mechanical Inc.
- 5711 R.S. Boreham Jr. St., Ft. Smith, AR 72901 USA

ATTENTION – HAZARDOUS AREA USE

For Hazardous Area Use, the following potential ignition hazards have been identified:

- Heat Generation
- Contact of rotating parts with stationary parts

These potential hazards have been addressed by the materials and design of the coupling and rely on correct installation and maintenance, as detailed in the equipment instructions.

WARNING: These couplings are designed to operate with surface temperatures below 100°C when properly installed and selected. Excessive temperatures greater than 80°C is a result of an abnormal operating condition caused by:

Improper Installation – refer to installation manual for proper procedures

1. Excessive misalignment – re-align coupling/shafts
2. Failure of the element – replace element assembly
3. Excessive speed – re-evaluate application and selection
4. Excessive vibration – determine source, re-evaluate application

If applied in a Division 1 or Zone 1 environment, the excessive temperature may cause ignition of hazardous materials.

In hazardous environments, Dodge Raptor Couplings should not be considered fail safe or “break-away” power transmission devices. Overloads imposed to these devices could cause irreparable damage, shall be considered an explosive hazard, could create projectiles, and/or could cause torque transmission interruptions. The coupling shall be sized and used to the stated torque ratings of the unit as published in the appropriate Dodge Engineering Catalog. Any assistance needed in selection shall be referred to a Mechanical Power Transmission representative.

ADDITIONAL INSTRUCTION FOR SAFE INSTALLATION AND USE

1. All rotating parts should be guarded to prevent contact with foreign objects which could result in sparks, ignition, or damage to the coupling. **Coupling guards should have a minimum of 1” radial clearance over Dodge Raptor Couplings up to size E80. Sizes E100 and above require 2” minimum radial clearance.**
2. Couplings should be periodically inspected for normal wear, dust/dirt buildup, cracks or tears in the element assembly or any similar scenario that would impede heat dissipation.
3. Increasing levels of vibration and noise could indicate the need for inspection, repair or replacement of the coupling or element.
4. Electrical sparks are a source of ignition. To reduce the risk, proper electrical bonding and grounding is recommended.
5. Overloading may result in tearing or damage to the coupling element or other equipment. As a result the coupling components must not be operated in hazardous environments.
6. Raptor Couplings are not intended to be used as thrust bearing members.
7. The coupling shall be suitably protected from falling objects.
EU Declaration of Conformity

The undersigned, representing the following supplier and the following authorised representative:

ABB Motors and Mechanical Inc.
5711 R. S. Boreham, Jr. Street
Fort Smith, Arkansas 72901
USA

ABB Automation Products GmbH
Oberhausener Straße 33
40472 Ratingen, Germany

This declaration is issued under the sole responsibility of the manufacturer. Herewith declare that the Products

Couplings

Product identification (brand and catalogue number/part number):

*Equipment Group I, Category M2 Ex h I Mb /
Equipment Group II 2GD Ex h IIC 100 °C (T5) T amb -30°C to +50°C*

are in conformity with the provisions of the following EC Directive(s) when installed in accordance with the installation instructions contained in the product documentation:

2014/34/EU **ATEX**

and that the standards and/or technical specifications referenced below have been applied:

Notified Body:
CSA Group Netherlands B.V.
Utrechtseweg 310 (B42)
6812AR ARNHEM
Netherlands

Certificate: SIRA 15ATEX6170X

Supplier
Signature:
L. Evans Massey
Manager Standards and Certification
16 September 2019 Greenville, SC USA

Authorised representative
Signature:
Michael Klein
Regional Sales and Marketing Manager Central Europe
16 September 2019 Ratingen, Germany

Document Control Number: DOC-BEZ-DA-M26-D-EN.DOC