UniVer G12
Istruzioni per installazione, l'esercizio e la manutenzione
Installation, service and maintenance instructions
<table>
<thead>
<tr>
<th>Indice</th>
<th>Pag.</th>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Descrizione</td>
<td>2</td>
<td>1 Description</td>
<td>2</td>
</tr>
<tr>
<td>1.1 Generalità</td>
<td>2</td>
<td>1.1 Operating characteristics</td>
<td>2</td>
</tr>
<tr>
<td>1.1.1 Caratteristiche funzionali</td>
<td>2</td>
<td>1.1.1.1 Electrical characteristics</td>
<td>2</td>
</tr>
<tr>
<td>1.1.2 Caratteristiche elettriche</td>
<td>2</td>
<td>1.1.1.2 Compliance with standards</td>
<td>2</td>
</tr>
<tr>
<td>1.1.3 Rispondenza alle norme</td>
<td>2</td>
<td>1.1.1.4 Make-up of the basic cubicle</td>
<td>2</td>
</tr>
<tr>
<td>1.1.4 Costruzione dello scomparto base</td>
<td>2</td>
<td>1.2 Locks</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Blochi</td>
<td>3</td>
<td>1.2.1 On the circuit-breaker</td>
<td>3</td>
</tr>
<tr>
<td>1.2.1 Sull’interruttore</td>
<td>3</td>
<td>1.2.2 On the earthing switch</td>
<td>3</td>
</tr>
<tr>
<td>1.2.2 Sul sezionatore di terra</td>
<td>3</td>
<td>1.2.3 On the feeder compartment rear door</td>
<td>3</td>
</tr>
<tr>
<td>1.2.3 Sulla porta posteriore cella linea</td>
<td>3</td>
<td>1.3 Normal operations</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Manovre normali</td>
<td>4</td>
<td>1.3.1 On the circuit breaker</td>
<td>4</td>
</tr>
<tr>
<td>1.3.1 Sull’interuttore</td>
<td>4</td>
<td>1.3.2 On the earthing switch</td>
<td>4</td>
</tr>
<tr>
<td>1.3.2 Sul sezionatore di terra</td>
<td>4</td>
<td>1.3.3 On the feeder compartment rear door</td>
<td>4</td>
</tr>
<tr>
<td>1.3.3 Sulla porta posteriore cella linea</td>
<td>4</td>
<td>1.4 Emergency operations</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Manovre di emergenza</td>
<td>4</td>
<td>1.4.1 On the circuit-breaker</td>
<td>4</td>
</tr>
<tr>
<td>1.4.1 Sull’interuttore</td>
<td>4</td>
<td>1.4.2 On the earthing switch</td>
<td>4</td>
</tr>
<tr>
<td>1.4.2 Sull’apertura del sezionatore di terra</td>
<td>4</td>
<td>1.4.3 On the feeder compartment rear door</td>
<td>5</td>
</tr>
<tr>
<td>1.4.3 Sulla porta posteriore cella linea</td>
<td>4</td>
<td>1.4.4 On the feeder compartment rear door</td>
<td>5</td>
</tr>
<tr>
<td>1.4.4 Sulla porta della cella interruttore</td>
<td>5</td>
<td>1.5 Accessories supplied as standard</td>
<td>5</td>
</tr>
<tr>
<td>1.5 Accessori di normale fornitura</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Installazione</td>
<td>6</td>
<td>2.1 Checking on receipt</td>
<td>6</td>
</tr>
<tr>
<td>2.1 Controllo a ricevimento</td>
<td>6</td>
<td>2.1.1 Packing</td>
<td>6</td>
</tr>
<tr>
<td>2.1.1 Imballaggio</td>
<td>6</td>
<td>2.1.2 Inspection</td>
<td>6</td>
</tr>
<tr>
<td>2.1.2 Controllo</td>
<td>6</td>
<td>2.2 Storage</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Magazzinaggio</td>
<td>6</td>
<td>2.2.1 Cubicle lifting</td>
<td>6</td>
</tr>
<tr>
<td>2.3 Sollevamento scomparti</td>
<td>6</td>
<td>2.3.1 Cubicle lifting</td>
<td>6</td>
</tr>
<tr>
<td>2.4 Fondazioni</td>
<td>7</td>
<td>2.4.1 Slab drilling</td>
<td>7</td>
</tr>
<tr>
<td>2.4.1 Foratura soletta</td>
<td>7</td>
<td>2.4.2 Fixing cubicles to the floor without</td>
<td>7</td>
</tr>
<tr>
<td>2.4.2 Fissaggio scomparti a pavimento</td>
<td>7</td>
<td>base irons</td>
<td></td>
</tr>
<tr>
<td>2.4.3 Fissaggio scomparti a pavimento</td>
<td>7</td>
<td>2.4.3 Fixing cubicles to the floor with base</td>
<td>7</td>
</tr>
<tr>
<td>con ferri di base</td>
<td>7</td>
<td>irons</td>
<td></td>
</tr>
<tr>
<td>2.5 Accoppiamento scomparti</td>
<td>8</td>
<td>2.5 Coupling cubicles</td>
<td>8</td>
</tr>
<tr>
<td>2.6 Collegamenti principali</td>
<td>8</td>
<td>2.6 Main connections</td>
<td>8</td>
</tr>
<tr>
<td>2.6.1 Sbarre omnibus tubolari</td>
<td>8</td>
<td>2.6.1 Tubular omnibus busbars</td>
<td>8</td>
</tr>
<tr>
<td>2.6.2 Sbarre omnibus piatte</td>
<td>9</td>
<td>2.6.2 Flat omnibus busbars</td>
<td>9</td>
</tr>
<tr>
<td>2.6.3 Sbarre di terra</td>
<td>10</td>
<td>2.6.3 Earthing busbars</td>
<td>10</td>
</tr>
<tr>
<td>2.6.4 Collegamento cavi</td>
<td>10</td>
<td>2.6.4 Cable connection</td>
<td>10</td>
</tr>
<tr>
<td>2.7 Collegamenti secondari</td>
<td>10</td>
<td>2.7 Auxiliary connections</td>
<td>10</td>
</tr>
<tr>
<td>2.8 Controllo prima delle prove</td>
<td>10</td>
<td>2.8 Checking before tests</td>
<td>10</td>
</tr>
<tr>
<td>2.9 Prove meccaniche</td>
<td>11</td>
<td>2.9 Mechanical tests</td>
<td>11</td>
</tr>
<tr>
<td>2.9.1 Sull’interruttore</td>
<td>11</td>
<td>2.9.1 On the circuit breaker</td>
<td>11</td>
</tr>
<tr>
<td>2.9.2 Sul sezionatore di terra</td>
<td>11</td>
<td>2.9.2 On the earthing switch</td>
<td>11</td>
</tr>
<tr>
<td>2.10 Regolazioni</td>
<td>11</td>
<td>2.10 Adjustments</td>
<td>11</td>
</tr>
<tr>
<td>2.10.1 Sulla chiusura del sezionatore di terra</td>
<td>11</td>
<td>2.10.1 On closure of the earthing switch</td>
<td>11</td>
</tr>
<tr>
<td>2.10.2 Sul blocco tra sezionatore di terra e Interruttore</td>
<td>11</td>
<td>2.10.2 On lock between earthing switch and circuit-breaker</td>
<td>11</td>
</tr>
<tr>
<td>2.11 Prove elettriche</td>
<td>11</td>
<td>2.11 Electrical tests</td>
<td>11</td>
</tr>
<tr>
<td>2.11.1 Resistenza di isolamento</td>
<td>11</td>
<td>2.11.1 Insulation resistance</td>
<td>11</td>
</tr>
<tr>
<td>2.11.2 Isolamento a frequenza industriale</td>
<td>11</td>
<td>2.11.2 Insulation at industrial frequency</td>
<td>11</td>
</tr>
<tr>
<td>2.11.3 Funzionalità</td>
<td>12</td>
<td>2.11.3 Functionality</td>
<td>12</td>
</tr>
<tr>
<td>2.12 Messa in servizio</td>
<td>12</td>
<td>2.12 Service</td>
<td>12</td>
</tr>
<tr>
<td>3 Manutenzione</td>
<td>12</td>
<td>3 Maintenance</td>
<td>12</td>
</tr>
<tr>
<td>3.1 Frequenza di ispezione</td>
<td>12</td>
<td>3.1 Inspection intervals</td>
<td>12</td>
</tr>
<tr>
<td>3.2 Operazione di sicurezza</td>
<td>12</td>
<td>3.2 Safety operation</td>
<td>12</td>
</tr>
<tr>
<td>3.3 Operazioni di manutenzione</td>
<td>12</td>
<td>3.3 Maintenance operations</td>
<td>12</td>
</tr>
<tr>
<td>3.4 Ripristino del servizio</td>
<td>12</td>
<td>3.4 Putting back into service</td>
<td>12</td>
</tr>
</tbody>
</table>
1 Description

1.1 General
Univer G12 switchboards are constructed using enclosures which can take Esafluor HA series circuit-breakers type HA1, SG, HA2, SG, HA3 NF/sG.

1.1.1 Operating characteristics
– Maximum service continuity
– Personnel safety
– Safety against fire
– Simple maintenance and inspection
– Easy handling
– Versatility and flexibility

1.1.2 Electrical characteristics
– Rated voltage 12 kV
– Test voltage at 50 Hz for 1 min. 28 kV
– Impulse withstand voltage 75 kV
– Rated busbar current from 1250 to 3600A
– Short-time withstand current (1 sec.) up to 50 kA
– Momentary current (peak value) up to 125 kA

1.1.3 Compliance with Standards
– Italian CEI 17-6 (file 2056)
– International IEC 298
– Italian Accident Prevention Laws (DPR 547)

1.1.4 Make-up of the basic cubicle (fig. 1 - fig. 2)
– A: instrument compartment
– B: enclosure
– C: feeder compartment
– D: busbars compartment
– E: VT compartment (if provided)
– F: external auxiliary cable duct (if provided)
1.2 Blocchi
Vengono elencati i blocchi più comuni che possono comparire nel quadro; quelli contraddistinti con (N) sono in normale fornitura mentre quelli contraddistinti con (R) sono forniti solo a richiesta.

1.2.1 Sull’interruttore
a) Impedisce l’inserzione se è chiuso l’eventuale sezionatore di terra (N).
– Per gli altri blocchi consultare le istruzioni del contenitore.

1.2.2 Sul sezionatore di terra
a) Impedisce la chiusura se non viene disattivato il blocco elettrico e/o a chiave (R).
b) Impedisce la chiusura se l’interruttore è inserito (N).
c) Impedisce l’apertura se non è stata chiusa la porta posteriore cella linea (N).

1.2.3 Sulla porta posteriore cella linea
a) Impedisce l’apertura se non è chiuso il sezionatore di terra (N).

1.2 Locks
The most common locks which can be fitted in the switchboard are listed. Those marked (N) are standard supply, whereas those marked (R) are only supplied on request.

1.2.1 On the circuit-breaker
a) Prevents connection if an earthing switch (N) provided is closed
– For the other locks, please consult the instructions for the enclosure.

1.2.2 On the earthing switch
a) Prevents closure unless the electrical and/or key lock (R) is inactivated.
b) Prevents closure if the circuit-breaker is connected (N)
c) Prevents opening unless the feeder compartment rear door (N) has been closed.

1.2.3 On the feeder compartment rear door
a) Prevents opening unless the earthing switch (N) is closed.
1.3 Manovre normali

1.3.1 Sull’interruttore
 a) Inserzione: prima di effettuare la manovra, verificare che sia disattivato il blocco descritto al punto 1.2.1 e quanto descritto nelle istruzioni del contenitore.
 b) Sezionamento: per passare dalla posizione di inserito a quella di sezionato verificare che l’interruttore sia aperto.

1.3.2 Sul sezionatore di terra
 a) Azionamento: la leva di comando (fig. 3a) una volta introdotta nella propria sede (fig. 3b) e iniziata la sua rotazione, rimane vincolata fino a quando non è stata completata la manovra; dopo di che viene espulsa per effetto di una molla. Se non si riesce a introdurre la maniglia vuol dire che manca il consenso dei blocchi citati al punto 1.2.2.
 b) Blocco a chiave: introdurre la chiave nella serratura (fig. 3c) e ruotarla in senso orario di circa 90° quindi introdurre la leva di manovra (fig. 3a).
 c) Chiusura sezionatore: verificare che siano disattivati i blocchi previsti al punto 1.2.2; inserire la leva di manovra (fig. 3a) e ruotare di 180° in senso antiorario.
 d) Apertura sezionatore: verificare che siano disattivati i blocchi previsti al punto 1.2.2; inserire la leva di manovra (fig. 3a) e ruotare di 180° in senso orario.

1.3.3 Sulla porta posteriore cella linea
 a) Apertura: verificare che sia disattivato il blocco descritto al punto 1.2.3 (sezionatore di terra chiuso) e ruotare la maniglia in senso antiorario.

1.4 Manovre di emergenza
Le manovre qui sotto descritte devono essere eseguite esclusivamente in caso di assoluta necessità da personale qualificato che ne assume tutta la responsabilità. ABB SACE declina la propria responsabilità circa le conseguenze che possono derivare da un evento errato manovra.

1.4.1 Sull’interruttore
 a) Consultare le istruzioni del contenitore

1.4.2 Sull’apertura del sezionatore di terra
 a) Qualora si voglia effettuare l’apertura con la porta posteriore aperta premere a fondo il perno di blocco (fig. 4a) e contemporaneamente inserire la leva di comando come scritto al punto 1.3.2.

1.4.3 On the circuit-breaker
 a) Connection: before carrying out the operation, check that the lock described in point 1.2.1 is inactivated and that the instructions for the enclosure are followed.
 b) Isolation: to pass from the connected to isolated position, check that the circuit-breaker is open.

1.4.2 On earthing switch opening
 a) When opening must be carried out with the rear door open, press the locking pin (fig. 4a) in fully and at the same time insert the operating lever as described in point 1.3.2.
1.4.3 Sulla porta posteriore cella linea
a) Qualora si voglia aprire la porta (fig. 5) con sezionatore di terra aperto ruotare con utensile la vite di sbocco (fig. 5a) di circa 90° in senso orario e contemporaneamente ruotare la maniglia ed aprire la porta.

1.4.4 Sulla porta della cella interruttore
a) Qualora si voglia aprire la porta anteriore equipaggiata con blocco elettrico, asportare la vite M10 a testa bombata dalla porta, inserire il cacciavite (fig. 6) manovrarlo con attenzione, senza forzare, in senso orizzontale in caso di contenitori Univer G ed in senso verticale in caso di contenitori Univer G con HA3/NF/SG. Contemporaneamente a questa manovra ruotare la maniglia e aprire la porta.

1.4.3 On the feeder compartment rear door
a) When the door (fig. 5) must be opened with the earthing switch open, turn the release screw (fig. 5a) about 90° clockwise using the tool, turning the handle at the same time, and open the door.

1.4.4 On the circuit-breaker compartment door
a) When the front door fitted with electric lock must be opened, remove the round-headed M10 screw from the door, insert the screwdriver (fig. 6), handling it carefully and without forcing it, horizontally for Univer G enclosures and vertically for Univer G enclosures with HA3/NF/SG. At the same time as this operation, turn the handle and open the door.

1.5 Accessori di normale fornitura (fig. 7)
a) Piastra per l'inserzione e il sezionamento dell'interruttore
 b) Leva di manovra per l'inserzione e il sezionamento dell'interruttore
 c) Leva di comando del sezionatore di terra
 d) Golfari di sollevamento degli scomparti
 e) Mensole di supporto delle varie leve e maniglie
 f) Manovella per la carica delle molle di comando
 g) Vaschetta per scarico olio interruttori (per ricambio olio)
 h) Recipiente per riempimento olio nei poli dell'interruttore.

1.5 Accessories supplied as standard (fig. 7)
1.5a) Plate for connection and isolation of the circuit-breaker
 b) Operating lever for connection and isolation of the circuit-breaker
 c) Operating lever of the earthing switch
 d) Cubicle lifting eyebolts
 e) Support brackets for the various levers and handles
 f) Crank for charging the operating mechanism springs
 g) Pan for draining circuit-breaker oil (to replace the oil)
 h) Container for filling the circuit-breaker poles with oil.

2 Installazione

2.1 Controllo a ricevimento

2.1.1 Imballaggio
– Ogni quadro viene imballato in tante casse robuste di legno contenenti uno o più scomparti dentro ai quali sono fissati gli interruttori.
In altre casse vengono raggruppati tutti i materiali necessari per:
– accoppiamento degli scomparti
– fissaggio a pavimento
– montaggio sbarre omnibus
– montaggio sbarra collettrice di terra
– accessori di manovra

2.1.2 Controllo
Disimballare facendo attenzione a non danneggiare il materiale e controllare il suo stato di conservazione. Qualora venisse riscontrato qualche danno o irregolarità nella fornitura, è necessario avvisare ABB SACE al più presto possibile ed in ogni caso entro 5 giorni dal ricevimento del materiale.

2.2 Magazzinaggio
Immagazzinare in luogo asciutto non polveroso privo di agenti chimici aggressivi; in particolare non si devono mai verificare condizioni che possano facilitare il fenomeno della condensazione. Nel dubbio riscaldare eventualmente l'ambiente. Nel caso il quadro rimanga temporaneamente in un ambiente non esente da polvere, deve essere opportunamente protetto con teli o fogli di plastica.

2.3 Sollevamento scomparti
Seguire scrupolosamente la seguente sequenza:
1) Inserire gli appositi golfari di sollevamento (fig. 8a) nelle cave contrassegnate da targhette autodesive (fig. 8b).
2) Assicurare i golfari contro lo sfilamento tenendoli spinti verso l'alto e avvitando la vite di posizionamento (fig. 9a).
3) Agganciare la gru e sollevare l'unità (fig. 10).
È sconsigliabile far scorrere gli scomparti su rulli di tubo perché potrebbero danneggiare le basi degli scomparti.

Fig. 8 Fig. 9 Fig. 10

2 Installation

2.1 Checking on receipt

2.1.1 Packing
– Each switchboard is packed in several sturdy wooden crates containing one or more cubicles, onto which the circuit-breakers are fixed. All the materials required for the following are grouped together in other crates:
– cubicle coupling
– fixing to the floor
– assembly of omnibus busbars
– operating accessories

2.1.2 Inspection
Unpack taking care not to damage the goods and check that they are in good condition. Should any damage or irregularity be noted in the supply, ABB SACE must be notified as soon as possible and in any case within 5 days of receipt of the goods.

2.2 Storage
Store in a dry, dust-free place free from any aggressive chemical agents. In particular, any conditions leading to condensation must be avoided. When in doubt, heat the room. Should the switchboard remain temporarily in a dusty place, it must be suitably protected with tarpaulins or plastic sheets.

2.3 Cubicle lifting
Follow the sequence below very carefully:
1) Insert the special lifting eyebolts (fig. 8a) in the slots marked with self-adhesive labels (fig. 8b).
2) Prevent the eyebolts from slipping out by keeping them pushed upwards and by tightening the positioning screw (fig. 9a).
3) Hook up to the crane and lift the unit (fig. 10).
It is not advisable to slide the cubicles on tube rollers since this could damage the bases of the cubicles.
2.4 Fondazioni

Il quadro è costruito accuratamente con basi metalliche perfettamente piane per assicurare una facile inserzione ed estrazione dell'interruttore; occorre quindi preparare con altrettanta cura le fondazioni.

Il pavimento sul fronte del quadro deve essere in grado di sopportare un sovraccarico massimo su quattro ruote metalliche (ogni ruota ha Ø 80 e larghezza battistrada 2 x 8 mm) di ≈250 kg, per la presenza dell'interruttore in posizione di estratto e in movimento.

2.4.1 Foratura soletta

Per le forature della soletta per il passaggio dei cavi di potenza e dei cavetti ausiliari fare riferimento al disegno di fondazione che viene inviato normalmente con la documentazione del quadro.

2.4.2 Fissaggio scomparti senza ferri di base

Livellare il pavimento sul quale viene fissato il quadro sia in senso longitudinale che trasversale, con un'inclinazione massima di 2/1000.

Effettuare i fori per gli ancorati ad espansione (650594 fig.003) in corrispondenza delle quattro cave che si trovano sulla base anteriore (fig.11). Fissare i vari scomparti a pavimento possibilmente partendo dal centro del quadro e affiancando gli altri verso le due estremità.

Fig. 11

2.4.3 Fissaggio scomparti con ferri di base

Allineare i ferri in modo che essi risultino paralleli e distanti tra loro come previsto dal disegno delle fondazioni. Livellare i ferri sia nel senso longitudinale che trasversale con una tolleranza di planarità massima di 2/1000. Bloccare in tale posizione i ferri di base con cemento rapido, completare poi la pavimentazione facendo in modo che la differenza di livello rispetto al pavimento

2.4 Foundations

The switchboard is carefully constructed using perfectly flat metal bases to ensure easy racking-in and racking-out of the circuit-breaker. The foundations must therefore be prepared with the same care and attention. The floor at the front of the switchboard must be able to withstand a maximum overload of ≈250 kg on four metal wheels (each wheel has Ø 80 and 2 x 8 mm tread width), for the circuit-breaker in the racked-out position and when it is being moved.

2.4.1 Slab drilling

For drilling the slab for power and auxiliary cable passage, refer to the foundation diagram normally sent with the switchboard documentation.

2.4.2 Fixing cubicles without base irons

Level the floor where the switchboard is to be fixed both longitudinally and transversely, with a maximum inclination of 2/1000. Make the holes for the expansion anchoring bolts (650594 fig.003) in correspondence with the four slots on the front base (fig.11). Fix the various cubicles to the floor, if possible starting from the centre of the switchboard and placing the others side by side towards the two ends.

2.4.3 Fixing cubicles with base irons

Line up the base irons so that they are parallel and at the same distance from each other as shown in the foundation drawing. Level the irons both longitudinally and transversely with a maximum planarity tolerance of 2/1000. Lock the base irons in this position with quick-setting cement and then complete the flooring so that the difference in level compared with the floor
sia ≤ 0,5 mm (650594 fig. 002). Effettuare i vari fori per gli ancoranti ad espansione (650594 fig. 002). Fissare i vari scomparti ai ferri di base a mezzo dei blocchetti (650594 fig. 002) partendo dal centro del quadro. Dopo aver fissato i primi scomparti ripetere l’operazione per tutti gli altri che verranno affiancati verso le due estremità del quadro. I ferri di base dovranno essere giuntati tra loro con piastre metalliche saldate (non di fornitura SACE).

È opportuno che il piano del pavimento anteriormente al quadro, per circa 1,5 m, rispetti la tolleranza di planarità. Ciò facilita la manovra di inserzione ed estrazione degli interruttori.

2.5 Accoppiamento scomparti
Per agevolare le operazioni di spostamento e accoppiamento degli scomparti all’interno del locale, estrarre l’interruttore e accantonarlo. Imbullonare gli scomparti tra loro nei punti indicati in fig. 12.

2.5 Coupling cubicles
To facilitate the operations for moving and coupling the cubicles inside the room, rack the circuit-breaker out and put it aside. Bolt the cubicles together at the points shown in fig. 12.

2.6 Collegamenti principali
2.6.1 Sbarre omnibus tubolari
Descrizione (figg. 13b - 13c)
- a – derivazione proveniente dall’interruttore
- b – sbarra omnibus
- c – distanziatore
- d – vite, rosetta elastica e piana
- e – protezione isolante
- f – cinturino
- g – ceppo
- h – cuneo
- i – piastrina

2.6 Main connections
2.6.1 Tubular omnibus busbars
Description (figs. 13b – 13c)
- a – branch from the circuit-breaker
- b – omnibus busbar
- c – spacer
- d – screw, spring and flat washer
- e – insulating protection
- f – strap
- g – block
- h – wedge
- i – plate
Montaggio
a) Montare le sbarre nella sequenza RST (fig. 13) avendo cura di pulire accuratamente le superfici di contatto con straccio asciutto e ingrassare con un leggero strato di vaselina.
b) Qualora le superfici di contatto argentate fossero annerite per la presenza di anidride solforosa, pulire con alcool o altro solvente similare.
c) La coppia di serraggio raccomandata è di circa 10 kgm. Ultimata questa operazione applicare la protezione isolante sulla giunzione.

2.6.2 Sbarre omnibus piatte
Descrizione (vedere fig. 13a – 13b – 13c):
Montaggio
a) Montare le sbarre nella sequenza RST (fig. 13) avendo cura di pulire accuratamente le superfici di contatto con straccio asciutto e ingrassare con un velo di vaselina.
b) La coppia di serraggio raccomandata è circa 8 kgm.

Assembly
a) Mount the busbars in the RST sequence (fig. 13), taking care to clean the contact surfaces carefully with a dry cloth and grease them with a thin layer of vaselina.
b) Should the silver-plated contact surfaces be blackened by sulphur dioxide, clean them with alcohol or a similar solvent.
c) The recommended tightening torque is about 10 kgm. Once this operation is completed, apply the insulating protection over the joint.

2.6.2 Flat omnibus busbars
Description (see figs. 13 a – 13b – 13c):
Assembly
a) Mount the busbars in the RST sequence (fig. 13), taking care to clean the contact surfaces carefully with a dry cloth and grease them with a thin layer of vaselina.
b) The recommended tightening torque is about 8 kgm.
2.7 Auxiliary connections
Referring to the electric diagram, reconnect the auxiliary cables (disconnected for transport) in the wiring duct on the roof between adjacent cubicles. Connect the cables coming from outside to the special terminal boxes, taking care to check their exact position by referring to the electric diagram.

2.8 Checking before tests
a) Carry out all the operations indicated in the relative instructions for each component (circuit-breakers, relays, etc.).
b) Remove any dust and dirt, preferably with a vacuum cleaner.
c) Clean all the insulating parts with clean rags or dry brushes.
d) Inspect the isolating contacts. Should the contact surfaces be blackened, clean them with alcohol or another similar solvent and then protect them with a thin later of vaseline.
e) Check that the bolts of the main and auxiliary circuits are tight.
2.9 Prove meccaniche
Tutti i dispositivi meccanici vengono normalmente verificati e collaudati in officina ma per ragioni di trasporto o altro possono subire alterazioni; è perciò opportuno prima della messa in servizio fare un controllo accurato.

2.9.1 Sull'interruttore
a) Verificare se è possibile inserire l'interruttore con sezionatore di terra chiuso; eventualmente intervenire sulle regolazioni (vedere punto 2.10.2).
b) Effettuare sull'interruttore quelle manovre previste dalle istruzioni del contenitore.

2.9.2 Sul sezionatore di terra
a) Verificare la chiusura esatta; eventualmente intervenire sulle regolazioni (vedere punto 2.10.1).

2.10 Regolazioni
2.10.1 Sulla chiusura del sezionatore di terra
Sbloccare i dadi (fig.15a) e agire sul tirante di regolazione (fig. 15b); a operazione ultimata bloccare nuovamente i dadi.

2.10.2 Sul blocco tra sezionatore di terra e interruttore
Sbloccare il dado (fig. 16a) ed agire sul tirante di regolazione (fig.16b); a operazione ultimata bloccare nuovamente il dado.

2.9 Mechanical tests
All the mechanical devices are normally checked and tested in the workshop, but due to transport or other reasons they may undergo alterations. It is therefore advisable to carry out a careful check before putting them into service.

2.9.1 On the circuit-breaker
a) Check whether it is possible to connect the circuit-breaker with the earthing switch closed. If necessary, intervene on the adjustments (see point 2.10.2).
b) Carry out the operations foreseen in the instructions for the enclosure.

2.9.2 On the earthing switch
a) Check correct closure; if necessary, intervene on the adjustments (see point 2.10.1).

2.10 Adjustments
2.10.1 On closure of the earthing switch
Release the nuts (fig. 15a) and work on the adjustment tie-rod (fig. 15b). When the operation is completed, lock the nuts again.

2.10.2 On the lock between the earthing switch and circuit-breaker
Release the nut (fig. 16a) and work on the adjustment tie-rod (fig. 16b). When the operation is completed, lock the nut again.

2.11 Prove elettriche
2.11.1 Resistenza di isolamento
Effettuare misurazioni con Megger, tra le fasi verso massa, sia dei circuiti principali che secondari per verificare la resistenza di isolamento (tensione Megger: 2500 V per i circuiti principali e 500 V per i circuiti secondari). I valori minimi che possono venire rilevati verso massa sono alcune decine di MΩ per i circuiti principali e alcuni MΩ per i circuiti secondari.

2.11.2 Isolamento a frequenza industriale
La ripetizione di questa prova non è necessaria né raccomandabile se non in caso di modifiche sui circuiti. Quando deve essere ripetuta è bene applicare una tensione non superiore al 75% del valore della tensione di prova del quadro facendo attenzione di escludere quei componenti che hanno prescrizione di prova inferiori a quelli del quadro.

2.11 Electrical test
2.11.1 Insulation resistance
Using a Megger, carry out measurements between the phases towards earth of both the main and auxiliary circuits to check the insulation resistance (Megger voltage: 2500 V for the main circuits and 500 V for the auxiliary circuits). The minimum values which can be determined towards earth are a few dozen MΩ for the main circuits and a few MΩ for the auxiliary circuits.

2.11.2 Insulation at industrial frequency
Repetition of this test is neither necessary nor recommended except in the case of modifications to the circuits. However, when it has to be repeated it is advisable to apply a voltage of not more than 75% of the value of the switchboard test voltage, taking care to exclude the components which have test specifications lower than those of the switchboard.
2.11.3 Funzionalità
Effettuare prove sui circuiti secondari per verificare il funziona-
mento a distanza del comando, delle segnalazioni, delle prote-
zioni e di tutti gli altri circuiti collegati a componenti esterni al
quadro.
Verificare il buon funzionamento dei riscaldatori e degli even-
tuali ventilatori (per i valori di taratura degli Interruttori termici
consultare lo schema elettrico).

2.12 Messa in servizio
Dopo aver effettuato le prove meccaniche ed elettriche descrit-
te ai punti 2.9 e 2.11, accertare che tutte le protezioni asportate
durante l'installazione del quadro siano state rimesse a posto.
Dopo ciò è possibile mettere in tensione il quadro.

Attenzione: Ricordare, prima di mettere in servizio il quadro, di
depositarle in luogo inaccessibile al personale operativo tutti le
duplicate delle chiavi che servono per gli interblocchi e chiavi.

3 Manutenzione
3.1 Frequenza di ispezione
Per evitare un pericoloso degrado del livello di isolamento è
bene procedere ad una prima ispezione dopo circa 6 mesi dalla
messa in servizio per definire la periodicità e la scheda di
manutenzione tenendo conto non soltanto del quadro ma
anche delle prescrizioni dei singoli componenti.

3.2 Operazioni di sicurezza
Prima di iniziare la manutenzione il personale deve seguire
quelle operazioni di sicurezza affinché tutte le parti attive siano
fuori tensione, messe a terra e munite di cartelli monitori prima
di asportare le protezioni ed accedere ai circuiti principali.

3.3 Operazioni di manutenzione
a) Effettuare per ogni componente, in condizioni di sicurezza
come precisato nelle rispettive istruzioni, tutte le operazioni
di manutenzione
b) Asportare la polvere e la sporizione, possibilmente con
aspirapolvere
c) Eliminare la polvere dalle parti isolanti con stracci puliti e
asciutti
d) Vispezionare a vista i monoblocchi isolanti e le giunzioni delle
sbarre
e) Rimuovere la polvere dalle feritoie di aerazione con un
pennello asciutto
f) Verificare il corretto funzionamento dei leveraggi e se
necessario ingrassare le parti in movimento
g) Ispezionare i contatti di sezionamento eliminando l'even-
tuale annerimento delle superfici argentate con alcool e
protettore nuovamente le superfici con un leggero strato di
grasso di vaselina
h) Effettuare alcune manovre di inserzione e sezionamento
di interruttori
i) Effettuare alcune manovre sui sezionatori di terra
j) Verificare la funzionalità dei blocchi e degli interbloccio
k) Verificare il funzionamento dei resistori
l) Verificare la resistenza di isolamento
m) Verificare il funzionamento degli eventuali ventilatori

3.4 Ripristino del servizio
Dopo la manutenzione rimettere tutte le protezioni ed effettuare
tutte le operazioni necessarie per la messa in servizio.

3.4 Putting back into service
After maintenance, put all the protections back and carry out all
the operations required for putting into service.

2.12 Putting into service
After carrying out the mechanical and electrical tests described
under points 2.9 and 2.11, make sure that all the protections
removed during installation of the switchboard have been put
back in place. After this, the switchboard can be energised.

Caution: Before putting the switchboard into service, remem-
ber to place all the duplicates of the keys used for the key
interlocks somewhere inaccessible to the operating personnel.

2.11.3 Functionality
Carry out test on the auxiliary circuits to check remote operation
of the operating mechanism, signalling devices, protections
and all the other circuits connected to components outside the
switchboard.
Check correct operation of the heating devices and any fans
(for setting values of the thermal circuit-breakers, consult the
electric diagram).

3.1 Maintenance
3.1 Inspection intervals
To avoid dangerous degradation of the insulation level, it is
advisable to carry out an initial inspection about 6 months after
putting into service to define the intervals and the maintenance
card, taking into account not only the switchboard but also the
specifications of the individual components.

3.2 Safety operations
Before starting any maintenance work, personnel must follow
all the safety operations so that all the live parts are de-
ergenced, earthed and fitted with warning notices before the
protections are removed and the main circuits accessed.

3.3 Maintenance operations
a) For each component, and under safe conditions as indi-
cated in the relative instructions, carry out all the mainte-
nance operations
b) Remove any dust and dirt, preferably with a vacuum cleaner
c) Eliminate any dust on the insulating parts using clean dry
rags
d) Visually inspect the insulating monoblocks and the busbar
joints
e) Remove any dust from the ventilation slats using a dry brush
f) Check correct operation of the lever mechanisms and, if
necessary, grease the moving parts
g) Inspect the isolating contacts, eliminating any blackening of
the silver-plated surfaces with alcohol and then protect the
surfaces again with a thin layer of vaselina
h) Carry out a few circuit-breaker connection and isolation
operations
i) Carry out a few operations on the earthing switches
j) Check operation of the locks and interlocks
k) Check operation of the resistors
l) Check the insulation resistance
m) Check operation of any fans
n) Check the insulation resistance
p) Check the working of the eventual ventilators

3.4 Putting back into service
After maintenance, put all the protections back and carry out all
the operations required for putting into service.
The data and illustrations are not binding. We reserve the right to make changes in the course of technical development of the product.