The SecureMesh™ Wide Area Network -- Reliable & Flexible Wireless Mesh Communications for Distribution Automation

ABB APW 2011
CPS-152-1
TRILLIANT CASE STUDY ON DISTRIBUTION AUTOMATION

CONFIDENTIAL
Copyright © 2011 Trilliant Incorporated and/or its subsidiaries. ALL RIGHTS RESERVED.
• Business Case for DA

• DA Applications
 — Outage Management (Fault Detection, Isolation, Restoration)
 — Integrated Voltage Control
 — Asset Management
 — Substation Automation

• Communications Requirements for DA

• Trilliant’s SecureMesh Network
 — Integrated multi-tier network solution
 — Product & solution details
 — Customer deployments

• Solution Benefits
Utility business cases for DA typically show positive ROI, with or without combined AMI initiative.
Distribution Automation Applications

Typical high-value applications with immediate positive ROI

- **Outage Mgmt (Fault Location, Isolation and Restoration)**
 - Feeder reconfiguration
 - Switch & recloser automation

- **Integrated Volt/VAR Control (Conservation Voltage Reduction)**
 - Voltage monitoring
 - Capacitor bank control

- **Asset Management (e.g., Transformer Monitoring)**

- **Distribution Network Analysis**
 - Network state estimation (real time load calibration)
 - Load flow calculations
 - Short circuit calculations
 - Loss minimization
 - Load forecasting and capacity management
 - Comprehensive network model – energy diversion

- **Substation Automation**
 - Substation connectivity
 - SCADA support
 - Video surveillance
 - Mobile workforce applications

Outside the Fence (apparatus on feeder circuit lines)

Inside the Fence (equipment within substations)
Outage Management

- **Objectives**
 - To detect fault conditions as quickly as possible
 - To communicate fault events to upstream & downstream switches and central head-end systems
 - To turn on/off protective switches/reclosers to prevent a major outage
 - To remotely restore power as quickly as possible to minimize outage

- **Requirements**
 - A remote controllable Smart Grid device
 - Low-latency communications
 - Support of DNP3 or IEC 61850 w/ GOOSE messaging
Integrated Volt/VAR Control

• Objectives
 — Measure voltage levels at end users
 — Allow control of load tap changers at substation feeders
 — Significant energy/cost savings are possible if today’s estimated voltage margins can be reduced

• Requirements
 — Voltage information from selected points in the grid (e.g., selected meters or sensors on grid apparatus)
 — Simultaneous monitoring of instantaneous voltage levels
 — Low-latency communications
 — Software applications (e.g., DMS) to integrate SCADA, sensor data, and meter data
 — Head-end control algorithms to optimize voltage regulation process
Substation Automation

- **Objectives**
 - Provide broadband communications to remote substations, especially those w/o any communications or currently requiring leased lines ($200~$600/month OPEX)
 - Eliminate truck rolls to gather data from substations without connectivity

- **Requirements**
 - Broadband connectivity
 - Support of SCADA, video surveillance, and/or mobile workforce apps
NIST Framework for Smart Grid

Communications are fundamental to enabling positive-ROI DA applications
Communications Requirements for DA

DA imposes higher communications requirements than simple voice/data comms

- **Capacity & latency**
 - Ability to support required traffic
 - Future proof – *ability to support future and/or new applications*

- **Standards support**
 - Support for SCADA, DNP3, and IEC 61850 w/ GOOSE messaging
 - Security

- **Coverage/availability**
 - Communications to remote substations
 - Communications distributed throughout distribution grid (e.g., to support voltage monitoring)

- **Reliability**
 - Network reliability – *fault tolerance*
 - Product reliability — *rugged product design, backup power, ease of deployment*
Communications Alternatives for DA

Cost & performance trade-offs will determine a utility’s decision

- **Wireline**
 - High bandwidth
 - Low latency
 - Potentially high deployment costs

- **Wireless**
 - Bandwidth and latency determined by technology/spectrum
 - Flexible deployment

- **Public network facilities**
 - Opex rather than capex
 - Availability/coverage determined by carrier

- **Private network facilities**
 - Capex rather than opex
 - Deployment and Quality of Service under utility control
Wireless Communications Considerations for DA

Deployment costs drive a utility’s decision to adopt wireless comms for DA

• **Public vs. private network**
 - Public networks (e.g., cellular): wide coverage, no infrastructure, high OPEX
 - Private network: under utility control, QoS, high CAPEX

• **Licensed vs. unlicensed spectrum**
 - Licensed: no interference, long range, $$ for spectrum license
 - Unlicensed: benefits of scale, wide vendor selection

• **Range vs. frequency band: greater range \(\rightarrow\) less equipment \(\rightarrow\) lower cost**
 - Determined by transmit power, antenna gains, receive sensitivity
 - Determined by frequency band
 - Determined by FCC regulations (Tx powers; licensed vs. unlicensed spectrum)
 - Determined by line-of-sight

• **Wireless network topologies**
 - Point-to-Point (P-P): potential longer range; limited coverage
 - Point-to-Multipoint (P-MP): wide coverage; single point of failure
 - Mesh: wide coverage; deployment flexibility; reliability
The SecureMesh™ Multi-Tier Communications Network

Secure, scalable, global standards-based architecture for future-proof Smart Grid networking

UnitySuite
Head-End Software
- data aggregation
- interface to a utility’s existing systems
- network and device management

SecureMesh WAN
(Wide Area Network)
- standards-based, high-capacity, low-latency wireless mesh technology
- AMI backhaul
- direct support of DA applications

SecureMesh NAN
(Neighborhood Area Network)
- standards-based, high data rate wireless mesh technology for AMI
- field-proven radio performance
- wide choice of meters

HAN
(Home Area Network)
various options to address the specific utility business model
The SecureMesh™ Wide Area Network (WAN)

Scalable, broadband wireless mesh network technology

- **5 GHz Wide Area Network**
 - Private network NAN backhaul
 - Direct support of Smart Grid devices

- **High-bandwidth, low-latency**
 - Adaptive air data rates from 6 to 54 Mbps
 - Low-latency (<10 ms/hop round-trip)

- **Open, standards-based design**
 - Layer 2 Ethernet framing
 - Standard chipsets

- **Scalable capacity/bandwidth**
 - Modular capacity injection
 - Bandwidth can be allocated as needed

- **Flexible topology, long range**
 - Easily deployed
 - Up to 10-mile range per hop
 - Multi-hop network bypasses obstacles

- **High reliability & availability**
 - Dynamic mesh routing
 - Self-healing

- **Proven in over 50 countries**

Representative SecureMesh WAN client devices
- Substation automation
- SCADA-over-IP
- Gridpoint monitoring
- IP-enabled or serial devices
Summary of SecureMesh WAN Technology

Scalable, broadband wireless mesh network technology

<table>
<thead>
<tr>
<th>Architecture</th>
<th>multi-hop mesh point-to-multipoint TDMA network with synchronous dynamic beamswitching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Data Rate</td>
<td>• up to 54 Mbps (6, 9, 12, 18, 24, 36, 48, 54 Mbps)</td>
</tr>
<tr>
<td></td>
<td>• real-time adaptation based on link quality</td>
</tr>
<tr>
<td>Modulation</td>
<td>OFDM w/ adaptive modulation (BPSK, QPSK, 16-QAM, 64-QAM)</td>
</tr>
<tr>
<td></td>
<td>(orthogonal frequency division multiplexing)</td>
</tr>
<tr>
<td>Frequency Band</td>
<td>• 4.940 – 5.450 GHz (US: 4.94 - 4.99 GHz public safety; 5.25 – 5.35 GHz U-NII mid)</td>
</tr>
<tr>
<td></td>
<td>• 5.470 – 5.725 GHz (US: 5.470 – 5.725 GHz U-NII worldwide)</td>
</tr>
<tr>
<td></td>
<td>• 5.725 – 6.075 GHz (US: 5.725 – 5.850 GHz U-NII upper/ISM)</td>
</tr>
<tr>
<td>Encryption</td>
<td>AES-128 (node-by-node link encryption)</td>
</tr>
<tr>
<td>Fault Tolerance</td>
<td>• intra-mesh dynamic routing (alternate paths to the supporting Gateway)</td>
</tr>
<tr>
<td></td>
<td>• all SecureMesh WAN devices maintain active backup paths</td>
</tr>
<tr>
<td></td>
<td>• fast switchover (seconds to <1 min depending on fault scenario)</td>
</tr>
<tr>
<td></td>
<td>• inter-mesh dynamic routing (to alternate Gateways)</td>
</tr>
<tr>
<td></td>
<td>• switchover < ~2 min</td>
</tr>
<tr>
<td></td>
<td>• “standby” Gateways are active (not idle), providing N-1 redundancy</td>
</tr>
<tr>
<td>Standards Compliance</td>
<td>• layer 2 Ethernet (IEEE 802.3) transport</td>
</tr>
<tr>
<td></td>
<td>• transparently supports IEC 61850, DNP3, TCP/IP (IPv4/v6), Modbus, ICCP, and other higher layer protocols for Smart Grid devices</td>
</tr>
</tbody>
</table>
SecureMesh WAN Components

<table>
<thead>
<tr>
<th>Function</th>
<th>Gateway</th>
<th>Extender</th>
<th>Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity injection</td>
<td>Capacity injection (network takeout point)</td>
<td>• Coverage (network expansion)</td>
<td>• Network edge/endpoint</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ethernet drop for DA devices</td>
<td>• Ethernet drop for DA devices</td>
</tr>
<tr>
<td>Max Node-to-Node Range</td>
<td>~16 km / 10 miles (typically limited by terrain to ~8-11 km / 5-7 miles)</td>
<td>~12 km / ~7 miles</td>
<td></td>
</tr>
<tr>
<td>Additional Products</td>
<td></td>
<td>Extender DualBand: Integrated Wi-Fi 802.11b/g access point</td>
<td>Connector DualBand Integrated Wi-Fi 802.11b/g access point</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Extender Bridge: Integrated SecureMeshNAN access point</td>
<td></td>
</tr>
<tr>
<td>Battery Backup</td>
<td>• 8-hour backup power with SecureMesh Power Service Unit</td>
<td>• Backup provided by IED cabinet</td>
<td>• 27-hour backup power with ABB control cabinet</td>
</tr>
<tr>
<td></td>
<td>• 27-hour backup power with ABB control cabinet</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UnitySuite™ NEMS Overview

- **Comprehensive Coverage**
 - Management capabilities at the network and device level
 - Standards-based SNMP MIBs

- **Over-the-air automatic provisioning & configuration**

- **Robust traffic management**
 - Traffic shaping and filtering
 - Traffic prioritization by VLAN and traffic type

- **Real-time fault alarms & event reporting**

- **Performance Monitoring**
 - Monitoring of network performance metrics
 - Configurable thresholds
 - Alerts can be forwarded to an existing management system (NMS, OMS, DMS)

- **Integration with Google Earth for network visualization**
 - Generate network maps based on NEMS data
 - Derive node locations using GPS functionality

- **Role-based Access Control for users/groups**
SecureMesh WAN Benefits for DA Applications

Ideally suited for direct support of DA applications

- **Long range mesh network: flexible topology with high reliability & availability**
 - Node-to-node distances up to 16 km/10 mi
 - Benefits of dynamic, self-healing mesh routing bypassing obstacles
- **High-bandwidth communications with Scalable capacity**
 - Throughput up to ~12 Mbps TCP/~20 Mbps UDP per Gateway, scalable with additional Gateways
 - Ideal for bandwidth-intensive protocols such as IEC 61850 or substation communications
 - Typical AMI data only take <4% of available bandwidth, leaving plenty for DA apps
- **Low-latency communications**
 - < ~8-10 ms per hop
 - Ideal for quick response of IEC 61850 GOOSE messaging, DNP3, Modbus
- **QoS and Network segmentation via private networking**
 - IEEE 802.1Q VLANs and/or IPsec VPNs
 - Traffic prioritization (3 priority levels)
 - Rate shaping (limited network capacity granted to any single device)
 - Multicast
- **Connectivity options**
 - Single Ethernet port supports multiple devices (w/ external router/switch)
 - Serial-to-Ethernet adapters provide serial interfaces (RS-232, RS-485)
 - Layer 2 Ethernet transport or IP encapsulation carries higher layer protocols: IEC 61850, DNP3...
Proven Interoperability

Interoperability tested with industry-leading solutions

- **COOPER Power Systems**
 - Yukon Feeder Automation platform
 - SMP 16/CP Intelligent Substation Gateway
 - Form 6 Recloser Control

- **GE**
 - D400 Substation Data Manager
 - XA/21 SCADA/Energy Mgmt System

- **SIEMENS**
 - 7SJ64 Smart IED Control HMI
 - 7SJ80 Smart IED
 - Vector OH switch

- **TELVENT**
 - Telvent Sage 2300 RTU

- **ABB**
 - DPU2000R Distribution Protection Unit
 - TPU2000R Advanced Transformer Protection Unit
 - PR 512 Circuit Breaker Protection for Primary distribution
 - PR 512 Circuit Breaker Protection for Secondary distribution
 - REF 543 Feeder Protection Terminal
 - REF 545 Feeder Protection Terminal
 - REF 550 Feeder Protection Terminal
 - REF 610 Feeder Protection
 - REF 615 Advanced Feeder Protection
 - REF 620 Advanced Feeder Protection
 - RET 630 Advanced Feeder Protection
 - REM 543 Motor Protection Relay
 - REM 545 Motor Protection Relay
 - REM 610 Motor Protection Relay
 - REM 615 Motor Protection Relay
 - REM 615 Motor Protection Relay
 - REC 501 Bay Control Terminal
 - REC 523 Bay Control Terminal
 - RER 620 Recloser IED
 - RET 541 Transformer Protection Terminal
 - RET 543 Transformer Protection Terminal
 - RET 545 Transformer Protection Terminal
 - RET 615 Transformer Protection Relay
 - RET 630 Transformer Protection Relay
 - RET 670 Transformer Protection Relay
 - SPAU 341 C Voltage Regulator Relay
Strong ABB-Trilliant partnership

Simulated ABB / SecureMesh WAN DA solution

Rigorous Testing Conducted by ABB Reveals that Trilliant’s SecureMesh Wide Area Network (WAN) Excels in Distribution Automation Applications

ABB-Trilliant Joint White Paper
Representative SecureMesh WAN DA Deployment

Control Center

- Safety
- Reliability
- Secure system
- Fully interoperable
- Easy to deploy
- Expandable

Substation A COM600 & SecureMesh Gateway (Primary)

Substation B COM600 & SecureMesh Gateway (Redundant)

ABB COM600

Recloser 1
Recloser 2 N.O.
Recloser 4
Recloser 3
Recloser 5

SecureMesh Extender
ABB PCD Recloser Controllers
ABB RER 620
SecureMesh Connectors
How does the SecureMesh WAN achieve such long range, high throughput, and low latency?
Unique SecureMesh WAN Architecture

Deterministic access control combined with advanced antenna switching

<table>
<thead>
<tr>
<th>Mesh Networking</th>
<th>Traffic Management</th>
<th>RF Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic Discovery</td>
<td>Dynamic QoS</td>
<td>Industry-leading SpectralReuse</td>
</tr>
<tr>
<td>Self-Optimized Routing</td>
<td>Scalable capacity</td>
<td>Self-Interference Mitigation</td>
</tr>
<tr>
<td>Dynamic Re-routing</td>
<td>Load Balancing</td>
<td>Non-Line-of-Sight Coverage</td>
</tr>
<tr>
<td>Self-healing failover</td>
<td>Traffic Prioritization</td>
<td>Adaptive Modulation</td>
</tr>
</tbody>
</table>

Multi-hop Mesh Point-to-Multipoint TDMA Network

With Synchronous Dynamic Beamswitching Antenna Array

Advanced Beam-Switching Antenna Array

Time Division Duplex Transmission Control

- Array of 8 high-gain sector antennas for 360° coverage
- High output radio with real-time beam switching to sector antennas
- Exceptional range performance and link stability
Dynamic TDMA w/ Beamswitching

- Sector Switching
 - Array of 8 high-gain sectorized antennas
 - Long range and high data rates
 - Operates under FCC P2P rules (up to 28.2 W EIRP)
 - Up to 16 km / 10 mi (limited by TDMA, not radio performance)
 - Up to 54 Mbps

- 8 separate sectorized 18 dBi antennas w/ 45° beamwidth

- High-speed antenna switching
 - Advanced antenna switching combined with deterministic access control
 - Switches high-power radio to 8-beam antenna array up to 10,000 times/second
 - Robust link performance
 - Efficient spectral reuse

- TDMA "bandwidth scheduler"
 - Distributed mesh-wide algorithm synchronizes transmissions for spectrum re-use
 - Coordinates dynamic high-capacity P2P links to mitigate self-interference
 - Deterministic low-latency/low-jitter TDMA protocol to support Smart Grid devices

CONFIDENTIAL
Patented dynamic and synchronized antenna switching

- Uniquely integrates backhaul, multi-hop relay, and access functionality
- Increases capacity through patented same-channel synchronization
- Increases coverage through innovative multi-hop extension