Relion. Thinking beyond the box.

Designed to seamlessly consolidate functions, Relion relays are smarter, more flexible and more adaptable. Easy to integrate and with an extensive function library, the Relion family of protection and control delivers advanced functionality and improved performance.
ABB is pleased to provide you with technical information regarding protective relays. The material included is not intended to be a complete presentation of all potential problems and solutions related to this topic. The content is generic and may not be applicable for circumstances or equipment at any specific facility. By participating in ABB’s web-based Protective Relay School, you agree that ABB is providing this information to you on an informational basis only and makes no warranties, representations or guarantees as to the efficacy or commercial utility of the information for any specific application or purpose, and ABB is not responsible for any action taken in reliance on the information contained herein. ABB consultants and service representatives are available to study specific operations and make recommendations on improving safety, efficiency and profitability. Contact an ABB sales representative for further information.
Alejandro Schnakofsky graduated from Florida International University in Miami, FL with a BS in Electrical Engineering. During his studies he conducted research in the field of digital relays and centralization of protection functions within the substation (multi object protection systems).

In 2002 Alejandro joined Bussiere Communications where he engineered, deployed and tested Ethernet networks.

In 2005 he joined ABB Inc. where he has contributed in a variety of roles from Application Engineering to Management.

Alejandro is now global lead product manager for ABB’s bay level products business.
Learning objectives

- History of IEC 61850
- IEC 61850 standard data model and SCL
- Client – Server
- GOOSE
- Sampled Measured Values
Introduction
UCA 2.0/IEC 61850 start-up

UCA Project Origin:
- Utility Communications Architecture (UCA) - enterprise-wide unified scheme to share all operating and management information
- 1994 - EPRI member utilities called for common standard for IEDs in substations
- EPRI RP 3599 defined requirements; looked at UCA compatible technologies for substations
- 1996 - UCA demonstration initiative by AEP and other major utilities.
 - Pushed to identify Ethernet protocol to be used for all data sharing, plus high-speed control
 - Solicited IED vendor and user participation
 - Specified replacing control wiring with LAN

IEC 61850 Origin
- 1980s - Large European manufacturers were selling expensive LAN-based substation control systems (SCS)
- Each design unique, and user committed to one vendor’s equipment
- Later - IEC developed Standard 870-5 (now 60870-5)
- 1995 - IEC TC 57 began 61850 Standard to define next generation of LAN-based substation control
Introduction
UCA 2.0/IEC 61850 harmonization

- Two projects were underway at the same time:
 - UCA™ for substations - EPRI
 - IEC 61850 - Communication networks and systems in substations
- UCA and IEC Join Forces
 - Harmonization Goal - avoid two complex and incompatible standards
- 1997 - Two standards management teams committed to create an aligned standard
 - One technical approach for the whole world
 - Two standards aim at different details and different levels of system design.
A global standard for IEC and ANSI ...

- Today UCA International Users Group heavily involved in technical issue resolution and device level conformance testing
- IEC TC57
Substation automation
ABBs brief history with IEC61850

1994-2003
- Active IEC work with up to 13 permanent delegates in all key working groups
- Extensive interoperability test amongst key suppliers

2004
- Finalization and release of IEC 61850
- 1st project delivered by ABB, EGL 380kV in Switzerland
- 1st IEC61850-8-1 multi-vendor project world wide

2005
- UCA certification for the ABB System Verification Center

2008
- 1st ABB pilot IEC61850-9-2 process bus installation

2010
- 1st UCA certification for IEC61850-9-2 Merging Unit world wide

2011
- Globally > 1200 ABB SA-Systems based on IEC61850 delivered
SA system architecture
RTU / hardwired

- IEDs do not have communication capability
- Status monitoring and control via RTU hardwired connections
- Significant amount of connections / documentation
SA system architecture
DNP / Modbus

- Integration of status monitoring into IEDs
- Reduction/elimination of RTU cabinet
- Defined protocol stack
- Non standard modeling of substation equipment and functions
- Non standard data format
- Integration requires intimate knowledge of each device
- Protocol conversion may be necessary
IEC 61850 SA system

- Integration of status monitoring, protection, automation, and control into IEDs
- Digitization of copper wires
 - 61850-8-1
 - 61850-9-2
- Modeling of the substation, equipment and functions
- Protocol stack
- Interoperability by standardization and verification
IEC 61850
Goal of the standard

- Interoperability
 - Exchange information between IED’s (Intelligent Electronic Device) from several manufacturers
 - IEDs use this information for their own function

- Free Configuration
 - Free allocation of functions to devices
 - Support any philosophy of customer – centralized or decentralized systems

- Long Term Stability
 - Future proof
 - Follow progress in mainstream communication technology
 - Follow evolving system requirements needed by customers
IEC 61850 based SA systems

Basics:
- Fast Ethernet (100 MBps to 1 GBps)
- Station Bus 61850 8-1
- Process Bus 61850 9-2
- Data Model
- Substation Configuration Language

Much more than a protocol:
- Modularization and structuring of data
- On-line meaningful information
- Free allocation of functions in IEDs
- Complete description of configuration
- Structured engineering & services
- Testing, validation, and certification

“Combining the best properties in a new way...”
IEC 61850 10 parts and growing...
Communication networks and systems in substations

- 61850-1 Introduction and overview
- 61850-2 Glossary
- 61850-3 General requirements
- 61850-4 System and project management
- 61850-5 Communication requirements for functions and device models
- 61850-6 Substation configuration language
- 61850-7-1 Basic Communication Structure
- 61850-7-2 Abstract communication service interface
- 61850-7-3 Common data classes
- 61850-7-4 Compatible LN classes and DO classes
- 61850-8-1 Specific communication service mapping (SCSM)
- 61850-9-1 Sampled values over serial point to point link
- 61850-9-2 Sampled values over ISO/IEC 8802-3
- 61850-10 Conformance testing
IEC 61850 much more than a protocol
Application data and communication

- Logical Nodes and Data
 - (IEC 61850-7-4 / -7-3)
- Service Interface (Abstract)
 - (IEC 61850-7-2)
- Mapping to e.g. MMS and TCP/IP/Ethernet
 - IEC 61850-8-1 Station Bus and IEC 61850-9-2 Process Bus
The core of 61850 is the standard representation of functions and equipment, its attributes, and its location within a system.

WHY IS THIS IMPORTANT?
Modbus / DNP

- DNP and Modbus are communication protocols that define data type (binary, analog, counters, etc) and reporting structures
- This way, IEDs can transfer information that can in turn be used
- Modbus defines:
 - Coils (status of IED binary data) Input/Holding registers (status of IED inputs, binary or analog)
 - A polling reporting structure
 - No connection between data and application

Brk1 Phase A current = 4x register 245
Signed or unsigned? 12, 16, or 32 bit? Primary or secondary?
DNP defines:

- Several objects (binary, analog, counters, etc) with variants (32 vs. 16 bit)
- Several indexes per object
- Polling as well as unsolicited reporting
- Still no connection between index/object (data) and the application

Moreover, there is no connection between data, application, object, and location within the substation!

Brk1 Phase A current =
Object 30, index 5
Signed or unsigned?
12, 16, or 32 bit?
Primary or secondary?
In a nutshell it involves gathering the information from IEDs

- Media and protocol converters when using multiple protocols
- Understanding each device’s unique memory/point/register map
- Programming the data concentrator to accept such information
 - Data types
 - Reporting structure

Tying the information to the application

- Point 1 from Device 1 = 52A

The end result helps establish a decision/operation support system
Data model

Function / Equipment
- Position of Breaker 1
 - 52A = Device 5, BI #4
 - 52B = Device 5, BI #5
- Breaker 1 Current
 - PhA = Device 5, AI #10
 - PhB = Device 5, AI #11
 - PhC = Device 5, AI 12
- Breaker 1 51P and 50P targets
 - 51P = Device 5, BI #6
 - 50P = Device 5, BI #7

Logical Node
- Breaker = XCBR
 - Position = XCBR.Pos.stVal
- Measurements = MMXU
 - Current PhA = MMXU.A.phsA
 - Current PhB = MMXU.A.phsB
 - Current PhC = MMXU.A.phsC
- 51P Target
 - 51P = PTOC.Op.general
 - 50P = PIOC.Op.general
Data model
Logical Node

Logical Device (IED1)

LN1 (XCBR)

StV

q

Pos

LN2 (MMXU)

PhA

PhB

Physical Device
(network address)

Data

Data Class

Logical Node (1 to n)

Logical Device (1 to n)

Physical Device

© ABB Group
July 7, 2014
| Slide 22

“UCA & 61850 for Dummies.” – Douglas Proudfoot
Different kinds of Logical Nodes

- LLN0, LPHD: IED and function management
- Pxxx: protection (PTOC, PIOC, PDIS, PDIF, …) (28)
- Rxxx: protection related (RREC, RSYN, RDRx, …) (10)
- Cxxx: control related (CSWI, CILO, CALH, CCGR, CPOW)
- Mxxx: measurements (MMXU, MMXN, MMTR, MHAI, MDIF, MSTA)
- Axxx: automatic functions (ATCC, ANCR, ARCO, AVCO)
- Gxxx: generic functions (GGIO, GAPC, GSAL)
- Sxxx: sensor/monitoring interface (SIMG, SIML, SARC, SPDC)
- Txxx: instrument transformer (TCTR, TVTR)
- Xxxx: switchgear process interface (XCBR, XSWI)
- Yxxx: transformer process if (YPTR,YLTC, YEFN, YPSH)
- Zxxx: further power related equipment (ZBAT, ZGEN, ZMOT, …)
- Ixxx: interfacing and archiving (IHMI, ITCI, IARC, ITMI)
Data model

- Thanks to such representation, functions can then be allocated to objects within the substation
- Addressing scheme takes this into consideration tying the data with the application, object, and location within the substation

Bradley.J1.Q08.A01.LD0.MMXU1.A.phsA
Bradley.J1.Q08.A01.LD0.MMXU1.A.phsB
Bradley.J1.Q08.A01.LD0.PTOC.Op.general
Bradley.J1.Q08.A01.LD0.XCBR1.Pos.stVal
Logical nodes

Primary equipment

Secondary functionality

- SIMG
- XSWI
- PTOC
- CSWI
- XSWI
- PDIS
- CILO
- XCBR
- RREC
SCL and modeling in 61850

- 61850 defines a common language where all compliant manufacturers can exchange information regarding the “functions” (Logical Nodes) and related data available inside their equipment.

- Substation Configuration Language

- Offers 4 file formats (Ed. 1)
 - SSD: Substation Specification Description
 - ICD: IED Capabilities Description
 - CID: Configured IED Description
 - SCD: Substation Configuration Description
SCL and modeling in 61850

- Documenting complete projects in SCD file
 - IEDs and their connection to the application
 - Functions and their connection to the application
 - Communication network
 - Connections between IEDs
 - Reporting mechanism
Engineering with SCL

System tool approach

- Thanks to common file format engineering of the SAS system can be performed under a single tool
- This provides a single point of interaction with the configuration files of all devices regardless of manufacturer
- End result (SCD file) must be part of the final system documentation just like DC and AC elementary are
Engineering with SCL

Substation Design

IED internal format

ICD

SSD

System Tool (IET600)

SCD

IED Tool (PCM600)
Engineering with SCL

Individual IEDs Substation layout IEDs assigned to bays
Client-Server

- Get information from relays and meters
- Higher resolution of information
- Lower integration costs
 - Drag and drop process thanks to SCL file
 - All manufacturers with same naming convention
 - Less chances for mistakes

<table>
<thead>
<tr>
<th>Point#</th>
<th>Refer#</th>
<th>Variable</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Ia (Load Currents)</td>
<td>0.3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Ib</td>
<td>0.3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>Ic</td>
<td>0.3</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>In</td>
<td>0.3</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>KVan (Mag) (×1000)</td>
<td>0.3</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>KVbn (Mag) (×1000)</td>
<td>0.3</td>
</tr>
</tbody>
</table>

SXSWI: 3.OPENPOS | CircuitSwitch, Apparatus open position
SXSWI: 3.CLOSEPOS | CircuitSwitch, Apparatus closed position
VNMMXU: 3.V_C | VoltagePhasors, V_C Amplitude, magnitude of reported value
VNMMXU: 3.V_B | VoltagePhasors, V_B Amplitude, magnitude of reported value
VNMMXU: 3.V_A | VoltagePhasors, V_A Amplitude, magnitude of reported value
CMSQI: 3.310 | CurrentSequenceComponents, 310 magnitude of reported value
Client - Server

<table>
<thead>
<tr>
<th>Point#</th>
<th>Refer#</th>
<th>Variable</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Ia (Load Currents)</td>
<td>0.3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Ib</td>
<td>0.3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>Ic</td>
<td>0.3</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>In</td>
<td>0.3</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>KVAn (Mag) [*1000]</td>
<td>0.3</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>KVbn (Mag) [*1000]</td>
<td>0.3</td>
</tr>
</tbody>
</table>

![Diagram showing IED, LD, LN, DObject connections]
Client - Server

- Other features:
 - Discoverable mode
 - Client can connect to an IED and read the data model, this makes it possible to know what functions are available inside an IED without the need for files or documentation
 - Browse: the data model of an IED can be browsed by a client
 - Reporting structure
 - Browse
 - Cyclic
 - Buffered reports, an IED can cave several configured with different clients for each
 - Unbuffered, an IED can cave several configured with different clients for each
Client - Server

- Reports have several configurable triggers
 - Data change
 - Quality change
 - Data update
 - Cyclic
Digitize copper (GOOSE + SMV)

- Thanks to Ethernet technology and previously mentioned data model we are able to digitize copper:
 - Binary signals (GOOSE)
 - Analog signals (GOOSE)
 - Analog signals as input to protection and metering functions (SMV in the Process Bus)
What is a GOOSE message?

- Generic Object Oriented Substation Event
- Fast and reliable distribution of information
 - Status (breaker position, trip, pickup, alarms, etc.)
 - Analog (counter values, etc.)
- Performance
 - Fast messages Type 1A (Class P2/P3) received within 3ms.
 - This includes transmission time into the other IEDs (similar to an output to input connection between 2 relays)
What is a GOOSE message?

- GOOSE messages are based on change event
- GOOSE messages include diagnostic functions (a “heart beat” to all devices subscribed is sent periodically)
- GOOSE messages are managed by GCBs (GOOSE control block) inside IEDs
- GOOSE messages send “Data Sets” upon changes of state
What is a GOOSE message?

- Can send 1 or several data attributes from 1 or several functions
What is a GOOSE message?

- Once Data Set is created the GOOSE Control Block must be defined
 - MAC Address: Multicast address for GCB
 - APPID: filtering criteria
 - Application Identifier: used to subscribe to the message
 - DataSet: information being sent
What is a GOOSE message?
What is a GOOSE message

Sample applications

- Anything that requires the exchange of information within relays (done today via hardwired connections)
- Breaker Failure
- DFR
- Transfer Scheme
- Reclosing in multi breaker arrangements
Introduction to process bus
What is process bus

IEC 61850 station bus

Station level

IEC 61850 process bus

Bay level

IEC 61850 process bus

Process level

Conventional connections to CT/VT and drives

Process bus to merging units for current and voltage sensors

Process bus to merging units for current, voltage and binary signals

MU = Merging Unit
NCIT = Non Conventional Instrument Transformer
SAMU = Stand-alone Merging Unit
BIED = Breaker IED
Introduction to process bus

What is process bus

- The process bus is a communication network on process level, and also connecting the process to the bay level

- IEC 61850-9-2 describes the transmission of sampled analogue values over Ethernet

- IEC 61850 also allows transmission of binary data on process level (GOOSE, MMS)
Introduction to process bus
What is process bus for sampled analogue values

- Sampled analogue values are transferred as multicast messages and can be received by all IEDs on the same network.
- The receiving IEDs decide whether to process the data or not.
- The transmission time of the messages on the network is not deterministic.
 - A time reference is required to align samples from different sources.
Introduction to process bus
IEC 61850-9-2 standard and implementation guideline

- The standard: IEC 61850-9-2
 - Communication networks and systems in substations
 Part 9-2: Specific Communication Service Mapping (SCSM) - Sampled values over ISO/IEC 8802-3
 - The standard leaves wide room for implementation and considerable effort is required for full implementation

 - To facilitate implementation, the UCA International Users Group created an implementation guideline that defines a subset of IEC 61850-9-2.
 - Commonly referred to as IEC 61850-9-2LE for “light edition”
Introduction to process bus
Differences - IEC standard and implementation guideline

<table>
<thead>
<tr>
<th>Area</th>
<th>Standard IEC 61850</th>
<th>Implementation guideline (IEC 61850-9-2LE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling rate of analog values</td>
<td>Free parameter</td>
<td>80 samples per period for protection and metering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>256 samples per period for power quality</td>
</tr>
<tr>
<td>Content of dataset</td>
<td>Configurable</td>
<td>3 phases current + neutral current</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 phases voltage + neutral voltage</td>
</tr>
<tr>
<td>Time synchronization</td>
<td>Not defined</td>
<td>Optical pulse per second (1PPS)</td>
</tr>
<tr>
<td>Logical device “Merging Unit”</td>
<td>Content and naming is not specified</td>
<td>Specified with rules for logical device name and contained logical nodes</td>
</tr>
</tbody>
</table>
Introduction to process bus
What is a merging unit

- Communication interface according to IEC 61850-9-2
- Merging and timely correlation current and voltage values from the three phases
- Sampling or re-sampling of current and voltage values
- Technology specific interface between NCIT and MU
- Time synchronization
 - Synchronize IEDs or other MUs when acting as time master, if required
 - Receive time synchronization when acting as time slave, if required
Introduction to process bus
What is a merging unit

- Interfaces to conventional instrument transformers
 - Analog signal are inputs to the MU
 - MU converts to digital signals on the process bus
Benefits against conventional technology
Process bus

- Increased operational safety
 - Handling of CT and VT circuits is obsolete in the control house
 - Isolation from process
- Reduced life cycle costs
 - Permanent real-time system supervision increases system availability by increasing maintenance cycles and reducing outage times
- Reduced copper cabling
 - By replacing parallel copper wires with optical process bus
- Future-proof interoperable design
 - By applying the established IEC 61850 standard
Testing and maintenance
Impact on protection and control testing

- “Wiring” test
 - Done automatically through self-supervision features of NCITs, MUs and IEDs

- Protection and control testing
 - “Non-conventional” secondary injection
 - Simulation of IEC 61850-9-2 LE traffic instead of secondary injection
 - Test modes to simulate U/I, by
 - NCIT
 - Merging unit
 - Primary injection
 - Primary injection for stability and directional tests

Diagram:
- Protection
- Control
- IEC 61850-9-2 LE
- MU
- NCIT
- 9-2 LE simulator
- Primary injection
Testing and maintenance
Tool support

Software replaces multimeter

- Intelligent software for the collection, display and evaluation of sampled value streams
 - Oscilloscope display of U/I values
 - Phasor diagram
 - Quality information of all values
- Built-in diagnostic functions in sensors, merging units and IEDs for supervision of:
 - Device health status
 - Connections
 - Time synchronization
 - Quality of samples and telegrams
Reliability of network

Define a network structure

- Depending on the application of GOOSE messages the network infrastructure now becomes part of the P & C team

- Switches must comply to the same quality and performance standards as other electronic P & C equipment (Dielectric, SWC, RFI, etc).

- Redundancy (Parallel Redundancy Protocol)
Reliability PRP
Parallel Redundancy Protocol (PRP) Principle

- **Operation Mode**
 - 2 Ports active
 - Messages are sent / received simultaneously on both ports
 - Switch over time 0ms

- **Advantages**
 - No recovery time
 - No messages are lost
 - Network redundancy (Network A and B)
 - IEDs are not active part of the network
 - Standard according IEC 61850-8-1/9-2 Edition 2
Moving ahead: Edition 2

- Starting in 2009 TC57 started to publish Edition 2 of some parts of IEC 61850
- Most parts of the standard were revised
- Several new parts were added as part of the standard
 - Modeling
 - Protocols
- Standard renamed from *Communication networks and systems in substations* to *Communication networks and systems for power utility automation* highlighting the influence and reach of the standard
<table>
<thead>
<tr>
<th>Edition 1</th>
<th>Edition 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part 2: Glossary</td>
<td>same</td>
</tr>
<tr>
<td>Part 3: General requirements</td>
<td>Part 3: General requirements</td>
</tr>
<tr>
<td>Part 4: System and project management</td>
<td>Part 4: System and project management</td>
</tr>
<tr>
<td>Part 5: Communication requirements for functions and device models</td>
<td>Part 5: Communication requirements for functions and device models</td>
</tr>
<tr>
<td>Part 6: Configuration description language for communication in electrical substations related to IEDs</td>
<td>Part 6: Configuration description language for communication in electrical substations related to IEDs</td>
</tr>
<tr>
<td>Part 7-1: Basic communication structure for substation and feeder equipment – Principles and models</td>
<td>Part 7-1: Basic communication structure for substation and feeder equipment – Principles and models</td>
</tr>
<tr>
<td>Part 7-2: Basic communication structure for substation and feeder equipment – Abstract communication service interface (ACSI)</td>
<td>Part 7-2: Basic communication structure for substation and feeder equipment – Abstract communication service interface (ACSI)</td>
</tr>
<tr>
<td>Part 7-3: Basic communication structure for substation and feeder equipment – Common data classes</td>
<td>Part 7-3: Basic communication structure for substation and feeder equipment – Common data classes</td>
</tr>
<tr>
<td>Part 7-4: Basic communication structure for substation and feeder equipment – Compatible logical node classes and data classes</td>
<td>Part 7-4: Basic communication structure for substation and feeder equipment – Compatible logical node classes and data classes</td>
</tr>
<tr>
<td>Part 8-1: Specific Communication Service Mapping (SCSM) – Mappings to MMS (ISO 9506-1 and ISO 9506-2) and to ISO/IEC 8802-3</td>
<td>Part 8-1: Specific Communication Service Mapping (SCSM) – Mappings to MMS (ISO 9506-1 and ISO 9506-2) and to ISO/IEC 8802-3</td>
</tr>
<tr>
<td>Part 10: Conformance testing</td>
<td>Part 10: Conformance testing</td>
</tr>
</tbody>
</table>
Per IEC 61850 part 1 Ed. 2, compared to the first edition, this second edition introduces:

- the model for statistical and historical statistical data,
- the concepts of proxies, gateways, LD hierarchy and LN inputs,
- the model for time synchronisation,
- the concepts behind different testing facilities,
- the extended logging function.

It also clarifies the following points:

- the use of numbers for data extension,
- the use of name spaces,
- the mode and behavior of a logical node,
- the use of range and deadbanded values,
- the access to control actions and others.
In summary:

- Addresses TISSUES
- Improves interoperability
- More support for testing
- Mentions standards for network redundancy (HSR/PRP)
- New CDCs
- New Logical nodes
- 2 new SCL files:
 - IID (instantiated ied description)
 - SED (system exchange description)
- Reaches outside the substation
Market requirements have been driving …

- Cost reduction in design, construction and operation
- Improved power system reliability and safety
- Safeguarding of investments
- A global, open standard
- The standard shall be future-proof, providing long term stability
- Interoperability between IEDs from different vendors
- Fit all types and sizes of substations and architectures
This webinar brought to you by:

ABB Power Systems Automation and Communication

- **Relion Series Relays** – Advanced flexible platform for protection and control
- **RTU 500 Series** – Proven, powerful and open architecture
- **MicroSCADA** - Advanced control and applications
- **Tropos** – Secure, robust, high speed wireless solutions

We combine innovative, flexible and open products with engineering and project services to help our customers address their challenges.
Thank you for your participation

Shortly, you will receive a link to an archive of this presentation. To view a schedule of remaining webinars in this series, or for more information on ABB’s protection and control solutions, visit:

www.abb.com/relion
Power and productivity for a better world™