Minimum-oil circuit-breaker
with spring operation mechanism

Instruction
for erection and operation

SBS 12.12.20 SBS 24.12.20
SBS 12.08.25 SBS 24.16.20
SBS 12.12.25 SBS 24.12.25
SBS 12.16.25 SBS 24.16.25
SBS 12.16.40
Important notes

1. The circuit-breaker can be guaranteed to operate reliably only if the following instructions on erection, operation and maintenance are observed.

2. All the procedures described in Section «B Installation and preparatory measures» must be completed before commencing operation.

3. We disclaim all responsibility for any immediate damage arising from incorrect operation of this circuit-breaker, even if these instructions contain no specific indications in this respect.

4. You are kindly requested to consult us or our representatives in the event of any defects for which the remedy is not described in these instructions.

5. We reserve the right to make technical modifications.

6. These instructions may not be transmitted, reproduced, reprinted or copied, either wholly or in part, without our written permission.
Minimum-oil circuit-breaker with spring operation mechanism

Instruction for erection and operation

First edition, first printing
CONTENTS

1. General 3
2. Technical data .. 5
3. Construction .. 9
 a) Extinction chamber pole .. 9
 b) Operating mechanism .. 9
4. Principle ... 11
 a) Switching operation .. 11
 b) A closing command .. 12
 c) For switching off .. 12
 d) Charging the springs by hand .. 12
 e) Charging the springs 27 d-g by means of a motor .. 12
 f) Spring charging indicator .. 12
 g) Blocking of closure .. 13
 h) Available models .. 13
 i) Electrical release .. 13
5. Erection and Operation .. 15
 a) Filling with oil .. 15
6. Maintenance 16
 a) Half-yearly checks .. 16
 b) Changing the arcing contacts .. 16
 c) General overhaul .. 17
 d) Lubrication .. 18
7. Spare Parts .. 19
MINIMUM-OIL CIRCUIT BREAKER
WITH SPRING OPERATING MECHANISM

SBS 12.12.20 SBS 24.12.20
SBS 12.08.25 SBS 24.16.20
SBS 12.12.25 SBS 24.12.25
SBS 12.16.25 SBS 24.16.25
SBS 12.16.40

1. GENERAL

The type SBS minimum-oil circuit-breaker with spring operating mechanism is simple, reliable and quick-acting. It is used in high for on-load circuit-breaking voltage installations as power circuit-breaker.

It is designed for indoor operation and is available for rated voltages of 12 and 24 kV at rated currents of 800 A, 1250 A and 1600 A and breaking capacities of 250, 350, 500, 750 and 1000 MVA.
TECHNICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10/12</td>
<td>10/12</td>
<td>10/12</td>
<td>10/12</td>
<td>10/12</td>
<td>10/12</td>
<td>kV</td>
</tr>
<tr>
<td>Test voltage, 50 Hz, 1 minute</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>kV</td>
</tr>
<tr>
<td>Surge withstand voltage, 1.2/50 μs</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>kV SW</td>
</tr>
<tr>
<td>Rated current in - SBC cubicle type BA-BB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- open installation</td>
<td>1200</td>
<td>1200</td>
<td>800</td>
<td>1200</td>
<td>1400</td>
<td>1400</td>
<td>A</td>
</tr>
<tr>
<td>Without rapid reclosure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Rated breaking capacity</td>
<td>250</td>
<td>350</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>750</td>
<td>MVA</td>
</tr>
<tr>
<td>- Balanced breaking current</td>
<td>14.5/12.0</td>
<td>20.2/16.8</td>
<td>29.0/24.0</td>
<td>29.0/24.0</td>
<td>29.0/24.0</td>
<td>41.3/36.0</td>
<td>kA</td>
</tr>
<tr>
<td>With rapid reclosure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Rated breaking capacity</td>
<td>250</td>
<td>350</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>MVA</td>
</tr>
<tr>
<td>- Balanced breaking current</td>
<td>14.5/12.0</td>
<td>20.2/16.8</td>
<td>29.0/24.0</td>
<td>29.0/24.0</td>
<td>29.0/24.0</td>
<td>29.0/24.0</td>
<td>kA</td>
</tr>
<tr>
<td>Dynamic current peak value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Short-time current, 1 s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14.5</td>
<td>20.2</td>
<td>29.0</td>
<td>29.0</td>
<td>29.0</td>
<td>43.3</td>
<td>kA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>SBS</th>
<th>unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage</td>
<td>20/24 20/24 20/24</td>
<td>kV</td>
</tr>
<tr>
<td>Test voltage, 50 Hz, 1 minute</td>
<td>55 55 55</td>
<td>kV</td>
</tr>
<tr>
<td>Surge withstand voltage, 1,2/50 μs</td>
<td>125 125 125</td>
<td>kV sw</td>
</tr>
<tr>
<td>Rated current in - BBC cubicle type BA-BB - open installation</td>
<td>1200 1200 1400</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>1250 1250 1600</td>
<td>A</td>
</tr>
<tr>
<td>Without rapid reclosure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Rated breaking capacity</td>
<td>500 750 750</td>
<td>MVA</td>
</tr>
<tr>
<td>- Balanced breaking current</td>
<td>14.5/12.0 21.6/18.0 21.6/18.0</td>
<td>kA</td>
</tr>
<tr>
<td></td>
<td>29.0/24.0 29.0/24.0</td>
<td></td>
</tr>
<tr>
<td>With rapid reclosure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Rated breaking capacity</td>
<td>500 750 750</td>
<td>MVA</td>
</tr>
<tr>
<td>- Balanced breaking current</td>
<td>14.5/12.0 21.6/18.0 21.6/18.0</td>
<td>kA</td>
</tr>
<tr>
<td></td>
<td>21.6/18.0 21.6/18.0</td>
<td></td>
</tr>
<tr>
<td>Dynamic current peak value</td>
<td>52 61 61</td>
<td>kA sw</td>
</tr>
<tr>
<td>Short-time current, 1 s</td>
<td>20.2 24.1 24.1</td>
<td>kA</td>
</tr>
<tr>
<td></td>
<td>29.0 29.0</td>
<td></td>
</tr>
</tbody>
</table>
3. **Construction**

a) **Extinction chamber pole**

Each extinction chamber pole has its own interrupter chamber. All three extinction chambers of a triple-pole breaker are arranged vertically and are mounted on supports 48a and 48b in Fig. 1.

The extinction chamber cylinder 12 (Fig. 1 and 7) carries the extinction chamber poles and is made of glass-fiber-reinforced epoxy resin. It also carries the connecting flanges 12n and 12l (Fig. 1) which, on the one hand, connect the current flow path from the pole to the busbars and, on the other, permit assembly of the extinction chamber pole to the operating mechanism through the moulded resin rod insulators 11. The operating mechanism housing 19 is fixed to the lower connecting flange 12l (Fig. 1). This houses the parts required for operating the switch rod, the switch rod itself 18 (Fig. 7d), the roller contact 17g (Fig. 7b) and the guide tube 20. The switch rod has a replaceable tip at the upper end 18a (Fig. 7d). It is somewhat tapered at the lower end and is damped by the oil-filled guide tube 20 as the circuit is broken. The guide tube also serves as oil drain plug. The roller contact 17g is following, low-friction type contact which guarantees a constant current flow from the lower connecting flange 12l through the mechanism housing 19 to the switch rod 18 (Fig. 7d). The contact retainer 13 is situated on the upper connecting flange 12n (Fig. 1). It carries the static contact which consists of several fingers in the shape of a tulip 14c. The upper connection forms the pressure equalizing chamber 15 (Fig. 1 and 7d) which is fitted with an oil level inspection window 15c (Fig. 2 and 7d) and an oil separator 16.

b) **Operating mechanism**

The circuit-breaker is fitted with a spring operating mechanism which, apart from the normal "open" - "close" cycle, also allows for "open" - "close" - "open" auto-reclosing cycles when used in conjunction with a reclosing relay. The operating mechanism can be charged either by hand or by means a motor. It consists of the following sub-assemblies:
The control unit 31 (Fig. 9) with mechanical and electrical trip mechanism; interlock 24 (Fig. 9) and tensioning device; spring assembly 27 d-g (Fig. 6 and 8) for opening and closing the circuit; the hand and motor-driven charging mechanism 25 resp. 30 (Fig. 6) with ratchet and pawl; differential gearing and chain 21n (Fig. 6 and 8) for charging the spring assembly; drive shaft with cams 21d; auxiliary switch 29 (Fig. 6); indicator and terminal strip 52 (Fig. 6); additional closing spring 28u, 28v (Fig. 9).
4. Principle

Fig. 7d shows a extinction chamber pole in the open operation. The active part of the pole is submerged in oil. When the breaker trips, the switch rod 18 (Fig. 7d) is withdrawn very rapidly from the extinction chamber. Arcing occurs between the moving contact and the tulip shaped fixed contact 14c (Fig. 7) thus evaporating some of the oil. The extinction chamber 12 and 19 is divided into cells which ensures that the gas bubbles cannot expand and that the evaporation surface is confined to the immediate vicinity of the arc. The arc is rapidly cooled and extinguished by the generation of gas and the intensive oil flow. The energy generated in opening the circuit is absorbed by the damping effect of the oil-filled guide tube at the end of the stroke.

IMPORTANT: The breaker must not be operated unless there is sufficient oil in the extinction chambers as otherwise the quenching system can not function properly and the breaker could suffer mechanical damage. (See instruction plate on the side of the breaker which states: **Do not operate without oil!**)

a) Switching Operation

The necessary energy for opening the breaker is provided by the charged spring assembly 27 d-g (Fig. 6 and 9). As previously stated, the energy in the springs is sufficient for an autoreclosing cycle ("open" - "close" - "open"). The springs 27 d-g exert a constant pressure upon the pinion 21z (Fig. 8) during the switching operation through the chain 21n and cam 21h (Fig. 6 and 8). The pinion is in mesh with the two bevel gears. The right-hand gear 21i (Fig. 6) is mounted on the shaft by a roller bearing and its sole purpose is for loading the springs 27 d-g by means of the motor 30 or the crank handle 25g. The left-hand bevel gear 21g transmits the torque to the drive shaft 21a (Fig. 6, 8 and 9), and the potential energy is stored by the cam 21c (Fig. 9). The breaker is opened or closed by rotating the switch shaft 28 through approximately 50° which releases the cam 21c on the drive shaft 21a (Fig. 6, 8 and 9) from the locking device, allowing it to engage with the operator 22. The power for the switch rod 18
(Fig. 7) is transmitted through the cam 21d to the switch shaft 28 and the switch rods 28h through the linkage to the switch rod 18 (Fig. 7).

b) A closing command, given through the bush-button 31b or the magnet 32 in the control unit 31, actuates the release pawl 31a (Fig. 6 and 9) which in turn releases the remaining pawl 31h at the control unit power source (Fig. 9). This consists of a toggle joint 31d and 31e and the intermediate springs 31f which through the lever 31g downwards. The operator 22 (toggle joint) is released by the release rod 26 (Fig. 9).

The switch shaft 28 is rotated by the action of the springs 27 d-g (Fig. 8) through the main shaft 21 and the cam 21d. The switch rod 18 (Fig. 7) is moved into the "on" position with force through the lever system by the process. The breaker is now closed.

c) For switching off

The same process is repeated from the "off" button of the control unit 31.

d) Charging the springs by hand with the crank 25g (Fig. 6 and 9) requires approximately 75 turns, until the spring assembly are fully charged.

e) Charging the springs 27 d-g by means of a motor

The electric motor is controlled automatically. It is switched on by the limit switch 49 (Fig. 6) as soon as the tension on the springs dips below maximum, and switched off again as soon as maximum tension is reached again.

f) Spring charging indicator

The indicator plate 27m (Fig. 8) only shows "charged" when the springs 27 d-g are charged to the maximum. When it shows "discharged" it indicates that the spring tension is somewhere between maximum and minimum. It is dangerous to manipulate the mechanism or the contacts when the springs are under tension. ALWAYS ENSURE THAT THE SPRINGS ARE COMPLETELY FREE FROM TENSION!
g) **Blocking of closure**

The control unit 31 (Fig. 9) only transmits closing commands when springs 27 d-g are adequately charged i.e. it can cut out the command immediately after it has been given. Closure is prevented at insufficient spring tension by the blocking device 24 (Fig. 6 and 9). This disengages the release cam 31a through a linkage. Deliberate blockage of closure for specific control purpose can be effected by the control magnets Fig. 10e which hold the release cam 31a out of engagement when the coil voltage fails.

h) **Available models** (to suit customers' requirements)

Electrical Control Components

a) Closing magnet d.c. (Fig. 10a)
b) Closing magnet a.c. (Fig. 10b)
c) Tripping magnet (or current transformer release) d.c./a.c. (Fig. 10c)
d) Second tripping magnet current transformer release with second magnet (Fig. 10d)
e) Blocking magnet to prevent closure (Fig. 10e)
f) No-voltage release (Fig. 10f)

i) **Electrical release**

These are available in various forms (see electrical control components above). The magnetic arrangements 10a, 10b, 10c, or 10d release through an electrical command from an auxiliary supply.

The current transformer trip Fig. 10c or 10d in fed by the main and auxiliary transformer, which renders auxiliary supply unnecessary.
The no-voltage trip Fig. 10f, also known as closed-circuit trip, requires constant coil voltage.

Arbitrary remote control is blocked as shown in Fig. 10e.
5. **Erection and Operation**

The breaker frame 48a/b (Fig. 1 and 2) is a bolted construction for supporting the extinction chambers and also for fixing the complete unit (see attachment holes 47 in Fig. 1) in its various forms for indoor installation. The power supply should be connected to the upper terminal screws 12e (Fig. 1) and to the lower connecting screws 12m.

The wiring should be connected up in accordance with the wiring diagram packed with the breaker.

The earthing connection, which is painted yellow and located in the driving mechanism (not visible in the illustrations) should be suitably earthed in accordance with the regulations in force.

Breakers are delivered in the switched-off condition.

a) **Filling with oil**

Before use, all three extinction chambers must be filled with pure and dry transformer oil of good quality, after loosening the threaded oil separator housing 16 (Fig. 1, 2 and 7). The oil should be poured in slowly until the level reaches the red spot on the inspection window 15c (Fig. 2 and 7). Each interrupter chamber requires approximately 5.2 litres of oil. The breaker should be tested for correct functioning under operating conditions. Several opening and closing operations should be carried out and all parts inspected for positive engagement. If the results of these tests are satisfactory, the breaker may be connected to the supply and put into operation.
All mechanical parts operate with complete reliability and are not affected by dust or temperature changes under normal conditions.

Maintenance can be limited to a periodic cleaning and lubrication of the individual components, which is quite sufficient to prevent premature wear. Servicing must be carried out with the breaker in the open condition.

We recommend that the following checks and servicing should be carried out:

a) **Half-yearly checks**

The oil level should be checked at the inspection window 15c (Fig. 2 and 7) and the oil topped up as necessary to the marked level. For filling instructions see paragraph 5a.

b) **Changing the arcing contacts**

The deterioration of the arcing contacts and the pollution of the oil depend to a great extent on the demands made on the breaker with respect to the breaking power and the number of switching cycles. The contacts can survive one thousand switching cycles at normal operating power (rated current). The contact life expectancy is reduced correspondingly when overloads are interrupted.

It is essential to inspect the contacts for damage after four or five short-circuit interruptions. This should be carried out as follows:

1. Drain the oil from the three extinction chambers into a clean receptacle by removing the three oil drain plugs 20 (Fig. 1 and 7d).

2. After loosening the four screws 12c (Fig. 7d), lift out the complete pressure equalizing chamber 15 (Fig. 1 and 7d) and the interrupter chamber 13 (Fig. 7d).
3. The contact fingers 14c (Fig. 7a) are easily accessible after removing the interrupter chamber 13 and can, if necessary, be replaced.

4. It is recommended that the individual poles of the breaker be brought into the "closed" position which gives better accessibility to the contact tip 18a (Fig. 7d). The switch rods 28h (Fig. 1 and 6) must be loosened. Under no circumstances may be brought out of adjustment. Make sure when reassembled, that they are in exactly the same position as before.

5. The unserviceable tip 18a can be removed with an Allen key and replaced by a new one.

c) General overhaul

After draining the oil from the extinction chambers, and apart from the work described under 6b, the four screws 12d (Fig. 1 and 7d) must also be loosened. This permits withdrawal of the active part of the pole, together with the switch rod 18, which can then be disassembled into its various component parts as shown in Fig. 7b, c and d. The reverse procedure is adopted for reassembly.

The quenching oil should also be checked the more frequently the more often the breaker operates, and if it is found to be very polluted it should be changed. The insulating capacity of the oil is best tested in an oil testing apparatus.

Insulating oil properties can be tested by the method described in IEC Publ. 156. The recommended test equipment comprises electrodes (12.5 - 13.0 mm dia.) spaced 2.5 mm apart, which are immersed in the oil under test in a container and its dielectric strength is measured on application of the test voltage.

Insulating oil must shown a dielectric strength of at least 50 kV to be considered suitable for filling a breaker pole. It will require changing when its dielectric strength has fallen to below 15 kV.
Lubrication

The switching mechanism should be lubricated once a year, or after every 1000 switching cycles, with BBC lubricating oil spez 2 or Molycote Paste Rapid. The operating mechanism in the extinction chamber needs no lubrication as it is constantly submerged in oil. All lubricating holes marked red (on the control unit 31), as well as all joints, shaft bearings, ball bearings and gear wheels should be lubricated with the previously mentioned lubricant according to lubrication chart Fig. 11.

The specification of BBC lubricating oil spez 2 is as follows:

<table>
<thead>
<tr>
<th>Definition</th>
<th>A 5% / 95% (by volume) mixture of 'spez 4' and 'spez 6' lubricating oil.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density at 20 °C</td>
<td>Approximately 900 kg/m³</td>
</tr>
<tr>
<td>Solidification point</td>
<td>under = 30 °C</td>
</tr>
<tr>
<td>Pensky-Martens flash point</td>
<td>over = 150 °C</td>
</tr>
<tr>
<td>Kinematic viscosity at 40 °C (ISO)</td>
<td>Approximately 10 cSt</td>
</tr>
<tr>
<td>BBC ident. number</td>
<td>NBT 402 604 Pl</td>
</tr>
<tr>
<td>Delivery</td>
<td>In 200 g cans</td>
</tr>
</tbody>
</table>
Spare Parts

We recommend that adequate supplies of the following spare parts be carried in stock as they are subject to wear and tear or could conceivably become damaged. Considerable delays can be avoided by carrying this small stock of spares. Spare parts should be ordered from our appointed agents quoting the following details:

1. Equipment for which the spare parts are required

2. Its type designation and

3. Works serial number.

The data should be carefully noted from the identification plate.

4. Quantity required

Description

Item numbers of the desired spare parts (if quoted in the prevent instruction)

NOTE: The information required under 1, 2 and 3 must be quoted even if the order is accompanied by a sample, as otherwise it is not possible to establish the exact type of the apparatus. We further request that the type designation and works serial number be quoted in any correspondence associated with spare parts.
LIST OF SPARE PARTS

<table>
<thead>
<tr>
<th>Item</th>
<th>Piece</th>
<th>Fig.</th>
<th>Item</th>
<th>Piece</th>
<th>Fig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) For the extinction chamber pole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact finger</td>
<td>14cl</td>
<td>8</td>
<td>7a</td>
<td>14c2</td>
<td>8</td>
</tr>
<tr>
<td>Contact finger spring</td>
<td>14b</td>
<td>8</td>
<td>7a</td>
<td>14b</td>
<td>8</td>
</tr>
<tr>
<td>Contact-tip</td>
<td>18a</td>
<td>1</td>
<td>7d</td>
<td>18a</td>
<td>1</td>
</tr>
<tr>
<td>Switch rod assembly</td>
<td>18</td>
<td>1</td>
<td>7d</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>Roller contact assembly</td>
<td>17</td>
<td>1</td>
<td>7b</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>Extinction chamber assembly</td>
<td>12</td>
<td>1</td>
<td>7d</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Sealing ring</td>
<td>19k</td>
<td>1</td>
<td>7c</td>
<td>19k</td>
<td>1</td>
</tr>
<tr>
<td>Sealing ring</td>
<td>15b</td>
<td>1</td>
<td>7a</td>
<td>15b</td>
<td>1</td>
</tr>
<tr>
<td>Sealing ring</td>
<td>14a</td>
<td>1</td>
<td>7a</td>
<td>14a</td>
<td>1</td>
</tr>
<tr>
<td>Sealing ring</td>
<td>13a</td>
<td>3</td>
<td>7a</td>
<td>13a</td>
<td>3</td>
</tr>
<tr>
<td>Seal</td>
<td>20a</td>
<td>1</td>
<td>7a</td>
<td>20a</td>
<td>1</td>
</tr>
<tr>
<td>Seal</td>
<td>16a</td>
<td>1</td>
<td>7a</td>
<td>16a</td>
<td>1</td>
</tr>
<tr>
<td>Seal</td>
<td>19h</td>
<td>1</td>
<td>7c</td>
<td>19h</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Piece</th>
<th>Fig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>b) For spring operating mechanism</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnet coil "ON"</td>
<td>32</td>
<td>1</td>
</tr>
<tr>
<td>Magnet coil "OFF"</td>
<td>32</td>
<td>1</td>
</tr>
<tr>
<td>Tension spring</td>
<td>23f</td>
<td>2</td>
</tr>
<tr>
<td>Motor</td>
<td>30</td>
<td>1</td>
</tr>
</tbody>
</table>
CAPTIONS TO ILLUSTRATIONS

Fig. 1 Minimum-oil circuit-breaker type SBS 12.12.25 with spring operating mechanism, viewed from the extinction chamber side.

Fig. 2 Minimum-oil circuit-breaker type SBS 12.12.25 with spring operating mechanism, viewed from the mechanism side.

Fig. 4 Minimum-oil circuit-breaker type SBS 12.12.25 mounted on a trolley for metalclad installation, viewed from the extinction chamber side.

Fig. 6 Spring operating mechanism for minimum-oil circuit-breaker type SBS 12.12.25.

Fig. 7a,b,c and d Assembly diagrams of extinction chamber of one pole of a type SBS 12.12.25.

Fig. 8 Dismantled main parts of the spring actuating mechanism.

Fig. 9 Diagrammatic view of spring operating mechanism, spring under tension. Breaker in "OFF" position.

Fig. 10 Coils in control unit.

Fig. 10a Closing magnet (d.c.).

Fig. 10b Closing magnet (a.c.).

Fig. 10c Tripping magnet (a.c./d.c.) (or current-transformer trip).

Fig. 10d Second tripping magnet or current-transformer trip with second trip magnet.

Fig. 10e Blocking magnet for switch interlocking.

Fig. 10f No-voltage trip.

Fig. 11 Lubrication chart.
COMPONENT PARTS

10 Trolley
11 Supporting insulator
12 Extinction chamber assembly
12a Washer
12b Spring washer
12c Screw
12d Screw
12e Upper connection screw
12f Washer
12g Spring washer
12h Clamping plate
12i Screw
12k Screw
12l Lower connecting flange
12m Lower connection bolt
12n Upper connection flange
13 Contact holder assembly
13a Sealing ring
13b Retaining ring
13c Steel ball
13d Screw
13e Spring washer
13f Washer
14 Retainer for contact fingers
14a Sealing ring
14b Spring
14c Replaceable contact fingers 14c/1 for 800 A and 1250 A 14c/2 for 1600 A
15 Pressure equalizing chamber assembly
15a Retaining ring
15b Sealing ring
15c Inspection window (oil level gauge)
15d Ring
15e Oil level marks
16 Oil separator assembly
16a Seal
17 Roller contact assembly
17a Conducting stud
17b Plate
17c Plate
17d Washer
17e Hex. Nut
17f Hex. Nut
17g Roller assembly
17h Angle piece
17i Screw
18 Switch rod assembly 18/1 for 800 A and 1250 A
 18/2 for 1600 A
18a Contact-tip
18b Compression spring
18c Switch rod with guide
19 Mechanism housing assembly
19a Switch lever assembly
19b Split pin
19c Pin
19d Washer
19e Pole shaft
19f Locking key
19g Retaining ring
19h Seal
19i Threaded bush
19k Sealing ring
19l Lever assembly
19m Retaining ring
19n Spring ring
20 Guide tube assembly (oil drain screw)
20a Seal
21 Drive shaft assembly
21a Drive shaft
21b Key
21c Cam
21d Cam disc assembly
21e Split pin
21f Loading shaft
21g Bevel gear
21h Sprocket assembly
21i Bevel gear assembly
21k Bush
21l Spring ring
21m Clip
21n Roller chain
21o Spring link
21p Ball bearing
21q Ball bearing
21r Screw
21s Nut
21t Spring washer
21u Retaining ring
21v Washer
21w Castle nut
21x Splint pin
21y Washer
21z Pinion
22 Lock assembly
22a Link left
22b Link right
22c Link
22c Lever
22d Lever
22e Pin
22f Pin
22g Pin
22h Pin
22i Roller
22k Spacer tube
22l Spacer tube
22m Spacer ring
22n Stop
22o Tension spring
22p Washer
22q Retaining ring
22r Retaining ring
23 Gearing assembly
23a Gear shaft
23b Bevel pinion
23c Bush
23d Spacer bolt
23e Peg
23f Tension spring
23g Nut
23h Spring washer
23i Locking pin
23k Retaining ring
23l Damper
24 Interlock complete
24a Interlock shaft
24b Spring washer
24c Indicator rod
24d Blocking rod
24e Interlock rod
24f Guide
24g Nut
24h Spring ring
24i Retaining ring
24n Spring ring
25 Hand crank assembly
25a Bearing bracket assembly
25b Shaft
25c Bush
25d Bush
25e Angle bracket
25f Stop
25g Crank
25h Sleeve
25i Angle bracket
25k Locking pin
25l Locking pin
25m Cyl. pressure spring
25n Bevel gear wheel
25p Cyl. pressure spring
25q Bush
25r Retaining ring
25s Retaining ring
25t Retaining ring
25u Retaining ring
25v Washer
25w Split pin
25x Nut
26 Release mechanism assembly
26a Release rod
26b Release lever, left
26c Pin, right
26d Sleeve
26e Shaft
26f Washer
26g Split pin
27 Spring frame (with power storage mechanism)
27a Spring frame
27b Pulley
27c Shaft
27d Compression spring
27e Compression spring
27f Compression spring
27g Compression spring
27h Spring plate
27i Chain retainer
27k Shaft
27l Top plate
27m Indicator plate (Charged-Discharged)
27n Indicator plate (I - 0)
27σ Indicator rod
27p Screw
27q Nut
27r Nut
27s Spring washer
27t Retaining ring
28 Switch shaft
28a Switch shaft assembly
28b Bush assembly
28c Bearing bush
28d Washer
28e Bolt
28f Cam
28g Diaphragm
28h Switch rod
28i Adjusting bush
28k Washer
28l Ball bearing
28m Cheese-head screw
28n Peg
28o Peg
28p Retaining ring
28q Washer
28r Spring washer
28s Spring ring
28t Washer
28u Additional "ON" spring
28v Pull-rod
28w Washer
28x Split pin
29 Auxiliary switch
30 Motor
31 Control unit assembly
31a Release pawl
31b Push-button "ON"
31c Push-button "OFF"
31d Toggle joint
31e Toggle joint
31f Compression spring in the control unit
31g Lever
31h Retaining pawl
32 Tipping coil
33 Coil
34 Armature
34a Armature with short-circuit ring
35 Magnet armature
35a Tension spring
36 Magnet Armature
36a Tension spring
38 Loading cam in the control unit
39 Relay loading cam
40 Cam for actuating the no-voltage trip magnet
47 Fixing holes
48a Upper support
48b Lower support
49 Limit switch
50 Inspection cover
52 Terminal strip
53 (Not in the picture)
55 Roller
56 Tulip contact