NOTICE

This document contains information about one or more ABB products and may include a description of or a reference to one or more standards that may be generally relevant to the ABB products. The presence of any such description of a standard or reference to a standard is not a representation that all of the ABB products referenced in this document support all of the features of the described or referenced standard. In order to determine the specific features supported by a particular ABB product, the reader should consult the product specifications for the particular ABB product.

ABB may have one or more patents or pending patent applications protecting the intellectual property in the ABB products described in this document.

The information in this document is subject to change without notice and should not be construed as a commitment by ABB. ABB assumes no responsibility for any errors that may appear in this document.

In no event shall ABB be liable for direct, indirect, special, incidental or consequential damages of any nature or kind arising from the use of this document, nor shall ABB be liable for incidental or consequential damages arising from use of any software or hardware described in this document.

This document and parts thereof must not be reproduced or copied without written permission from ABB, and the contents thereof must not be imparted to a third party nor used for any unauthorized purpose.

This product is designed to be connected to and to communicate information and data via a network interface. It is the User’s sole responsibility to provide and continuously ensure a secure connection between the product and the User’s network or any other network (as the case may be). The User is expected to establish and maintain any appropriate measures (such as but not limited to the installation of firewalls, application of authentication measures, encryption of data, installation of anti-virus programs, etc.) to protect the product, the network, its system and the interface against any kind of security breaches, unauthorized access, interference, intrusion, leakage and/or theft of data or information. ABB is not liable for damages and/or losses related to such security breaches, any unauthorized access, interference, intrusion, leakage and/or theft of data or information.

The software or hardware described in this document is furnished under a license and may be used, copied, or disclosed only in accordance with the terms of such license.

This product meets the requirements specified in EMC Directive 2004/108/EC and in Low Voltage Directive 2006/95/EC.

TRADEMARKS

Ability is a trademark of ABB.

All rights to copyrights, registered trademarks, and trademarks reside with their respective owners.

Copyright © 2018 ABB.

All rights reserved.

Release: December 2018

Document Number: 3BNP102912

Document Revision: B
Table of Contents

1 About This User Manual ... 9
1.1 Purpose and Scope .. 9
1.2 Document Conventions .. 9
1.3 Terminology .. 9
1.4 Related Documentation .. 10
1.5 Related Tools ... 10
1.6 General Terms and Conditions of Use of Technical Documentation .. 10
1.7 Warning, Caution, Information, and Tip Icons .. 11
1.8 Target Audience ... 11
1.9 Compatibility ... 11
2 Technology Overview .. 12
2.1 WirelessHART Network ... 12
2.2 Host .. 12
2.3 WirelessHART Gateway .. 12
2.4 WirelessHART Client ... 12
2.5 Network Manager ... 13
2.5.1 Network ID and Join Key .. 13
2.5.2 Message Hops .. 13
2.6 WirelessHART Field Device ... 14
2.6.1 Sensors .. 14
2.6.2 Transducers ... 14
2.6.3 Transceivers ... 14
2.7 HART Field Devices and Wired 4...20 mA Field Devices ... 14
2.8 WirelessHART Adapter ... 14
2.8.1 Connecting to a HART device ... 14
2.9 WirelessHART Commands ... 15
2.9.1 Universal commands .. 15
2.9.2 Common practice commands ... 15
2.9.3 Wireless commands ... 15
2.9.4 Device-specific commands .. 15
2.10 FieldComm Group .. 15
3 Basic Features of AWIN GW100 Gateway ... 16
3.1 Get Familiar with AWIN GW100 ... 16
3.2 DHCP Server ... 17
3.3 Webserver .. 17
3.4 Operator Authentication for Webserver Access .. 17
3.5 Modbus TCP Mapping .. 18
3.6 Network Topology View .. 18
3.7 Ethernet Network Connectivity .. 18
3.8 Hard Reset ... 18
3.9 Certificates .. 19
3.9.1 ATEX Certificate ... 19
3.9.2 IECEx Certificate .. 19
3.9.3 CSA Certificate .. 19
4 WirelessHART System Planning ... 20
4.1 Accessing the Site ... 20
4.2 Path Quality Analysis .. 20
4.3 Signal Strength ... 20
4.4 Antennas and Cabling .. 21
TABLE OF CONTENTS

9.1 How to Create a Gateway Backup? ... 54
9.2 How to Replace a Gateway by Restoring a Previous Backup? 54
9.3 How to Replace a Malfunctioned Device? .. 54
9.4 How to Change Device Tag Name? .. 55
9.5 How to Use Remote Antenna? ... 55
9.6 How is Battery Life Cached in the Gateway? ... 55
9.7 What Value is Displayed on the Gateway Webpage when a Device Goes Offline? .. 56
9.8 What Value is Displayed on Modbus Registers when a Device Goes Offline? .. 56
9.9 What Happens When Multiple Devices Have Same Tag Name? 56
9.10 How to Check that WirelessHART Network is Operating as Normal? 56
9.11 How to Check that you have a Strong WirelessHART Mesh Network? ... 57
9.12 How to Dispose this Product – End of Lifecycle? 57

10 Appendix .. 58
10.1 WirelessHART Field Device Data Available for Modbus Mapping 58
10.2 WirelessHART Network Statistics Data Available for Modbus Mapping 59
10.3 Automatic Modbus Mapping Structure .. 60
10.3.1 Mapping for Field Devices ... 60
10.3.2 Mapping for Gateway Parameters’ Itself .. 61
10.4 Modbus Import File Structure ... 62
10.5 Device Configuration File Structure ... 63
List of Tables

Table 1: Terminology ... 9
Table 2: Related Documentation .. 10
Table 3: Supported Tools ... 10
Table 4: LEDs Information .. 16
Table 5: Cable types and signal loss (dB) .. 22
Table 6: Home screen fields ... 30
Table 7: Information screen fields ... 32
Table 8: Gateway Profiles .. 33
Table 9: WirelessHART gateway profile settings ... 33
Table 10: WirelessHART Network Parameters ... 34
Table 11: Frequency of each channel of Network .. 35
Table 12: Color code .. 36
Table 13: Device Information .. 37
Table 14: Color code .. 50
Table 15: Troubleshooting procedures ... 51
Table 16: Exception codes ... 52
Table 17: WirelessHART devices data available for Modbus mapping .. 59
Table 18: WirelessHART gateway parameters available for Modbus mapping .. 60
Table 19: Mapping for Field Devices ... 60
Table 20: Mapping for Gateway Parameters ... 61
1 About This User Manual

1.1 Purpose and Scope

This manual is intended to provide the users an overview of practical aspects related to WirelessHART technology. It provides detailed description of factors to consider when designing WirelessHART networks, along with features offered by the AWIN GW100 gateway to assist in evaluating network design. Moreover, the gateway provides information on the functionalities offered by the gateway through its web interface which can be used to configure a WirelessHART network. Towards the end, some tips are provided to assist in network and device troubleshooting.

1.2 Document Conventions

Microsoft Windows conventions are normally used for the standard presentation of material when entering text, key sequences, prompts, messages, menu items, screen elements, and so on.

1.3 Terminology

Table 1 lists terms used in this document and associated with the ABB Wireless Industrial Network. The reader should be familiar with these terms before proceeding further in this User Manual.

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>Transmission Control Protocol</td>
</tr>
<tr>
<td>RTU</td>
<td>Remote Terminal Unit</td>
</tr>
<tr>
<td>Static IP Address</td>
<td>A fixed Internet Protocol (IP) address assigned to a computer or device</td>
</tr>
<tr>
<td>Epoch time</td>
<td>The number of seconds that have elapsed since January 1, 1970</td>
</tr>
<tr>
<td>MAC</td>
<td>Unique address that a manufacturer assigns to each network device</td>
</tr>
<tr>
<td>Mesh Network</td>
<td>Mesh networking is a type of network topology in which a device transmits its own data as well as serves as a relay for other nodes</td>
</tr>
<tr>
<td>Passphrase</td>
<td>Used much like a password</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>AWIN GW100</td>
<td>WirelessHART Gateway</td>
</tr>
<tr>
<td>XML</td>
<td>Extensible Markup Language</td>
</tr>
<tr>
<td>ModbusTCP</td>
<td>Communication protocol</td>
</tr>
<tr>
<td>WirelessHART</td>
<td>It is IEC 62591 specified wireless communication protocol designed for HART protocol</td>
</tr>
</tbody>
</table>
1.4 Related Documentation

Table 2 lists the documents relevant to AWIN GW100 WirelessHART Gateway.

<table>
<thead>
<tr>
<th>Document ID</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3BNP102906</td>
<td>AWIN GW100 Product Datasheet</td>
</tr>
<tr>
<td>3BNP102683</td>
<td>Quick Setup Guide</td>
</tr>
<tr>
<td>3BNP102910</td>
<td>Quick Start Guide</td>
</tr>
<tr>
<td>3BNP102911</td>
<td>Bulk Configuration Guide</td>
</tr>
<tr>
<td>3BNP102912</td>
<td>AWIN GW100 User Manual</td>
</tr>
<tr>
<td>3BNP102683D3</td>
<td>AWIN GW100 - Specific Conditions of Use</td>
</tr>
</tbody>
</table>

1.5 Related Tools

Table 3 lists the tool relevant to AWIN GW100 WirelessHART Gateway.

<table>
<thead>
<tr>
<th>Document ID</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3BNP102914</td>
<td>AWIN GW100 Configurator</td>
</tr>
</tbody>
</table>

1.6 General Terms and Conditions of Use of Technical Documentation

ABB reserves the right to alter, correct, and/or improve the technical documentation and the products described in the technical documentation at its own discretion and without giving prior notice, insofar as this is reasonable for the user. The same applies to any technical changes that serve the purpose of technical progress.

The receipt of technical documentation (in particular user documentation) does not constitute any further duty on the part of ABB to furnish information on modifications to products and/or technical documentation. You are responsible to verify the suitability and intended use of the products in your specific application, in particular with regard to observing the applicable standards and regulations. All information made available in the technical data is supplied without any accompanying guarantee, whether expressly mentioned, implied or tacitly assumed.

In general, the provisions of the current standard Terms and Conditions of ABB apply exclusively, in particular as concerns any warranty liability.

This manual, including all illustrations contained herein, is copyright protected. Any changes to the contents or the publication of extracts of this document is prohibited.
1.7 Warning, Caution, Information, and Tip Icons

This document includes Warning, Caution, and Information if/where appropriate to point out safety related or other important information. It also includes Tip to point out useful hints to the reader. The corresponding symbols should be interpreted as follows:

Electrical warning icon indicates the presence of a hazard, which could result in electrical shock.

Warning icon indicates the presence of a hazard, which could result in personal injury.

Caution icon indicates important information or warning related to the concept discussed in the text. It might indicate the presence of a hazard, which could result in corruption of software or damage to equipment/property.

Information icon alerts the reader to pertinent facts and conditions.

Tip icon indicates advice on, for example, how to design your project or how to use a certain function.

Although Warning hazards are related to personal injury, and Caution hazards are associated with equipment or property damage, it should be understood that operation of damaged equipment could, under certain operational conditions, result in degraded process performance leading to personal injury or death. Therefore, comply fully with all Warning and Caution notices.

1.8 Target Audience

This user manual is primarily intended for all users.

This user manual does not contain last-minute product information and updates which might affect functionality and/or performance. For information on last revisions, late changes and restrictions, the user shall refer to the relevant release notes.

1.9 Compatibility

To check compatibility of the revisions of the AWIN GW100 gateway, refer to the relevant Release Notes.
2 Technology Overview

2.1 WirelessHART Network

A WirelessHART network consists of a host; a WirelessHART gateway, network manager, and access point; and one or more WirelessHART field devices and/or adapters. The WirelessHART network is described in the HART specifications published by the HART Communication Foundation.

2.2 Host

A host provides control or aggregates data in a network. It often incorporates a Human Machine Interface (HMI) between the operator and the process. In the context of WirelessHART networks, a host usually communicates to a WirelessHART gateway using a protocol such as ModbusTCP or similar.

2.3 WirelessHART Gateway

The WirelessHART gateway provides protocol conversion between the protocol used by the WirelessHART network and that of the host.

The WirelessHART access point and network manager are often implemented in the same device or physical piece of hardware as the WirelessHART gateway. When this is the case, it is common to refer to the combination of all three entities as a WirelessHART gateway or simply a gateway. Although the term gateway only refers to the protocol-converting portion of the device, the assumption is made that most gateways contain the network management and access point capabilities.

2.4 WirelessHART Client

The WirelessHART client provides a connection between the wireless network and the gateway. Wireless devices connect to the gateway using a process called “joining.” During this process, wireless devices detect and respond to a network advertisement, request to join the network, authenticate to the network, and are allocated bandwidth for communication of HART message traffic. When devices have fully joined a network access point, they are termed “operational” and are able to communicate data via a request/response method known as client/server; or are able to “burst” data on a pre-determined interval using a publisher/subscriber method. Although both methods allow for data to be passed to the host, the burst method is preferred because of its efficient use of the bandwidth.

Consider the following example:

Request/ response:

Message 1: Host sends request message with request for data to a field device.
Message 2: Field device sends response message with response data to host.

Burst:

Message 1: Field device publishes pre-configured message data such as a primary variable or loop current to the Host on a fixed interval.
From this example it is obvious that, the Burst method results in about half the network traffic, freeing the network to take care of other tasks such as keeping track of device configuration changes, communicating with joining devices, searching for lost devices, or gathering statistics on the health and stability of the network. In most cases, an efficient network will use a mixture of both communication methods.

The WirelessHART access point is capable of sending messages over the WirelessHART network using its IEEE 802.15.4-compliant radio transceiver. WirelessHART uses the first 15 channels of the IEEE 802.15.4 standard for communication and efficiently avoids interference and maximizes the bandwidth in the 2.4 GHz spectrum by continuously frequency hopping between channels according to a frequency hop sequence. This should not be confused with message hops, which refer to the paths that messages take between devices in a mesh network.

2.5 Network Manager

The WirelessHART network bandwidth is allocated by the network manager. The network manager assigns Absolute Slot Numbers (ASN), or message slots, to field devices wishing to publish burst messages over the network. Devices that have not been allocated bandwidth on the network are not able to communicate with the gateway and are not able to publish messages on the network. The network manager is responsible for the “joining” of field devices, allocation of network bandwidth, managing network security, maintaining a list of network devices, and providing communication paths through the mesh network.

The network manager is responsible for broadcasting the existence of the network to prospective field devices and instructs devices already joined to the network to broadcast on its behalf. Devices may discover the network via an advertisement from any other device already on the network. This advertisement contains a network ID that can be used to provide a unique distinction between otherwise overlapping networks. Only devices that have been programmed to join the network will respond to advertisements of the network ID.

Once an advertisement is received, the device may request to join the network by responding with the correct join key of the network. The join key is a 32-character, hexadecimal string that prevents unauthorized devices from joining the network. The network manager rejects device join attempts by any devices not providing the correct join key.

2.5.1 Network ID and Join Key

After the network manager validates the network ID and join key of the requesting device, the device is allocated with a session key to use it for communicating with the network manager. The session key may be a static key or it may be periodically changed or “rotated” by the network manager as an increased security measure. Only devices which have been allocated communication bandwidth and have valid session keys can communicate on the network. To further increase security, each field device is given a unique session key such that only the network manager can understand and decrypt the data from the field device.

2.5.2 Message Hops

The network forms around the access point, and all devices which can communicate directly with the access point are described as being one “hop” from the access point. Other devices may join the network as long as they can communicate with at least one other device that is connected to the network. Given this logic, devices could be one or more hops from the access point as long as they have neighbors (or their neighbors have neighbors) which can communicate directly with the access point. Messages may be passed along from device to device through this network.
device in the wireless mesh until they reach their destination, either the host or a remote field device. In this way, the messages follow paths from the source device to the host and vice versa.

2.6 WirelessHART Field Device

The WirelessHART field device is capable of connecting into a plant process and sending and receiving data over the mesh network. The WirelessHART field device typically consists of a sensor, a transducer, and a transceiver.

2.6.1 Sensors

The sensor connects into the plant process and measures (or controls) some aspect of the analog process, such as temperature, pressure, level, flow, position, etc. The sensor may also provide a discrete connection to the process as is the case with remote I/O field devices.

2.6.2 Transducers

The transducer converts or scales the measurement, so it may be used by a host system in the context of the process. Proportional-Integral-Derivative scaling or conversion takes place in the transducer portion of the field device.

2.6.3 Transceivers

The WirelessHART field device transmits or “hops” HART messages wirelessly to other devices or directly to the access point using an IEEE 802.15.4 compliant radio transceiver.

2.7 HART Field Devices and Wired 4... 20 mA Field Devices

Traditional HART capable “smart” 4... 20 mA devices are similar to WirelessHART field devices except that they use a Frequency Shift Keyed (FSK) HART modem to communicate over a wired loop instead of communicating via a radio transceiver.

2.8 WirelessHART Adapter

In many cases, it is desirable to use existing HART field devices as part of a WirelessHART network. This is possible through the use of a WirelessHART adapter, which bridges the connection between the wired and wireless transmission mediums. WirelessHART adapters contain a WirelessHART transceiver for connection to the WirelessHART network, as well as a 4... 20 mA FSK HART modem, which is used to communicate directly with a HART device via a wired loop.

2.8.1 Connecting to a HART device

A WirelessHART adapter may be used with a HART field device to collect messages received over the HART 4... 20 mA loop and retransmit these messages via its WirelessHART transceiver. In the case of HART devices that transmit their Primary Variables (PVs) digitally, multiple HART devices may be connected in the same wired loop as a single WirelessHART adapter, and the WirelessHART adapter may be capable of adapting or bridging the communication between the WirelessHART network and multiple wired devices.
2.9 WirelessHART Commands

The WirelessHART capable host, gateway, network manager, access point, adapters and WirelessHART field devices all communicate using a set of both standard and device specific HART commands. These commands comprise the Highway Addressable Remote Transducer (HART), protocol and form the back-bone of both HART and WirelessHART communication standards. These commands are classified into several groups and may or may not be supported by a given network entity.

2.9.1 Universal commands

The commands must be supported by gateways, adapters, WirelessHART and wired 4... 20 mA HART devices. These commands are used to read the process variables and device status from the field devices.

2.9.2 Common practice commands

The commands are strongly recommended for implementation by gateways, adapters, and field devices as they provide additional functionality for communicating and configuring with field devices.

2.9.3 Wireless commands

The commands are divided into several sub-categories which are required to be implemented and supported by network manager and access point entities, gateways, adapters, and WirelessHART field devices. These commands handle network formation, maintenance, and security as well as other background functions required by the network.

2.9.4 Device-specific commands

These commands provide device-specific functionality to a field device. Additionally, device-specific commands may also be vendor-specific such that they provide unique features or additional capabilities to a vendor's WirelessHART field devices.

2.10 FieldComm Group

The FieldComm Group provides technical guidance on the development and deployment of HART devices and networks. This guidance is provided through the HART specifications, test specifications, white papers, educational seminars, consulting services, and HART training courses. For further information about the FieldComm Group, visit: www.field-commgroup.org/
3 Basic Features of AWIN GW100 Gateway

The AWIN GW100 is a WirelessHART gateway. It can connect up to 24 WirelessHART field devices and convert the HART data to Modbus TCP data for easy integration into almost any ModbusTCP based host system. The connection can be established via the onboard Ethernet port. HART to Modbus TCP mapping is available in both automatic and manual modes. In automatic mode, gateway automatically assigns registers to available parameters. Whereas, in case of manual mode the user has to supply a custom Modbus list in the form of an XML file.

Important notice (RF exposure)
Installation of this gateway’s antenna must be performed in a manner that will provide at least a 3 cm (1.2 in.) clearance from the front radiating aperture to any user or member of the public.

This product is intended for fixed installation applications.

FCC Part 15 compliance
This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications not expressly approved by ABB will void the user’s authority to operate the equipment.

- FCC Part 15.247
- ISC RSS 2101

3.1 Get Familiar with AWIN GW100

The AWIN GW100 is a DIN rail-mount wireless device with a protection rating of IP20 (see Figure 1). The gateway has an RJ45 connector for connection of Ethernet devices. The WirelessHART antenna connector allows remote mounting of the antenna. The gateway comes with built-in LEDs, their description is provided in Table 4.

<table>
<thead>
<tr>
<th>LEDs Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST</td>
</tr>
<tr>
<td>MESH</td>
</tr>
<tr>
<td>LINK</td>
</tr>
<tr>
<td>DATA</td>
</tr>
<tr>
<td>ERR</td>
</tr>
</tbody>
</table>
The term WirelessHART gateway as used in this product is inclusive of three functions as defined by the HART specifications.
- Gateway (see section WirelessHART Gateway).
- WirelessHART access point (see section WirelessHART Client).
- Network manager (see section Network Manager).

Figure 1: AWIN GW100 gateway and its interfaces

HART maintenance port (shown as HART programming tool connector) is installed but this feature is currently not supported.

3.2 DHCP Server

The AWIN GW100 is compatible with networks that use a Dynamic Host Control Protocol (DHCP) server for allocating IP addresses.

3.3 Webserver

The AWIN GW100 gateway comes with built-in webserver which allows the user to both configure and monitor WirelessHART network. Moreover, advanced diagnostics are also available via the webserver.

3.4 Operator Authentication for Webserver Access

Authentication mechanisms are used to authenticate an operator accessing the device and to verify that the operator is authorized to assume the requested role and perform services within that role.

Access to the management screens for the AWIN GW100 gateway requires that you enter an ID and password. The factory defaults are:
- Access to configuration options
 For access to configuration options, use the following log-in:
 User name = Admin
 Password = admin

- Access to monitoring screens
 For access to monitoring screens only, use the following log-in:
 User name = Monitor
 Password = monitor

The user must change password after first login or at least before commissioning the gateway.

3.5 Modbus TCP Mapping

The AWIN GW100 gateway can function as a protocol converter by mapping the HART command data from the WirelessHART network to Modbus TCP registers. This allows for easy integration of HART data into Modbus TCP host system.

3.6 Network Topology View

The AWIN GW100 gateway’s web interface provides a table with connectivity information of WirelessHART devices. It also shows the strength of wireless mesh network in a color-coded format.

3.7 Ethernet Network Connectivity

AWIN GW100’s Ethernet port shall be connected to an Ethernet switch. The switch can be part of a host network. A typical host system on the host network could be a PLC or Automation controller using ModbusTCP protocol to communicate to the gateway.

The ethernet switch port connected to the AWIN GW100 gateway shall have Flow Rate limiter enabled. Overall bandwidth should be capped to 10Mbps (recommended). Avoid mixing field network with other networks, such as control and client/server network. AWIN GW100 belongs to a field network only.

3.8 Hard Reset

A hardware reset restores the default IP address of 172.16.16.1 (subnet: 255.255.252.0) and resets the AWIN GW100 to factory default settings.
To initiate a hardware reset, disconnect power from the device and use a screwdriver to press and hold the “reset” button, located on the front of the device. Reconnect power with the “reset” button pressed until the red ERR LED starts flashing. Allow the ERR LED to flash a minimum of five times. Release the “reset” button and allow the gateway to reboot.

![Figure 2: Reset button location](image)

3.9 Certificates

AWIN GW100 holds the following certificates which makes it suitable for installation in hazardous areas. For terms and conditions, refer to the actual certificates. For other certificates related to regional compliance and declaration of conformity visit www.abb.com.

3.9.1 ATEX Certificate

The gateway holds the following certificate.

![ATEX certificate](image)

Ex nA IIC T4 Gc
Ta = -40°C to +70°C

3.9.2 IECEx Certificate

The gateway holds the following certificate.

Ex nA IIC T4
Tamb: -40°C to 70°C

3.9.3 CSA Certificate

The gateway holds the following certificate.

![CSA certificate](image)

Class 1, Division 2, Groups A, B, C and D
Canada: Ex nA IIC T4
USA: Class I, Zone 2, Group IIC: AEx nA IIC T4
4 WirelessHART System Planning

4.1 Accessing the Site

To achieve the best radio performance possible, the installation sites have to be given careful consideration. The primary requirements for a reliable installation include:

- Antenna placement that allows for line-of-sight or adequate signal strength
- Primary power source that provides required current
- Protection of radio equipment from exposure to weather or temperature extremes
- Suitable entrances for antenna, lightning arrester, interface or other required cables, if using remote antennas.

These requirements can be quickly assessed in most applications. A possible exception is the first item, verifying that a clear line-of-sight exists. A non-obstructed path is ideal; however, minor obstructions in the signal path will not always block communication. In general, the need for a clear path becomes greater as the transmission distance increases.

4.2 Path Quality Analysis

With the exception of short-range applications, a path loss study is generally recommended for new installations. The exceptions include distances of less than 50 m, where no test is required in 90% of applications. If a test is to be conducted a path loss study is practical. It predicts the signal strength reliability and estimates the fade margin of a proposed radio link. While terrain, elevation and distance are the major factors in this process, a path loss study also considers antenna gain, coaxial cable loss, transmitter power and receiver sensitivity to arrive at a final prediction.

Path loss studies are normally performed by a communications consultant, wireless hardware vendor or system integrator who uses topographic maps or a software path analysis to evaluate a proposed path.

Although path studies provide valuable assistance in system planning, they are not perfect in their predictions. It is difficult, for example, to consider the effects of man-made obstructions or foliage growth without performing an actual on-air test. Such tests can be done using temporarily installed equipment. ABB can provide radio survey service (AWIN Survey Service) to assess radio environment.

4.3 Signal Strength

The strength of radio signals in a well-designed radio network must exceed the minimum level needed to establish basic communication. The excess signal is known as the fade margin, and it compensates for variations in signal level which may occur from time to time due to foliage growth, minor antenna misalignment or changing atmospheric losses.

While the required amount of fade margin differs from one system to another, experience has shown that a level of 20 dB above the receiver sensitivity threshold is sufficient in most systems. AWIN GW100 provide the means for direct measurement of received signal strength using “RSSI (Received Signal Strength Indicator)” readings available in the gateway's network statistics webpage.
4.4 Antennas and Cabling

The single most important item affecting radio performance is the antenna system. Consider carefully this part of an installation, or the performance of the entire system will be compromised. Quality high gain antennas should be used at all stations. The antennas should be specifically designed for use at the intended frequency of operation and with matching impedance (50 ohm).

Antennas are made by several manufacturers and fall into two categories – omnidirectional and directional (see Figure 3). An omnidirectional antenna provides equal radiation and response in all directions and is, therefore, appropriate for use at master stations which must communicate with an array of remote stations scattered in various directions. Omni-antennas should also be used where clients will be mobile.

At remote fixed stations, a directional antenna, such as a Yagi, is typically used. Directional antennas confine the transmission and reception of signals to a relatively narrow beam width, allowing greater communication range and reducing the chances of interference from other users outside the pattern. It is necessary to aim these antennas in the desired direction of communication (i.e., at the master station).

The end of the antenna (farthest from support mast) should face the associated station. Final alignment of the antenna heading can be accomplished by orienting it for maximum received signal strength.

![Figure 3: Omnidirectional and directional antenna performance characteristics](image)
4.4.1 **Coaxial cable considerations**

The importance of using a low-loss antenna coaxial cable is often neglected during radio installation. Using the wrong cable can cause huge reductions in efficiency, and these losses cannot be recovered with any amount of antenna gain or transmitter power.

For every 3 dB of coaxial cable loss, half the transmitter power will be lost before reaching the antenna. The choice of coaxial cable to use depends on: 1) the length of cable required to reach the antenna, 2) the amount of signal loss that can be tolerated, and 3) cost considerations. For long-range transmission paths, where signal is likely to be weaker, a low-loss cable type is recommended.

For a short-range system, or one that requires only a short antenna coaxial cable, a less efficient cable may be acceptable and will cost far less than large diameter cable. Refer to Table 5 for values that allow judging the effectiveness of various cables at 2.4 GHz.

Table 5: Cable types and signal loss (dB)

<table>
<thead>
<tr>
<th>Cable type</th>
<th>2.4 GHz loss (dB/ 100 ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RG-58</td>
<td>25.01</td>
</tr>
<tr>
<td>RG-213</td>
<td>12.51</td>
</tr>
<tr>
<td>PFP-240</td>
<td>12.76</td>
</tr>
<tr>
<td>PFP-400</td>
<td>6.68</td>
</tr>
<tr>
<td>PFP-500</td>
<td>5.41</td>
</tr>
<tr>
<td>PFP-600</td>
<td>4.37</td>
</tr>
</tbody>
</table>

4.4.2 **Antenna mounting considerations**

The antenna manufacturer’s installation instructions must be strictly followed for proper operation of a directional or omnidirectional antenna. Using proper mounting hardware and bracket ensures a secure mounting arrangement with no pattern distortion or detuning of the antenna. The following recommendations apply to all antenna installations:

- Mount the antenna in the clear, as far away as possible from obstructions such as buildings, metal objects, dense foliage, etc. Choose a location that provides a clear path in the direction of the opposite antenna. If the antenna is co-located with another antenna (other than second antenna connector on the same radio), try to get at least one foot vertical (31cm) or one foot (31cm) horizontal separation between the two.

- Polarization of the antenna is important. Most systems use a vertically polarized omnidirectional antenna at the master station. Therefore, the remote antennas must also be vertically polarized (elements perpendicular to the horizon). Cross-polarization between stations can cause a signal loss of 20 dB or more.

- When installed indoors, the radio must be grounded through the DIN rail for DIN rail-mount versions or using the ground lug on the wall-mount versions. A surge arrestor must be used on the antenna for outdoor installations.
4.5 Maintaining System Performance

Over time, any communications system requires a degree of preventative maintenance to ensure peak operating efficiency. Periodic checks of master and remote sites should be made to identify and correct potential problems before they become threats to system operation. The following areas should be given special attention:

4.5.1 Antennas and coaxial cable

Visually inspect the antenna and coaxial cable for physical damage, and make sure that the coaxial connections are tight and properly sealed against the weather. When using directional antennas, be sure that the antenna heading has not shifted since installation.

4.5.2 Cable connections

All power, data, and ground connections should be secure and free of corrosion.

4.5.3 Power supply

The input voltage to the gateway should be measured to verify that it is within the operating specifications for the radio. Batteries, if used, should be checked for charge level and signs of leakage or corrosion.

4.6 Recommendations for Establishing a Robust WirelessHART Network

To establish a robust WirelessHART network, follow these guidelines:
- All WirelessHART devices shall be operated as mesh nodes.
- If possible, install gateway or its antenna in the center of the target coverage area.
- Antenna should be mounted with free clearance around it (recommendation - 30cm) and above the ground (1.5m or above). Antenna shall be installed vertically.
- There should be at least 5 devices or 10% of the total, whichever is larger, in the one-hop ring.
- Every device should have at least 3 good neighbors. A good neighbor is a neighbor that has RSSI >75dBm or has >50% path stability. If not possible, add repeaters.
- Line of sight installation shall be kept to within 200m.
Installation, operation, and maintenance may only be carried out by qualified electricians. Follow the installation instructions described. When installing and operating the device, the applicable regulations and safety directives (including national safety directives), as well as general technical regulations, must be observed. Observe the technical data in this user manual and subsequent documentation (www.abb.com).

- In order to protect the modules against electrostatic discharge when working on control cabinets (or junction boxes), the operating personnel must remove electrostatic discharge before opening junction boxes or control cabinets and before touching the gateway.

- The gateway is snapped onto a DIN rail within a control cabinet or junction box. The control cabinet/box must meet the requirements of EN/IEC 60950-1:2001 in terms of fire protection shielding.

- The device must not be opened or modified. Do not repair the device yourself; replace it with an equivalent device. Repairs may only be carried out by ABB. The manufacturer is not liable for damage resulting from violation.

- The IP20 degree of protection (EN/IEC 60529) of the device is intended for use in a clean and dry environment. The device must not be subject to any strain or load, which exceeds the limits described.

- In the electrical system of the building, a 2-pos. disconnecting device must be provided to isolate the equipment from the supply circuit.

The device is designed for installation in zone 2, potentially explosive areas.

Correct usage in potentially explosive areas.
- Do not use the device in atmospheres with a danger of dust explosions.
- Observe the specific conditions of use (3BNP102683 D3) in potentially explosive areas.
- Install the device in housing (control or junction box) that meets the requirements of EN/IEC 60079-15 and has at least IP54 protection (EN/IEC 60529).
- Only passive antennas may be operated with the gateway.
- When installing and connecting the supply and signal circuits, observe the requirements of EN/IEC 60079-14. Only devices which are designed for operation in Ex zone 2 and are suitable for the conditions at the installation location may be connected to the circuits in zone 2.

In potentially explosive areas, snap the device on or off the bus foot (T-bus connector) and connect or disconnect the cables only when the power is disconnected.

The device must be stopped and immediately removed from the Ex area if it
- is damaged.
- was subject to an impermissible load.
- was stored incorrectly.
- malfunctions.
5.1 Mounting the Gateway

5.1.1 Mounting the AWIN GW100

Figure 4 shows a typical AWIN GW100 installation with end clamps and a DIN rail grounding block.

When mounting the gateway onto a standard 35 mm DIN rail, end clamps should be mounted on both sides of the module(s) to stop the modules from slipping on the DIN rail (see Figure 4).

Modules are installed from left to right on the mounting rail. Install modules to mounting rail as described in the following steps.

1. Attach the AWIN GW100 to the mounting rail by positioning the keyway at the top of the module onto the mounting rail (see Figure 5). Then rotate the module inward until the DIN rail latch locks the module in place on the rail. Next, check that the module is fixed securely to the rail by lightly pulling outward on the module.

Figure 5: Installing AWIN GW100 on the DIN rail
2. Continue attaching any other module(s) to the mounting rail as described in Step 1.

ABB recommends the use of end clamps to prevent modules from sliding left and right on the mounting rail.’

3. When all modules are installed, place an end clamp tight up against the left side of the left-most module on the mounting rail. Then place a second end clamp tight up against the right side of the right-most module on the mounting rail.

Grounding clips built into the AWIN GW100 module make contact with the upper edge of the DIN rail during installation. This provides a ground path from the DIN rail to the module. To ensure proper shielding of the module(s) through the DIN rail, ABB recommends connecting the DIN rail directly to a low-impedance earth ground.’

Connect the DIN rail to protective earth ground using a grounding terminal block. To remove AWIN GW100 follow the procedure shown in Figure 6.

![Figure 6: Removing AWIN GW100 from the DIN rail](image)

5.2 Making connections and powering up

5.2.1 Power connections

Installation notes:
- Installation, operation and maintenance may be carried out only by qualified electricians. Follow the specified installation instructions. The applicable specifications and safety directives (including the national safety directives), as well as the general technical regulations must be observed during installation and operation. The technical data should be taken from the packaging instructions and the certificates (conformity assessment, other possible approvals).
– Opening the device or making changes to it is not permitted. Do not repair the device yourself but, replace it with an equivalent device. Repairs may be carried out only by the manufacturer. The manufacturer is not liable for any damage due to violation of the prescribed regulations.
– The IP20 degree of protection (EN 60529) of the device is intended for a clean and dry environment.
– Do not subject the device to any load that exceeds the prescribed limits.
– Only passive antennas may be installed on the devices.
– The device is not designed for use in environments with danger of dust explosions.

External interconnecting cables are to be installed in accordance to NEC, ANSI/NFPA70 (for US applications) and Canadian Electrical Code, Part 1, CSA C22.1 (for Canadian applications) and in accordance to local country codes for all other countries.

Connect a regulated Class 2 DC power source to the transceiver. The supply voltage can range from 12 to 30 VDC with a nominal voltage of either 12 VDC or 24 VDC recommended. The power supply must be able to supply 150 mA of current at 24 VDC. Figure 7 provides wiring information for the AWIN GW100.

5.2.2 Ethernet connections
Connect a CAT5 Ethernet cable between the port on the AWIN GW100 and the network adapter card on your computer. Use either a crossover (C/O) or 1:1 cable as the radio has autocross functionality. The cable should not exceed 100 m (329 ft.) in length. Alternatively, an Ethernet switch can be used for connection.

5.2.3 Antenna connections
There is one antenna connector on the AWIN GW100 (see Figure 4). A single antenna is used for the WirelessHART mesh network.

⚠️ Observe the maximum RF power allowed in your country. Only use antennas and cables recommended by ABB.
6 Configuration

6.1 Configuring a PC to communicate with AWIN GW100 WirelessHART Gateway

1. Connect the AWIN GW100 to an Ethernet network using a CAT5 cable plugged into the RJ45 socket.

2. Go to the Network Connections dialog box, and then click Local Area Connections button. Right-click and select Properties from the context menu.

3. Highlight Internet Protocol (TCP/IP), and then click Properties button.

4. Click Use the following IP address button, and enter a desired IP address for the PC, for example, 172.16.16.16 in the “IP address.” field.

Note. IP address assigned to the PC must be different to that of the AWIN GW100 gateway.

5. Enter 255.255.252.0 in the “Subnet mask:” field, and then click OK button.

![Internet Protocol Version 4 (TCP/IPv4) Properties]

Figure 8: Properties window to change IP address of a PC

These steps may be different depending on MS Windows version used. These steps are valid for Windows 10 only.
6.2 Log onto AWIN GW100 WirelessHART Gateway

1. Apply power to the gateway and run a browser program (such as, Internet Explorer or Chrome) on your computer. Wait until the ST LED is on (not flashing), indicating the boot-up procedure is complete and the AWIN GW100 is operational.

2. Enter the following IP address into the “Address” field of the browser: https://172.16.16.1
 If a browser prompts security warning (due to certificate) then proceed.

3. Provide the following details on the login screen and select Login.
 Enter the default login credentials:
 - **Username**: admin
 - **Password**: admin

![Figure 9: Login screen](image)

6.3 View Gateway Information

After login, the home page shows the following basic information about the AWIN GW100 gateway.
Figure 10: Home screen showing AWIN GW100 data.

The fields in this window are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>A user adjustable field. Information on where this device was installed or the site name is shown here. The factory default is a blank field.</td>
</tr>
<tr>
<td>Contact</td>
<td>The name of the individual responsible for the operation of this device.</td>
</tr>
<tr>
<td>Long Tag</td>
<td>A user adjustable field that can be interfaced to a HART system. It may be the same as the “Name” field.</td>
</tr>
<tr>
<td>Message</td>
<td>A HART parameter field that can store a short message about the device or network.</td>
</tr>
<tr>
<td>Time</td>
<td>Time of the device's internal clock.</td>
</tr>
<tr>
<td>Date</td>
<td>Date of the device's internal clock.</td>
</tr>
<tr>
<td>Uptime</td>
<td>Shows how long the device has been operating.</td>
</tr>
<tr>
<td>Status</td>
<td>Shows the current operating condition of the gateway.</td>
</tr>
</tbody>
</table>

On the left side of the window are navigation links to access various information screens. The screens are grouped by category. To expand all the categories and see all the available screen selections, click **Expand All** at the bottom of the screen. To collapse all categories, click **Collapse All** at the bottom of the screen.

To make changes to the data shown on Home page, click on **Configuration > General**.
6.4 General AWIN GW100 Gateway Information

Click **Device Information > General** in the left navigation column to view the current network configuration and device version of the AWIN GW100.

The fields in this window are:
Table 7: Information screen fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAN IP Address</td>
<td>The logical address of the LAN port. The IP address uniquely identifies this device on the network.</td>
</tr>
<tr>
<td>LAN Subnet Mask</td>
<td>Bit mask used to tell how much of an IP address identifies the subnetwork the host is on, and how much identifies the host. This subnet mask applies to the 10/100 Mbps LAN port.</td>
</tr>
<tr>
<td>LAN Default Gateway</td>
<td>A node on the network that serves as an access point to a different network for the LAN port.</td>
</tr>
<tr>
<td>LAN MAC Address</td>
<td>(Media Access Control address, MAC address) is the address for the network card.</td>
</tr>
<tr>
<td>WirelessHART AP MAC Address</td>
<td>MAC address for the WirelessHART radio in the gateway.</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>Version of software loaded into the AWIN GW100.</td>
</tr>
<tr>
<td>Hardware Version</td>
<td>Shows version and revision level of the circuit boards.</td>
</tr>
</tbody>
</table>

6.5 WirelessHART Profile Configuration

1. Click **Configuration > WirelessHART > Gateway Profile** in the left navigation column to view and select the WirelessHART Gateway Profile.

![Gateway Profile Configuration screen](image)

Figure 13: Gateway Profile Configuration screen

There are three profiles available as shown in **Table 8**
Table 8: Gateway Profiles

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default Mode</td>
<td>It creates a standard WirelessHART frame size.</td>
</tr>
<tr>
<td>25-node Fast Update</td>
<td>It allocates additional time slots for faster updates. The gateway is supplied with this default setting and is recommended for time sensitive applications.</td>
</tr>
<tr>
<td>Legacy Mode</td>
<td>It is optimized for networks consisting of loop-powered WirelessHART adapters to reduce power consumption.</td>
</tr>
</tbody>
</table>

Table 9: WirelessHART gateway profile settings

<table>
<thead>
<tr>
<th>WirelessHART Gateway Profile</th>
<th>Frame Size for Upstream Traffic</th>
<th>Frame Size for Downstream Traffic</th>
<th>Frame Size for Advertising Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Standard</td>
<td>Standard</td>
<td>Standard</td>
</tr>
<tr>
<td>25-Node Fast Update</td>
<td>128</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>Legacy Mode</td>
<td>1024</td>
<td>256</td>
<td>128</td>
</tr>
</tbody>
</table>

2. Click **Submit** button to save the changes.
The AWIN GW100 must be rebooted for the changes to take effect.

6.6 Configuration of WirelessHART Network

Click on **Configuration > WirelessHART > Network Configuration** in the left navigation column to configure the WirelessHART network.

Various WirelessHART Network Parameters are as follows:
Table 10: WirelessHART Network Parameters

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WirelessHART Network ID</td>
<td>Can be provided in hexadecimal or decimal format.</td>
</tr>
<tr>
<td>Accept Common Join Key</td>
<td>To enable the Common Join Key security mode, click the Accept Common Join Key radio button. See Security section for details.</td>
</tr>
<tr>
<td>Common Join Key</td>
<td>If “Accept Common Join Key” is enabled then provide common join key in hexadecimal format with 32 characters. Devices that have this Common Join Key can join the network. See Security section for details.</td>
</tr>
<tr>
<td>Require Access List Entry</td>
<td>Allows access via an external join list in addition to a Join Key. See Security section for details.</td>
</tr>
<tr>
<td>MAC Address</td>
<td>Network card address for the corresponding WirelessHART device being configured.</td>
</tr>
<tr>
<td>Join Key</td>
<td>A device that has this Join Key must also have the corresponding MAC address to join the network.</td>
</tr>
<tr>
<td>Key Generator</td>
<td>This functionality automatically creates a join key.</td>
</tr>
<tr>
<td>Migrate Network</td>
<td>When selected, this functionality migrates the complete network (AWIN GW100 gateway and connected WirelessHART) devices to the new WirelessHART network ID or Join Key or both. Depending on what was changed by the user on the page. This option is related to Accept Common Join Key functionality.</td>
</tr>
<tr>
<td>Get Advertising Status</td>
<td>When active advertising is “ON,” the AWIN GW100 sends frequent beacons to join the network.</td>
</tr>
<tr>
<td>Advertising Time</td>
<td>The period of time Active Advertising is enabled. It can be enabled by selecting Enable button to the right of the field.</td>
</tr>
<tr>
<td>Stale Data Timer</td>
<td>Data from WirelessHART devices is cached in the gateway. This allows the gateway to respond quickly to host requests without having to constantly obtain fresh device data (a much slower transfer). To ensure the validity of the data stored in cache, each point of data is time stamped. If the cached value has not updated within one-third of the stale data timer value, a downstream request for the update will be sent to the device. If the data in cache is not updated within the stale data timer interval, a Modbus Exception code will be generated to the host system and the cached value will be cleared from the gateway.</td>
</tr>
<tr>
<td>Channel Blacklist</td>
<td>Allows specific WirelessHART channels to be blocked from use in the channel-hopping scheme. Channels must be blocked in pairs, so an odd number of channels is always available. To provide blacklisted channels: Separate channel numbers with a comma and no spaces, example: 3,5,11,12. See Section Channel Blacklist for details.</td>
</tr>
</tbody>
</table>
By selecting **Submit All**, the parameters configured on this page are saved and downloaded to the AWIN GW100 gateway.

6.6.1 Security

Two methods of security are available in a WirelessHART network created by AWIN GW100.

Accept Common Join Key

The Common Join Key security method uses a single, common key value entered in all WirelessHART devices and the AWIN GW100 gateway. Each WirelessHART device sends the same common key. If the key matches the entry in the gateway, the device is allowed to join the network.

In the **Common Join Key** field, enter the common key value.

Require Access List Entry

The Access List security method allows access via an external join list in addition to a Join Key.

To enable the Require Access List security mode, click the **Require Access List Entry** radio button. In the **MAC Address** field, enter the MAC addresses of the WirelessHART devices in the network.

In the **Join Key** field, enter the key value. The key value consists of four fields of hexadecimal characters (0-9, A-F) for a total of 32 characters. Click **Submit** button after entering each MAC address.

After entering all the MAC addresses and corresponding Join Keys, reboot the gateway and allow approximately 30 minutes to 1 hour for the network to form.

6.6.2 Channel Blacklist

Channel blacklisting is a way of limiting the number of channels used in a network. When channels are blacklisted, they are not used in the network.

Although the network may operate on as few as five channels, it is recommended that the network run on as many channels as possible for more overall available bandwidth. Note that the number of usable channels must be an odd number.

To blacklist a channel, enter the frequency of the **Channel Blacklist** field. The channel must be blacklisted in pairs. Table 11 lists the frequency of each channel.

<table>
<thead>
<tr>
<th>Channel No.</th>
<th>Frequencies</th>
<th>Channel No.</th>
<th>Frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2405</td>
<td>9</td>
<td>2445</td>
</tr>
<tr>
<td>2</td>
<td>2410</td>
<td>10</td>
<td>2450</td>
</tr>
<tr>
<td>3</td>
<td>2415</td>
<td>11</td>
<td>2455</td>
</tr>
<tr>
<td>4</td>
<td>2420</td>
<td>12</td>
<td>2460</td>
</tr>
<tr>
<td>5</td>
<td>2425</td>
<td>13</td>
<td>2465</td>
</tr>
<tr>
<td>6</td>
<td>2430</td>
<td>14</td>
<td>2470</td>
</tr>
<tr>
<td>7</td>
<td>2435</td>
<td>15</td>
<td>2475</td>
</tr>
<tr>
<td>8</td>
<td>2440</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.7 View Devices

Click Configuration > WirelessHART > Devices in the left navigation column to view the number of devices in the WirelessHART network.

![Device Information screen]

The device information page displays data about the devices in the WirelessHART network. The Device ID is used for addressing the device via Modbus TCP. Devices connected to WirelessHART adapters appear below the adapter and do not have a MAC address.

Network reliability is a measure of the percentage of packets received by the AWIN GW100 divided by the total packets on the network.

The list of devices is color coded to indicate the status of each device.

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>The WirelessHART device is operating properly, connected to the network and has at least three neighbors.</td>
</tr>
<tr>
<td>Yellow</td>
<td>The WirelessHART device is operating properly, connected to the network and has less than three neighbors.</td>
</tr>
<tr>
<td>Orange</td>
<td>The HART device is connected to the WirelessHART adapter shown above it.</td>
</tr>
<tr>
<td>Red</td>
<td>The device is no longer communicating with the WirelessHART network.</td>
</tr>
</tbody>
</table>

The Devices information page refreshes automatically. For a better performance, disable webpage caching in the browser you are using.

For Internet Explorer 11 it can be done as follows:

1. From the top right corner of Internet Explorer 11, click the settings icon.
2. From the menu, select Internet options.
3. On the General tab, locate the Browsing history section, and click Settings.
4. On the **Temporary Internet Files** tab, confirm that **Every time I visit the webpage** is selected.
5. On **Caches and databases** tab, confirm that **Allow website caches and databases** is not selected.
6. Click **OK**.

It is recommended to use Chrome or Firefox browsers with disabled webpage cache.

The following information is shown for each device.

Table 13: Device Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device ID</td>
<td>The identification number assigned to the attached WirelessHART and HART devices. It can be changed by using the “Edit Slave IDs” option on the same page. See Section Edit Slave Device for details.</td>
</tr>
<tr>
<td>Device Tag</td>
<td>Long tag of the HART device.</td>
</tr>
<tr>
<td>MAC Address</td>
<td>Displays the network card address for the corresponding WirelessHART device.</td>
</tr>
<tr>
<td>Status</td>
<td>Displays whether a device is connected or disconnected.</td>
</tr>
<tr>
<td>PV</td>
<td>Displays the Primary Value of the corresponding HART device.</td>
</tr>
<tr>
<td>SV</td>
<td>Displays the Secondary Value of the corresponding HART device.</td>
</tr>
<tr>
<td>TV</td>
<td>Displays the Tertiary Value of the corresponding HART device.</td>
</tr>
<tr>
<td>QV</td>
<td>Displays the Quaternary Value of the corresponding HART device.</td>
</tr>
<tr>
<td>Battery Life</td>
<td>Displays the expected remaining life of the battery powering the devices (if “65535” is displayed, the device is line powered with a power supply or waiting for battery life information to be provided by the device).</td>
</tr>
<tr>
<td>Neighbors</td>
<td>The number of neighbors a WirelessHART device can communicate with.</td>
</tr>
<tr>
<td>Timestamp</td>
<td>In (hh:mm) format, is the time when the data was most recently polled.</td>
</tr>
<tr>
<td>Latency</td>
<td>Measure of time it takes to respond and update all the corresponding data fields (measured in seconds).</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>In (msec/packet) format, is the available data rate to the corresponding device.</td>
</tr>
<tr>
<td>Joins</td>
<td>The number of times a device connected to the gateway since bootup.</td>
</tr>
<tr>
<td>Command 3 period</td>
<td>HART command 3 continuous burst period.</td>
</tr>
<tr>
<td>Command 3 status</td>
<td>HART command 3 burst status (ON/ OFF).</td>
</tr>
</tbody>
</table>

6.7.1 Delete a Device

To remove a device from the list (i.e. WirelessHART network), right-click on the disconnected device in **Devices** page and a delete option will appear. Select this option to confirm.
Only devices that are not connected may be deleted from the device list.

To delete an active device, power down the device and wait until the status column indicates the device is disconnected and the row is red.

6.7.2 Edit Slave Device

To edit a slave device, click **Edit Slave IDs** button and enter the new ID number in the field next to each device. When finished, click **OK** button to save the changes, or click **Cancel** button to discard changes.

It may take a few seconds for the new ID numbers to take effect.

6.7.3 Device Configuration

Export Device Configuration

The gateway provides an option, **Download to PC**, to export the existing configured devices configuration in XML format.

Import Device Configuration

The gateway provides an option to import new configuration, Upload, for connected devices in XML format. Once the import file is uploaded, the gateway downloads the new configuration to the connected devices. This option simplifies and automates devices configuration.

The details of the XML format are provided in Appendix.

ABB’s AWIN GW100 configurator tool can be used to import, edit and export device configuration. For further details, refer to Bulk Configuration guide (3BNP102911).

6.8 Instrument Table

Click **Configuration > WirelessHART > Instruments** in the left navigation column to view the number of devices in the WirelessHART network.

This page has similar information as shown in Devices page. However, it is reserved to be used to display cached commands information.
6.9 Network Statistics

Click Configuration > WirelessHART > Network Statistics in the left navigation column to view the topology of WirelessHART network.

This page is designed to show the connection status and connectivity information of connected devices, along with information about the routing structure of the network. This page shows the topology information in a table rather than on a map. User can expand each device connectivity information to see its neighbors. The page also shows the summary of key performance indicators.
6.10 IP Configuration

Click Configuration > Network Interface > IP Configuration in the left navigation column to show the Local Area Network (LAN) configuration parameters.

The buttons and fields in this window are:

- LAN Link Speed and Duplex determines the speed of the communication channel. Leave the setting at AUTO if not sure about the link speed. If manual option is selected, then the connected device must be set to the same speed.

- Ethernet IP Configuration selects the method your network uses to obtain IP addresses. If using static IP addresses, enter the IP address assigned to the gateway. Each device on the network must have a different IP address.

If a DHCP server is on the network and will assign IP addresses to the AWIN GW100, click **Use DHCP to get an IP address** radio button.

If the IP address is changed from the factory default, you will need to know this to log back into the gateway for future configuration changes.

Enter a “Subnet Mask” and “Default Gateway,” if desired.

6.11 Modbus Configuration

Click Configuration > MODBUS > MODBUS Configuration in the left navigation column to show the Modbus Configuration parameters.
The gateway offers two options for Modbus configuration.

- **Automatic Modbus mapping (default option):** If this option is selected, then the available gateway and devices’ parameters are automatically mapped to the holding registers.

- **Manual Modbus mapping:** If this option is selected, then the user has to also provide the custom Modbus map they wish to use. The map has to be uploaded using the Browse option followed by **Submit** button. For details on the Modbus file structure refer to the section **Modbus Import File Structure.**

 In the **Modbus TCP Port** field, enter the Ethernet port number. The default is 502. Click **Submit** to save changes. The device must be rebooted for the changes to take effect.

User can also export the Modbus mapping as-is currently configured in the gateway using the **Export Mappings** button on this page.

6.12 Modbus Map

Click **Configuration > MODBUS > MODBUS Mapping** in the left navigation column to show the current Modbus map.
6.13 Passwords

There are administrator password and monitor password. The administrator can make changes to the configuration, whereas a monitor can only view information.

To change or set passwords, click **Configuration > Username/Passwords** in the left navigation column. Passwords must be 10 characters long.

6.14 Store and Retrieve Settings

The **Configuration > Store Retrieve Settings** screen provides the following options:
- Factory Default – it can load the factory default parameters. To do so, select **Set Factory Defaults**.

In this case, IP address is not restored to factory default. It remains as-is. However, if you want to also reset IP address, you can use hard reset option.

- Upload Configuration to device – it can download the configuration to the gateway from a previously saved file. User must “Choose” the Config file, add “Passphrase”, and click “Send Configuration to Device”.

- Send Device Configuration to File – it can export gateway’s existing configuration to a PC’s hard drive. A “Passphrase” is required.

- Export As-Built Configuration - it can export gateway’s existing configuration in text format. It will only export configuration of connected devices.

A 10-character passphrase is required to protect/validate the file before it can be saved or retrieved from a PC. It prevents unauthorized users from applying the system configuration file to an unauthorized access point to gain access to the network. Always record this passphrase when saving a configuration file. It will need to be re-entered each time that specific configuration file is uploaded to the AWIN GW100.

![Figure 22: Configuration - Store Retrieve Settings screen](image)

6.15 Maintenance

6.15.1 Firmware Update

Click on **Maintenance > Firmware update** in the left navigation column to view the current version of firmware and install a new version (see Figure 23).
To install a new version of firmware, download the firmware to a local drive on the connected computer. Enter the file path in the field or click **Choose file** button to locate the file. Click **Update Firmware** button to install the update. Follow the messages that appear during the update process.

![Figure 23: Firmware Update screen](image)

When firmware is updated, the device configuration will be lost.

6.15.2 Utilities

Click **Maintenance > Utilities** in the left navigation column to access the “Utilities” screen (see Figure 24).

The “Utilities” screen includes a field to enter an IP address or host name. Click **Ping** button to find out if it is connected and functional.

The “Utilities” screen also includes an **Auto Logout Timer** field. If no activity occurs from the user within the selected time, the web manager will logout. Click the desired radio button and then click **Submit** button. The factory default setting is “Disable.”
6.15.3 Reboot

Click **Maintenance > Reboot** in the left navigation column to reboot the WirelessHART gateway (see Figure 25).

This allows a WirelessHART gateway to be rebooted without having to physically access the gateway.
6.16 System Logs

Click **Monitoring/Reports > System Log** in the left navigation column to access the system log screen. This screen allows viewing of the “System Log”.

The system log may be requested to assist personnel during device troubleshooting. This page may take a few seconds to load.
7 Monitoring

The AWIN GW100 gateway provides a user account for users which are interested in only reading data from the gateway.

To view these pages login to the gateway using the following credentials:

- **User name**: monitor
- **Password**: monitor

If the user name or password was changed then insert those credentials on login screen.

7.1 View Gateway Status

After login, the home page shows the following basic information about the AWIN GW100 gateway. It also shows a traffic light, with current gateway status.

- Red light means system error.
- Orange light means configuration download (or settings implementation) in progress.
- Green light means all good.

![Figure 27: Monitor user Home screen.](image)

7.2 View Devices Data and Status

After login, select Field Devices page. It shows devices data and connectivity information. Pages are refreshed automatically.
7.3 View WirelessHART Network Topology

After login, select **Network Information** page. It shows devices topology information in a table format.

![Figure 28: Monitor user Field Devices screen.](image)

7.4 Log File, Alarm & Warnings

After login, select Logs page. It shows two things:

- Complete system logs – it records all system interactions
- Alarms and warnings – it record only major events. It includes: device dropout, rejoin and battery warning.

![Figure 29: Monitor user Network Information screen.](image)
7.5 **System Information**

After login, select **System** from the top drop-down menu. It shows firmware information.

Figure 31: Monitor user - System Information screen
8 Troubleshooting

8.1 LED Indicators

Figure 32 defines the LED indicator meanings for the AWIN GW100 WirelessHART gateway.

Figure 32: AWIN GW100 LED locations

Table 14: Color code

<table>
<thead>
<tr>
<th>No.</th>
<th>LED name</th>
<th>LED color</th>
<th>LED status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ST</td>
<td>Green</td>
<td>ON</td>
<td>Power/device active</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Flashing</td>
<td>Device initializing</td>
</tr>
<tr>
<td>2</td>
<td>Mesh</td>
<td>Green</td>
<td>ON</td>
<td>WirelessHART devices connected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OFF</td>
<td>No WirelessHART devices</td>
</tr>
<tr>
<td>3</td>
<td>Link</td>
<td>Green</td>
<td>ON</td>
<td>LAN connected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OFF</td>
<td>LAN not connected</td>
</tr>
<tr>
<td>4</td>
<td>Data</td>
<td>Yellow</td>
<td>Flashing</td>
<td>Indicates incoming/outgoing data on LAN port</td>
</tr>
<tr>
<td>5</td>
<td>Err</td>
<td>Red</td>
<td>ON</td>
<td>Internal error</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OFF</td>
<td>No errors</td>
</tr>
</tbody>
</table>

8.2 General Troubleshooting

When troubleshooting a network, the first step is to check the power and antenna connection. Once that has been established, check that the gateway is powered on by looking at ST LED.

Refer Table 15 to identify various problems and possible solutions.
Table 15: Troubleshooting procedures

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
</table>
| Unable to open Webserver | 1. Ensure power is applied to AWIN GW100.
2. Ensure cable is connected between PC and AWIN GW100. If so, LINK LED is ON.
3. Ensure cable is connected between PC and AWIN GW100. If so, LINK LED is ON.
4. Verify network settings of PC match network settings of AWIN GW100. They should be on same subnet. Confirm IP addresses of LAN interface. If IP address is unknown, the AWIN GW100 can be hard to reset. This will result is factory default configuration, and all previous configuration will be lost. See Section Basic Features of AWIN GW100 Gateway for details.
5. The LAN Link and Duplex selection in the AWIN GW100 should match the settings of the connected wired network. Select Auto if in doubt. |
| WirelessHART field devices take a long time to connect to the network or WirelessHART field devices are not communicating to the AWIN GW100 gateway | 1. Log into the AWIN GW100 and verify that Active Advertising is on. By default, Active Advertising is ON for 60 minutes. This feature can be re-activated for adding new devices to the network more quickly.
2. Verify that the field devices are wired and powered up, and also verify the correct Network ID and Join Key are programmed into the device. Make sure to use the proper decimal and hexadecimal representations of the Network ID and Join Key, as they can vary between vendors.
3. Make sure that the device is within the communication range of the gateway or another WirelessHART device configured in the same network. |
<p>| Error LED illuminates after bootup | Log into web manager, if possible, to check the status of the AWIN GW100. If it states on Home page: “Error Retrieving AP Mote Data From Network Manager”, then wait for at least two minutes to let the gateway clear the error itself. If it persists afterwards, then re-boot the gateway. It can be done through the reboot option in the maintenance menu. If it is not possible then power cycle the gateway. |
| Error LED illuminates | If the gateway is subjected to excessive ethernet frames (or data/broadcast storm) then it can result in reduced performance and in extreme cases may result in freeze of communication in the gateway. In such event, normal operation can be resumed by removing the cause of the “data/broadcast storm” and physically restarting the device by power cycling. In exceptional cases where a reboot does not fix the problem then the device must be reset. Either Set Factory Defaults (soft reset function) or Hard Reset options can be utilized. |
| Status: “Network Manager Queue Full” | Slow down the scan rate of the host system (the network queue can store 100 messages and can be overloaded if scanning occurs too quickly). |</p>
<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modbus Exception</td>
<td>Verify Modbus register addresses.</td>
</tr>
<tr>
<td></td>
<td>Verify WirelessHART field device, adapter or wired HART device supports the command.</td>
</tr>
<tr>
<td></td>
<td>Trying to read data from unmapped register will result in exception.</td>
</tr>
<tr>
<td>Device connects and disconnects</td>
<td>If the device does not have good radio signal, then it can have unstable connection. This can be seen by looking into RSSI, latency, stability and number of joins in network statistics page. If the number of joins keep going up, then add repeater nodes (if possible) to improve network reliability, stability and availability.</td>
</tr>
<tr>
<td></td>
<td>RSSI of the device's active link should be better than -75dBm.</td>
</tr>
<tr>
<td>Unable to connect new device</td>
<td>If it is not possible to add a new device, make sure that there is remaining capacity left in the gateway to add new device. To check, login to the network statistics page. Up to 24 devices can connect to AWIN GW100.</td>
</tr>
<tr>
<td></td>
<td>Connected devices number can be reduced to 8 if all devices burst 3 messages simultaneously at 1sec update period.</td>
</tr>
<tr>
<td>I/O Schedule Upload Failed</td>
<td>When downloading the devices configuration to a gateway where some devices are offline will result in this error. This error is followed with a summary of device(s) which failed. For all other devices, configuration upload is successful.</td>
</tr>
<tr>
<td></td>
<td>Try to bring the offline device online and import again.</td>
</tr>
<tr>
<td>Low battery lifetime</td>
<td>If a device shows low battery lifetime then replace its battery by following the service manual of that device.</td>
</tr>
<tr>
<td>Radio signal is weak</td>
<td>Make sure there is clearance around the antenna. Look into the guidelines for installation of antenna in the antenna used in the setup.</td>
</tr>
<tr>
<td>Weak mesh network</td>
<td>Login to the network statistics page and verify that each device can communicate to at least 3 neighbors (recommended). If so, the device row will be color coded green.</td>
</tr>
<tr>
<td></td>
<td>If not, make sure that all connected devices are operating as mesh nodes (i.e., routing enabled). You can verify this by logging into the monitor account and looking at Devices Information page. To enable/disble routing status the user can use Devices Configuration import file.</td>
</tr>
</tbody>
</table>

8.3 Modbus Exception Codes

The following exception codes are supported.

<table>
<thead>
<tr>
<th>Exception code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x01 ILLEGAL_FUNCTION</td>
<td>No request bytes present.</td>
</tr>
<tr>
<td></td>
<td>Read request for “Number of Neighbors” register for sub-device in simplified mapping.</td>
</tr>
<tr>
<td>0x02 ILLEGAL_DATA_ADDRESS</td>
<td>Starting address does not exist in mapping.</td>
</tr>
<tr>
<td>0x03 ILLEGAL_DATA_VALUE</td>
<td>Starting register valid, but length of requests spans at least one unmapped register.</td>
</tr>
<tr>
<td>Exception code</td>
<td>Meaning</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>0x06 SLAVE DEVICE BUSY</td>
<td>Slave is engaged in processing another command. Retry later.</td>
</tr>
<tr>
<td>0x0b GATEWAY TARGET DEVICE FAILED TO RESPOND</td>
<td>Indicates that no response was obtained from the target device.</td>
</tr>
</tbody>
</table>

To avoid Modbus exception notification, read each individual device data independently. In a case of device disconnection, if you try to read data from multiple devices in one block read, it will result in complete Modbus block read error.
9 Good to Know

9.1 How to Create a Gateway Backup?

To create a gateway backup, follow these steps:

1. Log onto the gateway as admin.
2. Browse to Store and Retrieve page.
3. Under Save Device Configuration to file, add “passphrase” and click Save Configuration to File. Follow the instructions on the screen. This will save the gateway configuration but not the Modbus map.

 Note. Record Passphrase for future use.
5. Click Export Mapping and save the Modbus map file.

 Note. These two files now are part of the backup.

9.2 How to Replace a Gateway by Restoring a Previous Backup?

To replace a gateway, or restore to a previous backup, follow these steps.

1. Log onto the gateway as admin.
2. Browse to Store and Retrieve page.
3. Under Upload Configuration to device, add “passphrase” and click “Choose File”. Follow the instructions on the screen. Select the previously saved Configuration file.

 Note. The Passphrase is the same which was used to generate the Configuration file.
5. Select Manual mode.
6. Click Browse and choose the previously saved Modbus map file. After successful import, select “Submit”.
7. Go to Maintenance > Reboot page and reboot the gateway. After reboot the gateway should be restored to the previous backup.

9.3 How to Replace a Malfunctioned Device?

To replace a device, follow these steps.

1. Create a backup of the Modbus map. Browse to Modbus Configuration page and click Export mapping.
2. Disconnect the device to be removed.
3. Once disconnected, delete device via right-click functionality in Devices webpage.
4. Once deleted, turn on new device to join network. If the device is already configured with same device tag then simply proceed to step 5. Else, you can use either the HART
9.4 How to Change Device Tag Name?

The long tag of a device can be changed by using HART handheld, ABB Asset Vision Basic, ABB FIM and AWIN GW100 Configurator tool.

Refer to the user manual of these products for detail procedure. For using AWIN GW100 Configurator refer to document number 3BNP102911.

9.5 How to Use Remote Antenna?

In general, for non-hazardous area deployments, a standard 2.4GHz antenna can be used. Refer to the antenna user manual for details.

As an example, see the following illustration for remote antenna connectivity with AWIN GW100.

![Figure 33. Example of remote antenna assembly.](image)

9.6 How is Battery Life Cached in the Gateway?

The battery life of a device reported in the gateway webpage and on Modbus connection is populated as follows:

- Gateway checks for response to Command 778.
- Gateway checks for device variable code 243 ("battery life") in Command 9.
- Gateway checks for variable units code of 53 ("days") in Command 3.

If a valid message is received, then battery life is set.
Battery life will be displayed as 65535 until battery life value is reported by device in burst message. Initially, it may take some time to populate. Battery life of 65535 is also displayed for loop powered devices.

9.7 What Value is Displayed on the Gateway Webpage when a Device Goes Offline?

- When a device goes offline the Devices page (in admin account) marks the device as disconnected with a red color row entry.
- When a device goes offline the Devices page (in monitor account) marks the device as idle.
- The last recorded device values are displayed on the webpages.

9.8 What Value is Displayed on Modbus Registers when a Device Goes Offline?

- When a device goes offline the PVstale, SVstale, TVstale and QVstale reports zero value.
- Communication status register also shows device disconnection. However, this does not happen immediately.
- Trying to read data from Modbus registers of a disconnected device will result in Modbus exception.

9.9 What Happens When Multiple Devices Have Same Tag Name?

If same tag name is used by multiple devices in the same WirelessHART network, then they will still join the network but will not operate as desired on Modbus connection. Modbus map is assigned based on Device’s tag name. Therefore, every device should have a unique tag name, else Modbus exception will occur.

9.10 How to Check that WirelessHART Network is Operating as Normal?

Gateway’s good health status can be verified by two means:

1. Check via LEDs status on the hardware.
2. Check traffic light on the gateway’s webpage.

Check LEDs

- ST LED is solid green.
- MESH LED is solid green, if WirelessHART devices are connected.
- LINK LED is solid green.
- ORANGE LED is blinking in orange color.
GOOD TO KNOW

HOW TO CHECK THAT YOU HAVE A STRONG WIRELESSHART MESH NETWORK?

- ERR LED is off.

Check Gateway’s Webpage
- Login as ‘monitor’ user.
- Check traffic LED on the ‘Home’ page. It should be green color.

9.11 How to Check that you have a Strong WirelessHART Mesh Network?

- Login to the Gateway’s ‘admin’ page.
- Select ‘Network Statistics’ page.
- Every device shall have 3 or more neighbors (recommended).
- Active path RSSI shall be better than -75 dBm (recommended).

9.12 How to Dispose this Product - End of Lifecycle?

This product is compliant with European Directive 2012/19/EU, which is concerning waste of electrical and Electronic Equipment. For notes on disposal in Europe visit www.abb.com.
10 Appendix

10.1 WirelessHART Field Device Data Available for Modbus Mapping

The following data (see, Table 17) is available from WirelessHART devices in the gateway. This data is available for communication over ModbusTCP link.

![Warning]

Space in holding registers is reserved for device variable codes but are currently not supported.
Table 17: WirelessHART devices data available for Modbus mapping

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register Length</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop Current</td>
<td>2</td>
<td>Floating Point</td>
<td>Loop current of a device in the network.</td>
</tr>
<tr>
<td>PV</td>
<td>2</td>
<td>Floating Point</td>
<td>Primary variable</td>
</tr>
<tr>
<td>SV</td>
<td>2</td>
<td>Floating Point</td>
<td>Secondary variable</td>
</tr>
<tr>
<td>TV</td>
<td>2</td>
<td>Floating Point</td>
<td>Tertiary variable</td>
</tr>
<tr>
<td>QV</td>
<td>2</td>
<td>Floating Point</td>
<td>Quarterly variable</td>
</tr>
<tr>
<td>PVstale</td>
<td>1</td>
<td>Unsigned 8-bit Integer</td>
<td>This variable is set to ‘1’, meaning NEW, if the last recorded PV value was received within 3 times the burst period of command 3 set in that device. If the PV value is outdated then the value is set to ‘0’, meaning OLD data.</td>
</tr>
<tr>
<td>SVstale</td>
<td>1</td>
<td>Unsigned 8-bit Integer</td>
<td>This variable is set to ‘1’, meaning NEW, if the last recorded SV value was received within 3 times the burst period of command 3 set in that device. If the SV value is outdated then the value is set to ‘0’, meaning OLD data.</td>
</tr>
<tr>
<td>TVstale</td>
<td>1</td>
<td>Unsigned 8-bit Integer</td>
<td>This variable is set to ‘1’, meaning NEW, if the last recorded TV value was received within 3 times the burst period of command 3 set in that device. If the TV value is outdated then the value is set to ‘0’, meaning OLD data.</td>
</tr>
<tr>
<td>QVstale</td>
<td>1</td>
<td>Unsigned 8-bit Integer</td>
<td>This variable is set to ‘1’, meaning NEW, if the last recorded QV value was received within 3 times the burst period of command 3 set in that device. If the QV value is outdated then the value is set to ‘0’, meaning OLD data.</td>
</tr>
<tr>
<td>Device Status</td>
<td>1</td>
<td>Unsigned 8-bit Integer</td>
<td>As specified in HART specification.</td>
</tr>
<tr>
<td>Battery Life</td>
<td>1</td>
<td>Unsigned 16-bit Integer</td>
<td>Remaining days for battery powered devices. For line powered devices it is set to 65535 (decimal format).</td>
</tr>
<tr>
<td>Extended Device Status</td>
<td>1</td>
<td>Unsigned 8-bit Integer</td>
<td>Taken from Command 48 and is defined in HART specifications’ Common Table 17.</td>
</tr>
<tr>
<td>Communication Status</td>
<td>1</td>
<td>Unsigned 8-bit Integer</td>
<td>Reported as 1 (device connected) & 0 (not connected)</td>
</tr>
<tr>
<td>Number of WirelessHART Neighbors</td>
<td>1</td>
<td>Unsigned 8-bit Integer</td>
<td>Number of neighbors of a device</td>
</tr>
</tbody>
</table>

10.2 WirelessHART Network Statistics Data Available for Modbus Mapping

The following data (Table 18) is available from WirelessHART gateway itself related to the overall network statistics. This data is available for communication over ModbusTCP link.
Table 18: WirelessHART gateway parameters available for Modbus mapping

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Register Length</th>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliability</td>
<td>2</td>
<td>Floating Point</td>
<td>The percentage of data packets generated by motes (or accepted via send API) that the manager received.</td>
</tr>
<tr>
<td>Stability</td>
<td>2</td>
<td>Floating Point</td>
<td>The ratio of number of acknowledged packets by the total number of packets transmitted.</td>
</tr>
<tr>
<td>Latency</td>
<td>2</td>
<td>Unsigned 32-bit Integer</td>
<td>The average time required for a data packet to travel from the originating mote to the manager.</td>
</tr>
<tr>
<td>Packets Lost Upstream</td>
<td>2</td>
<td>Unsigned 32-bit Integer</td>
<td>Total number of lost upstream packets across all devices and sessions.</td>
</tr>
<tr>
<td>Time</td>
<td>2</td>
<td>Unsigned 32-bit Integer</td>
<td>Current time of the gateway. Seconds since Epoch according to system's real-time clock.</td>
</tr>
<tr>
<td>Data Age</td>
<td>1</td>
<td>Unsigned 16-bit Integer</td>
<td>This value is seconds elapsed since last update of network statistics data. Statistics are averaged over a period of 15 minutes.</td>
</tr>
<tr>
<td>Status</td>
<td>1</td>
<td>Unsigned 16-bit Integer</td>
<td>0 – Normal, 2 – WirelessHART queue or stack is full.</td>
</tr>
<tr>
<td>WirelessHART device count</td>
<td>1</td>
<td>Unsigned 8-bit Integer</td>
<td>Number of native WirelessHART devices (excluding gateway and wired instruments [i.e. sub devices]).</td>
</tr>
<tr>
<td>Total device count</td>
<td>1</td>
<td>Unsigned 8-bit Integer</td>
<td>Number of total devices in the network (excluding gateway but including wired instruments [i.e. sub devices]).</td>
</tr>
<tr>
<td>Live device count</td>
<td>1</td>
<td>Unsigned 8-bit Integer</td>
<td>Number of live devices in the network (excluding gateway but including wired instruments [i.e. sub devices]).</td>
</tr>
</tbody>
</table>

10.3 Automatic Modbus Mapping Structure

10.3.1 Mapping for Field Devices

Table 19: Mapping for Field Devices

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Device no 1 in list</th>
<th>Device no 2 in list</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Start Register</td>
<td>End Register</td>
</tr>
<tr>
<td>Loop Current</td>
<td>40100</td>
<td>40101</td>
</tr>
<tr>
<td>PV</td>
<td>40102</td>
<td>40103</td>
</tr>
<tr>
<td>SV</td>
<td>40104</td>
<td>40105</td>
</tr>
<tr>
<td>TV</td>
<td>40106</td>
<td>40107</td>
</tr>
<tr>
<td>QV</td>
<td>40108</td>
<td>40109</td>
</tr>
<tr>
<td>PVstale</td>
<td>40110</td>
<td>-</td>
</tr>
<tr>
<td>SVstale</td>
<td>40111</td>
<td>-</td>
</tr>
<tr>
<td>TVstale</td>
<td>40112</td>
<td>-</td>
</tr>
<tr>
<td>QVstale</td>
<td>40113</td>
<td>-</td>
</tr>
<tr>
<td>Device Status</td>
<td>40114</td>
<td>-</td>
</tr>
</tbody>
</table>
For every device, 30 registers are reserved. All new devices joining the network are allocated registers in ascending order.

Devices are assigned registers in the order they join the WirelessHART network. Therefore, every reboot of the gateway can lead to a different map. To fix the map, the user can simply export the map assigned by the gateway and import back in manual mode. As a result, the map will be same at every reboot. To do so, after exporting the Modbus map automatically assigned by the gateway, follow the steps 4 to 6 as specified in How to Replace a Gateway by Restoring a Previous Backup? section.

Gateway supports function code 3 and holding registers only.

10.3.2 Mapping for Gateway Parameters’ Itself.

Table 20: Mapping for Gateway Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Start Register</th>
<th>End Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliability</td>
<td>40000</td>
<td>40001</td>
</tr>
<tr>
<td>Stability</td>
<td>40002</td>
<td>40003</td>
</tr>
<tr>
<td>Latency</td>
<td>40004</td>
<td>40005</td>
</tr>
<tr>
<td>Packets Lost Upstream</td>
<td>40006</td>
<td>40007</td>
</tr>
<tr>
<td>Time</td>
<td>40008</td>
<td>40009</td>
</tr>
<tr>
<td>Data Age</td>
<td>40010</td>
<td>-</td>
</tr>
<tr>
<td>Status</td>
<td>40011</td>
<td>-</td>
</tr>
<tr>
<td>WirelessHART device count</td>
<td>40012</td>
<td>-</td>
</tr>
<tr>
<td>Total device count</td>
<td>40013</td>
<td>-</td>
</tr>
<tr>
<td>Live device count</td>
<td>40014</td>
<td>-</td>
</tr>
</tbody>
</table>
10.4 Modbus Import File Structure

The following XML file structure is used for Field Devices Modbus map:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<ArrayOfSlaves xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
               xmlns:xsd="http://www.w3.org/2001/XMLSchema">
    <Gateway>
        <Reliability>40000</Reliability>
        <Stability>40002</Stability>
        <Latency>40004</Latency>
        <Packets_Lost_Up>40006</Packets_Lost_Up>
        <Time>40008</Time>
        <Data_Age>40010</Data_Age>
        <Status>40011</Status>
        <WiHARTDeviceCnt>40012</WiHARTDeviceCnt>
        <TotalDeviceCnt>40013</TotalDeviceCnt>
        <LiveDeviceCnt>40014</LiveDeviceCnt>
    </Gateway>
    <Slave>
        <LongTag>Wimon470</LongTag>
        <LoopCurrent>40100</LoopCurrent>
        <PV>40102</PV>
        <SV>40104</SV>
        <TV>40106</TV>
        <QV>40108</QV>
        <PVAge>40110</PVAge>
        <SVAge>40111</SVAge>
        <TVAge>40112</TVAge>
        <QVAge>40113</QVAge>
        <DevStatus>40114</DevStatus>
        <BattLife>40115</BattLife>
        <DevVariableCodes>40119</DevVariableCodes>
        <ExtDevStatus>40116</ExtDevStatus>
        <CommStatus>40117</CommStatus>
        <NumWiHartNeighbors>40118</NumWiHartNeighbors>
    </Slave>
    ...
</ArrayOfSlaves>
```
In the Modbus XML file, PVage represents the PVstale parameter of the AWIN GW100 gateway. Same applies to SVage, TVage and QVage respectively. Webpages and the AWIN GW100 Configurator shows it as PVstale, SVstale, TVstale and QVstale.

10.5 Device Configuration File Structure

The following XML file structure is used for Field Devices:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<IOSchedule>
  <Gateway>
    <Advertising_Time>####</Advertising_Time>
    <Gateway_Profile>####</Gateway_Profile>
    <Modbus_TCP>####</Modbus_TCP>
  </Gateway>
  <Slave>
    <MAC_Address>####</MAC_Address>
    <Current_Long_Tag>####</Current_Long_Tag>
    <Network_ID_Slave>####</Network_ID_Slave>
    <Network_ID_Format_Slave>####</Network_ID_Format_Slave>
    <Join_Key_Slave>####</Join_Key_Slave>
    <Burst_Period>####</Burst_Period>
    <Routing_Device>####</Routing_Device>
  </Slave>
  ...
</IOSchedule>
```

Notes:

MAC address to be added in the format, such as, 00-1B-1E-1A-9A-00-00-91.

Network_ID_Format is either dec or hex.

Gateway profile options are: default, 25 node or legacy.

Active_Advertising: enable or disable.

IP_Address_Assignment is either manual or DHCP.

Burst period to be provided as 1/32 of a millisecond.
Visit us

www.abb.com/oilandgas