A comparison between Electrically triggered thyristor (ETT) and Light-triggered thyristor (LTT) for HVDC applications.

ETT vs. LTT for HVDC

abb.com/hvdc
Thyristor triggering in HVDC applications

Electrically triggered thyristor (ETT)
- The ETT is triggered by the thyristor control unit (TCU).
- The TCU is energized by the main circuit, and triggering is initiated by an optical pulse.
- The TCU protects and monitors the ETT.

Light-triggered thyristor (LTT)
- The LTT is triggered directly by an optical pulse.
- The LTT is self-protected against overvoltage.
- Separate recovery protection is provided.
- The TMU monitors the LTT.

FP = Firing pulse
IP = Indicating pulse

ABB Power Technologies
Thyristor and wafer

The thyristor gate is located in the center of the wafer

- The gate is designed for either electrical control (ETTs) or optical control (LTTs)
- The ETT gate connects to the outer control cable via a simple electrical cable and a hermetic feed-through
- The LTT gate needs an internal light-guide of glass and an external optical connector in order to connect to the external light-guide
- Electrical triggering is main stream for thyristors, and is necessary for advanced components like GTOs and IGBTs
ETT vs LTT in commercial HVDC installations

ETT
- Simple gate design because of powerful gate signal
- 10 major wafer processing steps. Standard encapsulation and testing. High production yield
- Precise external overvoltage protection in TCU
- Highest voltage rating 8.8 kV

LTT
- Complicated gate design due to low optical power
- 16 major wafer processing steps. More complex encapsulation and testing. Reduced production yield
- Temperature dependent internal overvoltage protection with large production spread
- Highest voltage rating 8 kV
Thyristor Control Unit (TCU) for ETT

Old type of TCU
- Discrete components design
- High voltage/high power components included in circuit board electronics
- Pre-charging needed for firing
- Not encapsulated - prone to disturbances

*) The photographs are of the same scale

ABB design
- Hybrid components technique:
 - Compact layout
 - High reliability
- Only low voltage electronics
- Ready for firing in all operating conditions
- Totally encapsulated in metallic housing

*)
Features of the ABB type TCU

Standard features:
- Quickly energized from the main circuit, even by a lightning impulse
- Ready for triggering in all operational conditions due to the very fast energization, even directly after a network fault
- Protective triggering against thyristor overvoltages:
 - Overvoltage in forward blocking state
 - Very fast rate-of-rise of the voltage in forward blocking state
 - Transient forward overvoltage during reverse recovery
- Low light power requirement for control. Light emitting diodes are sufficient
- On-line monitoring of thyristor level blocking ability
- On-line indication in case of protective firing

Optional:
- On-line supervision of specific thyristor level conditions such as
 - Thyristor temperature
 - Snubber circuit impedance
 - Optical performance
Thyristor level electronics

ABB ETT vs. LTT

The ABB Thyristor Control Unit:
- Normal and protective firing
- Thyristor performance monitoring
- Approximately 40 components and 100 solder joints
- Estimated commercial operation experience (end of 2004): 350,000 unit years (45,000 units)

LTT Monitoring Unit:
- Thyristor voltage monitoring
- DC voltage grading
- Approximately 130 components and 280 solder joints
- Recovery protection not included ➔ additional module electronics needed
- Estimated commercial operation experience (end of 2004): 8,100 unit years

The circuit boards are approximately of the same scale.
ETT and LTT optical systems

ETT system

- For 12 thyristors:
 - 24 light guides
 - 24 optical connectors at ground level
 - 24 optical connectors at valve potential

LTT system with external recovery protection

- For 12 thyristors:
 - 31 light guides
 - 17 optical connectors at ground level
 - 45 optical connectors at valve potential

- Non-redundant component
The ABB Konti-Skan test valve with LTTs

The 125 kV, 1050 A test valve
- In commercial operation since May 1988, replacing a mercury arc valve
- 48 LTTs in series
- Two types of light sources tested:
 - Light-emitting diodes, one per thyristor
 - Powerful laser diodes serving groups of thyristors via optical star couplers
- Technically functioning, but no advantage in comparison with ABB’s ETT concept

The 7 kV, 45 cm² thyristor
- Directly light-triggered
- Built-in overvoltage protection during off-state and recovery
ABB converter valves for HVDC transmission

ABB has selected the ETT approach for superior performance

Converter valves in the Three Gorges-Changzhou transmission
Characteristics of the ABB solution with ETTs

- Proven high reliability
 - 14,000 ETTs with 5" wafers installed (end 2004). No thyristor failure during commercial operation reported.

- Low maintenance requirements. Scheduled maintenance interval 5 years for modern installations.

- Full redundancy in case of a component failure (optical system, electronics, or thyristor)

- Low risk of commutation failures

- Robust thyristor design

- High-tech solution for thyristor triggering and protection
Conclusions

- The LTT concept is a technological dead-end
- The ETT concept is a robust and reliable design with lower complexity
- ABB has
 - used ETTs for HVDC since 1967
 - tested LTTs for HVDC during 17 years since 1988

Electrically triggered thyristors are superior!