The Company

We are an established world force in the design and manufacture of instrumentation for industrial process control, flow measurement, gas and liquid analysis and environmental applications.

As a part of ABB, a world leader in process automation technology, we offer customers application expertise, service and support worldwide.

We are committed to teamwork, high quality manufacturing, advanced technology and unrivalled service and support.

The quality, accuracy and performance of the Company’s products result from over 100 years experience, combined with a continuous program of innovative design and development to incorporate the latest technology.

The UKAS Calibration Laboratory No. 0255 is just one of the ten flow calibration plants operated by the Company and is indicative of our dedication to quality and accuracy.

Electrical Safety

This equipment complies with the requirements of CEI/IEC 61010-1:2001-2 "Safety requirements for electrical equipment for measurement, control, and laboratory use". If the equipment is used in a manner NOT specified by the Company, the protection provided by the equipment may be impaired.

Symbols

One or more of the following symbols may appear on the equipment labelling:

- **Warning** – Refer to the manual for instructions
- **Caution** – Risk of electric shock
- **Protective earth (ground) terminal**
- **Earth (ground) terminal**
- **Direct current supply only**
- **Alternating current supply only**
- **Both direct and alternating current supply**
- **The equipment is protected through double insulation**

Information in this manual is intended only to assist our customers in the efficient operation of our equipment. Use of this manual for any other purpose is specifically prohibited and its contents are not to be reproduced in full or part without prior approval of the Marketing Communications Department.

Health and Safety

To ensure that our products are safe and without risk to health, the following points must be noted:

1. The relevant sections of these instructions must be read carefully before proceeding.
2. Warning labels on containers and packages must be observed.
3. Installation, operation, maintenance and servicing must only be carried out by suitably trained personnel and in accordance with the information given.
4. Normal safety precautions must be taken to avoid the possibility of an accident occurring when operating in conditions of high pressure and/or temperature.
5. Chemicals must be stored away from heat, protected from temperature extremes and powders kept dry. Normal safe handling procedures must be used.
6. When disposing of chemicals ensure that no two chemicals are mixed.

Safety advice concerning the use of the equipment described in this manual or any relevant hazard data sheets (where applicable) may be obtained from the Company address on the back cover, together with servicing and spares information.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>2 PREPARATION</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Checking the Instrument Type</td>
<td>3</td>
</tr>
<tr>
<td>3 MECHANICAL INSTALLATION</td>
<td>4</td>
</tr>
<tr>
<td>3.1 Siting Requirements</td>
<td>4</td>
</tr>
<tr>
<td>3.2 Overall Dimensions</td>
<td>5</td>
</tr>
<tr>
<td>3.3 Mounting</td>
<td>5</td>
</tr>
<tr>
<td>4 CONNECTIONS</td>
<td>6</td>
</tr>
<tr>
<td>4.1 Cable, Tubing and Gland Specifications</td>
<td>6</td>
</tr>
<tr>
<td>4.2 Electrical Connections</td>
<td>6</td>
</tr>
<tr>
<td>4.2.1 General</td>
<td>6</td>
</tr>
<tr>
<td>4.2.2 Access to Terminals</td>
<td>7</td>
</tr>
<tr>
<td>4.2.3 Connections</td>
<td>7</td>
</tr>
<tr>
<td>4.2.4 Relay Contact Protection</td>
<td>8</td>
</tr>
<tr>
<td>and Interference Suppression</td>
<td>8</td>
</tr>
<tr>
<td>4.3 Selecting the Mains Input Voltage</td>
<td>8</td>
</tr>
<tr>
<td>4.4 Replacing the Fuses</td>
<td>9</td>
</tr>
<tr>
<td>4.5 Reference Air Supply</td>
<td>10</td>
</tr>
<tr>
<td>5 CONTROLS AND DISPLAYS</td>
<td>11</td>
</tr>
<tr>
<td>5.1 Displays</td>
<td>11</td>
</tr>
<tr>
<td>5.2 Switch Functions</td>
<td>11</td>
</tr>
<tr>
<td>6 OPERATION</td>
<td>12</td>
</tr>
<tr>
<td>6.1 Instrument Start-up</td>
<td>12</td>
</tr>
<tr>
<td>6.2 Operating Page</td>
<td>12</td>
</tr>
<tr>
<td>6.3 Operating Page Error Messages</td>
<td>13</td>
</tr>
<tr>
<td>7 PROGRAMMING</td>
<td>14</td>
</tr>
<tr>
<td>7.1 Single-point Calibration</td>
<td>15</td>
</tr>
<tr>
<td>7.2 Two-point Calibration</td>
<td>16</td>
</tr>
<tr>
<td>7.3 Preset Calibration</td>
<td>18</td>
</tr>
<tr>
<td>7.4 Access to Secure Parameters</td>
<td>19</td>
</tr>
<tr>
<td>7.5 Language Selection Page</td>
<td>19</td>
</tr>
<tr>
<td>7.6 Set Up Outputs Page</td>
<td>20</td>
</tr>
<tr>
<td>8 CALIBRATION</td>
<td>22</td>
</tr>
<tr>
<td>8.1 Equipment Required</td>
<td>22</td>
</tr>
<tr>
<td>8.2 Preparation</td>
<td>22</td>
</tr>
<tr>
<td>8.3 Electrical Calibration Page</td>
<td>23</td>
</tr>
<tr>
<td>INDEX</td>
<td>24</td>
</tr>
</tbody>
</table>
The ZDT Oxygen Analyzer is designed for continuous monitoring of oxygen content in applications using ‘in situ’ ZFG2 probes.

Operation and programming of the ZDT Analyzer is via four tactile membrane switches and a digital display located on the front of the instrument. Two l.e.d.’s on the front panel provide local alarm indication.

In operation, the instrument can display measured % oxygen, cell mV, cell temperature or probe heater output. Set up of alarm, retransmission and calibration parameters is achieved in programming mode, where key parameters are protected by a five-digit security code.

Measured %O₂ values can be retransmitted to remote equipment using the retransmission output facility. The range of values retransmitted can be set anywhere within the instrument’s display range of 0 to 25% O₂, subject to the limits in Section 7.6.

Remote alarm indication is provided by two relay outputs. Relays are programmed to activate when the oxygen level moves either above or below a pre-defined set point. The second alarm relay can also be used as a ‘general alarm’ which activates in the event of an instrument or system fault.

An optional internal reference air unit is used to provide reference air supply for the ZFG2 probe. If this unit is not specified, reference air must be supplied to the probe from an alternative source.

For full installation and operation details of the ZFG2 probe refer to the probe operating instructions, IM/ZFG2.

Fig. 1.1 Schematic Diagram
2.1 Checking the Instrument Type – Fig. 2.1

Check the instrument code number against Table 2.1.

1. Release the lower panel and remove from the front of the instrument.

2. Check the instrument code number against Table 2.1.

Table 2.1 Instrument Identification

<table>
<thead>
<tr>
<th>ZDT Oxygen Analyzer</th>
<th>ZDT/</th>
<th>0</th>
<th>1</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe Type</td>
<td>ZFG2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermocouple Type</td>
<td>Type K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference Air Supply</td>
<td>None</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>External Output</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Internal Output</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Mains Voltage</td>
<td>230V 50/60Hz</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>110V 50/60Hz</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2.1 Checking the Code Number
3 MECHANICAL INSTALLATION

3.1 Siting Requirements – Fig. 3.1
The instrument is designed for wall mounting and weighs approximately 9kg (20lb).

Note. If the flexible conduit supplied with Z-FG2 probes is of insufficient length [6m (20ft.) standard, 10m (33ft.) optional], it can be extended using a suitable junction box (part no. 003000060) and cables selected from Table 4.1. Alternatively, cables EXFG/0194 and EXFG/0195 can be used, up to a maximum of 100m (328ft.).

Fig. 3.1 Siting Requirements

- **A – Close to Oxygen Probe**
- **B – At Eye Level**
- **C – Avoiding Vibration**
- **D – Avoid Harmful Vapours and Dripping Fluids**
- **E – Within Temperature Limits**
- **F – Within Environmental Limits**

Note. Analyzer operates to specification between –20°C and 70°C.

Note. IP66 (NEMA 4x)

Caution. Permanent damage may occur if contaminated liquid or vapour is allowed to reach the probe.
3.2 Overall Dimensions – Fig 3.2

Fig. 3.2 Overall Dimensions

3.3 Mounting – Fig. 3.3

1. Mark-out the fixing centers of the four mounting holes – see Fig. 3.2.

2. Drill suitable holes for the type of fixings to be used.

3. Fix the instrument securely to the wall.

Fig. 3.3 Mounting Details
4 CONNECTIONS

Warning.
• Mains power – before making any connections, ensure that the power supply, any powered control circuits and high common-mode voltages are switched off.

4.1 Cable, Tubing and Gland Specifications

Information.
• Five 22mm (0.87 in.) diameter cable entries are provided in the base of the terminal chamber. The cable entries accept M20 glands (not supplied).
• External reference air connections are made via 1/4 in. compression fittings.

<table>
<thead>
<tr>
<th>Cable/Tubing Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell output cable</td>
<td>16/0.2mm laid up red and blue twin copper braid with overall p.v.c. sheath</td>
</tr>
<tr>
<td>Thermocouple cable</td>
<td>See Table 4.2</td>
</tr>
<tr>
<td>Heater cable</td>
<td>3-core 1mm² copper (20m or 66ft. max.)*</td>
</tr>
<tr>
<td>Air Tubing (Reference Air)</td>
<td>1/2 in. o.d. x 1/8 in. i.d. stainless steel, nylon or p.v.c. tube</td>
</tr>
</tbody>
</table>

Caution. The total loop resistance must be less than 2Ω.

* Total run length, including flexible conduit

Table 4.1 Cable References and Air Tubing Specification

<table>
<thead>
<tr>
<th>Type of Thermocouple</th>
<th>British BS1843; 1952</th>
<th>German DIN 43714</th>
<th>American ANSI IMC96.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni-Cr/Ni-Al (Type K)</td>
<td>Brown</td>
<td>Red</td>
<td>Yellow</td>
</tr>
<tr>
<td></td>
<td>Blue</td>
<td>Green</td>
<td>Red</td>
</tr>
</tbody>
</table>

Table 4.2 Thermocouple Wiring

4.2 Electrical Connections

4.2.1 General

Information.
• Earthing (grounding) – a stud terminal is fitted to the case bus-bar earth (ground) connection – see Fig. 4.2
• Cable routing – always route signal output cables and mains-carrying/relay cables separately, ideally in earthed metal conduit. Twist the signal output leads together or use screened cable with the screen connected to the case earth stud.

Use only the cables and air tubing specified in Table 4.1.

Fit suitable cable glands into the entries to be used and blank-off any unused entries using the bungs supplied.

Ensure that the cables enter the instrument through the glands nearest the appropriate screw terminals and are short and direct. Do not tuck excess cable into the terminal compartment.

• Relays – the relay contacts are voltage-free and must be connected in series with a power supply and the alarm/control device which they are to actuate. Ensure that the contact rating is not exceeded.

Refer also to Section 4.2.4 for relay contact protection details when the relays are to be used for switching loads.

• Retransmission output – Do not exceed the maximum load specification for the selected current retransmission range (see the associated specification sheet, SS/ZDT/F9).

The retransmission output is isolated. Therefore the –ve terminal must be connected to earth (ground) if connecting to the isolated input of another device.
4.2.2 Access to Terminals – Fig. 4.1

1 Unlock and remove the lower panel from the front of the instrument – see Fig. 2.1

2 Remove the two screws retaining the terminal shroud and remove.

Fig. 4.1 Access to Terminals

4.2.3 Connections – Fig. 4.2

1 Mains:
 - Live to 'L'
 - Neutral to 'N'
 - Earth to 'E'

2 Retransmission Output (4 to 20mA):
 - Positive to 'RTX +'
 - Negative to 'RTX –'

3 Relay outputs 1 and 2
 - 'N/C' – normally closed
 - 'C' – common
 - 'N/O' – normally open

4 Secure the probe conduit fitting in the appropriate gland and make the following connections:
 - Cell output – red to 'CELL +'
 blue to 'CELL –'
 screen to 'CELL SCR'
 - Thermocouple – white to 'T/C +'
 blue to 'T/C –'
 - Probe heater – Live to 1st 'H' terminal, Neutral to 2nd 'H' terminal (Polarity unimportant). Earth to 'E'

Note. Reference Air Connection – see Section 4.5.
4.2.4 Relay Contact Protection and Interference Suppression – Fig. 4.3
To reduce the risk of instrument malfunction or incorrect readings when switching inductive loads, suppression components must be fitted across the relay contacts.

For a.c. applications, fit a 100R/0.022μF RC suppressor unit (part no. B9303) as shown in Fig. 4.3A. If the instrument malfunctions (incorrect readings) or resets (display shows ‘88888’) when the relays operate, a larger RC network is required. Contact the manufacturer of the switched device for details of the RC unit required.

For d.c. applications fit a diode – see Fig. 4.3B. For general applications use a 1N5406 type (600V peak inverse voltage at 3A – part no. B7363).

Note. For reliable switching the minimum voltage must be greater than 12V and the minimum current greater than 100mA.

4.3 Selecting the Mains Input Voltage – Fig. 4.4
Input voltages (230V or 110V) for the main analyzer p.c.b. and the probe heater supply p.c.b. are selected by two switches located on their respective p.c.b.’s.

Caution 1. The upper enclosure cover is not hinged or captive when unlocked.

Caution 2. Both switches must be set to the same position, otherwise permanent damage to the instrument may occur.

1. Unlock and carefully remove the upper enclosure cover. See Caution 1.
2. Disconnect the front panel ribbon cable at the main p.c.b. end
3. Identify the selector switch on the main p.c.b. and select the required mains voltage for the main p.c.b. See Caution 2.
4. Identify the selector switch on the probe heater supply p.c.b. and select the required mains voltage. See Caution 2.
5. Offer the cover up to the enclosure and reconnect the ribbon cable
6. Refit the upper enclosure cover and lock securely
4.4 Replacing the Fuses – Fig. 4.5
The instrument is protected by two fuses located on the probe heater supply p.c.b. In order to replace the fuses, the main analyzer p.c.b. must be removed for access as shown.

Caution. The upper enclosure door is not hinged or captive when unlocked.

Remove the screws securing the main p.c.b. and carefully move it aside to gain access to the fuses located on the probe heater supply p.c.b. beneath.

Locate and replace the fuses as required.

Unlock and carefully remove the upper enclosure cover. See Caution.

Disconnect the front panel ribbon cable at the main p.c.b. end.

Locate and replace the fuses as required.

Relocate the main p.c.b. and secure with the screws.

Offer the cover up to the enclosure and reconnect the ribbon cable.

Refit the upper enclosure cover and lock securely.

Note.
Fuse Part No: B10144
Rating: 2.5A
Size: 20mm
Type: Anti-surge

Fig. 4.5 Replacing the Fuses
4.5 Reference Air Supply – Fig. 4.6

<table>
<thead>
<tr>
<th>ZDT Analyzer Code Number</th>
<th>Reference Air Supply</th>
<th>Compatible Oxygen Probes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZDT/010X</td>
<td>No reference air supply.</td>
<td>Either code listed below, providing the reference air to the probe is supplied from an external source.</td>
</tr>
<tr>
<td></td>
<td>Reference air to the probe must be provided from a separate source – Refer to the installation and operating instructions supplied with the probe.</td>
<td></td>
</tr>
<tr>
<td>ZDT/011X</td>
<td>Reference air supply with external connection.</td>
<td>ZFG2/XXXXXXXXXX2X</td>
</tr>
<tr>
<td></td>
<td>For use with probes fitted with an external reference air input – see Fig 4.6B</td>
<td></td>
</tr>
<tr>
<td>ZDT/012X</td>
<td>Reference air supply with internal connection.</td>
<td>ZFG2/XXXXXXXXXX1X</td>
</tr>
<tr>
<td></td>
<td>For use with probes fitted with an internal reference input – see Fig 4.6A</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.3 Analyzer and Probe Compatibility

Information. The location of the Analyzer code number is shown in Fig. 2.1. Refer to the probe’s operating instructions, IM/ZFG2 for information on locating the code number of the probe.

Note. Single-conduit cable entry shown – probe power and signal cables are routed with the reference air tube. In twin-conduit versions, power cables are routed via a second conduit and a separate cable entry – see Fig. 4.2.

Caution. Permanent damage may occur if contaminated air surrounding the instrument is allowed to reach the probe head. If necessary, to prevent contaminated air or water being pumped via the analyzer to the probe head, connect a length of suitable piping to the reference air inlet gland and route to an uncontaminated environment.

Fig. 4.6 Reference Air Connections
5 CONTROLS AND DISPLAYS

5.1 Displays – Fig. 5.1
The display comprises a 5-digit, 7-segment digital upper display line and a 16-character dot-matrix lower display line. In operation, the upper display line shows actual values of % oxygen, temperature, cell millivolts or alarm set points. In programming mode it is used to display programmable parameters. The lower display line shows the associated units and/or other programming information.

Fig. 5.1 Location of Displays and Controls

5.2 Switch Functions – Fig. 5.2

A – Advancing to Next Page

B – Moving Between Parameters

C – Adjusting and Storing a Parameter Value

D – Selecting and Storing a Parameter Choice

Fig. 5.2 Membrane Switches
6 OPERATION

6.1 Instrument Start-up
Ensure all electrical connections have been made correctly and apply power to the instrument.

6.2 Operating Page
The operating page is a general use page in which continuously updated measured values and preset parameters can be viewed but not altered. To adjust or set a parameter refer to the programming pages in Section 7.

<table>
<thead>
<tr>
<th>% Oxygen</th>
<th>The upper display indicates the measured oxygen value. If over or under temperature is monitored, the upper display shows ‘------’ and an error message is displayed on the lower dot matrix display – see Section 6.3.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Temperature (°C)</td>
<td>The upper display indicates the measured cell temperature in °C.</td>
</tr>
<tr>
<td>Control Output (%)</td>
<td>The upper display indicates the heater control mark/space ratio.</td>
</tr>
<tr>
<td>Cell Millivolts</td>
<td>The upper display indicates the measured cell millivolts.</td>
</tr>
<tr>
<td>Alarm 1 Set Point</td>
<td>The upper display indicates the alarm 1 set point, displayed as % oxygen. The set point value and the relay/l.e.d. action is programmed in the Set Up Outputs Page – see Section 7.6.</td>
</tr>
<tr>
<td>Alarm 2 Set Point</td>
<td>Note. This frame is not displayed if the ‘Alarm 2 Action’ parameter has been set to ‘General Alarm’ – see Section 7.6.</td>
</tr>
<tr>
<td>Note. If Alarm 2 has been programmed as a general system/instrument alarm, the associated front panel l.e.d. is illuminated when the alarm is active and Relay 2 has de-energized.</td>
<td></td>
</tr>
</tbody>
</table>

Press [] to return to the top of the Operating Page.
Press [] to advance to Oxygen Calibration Page.
6.3 Operating Page Error Messages

When an error has been detected, the following error messages appear in the Operating Page, in place of the % oxygen display.

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Possible Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>NV MEMORY ERROR</td>
<td>The contents of the non-volatile memory have not been read correctly during power up. To rectify the fault, switch off, wait 10 seconds and switch on again. If the fault persists contact the Company.</td>
</tr>
<tr>
<td>CELL WARMING UP</td>
<td>The temperature in the probe oven has not reached a sufficient temperature to obtain suitable readings (<690°C).</td>
</tr>
<tr>
<td>CELL STABILIZING</td>
<td>After the cell temperature reaches 690°C, a delay of five minutes is allowed for the cell output to stabilize.</td>
</tr>
<tr>
<td>CALIBRATION FAIL</td>
<td>The last single- or two-point calibration failed.</td>
</tr>
<tr>
<td>T/C OPEN CIRCUIT</td>
<td>The thermocouple connections are open circuit or the thermocouple temperature is > 1000°C.</td>
</tr>
</tbody>
</table>
Fig. 7.1 Overall Programming Chart
7.1 Single-point Calibration
The calibration sequence involves standardizing the analyzer and the oxygen probe, using air as the test gas. Until a calibration sequence has been completed successfully, the existing slope remains unaffected.

Note. Before commencing a gas calibration procedure the analyzer and probe must be switched on and allowed to operate for at least one hour to allow the system to stabilize thermally.

Oxygen Calibration Sequence

Cell Constant mV
The upper display shows the millivolt offset of the oxygen probe from the last successful calibration.

Span % of Theory
A value between 90 and 110% should be displayed. The display indicates the oxygen probe output slope using parameters derived at the last successful two-point calibration or using the preset values.

Calibration User Code
[00000 to 19999]
If an incorrect value is entered, access to the calibration page is inhibited and the display returns to the top of the oxygen calibration page.

One Point Calibration
Select the one-point calibration sequence.

Connect to Air
Connect the air supply to the probe (refer to the probe operating instructions, IM/ZFG2). The upper display indicates the measured % oxygen.

Calibrating Air
The upper display indicates the measured % oxygen. When a stable reading is detected the display advances automatically to the next frame. To abort calibration, press either the ▲ or ▼ switch.

Calibration Pass/Fail
On completion a calibration status message is displayed:

- **Calibration Pass** Calibration sequence successful
- **Failed Constant** Cell offset >±10mV
- **Failed Unstable** (upper display shows cell mV output)
- **Failed Unstable** Cell output unstable (drifting).

Note. If the sensor calibration is unsuccessful then the ‘Cell Constant mV’ and ‘Span % of Theory’ parameters are unaffected. The instrument continues to operate using parameters stored during the last successful calibration.

Press ▼ to return to the top of the Oxygen Calibration Page.

Press ▲ to advance to the Secure Parameters Page.
7.2 Two-point Calibration

Oxygen Calibration Sequence

Cell Constant mV
The upper display shows the millivolt offset of the oxygen probe from the last successful calibration.

Span % of Theory
A value between 90 and 110% should be displayed. The display indicates the oxygen probe output slope using parameters derived at the last successful two-point calibration or using the preset values.

Calibration User Code
[00000 to 19999]
If an incorrect value is entered, access to the calibration page is inhibited and the display returns to the top of the oxygen calibration page.

Two Point Calibration
Select the two-point calibration sequence.

Connect to Air
Connect the air supply to the probe (refer to the probe operating instructions, IM/ZFG2).
The upper display indicates the test gas value in % oxygen.

Calibrating Air
The upper display indicates measured % oxygen. The display advances automatically to the next frame when a stable reading is detected. To abort calibration, press either the [A] or [B] switch to advance to the next frame.

Enter Span Gas
[between 0.10 and 10.00% Oxygen]
Set the oxygen content of the gas used to calibrate the span.

Connect Span Gas
Connect the span gas to the probe (refer to installation and operating instructions supplied with the probe). The upper display indicates the test gas value in % oxygen.
...7.2 Two-point Calibration

Continued from previous page

Calibrating Span
The upper display indicates measured % oxygen. The display advances automatically to the next frame when a stable reading is detected. To abort calibration, press either the [button] or [button] switch to advance to the next frame.

Calibration Pass/Fail
On completion a calibration status message is displayed.

Calibration Pass Calibration sequence successful
Failed Constant Cell offset >±10mV
(upper display shows cell constant)
Failed Span % Cell output <90% or >110% of slope
(upper display shows measured slope)
Failed Unstable Cell output unstable (drifting).

Note. If sensor calibration is unsuccessful then the ‘Cell Zero mV’ and ‘Span % of Theory’ parameters are unaffected. The instrument continues to operate using parameters stored during the last successful calibration.

Press [button] to return to the top of the Oxygen Calibration Page.

Press [button] to advance to the Secure Parameters Page.
7.3 Preset Calibration

Oxygen Calibration Sequence

Cell Zero mV
The upper display shows the millivolt offset of the oxygen probe from the last successful calibration.

Span % of Theory
A value between 90 and 110% should be displayed. If the value is outside these limits then the oxygen probe must be checked.

Calibration User Code
Enter the required code number between 00000 and 19999, to gain access to the calibration page. If an incorrect value is entered, access to the calibration page is inhibited.

Preset Calibration
Select the preset calibration sequence.

Adjust Cell Zero
[0 to ±10mV]
The upper display shows the cell output (in mV) corresponding to a reading of 20.95 %O₂. Adjust the reading to correspond with the probe.

Span Theory
Select YES if the ‘Span % of Theory’ parameter is to be reset to 100%. Select NO to retain the existing value.

Press [●] to return to the top of the Oxygen Calibration Page.

Press [●] to advance to the Secure Parameters Page.
7.4 Access to Secure Parameters
A 5-digit security code is used to prevent tampering with the secure parameters.

- - - - -

Security Code

If an incorrect value is entered, access to programming pages is inhibited.

Press ▲ to advance to the Language Selection Page.

7.5 Language Selection Page

- - - - -

Language Selection
Select the language in which all text is subsequently displayed:
- English
- German
- French
- Spanish.

Press ▼ to advance to the Set Up Outputs Page.
Set Up Outputs

Alarm A1 Action
Select the required alarm action from the following table:

<table>
<thead>
<tr>
<th>Alarm Action</th>
<th>LED Action</th>
<th>Relay Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Input Above Set Point</td>
<td>Input Below Set Point</td>
</tr>
<tr>
<td>EB</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>EA</td>
<td>OFF</td>
<td>ON</td>
</tr>
</tbody>
</table>

The set point band is defined as the actual value of the Set Point plus or minus the hysteresis value. The hysteresis value is fixed at 0.1% of set point. Alarm action occurs if the input value is above or below the Set Point band. If the input moves within the Set Point band the last alarm action is maintained.

Alarm 1 Set Point
The alarm set point can be set to any value within the oxygen range. [0.00% to 25.00%]

Alarm A2 Action
Set the required alarm action from the above table. If the alarm action is set to General Alarm, the relay is de-energized and the associated front panel l.e.d. is illuminated when one or more of the following conditions applies: thermocouple open circuit, cell warming up, calibration fail, cell stability check, power failure.

Alarm A2 Set Point
The alarm set point can be set to any value within the oxygen range of 0.3% to 25.0%.

Note. This frame is not displayed if the 'Alarm 2 Action' parameter has been set to General Alarm.

Retransmission Type
The retransmission output is assigned to the oxygen range. Select the retransmission output current range required (4 to 20mA, 0 to 20mA or 0 to 10mA).

Logarithmic or Linear Output
The retransmission can be assigned to give a logarithmic or linear output. Select the output required:

- YES — Logarithmic
- NO — Linear

Continued on next page
...7.6 Set Up Outputs Page

Continued from previous page

Retransmission Zero
Set the required retransmission zero value, in % oxygen units.
- [0% to 20.00% (linear output)]
- [0.01% to 0.25% (logarithmic output)].

Retransmission Span

Linear Output – Set the required retransmission span value, in % oxygen units. The retransmission span value must be at least 5% above the retransmission zero value.
- [5% to 25.00%]

Logarithmic Output – The retransmission span is preset to two decades above the zero value and cannot be adjusted. For example, if the zero is set to 0.2%, the span is preset to 20.00%.

Hold Outputs
The retransmission and alarm outputs can be held to prevent inadvertent operation during a test gas calibration sequence.

Test Retransmission
The instrument transmits a test signal of 0, 25, 50, 75 and 100% of the retransmission range selected above. The % test signal selected is shown on the upper display.

Example – when the **Retransmission Type** parameter is set to '0–20' (mA) and the Test Retransmission signal is set to '50%', the retransmission output value is forced to 10mA.

Alter Security Code
[00000 to 99999]
Set the security code used to gain access to secure parameters – see Section 7.4.

Alter Calibration Code
[00000 and 99999]
Set the code used to gain access to the oxygen calibration facility – see Sections 7.1 to 7.3.

Press [] to return to the top of the Set Up Outputs Page.

Press [] to advance to the Electrical Calibration Page.
Note. Electrical calibration is carried out prior to despatch and further calibration is not normally necessary. However, if inaccurate or inconsistent readings are obtained, follow the procedures detailed in this Section.

8.1 Equipment Required
a) Millivolt source (cell input simulator), –20.0 to 180.0mV.

b) Millivolt source (temperature input simulator), 10.0 to 40.0mV.

c) Digital voltmeter (current output), 0 to 20mA.

d) 'Mercury-in-glass' Thermometer, to measure ambient temperature.

8.2 Preparation
a) Switch off the mains supply. Disconnect the probe and retransmission output terminations from the instrument – see Fig. 4.2.

b) Connect the millivolt sources and the milliammeter to the appropriate terminals – see Fig. 8.1.

c) With all covers fitted, switch on the mains supply to the instrument and allow ten minutes for the circuits to stabilize.

d) Select the Electrical Calibration Page and proceed as detailed in Section 8.3, following.

Fig. 8.1 Electrical Connections – Calibration
8.3 Electrical Calibration Page

In this section the actual values denoted by XXXXX are not important and should only be used to determine display reading stability.

Electrical Calibration Page

Calibrate
Select YES to access the electrical calibration sequence. Select NO to advance to the Adjust RTX Zero parameter below.

mV Zero 1
Set the Cell simulator millivolt source to –20mV and allow the display to stabilize.

mV Span 1
Set the Cell simulator millivolt source to 180mV and allow the display to stabilize.

mV Zero 2
Set the Temperature simulator millivolt source to 10mV and allow the display to stabilize.

mV Span 2
Set the Temperature simulator millivolt source to 40mV and allow the display to stabilize.

Adjust Cold Junction Value
Set the measured ambient temperature in °C

Adjust RTX Zero
Set the milliammeter reading to the minimum retransmission level determined by the Retransmission Type setting – see Section 7.6. For example, when the Retransmission Type is set to 4–20, adjust the milliammeter reading to 4mA.

Adjust RTX Span
Set the milliammeter reading to the maximum retransmission level determined by the Retransmission Type setting – see Section 7.6. For example, when the Retransmission Type is set to 4–20, adjust the milliammeter reading to 20mA.

Press ▲ to return to the top of the Electrical Calibration Page.

Press ▲ to advance to the Operating Page.
INDEX

| A | Alarms ... 2, 12, 20 |
| C | Cables .. 6 |
| | Calibration
| |
| | Electrical – See Electrical Calibration
	Oxygen – See Oxygen Calibration
	Checking the Instrument Code 3
	Connections .. 6, 7
	Controls ... 11
D	Displays ... 11
	Language Selection .. 19
	Measured %02 .. 12
E	Electrical Calibration
	Connections .. 22
	Displays ... 23
	Equipment Required .. 22
	Electrical Connections .. 6, 7
	Error Messages .. 13
F	Fault Finding – See Error Messages
	Fuses .. 9
H	Heater Output ... 2, 6, 12, 13
I	Interference Suppression .. 8
	Introduction .. 2
L	Log/Linear Output .. 20
M	Mechanical Installation .. 4
	Membrane Switches ... 2, 11
	Mounting ... 5
O	Operating Displays ... 12
	Outputs – See Retransmission Output
	Overall Dimensions .. 5
	Oxygen Calibration .. 15
	Fail ... 13, 15, 17
	Preset ... 18
	Single-point .. 15
	Two-point ... 16
	User Code ... 15, 16, 18
P	Programming Overview ... 14
R	Reference Air
	Connections .. 10
	Supply .. 2, 3
	Relays – See also Alarms
	Connections ... 6, 7
	Contact Protection ... 8
	Retransmission Output ... 2, 6, 20, 21
S	Schematic Diagram ... 2
	Security Code ... 19, 21
	Siting ... 4
	Specification
	Air Tubing ... 6
	Cables .. 6
	Start-up .. 12
T	Terminals – Access ... 7
	Thermocouple ... 7, 13, 20
V	Voltage Selection ... 8
PRODUCTS & CUSTOMER SUPPORT

Products

Automation Systems
- for the following industries:
 - Chemical & Pharmaceutical
 - Food & Beverage
 - Manufacturing
 - Metals and Minerals
 - Oil, Gas & Petrochemical
 - Pulp and Paper

Drives and Motors
- AC and DC Drives, AC and DC Machines, AC motors to 1kV
- Drive systems
- Force Measurement
- Servo Drives

Controllers & Recorders
- Single and Multi-loop Controllers
- Circular Chart, Strip Chart and Paperless Recorders
- Paperless Recorders
- Process Indicators

Flexible Automation
- Industrial Robots and Robot Systems

Flow Measurement
- Electromagnetic Flowmeters
- Mass Flow Meters
- Turbine Flowmeters
- Flow Elements

Marine Systems & Turbochargers
- Electrical Systems
- Marine Equipment
- Offshore Retrofit and Refurbishment

Process Analytics
- Process Gas Analysis
- Systems Integration

Transmitters
- Pressure
- Temperature
- Level
- Interface Modules

Valves, Actuators and Positioners
- Control Valves
- Actuators
- Positioners

Water, Gas & Industrial Analytics Instrumentation
- pH, conductivity, and dissolved oxygen transmitters and sensors
- ammonia, nitrate, phosphate, silica, sodium, chloride, fluoride, dissolved oxygen and hydrazine analyzers.
- Zirconia oxygen analyzers, katharometers, hydrogen purity and purge-gas monitors, thermal conductivity.

Customer Support

We provide a comprehensive after sales service via a Worldwide Service Organization. Contact one of the following offices for details on your nearest Service and Repair Centre.

United Kingdom
ABB Limited
Tel: +44 (0)1453 826661
Fax: +44 (0)1453 829671

United States of America
ABB Inc.
Tel: +1 775 850 4800
Fax: +1 775 850 4808

Client Warranty
Prior to installation, the equipment referred to in this manual must be stored in a clean, dry environment, in accordance with the Company’s published specification.

Periodic checks must be made on the equipment’s condition. In the event of a failure under warranty, the following documentation must be provided as substantiation:
1. A listing evidencing process operation and alarm logs at time of failure.
2. Copies of all storage, installation, operating and maintenance records relating to the alleged faulty unit.