
EXFG Oxygen Analyzer System

Installation Guide

EXFG Probe

ABB PROCESS ANALYTICS

The Company

ABB Process Analytics specializes in the engineering, manufacture, sale and support of high quality, highly functional, analytical instrumentation for on-line analysis of process streams.

ABB Process Analytics is committed to quality leadership in the on-line analyser industry. The Company-wide, world-wide commitment is well expressed in the **quality statement** for ABB Process Analytics:

'We will conform to requirements and deliver defect-free products on time, to satisfy the needs of our internal and external customers.'

Use of Instructions

Warning.

An instruction that draws attention to the risk of injury or death.

Caution.

An instruction that draws attention to the risk of damage to the product, process or surroundings.

Note.

Clarification of an instruction or additional information.

Information.

Further reference for more detailed information or technical details.

Although **Warning** hazards are related to personal injury, and **Caution** hazards are associated with equipment or property damage, it must be understood that operation of damaged equipment could, under certain operational conditions, result in degraded process system performance leading to personal injury or death. Therefore, comply fully with all **Warning** and **Caution** notices.

Information in this manual is intended only to assist our customers in the efficient operation of our equipment. Use of this manual for any other purpose is specifically prohibited and its contents are not to be reproduced in full or part without prior approval of Technical Communications Department, ABB Process Analytics.

Health and Safety

To ensure that our products are safe and without risk to health, the following points must be noted:

- 1. The relevant sections of these instructions must be read carefully before proceeding.
- 2. Warning labels on containers and packages must be observed.
- 3. Installation, operation, maintenance and servicing must only be carried out by suitably trained personnel and in accordance with the information given.
- 4. Normal safety precautions must be taken to avoid the possibility of an accident occurring when operating in conditions of high pressure and/or temperature.
- 5. Chemicals must be stored away from heat, protected from temperature extremes and powders kept dry. Normal safe handling procedures must be used.
- 6. When disposing of chemicals ensure that no two chemicals are mixed.

Safety advice concerning the use of the equipment described in this manual or any relevant hazard data sheets (where applicable) may be obtained from the Company address on the back cover, together with servicing and spares information.

CONTENTS

Sec	ction	ı	Page	Sec	tion			Page
1	INTR	RODUCTION	2	8	DIS	MANTLING	S AND RE-ASSEMBLY	18
	1.1	Documentation	2		8.1	Replacir	ng the Ceramic Filter	19
	1.2	Certification	2			8.1.1	Removing the Ceramic Filter	19
	1.3	System Overview	3			8.1.2	Fitting the Ceramic Filter	19
	1.4	Principle of Operation	4		8.2	Replacir	ng the Zirconia Cell	20
		·				8.2.1	Removing the Zirconia Cell	
2	PRE	PARATION	5			8.2.2	Fitting the Zirconia Cell	21
	2.1	Checking the Code Number	5		8.3	Replacir	ng the Thermocouple/Electrode	
	2.2	Accessories Check	6			Lead As	sembly	22
		2.2.1 Test Gas Connector Kit	6			8.3.1	Removing the Thermocouple/	
		2.2.2 Probe Flange	6				Electrode Lead Assembly	22
		2.2.3 Mounting Plates				8.3.2	Fitting Ceramic Insulators	
		ŭ				8.3.3	Fitting the Thermocouple/Electrode	
3	INST	FALLATION	7				Lead Assembly	
_	3.1	Siting	7		8.4	Removii	ng the Probe Body	
	3.2	Mounting	8		8.5		ng the Heater Assembly	
	0				0.0	8.5.1	Removing the Heater Assembly	
4	ELE	CTRICAL CONNECTIONS	9			8.5.2	Fitting the Heater Assembly	
-	4.1	Conduit, Cable and Gland Specifications				8.5.3	Aligning the Heater Assembly	
	4.2	Conduit and Cable Options			8.6		ng the Trip Thermocouple Assembly	
		4.2.1 Access to Probe Terminals			0.0	8.6.1	Removing the Trip	,
		4.2.2 Single Conduit Probe Connections				0.0	Thermocouple Assembly	31
		4.2.3 Dual Conduit Probe Connections				8.6.2	Fitting the Trip Thermocouple	
		4.2.4 Dual Cable Probe Connections				0.0.2	Assembly	32
	4.3	Pipe Connections			8.7	Removii	ng Seized Screws	
		4.3.1 External Reference Air Connection			0.7	1101110111	ng 00,200 00,000	00
		4.3.2 Vent Connection		9	RFF	DI ACEMEN	NT PARTS	34
		4.3.3 Test Gas Connection		3	9.1		Parts List	
	4.4	Resealing the Probe Head			9.2		Plate	
			•		9.3		Assemblies and Special Dual Cable	
5	OPF	RATION	14		0.0	9.3.1	Single Conduit Assembly	00
•	J					0.0.1	(combined power/signal)	38
6	CAL	IBRATION	14			9.3.2	Dual Conduit Assembly	00
•	· · · · ·					0.0.2	(separate power/signal)	38
7	FAUI	LT FINDING	15			9.3.3	Special Dual Cable	00
-	7.1	Checking the Zirconia Cell	15				(separate power and signal cable)	38
		7.1.1 Checking the Control Thermocoupl			9.4	Spares	Kits and Replacement Items	
		7.1.2 Checking the Heater Resistance			• • •	9.4.1	Electrode/Thermocouple	
	7.2	Checking the Trip Thermocouple				0	Lead Assembly	38
		опосину иле тир тистиосоврие ининини				9.4.2	Zirconia Cell	
						9.4.3	Ceramic Filter	
						9.4.4	Heater	
						9.4.5	Fasteners	
					9.5		S	
					9.6		ory Kits	
					5.0	, .555556	·. j ·•	00

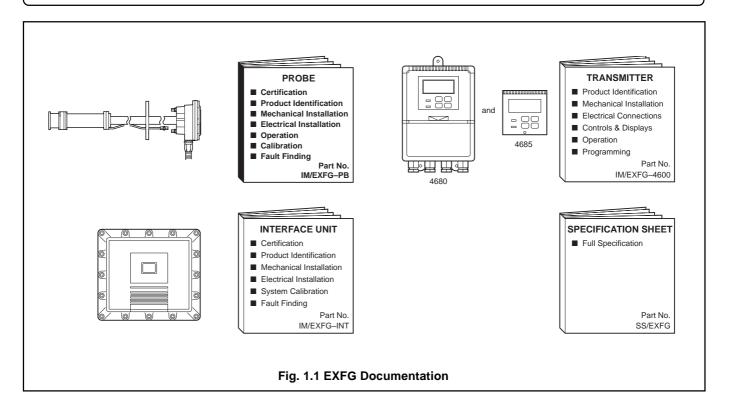
1 INTRODUCTION

1.1 Documentation

Documentation for the EXFG Oxygen Analyzer System is shown in Fig. 1.1.

The Standard Documentation Pack is supplied with all instruments.

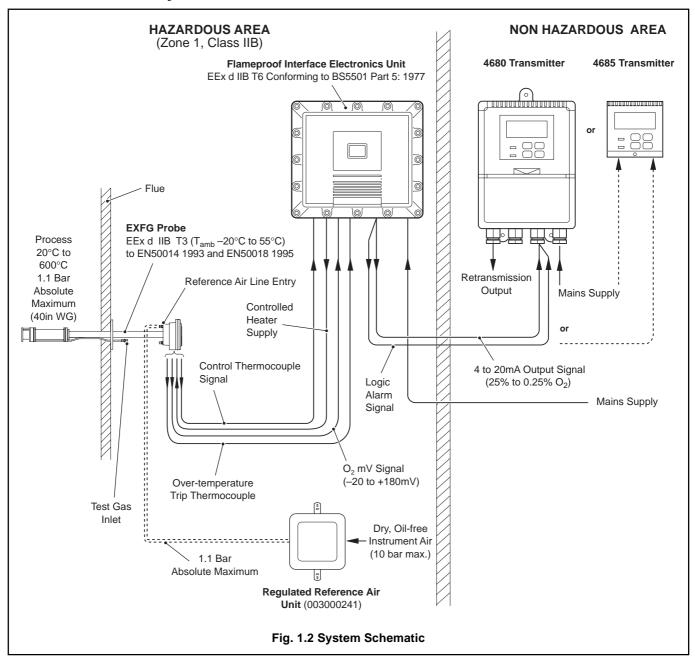
The Supplementary Manuals supplied depend on the specification of the instrument.


1.2 Certification

The EXFG Probe described in this manual is regarded as a certified flameproof enclosure EEx d IIB T3 (–20 to 55°C) conforming to EN50014 (1993) and EN50018 (1995). As such it is safe for use in Zone 1 hazardous areas both in and out of a flue duct (copies of the certificate are available on request).

However, when the T_{amb} of 55°C is exceeded at the sensor end of the probe by process temperature, certification is not invalidated as the hazard is that of the process and not of the certified probe.

Warning. Maximum process pressure 1.1 bar absolute. Certification is invalidated if this pressure is exceeded.

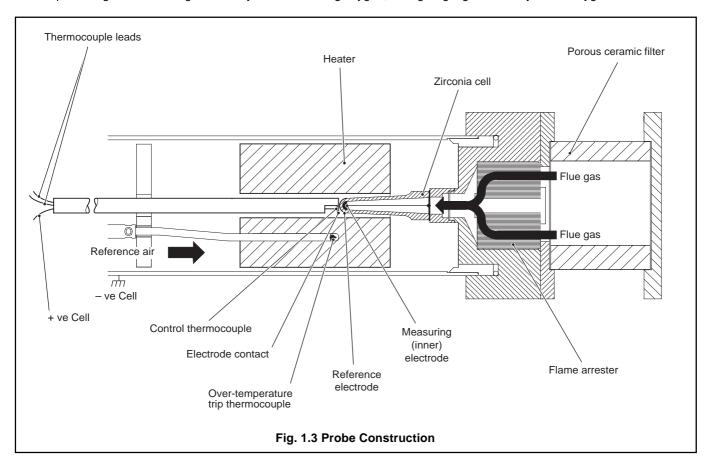

1.3 System Overview - Fig. 1.2

The EXFG Oxygen Probe measures oxygen concentration in flue gas using an in situ ('wet analysis') method. The 'wet analysis' method avoids measurement error (typically 20% of reading higher than the actual value) which would be introduced by a sampling system using the 'dry analysis' method.

System equipment comprises the EXFG Oxygen Probe (flue-mounted), an EXFG Interface Electronics Unit and an EXFG Oxygen Transmitter. During operation, a zirconia cell within the EXFG Probe is controlled by the EXFG Interface Electronics Unit at a temperature of 700°C. This temperature is maintained by a probe heater and control thermocouple assembly. A trip thermocouple is fitted to ensure the surface temperature of the probe never exceeds T3 (200°C). If the heater control circuitry fails 'unsafe' a mechanically interlocked power supply trip relay operates cutting the power supply to the probe. Therefore the system fails 'safe'.

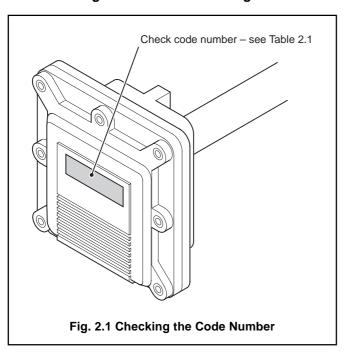
Warning. The probe must be only be connected to the EXFG Interface Electronics Unit, otherwise probe certification may be invalidated.

An output generated at the zirconia cell is processed in the EXFG interface electronics unit into a 4 to 20mA retransmission signal representing 25% to 0.25% O_2 .


...1 INTRODUCTION

1.4 Principle of Operation - Fig. 1.3

The probe's zirconia cell is a thimble-shaped sensing element fitted with inner and outer electrodes at its closed end. The inner electrode is exposed to the flue gas entering the open end of the cell; the outer electrode is supplied with reference air from a regulator and is therefore exposed to a constant partial pressure of oxygen. The cell is held at a constant 700°C by a heater and control thermocouple.


Because zirconia is an electrolyte which conducts only oxygen ions at temperatures in excess of 600°C, the voltage generated between the electrodes (i.e. the cell output) is a function of the ratio of the oxygen partial pressure difference between the reference electrode and the measuring electrode and its temperature. Therefore, any change in the oxygen partial pressure of the flue gas at the exposed electrode produces a change in the cell output voltage as dictated by the Nernst equation.

Cell output voltage increases logarithmically with decreasing oxygen, thus giving high sensitivity at low oxygen levels.

2 PREPARATION 2 PREPARATION...

2.1 Checking the Code Number - Fig. 2.1

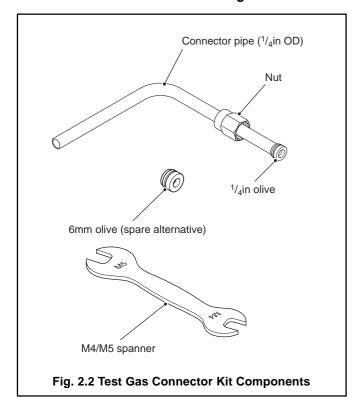
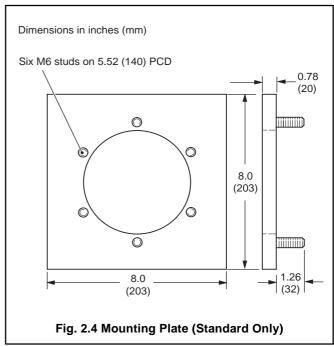
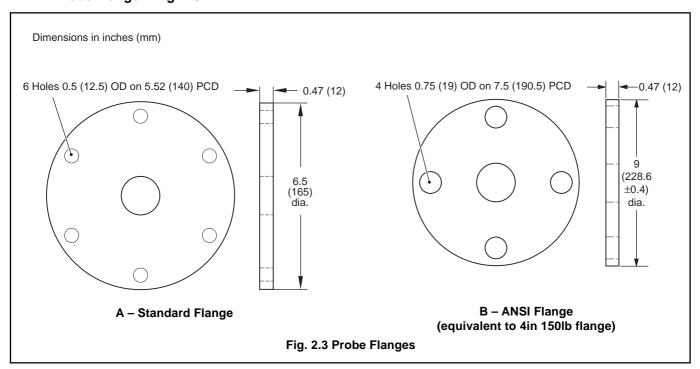

EXFG Oxygen Analyzer System		EXFG/	х	Х	Х	000
EXFG Probe	Not supplied		0			
	1.64ft (0.5m) insertion length – with standard flange		1			
	3.281ft (1.0m) insertion length – with standard flange		2			
	6.562 (2.0m) insertion length – with standard flange		3			
	1.64ft (0.5m) insertion length – with ANSI flange		4			
	3.281ft (1.0m) (insertion length) – with ANSI flange		5			
	6.562 (2.0m) insertion length – with ANSI flange		6			
Flexible Conduits	No conduits			0		
	19.68ft (6.0m) Single conduit assembly – combined signal/power			1		
	32.81ft (10.0m) Single conduit assembly – combined signal/power			2		
	19.68ft (6.0m) Dual conduit assembly – separate signal/power (comprising one signal conduit and one power conduit)			3		
	32.81ft (10.0m) Dual conduit assembly – separate signal/power (comprising one signal conduit and one power conduit)			4		
or						
Dual Special Cables		(ordered	l separa	ately)		
	SWA signal cable – EXFG/0194 (per metre, 100 metre max.) 25/20mm reducer – B11274 (qty. 2 rqd.) 20mm barrier gland – (qty. 2 rqd.)					
	and					
	SWA power cable – EXFG/0195 (per metre, 100 metre max.) 20mm barrier gland – B11275 (qty. 2 rqd.)					
Mounting Plate	Not supplied				0	
	Mounting plate assembly – standard flange only				1	

Table 2.1 Code Number Interpretation

...2 PREPARATION


2.2 Accessories Check

2.2.1 Test Gas Connector Kit - Fig. 2.2



2.2.3 Mounting Plates - Fig. 2.4

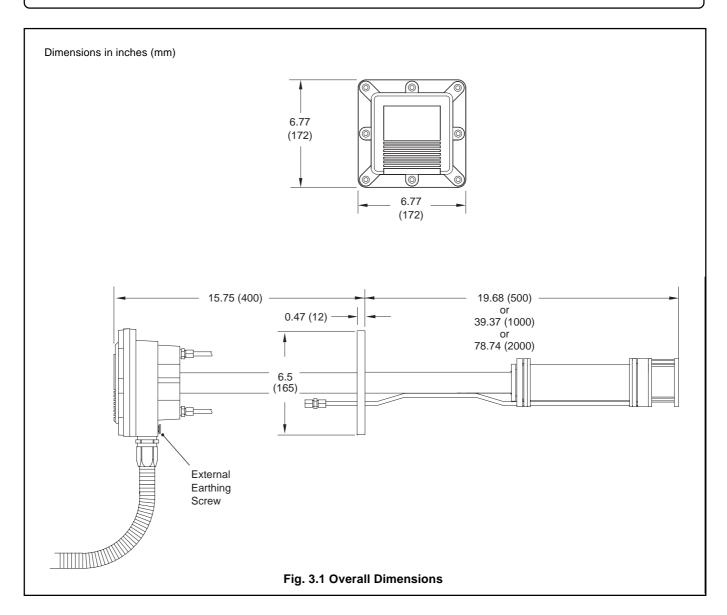
In addition to the probe flange, the probe may also be supplied with a mounting plate assembly if specified – see Table 2.1. A mounting plate is required if there is no existing mounting on the flue or boiler.

2.2.2 Probe Flange - Fig. 2.3

Warning. Maximum process pressure 1.1 bar absolute. Certification is invalidated if this pressure is exceeded.

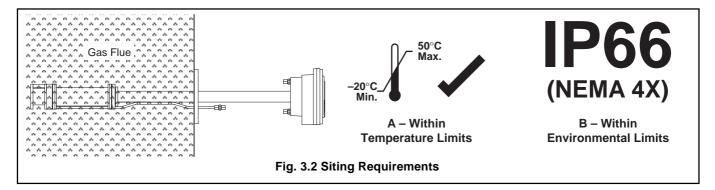
Caution. Handle with care. Avoid mechanical shock to prevent damage to the probe's internal ceramic components.

3.1 Siting - Figs. 3.1 and 3.2


Select a position where the intake is located in the main stream of flue gas. Gas temperature must be in the range 20°C to 600°C.

Avoid positions where obstructions or bends may impede gas flow or prevent insertion, or subsequent removal, of the probe.

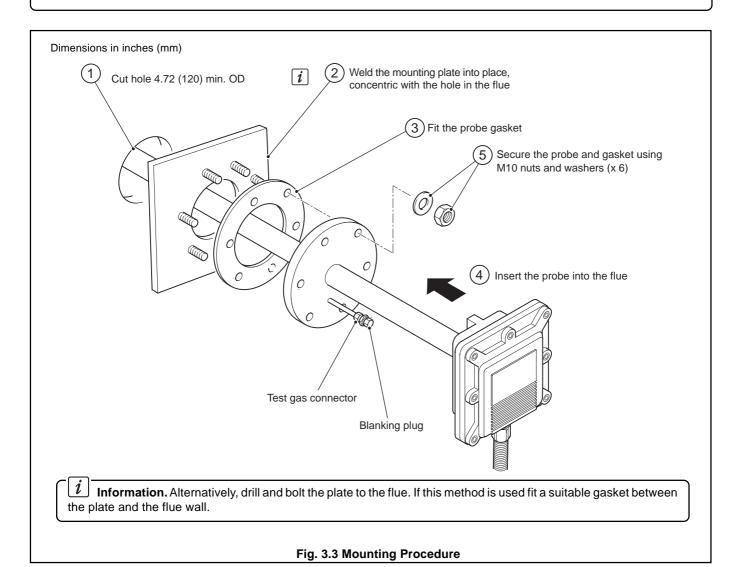
Probe dimensions are shown in Fig 3.1. A clearance of at least 1 inch (25mm) in excess of the overall probe length is necessary for installation or removal procedures.


The probe can be supplied with 19.68ft (6m) or 32.81ft (10m) of flexible conduit as standard which contains cables for connection to the Interface Electronics Unit. The probe head can accept two conduits for separate routing of signal and power cables if required. Special cables complete with appropriate glands can be provided in lengths up to 328.1ft (100m) maximum. The special cable option is only available as a dual cable configuration comprising separate power and signal cables.

Caution. Thermal shock may break the zirconia cell if the flue is cleaned using a high pressure water hose. If this method of cleaning is used, remove the probe from the flue prior to cleaning.

...3 INSTALLATION

...3.1 Siting - Figs. 3.1 and 3.2

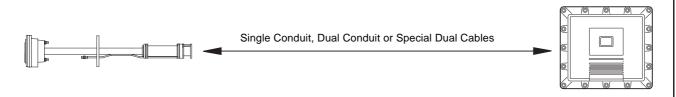


3.2 **Mounting – Fig. 3.3**

Warning.

- Installation and repair must only be carried out by the manufacturer, authorized agents or persons conversant with the construction standards for hazardous area certified equipment.
- Installation must conform to BS5345.

4 ELECTRICAL CONNECTIONS


4 ELECTRICAL CONNECTIONS...

4.1 Conduit, Cable and Gland Specifications

Caution.

- Installation and repair must only be carried out by the manufacturer, authorized agents or persons conversant with the
 construction standards for hazardous area certified equipment. The specifications described in Table 4.1 are for system
 electrical requirements only. Only specifications shown may be used to conform to BS5345, EN50014 and EN50018.
- All cables must conform to BS5345 for flameproof 'd' type enclosures for mechanical construction.
- EEx d glands used on the Interface Electronics Unit must be of the EEx d 'Barrier Gland' type with BASEEFA certification as the
 enclosure is over 2 liters volume, has a source of ignition within and is designed for use in Zone 1 areas (reference BS5345 part 3).

Single Conduit - combined signal and power

19.68ft (6.0m) Signal/power conduit assembly fitted with M25 BASEEFA certified EEx d barrier glands each end

(part no. EXFG/0060)

or

32.81ft (10.0m) length Signal/power conduit assembly fitted with M25 BASEEFA certified EEx d barrier glands each

end (part no. EXFG/0061)

Dual Conduit - separate signal and power

19.68ft (6.0m) length Signal conduit assembly fitted with M25 BASEEFA certified EEx d barrier glands each end

(part no. EXFG/0062)

and

power conduit assembly fitted with M20 BASEEFA certified EEx d barrier glands each end

(part no. EXFG/0063)

or

32.81ft (10.0m) length Signal conduit assembly fitted with M25 BASEEFA certified EEx d barrier glands each end

(part no. EXFG/0064)

and

power conduit assembly fitted with M20 BASEEFA certified EEx d barrier glands each end

(part no. EXFG/0065)

Dual Cable - separate signal and power

Length to order

(maximum length 328.10ft (100.0m))

Special signal cable, steel-wire armoured (part no. EXFG/0194) supplied with M25 BASEEFA certified EEx d barrier glands for each end (part no. B11274 – M25/20 reducers, plus B11275

20mm barrier glands)

and

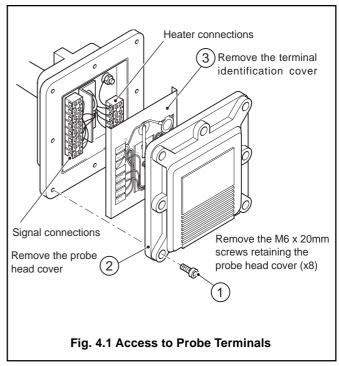
special power cable, steel-wire armoured and screened, 3-core (part no. EXFG/0195) supplied

with M20 BASEEFA certified EEx d barrier glands for each end (part no. B11275)

Table 4.1 Conduit/Cable and Gland Specifications – EXFG Interface Electronics Unit to EXFG Probe

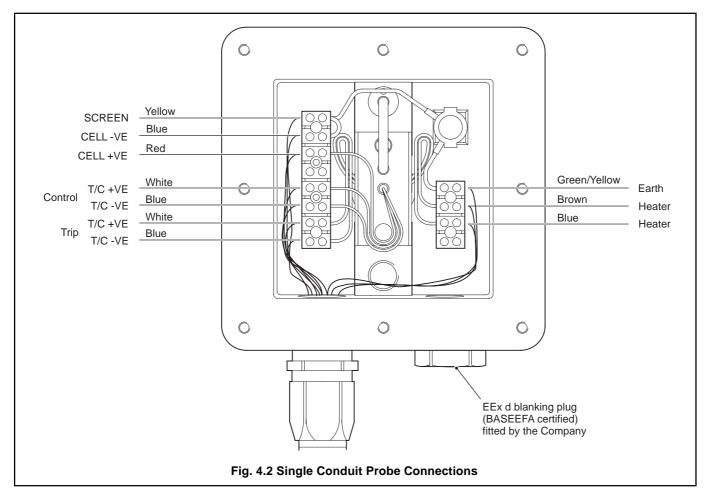
...4 ELECTRICAL CONNECTIONS

4.2 Conduit and Cable Options


The probe is available with one of three connection options – see Table 2.1 for code numbers. Options are:

- a) Single conduit 19.68ft (6.0m) or 32.81ft (10.0m) lengths, comprising; one conduit for signal and heater power leads,
- b) Dual conduits 19.68ft (6.0m) or 32.81ft (10.0m) lengths, comprising; one conduit for signal leads, one conduit for the heater power lead,
- c) Dual special cables for lengths up to 328.10ft (100.0m), comprising; one special cable for signal leads, one special cable for the heater power lead.

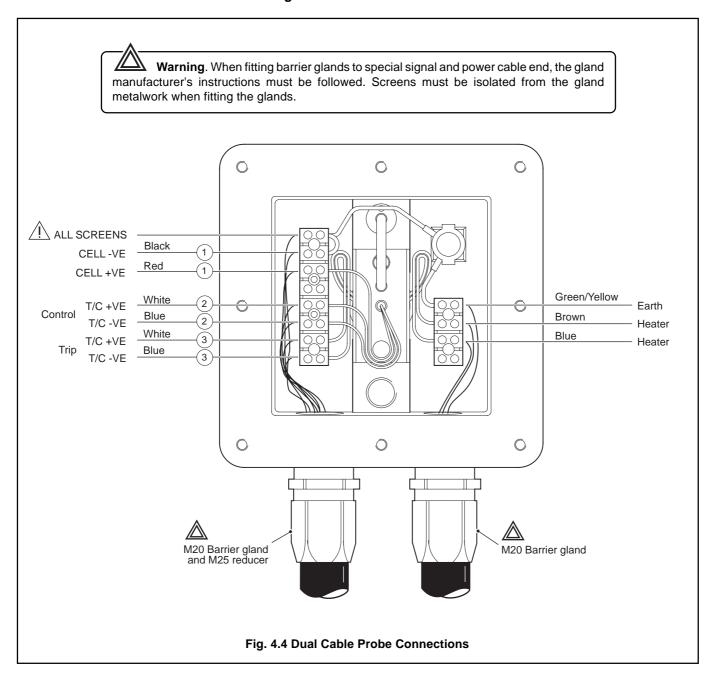
A 0.23in (6mm) external earthing point is fitted on the probe head base – see Fig. 3.1. For connections to the Interface Electronics Unit, refer to Section 4 of the EXFG Interface Electronics Unit Guide.


4.2.1 Access to Probe Terminals - Fig. 4.1

Warning. Once commissioned, the enclosure must not be opened when a flammable atmosphere is present.

4.2.2 Single Conduit Probe Connections - Fig. 4.2

When making connections, ensure that the cables are routed correctly as shown in Fig. 4.2 (single conduit), Fig. 4.3 (dual conduit) or Fig. 4.4 (dual cable).


4 ELECTRICAL CONNECTIONS...

4.2.3 Dual Conduit Probe Connections - Fig. 4.3

...4 ELECTRICAL CONNECTIONS

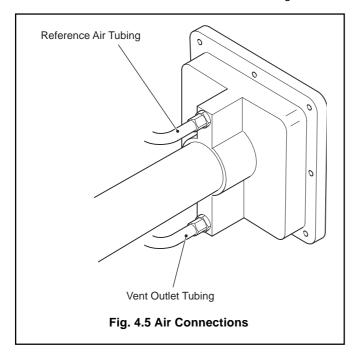
4.2.4 Dual Cable Probe Connections - Fig. 4.4

4.3 Pipe Connections - Fig. 4.5

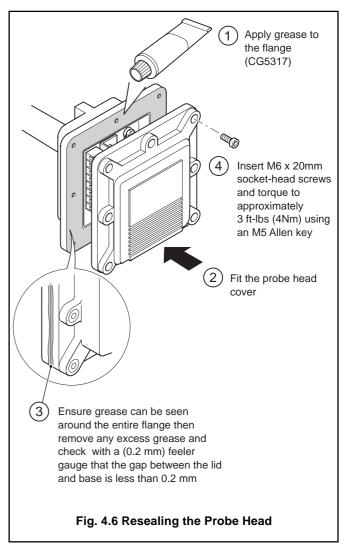
The compression fittings on the back of the probe head have a ¹/4in olive as standard. Spare 6mm olives are also supplied in the accessory kit as an alternative size – see Section 2.2.

4.3.1 External Reference Air Connection - Fig. 4.5

Warning. The maximum reference air pressure is 1.1 bar absolute.


A clean, dry, oil-free regulated air supply is required at a pressure between 20 and 100 millibars (8 to 40 in. W.G.), e.g. from a regulator unit (Model 003000241) available from the Manufacturer. Connect the reference air tubing as shown in Fig. 4.5. Refer to Table 4.2 for reference air and vent outlet tubing specifications.

4.3.2 Vent Connection - Fig. 4.5


The vent outlet allows the reference air to escape to atmosphere via built in flame arrestors. If the outlet is likely to be exposed to moisture, a suitable vent tube must be connected to the outlet and routed to a dry area – see Fig. 4.5. Ensure that the vent outlet, or the vent tube, does not become blocked during probe use.

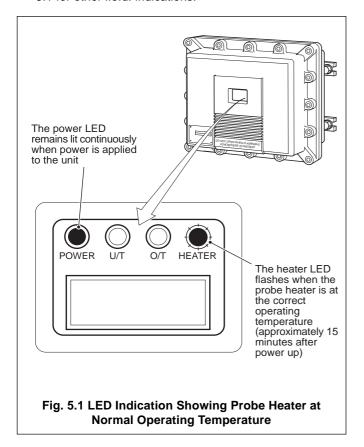
4.3.3 Test Gas Connection - Fig. 4.5

A test gas inlet is provided for in situ probe testing using a test gas – see Section 2.2.1. A test gas connector kit is supplied in the accessory kit. Refer to the *Interface Electronics Unit Guide* for test gas use.

4.4 Resealing the Probe Head - Fig. 4.6

Tubing	Tubing Specification
Reference Air Tubing	¹/₄in o.d. x¹/₅in i.d. stainless steel, nylon or p.v.c. tube (100°C ambient max.)
Vent Outlet Tubing	¹/₄in o.d. x¹/₅in i.d. stainless steel, nylon or p.v.c. tube (100°C ambient max.)

Table 4.2 Reference Air and Vent Tubing Specifications


5 OPERATION

a) Check that a blanking plug is securely fitted to the test gas connector on the probe – see Fig. 3.3.

Note. If the blanking plug is not fitted, air leaking into the probe via the connector may cause measurement errors. In a pressurized flue, gases venting to atmosphere through the connector could cause corrosion of the test gas tube. In a negative pressure flue, air leakage may cause high O₂ reading errors.

- b) Check connections on both the Probe and the Interface Electronics Unit (refer also to the EXFG Interface Electronics Unit Guide).
- c) Switch on the mains power supply and reference air flow.
- d) Check and, if necessary, adjust the reference air flow to a stable flow rate between 50 and 1,000cc/min.
- e) Check the I.e.d.s on the EXFG Interface Electronics Unit see Fig. 5.1.

Refer to the *EXFG Interface Electronics Unit Guide, Fig. 6.1* for other l.e.d. indications.

6 CALIBRATION

Full gas calibration procedures for the system are described in *Section 5* of the *EXFG Interface Electronics Unit Guide*.

Note. Test gas flows for all probes must be set to 3,000cc/min. (±10%) or measurement errors may occur.

System fault finding procedures are given in Section 7. Where a fault is traced to the probe, it may be possible to identify and rectify the fault.

After any rectification, the system must be re-calibrated as described in *Section 5* of the *EXFG Interface Electronics Unit Guide* to maintain the stated accuracies.

7 FAULT FINDING 7 FAULT FINDING...

7.1 Checking the Zirconia Cell

Note. The zirconia cell can be tested without affecting the explosion-proof integrity of either the EXFG Probe or the EXFG Interface Unit.

a) Carry out a system calibration check as described in Section 5 of the Interface Electronics Unit Guide.

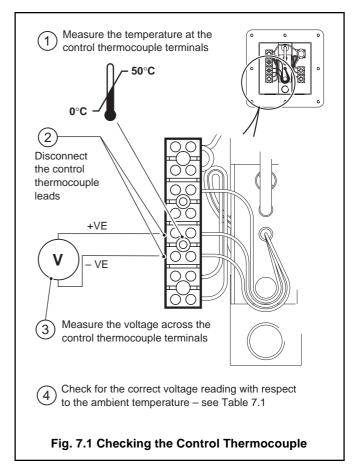
If the analyzer response is correct when measuring test gas but sluggish and insensitive when measuring flue gas, replace the ceramic filter as described Section 8.1.

If a correct test gas response cannot be obtained, check the control thermocouple operation as described in Section 7.1.1.

7.1.1 Checking the Control Thermocouple – Fig. 7.1

Warning. To check the control thermocouple operation it is necessary to remove the probe's connection cover, thus invalidating the explosion proof integrity. Consequently, before removing the connection cover ensure that their are no hazardous gases present or, alternatively, remove the probe from the hazardous area.

 a) Remove the probe connection cover as described in Section 4.2.1.


Warning. The probe heater terminals are at high voltage (55V a.c.). Take all necessary precautions against electric shock when measuring voltages inside the probe head.

b) Check the control thermocouple voltage as shown in Fig. 7.1. The measured voltage must be within ± 0.1 mV of the voltages listed in Table 7.1.

If the measured voltage is **correct**, replace the zirconia cell as described in Section 8.2.

If the measured voltage is high, relocate the probe to a position in the flue where the temperature does not exceed $600^{\circ}C.$

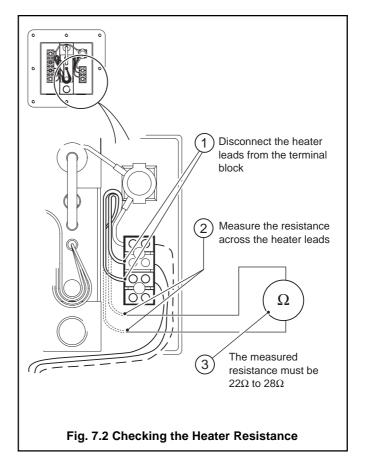
If the measured voltage is **low**, check the heater operation as described in section 7.1.2.

Ambient	Thermocouple	Ambient	Thermocouple
Temp. (°C)	mV	Temp. (°C)	mV
50	26.266	24	27.328
49	26.307	23	27.369
48	26.348	22	27.409
47	26.389	21	27.450
46	26.430	20	27.490
45	26.471	19	27.530
44	26.512	18	27.570
43	26.554	17	27.611
42	26.595	16	27.651
41	26.636	15	27.691
40	26.677	14	27.731
39	26.718	13	27.771
38	26.759	12	27.811
37	26.799	11	27.851
36	26.840	10	27.891
35	26.881	9	27.931
34	26.922	8	27.971
33	26.963	7	28.011
32	27.003	6	28.050
31	27.044	5	28.090
30	27.085	4	28.130
29	27.126	3	28.169
28	27.166	2	28.209
27	27.207	1	28.249
26	27.247	0	28.288
25	27.288		
		I	

Table 7.1 – Control Thermocouple v. Ambient Temperature (680°C)

...7 FAULT FINDING

7.1.2 Checking the Heater Resistance - Fig. 7.2


Warning. To check the heater resistance it is necessary to remove the probe's connection cover, thus invalidating the explosion proof integrity. Consequently, before removing the connection cover ensure that their are no hazardous gases present or, alternatively, remove the probe from the hazardous area.

- a) Switch off the mains power supply to the Interface Electronics Unit.
- b) Check the resistance of the probe heater as described in Fig. 7.2.

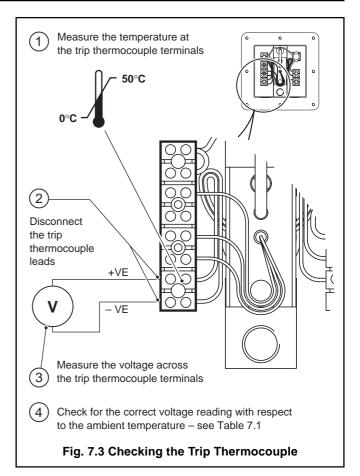
If the heater resistance is **correct**, check the loop resistance of the heater circuit at the Interface Electronics Unit.

If the loop impedance is **correct**, replace the zirconia cell as described in Section 8.2.

If the heater resistance is **incorrect** replace the heater assembly as described in Section 8.5.

7.2 Checking the Trip Thermocouple - Fig. 7.3

Warning. To check operation of the trip thermocouple, the probe's connection cover must be removed, thus invalidating the explosion proof integrity. Consequently, before removing the connection cover ensure that their are no hazardous gases present or, alternatively, remove the probe from the hazardous area.


a) Remove the connection cover as described in Section 4.2.1.

Warning. The probe heater terminals are at high voltage (55V a.c.). Take all necessary precautions against electric shock when measuring voltages inside the probe head.

b) Check the trip thermocouple voltage as shown in Fig. 7.3.

Caution. The trip thermocouple voltage must be within ±0.2mV of the voltages listed in Table 7.2, or the probe's certification is invalidated.

- c) Ensure the measured voltage is correct.
- d) If the measured voltage is incorrect, check the position of the trip thermocouple inside the heater then check the trip thermocouple voltage again. If the voltage is still incorrect, replace the trip thermocouple assembly as described in Section 8.6.

Ambient Temp. (°C)	Thermocouple mV	Ambient Temp. (°C)	Thermocouple mV
50	21.815	24	22.877
49	21.856	23	22.918
48	21.897	22	22.958
47	21.938	21	22.999
46	21.979	20	23.039
45	22.020	19	23.079
44	22.061	18	23.119
43	22.103	17	23.160
42	22.144	16	23.200
41	22.185	15	23.240
40	22.226	14	23.280
39	22.267	13	23.320
38	22.308	12	23.360
37	22.348	11	23.400
36	22.389	10	23.440
35	22.430	9	23.480
34	22.471	8	23.520
33	22.512	7	23.560
32	22.552	6	23.599
31	22.593	5	23.639
30	22.634	4	23.679
29	22.675	3	23.718
28	22.715	2	23.758
27	22.756	1	23.798
26	22.796	0	23.837
25	22.837		
I		1	

Table 7.2 – Trip Thermocouple v. Ambient Temperature (575°C)

8 DISMANTLING AND RE-ASSEMBLY

Warning. Repairs and refurbishing of apparatus with type of protection 'd' should be performed only by the original manufacturer, authorized agents or a repairer who is conversant with the construction standards for flameproof equipment and demonstrates the ability to understand certification restraints. (*Extract from BS5345*.)

Caution.

- The probe is a certified flameproof enclosure. Therefore, clearances and surface finishes between mating parts and lengths of spigot type joints MUST NOT be damaged during Dismantling and Re-assembly or any other maintenance procedures.
- If this condition is not observed, the certification of the equipment is invalidated. In the event of any damage to the equipment, refer to the Company.
- EEx d glands used on the Probe must be of the EEx d 'Barrier Gland' type with BASEEFA certification.
- All cables must conform to BS5345 for flameproof 'd' type enclosures for mechanical construction.
- Before removing the probe, thoroughly clean the outer surfaces with non-abrasive materials to prevent contamination of the inner assemblies.
- Only use replacement parts and components approved by the Company, this applies to nuts and bolts as well as component parts. Never refit damaged items.
- We recommend that a special fasteners spares kit (see Section 9.4.5) is obtained prior to work on any of the dismantling and re-assembly procedures described in this section.

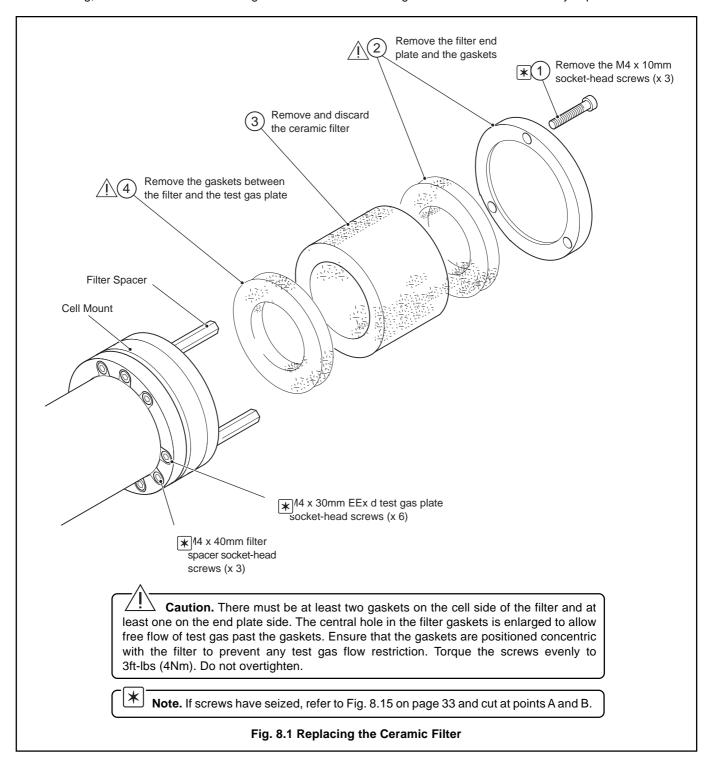
Tools Required

Maintenance Procedure	Tools Required								
Replacing the Ceramic Filter	1 Torque driver 0 to 5Nm (with right-angle adaptor) fitted with an M3 hexagon wrench or M3 Allen key Small/medium hacksaw								
Replacing the Zirconia Cell	1 Torque driver 0 to 5Nm (with right-angle adaptor) fitted with an M3 hexagon wrench or M3 Allen key 2 Small/medium hacksaw 3 Scalpel 4 M4 open-ended spanner								
Replacing the Thermocouple/Electrode Lead Assembly	Torque driver 0 to 5Nm (with right-angle adaptor) fitted with an M3 hexagon wrench or M3 Allen key Small/medium hacksaw Scalpel M4 open-ended spanner Two slot-head screwdrivers, one small, one medium								
Removing the Probe Body	Torque driver 0 to 5Nm (with right-angle adaptor) fitted with an M3 hexagon wrench or M3 Allen key Small/medium hacksaw Scalpel M4 open-ended spanner Two slot-head screwdrivers, one small, one medium								
Replacing the Heater Assembly	Torque driver 0 to 5Nm (with right-angle adaptor) fitted with an M3 hexagon wrench or M3 Allen key Small/medium hacksaw Scalpel M4 open-ended spanners (x 2) Two slot-head screwdrivers, one small, one medium 5.5mm Open-ended spanner Long nosed pliers (x 1 pair)								
Replacing the Trip/Thermocouple Assembly	Torque driver 0 to 5Nm (with right-angle adaptor) fitted with an M3 hexagon wrench or M3 Allen key Small/medium hacksaw Scalpel M4 open-ended spanners (x 2) Two slot-head screwdrivers, one small, one medium 5.5mm Open-ended spanner Long nosed pliers (x 1 pair)								

Table 8 - Identification of Tools

8.1 Replacing the Ceramic Filter - Fig. 8.1

A ceramic filter kit is required when replacing the ceramic filter – see Section 9.4.3.

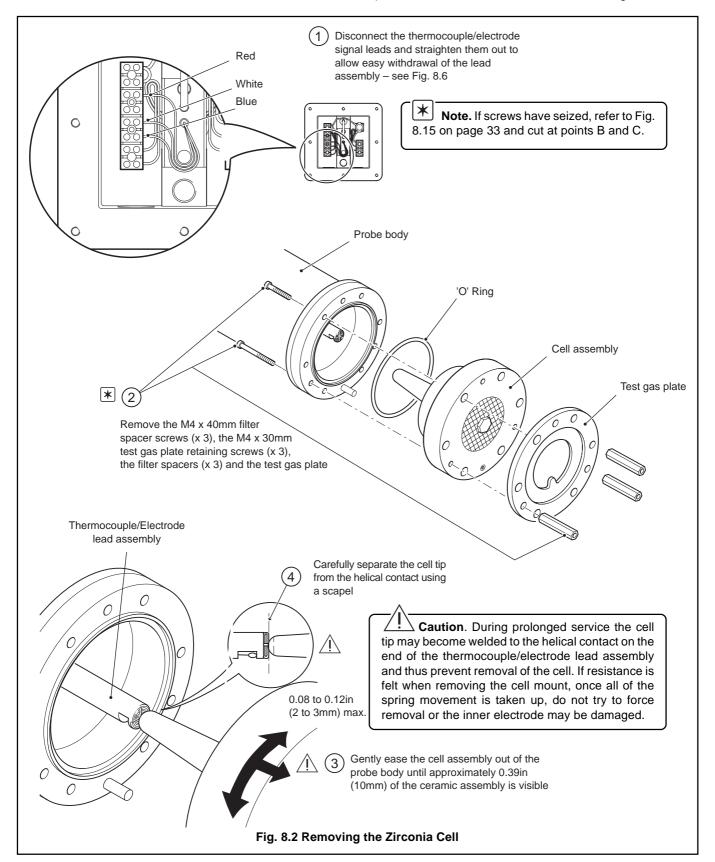

8.1.1 Removing the Ceramic Filter - Fig. 8.1

Remove the ceramic filter as described in Fig. 8.1.

8.1.2 Fitting the Ceramic Filter - Fig. 8.1

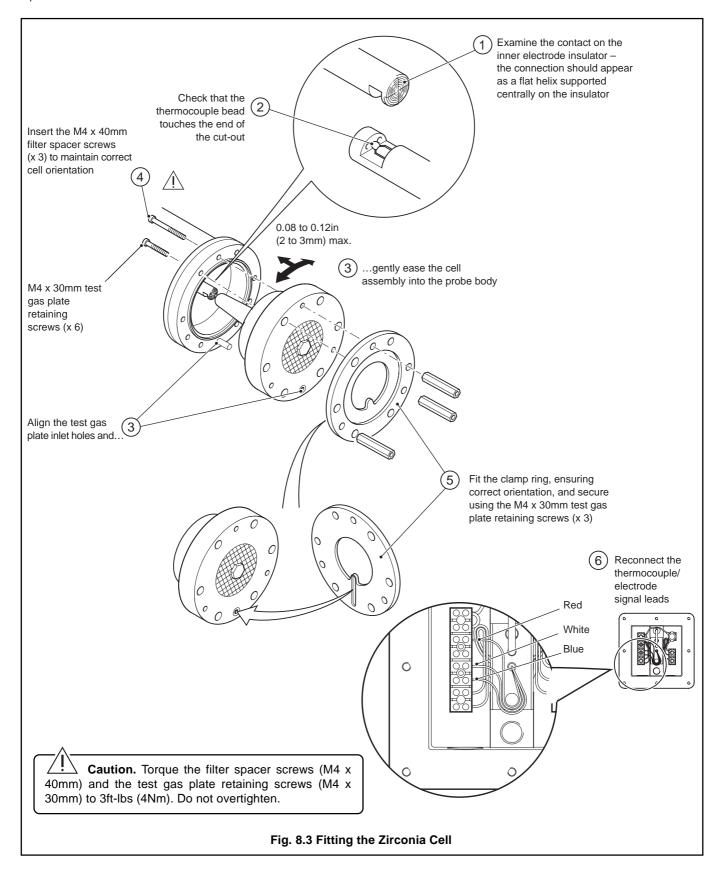
Fit a replacement filter by reversing the procedure described in Fig. 8.1.

When refitting, insert a sufficient number of gaskets to allow the securing screws to hold the filter firmly in position.


...8 DISMANTLING AND RE-ASSEMBLY

8.2 Replacing the Zirconia Cell

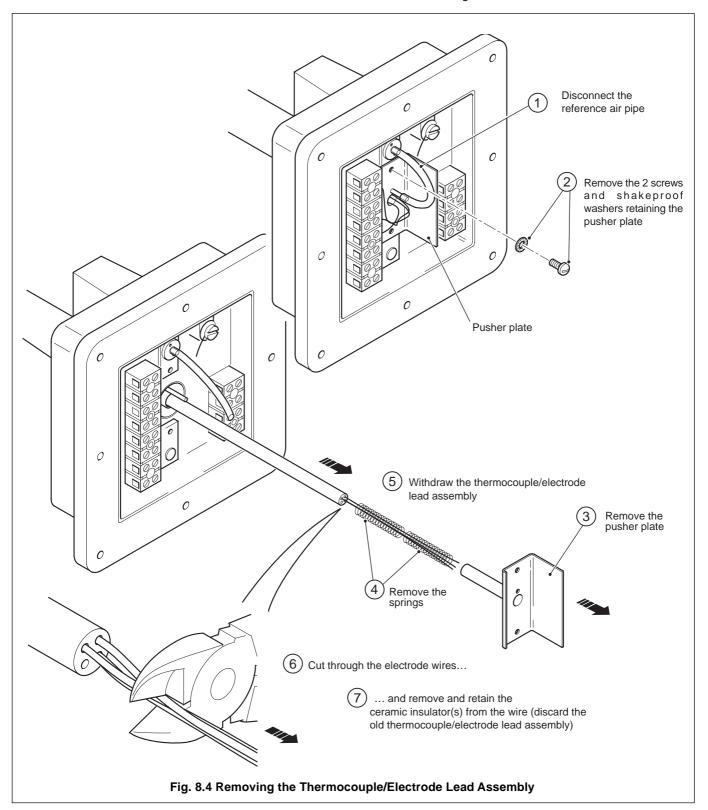
A zirconia cell assembly is required when replacing the zirconia cell – see Section 9.4.2.


8.2.1 Removing the Zirconia Cell - Fig. 8.2

- a) Remove the ceramic filter as described in Section 8.1.1.
- b) Remove the zirconia cell as described in Fig. 8.2.

8.2.2 Fitting the Zirconia Cell - Fig. 8.3

- a) Carry out the procedures described in Fig. 8.3.
- b) Refit the ceramic filter as described in Section 8.1.2.


...8 DISMANTLING AND RE-ASSEMBLY

8.3 Replacing the Thermocouple/Electrode Lead Assembly

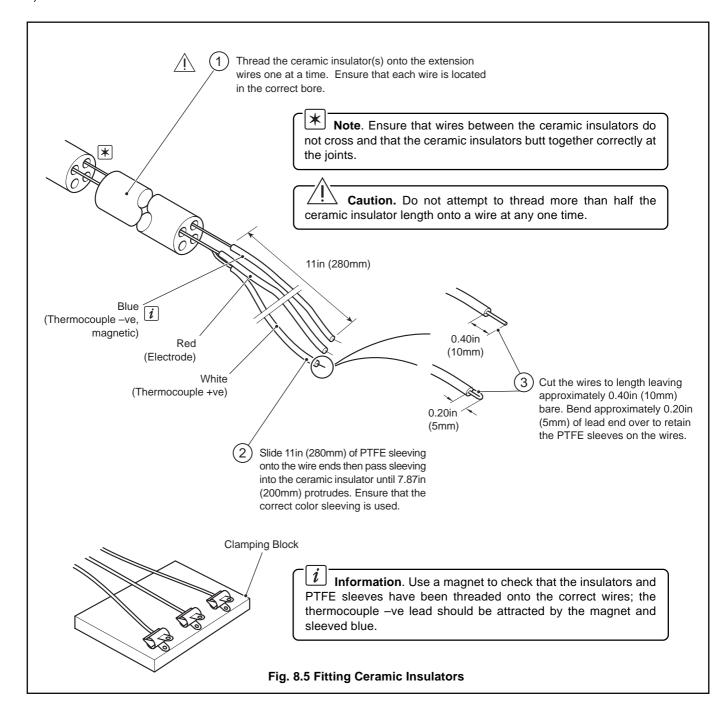
An electrode/thermocouple assembly is required when replacing the electrode/thermocouple lead assembly – see Section 9.4.1

8.3.1 Removing the Thermocouple/Electrode Lead Assembly – Fig. 8.4

- a) Remove the ceramic filter as described in Section 8.1.1.
- b) Remove the zirconia cell as described in Section 8.2.1.
- c) Remove the thermocouple/electrode lead assembly as described in Fig. 8.4.

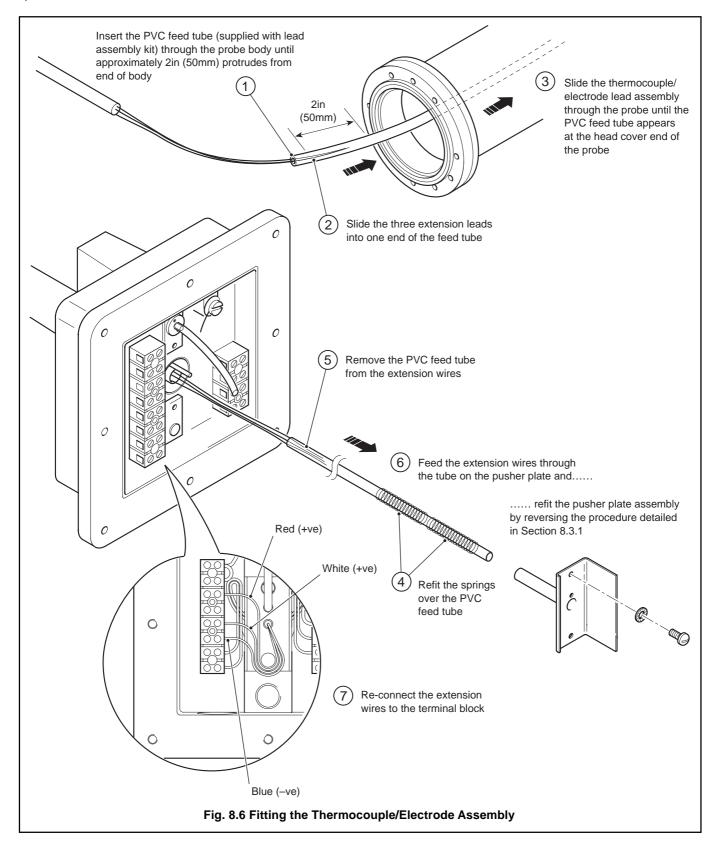
8 DISMANTLING AND RE-ASSEMBLY...

8.3.2 Fitting Ceramic Insulators - Fig. 8.5


a) Lay the new thermocouple/electrode lead assembly at the end of a long work surface and carefully uncoil the extension wires, one at a time.

Note. To retain the uncoiled lead ends during fitting, use a clamping block constructed from a wooden board and three bulldog clips – see Fig. 8.5.

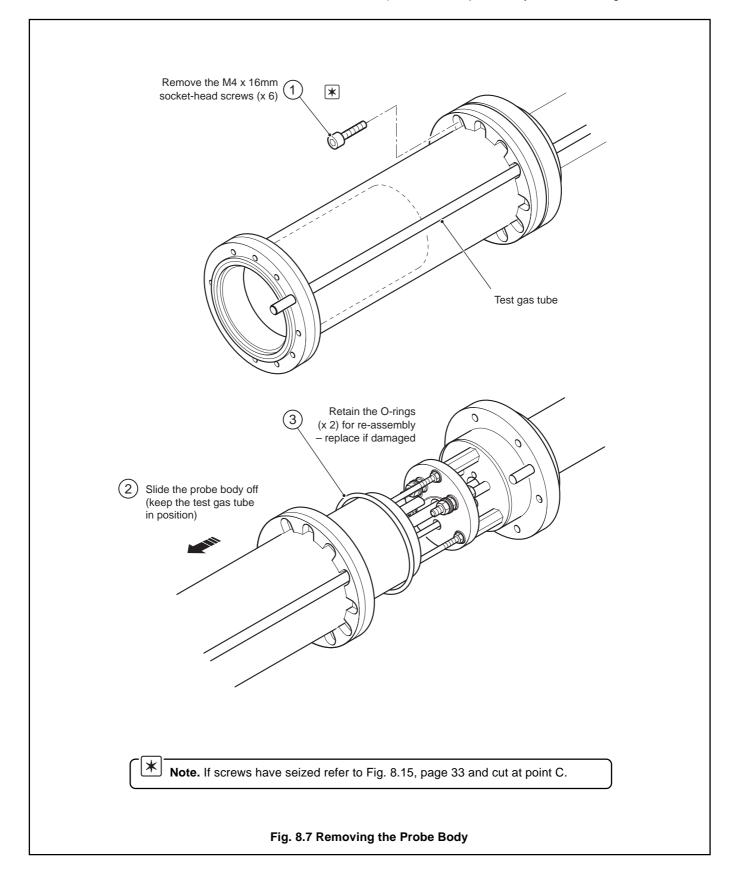
Caution. Do not to kink the wires during fitting to avoid damage to the finished assembly.


- b) Refit the ceramic insulators as described in Fig. 8.5.
- c) Refit the zirconia cell as described in Section 8.2.2.
- d) Refit the ceramic filter as described in Section 8.1.2.

...8 DISMANTLING AND RE-ASSEMBLY

8.3.3 Fitting the Thermocouple/Electrode Lead Assembly - Fig. 8.6

- a) Refit the thermocouple/electrode lead assembly as described in Fig. 8.6.
- b) Refit the zirconia cell as described in Section 8.2.2.
- c) Refit the ceramic filter as described in Section 8.1.2.

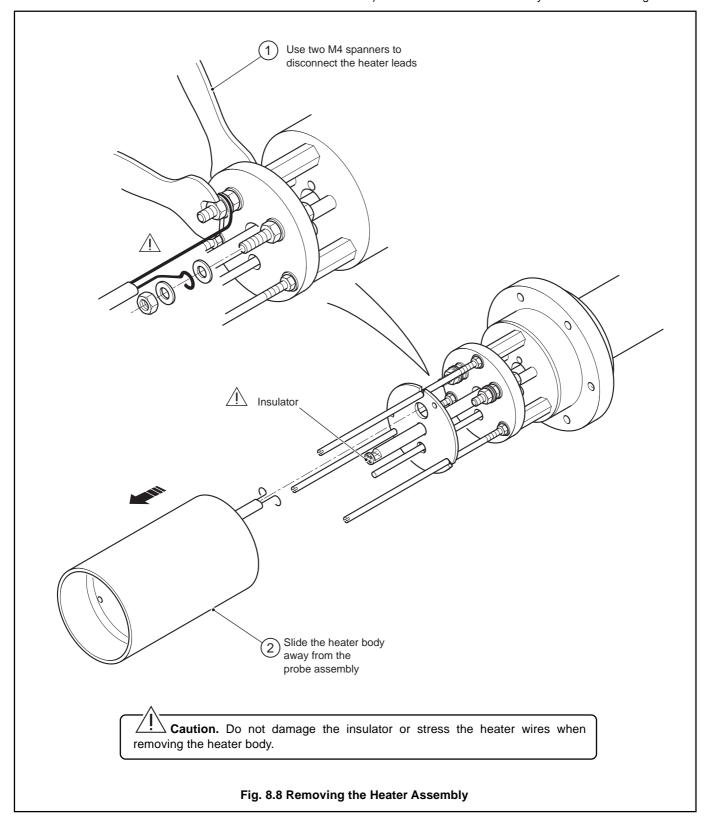


8 DISMANTLING AND RE-ASSEMBLY...

8.4 Removing the Probe Body - Fig. 8.7

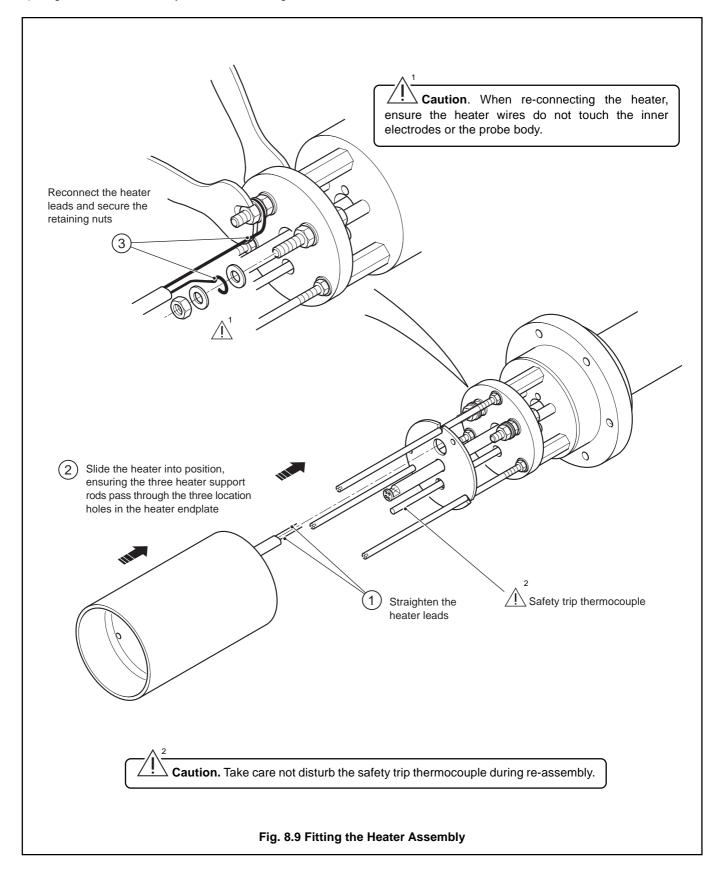
A special fasteners kit is required when refitting the probe body – see Section 9.4.5.

- a) Remove the ceramic filter as described in Section 8.1.1.
- b) Remove the zirconia cell as described in Section 8.2.1.
- c) Remove the probe body described in Fig. 8.7.


...8 DISMANTLING AND RE-ASSEMBLY

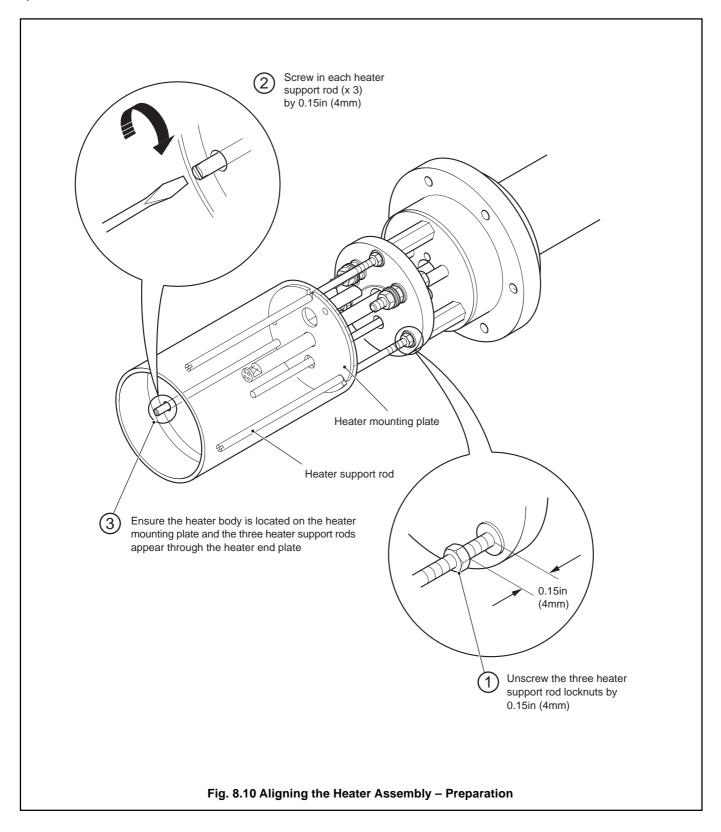
8.5 Replacing the Heater Assembly

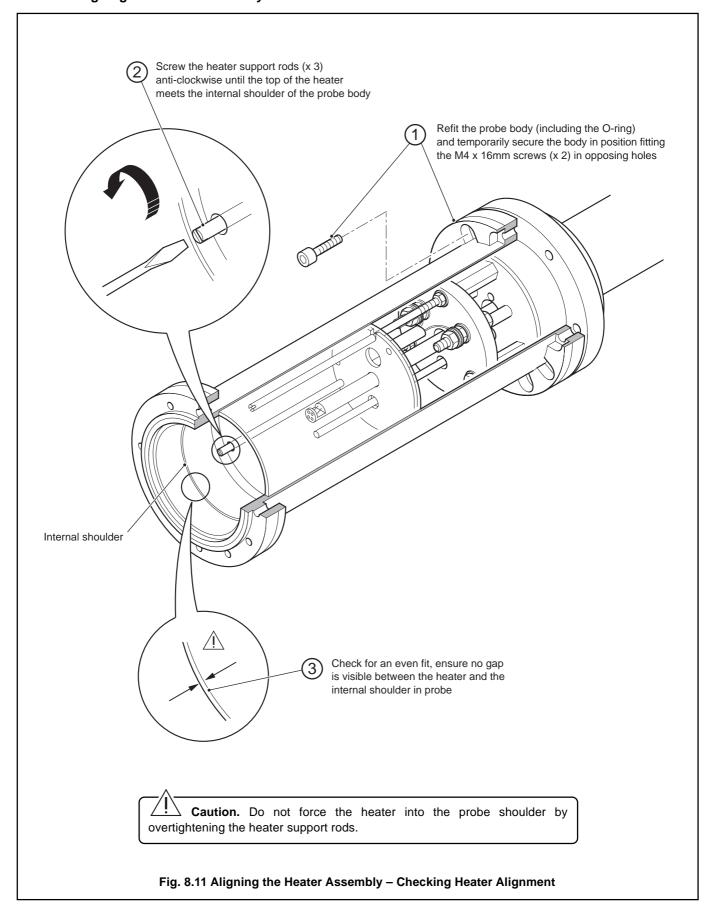
A new heater assembly is required when replacing the heater assembly – see Section 9.4.4.


8.5.1 Removing the Heater Assembly – Fig. 8.8

- a) Remove the ceramic filter as described in Section 8.1.1
- b) Remove the zirconia cell as described in Section 8.2.1.
- c) Remove the probe body described in Section 8.4.
- d) Remove the heater assembly as described in Fig. 8.8.

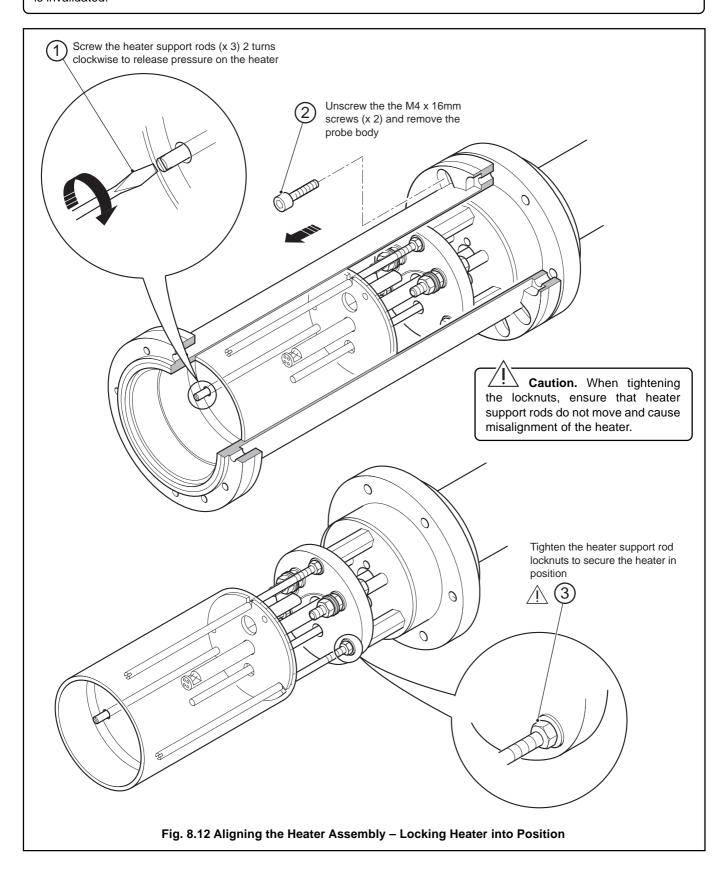
8.5.2 Fitting the Heater Assembly – Fig. 8.9


- a) Refit the heater assembly as described in Fig. 8.9
- b) Align the heater assembly as described in Fig. 8.10.


...8 DISMANTLING AND RE-ASSEMBLY

8.5.3 Aligning the Heater Assembly - Figs. 8.10, 8.11 and 8.12

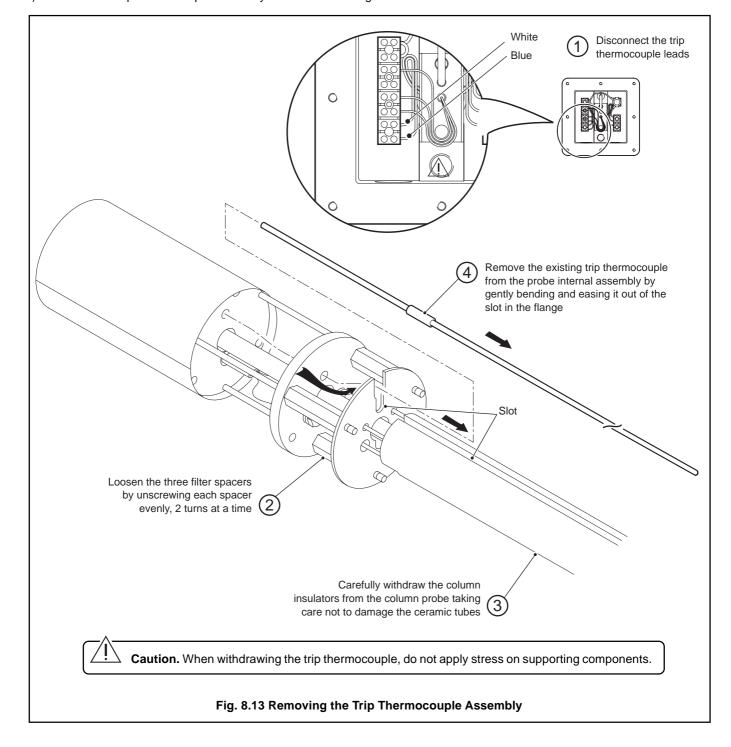
- a) Align the heater assembly as described Figs. 8.10, 8.11 and 8.12.
- b) Refit the probe body by reversing the steps described in Fig. 8.7.
- c) Refit the zirconia cell as described in Section 8.2.2.
- d) Refit the ceramic filter as described in Section 8.1.2.


...8.5.3 Aligning the Heater Assembly

...8 DISMANTLING AND RE-ASSEMBLY

...8.5.3 Aligning the Heater Assembly

Caution. After refitting the heater, check the trip thermocouple voltage (see Section 7.2), or the probe's certification is invalidated.

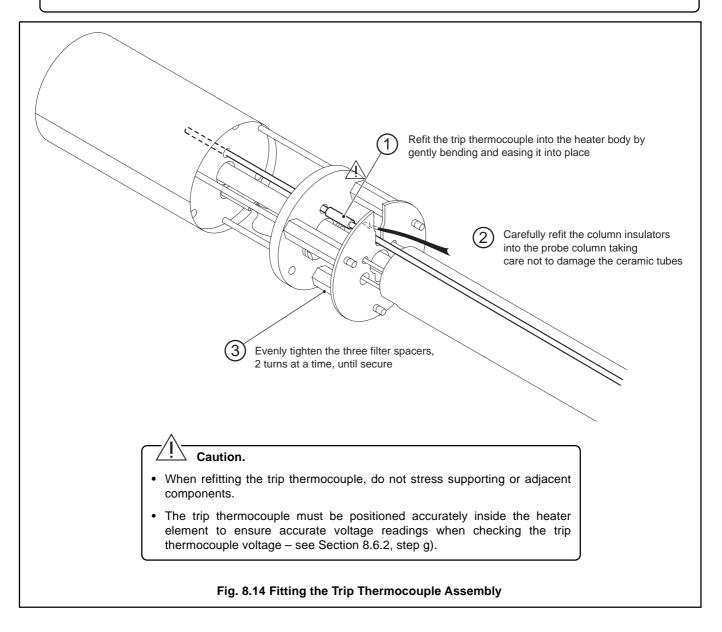


8.6 Replacing the Trip Thermocouple Assembly

A replacement trip thermocouple assembly is required for this procedure – see Section 9, Fig. 9.1b, item 35.

8.6.1 Removing the Trip Thermocouple Assembly - Fig. 8.13

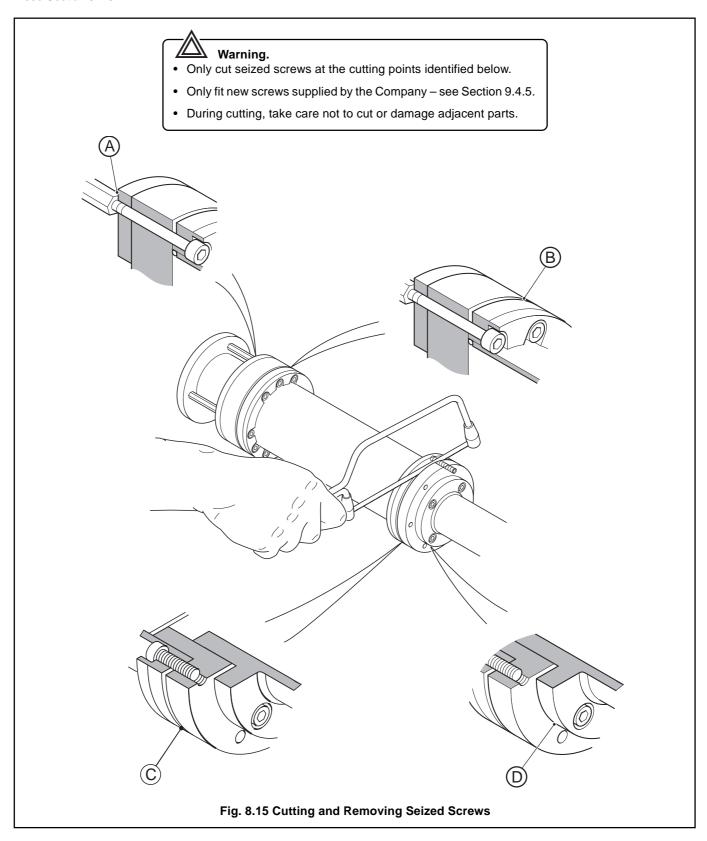
- a) Remove the ceramic filter as described in Section 8.1.1.
- b) Remove the zirconia cell as described in Section 8.2.1.
- c) Remove the probe body described in Section. 8.4.
- d) Disconnect the thermocouple/electrode lead assembly as described in Section 8.3.1.
- e) Disconnect the trip thermocouple leads in the terminal head see Section 4.
- f) Remove the trip thermocouple assembly as described in Fig. 8.13.



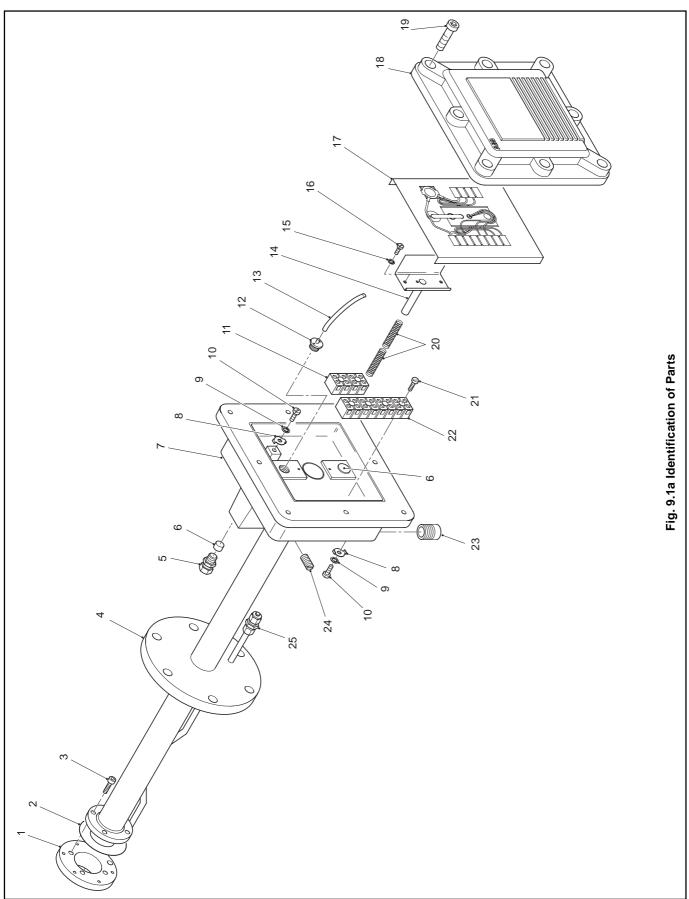
...8 DISMANTLING AND RE-ASSEMBLY

8.6.2 Fitting the Trip Thermocouple Assembly - Fig. 8.14

- a) Re-assemble the trip thermocouple assembly as described Fig. 8.14.
- b) Re-connect the trip thermocouple leads in the terminal head see Section 4.
- c) Refit the thermocouple/electrode lead assembly as described in Sections 8.3.2 and 8.3.3.
- d) Refit the probe body by reversing the steps described in Section 8.4.
- e) Refit the zirconia cell as described in Section 8.2.2.
- f) Refit the ceramic filter as described in Section 8.1.2.
- g) When the probe is fully assembled:
 - i) Switch on the EXFG Interface Electronics Unit.
 - ii) When heater operating temperature is reached (after approximately 15 minutes) leave for a further 1 hour to stabilize.
 - iii) Check the trip thermocouple voltage as described in Section 7.2.

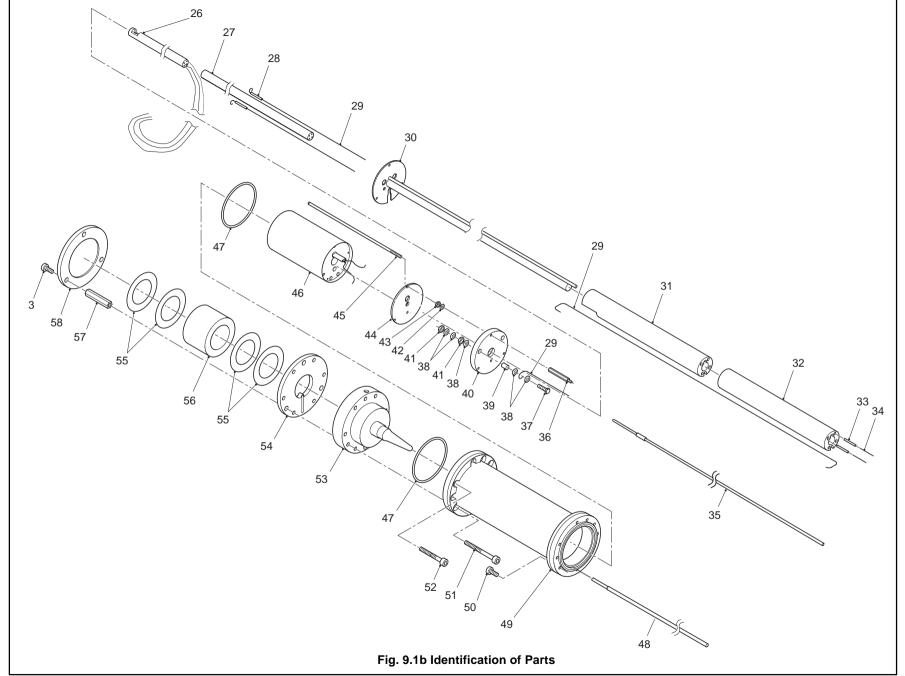

Caution. The trip thermocouple voltage must be within the limits stated in Section 7.2, or the probe's certification is invalidated.

8.7 Removing Seized Screws - Fig. 8.15


During prolonged service in a high temperature screws may become seized. Seized screws must be cut (using a suitable hacksaw) and removed to allow sub-assemblies to be dismantled or removed.

Authorized replacement screws (for all external fastenings) can be obtained by ordering a special fasteners spares kit – see Section 9.4.5.

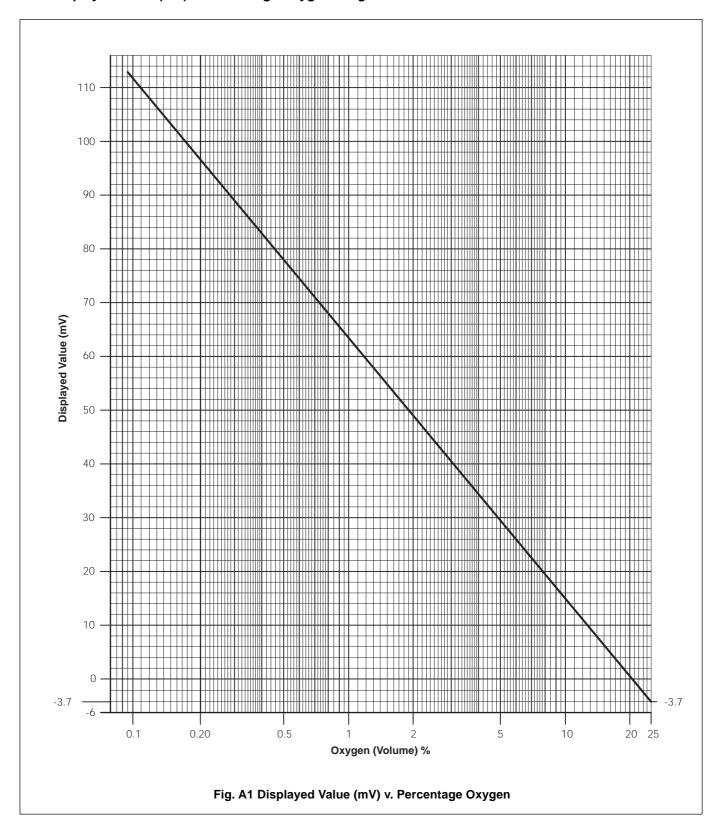
9 REPLACEMENT PARTS...


9.1 Illustrated Parts List - Fig. 9.1a and 9.1b

em	Description	Part No. Qty.	Item	Description	Part No. Qty.	
←	EEx d column flange	EXFG/0131I 1	15	M4 locking washerJ/02	J/0225/6702	
7	Column gasket	EXFG/01012	16	M4 x 10mm plain screw J/0227/586	27/5862	
က	M4 x 10mm socket-head screw B9760	B97607	17	Connection cover EXF	EXFG/01381	
4	Column assembly		18	Probe head lid EXFG/0111I	·G/011111	
	be body	EXEC.00701	19	M6 x 20mm socket-head screw B11115	1158	
		: EXTG/00/01 1	20	Spring B11186	1862	
	3 281ft (1 0m) Probe body		21	M3 x 16 screw B6417	174	
		EXFG/00711	22	Terminal block (8-way) B6184	841	
	ANSI	EXFG/0077I 1	23	M20 x 1.5 conduit plug (EEx d) B11116	1161	
	6.56ft (2.0m) Probe body			(single conduit option only)		
	Standard	EXFG/0072I 1	24	M6 x 10mm grub screw B111	B111142	
	ANSI	EXFG/0078I1	25	Coupling (test gas) 002320044	3200441	
2	Union-adaptor (test gas) B11119	B111192			4	
9	Felt filter	B111172		Dialiking bing	1 07600	
7	Probe head base	EXFG/0113I1		* Items not illustrated		
∞	Earthing washer	EXFG/0154 2				
6	M6 locking washer	B103892				
10	M6 x 12 socket-head screw	B11130				
	Body earth lead*	EXFG/00591				
7	Terminal block (4-way)	B92541				
12	Air inlet adaptor	EXFG/0119 1				
13	Air inlet tube	2336Bx201006 As rqd.				
4	Pusher plate assembly EXFG/00741	EXFG/00741				

REPLACEMENT PARTS

...9.1 Illustrated Parts List – Figs. 9.1a and 9.1b


Part No Qty.	er B7298 10	te spacer ZFG2/0129 2	al plate 1	B8690 4	er B111383	B70673	Heater mounting plate ZFG2/0158 1	rods EXFG/0118 3	assembly EXFG/0096 1		Test gas tube 1	EEx d probe body assembly EXFG/00901 1	M4 x 16mm socket-head screw B72956	M4 x 40mm socket-head screw B10709 3	M4 x 30mm socket-head screw B10714 6	Spares cell assembly EXFG/0088 1	EEx d test gas plate2		; filter kit EXFG/0087 1	EXFG/0135 3	EXFG/0134 1	
Description	M4 plain washer	Connection plate spacer	Ceramic terminal plate	M4 full nut	M3 plain washer	M3 full nut	Heater mountin	Heater support rods	Spares heater assembly	O-ring	Test gas tube	EEx d probe bo	M4 x 16mm so	M4 x 40mm so	M4 x 30mm so	Spares cell ass	EEx d test gas	Filter gasket	Spares ceramic filter kit	Filter spacer	Filter end plate	
Item	38	39	40	4	42	43	44	45	46	47	48	49	20	51	52	53	54	55	26	22	28	
Part No. Qty.	see Section 9.5	127)	DAA/242	RMV3133	RMV3137	EXFG/0162 2	001351006 As rqd.		EXFG/0080I 1 EXFG/0081I 1	EXFG/0082I1	EXFG/01071	7 / / / / / / / / / / / / / / / / / / /	၁ ဖ	EXFG/0106 9	EXFG/01141	B4204 As rqd.	B2404As rqd.		EXFG/0170 1	EXFG/01/1 1 EXFG/0172 1	EXFG/0122 3	7,020,0
Description	Electrode/thermocouple assembly see Section 9.5	(full replacement kit, excluding. item 27)	Ceramic tube		6.56ft (2.0m) Probe body RMV313	Heater lead insulator sleeve EXFG/0162	Heater/ceramic insulator wire 001351006 As rqd	Centre tube assembly	1.64ft (0.5m) Probe body EXFG/00801 3.28ft (1.0m) Probe body EXFG/00811	6.56ft (2.0m) Probe body EXFG/0082I	Column insulator machined EXFG/010	Column insulator	3.28ft (1.0m) Probe body	6.56ft (2.0m) Probe body	1.64ft (0.5m) Probe body only Short column insulator*	i	Heater connection wire B2404	Trip thermocouple	1.64ft (0.5m) Probe body EXFG/0170	3.28ft (1.0m) Probe body 6.56ft (2.0m) Probe body	Heater mounting spacers	70707 C C C C C C C C C C C C C C C C C
Item	26		27			28	29	30			31	32				33	34	35			36	37

9 REPLACEMENT PARTS

9.4.2 Zirconia Cell Zirconia cell assembly EXFG/0088															
								9.4.3 Ceramic Filter							
Ceramic filter kit EXFG/0087 Comprising:															
Ceramic filter EXFG/0136 Filter gaskets (x 7) 003000094															
9.4.4 Heater															
Heater assembly EXFG/0096 9.4.5 Fasteners															
Special fasteners spares kit EXFG/0083															
Comprising: M4 x 10mm socket-head screw (x 7)															
M4 x 30mm socket-head screw (x 6)															
								Thread sealant (vent connections)							
								9.6 Accessory Kits Accessory kit – see Fig. 2.2 EXFG/0067							

APPENDIX

A1 Displayed Value (mV) v. Percentage Oxygen – Fig. A1

NOTES

CUSTOMER SUPPORT

Service, Support and Maintenance

ABB Process Analytics' commitment to quality doesn't end when we deliver our equipment.

We also provide, at the client's request: start-up services, maintenance services, training services, reconditioning, repair and replacement parts services.

Training services are available for virtually every aspect of operating and maintaining ABB Process Analytics analyzers and systems. Training may be arranged on-site or at any of our training centres.

Maintenance services are available on an unscheduled, as needed basis, or by way of long-term, scheduled maintenance agreements.

Facilities

ABB Process Analytics' primary manufacturing and administrative facility is located in Lewisburg, West Virginia. We also operate sales and service centres in Houston, Texas; Baton Rouge, Louisiana; Sarnia, Ontario; UK; France; Italy; The Netherlands and Singapore. Training centres are located in Lewisburg, Houston and Europe.

For complete information and assistance with ABB Process Analytics analyzers, systems and services, contact any of our facilities for details of your nearest Service and Repair Centre.

United States

ABB Process Analytics 843 N. Jefferson Street Lewisburg, WV 24901 USA

Office: (304)647-4358 FAX: (304)645-4236

Canada

ABB Process Analytics 1362 Lambton Mall Road Unit#18 Sarnia, Ontario N7S 5R6 CANADA

Office: (519)541-0011 FAX: (519)541-0012

United Kingdom

ABB Process Analytics Ltd Howard Road Eaton Socon, St. Neots Cambs. UK PE19 3EU Office: 44-1480-404440 FAX: 44-1480-405775

Middle East

ABB ARESCON PO Box 2774 Manama, Bahrain Office: 973-725377 FAX: 973-725332

Benelux

ABB Process Analytics BV Pampuslaan 89 1382 JM Weesp Netherlands Office: 31-2944-17291

Office: 31-2944-17291 FAX: 31-2944-13656

France

ABB Instrumentation Process Analytics Div 6/8 Rue Peupliers BP 430-92004 Nanterre Cedex, France

Office: 33-1-4769-7280 FAX: 33-1-4242-3995

Pacific Rim

ABB Industry Pte. Ltd. No. 2 Ayer Rajah Crescent Singapore 0513 Office: 65-776-5711

Office: 65-776-5711 FAX: 65-778-0222

Italy

ABB Kent-Taylor SpA Process Analytics Division Valle Edison, 50 20099 Sesto S. Giovanni - MI

Italy

Office: 39-2-262321 FAX: 39-2-26232902

The Company's policy is one of continuous product improvement and the right is reserved to modify the information contained herein without notice.

© January 1996 ABB Process Analytics Printed in U.K.

ABB Process Analytics

843 N. Jefferson Street Lewisburg, WV 24901 USA

Office: (304)647-4358 FAX: (304)645-4236