
ABB Motion control products 1
new.abb.com/motion

Leverage the power and flexibility of EtherCAT to connect
one or more master encoders to your AC500 motion
system via the auxiliary encoder channels available on the
ABB motion servo drive products

Introduction
AC500 PLCs (PM585 and PM59x) can be used to perform real-time motion control of ABBs EtherCAT enabled servo drives. In
some applications it is necessary to synchronize the motion of these drives to a master encoder (e.g. cut to length applications
using a lay-on encoder to track the movement of the material to be cut to length).

This application note details how to use Automation Builder to define the hardware setup suitable for use of any available
encoder channel on a connected MicroFlex e190 or MotiFlex e180 servo drive as a master encoder and how to then use the
encoder value provided by the drive to create a (virtual/simulated) master axis in a PLCopen motion application. This offers
some performance benefits over the use of a CD522 2 channel encoder module…

· Encoder input frequency extended up to 8MHz (quadrature), depending on encoder channel used, compared to
300kHz for the CD522

· Encoder position update synchronized with EtherCAT cycle (leading to smoother motion from geared axes)
· Ability to filter touchprobe (latch) data via drive parameters (leading to faster and simpler PLC application code

development)

This document also details how the touchprobe function block included with the PS552-MC-E motion libraries can be used in
combination with the e190 and e180 drives to latch a connected master encoder position. A sample Automation Builder project
is included to illustrate all of the topics covered by this application note.

Pre-requisites
You will need to have the following to work through this application note and perform synchronized motion on an EtherCAT
drive:

· Mint Workbench build 5860 or later (see new.abb.com/motion for latest downloads and support information)
· A MicroFlex e190 or MotiFlex e180 drive with build 5868 or later firmware
· A PC or laptop running Automation Builder 2.1.1 or later
· An installed (and licensed) copy of the ABB PLCopen motion control library (PS552-MC-E v3.2.0 or later)
· One of the following AC500 PLC processors…..PM585, PM590, PM591, PM592 or PM595 (PLC processors should be

running firmware version 2.5.1 or later). The PM595 is provided with an integrated EtherCAT coupler (this should be
running firmware version 4.2.32.2 or later). All other processors require a CM579-ECAT communication module (which
must be running firmware version 2.6.9 or later, but ideally version 4.3.0.2 or later). Contact your local ABB PLC
support team for details on how to check these requirements and update if necessary or visit
http://new.abb.com/plc/programmable-logic-controllers-plcs and select the link for ‘Software’. For the purposes of the
text in this application note we have assumed the use of a PM591 PLC with CM579-ETHCAT coupler

· Straight-through Ethernet cable (patch cable) to connect the EtherCAT coupler to the drive (do not switch between
patch and cross-over cabling as this can affect the order of devices on EtherCAT which is critical)

Motion Control Products

Application note
Using the ABB motion drives for master encoder input

AN00241
Rev C (EN)

http://imagebank.abb.com/ABB.DocumentManagement.SitePages/DocumentViewPage.aspx?ID=197169&ListId=4ef91416-2d21-48b6-8f0d-f74390c80771&Source=http://imagebank.abb.com/Lists/ABB/DocumentManagement/Document/Forms/AdvancedThumbnails.aspx?k%3dCD522
http://www.abb.com/motion
http://new.abb.com/plc/programmable-logic-controllers-plcs

Application note Using the ABB motion drives for master encoder input AN00241

ABB Motion control products 2
new.abb.com/motion

· A copy of application note AN00205 (AC500 and motion drives - EtherCAT Getting Started Guide) and the Automation
Builder PLC project that is included with it

· A copy of application note AN00242 and the export file that is included with it
· A RS422 (5v differential line driver) incremental encoder

To follow the basic steps to create a hardware configuration and write some PLC code that uses the encoder values from the
drive only requires a PC or laptop running Automation Builder 2.1.1 or later, an installed copy of the PS552-MC-E motion control
libraries and the export file included with application note AN00242. It is assumed the reader has a basic working knowledge of
Mint Workbench, Automation Builder, CoDeSys and the AC500 PLC and that if you intend to perform motion the reader has
read and understood the contents of application note AN00205, which is also available for download from new.abb.com/motion,
and has commissioned an EtherCAT based servo drive (MicroFlex e190 or MotiFlex e180 for example) ready for use with the
AC500 PLC.

Connecting the master encoder
MicroFlex e190 drives are provided with 3 encoder channels…

· Channel 0 – the universal encoder input (supporting encoder, encoder with halls, SSI, Biss, Smartabs, Endat 2.1,
Endat 2.2, Sin/Cos and resolver via an external adaptor)

· Channel 1 – an incremental encoder formed by fast inputs 1 and 2 when setting ENCODERMODE(1) to support
encoder type operation on these inputs

· Channel 2 – an incremental encoder achieved via the unused hall sensor inputs on the universal encoder input when
encoder channel 0 is set for any of the digital encoder types (SSI, Biss, Smartabs, Endat 2.2) or for the external
resolver adaptor

MotiFlex e180 drives are also provided with 3 encoder channels…

· Channel 0 – the motor feedback input (X13). Encoder support varies according to the particular feedback module fitted
to the drive

· Channel 1 – an incremental encoder formed by fast inputs 1 and 2 when setting ENCODERMODE(1) to support
encoder type operation on these inputs

· Channel 2 – an incremental encoder input (X11)

Any of these encoder channels can be utilized as a master encoder input providing it is available for connection/use (e.g. not
being used for the motor feedback) and the signal levels from the encoder to be used are compatible with the encoder channel
selected. Please refer to the appropriate drive installation manual or further details if necessary.

For our application note example we will assume a MicroFlex e190 drive is being used to control an ESM series motor fitted with
a Smartabs feedback device and that a RS422 differential line driver encoder is connected to encoder channel 2 via the
Encoder 2 connector at X7 on the drive. The principles are identical for a MotiFlex e180 so we won’t explain using that
separately, the process should be obvious enough.

Automation Builder – Adding the additional encoder mapping
Throughout this application note we will assume that the reader has opened the Automation Builder project supplied as part of
AN00205 and we will just illustrate the additional steps needed to add and configure/use the encoder input on the drive.
Alternatively a ready-made example project is available as part of this application note.

Open the PLC project provided as part of AN00205 from the Automation Builder ‘File>Open Project…’ menu and once opened
select ‘File>Save Project As…’ to give your project a new name (to avoid damaging the original project).

Expand the Devices tree if necessary and in turn expand the Extension_Bus icon and all its sub-elements until you reach the
icon for the MicroFlex e190 drive…

http://www.abb.com/motion

Application note Using the ABB motion drives for master encoder input AN00241

ABB Motion control products 3
new.abb.com/motion

Double-click this icon to display the settings in the right-hand pane. “Enable Expert Settings” needs to be selected on the
General tab (this should already be the case if you have used the project from AN00205 as the starting point or if you have
opened the example included with this application note).

We need to add a new PDO mapping for Encoder channel 2 (to be read from the drive by the PLC) so select the ‘Expert
Process Data’ tab in the right hand pane, click on ‘Inputs’ in the top right window and then right click the blank line underneath
the PDO mapping for ‘AX0_ActualPosition_I32’ in the bottom right hand window…

Now click on ‘Insert…’ and select Object 14#400C sub index 16#03 from the list of available objects (Object 16#400C is
‘Encoder position’ and the subindexes relate to each encoder channel…..subindex 16#01 is channel 0, subindex 16#02 is
channel 1 and subindex 16#03 is channel 2).

Application note Using the ABB motion drives for master encoder input AN00241

ABB Motion control products 4
new.abb.com/motion

Click OK and this object will be added to the list of PDO mappings from the drive to the PLC.

We now need to assign a name to this mapping so click on the ‘EtherCAT I/O Mapping’ tab in the right hand pane and assign a
name to the Encoder Position mapping. We called ours diMasterEncoder as shown below…..

Save the project and launch CoDeSys (accept the confirmation to update the configuration). We can now create our master axis
and use this mapped encoder to set the position of our master axis.

Application note Using the ABB motion drives for master encoder input AN00241

ABB Motion control products 5
new.abb.com/motion

PLC application – Adding the code for the master axis
The first thing we need to do is add a new AXIS_REF to the code for our master axis. Go to the ‘Resources’ tab and open the
Global_Variables window. We can now add a new AXIS_REF definition for our master axis. We named ours ‘axMaster’ as
shown below…

It is logical that the master axis position/profile would require updating before calculating the target position for any geared axes
so we will add the code required for our master axis to the beginning of our EtherCAT_Control program. Open the
EtherCAT_Control program (or whatever your program called by the EtherCAT task is named) and select network 0001 and
right click the grey area to the left. Select ‘Network before’ to insert a new network at the start of the program.

Add a new network 0001 and include a CMC_AXIS_CONTROL_PARAMETER_REAL function block in this network (we named
ours parMaster). This block will set the various control parameters for our master axis (e.g. scaling and modulo). The table
below details the input parameters that must be set – all other input parameters can be left blank…

Input parameter Description Value/assignment Data type
ENABLE Enables processing of the function block True BOOL
V_CHECK_TIME Delay time for velocity monitoring T#0s TIME
CYCLE Cycle time for axis update. This should match

the EtherCAT cycle time we’ve set for the
EtherCAT master in the Automation Builder
Devices tree

2 LREAL

EN_MODULO This parameter should be set TRUE if the axis
is to be treated as a modulo axis (i.e. if there a
wrap on the axis position at a predefined range
or if the axis position will wrap past the 32 bit
position boundary eventually such as with a
continuously rotating unidirectional axis). If the
axis only moves forwards/backwards within the
32 bit position range and there is no
requirement for modulo functionality then set
this parameter FALSE. For this application note
we will set it TRUE to create a master axis that
runs in the forward direction continuously (e.g. if
the master encoder were being used in
conjunction with a unidirectional conveyor)

TRUE BOOL

MODULO_RANGE Used in combination with EN_MODULO. This
parameter sets how many encoder counts there
are in one modulo cycle. If EN_MODULO is set
to FALSE or if there is no requirement to define
a modulo/cycle size for the master axis then it is
suggested to set this value close, but not equal,
to the maximum size (2147483647)…e.g.
2000000000. For an application where the
master axis has a repeating cycle (e.g. a virtual
master axis for a die cutting or printing machine)
set this value to the number of encoder counts
in the master axis cycle (this will depend on the
resolution of the master encoder and the
gearing to this encoder from the mechanics).
For our example we will assume we don’t have
a master cycle so we will set this parameter to
2000000000

2000000000 DINT

INC_PER_R Number of encoder counts in one revolution of
the master encoder (in quadrature). For our
example we will assume a 2500 line encoder
(so 10000 quadrature counts)

10000 DWORD

Application note Using the ABB motion drives for master encoder input AN00241

ABB Motion control products 6
new.abb.com/motion

U_PER_REV_NOMINATOR Together with the DENOMINATOR parameter
below these two values define how many user
units the master axis moves for one rev of the
master encoder. For our example we will
assume that one rev of the master encoder
equates to 100mm of travel of the master axis
so we can use 100 and 1 for these two
parameters to express this

100 DINT

U_PER_REV_DENOMINATOR See above 1 DINT
MAX_RPM Defines the maximum speed (in revolutions per

minute) the master axis will travel. In our
example the maximum master speed is
60m/min (1000mm/sec). As our earlier scaling
was set for 100mm of travel for 1 encoder rev,
this results in a maximum speed of 10 revs per
second (600rpm). We will set 1000rpm to allow
some leeway (which could be required if we
were to perform some phasing type motion on
the master axis for example)

1000 WORD

The screenshot below shows our completed function block…

Now, in the same way we use a Kernel function block for a real axis, we must now add a CMC_MOTION_KERNEL_REAL
function block to the program (i.e. the profiler for the master axis) so add a new network after the control parameter block and
include the Kernel function block (we named ours parMaster).

The table below details the required input parameters to this block…

Input parameter Description Value/assignment Data type
ENABLE Enables processing of the

function block
TRUE BOOL

DRIVE_ACTUALPOSITIO
N

The position of the master axis,
in this case taken from the PDO
mapped encoder wired to the
remote drive

diMasterEncoder DINT

AXIS Which AXIS_REF the Kernel
block relates to

axMaster AXIS_REF

CONTROL_PARAMETER Which
CMC_AXIS_CONTROL_PARA
METER_REAL function block
the Kernel block relates to

parMaster CMC_AXIS_CONTROL_PARAM
ETER_REAL

IO Defines an axis IO structure
(see AN00205 for further
details). In this example enter
the text ‘Master_IO’ and declare
this variable as a type
CMC_AXIS_IO (as was done for
the real axis in AN00205)

ioMaster CMC_AXIS_IO

Application note Using the ABB motion drives for master encoder input AN00241

ABB Motion control products 7
new.abb.com/motion

When using real axes it is necessary to assign at least one of the output parameters of the Kernel function block (i.e.
SPEED_REFERENCE or POSITION_REFERENCE) to the relevant EtherCAT PDO mapped variable associated with the drive.
In this case there is no real hardware associated with the master axis (apart from the encoder connected to the remote drive) so
there is no requirement to assign variables to any of the Kernel output parameters. The only exception could be the ERROR
output (and ERRORID) should the user wish to detect faults occurring with processing of the master axis. For this simple
example we have decided to ignore the ERROR output, but in a real application it is recommended that this is incorporated into
the system’s error handling logic.

The screenshot below shows our finished network…

All of the code needed to create the master axis is now completed and the axMaster AXIS_REF can now be used as the master
axis for all of the available multi-axis PLCopen motion functions available within the PS552-MC-E motion libraries (e.g.
MC_GearIn, MC_GearInPos, MC_CamIn etc…).

Note that in all cases, when using the master axis derived from the remote encoder, it is necessary to use ‘mcActualValue’ as
the ‘MasterValueSource’ when using the multi-axis function blocks.

PLC application – Configuring and using touchprobe to capture master encoder position
MicroFlex e190 and MotiFlex e180 drives are provided with two touchprobe (fast position capture) objects that are associated
with the two fast digital inputs on the drives. Touchprobe 1 is always associated with digital input 1 and touchprobe 2 is always
associated with digital input 2. By default a PLC touchprobe function block will cause the drive to capture axis position, but from
firmware version 5860 onwards it became possible to also configure these drives to make a captured encoder value available
to the PLC over EtherCAT. Please refer to application note AN00221 for further information about the use of the touchprobe
function block and available process data objects.

For this application note we will use digital input 2 (and hence touchprobe 2) on the drive to capture our master encoder value.
We’re only interested in the captured value from a rising edge on input 2 so the screenshots below show the output and intput
PDO mappings we need to add to our drive configuration in Automation Builder…

Outputs:

Inputs:

If you need to use digital input 1 or the negative edge (or both edges) of one of the fast inputs then simply add the necessary
PDO mappings to access this data (again, refer to AN00221 for further information if required).

Application note Using the ABB motion drives for master encoder input AN00241

ABB Motion control products 8
new.abb.com/motion

We now need to give suitable names to our additional PDO mappings via the ‘EtherCAT I/O Mapping’ tab for our drive. The
screenshot below shows how we named our variables…

Make sure you are logged out of the PLC, add the required PDO mappings to the Automation Builder configuration as shown
above and then right click the PLC application icon and select ‘Create configuration data’ to force the CoDeSys global variables
to be updated to include definitions for our new PDO mappings.

Switch to the CoDeSys editor, we can now start to add the touchprobe function block to the PLC code. As is highlighted by
AN00221, it is necessary to place the touchprobe function block in a program unit that is called by the EtherCAT related task. In
our example our program unit named ‘prgEtherCATControl’ can be used. Insert a new network into the PLC program after the
network containing the master axis KERNEL function block and add an ECAT_CiA402_TouchProbe_APP block to this new
network.

We need to configure this function block to continuously look for touchprobe values from touchprobe 2 on the drive using the
rising edge of digital input 2. The screenshot below shows our completed network…

Note how we have used the names we allocated earlier to our touchprobe PDO mappings for the function block input
parameters requiring PDO references. We also added a Boolean variable (xMasterEncLatch) to indicate the presence of a new
latch value (this is only set TRUE for one program cycle so your application code may need to consider setting/latching this
variable if necessary) and a LREAL variable (lMasterLatchValue) to store the actual latch data. Note that the link to the master
axis’ KERNEL ensures that this latch data is presented in scaled user units and not raw encoder counts.

As we mentioned earlier, by default the drive is configured to latch position of an axis. So in order for our touchprobe function
block to present encoder data instead we must now configure our e190 or e180 drive to do this. There are two ways to achieve
this…

1. We can use the drive parameters to configure operation of the drive’s touchprobe/latch channels (e.g. using Mint
Workbench to configure these settings and then store these drive parameters permanently)

2. We can use EtherCAT object writes (i.e. SDO access) from the PLC program to modify the drive’s configuration – with
this method the configuration is usually left as “volatile” (so the drive defaults back to its original configuration
whenever the PLC program stops, resets or if the drive is power cycled) and the PLC application code determines
when the drive configuration needs to be adjusted

Application note Using the ABB motion drives for master encoder input AN00241

ABB Motion control products 9
new.abb.com/motion

In practice a combination of the two methods above is often used. The user may wish to use the drive’s parameters to
permanently configure touchprobe 2 to operate as a latch of encoder channel 2 using a latch inhibit value (filter to allow
subsequent fast inputs to be ignored until the encoder has travelled a specified distance since the previous latch) and may then
use SDO access from the PLC to allow the machine operator to adjust this latch inhibit value at runtime to suit different
operating conditions.

Using Mint Workbench to configure the touchprobe settings
Connect to the MicroFlex e190 or MotiFlex e180 drive using Mint Workbench and from the left hand screen selection bar click
on ‘Parameters’ to view the drive’s parameter table. In the parameter tree scroll down to the Axis/Channel/Bank section and
expand the ‘Latch channel’ section of the tree…

You should find that your parameters for Latch Channel 2 look something like this at this point…

You can see that, by default, this channel is configured to capture Axis position (of Axis 0, as set by LatchSourceChannel) from
a positive/rising edge of digital input 2 (where 2 is set by the LatchTriggerChannel).
When the PLC program runs and the Touchprobe function block is enabled the PLC uses the Touchprobe Function PDO (that
we mapped earlier) to set LatchEnable to 1, to set bit 0 of LatchMode to 1 and to clear bit 3 of LatchMode. Together these
actions result in the LatchChannel being enabled and every rising edge on digital input 2 will result in the drive passing the
‘LatchValue’ for channel 2 back to the PLC’s Touchprobe function block via the TP2Pos PDO we mapped earlier.

We need to latch encoder channel 2 (our master encoder) instead, so click on the current LatchSource setting (Axis position)
and change this to read ‘Encoder value’. Now change the value for LatchSourceChannel from 0 to 2 (to indicate encoder
channel 2).
If you want to use the drive’s inbuilt ability to filter latches click on the existing LatchMode setting and select the ‘Value inhibit’ or
‘Time inhibit’ bit as required (leave the ‘Disable’ bit as this is controlled by the PLC automatically)….

The drive has four latch channels that are assigned to the touchprobe objects as
follows:
LatchChannel 0 = Touchprobe 1 positive edge operation
LatchChannel 1 = Touchprobe 1 negative edge operation
LatchChannel 2 = Touchprobe 2 positive edge operation
LatchChannel 3 = Touchprobe 2 negative edge operation

For our example in the application note we are using a positive edge on digital input
2 (i.e. touchprobe 2) to capture the master encoder value, so click on the
LatchChannel 2 icon in the tree to display the parameters relating to this in the right
hand pane of the parameters window

Application note Using the ABB motion drives for master encoder input AN00241

ABB Motion control products 10
new.abb.com/motion

See LATCHMODE in the Mint Help system for further details about automatic filtering of latch data.

Now enter a value for the LatchInhibitValue. As we are latching encoder this value is in encoder units (scaled by
ENCODERSCALE(2) in this case on the drive). For this example we will assume this encoder channel has an
ENCODERSCALE of 1 (so it is operating in encoder counts) so we might enter a value of 10000 for example to setup a filter
distance of 10000 counts.

After all of these actions your parameters should look something like this…

Now select Tools>Store Drive Parameters from the Workbench top menu to save these settings in the drive’s non-volatile
parameter area.

Using PLC code to configure the touchprobe settings
Instead of (or as well as) setting the drive parameters permanently as described in the previous section it is also possible to
modify drive parameters at runtime using SDO object writes from the PLC. Application note AN00242 fully describes how to use
the PLC to perform SDO object writes (and reads) and includes an export file that, when imported, will provide your PLC
application with ready-made function blocks to access the various objects within the connected servo drives.

If you don’t already have these function blocks available to you ensure you have copied the ‘SDO Access.exp’ file that is
included with application note AN00242 onto your hard drive and then select ‘Project > Import…’ from the CoDeSys menu. As
detailed by AN00242, it is necessary to set the Immediate Apply object (16#3004 subindex 0) to TRUE in order for data written
to the EtherCAT objects to be passed across to the drive parameter table. The screenshot below shows how this might look in a
PLC program written in FBD (note that the inputs xExecute are rising edge triggered so a TRUE on these inputs results in the
SDO being called once only, at initial program start)…

Once the immediate apply is set TRUE the PLC code can then update touchprobe settings as required. For example, the
screenshot below shows how the PLC code may set a value of 10000 for LATCHINHIBITVALUE(2)….

Note that this parameter is controlled by EtherCAT object 16#4012 subindex 03 (LAT_LatchInhibitValue_AI32). If you are
unsure which object to use you can use the Filter option in the Workbench Object Dictionary viewer to search for entries. For
example, in the screenshot below we started typing ‘latchin’ to look for objects containing this text….

Application note Using the ABB motion drives for master encoder input AN00241

ABB Motion control products 11
new.abb.com/motion

As we mentioned earlier, if you’re using the drive for a master encoder you are unlikely to change the settings for
LATCHSOURCE and LATCHSOURCECHANNEL, and the hardware connections will probably determine the
LATCHTRIGGERCHANNEL, so it’s most likely that you will use the Parameter Viewer to configure the “fixed settings” and SDO
access for settings that the operator might want to adjust to suit a particular machine configuration.

Setting a new master encoder value
The mapped encoder value (object 0x400C, subindex 3 in the case of Encoder channel 2) is read only, so it is not possible for
the PLC to write a value to this object. However, it may be desirable to reset the master encoder value at some point during the
application (e.g. if the encoder is being used by the drive itself for triggering various SENTINEL channels that may be
configured).

To allow this to be done an additional encoder related object (0x4069 ENC_ForcePosition_AI32) is included – the subindexes to
this object match the subindexes of the Encoder position object (0x400C). So for example, writing to 0x4069 subindex 3 will
result in 0x400C subindex 3 (i.e. encoder 2) being modified.

Object 0x4069 is not PDO mappable, it can only be accessed via an SDO write. As the object is of data type I32 the
SDO_Write_I32 function block from application note AN00242 can be used to write a new encoder value.

An example showing how to set encoder 2 to zero is shown below…

Note that if you want to retain the relationship between the master encoder value and the master axis position it is necessary to
reset the master axis position (using MC_SetPosition) at the same time the master encoder value is modified.

Contact Us
For more information please contact your
local ABB representative or one of the following:

new.abb.com/motion
new.abb.com/drives
new.abb.com/drivespartners
new.abb.com/PLC

EtherCAT® is a registered trademark and patented technology, licenced by Beckhoff Automation GmbH, Germany

© Copyright 2016 ABB. All rights reserved.
Specifications subject to change without notice.

