
 40 ABB review 3|11

 41Software architectures that last

T
he world in which we live is
based on an incredibly intri-
cate spider’s web of technol-
ogy: Our power grids delicate-

ly balance a huge range of generation
and distribution assets and effortlessly
provide us with guaranteed power at the
flick of a switch; a fantastically complex
chain of technological wonders trans-
ports an oil molecule from a subsea res-
ervoir to the nozzle of the pump at our
local gas station; every item we buy and
consume reaches us through a amaz-
ingly complex series of co-ordinated
 actions, mostly hidden to us. As individu-
als, we directly interact with only the tip
of this technology iceberg.

ABB supplies many of the products
which, unseen, provide this material
structure of our so-
ciety. At the heart
of much of this, by
now often essen-
tial, infrastructure
is software. And
the proportion and
complexity of this
software is now
higher than ever
before – a trend
that shows no signs of abating, quite the
reverse, in fact.

Some ABB products are purely software.
In others the software and hardware
components work together intimately
and in yet others the software is embed-
ded in the product hardware itself. They
are found in almost all applications in the
industrial world: in utilities, in process
 industries (such as pulp and paper, oil
and gas, petrochemical, pharmaceutical,
chemical, etc.) and in all kinds of manu-
facturing plants.

Such a high degree of software content
makes products very adaptable, imbues
them with powerful decision-making ca-
pabilities and fosters a higher degree of
system autonomy. This has, in turn, shift-
ed the operators’ role from one in which
they use their expertise to manually set
control values, to one of supervision,

fine-tuning and fault finding. A modern
industrial system can nowadays control
a process with minimum operator inter-

To obtain a compelling return
on investment, an industrial
software-intensive system
must be fully sustainable over
decades.

AlDo DAGNINo, PIA SToll, RolAND

WEISS – The proportion and complexity
of software in almost all ABB products
is now higher than at any time in the
past – a trend that is accelerating.
Indeed, some products are purely
software. As such industrial software
has become ever more sophisticated,
and critical, its long-term maintainability
and sustainability have become very
important factors for a good return on
investment over its entire lifetime.
Therefore, it is essential that it is
founded on an appropriate and durable
architecture.

Intelligent software architectures create value
and safeguard product investments in the short,
medium and long term

Software
architectures
that last

Title Picture
Sophisticated software lies at the heart of much of
the seen and unseen technology which supports
our daily lives. Under the surface of this cityscape,
for instance, is an entire world of complex and
indispensible software systems. But whether
the system is a building management software
controlling a 100-storey building or a global share
trading package running in one of the companies
housed there, they all have one essential quality in
common: a solid and robust software architecture.

 42 ABB review 3|11

architect must reconcile these and bal-
ance them with technical and economic
constraints.

Sustainability is, therefore, related not
purely to software structures and their in-
teractions but also to their environment in
terms of enterprise aspects such as orga-
nization, business, tactics and scope [1].

To meet all the challenges described
above and thus preserve the integrity
of sophisticated software systems over,
potentially, many decades, one very im-
portant prerequisite must be fulfilled: the
systems must sit on a very solid software
foundation. And this is where the role of
the software architect becomes crucial.

Software architecture
The study of software architecture is, in
large part, a study of software structures
and their interactions. This began in
1968, the year in which the term “Soft-
ware Engineering” was introduced when
Dijkstra presented his work with the
THE-multiprogramming system. Dijkstra
showed a layered software structure that
supported the testability quality of the
system, thereby connecting the software
quality “testability” to software architec-
ture structures [2]. Twenty years later,
Shaw described different architecture
styles [3]. She wrote:
“. . . important decisions are concerned
with the kinds of modules and subsys-
tems to use and the way these modules
and subsystems are organized. This level
of organization, the software architecture
level, requires new kinds of abstractions
that capture essential properties of major
subsystems and the ways they interact”.
Shaw describes common ways to solve
specific problems and concepts to solve

a particular problem. An example of the
latter is the “Blackboard” architectural
model, where a common knowledge
base, the “blackboard”, is iteratively up-
dated by a diverse group of specialists,
starting with a problem specification and
ending with a solution. This was applied,
for example, to solve early software
problems in speech recognition.

vention and autonomously interact with a
multitude of other systems in the plant.

Further functional synergy is created
when software components interact with
each other in a way the hardware parts
could not. In short, all this software con-
tent creates significant additional value
for ABB’s customers.

However, there is one very critical aspect
of such a sophisticated software system:
its maintainability and sustainability. To
obtain a compelling return on investment
for both the customers and the develop-
ment organizations, an industrial soft-
ware-intensive system must be able to
be maintained in a cost-effective way
and stay operational, in a fully-support-
able way, for decades, ie the system
must be fully sustainable.

Over such a long time, this sustainability
will face challenges: new, and perhaps
radically changed, technologies; new
stakeholder requirements; new organiza-
tions and re-organizations; key expertise
emigration; and changing business
goals. In addition, software-intensive
systems often have an inherent legacy
heritage that significantly impacts soft-
ware architecture and design going for-
ward. If the organization in the past ac-
curately predicted today’s stakeholders’
needs and adapted the development
to suit, the incorporation of today’s con-
cerns in the system should be fairly
straightforward. In the same fashion, to-
day’s organization should predict future
stakeholders’ needs and select the most
important concerns to address.

To do this, the architects need to have
an understanding of how the stakehold-
ers’ evolving busi-
ness environment
can influence soft-
ware architectural
requirements. For
example, industrial
software-intensive
systems are often impacted by company
mergers and acquisitions, where two or
more systems have to be consolidated
into one or perhaps share a core part.

Furthermore, stakeholders can include
customers, end users, developers, proj-
ect managers, product managers, main-
tainers and others, each with different
and often conflicting expectations. The

The architects need
to have an under-
standing of how the
stakeholders’
evolving business
environment can
influence software
architectural
requirements.

“We shape our buildings;
thereafter they shape us”.
WINSTON CHURCHILL, TIME, SEPTEMBER 12, 1960

 43Software architectures that last

system is a discipline, too, because a
body of knowledge is used to inform
practitioners as to the most effective way
to design within a set of constraints.
System architecture is primarily con-
cerned with the internal interfaces be-
tween the system’s components or sub-
systems and the interface between the
system and its external environment,
 especially the user.

Architecture patterns of
ABB’s industrial software systems
Christopher Alexander is a building ar-
chitect researcher. In the book “The
Timeless Way of Building”, published
1979, he describes common architec-
tural patterns in space, events and
 human existence, at all levels of granu-
larity. According to Alexander, “each pat-
tern describes a problem which occurs
over and over again in our environment,
and then describes the core of the solu-
tion to that problem, in such a way that
you can use this solution”.

Alexander’s thinking regarding building
patterns has inspired many of the soft-
ware community’s architects. Software
architecture patterns describe the core
of a solution to software problems that
occur over and over again. While Alexan-
der focuses on the usability quality,
namely the user’s experience of the
building, the software architecture pat-
terns address software qualities, such as

On the formal side, the ISO/IEC 42010:2007
standard defines system architecture as:
“The fundamental organization of a system
embodied in its components, their relation-
ships to each other, and to the environment,
and the principles guiding its design and
evolution”.

Software architecture can be visualized
as if the constituent components were
buildings in a city. In the physical world,
a secure building could, for example,
be realized by allowing only one road,
guarded by a watchman requiring a
password, to lead to it. The software
corollary would allow only one access
possibility, from secure, authorized
sources, to a software component. Soft-
ware architecture researchers are con-
stantly seeking innovative ways to design
their “city plans” in order to positively
 influence software usability, security, per-
formance, reliability or energy efficiency.

This “city” analogy has indeed been used
in architecture visualization, where com-
ponents/packages are represented by
districts and classes by buildings whose
sizes are determined by code metrics,
eg code size or cyclomatic complexity
(codecity.inf.usi.ch) ➔ 1.

Architecting a system is a process be-
cause a sequence of steps is prescribed
to produce or change the architecture
within a set of constraints. Architecting a

1 System architecture and code visualization using the city analogy

Software archi-
tecture can be
 visualised as if the
constituent com-
ponents were
buildings in a city.

 44 ABB review 3|11

a tier is a physical structuring mecha-
nism for the system infrastructure [6].

Data-centric architecture
Here, databases play a central role as
such systems typically use a Database
Management System (DBMS) as a major
system engine. These contain a set of
stored procedures that run on the data-
base servers and have table-driven logic.
The database-centric approach primarily
leverages the indexing, transaction pro-
cessing, integrity, recovery and security
capabilities provided by high-end data-
base systems [7].

Software architecture principles
employed at ABB
Software architecture evaluation and
 development at ABB is framed by im-
portant principles which constitute an
 established methodology [8] ➔ 2:

Create the business case for the system

The business case constrains require-
ments and provides a guide for deter-
mining the software qualities.

Identify system objectives and drivers

Guided by the business case, a system’s
objectives and primary drivers have to
be identified, eg in a Quality Attribute
Workshop. These drivers have to be
 taken into account when analyzing the
system requirements and when making
architectural design decisions.

understand the architectural requirements

These have typically two components: the
functional and the non-functional (or quali-
ty) elements. Architectural functional re-
quirements define the basic functionality of

incoming information from I/O compo-
nents. Event-driven architecture may be
applied by the design and implementa-
tion of systems that transmit events
among loosely-coupled software/hard-
ware components and services. An
event-driven system typically consists of
event generators and event consumers.
Event consumers have the responsibility
of instigating a reaction as soon as an
event is presented. Such an architecture
facilitates more responsiveness because
event-driven systems are, by design,
more normalized to unpredictable and
asynchronous environments [5]. Many
ABB systems operate in such a way that
external input is continuously received,
processed and appropriate actions are
taken, eg process control or manufac-
turing.

Multi-tier architecture
Multi-tier architecture, or n-tier architec-
ture, is a client-server architecture in which
the user interface, the system processing

capability and the
data management
are logically sepa-
rate processes. For
example, middle-
ware which servic-
es data requests
between a user
and a database
employs multi-tier
architecture. The

most common is three-tier architecture.
The concepts of layer and tier are often
used interchangeably, though many sub-
scribe to the view that a layer is a logical
structuring mechanism for the elements
that make up the software solution, while

3 Graphical user-interface

Software architecture
evaluation and development
at ABB is framed by important
principles constituting an
established methodology.

2 Software architecture methodology.

Create the
business case
for the system

Software
architecture

Document and
communicate

the architecture

Identity the
system

objectives
and drivers

Make
architectural

decisions

Enforce that
implementation
conforms to the

defined
architecture

Analyze or
evaluate the
architecture

Design and
implement the
system based

on the
architecture

Understand the
architectural
requirements

security, performance, reliability, avail-
ability, maintainability and so on.

ABB’s industrial software systems exhib-
it different types of architecture patterns.
Some commonly observed ones include:
client-server, event-driven, multi-tier and
data-centric. These are briefly explained
below.

Client-server
Client-server computing is a distributed
application architecture that partitions
tasks or workloads between service pro-
viders (servers) and service requesters,
called clients. Often clients and servers
operate over a computer network on
separate hardware components. A serv-
er computer is a high-performance host
that runs one or more server programs
that share its resources with its multiple
clients. A client does not share any of its
resources, but requests a server’s con-
tent or service function. Clients therefore
initiate communication sessions with

servers which await the incoming re-
quests from the clients [4].

Event-driven architecture
An event is defined as a significant
change in a particular system state, eg

 45Software architectures that last

code and the architecture, especially
once the system is in maintenance mode.

use of software architectures
methodology at ABB
The methodology described in ➔ 2 is
used at ABB in different ways. Firstly, to
evaluate if the architecture of a current
product still meets the quality attributes
that the market expects, especially as
customers’ expectations evolve over
time. Secondly, to evaluate new and
emerging technologies that could be
 employed to re-develop or enhance an
existing product. Thirdly, to develop a
new or revised product architecture to
meet the quality attributes and function-
ality expected by the customer. Finally,
the architecture methodology can be
employed to verify and validate a newly-
created product architecture by evaluat-
ing the architectural scenarios generat-
ed. Examples of these four cases are
provided below, based on projects con-
ducted by ABB Corporate Research to-
gether with various ABB Business Units.

Evaluate architecture of existing product

The Architecture Tradeoff Analysis Meth-
od was developed by the Software Engi-
neering Institute (SEI) in Pittsburgh, USA.
ABB employs the method to evaluate
architectures of both new and existing
software products. The strength of the
method lies in the analysis result, which
shows how different quality attributes
trade-off with each other and what busi-
ness case they support. In the case
 described here, the ATAM review’s cus-
tomers had questions related to the
 usage of a code-generating tool for em-
bedded code modules. It was not clear if

the system and the architectural non-func-
tional requirements, or quality attributes,
define the behavioral and quality require-
ments, eg usability or performance.

Make architectural decisions

The desired quality attributes of a system
determine the shape of its architecture.
Specific tactics that address these are
embedded in the system.

Document and communicate the architecture

To be an effective element of the soft-
ware design, the architecture needs to
be clearly documented and efficiently
communicated to all relevant stakehold-
ers, bearing in mind the diversity of their
backgrounds (developers, testers, cus-
tomers, managers, etc.) This documen-
tation should also illuminate the deci-
sion-making process which leads to the
target architecture.

Analyze or evaluate the architecture

The software architecture must be evalu-
ated for the qualities that it supports to
ensure the system satisfies the needs of
the relevant stakeholders. Scenario-
based techniques are effective tools to
evaluate software architectures.

Design and implement the system based on

the architecture

Having a well-documented and clear set
of architecture documents is imperative
for software designers and developers to
remain faithful to the defined architecture.

Ensure implementation conforms to the

defined architecture

The culture of the organization should
support the maintenance of both the

4 Mission critical system

The culture of
the organization
should support the
maintenance of
both the code and
the architecture.

 46 ABB review 3|11

architecture: First, the system should in-
tegrate with a wide range of third-party
applications seamlessly. Second, the
system was to have the capability to col-
lect large amounts of data from the third-
party applications. Third, it was neces-
sary that the system was perceived by its
users as being very fast. These drivers
were used to define the primary quality
attributes for this system as integrability,
scalability, performance and security.
The quality requirements were then uti-
lized to create the scenarios needed
to build and evaluate the architecture
 options for the system and select the
best one. Once the system architecture
was selected, a system prototype was
built and demonstrated to customers.
This served as an excellent way to obtain
their input so the final system could be
developed.

Usability-supporting architecture patterns
The next example of new architecture
development deals with supporting
usabil ity. One user task in a software
system can have multiple quality con-
cerns ➔ 5. Often security and usability
have to be traded off. Security is all
about preventing inappropriate user
 access and usability is all about facilitat-
ing appropriate user access. In the
 Usability-Supporting Architecture Pat-
terns, USAP, the term “responsibility” is
used for the general sub-tasks the soft-
ware system has to support to ensure
the usability quality of the main task. For
each responsibility the USAP provides
architectural implementation instruc-
tions ➔ 6.

guided the evaluation of these technolo-
gies. A subset of the requirements identi-
fied was selected together with the busi-
ness unit and this subset was used to
create a scenario which was, in turn, em-
ployed to evaluate the technologies
through the development of prototypes.
Based on the results obtained in the cre-
ation of the prototypes, two competing
technologies and corresponding archi-
tecture options emerged, one of which
was eventually chosen after a subse-
quent prototype stage.

Develop new architecture

Attribute-driven Design Methodology
A system that integrated a mission-criti-
cal ABB product ➔ 4 with a wide array of
third-party applications used at custom-
ers’ sites, and that extracts data from
these applications for later use, was
 architected using the attribute-driven
 design methodology [9]. Several drivers
guided the development of the system’s

the tool produced code modules that
were optimized for performance, since
the developers of the tool’s generation
engine had focused on the portability of
the code modules.

However, by using the ATAM it was pos-
sible to demonstrate to the customer
that the tool’s generation engine pro-
duced code with an architecture that
could be slightly more performance-effi-
cient, at the cost of being less portable.
The ATAM review of the customer’s busi-
ness case showed that the portability
was no longer prioritized in the same
way as it was at the time of the tool’s de-
velopment. This showed the customer
that they could target optimization of the
software’s performance instead of soft-
ware portability without losing business.

Evaluate emerging software technologies

Yet another project evaluated emerging
software technologies that could be
used to create a new, replacement
Graphical User Interface (GUI) ➔ 3 for an
operations management software sys-
tem. The business goals and benefits
to the customer of replacing the GUI in-
cluded reduction in maintenance costs,
enhancing the system’s scalability and
improving the system’s performance. All
these directly translated into the software
qualities employed to create architecture
and technology options and evaluate
them. An analysis of the system architec-
ture associated with the selected tech-
nologies was conducted. A set of archi-
tectural requirements was elicited in
conjunction with the business unit that

The customer saw
that they could
target optimization
of the software’s
performance
instead of software
portability without
losing business.

The business goals and benefits to the
customer of replacing the GUI included
reduction in maintenance costs, enhancing
the system’s scalability and improving the
system’s performance.

 47Software architectures that last

instructions, the tool enables the
architects to investigate one aspect
of the pattern at a time instead of
forcing them to overlay an entire
visual diagram of a pattern on their
design to identify gaps.

– Using a tool to encourage the
architects to examine all of the
items in the checklist makes the
architect go through all aspects
of the patterns.

In addition, there is nothing in the USAP
delivery tool that is specific to usability
patterns. Any quality attribute where the
requirements can be expressed as a set
of responsibilities, eg security, could
probably be included in the tool. The
same portions of a system could then be
represented from both the security and
the usability responsibilities implementa-
tion points of view.

Verify and validate new architecture

A development team responsible for a
major update of an ABB software system
spent significant effort creating a new
 architecture for this next system version.
As ABB Corporate Research was part
of the architecture creation process, a
neutral entity was asked to conduct an
architecture evaluation. This external
company used the architecture docu-
mentation from the project team and the
results of a Quality Attributes Workshop
to baseline the demands on the system’s
qualities. They then interviewed all rele-
vant stakeholders, including Business
Unit (BU) management, product man-
agement and system architects. After

ABB undertook a USAP study in the
 domain of sustainable industrial software
systems and contributed a description of
an enhanced research method and a
software tool that visualizes the meth-
od’s constructed responsibilities.

The tool, visualizing the responsibilities,
acts as an experience factory [10] hous-
ing reusable architectural knowledge for
a set of system environment interaction
scenarios in the form of a check-list.
Three scenarios were hosted with a
check-list of forty-two architectural re-
sponsibilities describing how the archi-
tecture can be revised to accommodate
the usability requirements. One of the
scenarios was the “Alarm & Event” inter-
action between the system and its
 environment. Two ABB architects who
used the tool for six hours estimated
that this time spent saved them five
weeks’ effort by allowing them to under-
stand the usability requirements early
on [11]. Three aspects of this study are
significant:
– The usability-supporting patterns are

primarily described at the level of
responsibilities. These are indepen-
dent of implementation and lead the
architects to think about how a
particular responsibility relates to their
current system design

– Using textual descriptions for imple-
mentation instructions rather than
diagrams was well received by the
architects at ABB. In the study’s first
group, the architects showed some
reluctance with respect to diagram-
matic instructions. Using textual

6 Screen shot of the uSAP tool5 Multiple quality concerns of one task [1]

Security Responsibility:
The system must permit or

prohibit specific authoring of
a [specification]

Portion(s) of the system that
permit(s) or prohibit(s) authoring

of the [specification]

usability Responsibility:
The system must provide a way

to access the [specification]

Portion(s) of the system that
provide(s) access to the

[specification]

[Specification]

Quality concern:
Security

Quality concern:
Usability

Task: “Modify a
[Specification]”

Two ABB architects
who used the tool
for six hours esti-
mated that this time
spent saved them
five weeks’ effort
by allowing them
to understand the
usability require-
ments early on.

 48 ABB review 3|11

ture brings together at least five key
characteristics:
– Technical sustainability: can skills be

introduced and passed on to others,
and are the required tools accessible?

– Organizational sustainability: is there a
structure that allows one to bring
together the different stakeholders
without, for example, needing to call
on outside expertise on each occa-
sion?

– Financial sustainability: can money or
service exchange be accessed to pay
for the work that needs to be done?

– Environmental sustainability – does
the approach avoid depleting natural
resource bases and contaminating the
environment?

– Social sustainability: does the overall
process and the product fit within,
and satisfy the needs of, society?

Economic sustainability represents one
of the “triple-bottom-lines” [12] of corpo-
rate sustainability ➔ 7. From the econom-
ic sustainability point of view, three of the
characteristics above are important in
software-intensive systems: technical,
organizational and financial sustainability.

Technical sustainability in a software-
inten sive system is achieved by selecting
a technology that not only provides the
required qualities but also provides a
platform for future maintainability and
evolution of long-lived systems. Issues
such as developers’ skills and compati-
bility with other company’s products are
important factors.

Organizational sustainability ensures the
right resources (people and tools) will be
available to ensure development is con-
ducted in the most efficient way.

Financial sustainability ensures the orga-
nization meets its expected revenues
from the developed software. It is impor-

analysis of the material and interviews,
the external reviewers presented their
findings. The key results were:
– The main architectural decisions

around the new architecture were
sound and address the project’s
primary objectives.

– The architecture documentation was
not precise enough in some areas and
needed further refinement to avoid
erroneous design decisions.

– The reasoning behind design deci-
sions was not part of the architecture
documentation. This makes future
evolution more difficult and leaves
room for deviations from the target
architecture.

Overall, the workshop and the subse-
quent external review provided the BU
stakeholders with the necessary confi-
dence in the proposed new architecture
and also pointed to topics that needed
more attention and further elaboration.

Focusing on sustainable software
architectures
It is evident from the preceding discus-
sion of software architecture that the
 discipline has expended much effort to
lay sustainable architectural foundations.
But what particular aspects demand
 attention so that sustainability is maxi-
mized?

In 1849, John Ruskin wrote, “when we
build, let us think that we build forever.”
Ruskin, then, was referring to the archi-
tecture of buildings, but the saying is as
relevant today in the software world.

Within a sustainable architecture there is
a focus on the process as well as the end
product and while the product may “wear
out” over time, the process remains. This
process can then be repeated without
resort to major external inputs. In the
building industry, sustainable architec-

“When we build,
let us think that we
build forever.”
John Ruskin 1849

7 Triple bottom line of corporate sustainability

Economic
sustainability

Environmental
sustainability

Social
sustainability

 49Software architectures that last

– Developing methods for making
design decisions early in the develop-
ment process, eg not relying on
extensive prototyping. In this regard,
ABB has participated in the publicly
funded research project Q-ImPrESS
(www.q-impress.eu) that targeted
predictions of changes to the perfor-
mance, reliability and maintainability
quality attributes.

– Deriving concepts for future automa-
tion systems for increased modularity,
maintainability, scalability and porta-
bility.

Aldo Dagnino

ABB Corporate Research

Raleigh, NC, United States

aldo.dagnino@us.abb.com

Pia Stoll

ABB Corporate Research Center

Västerås, Sweden

pia.stoll@se.abb.com

Roland Weiss

ABB Corporate Research Center

Ladenburg, Germany

roland.weiss@de.abb.com

tant to ensure that the right processes
are implemented and followed to reduce
non-value added costs such as re-work,
cost of poor quality, etc.

Software architectures can also contrib-
ute to the environmental sustainability
axis ➔ 7. This is impacted by the soft-
ware system’s structures and inter-oper-
ations. Software architecture designed
to limit the energy consumption of the
product increases environmental capital.
Social Sustainability can be increased if
the architecture is structured in a way
that simplifies the developers’ daily work
and stimulates and motivates them.

outlook
The importance of systematic software
architecting has been identified within
ABB development organizations. Most
development units have established the
software architect’s role and increasingly
adopt software architecture methodolo-
gies such as attribute-driven design.

At the same time, ABB continues to in-
vestigate ways to improve the architec-
ture discipline in areas with potential for
ABB, by, for example:
– Identifying and cataloging best

practices for developing systems with
sustainability as a high-importance
quality attribute, like ABB’s distributed
control systems.

– Evaluating the benefits and applicabil-
ity of software product line architec-
tures as a basis for software develop-
ment within ABB, as well as fostering
systematic and coarse-grained
software reuse.

Most development
units have estab-
lished the software
architect’s role and
increasingly adopt
software architec-
ture methodologies
such as attribute-
driven design.

References
[1] Stoll, P. (2009). Exploring Sustainable Industrial Software System Development within the Software Architecture Environment.

Malardalen University Press, Vasteras, Sweden.
[2] Dijkkstra, E. (1968). The Structure of the T.H.E.-Multiprogramming System. Communications of the ACM 11, 5:341–46.
[3] M. Shaw. Larger scale systems require higher-level abstractions. Proceedings of the Fifth International Workshop on Software Specification and Design 1989.
[4] Berson, A. (1996). Client/server Architecture, McGraw-Hill, Inc., New York, NY, Second Edition.
[5] Hanson, J. (2005). Event-driven Services in SOA. Javaworld. January 31st.

http://www.javaworld.com/javaworld/jw-01-2005/jw-0131-soa.html (Retrieved 2009/9/16)
[6] Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M. and Tantawi, A. (2005). An Analytical Model for Muliti-tier internet services and its applications.

Proceedings of the 2005 SIGMETRICS.
[7] Manuel, P. D. and AlGhamdi, J. (2003). A data-centric Design for n-tier Architecture. Information Sciences, vol. 150, issues 3–, April, pp. 195–06.
[8] Bass, L., Clements, P., Kazman, R. (2003). Software Architecture in Practice. Second Edition. Addison-Wesley. Pearson Education Inc. Boston, MA.
[9] Shaw, M. and Garlan, D. (1996). Software Architecture: Perspectives on an Emerging Discipline. Prentice Hall.
[10] Basili, V. R., Caldeira, G. and Rombach, H. D. (1994). Encyclopedia of Software Engineering, chapter: The Experience Factory. Wiley.
[11] Stoll, P., Bass, L., John, B. E. and Golden, E. (2009). Supporting Usability in Product Line Architectures. Proceedings of the 13th International Software Product

Line Conference (SPLC). San Francisco, USA. August 2009.
[12] Dyllick, T. and Hockerts, K. (2002). Beyond the business case for corporate sustainability. Business Strategy and the Environment, 11:130–41, 2002.

