Surge arrester
POLIM-C .. ND

Product description:
• Metal-oxide (MO) surge arrester without spark gap, designed and type tested according to EN 50526-1 and IEC 60099-4, with own ABB metal-oxide resistors since more than 30 years
• Direct molded silicone housing in patented loop design for best environmental robustness
• 100 % in house production – fully in charge of complete process
• High quality, safe and reliable, maintenance free
• For DC systems
• For indoor and outdoor installations

Especially recommended for overvoltage protection of:
• Devices in DC installation
• Power electronics
• Converter

Additional certification:
• Fire and smoke behavior tested and classified according to EN 45545-2

Technical data

<table>
<thead>
<tr>
<th>Classification according to EN 50526-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal discharge current I_n (8/20 µs)</td>
</tr>
<tr>
<td>Class</td>
</tr>
<tr>
<td>High current impulse I_{hc} (4/10 µs)</td>
</tr>
<tr>
<td>Switching current impulse I_{sw} (30/60 µs)</td>
</tr>
<tr>
<td>Charge transfer capability Q_t</td>
</tr>
<tr>
<td>Energy withstand capability W</td>
</tr>
</tbody>
</table>

The thermal stability of the MO surge arrester is proved in the operating duty test according to class DC-A with two impulses of the charge transfer capability Q_t (total 2 As).

<table>
<thead>
<tr>
<th>Classification according to IEC 60099-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line discharge class (LD)</td>
</tr>
<tr>
<td>Short circuit rating I_s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mechanical loads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque</td>
</tr>
<tr>
<td>Tensile strength axial</td>
</tr>
<tr>
<td>Short term load SSL perpendicular to axis</td>
</tr>
<tr>
<td>Long term load SLL perpendicular to axis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Service conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient air temperature T_{amb}</td>
</tr>
<tr>
<td>Altitude</td>
</tr>
</tbody>
</table>
Electrical data and Housing

Electrical data

<table>
<thead>
<tr>
<th>Continuous operating voltage</th>
<th>Residual voltage U_{res} at specified impulse current</th>
<th>Steep current impulse wave 1/…µs</th>
<th>Lightning current impulse wave 8/20 µs</th>
<th>Switching current impulse wave 30/60 µs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kV_{peak}</td>
<td>kV_{peak}</td>
<td>kV_{peak}</td>
<td>kV_{peak}</td>
</tr>
<tr>
<td>U_c (= U_r)</td>
<td>5 kA</td>
<td>10 kA</td>
<td>1 kA</td>
<td>2 kA</td>
</tr>
<tr>
<td>0.56</td>
<td>1.65</td>
<td>1.76</td>
<td>1.36</td>
<td>1.44</td>
</tr>
<tr>
<td>0.84</td>
<td>2.48</td>
<td>2.64</td>
<td>2.04</td>
<td>2.16</td>
</tr>
<tr>
<td>1.00</td>
<td>3.2</td>
<td>3.5</td>
<td>2.7</td>
<td>2.8</td>
</tr>
<tr>
<td>1.50</td>
<td>4.7</td>
<td>5.0</td>
<td>3.9</td>
<td>4.1</td>
</tr>
<tr>
<td>1.80</td>
<td>5.7</td>
<td>6.1</td>
<td>4.7</td>
<td>5.0</td>
</tr>
<tr>
<td>2.00</td>
<td>6.4</td>
<td>6.9</td>
<td>5.3</td>
<td>5.6</td>
</tr>
<tr>
<td>2.50</td>
<td>7.9</td>
<td>8.4</td>
<td>6.5</td>
<td>6.9</td>
</tr>
<tr>
<td>2.90</td>
<td>8.9</td>
<td>9.5</td>
<td>7.4</td>
<td>7.8</td>
</tr>
<tr>
<td>3.20</td>
<td>9.8</td>
<td>10.5</td>
<td>8.1</td>
<td>8.6</td>
</tr>
<tr>
<td>3.50</td>
<td>10.7</td>
<td>11.4</td>
<td>8.8</td>
<td>9.3</td>
</tr>
<tr>
<td>4.20</td>
<td>12.8</td>
<td>13.7</td>
<td>10.6</td>
<td>11.2</td>
</tr>
<tr>
<td>4.70</td>
<td>14.3</td>
<td>15.2</td>
<td>11.8</td>
<td>12.5</td>
</tr>
</tbody>
</table>

* The rated voltage U_r of the arrester coincides with the continuous operating voltage U_c.

Housing

<table>
<thead>
<tr>
<th>Continuous operating voltage U_c</th>
<th>Creepage distance</th>
<th>Flashover distance</th>
<th>Height</th>
<th>Weight</th>
<th>Insulation withstand voltage of empty housing 1.2/50 µs</th>
<th>1 min wet required values acc. to EN/IEC</th>
<th>guaranteed required values acc. to EN/IEC</th>
<th>Insulation withstand voltage of empty housing U_c 1.2/50 µs</th>
<th>1 min wet required values acc. to EN/IEC</th>
<th>guaranteed required values acc. to EN/IEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>kV_{DC}</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>kg</td>
<td>kV_{peak}</td>
<td>kV_{peak}</td>
<td>kV_{DC}</td>
<td>kV_{DC}</td>
<td>kV_{peak}</td>
<td>kV_{peak}</td>
</tr>
<tr>
<td>0.56</td>
<td>138</td>
<td>107</td>
<td>87.5</td>
<td>≤0.8</td>
<td>2.4</td>
<td>20</td>
<td>1.6</td>
<td>15</td>
<td>2.4</td>
<td>20</td>
</tr>
<tr>
<td>0.84</td>
<td>138</td>
<td>107</td>
<td>87.5</td>
<td>≤0.8</td>
<td>3.6</td>
<td>20</td>
<td>2.4</td>
<td>15</td>
<td>3.6</td>
<td>20</td>
</tr>
<tr>
<td>1.00</td>
<td>138</td>
<td>107</td>
<td>87.5</td>
<td>≤0.8</td>
<td>4.7</td>
<td>20</td>
<td>3.1</td>
<td>15</td>
<td>4.7</td>
<td>20</td>
</tr>
<tr>
<td>1.50</td>
<td>138</td>
<td>107</td>
<td>87.5</td>
<td>≤0.8</td>
<td>6.8</td>
<td>20</td>
<td>4.5</td>
<td>15</td>
<td>6.8</td>
<td>20</td>
</tr>
<tr>
<td>1.80</td>
<td>138</td>
<td>107</td>
<td>87.5</td>
<td>≤0.8</td>
<td>8.2</td>
<td>20</td>
<td>5.5</td>
<td>15</td>
<td>8.2</td>
<td>20</td>
</tr>
<tr>
<td>2.00</td>
<td>138</td>
<td>107</td>
<td>87.5</td>
<td>≤0.8</td>
<td>9.3</td>
<td>20</td>
<td>6.2</td>
<td>15</td>
<td>9.3</td>
<td>20</td>
</tr>
<tr>
<td>2.50</td>
<td>199</td>
<td>134</td>
<td>115</td>
<td>≤1.1</td>
<td>11.4</td>
<td>30</td>
<td>7.6</td>
<td>20</td>
<td>11.4</td>
<td>30</td>
</tr>
<tr>
<td>2.90</td>
<td>199</td>
<td>134</td>
<td>115</td>
<td>≤1.1</td>
<td>12.9</td>
<td>30</td>
<td>8.6</td>
<td>20</td>
<td>12.9</td>
<td>30</td>
</tr>
<tr>
<td>3.20</td>
<td>199</td>
<td>134</td>
<td>115</td>
<td>≤1.1</td>
<td>14.2</td>
<td>30</td>
<td>9.5</td>
<td>20</td>
<td>14.2</td>
<td>30</td>
</tr>
<tr>
<td>3.50</td>
<td>199</td>
<td>134</td>
<td>115</td>
<td>≤1.1</td>
<td>15.4</td>
<td>30</td>
<td>10.3</td>
<td>20</td>
<td>15.4</td>
<td>30</td>
</tr>
<tr>
<td>4.20</td>
<td>199</td>
<td>134</td>
<td>115</td>
<td>≤1.1</td>
<td>18.5</td>
<td>30</td>
<td>12.4</td>
<td>20</td>
<td>18.5</td>
<td>30</td>
</tr>
<tr>
<td>4.70</td>
<td>199</td>
<td>134</td>
<td>115</td>
<td>≤1.1</td>
<td>20.6</td>
<td>30</td>
<td>13.8</td>
<td>20</td>
<td>20.6</td>
<td>30</td>
</tr>
</tbody>
</table>
Dimensions

Dimensions according outline drawing 1HC0011758

Structure of type designation

<table>
<thead>
<tr>
<th>POLIM-C 1.8 ND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of surge arrester</td>
</tr>
<tr>
<td>Uc = Continuous operating voltage</td>
</tr>
<tr>
<td>Housing</td>
</tr>
<tr>
<td>Direct current</td>
</tr>
</tbody>
</table>

Dimensions (mm)
For more information please contact:

ABB Switzerland Ltd.
High Voltage Products
Surge Arresters
Jurastrasse 45
CH-5430 Wettingen
Phone: +41 58 585 29 11
Telefax: +41 58 585 55 70
E-Mail: sales.sa@ch.abb.com

www.abb.com/arrestersonline

Note
We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders the agreed particulars shall prevail. ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document. We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB.

Our products are certified according ISO 9001, 14001, 18001 and IRIS

For detailed information for dimensioning of our products see following ABB documents:

- Application guidelines
 Overvoltage protection
 Metal oxide surge arresters in medium voltage systems
- Application guidelines
 Overvoltage protection
 Metal oxide surge arresters in railway facilities

For pdf or print version please send E-mail to: sales.sa@ch.abb.com

Copyright © 2018 ABB
All rights reserved