
Application manual
RobotWare Machine Tending

Trace back information:
Workspace RW 6-0 version a4
Checked in 2014-11-12
Skribenta version 4.1.349

Application manual
RobotWare Machine Tending

RobotWare 6.0

Document ID: 3HAC044398-001
Revision: C

© Copyright 2014 ABB. All rights reserved.

The information in this manual is subject to change without notice and should not
be construed as a commitment by ABB. ABB assumes no responsibility for any errors
that may appear in this manual.
Except as may be expressly stated anywhere in this manual, nothing herein shall be
construed as any kind of guarantee or warranty by ABB for losses, damages to
persons or property, fitness for a specific purpose or the like.
In no event shall ABB be liable for incidental or consequential damages arising from
use of this manual and products described herein.
This manual and parts thereof must not be reproduced or copied without ABB's
written permission.
Additional copies of this manual may be obtained from ABB.
The original language for this publication is English. Any other languages that are
supplied have been translated from English.

© Copyright 2014 ABB. All rights reserved.
ABB AB

Robotics Products
SE-721 68 Västerås

Table of contents
11Overview of this manual ...
13License agreement ...
14Product documentation, IRC5 ..
16Safety ..

171 What is RobotWare MachineTending?

192 System prerequisites

213 Installation
213.1 Setup ..
243.2 Data Storage ..
253.3 Notes on the next steps ..

274 System characteristics
274.1 Introduction ..
284.2 Restrictions ..
294.3 Properties ..

315 The RWMT concept

376 Setting up the graphic user interface
376.1 Startup view ...
386.2 Project view ...
386.2.1 General ...
396.2.2 Identification ..
406.3 Production view ..
406.3.1 General ...
426.3.2 Production information ...
446.3.3 User program messages ...
456.3.4 Stations ...
456.3.4.1 Introduction to stations ...
556.3.4.2 Station variables ..
616.3.4.3 Station signals ..
656.3.4.4 Station applications ...
676.3.5 General Signals ..
686.3.6 Part data ..
736.3.7 Program cycles ...
776.3.8 Grippers ..
866.3.9 Service routines ..
896.3.10 Advanced HotEdit ...
936.3.11 External applications ...
946.4 General signal view ...
966.5 Setup view ...
966.5.1 General ...
976.5.2 Declaring a setup routine ..

997 Event handling

1058 Instruction sets

1099 RAPID Library

11110 HomeRun
11110.1 Introduction ..
11110.1.1 Overview ...

3HAC044398-001 Revision: C 5
© Copyright 2014 ABB. All rights reserved.

Table of contents

11210.1.2 HomeRun functions ...
11310.1.3 Method of operation ...
11410.2 First steps ..
11410.2.1 Example program ..
11510.2.2 What is the Home Position? ..
11610.2.3 Movement routines ..
11710.2.4 Administration routines ..
11810.2.5 Calling up the HomeRun movement ..
11910.2.6 Routines in the MT_MAIN module ..
12010.2.7 Creating the HomeRun strategy ..
12210.2.8 Creating the HomeRun description ..
12310.2.9 Checking the Home position ..
12410.2.10 Setting up the system parameters ..
12510.2.11 Signal combinations for HomeRun with stopped program
12610.2.12 Checking the position numbers ..
12810.2.13 Checking the HomeRun strategy ..
12910.3 Use of HomeRun in RobotStudio ..
12910.3.1 Behaviour of HomeRun in a virtual controller ..
13010.4 Operator dialogue for the HomeRun ...
13010.4.1 Moving the robot automatically into the home position
13110.4.2 Moving the robot semi-automatically into the Home position
13310.4.3 Moving the robot manually into the home position ...
13510.5 Programming the HomeRun ..
13510.5.1 General ...
13610.5.2 Allocation of the position designations ..
13710.5.3 Structure of the movement routines ..
14010.5.4 Strategy for automatic movement into the home position
14310.5.5 Use of type-related movement routines ...
14310.5.5.1 General ...
14410.5.5.2 Use of module-localised movement routines
14510.5.5.3 Use of type modules with different strategies
14710.5.6 MultiMove Support ..
14810.5.7 Movement continuation in intermediate positions ..
14910.6 System characteristics ...
14910.6.1 Position number assignment ...
15010.6.2 Intermediate position in movement from the home position
15110.7 Programming and configuration data ..
15110.7.1 Introduction ..
15210.7.2 Modules ..
15310.7.3 Signals ..
15410.7.4 Data ..
15510.7.5 Instructions ..
15610.7.6 HomeRun related routines in the MT_MAIN module

15711 System parameters
15711.1 Introduction ..
15811.2 MT Visualization settings ..
16111.3 MT API commands ..
16411.4 MT API positions ...
16711.5 MT Program selection ..
17211.6 MT Part settings ..
17311.7 MT Applications ..
17511.8 MT HomeRun ...

17912 User permissions
17912.1 Application permissions ...
18112.2 User groups ...
18212.3 User level for service menus and change of variable ...
18312.4 Setting up the user permissions ...

6 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

Table of contents

18513 Mode of operation of the robot cell
18513.1 General ...
18613.2 Operation without robot ..
18713.3 Service mode ...
18813.4 Production mode ...

18914 Programming
18914.1 Introduction ..
19014.2 Parameterization of the MT Visualization settings ..
19514.3 Parameterization of the MT API Commands ...
20014.4 Parameterization of the MT API Positions ..
20314.5 Parameterization of the MT Program Selection ...
20714.6 Parameterization of the MT part settings ..
20914.7 Parameterization of the MT applications ..
21514.8 Parameterization of the MT HomeRun ...
21914.9 Preparation of the robot program ...
21914.9.1 Sample programs and templates ..
22014.9.2 Declarations ...
22914.9.3 Program initialization ...
23014.9.4 Design of the production routines ...
23414.9.5 Halt after end of cycle ..
23714.9.6 Error handling and return to the home position ...
24214.9.7 Change of tools ..
24314.9.8 User defined programs ...
24614.10 Designing the service routines ...
24614.10.1 Normal service routines ..
24714.10.2 Special service routines ...
24814.11 Suggestions for designing the program ...
24814.11.1 The station concept ...
25114.11.2 The program architecture ..
25514.12 Program test ..
25514.12.1 General safety measures ..
25614.12.2 Validating the gripper functions ..
25714.12.3 Test mode ...

25915 RAPID references
25915.1 Data types ...
25915.1.1 cellopmode – Cell operation mode ..
26015.1.2 Cycledata – Program cycle setting ...
26315.1.3 cycletype – Type of cycle ...
26415.1.4 eventdata – Execute routine on program event or system event
26615.1.5 eventnum – Program event number or system event number
26915.1.6 grpaction – Set and check actions in gripper sequences
27115.1.7 grpdata – Configuration of a control element of the gripper
27415.1.8 grppart – Part control configuration ...
27615.1.9 grppos – Gripper position ...
27715.1.10 grpsensor – Sensor configuration for the control elements of a gripper
27815.1.11 grpseq – Gripper sequence for actuating several control elements
28015.1.12 grpsignal – Configuration of a gripper signal ..
28115.1.13 grpvalve – Valve actuation for the control element of a gripper
28215.1.14 hoteditdata – Menu declaration for the HotEdit-pre-selection
28515.1.15 infodata – Displaying the information in the production window
28715.1.16 instset – Execute instruction while change of cell mode of operation
29015.1.17 menudata – Menu declaration for service routines or set up routines
29415.1.18 msgdata – Message declaration ...
29715.1.19 partcodes – Check codes for a part ...
29815.1.20 partdata – Part data ...
30115.1.21 posname – Assigning position description for HomeRun

3HAC044398-001 Revision: C 7
© Copyright 2014 ABB. All rights reserved.

Table of contents

30215.1.22 projectinfo – Project definition for graphical user interface
30415.1.23 signalpage – Definition of a signal page for the GUI
30715.1.24 stationapp – External applications to be started in GUI
31115.1.25 stationdata – Definition of a station ...
31415.1.26 stationsignal – Allocation of station signals to alias names
31615.1.27 stationvariable – Display the data declarations of a station
31915.1.28 userbutton – User button on the Touchscreen ..
32015.1.29 versiondata – Version data of the application module
32115.2 Instructions ..
32115.2.1 MT_AliasIO – Connecting of alias signals ..
32215.2.2 MT_ChangeTool – Changing the current tool ..
32315.2.3 MT_ClearMessage – Delete message on the RWMT user interface
32415.2.4 MT_ContHomeRun – Continue a movement routine
32915.2.5 MT_CSSDeactMoveL – Linear movement and cartesian softservo disabling
33115.2.6 MT_EndOfCycleAck – Acknowledge the request "Halt after end of cycle"
33315.2.7 MT_Execute – Execution of the RWMT Engine ..
33415.2.8 MT_Exit – Program processing complete ...
33515.2.9 MT_ExitCycle – Abort current cycle and start next cycle
33715.2.10 MT_GetUserProgNo – User defined program execution
34015.2.11 MT_GripCheck – Check position of the control element of the gripper
34215.2.12 MT_GripCheckType – Check pos. of the control element of the gripper
34515.2.13 MT_GripJ – Robot axis movement with gripper settings
34915.2.14 MT_GripL – Robot linear movement with gripper settings
35315.2.15 MT_GripSeqJ – Robot axis movement with gripper sequence
35715.2.16 MT_GripSeqL – Linear robot movement with gripper sequence
36115.2.17 MT_GripSequence – Sequential actuation of gripper actuators
36315.2.18 MT_GripSet – Controlling the gripper ..
36615.2.19 MT_GripSetType – Controlling the gripper ...
37015.2.20 MT_HomeDirect – Movement directly to the home position
37115.2.21 MT_HomeRun – HomeRun Strategy ...
37315.2.22 MT_HomeRunSavePos – Saving the stop position ...
37415.2.23 MT_MoveJ – Robot axis movement ..
37715.2.24 MT_MoveJDO – Robot axis movement and setting of a digital output
38015.2.25 MT_MoveJGO – Robot axis movement and setting of a group output
38315.2.26 MT_MoveJSync – Axis-wise movement and processing a procedure
38815.2.27 MT_MoveL – Linear robot movement. ...
39115.2.28 MT_MoveLDO – Linear movement and setting a digital output in the zone
39415.2.29 MT_MoveLGO – Linear robot movement and set group output in zone
39715.2.30 MT_MoveLSync – Linear movement and execution of a RAPID procedure
40315.2.31 MT_MoveRoutine – Execute a movement routine at HomeRun
40515.2.32 MT_MoveTo – Dynamic execution of a movement routine
40915.2.33 MT_PartCheck – Part controls on the gripper ..
41115.2.34 MT_PartCheckType – Part controls on the gripper ...
41415.2.35 MT_ResetActiveStation – Set station symbol to "inactive"
41615.2.36 MT_ResetFirstCycle – Declare first cycle as finished
41715.2.37 MT_SearchL – Linear search movement of robot ...
42215.2.38 MT_SetActiveStation – Set station symbol to "active"
42415.2.39 MT_SetActualPosition – Setting the current position for MT_MoveTo
42515.2.40 MT_SetEndOfCycle – Set the "Halt after end of cycle" state
42715.2.41 MT_ShowMessage – Show message on the RWMT user interface
43015.2.42 MT_ShowText – Delete single line message on the RWMT user interface
43315.2.43 MT_ShowTPSViewRWMT – Open the RWMT graphic user interface
43415.2.44 MT_SpeedUpdate – Adapting the speed ..
43615.2.45 MT_StartCycleTimer – Start recording the cycle time
43815.2.46 MT_StopCycleTimer – Stop recording the cycle time
44015.2.47 MT_ToolCheckL – Checking a tool ..
44315.2.48 MT_TriggJ – Axis-wise robot movements with events
44715.2.49 MT_TriggL – Linear robot movements with events ...
45115.2.50 MT_UIMessage – Message display based on UIMessageBox

8 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

Table of contents

45415.2.51 MT_UserInit – User routine for initialization ..
45515.2.52 MT_WaitMsgDI – Wait for input signal state ..
45715.2.53 MT_WaitMsgDO – Wait for output signal state ..
45915.2.54 MT_WaitMsgGI – Wait for a group input signal ..
46115.2.55 MT_WaitMsgGI32 – Wait for a 32-Bit group input signal
46315.2.56 MT_WaitMsgGO – Wait for a group output signal ..
46515.2.57 MT_WaitMsgGO32 – Wait for a 32-Bit group output signal
46715.2.58 MT_WaitMsgSync – Synchronization of movement tasks
46915.2.59 MT_WaitTimeDI – Wait for input signal until time limit is exceeded
47115.2.60 MT_WaitTimeDO – Wait for output signal until time limit is exceeded
47315.3 Functions ..
47315.3.1 MT_EndOfCycleOk – Check if "Halt after end of cycle" was acknowledged
47515.3.2 MT_EndOfCycleReq – Recognizing the request "Halt after end of cycle"
47715.3.3 MT_FirstCycle – Requesting first cycle status ...
47815.3.4 MT_GetActualPosition – Reading the start position for MT_MoveTo
47915.3.5 MT_GetAuxCode – Reading the auxiliary code of the current part type
48015.3.6 MT_GetCycleCountDown – Count-down value for currently executed cycle
48115.3.7 MT_GetCycleIndex – Reading the current cycle index
48315.3.8 MT_GetOperationMode – Current cell operation mode
48415.3.9 MT_GetPartType – Querying the current part type code
48515.3.10 MT_GetToolCode – Current tool code ...
48615.3.11 MT_GhostModeActive – Ask if the ghost mode is active
48715.3.12 MT_GripIsEmpty – Check if gripper is empty ..
48915.3.13 MT_GripIsEmptyType – Check if gripper is empty ...
49215.3.14 MT_JointCompare – Axis by axis comparison of two positions
49415.3.15 MT_PosCompare – Determine linear deviation from a position
49615.3.16 MT_RecalcPoint – recalculating a position in a new coordinate system
49715.3.17 MT_RelTCP – Moving (translation) and rotation of the tool coordinates
49815.3.18 MT_RobotInHome – Checking whether the robot is in the home position.
49915.3.19 MT_StationIsEnabled – Checking station pre-selection for production

50116 Fault rectification (debugging)
50116.1 Evaluation of the event log messages ...
51016.2 Logging the RWMT engine actions ...

513Index

3HAC044398-001 Revision: C 9
© Copyright 2014 ABB. All rights reserved.

Table of contents

This page is intentionally left blank

Overview of this manual
About this manual

This manual explains when and how the option RobotWare Machine Tending
(referred to hereinafter as RWMT) may be used.

Usage
In this manual, you can look up how to use the option RobotWare Machine Tending.
Furthermore, you will get detailed information on the syntax of the RAPID
instructions and functions and the parameters.

Who should read this manual?
This manual is primarily intended for experienced programmers.

Prerequisites
The reader should be well versed in

• industrial robots and their basic terminology
• the RAPID programming language
• the system parameters and their configuration.

References

Document IDReferences

3HAC050947-001Technical reference manual - RAPID overview

3HAC050917-001Technical reference manual - RAPID Instructions, Functions and
Data types

3HAC050941-001Operating manual - IRC5 with FlexPendant

3HAC050948-001Technical reference manual - System parameters

3HAC050798-001Application manual - Controller software IRC5

3HAC032104-001Operating manual - RobotStudio

3HAC044397-001Operating manual - RobotWare Machine Tending

3HAC044396-001Operating manual - Machine Tending PowerPac

3HAC036958-001Application manual - FlexPendant SDK

Revisions

DescriptionRevision

Released with RobotWare 5.15.-
First edition.

Updated for RobotWare 5.60.A
New features are added.

Updated for RobotWare 5.61. This revision is applicable for both RW
5.15 and RW 5.6x.

B

New features are added.

Continues on next page
3HAC044398-001 Revision: C 11

© Copyright 2014 ABB. All rights reserved.

Overview of this manual

DescriptionRevision

Updated for RobotWare 6.0. This manual is applicable only from Ro-
botWare 6.0 onwards.

C

New features are added.

12 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

Overview of this manual
Continued

License agreement
License agreement for RobotWare Machine Tending

1 ABB is the only owner of the copyright and usage rights in the software option
RobotWare Machine Tending that is delivered.

2 ABB assigns to the licensee a simple, non-transferable, exclusive, but
unlimited right to use the option RobotWare Machine Tending.

3 The license entitles the user only to the proper use of the software option
RobotWare Machine Tending on a robot controller. The licensee is not allowed
to replicate the option RobotWare Machine Tending or parts of it and make
these accessible to third parties or the use the software or parts of it on other
robot controls. Taking a back-up copy exclusively for own use on the original
hardware is exempted from this.

4 Modifying, translating, reverse engineering or decompiling or disassembling
the software option RobotWare Machine Tending is not allowed.

3HAC044398-001 Revision: C 13
© Copyright 2014 ABB. All rights reserved.

License agreement

Product documentation, IRC5
Categories for user documentation from ABB Robotics

The user documentation from ABB Robotics is divided into a number of categories.
This listing is based on the type of information in the documents, regardless of
whether the products are standard or optional.
All documents listed can be ordered from ABB on a DVD. The documents listed
are valid for IRC5 robot systems.

Product manuals
Manipulators, controllers, DressPack/SpotPack, and most other hardware is
delivered with a Product manual that generally contains:

• Safety information.
• Installation and commissioning (descriptions of mechanical installation or

electrical connections).
• Maintenance (descriptions of all required preventive maintenance procedures

including intervals and expected life time of parts).
• Repair (descriptions of all recommended repair procedures including spare

parts).
• Calibration.
• Decommissioning.
• Reference information (safety standards, unit conversions, screw joints, lists

of tools).
• Spare parts list with exploded views (or references to separate spare parts

lists).
• Circuit diagrams (or references to circuit diagrams).

Technical reference manuals
The technical reference manuals describe reference information for robotics
products.

• Technical reference manual - Lubrication in gearboxes: Description of types
and volumes of lubrication for the manipulator gearboxes.

• Technical reference manual - RAPID overview: An overview of the RAPID
programming language.

• Technical referencemanual - RAPID Instructions, Functions and Data types:
Description and syntax for all RAPID instructions, functions, and data types.

• Technical reference manual - RAPID kernel: A formal description of the
RAPID programming language.

• Technical reference manual - System parameters: Description of system
parameters and configuration workflows.

Continues on next page
14 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

Product documentation, IRC5

Application manuals
Specific applications (for example software or hardware options) are described in
Application manuals. An application manual can describe one or several
applications.
An application manual generally contains information about:

• The purpose of the application (what it does and when it is useful).
• What is included (for example cables, I/O boards, RAPID instructions, system

parameters, DVD with PC software).
• How to install included or required hardware.
• How to use the application.
• Examples of how to use the application.

Operating manuals
The operating manuals describe hands-on handling of the products. The manuals
are aimed at those having first-hand operational contact with the product, that is
production cell operators, programmers, and trouble shooters.
The group of manuals includes (among others):

• Operating manual - Emergency safety information
• Operating manual - General safety information
• Operating manual - Getting started, IRC5 and RobotStudio
• Operating manual - Introduction to RAPID
• Operating manual - IRC5 with FlexPendant
• Operating manual - RobotStudio
• Operatingmanual - Trouble shooting IRC5, for the controller and manipulator.

3HAC044398-001 Revision: C 15
© Copyright 2014 ABB. All rights reserved.

Product documentation, IRC5
Continued

Safety
Safety of personnel

A robot is heavy and extremely powerful regardless of its speed. A pause or long
stop in movement can be followed by a fast hazardous movement. Even if a pattern
of movement is predicted, a change in operation can be triggered by an external
signal resulting in an unexpected movement.
Therefore, it is important that all safety regulations are followed when entering
safeguarded space.

Safety regulations
Before beginning work with the robot, make sure you are familiar with the safety
regulations described in the manualOperatingmanual - General safety information.

16 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

Safety

1 What is RobotWare MachineTending?
Usage

RobotWare Machine Tending (RWMT) is a software option that makes it easier to
access the robot and the system peripherals in the handling applications, both for
the system operator as well as for the integrator.
For easy operations, a user interface (GUI) is provided on the FlexPendant of the
IRC5-control.
For the Integrator, a set of RAPID data types, instructions and functions have been
provided so that the RWMT can be integrated with the application program.
With the help of a process configuration, RWMT can for instance also be modified
with respect to the graphic views as well as with respect to the existing signal
interfaces.

3HAC044398-001 Revision: C 17
© Copyright 2014 ABB. All rights reserved.

1 What is RobotWare MachineTending?

This page is intentionally left blank

2 System prerequisites
Hardware

Robot controllers for the generation IRC5 with FlexPendant generation 2, 3, or
higher.

Software
The following software options are required in each case for configuring respectively
using the RWMT and must be considered while ordering the robot or obtained
separately from ABB:

• ABB Robots with IRC5 controllers and operating system RW 6.0.
• RobotStudio (See Operating Manual - RobotStudio listed in the section

References on page 11.)
• Software option [1167-1] RW MachineTending

The following software option is required if interface signals or RAPID variables
have to be set to a specific value when operation mode changes, as is necessary,
for instance, in the case of the EUROMAP-interface in injection molding:

• Software option [623-1] Multitasking

3HAC044398-001 Revision: C 19
© Copyright 2014 ABB. All rights reserved.

2 System prerequisites

This page is intentionally left blank

3 Installation
3.1 Setup

Installation and system generation
Use the following procedure to install and create a RWMT system:

1 Install RobotStudio 6.0 or higher on you PC.
2 Open RobotStudio and click the Controller tab.
3 Click Installation Manager.

The Installation Manager window is displayed.
4 Click Controllers, and then click the Virtual tab.
5 Click New.

The Create New window opens.
6 In the Name field, type a name for the new system.
7 Click Next.

The Products tab is displayed.
8 Click Add.

The Select Product window opens.
9 Click Browse and select the product manifest file of RobotWare, and click

Open.
The selected product is added to the Added Product(s) window.

10 Click on Add again.
The Select Product window opens.

11 ClickBrowse and select the product manifest of Robotware Machine Tending
and click Open.

Continues on next page
3HAC044398-001 Revision: C 21

© Copyright 2014 ABB. All rights reserved.

3 Installation
3.1 Setup

The selected Robotware Machine Tending product is added to the Added
Product(s) window.

xx1400002481

12 Click Next.
The Licenses tab is displayed.

13 Click Add.
The Select License window is displayed.

14 Click Browse, select the Robotware license file, and click Open.
The Robotware license file is added to the Added License(s) window

15 Repeat the same step to add RobotWare Machine Tendting License files to
your system.

Note

For working with Virtual Controller add RWMT virtual license. To work with
real controller two RWMT licenses should be added.

xx1400002482

16 Click Next.
The Options tab is displayed. This tab displayes the System Options, Drive
Modules and Applications. Here you are able to customize your options.

17 Click theApplications tab and select the1167-1 RWMachine Tending option
from Application Machine Tending group.

18 Click Next.

Continues on next page
22 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

3 Installation
3.1 Setup
Continued

The Confirmation tab is displayed and shows an overview of the selected
options.

19 Click Apply.
The Apply Changes confirmation window is displayed.

20 Click Yes.
The added products (RobotWare and RWMT) are installed and the system
is created.

3HAC044398-001 Revision: C 23
© Copyright 2014 ABB. All rights reserved.

3 Installation
3.1 Setup
Continued

3.2 Data Storage

Documentation
The complete documentation for RobotWare MachineTending is shipped with the
robot controller.
The documentation consists of:

• Operating Manual - RobotWare MachineTending (3HAC044397-001)
• Application Manual - RobotWare MachineTending (3HAC044398-001)
• Release Notes

Program examples
The RWMT add-in folder implements some programming examples in the subfolder
Program Example, where one can see how RWMT can be implemented into a
RAPID program.
This module can be used as a basis for the further programming.
ABB suggests to use the Machine Tending PowerPac (MTPP) (See Operating
Manual - Machine Tending PowerPac listed in the section References on page 11)
to generate user programs, that implement RWMT functions.

Stations
Normally there are peripheral machines, conveyors, slides , and so on, inside a
robot cell, surrounding the robot. In RWMT language, they are called stations. Each
station is represented by its own RAPID module.
The use of station modules is explained in the chapter Setting up the graphic user
interface on page 37
ABB suggest you to use the Machine Tending PowerPac (MTPP) (See Operating
Manual - Machine Tending PowerPac listed in the section References on page 11)
which provides some basic station templates.

Graphics for the user interface (GUI)
Some of the RAPID-data types that are used in RWMT allow the specification of a
graphics file.
If such a graphics file is specified, then this will be shown on the user interface
(GUI) of RWMT in the graphic element that corresponds to the corresponding data
type declaration.
Such user defined graphics must be saved in the HOME or SYSTEM directory, so
that they are recognized by RWMT.
Alternatively, if the RWMT projects concept is used, the graphics of a project can
be saved in its specific project folder. Please refer toOperatingManual - RobotWare
Machine Tending and Operating Manual - Machine Tending PowerPac listed in
the section References on page 11 to learn more about RWMT projects.

24 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

3 Installation
3.2 Data Storage

3.3 Notes on the next steps

Introduction
After the installation, some steps are necessary for customizing the RWMT to suit
the individual conditions, or to add data, instructions and functions to the application
program for using the RWMT.
The chapters of this manual that are listed below give information about this. It is
advisable to work through the respective chapters in the specified sequence, since
they build successively on each other.
The chapters can be accessed as links if you are reading them on the computer.

Setting up the graphic user interface (GUI)

en1200000736

Parameterization of RWMT

en1200000737

Understanding the concept of cell operation modes (modes)

en1200000738

Continues on next page
3HAC044398-001 Revision: C 25

© Copyright 2014 ABB. All rights reserved.

3 Installation
3.3 Notes on the next steps

Carry out RAPID-programming

en1200000739

Assign user permissions

en1200000740

Initiate measures for detecting errors

en1200000741

26 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

3 Installation
3.3 Notes on the next steps
Continued

4 System characteristics
4.1 Introduction

The restrictions and system properties that are described below must be considered
while programming and using the RWMT, to enable a fault free operation.

3HAC044398-001 Revision: C 27
© Copyright 2014 ABB. All rights reserved.

4 System characteristics
4.1 Introduction

4.2 Restrictions

MultiMove
RWMT is not suitable for use in MultiMove-Coordinated applications.
Apart from this, the RWMT is suitable for use in MultiMove-Independent
applications.

Hot-Plug-Option for FlexPendant
RWMT has been conceived in such a way that the production can be ongoing
without the RWMT GUI. Thus, it is theoretically possible to undock the FlexPendant
during production from a robot controller that is equipped with the Hot-Plug function.
However , since RWMT can be configured in such a way that the robot of the action
cell handling cell is controlled completely through the FlexPendant screen (for
example, pre-selection of part type or start of production), every individual case
should be examined whether the undocking of the FlexPendant is useful or not.
Thus, for instance, it would not be possible to stop the production or request the
home position when the FlexPendant is undocked through the RWMT screen.
Furtheron, error messages can only be shown on a FlexPendant when being
connected to the robot controller.

Safe return to starting position
While using the HomeRunning as part of the overall scope of RWMT, other
restrictions may arise. These are described in the chapter HomeRun on page 111.

Language
Currently, the RWMT user interface is available in English, German, Spanish,
French, Italian, Swedish, and Simplified Chinese.

28 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

4 System characteristics
4.2 Restrictions

4.3 Properties

Maximum number of open windows
By using RWMT, the maximum number of open windows on the FlexPendant is
reduced by one.

Background colors
The FlexPendant of the IRC5-controller is available in three different versions at
the time of creating this documentation. These differ with respect to the display.
As a result, the representation of the background for graphics could differ depending
on the type of the FlexPendant, for instance.

User permissions
In the delivery condition of the robot controls, the default user has all the user
permissions. Thus, the default user can access all the functions of RWMT. If this
is not desirable, then the desired users and user permissions should be created
as shown in the chapter User permissions on page 179.

3HAC044398-001 Revision: C 29
© Copyright 2014 ABB. All rights reserved.

4 System characteristics
4.3 Properties

This page is intentionally left blank

5 The RWMT concept
What is RWMT

RobotWareMachine Tending (RWMT) is a software option, which is used to make
it easier to access the robot and the system peripherals in handling applications,
both for the system operator as well as for the integrator.

Overview of the RWMT components
RWMT consists of the following three components, as illustrated by the following
figure:

en1200000742

The user interface gives the operator and programmer an overview of the handling
cell with all its stations such as the processing machines, bands, slides and it also
contains control functions.
A library of RAPID data types, instructions and functions supports the integrator
while creating the robot programs and in designing the details of the user interface
with graphic elements and information.
RWMT makes it possible to include external signals as well, through the process
configuration, such as for the communicating the program numbers, the cycle
pre-selection, error notifications or the safe return to starting position. If the signal
interfaces are missing, however, it is also possible to use these functions directly
at the operator screen of RWMT.
The following sections deal with these three components in greater detail and
provide references to the corresponding chapters in this manual or in theOperating
Manual - RobotWare Machine Tending listed in the section References on page11
for in-depth information.

The user interface
The user interface provides the following functions:

• Visualization of the operating states and production processes
• Gripper actuation and gripper monitoring
• General and station wise view and control of signals
• Station wise view and control of RAPID variables

Continues on next page
3HAC044398-001 Revision: C 31

© Copyright 2014 ABB. All rights reserved.

5 The RWMT concept

• Selection of part types for the production
• Definition and selection of production cycles (run-in (start up), run out, idle

runs, and so on)
• Execution of setup and service routines
• Advanced HotEdit (correction of positions during production)
• Execution of further FlexPendant applications within the RWMT
• Safe return to starting position
• Messaging
• Project interface to the associated MachineTending PowerPac

To represent these functions, the user interface should be told which stations (that
is, machines, conveyor belts, and so on) are present in the cell, which signal
interfaces are available, which service routines are available, and so on.
This information is made available exclusively through RAPID data declarations,
instructions and functions and through process parameters. The integrator does
not need any further knowledge of other programming languages apart from
knowledge of the RAPID programming language and the handling of system
parameters of the IRC5-robot controller.
Furthermore, this concept also makes it possible to integrate the RWMT in existing
robot cells too, because, the only thing this requires is the inclusion of additional
data, commands and functions in the robot program.
The scope of the integration here is almost unlimited. Sub-aspects of the user
interface (GUI) can be used; other aspects can be left out or included at a later
point in time. This often meets the requirements of narrowly measured set up and
testing times in production cells.

RAPID data types, instructions, and functions
Firstly, the functional sub-division of the RAPID-libraries of RWMT can be illustrated
with the help of the following image.

en1200000743

According to this diagram, RWMT consists of a total of 6 blocks that can be
differentiated from each other functionally, and each of which is defined by a more
or less extensive set of data types, instructions and functions.

Continues on next page
32 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

5 The RWMT concept
Continued

The declaration of special data types in RAPID creates icons or symbols, control
elements, signal tables, and so on, on the RWMT user interface.
Changes such as the station or messaging tasks that are to be handled currently
by the robot are supported through special instructions.
Pre-selections of the operator screen can be queried with the help of special
functions.
The use of these individual blocks and their functions is optional, but this will also
have an impact on the scope of functions of the user interface (GUI). Thus, for
instance, the Block RWMT Gripper and its data, instructions and functions can be
excluded from use in the application program. No gripper actuation or gripper view
will be available in the user interface (GUI) in that case.
The following table gives an overview of the functions of the individual blocks and
references to the respective chapters that contain more information and details
about them.

Explanation and referencesBlock

This block contains the RWMT-Engine as the core element. This is loaded
in the application program in the main() routine and defines the course
of the program with the help of various constraints.

RWMT Base

Furthermore, this block contains all the necessary data-declaration for
displaying graphic elements on the user interface (GUI) of RWMT and
for visualizing the instructions and functions and querying the system
states.
The data types that belong to this function block, and the graphic ele-
ments that are created with it can be obtained from the chapter Setting
up the graphic user interface on page 37. For a precise description of
every individual data type, refer the chapter Data types on page 259.
The available instructions and functions are described in detail in the
chapters Instructions on page 321 and Functions on page 473.

The RWMT Library provides a library of instructions and functions for
the following areas:

• Waiting for digital signals and signal groups position calculations
• Tool computations
• Dynamic calls of movement routines

The description of the corresponding instructions and functions is
available in the chapters Instructions on page 321 and Functions on
page 473.

RWMT Library

RWMT Grippers contains data types, instructions and functions for actu-
ating and controlling the robot grippers and for requesting gripper sensors
and component control sensors that are present on the gripper

RWMT Gripper

The available data types make it possible to represent simple to very
complex grippers.
If the data types that are offered are used, then the concerned grippers
and their functionality are visualized automatically on the user interface
of the RWMT.
The chapterGrippers on page77 provides information about this concept
of gripper administration in RAPID.
The description of the corresponding data types, instructions and func-
tions is available in the chapters Data types on page 259 and Functions
on page 473.

Continues on next page
3HAC044398-001 Revision: C 33

© Copyright 2014 ABB. All rights reserved.

5 The RWMT concept
Continued

Explanation and referencesBlock

With the functions of the RWMT Events, routines can be associated with
the application program with pre-defined events.

RWMT Events

In this way, the routines will be executed as soon as the corresponding
event occurs.
The association of routines of the application program with pre-defined
events is done through declarations based on the data type eventdata.
Details of the usage are given in the chapter Event handling on page99.
The description of the data type eventdata that is necessary for use is
given in the chapter Data types on page 259.

The Instruction Sets consist of declarations of the data type instset.RWMT Instruc-
tion Sets With the help of these data type declarations, selected signals and vari-

ables can be set automatically to a pre-defined value on leaving or enter-
ing the RWMT mode production or when using the key switch to change
the robot operation mode between manual and automatic.
Details of the usage can be taken from the chapter Instruction sets on
page 105.
The description of the data type instset that is necessary for use is given
in the chapter Data types on page 259.

HomeRun makes it possible to return the robot automatically from any
position to the home position, by the click of a button.

RWMT HomeRun

It supports the quickest possible restoration of the initial state of the
production unit for example, after any errors.
To learn more about HomeRun, refer to the chapterHomeRunon page111.

Continues on next page
34 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

5 The RWMT concept
Continued

Process parameters
RWMT provides an area, in which the product can be configured and parameterized
as per the usage conditions.
This area consists of the process parameters (PROC.CFG) of the robot controls.
For RWMT, four main areas of configuration are offered, as per the following
illustration.

en1200000744

The following table gives a brief explanation of these configuration areas and gives
references to the corresponding chapters for details.

Explanation and referencesDomain

The display parameterization has an influence on the appearance of the
user interface (GUI), the presence of buttons for specific user actions.

RWMT Display

Details are available in the chapterMTVisualization settings on page158.

The command parameters are also used, among other things, for linking
external signals for selecting the mode of operation or for selecting the
current speed overrides.

RWMT Com-
mands

The chapter MTAPI commands on page161 gives information about the
possible settings.

The RWMT concept envisages certain default positions of the robot,
such as the home position, a safeposition and up to 3 service positions.

RWMT Positions

The position parameterization defines, among other things, which digital
signals will be used for requesting a specific position of the robot, and
which signals show that the robot in is in a particular position.
Details are available in the chapter MT API positions on page 164.

If a program pre-selection or a service request has to come from an ex-
ternal source, then, normally, a digital signal interface has to be specified.

RWMT Program
Selection

The parameterization of the program pre-selection also links such inter-
face signals with the corresponding RWMT-functionalities.
Details are available in the chapter MT Program selection on page 167.

Continues on next page
3HAC044398-001 Revision: C 35

© Copyright 2014 ABB. All rights reserved.

5 The RWMT concept
Continued

Explanation and referencesDomain

RWMT supports different part types to be handled in one program. It
provides appropriate parameters in the process configuration.

RWMT Part
Types

Details are available in the chapter MT Part settings on page 172.

Home Run makes it possible to return the robot automatically from any
position to the home position, by the click of a button.

RWMT Home
Run

The parametrization allows e.g. to modify the behavior of this functionality
and to define, by which signal it is triggered.
To learn more about HomeRun, refer to the chapterHomeRunon page111.

The application parameters are used to integrate other FlexPendant ap-
plications into RWMT. This can be either customer applications that have
been programmed with FlexPendant SDK or ScreenMaker, or integrated
basic applications like the production view

RWMT Applica-
tions

The chapter MT Applications on page 173 gives information about the
possible settings.

Concept for the cell operation mode
The RWMT concept for the mode of operation takes into account various
requirements for a handling application such as a mode of operation for the
production , an exclusive mode of operation for service routines (gripper inspection,
gripper replacement, automatic cleaning , and so on.).
Further, there are sub-modes of operation such as the production without parts
(ghost mode), in which the logical production processes are examined, but without
actually handling the parts or components.
The RWMT concept for the cell operation mode is explained in the chapter Mode
of operation of the robot cell on page 185.

User permissions
RWMT contains various access options such as access to the production process,
the peripherals or the service routines. It is not necessary that all users should
have all these access options.
The chapter User permissions on page179 explains which user permissions of the
RWMT are available to the system operator, the service staff, or the programmers.

36 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

5 The RWMT concept
Continued

6 Setting up the graphic user interface
6.1 Startup view

Purpose
The startup view splits the user interface into 4 different main sections, that can
be reached by clicking one of the buttons as shown in the following figure:

en1300000016

ExplanationMain section

Project section allows the loading, unloading, import and export of projects
(consisting of RAPID programs, depending parameters and other files, that
belong to a certain application).

Project

Prodcution section allows you to visualize the different machines (stations)
as well as the production process and allows to operate the cell.

Production

Signals section allows you to see the general signals, which do not belong
to a certain station

Signals

Setup section contains a list of setup routines, that can be executed only in
manual operation mode.

Setup

The content of each of those main sections is normally created by RWMT data
declarations in the RAPID program The next chapters will explain, how this is done.

3HAC044398-001 Revision: C 37
© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.1 Startup view

6.2 Project view

6.2.1 General

The project view and the projects by narrower sense of RWMT build the
interface between the Machine Tending PowerPack (MTPP) and RWMT itself. A
project is normally created by the MTPP.

• Program & system modules
• System parameters
• Part- and station-related images
• RobotStudio Pack and Go stations

The RWMT GUI allows the following opterations on projects
• Load a project for execution or to unload it
• Save a project with current name or with new name (copy)
• Import, export and save projects to/from USB storage device

38 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.2.1 General

6.2.2 Identification

To identify a project, a persistent declaration of type projectinfo must be available
in any module of the first motion task (T_ROB1). An already loaded project then
is recognized by the projectinfo.title entry and will be displayed in the RWMT GUI.
Example:

TASK PERS projectinfo piProject:=[“Bumper”,”Producing bumpers ..”,
”1.0”,”2012-10-22”];

en1300000018

The content of the project info declaration has to be equal to the project file (*.MTP),
which is delivered together with the project by the MTPP.
A loaded project is marked as unknown, if the projectinfo title does not match the
name of the related project. This can mostly happen, if the project title has been
changed manually or the project files are not imported to the project folder.
A project marked as unknown can be saved, by using the menu entry Save project
as ….
By default, projects are saved under HOME:RWMT. In some cases, the project
folder size might become too big and this can obstruct the creation of robot backups,
because the home directory content is part of the backup.
Therefore, the project path of a real controller can be modified in the system
parameters (for more information, seeMTVisualization settings on page158). This
setting will not influence the project path of a virtual controller, where the projects
are always saved under HOME:RWMT.

3HAC044398-001 Revision: C 39
© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.2.2 Identification

6.3 Production view

6.3.1 General

Purpose

The production view of the RobotWare Machine Tending is meant for
visualizing the production processes and operating the robot cell.

en1300000020

Information in the production window
The following control elements and information are displayed in the production
window:

• Status of the individual stations (ready, busy, error)
• Station selected or deselected
• Highlighting the concerned station in which the robot is currently situated
• Name of the current product
• Current program number
• Cycle time
• Display general information, based on data declarations for bool, num, dnum

or string declared as persistent.
• Messages from the robot program, for example, errors or information texts
• Buttons to operate (start, stop, and so on) the robot

Continues on next page
40 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.1 General

Information in menus
The following functions are provided through further sub-menus:

• Display of the station-specific variables and signals
• Manual operation of the gripper
• General signal page
• Cycle settings menu
• HotEdit for changing the positions
• Part data display
• Manual selection of the part that is to be finished
• Service and setup-menu for configuring the program

3HAC044398-001 Revision: C 41
© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.1 General

Continued

6.3.2 Production information

Cycle time
The cycle time that was last required is displayed by default in the production info
display and the current cycle time is displayed during a run.

en1200000746

Other production data
To display other data of the type bool, num, dnum or string, the data field CONST

infodata MT_InfoView{xx}:=[..];must be created and populated with data.
The data, whose values are to be displayed, must be declared as PERS, LOCAL
PERS or as TASK PERS.
The production data display can show upto eight different data at a time, including
the cycle time. If more than seven additional production data are defined, then, it
is possible to scroll through the production info display using the scroll arrow that
will be displayed.
Example:

TASK PERS num nGoodParts:=673;

TASK PERS num nTolerance:=3;

…

…

CONST infodata MT_InfoView{11}:=[

["Good parts","nGoodParts","",""],

["Out of tolerance","nTolerance","",""],

["Insp. parts","nInspectionParts","",""],

["Scrap","nScrapParts","",""],

["Cooling time","ntCoolingTime","",""],

["Insp. time","ntInspectionTime","",""],

["DCM cycle time","ntDCMCycleTime","",""],

["PRE cycle time","ntPressCycleTime","",""],

["MRK cycle time","ntMarkerCycleTime","",""],

["OUF cycle time","ntOutfeederCycleTime","",""],

["INF cycle time","ntInfeederCycleTime","",""]

Continues on next page
42 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.2 Production information

en1200000747

3HAC044398-001 Revision: C 43
© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.2 Production information

Continued

6.3.3 User program messages

Types of message output
Basically, there are two types of message output available:

• Output takes place through the standard functions of RAPID
• Output takes place through the GUI

While outputting the messages through the graphic user interface (GUI), the
advantage is that it is always in the foreground and is not overlapped by external
message windows.
However, there is no acknowledgement for the messages that are output in the
GUI. In this case, it is necessary to yield to the standard-RAPID-commands.

en1300000021

Message output in the GUI
Messages in the GUI can be output with the help of the data types msgdata and
the instruction MT_ShowMessage or, more simply, through the instruction
MT_ShowText.
With the help of the instruction MT_ClearMessage, these message outputs can
be deleted if they are not required any more.
Example:

MODULE Messages

TASK PERS msgdata msgEnter:=[10,1,0,"Robot inside station
xyz","","","","","",1,""];

PROC MessageTest()

!Show message

MT_ShowMessage msgEnter;

!...

!Robot does something inside the machine

!...

!Clear message

MT_ClearMessage;

ENDPROC

ENDMODULE

44 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.3 User program messages

6.3.4 Stations

6.3.4.1 Introduction to stations

Station states

A station within the RWMT can be a machine, a conveyor, and so on, which
the robot passes through during its program run. Within the production window,
every station is represented by an image with a colored ring, which reflects the
status of the station. The various colors here have the following significance:

MeaningStation ring

The station is ready for the robot

green

The station is busy or is working.

yellow

The station has an error

red

The status of the station is undefined

grey

Other states of the station are represented through additional symbols or by filling
in the ring:

MeaningStation ring

The station has been deselected

red ring, crossed through

The robot is inside the station

green, filled ring

Besides the machines, conveyors, and so on, the robot itself can be described as
a station. In contrast to the other stations, the robot gets a fixed icon (see the
following image), which cannot be modified as this is described for the other stations
in the following sections.

xx1300000045

Continues on next page
3HAC044398-001 Revision: C 45

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.4.1 Introduction to stations

Preparing the station library
In order that stations can be reused, a separate program module, in which all the
station-specific data and routines are present, should be created for every station.
To define a station, a data declaration for the data type stationdata (see
stationdata – Definition of a station on page 311) is necessary in
the station module as TASK PERS or LOCAL PERS.
If one does not wish to create any station library, then the station data declarations
can be created in any desired module, wherein a module can also contain even
several station data declarations.

LOCAL PERS stationdata IMM_Station:=

["IMM","IMM","Machine to build plastic parts",

"station-IMM.png","IMM_sdiEn_OPMode",

"IMM_sdiMouldClosed","","",TRUE,FALSE,1,1];

The robot station is not represented by a data type declaration, since RWMT
provides this station by default.

Station name
Through the station name (stationdata.name), the station prefix is defined,
which is used to access the variables and signal declarations belonging to the
station.
This naming convention must be adhered to, so that the RWMT-user interface
(GUI) can assign the corresponding variable lists and signal lists to the
corresponding stations.
Example:

TASK PERS stationdata IMM_Station:=["IMM1","",…];

const stationsignal IMM1_SIGNALS{2}:=[[…]];

const stationvariable IMM1_Variables{2}:=[[…]];

In this case, the station declaration IMM_Stationwith the name IMM1 also includes
the station signals of the declaration IMM1_Signals and the station variables of
the declaration IMM1_Variables.

Station label
The station label is used to label the station symbol in the production window of
the GUI. If a blank string is used for the station label (stationdata.Label :=
""), then the station name is used for the label.
The station label can be used to display the label in the GUI in another language,
while the name of the station remains the same.

Station description
The station description is used for displaying any abbreviated or cryptic station
name in plain text on the user interface (GUI).

Continues on next page
46 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.4.1 Introduction to stations
Continued

Station images
The following station images are provided by RWMT and can be used directly by
using the name of the file:

File nameImage

station-blank.png (station icon which will be used as default, if
nothing else has been defined).

station-conveyor-in.png

station-conveyor-out.png

station-ctrlpanel.png

station-cutter.png

station-fan.png

station-flaming.png

station-gear.png

station-gripper.png

station-IMM.png

Continues on next page
3HAC044398-001 Revision: C 47

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.4.1 Introduction to stations

Continued

File nameImage

station-insert.png

station-marking.png

station-pliers.png

station-press.png

station-quality.png

station-rack.png

station-robot.png

station-saw.png

station-scrap.png

station-shower.png

Continues on next page
48 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.4.1 Introduction to stations
Continued

File nameImage

station-tape.png

station-vision.png

Example:
LOCAL PERS stationdata IMM_Station:=["IMM","IMM",

"Machine to build plastic parts",

"station-MM.png","IMM_sdiEn_OPMode",

"IMM_sdiMouldClosed","","",TRUE,FALSE,1,1];

If separate station images are to be used, the following points should be noted:
• The image should be 63 x 55 Pixel in size.
• The symbol should be located in the middle of the image and should leave

adequate place at the edges, so that the station ring does not overlap with
parts of the symbol.

• The background color of the image should be magenta (R: 255, G: 0, B:255).
• The images should be saved in the directory HOME:, SYSTEM: or

HOME:RWMT/IMAGES.
• The image should be of the type JPG, PNG or GIF.

Example:

en1200000748

Continues on next page
3HAC044398-001 Revision: C 49

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.4.1 Introduction to stations

Continued

The station images, provided by RWMT can be used as a template for customized
images. After installing a robot system, which covers the RWMT option, the images
shown in the table above are situated on the flash drive in the following location.

en1200000749

Station status
The station status shows whether a station is ready or busy, has an error or has
been deselected.
Each station covers a status page where the current status of the station is
displayed.

xx1400000764

To update the status display automatically, the signals that define the respective
status should be specified in the station declaration.

Continues on next page
50 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.4.1 Introduction to stations
Continued

For the definition of a status message, digital inputs and outputs, as well as
persistent Boolean declarations can be used.

Note

The definition of the station status is used only within the graphic user interface
(GUI) and does not have any impact whatsoever on the robot program.

The priority of the status is defined as follows:

StatusPriority

Error1

Busy2

Ready3

If all the conditions are true for each status, then the station displays the error
status since it has the highest priority.
Since a status can also arise as a result of combination of several signals, the
following notation can be used to link them.

MeaningLogical symbol

Inversion of signal or the persistent entity that follows the symbol.*

Logical AND connection.&

Logical OR connection.!

Example:
TASK PERS bCNV_Ready:=FALSE;

stationdata.ReadyState:="diCNV_Automatic

& *diCNV_Running

! bCNV_Ready" ;

The station (here a conveyor) is ready, if it is in the automatic mode
(diCNV_Automatic=1) and if the conveyor is not running (diCNV_Running=0)
or the Boolean persistent bCNV_Ready is set to the value TRUE.

Note

Since a status definition cannot be longer than 80 characters (maximum length
of a string in RAPID), the length of the individual signal names should be noted,
that is, the longer the name of the signal, the fewer signals that can be linked

If it is not possible to accommodate all the signals in the declaration string, then
a logical cross connection in the EIO.CFG can be used and specify its result as
the status.

Continues on next page
3HAC044398-001 Revision: C 51

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.4.1 Introduction to stations

Continued

Here, the evaluation of the signal definition is done from left to right, by linking the
first signal with the second signal. After this the result is linked with the third signal,
and the result of this is then linked with the fourth signal, and so on.

en1200000750

If signals are not available for every status for a station (Ready, Busy or Error),
then a blank string is used.
Depending on the status, this is evaluated as follows:

EvaluationStatus

Station is always ready.Ready State

The status is not considered in the display.Busy State

The status is not considered in the display.Error State

Use of ALIAS signals
To build a station library, station modules can be created in a general manner by
using alias names for the station signals. The allocation of the signals of the
respective station to the alias names in the program module is done through the
ALIASIO instruction.
In order to be able to use these alias names for the station status declarations as
well, the allocation of the names of the station signals and the alias names is done
through the station signal declaration (See data type stationsignal).
Example:

VAR signaldi IMM_sdiEn_OPMode;

VAR signaldi IMM_sdiMouldClosed;

LOCAL PERS stationdata IMM_Station:=["IMM","IMM",

"Machine to build plastic parts",

"station-MM.png","IMM_sdiEn_OPMode",

"IMM_sdiMouldClosed","","",TRUE,FALSE,1,1];

const stationsignal IMM_SIGNALS{2}:=

[[”IMM in automatic”,"diEn_OPMode","IMM_sdiEn_OPMode"],

[”IMM closed”,"diMouldClosed","IMM_sdiMouldClosed"]];

Using a signal for the station selection
Depending on the system, it may be necessary to remove a station from the finishing
process, for instance, because it has a error or because the station should not be
used right now.

Continues on next page
52 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.4.1 Introduction to stations
Continued

To simplify the selection and clearing the selection of a station, the current status
is displayed in the production window.
Depending on the system concept, the deselection of a station can be done through
the following options:

• a digital input
• a digital output
• the graphic user interface (GUI)

If the station is selected or deselected through a signal, it should be ensured that
only one signal can be used in the station declaration.
A station is selected, if the signal has the status high and it is deselected if the
signal has the state low. The state of the signal can be inverted if the character *
is used before the name of the signal.
If it is necessary to use several signals, then, a logical cross connection should be
created in the system parameters. Their result will be used in the station declaration.

Note

The deselection of the station through the GUI is not possible if a digital signal
is used.

Parameterization of the station selection
The station selection is set as follows:

System ParameterFunction

AllowDisableExtEnable

FALSEstationdata.ExtEnable:= ""Station should never be deselected

TRUEstationdata.ExtEnable:= ""Station selection should be done
through the GUI

FALSEstationdata.ExtEnable :=
"diWithCNV"

Station selection is done through
digital input or output.

FALSEstationdata.ExtEnable:=
"*diWithoutCNV"

Station selection is done through
digital input or output with inverted
signal function

In the robot program, the station selection should be considered accordingly in
the program run.
To do so, the MT_StationIsEnabled function can be used, which takes into
account the station selection through a digital signal as well as through the GUI.
Example:

PROC ProgFlow()

Unload_IMM;

IF MT_StationIsEnabled(sdFLAMING) THEN

Flame;

Load_Conveyor;

ELSE

Load_Slide;

ENDIF

Continues on next page
3HAC044398-001 Revision: C 53

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.4.1 Introduction to stations

Continued

ENDPROC

If a station may not be deselected, then the parameter AllowDisable of the
stationdata declaration has to be explicitly set to NO.

Position of the station symbols
The position of the station symbols (icons) in the production window is defined by
specifying the column (stationdata.Column) and the row (stationdata.Row).
On the whole, 5 columns and 3 rows are available:

en1200000751

The robot station is always displayed in the middle of the station matrix (column
3, row 2). If necessary, the robot station can also be customized in the system
parameters at the following places:

PROC/MT_GUI_SETTINGS/RobIconCol

PROC/MT_GUI_SETTINGS/RobIconRow")

If the same position is specified for several stations, these will be shifted
automatically to the next free place.

Note

A maximum of 14 stations can be displayed in the production window.

54 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.4.1 Introduction to stations
Continued

6.3.4.2 Station variables

Display in the GUI
For every station, the values of the data declarations of the type bool, num, dnum
or string can be displayed and modified. Arrays of these data types are not
supported.
In every station page, at the most two variable pages can be displayed, each of
which can have one or two lists with data declarations.

en1200000752

The number of data declarations that is to be displayed in a list is unlimited. It is
possible to scroll through the list using the scroll arrows, in case a list has more
than 6 entries.
Since the robot icon itself represents a station, it can also provide upto two variable
pages, that can be dedicated to data declarations, that are, for example, not related
to a specific station.

xx1400000744

Continues on next page
3HAC044398-001 Revision: C 55

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.4.2 Station variables

Creating lists of variables
Every list is defined through an array declaration of the data type
stationvariable, (see stationvariable – Display the data

declarations of a station on page 316) whose name must begin with the
assigned station name (See stationdata.Name).
The arrays are to be named as follows:

Name of the array constantListPage

<stationdata.Name>_Variables or11
<stationdata.Name>_Variables1

<stationdata.Name>_Variables221

<stationdata.Name>_Variables332

<stationdata.Name>_Variables442

If only one array is declared for a page, then the list will occupy the entire width of
the FlexPendant, so that the descriptive text and the data that is to be displayed
can be lengthier (See above).
Example:
Part inspection station with several sensors and inspection time parameter.

TASK PERS bool bWithTKS1:=TRUE;

TASK PERS bool bWithTKS2:=TRUE;

TASK PERS bool bWithTKS3:=TRUE;

TASK PERS bool bWithTKS4:=TRUE;

TASK PERS bool bWithTKS5:=TRUE;

TASK PERS bool bWithTKS6:=TRUE;

TASK PERS bool bWithTKS7:=TRUE;

TASK PERS bool bWithTKS8:=TRUE;

TASK PERS bool bWithTKS9:=TRUE;

TASK PERS bool bWithTKS10:=TRUE;

TASK PERS bool bWithTKS11:=TRUE;

TASK PERS bool bWithTKS12:=TRUE;

TASK PERS bool bWithTKS13:=TRUE;

TASK PERS bool bWithTKS14:=TRUE;

TASK PERS bool bWithTKS15:=TRUE;

TASK PERS bool bWithTKS16:=TRUE;

TASK PERS num ntInspectionTime:=3;

…

…

TASK PERS stationdata INSP_Station:=["INSP","Inspection","Visual
part
inspection","station-Vision.png","","","","",FALSE,FALSE,3,1];

LOCAL CONST stationvariable INSP_Variables1{6}:=[

["With sensor 1","bWithTKS1","","",10,99999,FALSE,FALSE,FALSE,0,1],

["With sensor 2","bWithTKS2","","",10,99999,FALSE,FALSE,FALSE,0,1],

["With sensor 3","bWithTKS3","","",10,99999,FALSE,FALSE,FALSE,0,1],

["With sensor 4","bWithTKS4","","",10,99999,FALSE,FALSE,FALSE,0,1],

["With sensor 5","bWithTKS5","","",10,99999,FALSE,FALSE,FALSE,0,1],

["With sensor 6","bWithTKS6","","",10,99999,FALSE,FALSE,FALSE,0,1]];

Continues on next page
56 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.4.2 Station variables
Continued

LOCAL CONST stationvariable INSP_Variables2{3}:=[

["With sensor 7","bWithTKS7","","",10,99999,FALSE,FALSE,FALSE,0,1],

["With sensor 8","bWithTKS8","","",10,99999,FALSE,FALSE,FALSE,0,1],

["Inspection time","ntInspectionTime","","",0,500,FALSE,FALSE,
FALSE,1,1]];

LOCAL CONST stationvariable INSP_Variables3{6}:=[

["With Sensor 9","bWithTKS9","","",10,99999,FALSE,FALSE,FALSE,0,1],

["With sensor
10","bWithTKS10","","",10,99999,FALSE,FALSE,FALSE,0,1],

["With sensor
11","bWithTKS11","","",10,99999,FALSE,FALSE,FALSE,0,1],

["With sensor
12","bWithTKS12","","",10,99999,FALSE,FALSE,FALSE,0,1],

["With sensor
13","bWithTKS13","","",10,99999,FALSE,FALSE,FALSE,0,1],

["With sensor
14","bWithTKS14","","",10,99999,FALSE,FALSE,FALSE,0,1]];

LOCAL CONST stationvariable INSP_Variables4{2}:=[

["With Sensor 15","bWithTKS15","","",10,99999,
FALSE,FALSE,FALSE,0,1],

["With sensor 16","bWithTKS16","","",10,99999,
FALSE,FALSE,FALSE,0,1]];

Result:

xx1400000745

Continues on next page
3HAC044398-001 Revision: C 57

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.4.2 Station variables

Continued

xx1400000746

Since the robot itself also represents a station, it can provide variable pages.
Therefor it uses the same data type stationdata (see stationvariable –

Display the data declarations of a station on page 316). The name
of the respective declaration must start with the prefix Robot_.
Example:

TASK PERS num nDataReq:=1;

TASK PERS num nTypeReq:=5;

TASK PERS num nCntPartsReq:=7;

TASK PERS num nDistPartsReq:=9;

LOCAL CONST stationvariable Robot_Variables1{4}:=[

["Data","nDataReq","","T_ROB1",

0,99999,TRUE,FALSE,FALSE,0,1],

["Type","nTypeReq","","T_ROB1",

0,99999,TRUE,FALSE,FALSE,0,1],

["Count","nCntPartsReq","","T_ROB1",

0,99999,TRUE,FALSE,FALSE,0,1],

["Distance","nDistPartsReq","","T_ROB1",

0,99999,TRUE,FALSE,FALSE,0,1]];

Result:

xx1400000747

Continues on next page
58 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.4.2 Station variables
Continued

Changing the values of the variables in the GUI
In order to be able to change station variables in the GUI, this has to be set explicitly
for every data declaration in the array.
The following options are available for doing this:

• Using data from any desired tasks and modules.
• Persistent data is updated automatically, variables must be updated by

pressing a key.
• All the data except constants can be changed.
• Changes can be allowed in the automatic mode.
• The release of a data change can be done depending on the user who is

logged in, so that a Configurer, for instance, can change a station variable
while the cell operator can only view these.

Additional options for numerical data (num or dnum)
• Resetting to an adjustable value through a button.
• Limiting the input by using a lower and an upper limit.

Example 1:
The same part inspection station as above but with possibility to select or deselect
single sensors and to adjust the inspection time.

TASK PERS bool bWithTKS1:=TRUE;

TASK PERS bool bWithTKS2:=TRUE;

TASK PERS bool bWithTKS3:=TRUE;

TASK PERS bool bWithTKS4:=TRUE;

TASK PERS bool bWithTKS5:=TRUE;

TASK PERS bool bWithTKS6:=TRUE;

TASK PERS bool bWithTKS7:=TRUE;

TASK PERS bool bWithTKS8:=TRUE;

TASK PERS bool bWithTKS9:=TRUE;

TASK PERS bool bWithTKS10:=TRUE;

TASK PERS bool bWithTKS11:=TRUE;

TASK PERS bool bWithTKS12:=TRUE;

TASK PERS bool bWithTKS13:=TRUE;

TASK PERS bool bWithTKS14:=TRUE;

TASK PERS bool bWithTKS15:=TRUE;

TASK PERS bool bWithTKS16:=TRUE;

TASK PERS num ntInspectionTime:=3;

…

…

TASK PERS stationdata INSP_Station:=["INSP","Inspection","Visual
part
inspection","station-Vision.png","","","","",FALSE,FALSE,3,1];

LOCAL CONST stationvariable INSP_Variables1{6}:=[

["With sensor 1","bWithTKS1","","",10,99999,TRUE,TRUE,FALSE,0,1],

["With sensor 2","bWithTKS2","","",10,99999,TRUE,TRUE,FALSE,0,1],

["With sensor 3","bWithTKS3","","",10,99999,TRUE,TRUE,FALSE,0,1],

["With sensor 4","bWithTKS4","","",10,99999,TRUE,TRUE,FALSE,0,1],

["With sensor 5","bWithTKS5","","",10,99999,TRUE,TRUE,FALSE,0,1],

Continues on next page
3HAC044398-001 Revision: C 59

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.4.2 Station variables

Continued

["With sensor 6","bWithTKS6","","",10,99999,TRUE,TRUE,FALSE,0,1]];

LOCAL CONST stationvariable INSP_Variables2{3}:=[

["With sensor 7","bWithTKS7","","",10,99999,TRUE,TRUE,FALSE,0,1],

["With sensor 8","bWithTKS8","","",10,99999,TRUE,TRUE,FALSE,0,1],

["Inspection
time","ntInspectionTime","","",0,500,TRUE,TRUE,TRUE,1,1]];

LOCAL CONST stationvariable INSP_Variables3{6}:=[

["With Sensor 9","bWithTKS9","","",10,99999,TRUE,TRUE,FALSE,0,1],

["With sensor 10","bWithTKS10","","",10,99999,TRUE,TRUE,FALSE,0,1],

["With sensor 11","bWithTKS11","","",10,99999,TRUE,TRUE,FALSE,0,1],

["With sensor 12","bWithTKS12","","",10,99999,TRUE,TRUE,FALSE,0,1],

["With sensor 13","bWithTKS13","","",10,99999,TRUE,TRUE,FALSE,0,1],

["With sensor 14","bWithTKS14","","",10,99999,TRUE,TRUE,FALSE,0,1]];

LOCAL CONST stationvariable INSP_Variables4{2}:=[

["With Sensor 15","bWithTKS15","","",10,99999,TRUE,TRUE,FALSE,0,1],

["With sensor 16","bWithTKS16","","",10,99999,TRUE,TRUE,FALSE,0,1]];

Result

xx1400000748

xx1400000749

60 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.4.2 Station variables
Continued

6.3.4.3 Station signals

Displaying signals in the GUI
Digital and analog signals; as well as signal groups can be displayed in the station
view of the GUI for every station. All the outputs can be set in the manual or
automatic mode of the robot, depending on the user settings.

en1200000753

Since the robot icon itself represents a station, too, it can also provide a signal
page, which can be dedicated to signal declarations, that are, for example, not
related to a specific station:

xx1400000750

Every list of signals is defined through an array declaration of the data type
stationsignal (see stationsignal – Allocation of station signals

to alias names on page 314), whose name should begin with the assigned
assigned name (stationdata.Name, see stationdata – Definition of a

station on page 311).
The array is named as follows:
<stationdata.Name>_Signals

Example:
Station signal array for the signals of a station:

TASK PERS stationdata IMM_Station:=["IMM",…];

Continues on next page
3HAC044398-001 Revision: C 61

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.4.3 Station signals

LOCAL CONST stationsignal IMM_Signals{5}:=

[

[”IMM in automatic mode”"diAutomatic",""],

["IMM mould is open","diMouldOpen",""],

["IMM mould is closed","diMouldClosed",""],

["Start IMM cyclce","doStart",""],

["Forward IMM pusher","doFwdPusher",""]

];

In the signal array, all the signals should be listed in the sequence in which they
are to appear in the list.
The robot itself represents a station and can provide a signal page. Therefore it
uses the same data type stationsignal. The name of the respective declaration
must start with the prefix Robot_.
Example:

LOCAL CONST stationsignal Robot_Signals{4}:=

[

["Request motors on","diHR_MotorOn",""],

["Request start main","diHR_StartMain",""],

["Status program running","doHR_CycleOn",""],

["Status motors are switched on","doHR_MotorOn",""]

];

In the GUI, input signals (DI, GI or AI) are shown in the list on the left and output
signals (DO, GO or AO) are shown in the list on the right; there is no subsequent
sorting of the list.

Note

The alias names in the signal array are not taken into consideration while
displaying the list of signals. The linking between the alias name and the signal
name is done only in the case of the station status display and the status
deselection.

Displaying the signal descriptions
If a descriptive text (SignalLabel) has been entered for a signal in the signal
configuration (EIO.CFG), it will be shown in the list of signals as soon as the signal
is selected.
Example:

EIO_SIGNAL:

-Name "diMouldClosed" -SignalType "DI" -Unit "IMM"\

-SignalLabel "Mould is closed" -UnitMap "0"

Use of ALIAS-signals
Several stations, which differ in their function only in terms of the signals used
(e.g. loading several conveyor belts) can exist in a robot cell.

Continues on next page
62 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.4.3 Station signals
Continued

In order to be able to create a station module as a generally applicable template,
access the station signals are accessed within the robot programs through alias
names.
The allocation of the signals of the respective station to the alias names in the
program module then takes place internally within RAPID, through the instruction
ALIASIO.
If this allocation has to take place automatically in the robot program and if the
GUI should also be able to access the link, the signal allocation is done through
the station signal array that was described earlier.
Example:
Allocation of the signals of the real station to the signals that have been declared
in the program module:

MODULE IMM

!Digital signals

LOCAL VAR signaldi adiIMM_AutoMode;

LOCAL VAR signaldi adiIMM_MoldOpen;

LOCAL VAR signaldi adiIMM_MoldClosed;

LOCAL VAR signaldo adoIMM_Start;

TASK PERS stationdata IMM_Station:=["IMM",…];

LOCAL CONST stationsignal IMM_Signals{5}:=

[

["IMM in Automatic",diAutomatic","adiIMMAutoMode"],

["IMM mould is open","diMouldOpenPos","adiIMM_MouldOpen"],

["IMM mould is closed","diMouldClosed","adiIMM_MouldClsd"],

["Start IMM","doStart","adoIMM_Start"],

[["IMM pusher fwd"doPusherFwd",""]

];

PROC IMM_Unload()

Set adoIMM_Start;

…

ENDPROC

The allocation of the signals is done through the instruction MT_AliasIO, which
is to be used by the integrator as follows:

CONST eventdata edIMM_START :=

EE_POWERON_OR_START,"IMM:IMM_EVT_START",1];

!Routine for initializing the signals

LOCAL PROC IMM_EVT_START()

!allocation of the local alias signals,

!if signal name and alias name have been used

MT_AliasIO IMM_Signals\ModuleName:="IMM";

ENDPROC

Continues on next page
3HAC044398-001 Revision: C 63

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.4.3 Station signals

Continued

In RAPID, these signal declarations are read automatically when the event Start
or PowerOn occurs and the corresponding signals are assigned through the
instruction ALIASIO. If an alias signal does not have any allocation (""), then the
signal will be displayed only in the GUI, and there is no allocation through ALIASIO
within the RAPID program.
If the alias signal declaration is declared locally and not globally, the signals are
to be allocated explicitly in the station module through the instruction AliasIO.
In the robot program, only these alias signals may be used, hence, if a station is
used several times, no changes have to be made to the signals inside the program.
Example:

VAR signaldi sdiIMM_Unload;

Const stationsignal

IMM_SIGNALS{2}:=

[

["Release to unload IMM","diIMM_Unload","sdiIMM_Unload"],

["Start IMM","doIMM_Start","sdoIMM_Start"],...]

];

64 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.4.3 Station signals
Continued

6.3.4.4 Station applications

General
Application screens, created by means of ScreenMaker or FP-SDK can be used
as so called embedded screens for each station.
The purpose of these station applications is to enlarge the possibilities to control
or monitor the functionality of a station, if the variable and signal pages of RWMT
donot fit the customer needs.

Note

Embedded means, that when having started such an application, the RWMT GUI
view cannot be accessed until the application is closed. So each application
must have a Close button, to be able to come back to RWMT.

For each application screen, customized images can be used for the menu
representation in RWMT. Upto 8 different station applications can be applied to
each station.
In the following example, 2 station applications have been assigned:

en1300000247

When pressing the application button Monitor, the appropriate application view is
started and shown as embedded, so that it overlays the RWMT. A Close button is
available to terminate the application view.

Continues on next page
3HAC044398-001 Revision: C 65

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.4.4 Station applications

Defining station applications
Station applications are defined as an array of data type station app (for more
details, see stationapp – External applications to be started in GUI on page 307).
The array is named as follows:
<stationdata.Name>_Applications

Array sizes from 1 up to 8 are allowed. The configuration is equal to the embedded
external applications, described in a different chapter.
Example:

LOCAL CONST stationapp IMM_Applications{2}:=

[["Monitor","","TpsViewExtended.dll","Extended",

"Monitor:MainScreen"],["Execution status","",

"TpsViewExtended.dll","Extended",

"ExecutionStatus:MainScreen"]];

This declaration represents a station application with a the menu text Monitor, the
application library TpsViewExtended.dll. Inside the application, the view
MainScreen has been selected as the startup view.

Limitations
ScreenMaker application variables will only be initialized in the main screen of the
application. If a sub window is opened directly it must be observed that application
variables cannot be used.
If nevertheless application variables are used when opening a subwindow directly,
an error will be generated when launching the view.

66 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.4.4 Station applications
Continued

6.3.5 General Signals

Displaying signals in the GUI
General signals can be accessed in 2 different locations inside RWMT:

In the startup view

In the production view

Please refer to the chapter General signal view on page 94, to get a detailed
description.

3HAC044398-001 Revision: C 67
© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.5 General Signals

6.3.6 Part data

Use of part data
The part data, represented by the data type partdata form the basis for the
program execution within RWMT. The program run and ultimately even the
movement paths and positions should all refer to the part that has to be handled
currently.
With the help of several declarations of the data type partdata, the following can
be realized for different parts:

• Completely different production processes or
• a production process with different gripper and rest positions.
• A check of the program code and the gripper codes as well as up to 8

additional codes, that might be necessary to continue production
Declarations of the data type partdata create a visual representation in the part
data submenu of the production view.

Explanation of the part data-components
A partdata declaration contains all the necessary information related to the part.
The components that are most important for a further understanding will be
explained in the following table. A complete list of all the components of partdata
can be obtained from the chapter Data types on page 259.

ExplanationInformation in partdata

Description of the part type.Description

This is the start up routine for the production process of the
concerned part.

Routine that is to be called

Different, each of which can be described by a separate part
data declaration, can thus have a separate production routine
each.
This is then called by selecting the corresponding part.

When having a multimove application, the robots might be ex-
ecuting production cycles with different part types, or they
handle the same part types. So a decision must be taken in
which motion tasks the part type is valid.

Motion tasks, where the
part shall be executed

Here, it is possible to decide if the concerned part has various
production processes, or so-called cycles. More details of this
can be obtained from the chapter Program cycles on page 73.

Selecting and deselecting
cycles

One means of beginning the production for a part type is by
making the higher controls send a program code to the robot
controls.

Program code and type
code

Another code may be necessary for the indexing within the robot
programs. Hence, a part data declaration always contains a
type code. This can be identical with the program code, but
need not be. In this way, the indexing can be done in an inde-
pendent manner for use in the higher order controls and in the
robot controls.
Positive values are allowed only for a valid program code and
type code, excluding the 0 (zero). Otherwise it will not be con-
sidered by RWMT.

Continues on next page
68 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.6 Part data

ExplanationInformation in partdata

The tool code is the code of the tool (that is to be used by the
robot). This is important if there could be a need to change the
tool in the robot.

Tool code and the check
codes

The check codes could be form codes of pressing tools, for in-
stance (press molding).
The codes can be used to ensure that, for the part that is to be
handled in each case, the correct gripper is engaged or that
the peripheral machines are equipped properly. If this is not
the case, the production will not start.
Positive values are allowed only for a valid tool code and the
check codes, excluding the 0 (zero). Otherwise they will not be
considered by RWMT.

Examples for parameterization
Example 1:
In the following sample code, there is a part type, Type1.
Type1 is a part type with the program number 1 and the type number 100. It can
manage without cycles and it does not need any tool code or other codes as
condition for the processing. If this part type is selected for the production, then,
on being called, it will execute the routine Production in which the corresponding
production process has been programmed.
The significance of the initialization values of every part type partdata can be
obtained from the chapter Data types on page 259.

MODULE IMM

…

…

!************************************

! Part type declarations

!************************************

TASK PERS partdata pdPartType:=["Type1",

"Production ","",TRUE,1,100,1,

-1,[-1,-1,-1,-1,-1,-1,-1,-1], "Part1.GIF",

[1.5,[0,0,0.001],[1,0,0,0],0,0,0]

…

!************************************

! Production routine

!************************************

PROC Production()

…

UnloadMachine11;

LoadMachine2;

…

ENDPROC

…

…

ENDMODULE

Continues on next page
3HAC044398-001 Revision: C 69

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.6 Part data

Continued

Example 2:
In the following sample code there are two part types TypeA and TypeB.
TypeA is a part type with the program number 2 and the type number 110. It can
manage without cycles. TypeA requires the tool code 10 and a few more codes as
condition for the processing. If this part type is selected for the production, the
result is that the Routine ProdA, in which the corresponding production process
has been programmed in detail, will be called.
TypeB is a part type with the program number 3 and the type number 200. It uses
the start-up cycles, normal cycles and run-out cycles. It does require the tool code
11 and no other codes as condition for the processing. If this part type is selected
for the production, the result is that the Routine ProdB, in which the corresponding
production process has been programmed in detail, will be called.
The significance of the initialization values of every part type partdata can be
obtained from the chapter Data types on page 259.

MODULE IMM

…

!************************************

! Part type declarations

!************************************

TASK PERS partdata pdPartTypeA:=["TypA",

"ProdA","",TRUE,2,110,3,

10,[8,1,9,-1,-1,-1,-1,-1],

"PartA.GIF",[1.5,[0,0,0.001],[1,0,0,0],0,0,0],""];

!

TASK PERS partdata pdPartTypeB:=["TypB",

"ProdB","",FALSE,3,200,4,

11,[-1,-1,-1,-1,-1,-1,-1,-1],

"PartB.GIF",[1.5,[0,0,0.001],[1,0,0,0],0,0,0]," "];

…

!************************************

! Cycle declarations

!************************************

!Definition of the cycle list

TASK PERS cycledata MT_CycleList{20}:=

[

["Start cycles","",1,1,1,0,2,0],

["Normal cycles","",2,1,10,0,3,0],

["Runout cycles","",3,1,2,0,0,0],

["","",0,0,0,0,0,0],

["","",0,0,0,0,0,0],

…

!************************************

! Production routine

! Part type TypeA

!************************************

PROC Production()

…

UnloadMachine1;

LoadMachine2;

Continues on next page
70 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.6 Part data
Continued

…

ENDPROC

…

…

!************************************

! Production routine

! Part Type TypeB

!************************************

PROC ProdB()

…

!If startup cycle is requested

IF MT_GetCycleIndex()=1 THEN

StartupCycle;

!If a normal cycle is requested

ELSEIF MT_GetCycleIndex()=2 THEN

NormalCycle;

!If a runout cycle is requested

ELSEIF MT_GetCycleIndex()=3 THEN

RunoutCycle;

ENDIF

…

…

ENDPROC

…

…

ENDMODULE

Continues on next page
3HAC044398-001 Revision: C 71

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.6 Part data

Continued

Representation on the RWMT screen
The defined parts and their detailed information are displayed on the RWMT-screen
for selection. The selection can be done manually or exclusively through the
program number of an external higher order controls that has been transferred
(see the chapter MT Program selection on page 167).
Sample display:

en1200000755

The parts view that is shown, as well as the parts selection will be explained in
detail in the RWMT Operating manual listed in the section References on page 11.

72 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.6 Part data
Continued

6.3.7 Program cycles

Use of cycle types
A program cycle describes the production process from the point of view of the
robot, starting from the home position or safe position with the first handling action
at a station upto its return to the home position or the safe position after completion
of the last handling action.
In the following examples, there could be just one production process for a part
type, or several processes could be required during the production for one and
the same part type. In the latter case, RWMT supports the programmer with a
concept for defining various cycles.
The cycles can be defined through a list MT_CycleList{20}, which is present in
the delivered state of RWMT in the module MT_Main. This list thus supports up to
20 different cycles. It is based on the data type Cycledata, which is explained in
the chapter Data types on page 259.

Explanation of the various types of cycles
To enable a handling of cycles that is as flexible as possible, different types of
cycles have been implemented in RWMT:

ExplanationCycle type

Continuous cycles are run without conditions. Normally, the
execution is carried out till a Halt after end of cycle is requested.

Continuous cycle

Application example:
Production with recurring process

Counter cycles are executed with the help of a counter, specify-
ing the number of repetitions.

Counter cycle

Application example:
Batch finishing of 100 parts, for instance

Action cycles will be executed only on request from the user
interface. The number of direct repetitions is specified.

Action cycle

Application example:
Specific request for ejecting parts for manual quality control

Periodic cycles are called in a recurring (periodic) manner during
the program execution. Here, it is necessary for this type of
cycle to specify the number of cycles of another cycle type after
which the periodic cycle should be executed.

Periodic cycle

The number of immediate repetitions is also specified.
Application example:
Regular ejection of parts for manual quality control.

Sample applications
In the easiest case, there is only one (main) cycle, in which the process is always
the same.
Example:

• Leave the home position / safe position
• Unload machine 1
• Load machine 2

Continues on next page
3HAC044398-001 Revision: C 73

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.7 Program cycles

• Return to the home position / safe position
In many cases, however, it is necessary to envisage different cycles (that is,
production processes), because different processes are required at the beginning
and at the end of the production, than during a normal production cycle.
Example:

1 Filling cycles, execution 10 times in direct succession
• Leave the home position
• Unload machine 1
• Load the storage 10 times
• Return to the safe position

2 Normal cycles, execution till the halt after end of cycle is requested
• Leave the safe position
• Unload the storage 10 times
• Load machine 2
• Unload machine 1
• Load the storage 10 times
• Leave the safe position

3 Idle run cycles, execute till storage is empty
• Leave the safe position
• Unload the storage 10 times
• Load machine 2
• Leave the safe position

Once the storage is completely empty: Return to the home position and end of
program.

Example for parameterization
In the following sample code, a start up cycle is parameterized, followed by a
normal cycle and then the run out cycle. Here the start up cycle is executed once,
the normal cycle is executed 10 times and the run out cycle is executed two times
successively. Thus, these are exclusively counter cycles.
The meaning of the initialization values of each cycle data can be obtained from
the chapter Data types on page 259 of this manual.

MODULE IMM

…

…

!************************************

! cycledata declaration

!************************************

!Definition of the cycle list

TASK PERS cycledata MT_CycleList{20}:=

[

["Start cycles","",1,1,1,0,2,0],

["Normal cycles","",2,1,10,0,3,0],

["Runout cycles","",3,1,2,0,0,0],

Continues on next page
74 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.7 Program cycles
Continued

["","",0,0,0,0,0,0],

["","",0,0,0,0,0,0],

…

…

!************************************

! Production routine

!************************************

PROC Production()

…

!If startup cycle is requested

IF MT_GetCycleIndex()=1 THEN

StartupCycle;

!If a normal cycle is requested

ELSEIF MT_GetCycleIndex()=2 THEN

NormalCycle;

!If a runout cycle is requested

ELSEIF MT_GetCycleIndex()=3 THEN

RunoutCycle;

ENDIF

…

…

ENDPROC

…

…

ENDMODULE

Representation on the RWMT screen
The defined cycles are displayed for selection on the RWMT screen if the selection
is not done exclusively through an external signal interface (for this, see the chapter
MT Program selection on page 167).
If the production has not been started yet, then only counter cycles and continuous
cycles will be offered for selection. Once the production has started, even action
cycles can be selected. Periodic cycles, which are called automatically once the
defined period has lapsed, cannot be selected.

Continues on next page
3HAC044398-001 Revision: C 75

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.7 Program cycles

Continued

Sample display:

en1200000756

The description of the action that is triggered by the buttons is given in the RWMT
Operating manual listed in the section References on page 11.
The cycles that have been created earlier can be edited in the RWMT screen. The
description of the editing functions can also be obtained from the RWMTOperating
manual listed in the section References on page 11.

External cycle selection
In addition to the cycle selection on the FlexPendant, this selection can be done
remotely through digital IO signals.

76 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.7 Program cycles
Continued

6.3.8 Grippers

Overview
RWMT provides a RAPID-support for actuating and controlling the control elements
of grippers (for example, clamps or vacuum cups), for sequential actuation of
several control elements as well as for checking part controls at the grippers. The
actuators and part controls can be configured freely and can be customized for
any desired gripper.
Through the declaration of gripper data (grpdata, grpseq, grppart), moreover,
the corresponding gripper will also get a graphic representation in the GUI. Here,
the status of the gripper can be shown and the gripper can also be actuated.

Control elements
For every control element, a control element configuration of the data type grpdata
should be created.
An Action can be controlled on the gripper with a control element. Normally, a
valve is switched with this. Up to 4 pairs of sensors (e.g. end position check in the
case of cylinders) can be used for each valve. Through the configuration, control
elements can be described with various options.
The configuration of the control elements is used with the instruction MT_GripSet
and MT_GripCheck. Up to 6 actuators can be used simultaneously.
Example:

MODULE MT_MAIN

!Declaration for sucking gripper

TASK PERS grpdata gdSucker1:=

[

"Sucker",1,TRUE,0.2,TRUE,TRUE,

["doVacuum1On",0,"doBlow1On",0.2,

"Vacuum on","Vacuum off"],

["Vacuum 1 ok","diVacuum1OK",""],

["","",""],["","",""],["","",""]

];

PROC GripperTestVariant1

!Switch on gripper vacuum, no check of feedback

MT_GripSet gsVacuumOn,gdSucker1\NoCheck;

!Wait until gripper vacuum is switched on

MT_GripCheck gsVacuumOn,gdSucker1;

!Switch off gripper vacuum, no check of feedback

MT_GripSet gsVacuumOff,gdSucker1\NoCheck;

!Wait until gripper vacuum is switched off

MT_GripCheck gsVacuumOff,gdSucker1;

ENDPROC

PROC GripperTestVariant2

!Switch on gripper vacuum, check feedback

MT_GripSet gsVacuumOn,gdSucker1;

!Switch off gripper vacuum, check feedback

Continues on next page
3HAC044398-001 Revision: C 77

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.8 Grippers

MT_GripSet gsVacuumOff,gdSucker1;

ENDPROC

ENDMODULE

Sequences
In some areas of production, such as injection moulding, the robot grippers normally
consist of several control elements, e.g. vacuum gripper, tongs, etc, which need
to be connected one after the other and not simultaneously (e.g. swivel, switch on
vacuum and close gripper).
For implementing this sequence of connections or switching operations, RWMT
offers two options:

• Multiple use of the GripSet instruction one after the other
• Defining the control elements that are to be connected in an array of the data

type grpsequence , which will be passed to an instruction for processing.
Example 1:

MODULE MT_Main

!gripper data of the individual control elements

const grpdata gdY1:=[…];

const grpdata gdY2:=[…];

const grpdata gdY3:=[…];

const grpdata gdY4:=[…];

!gripper sequence

const grpseq gsOpenSeq {3}:=

[[gsClose,gaSetAndCheck,"gdY1","","","","","",0],

[gsOpen, gaSetAndCheck,"gdY2","gdY3","", "","","",0],

[gsClose, gaSetAndCheck,"gdY4”,"","", "","","",0]];

PROC SeqTest()

!Testing the gripper sequence

MT GripSequence\Sequence:=gsOpenSeq;

ENDPROC

ENDMODULE

Some gripper sequences for different part types might differ. In this case, the
names of the gripper sequence declarations can be assigned an additional index.
Those sequences can be called dynamically by means of the GripSequence
instruction.
Example 2:

MODULE MT_Main

!Gripper data for the available actuators

const grpdata gdY1:=[…];

const grpdata gdY2:=[…];

const grpdata gdY3:=[…];

Continues on next page
78 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.8 Grippers
Continued

const grpdata gdY4:=[…];

const grpdata gdY5:=[…];

const grpdata gdY6:=[…];

const grpdata gdY7:=[…];

!Gripper sequence for part type 1

const grpseq gsOpen_T1 {3}:=

[[gsClose, gaSetAndCheck,"gdY1","","","","","",0],

[gsOpen,gaSetAndCheck,"gdY2",“gdY3“,"","","","",0],

[gsClose, gaSetAndCheck,"gdY4“,"","","","","",0]];

!Gripper sequence for part type 14

const grpseq gsOpen_T14 {3}:=

[[gsClose, gaSetAndCheck,"gdY4","","","","","",0],

[gsOpen, gaSetAndCheck,"gdY6","gdY7","","","","",0],

[gsClose, gaSetAndCheck,"gdY5","","","","","",0]];

PROC SeqTest()

!Test gripper sequence for a specific part, defined

!by its program number

MT_GripSequence \SeqName:="gsOpen_T"+ValtoStr(nProgNo);

ENDPROC

ENDMODULE

Part controls
With the help of the instruction MT PartCheck and the data type grppart, RWMT
provides a means of testing the component control sensors on a gripper. If the
sensor status does not correspond to the state which is to be checked, then, an
error message is output after a waiting period.
The check can be queried, optionally, for part controls busy (high) or part controls
free (low).
Example :

MODULE MT_Main

!gripper data of the individual control elements

const grppart gpPartControl:=

["Part control“,1,

["Sensor 1","diSensor1"],["Sensor5","diSensor2"]

["Sensor 2","diSensor3"] ["Sensor6","diSensor4"]

["Sensor 3","diSensor5"] ["Sensor7","diSensor6"]

["Sensor 4","diSensor7"] ["Sensor8","diSensor8"]];

PROC SeqTest()

!Teilekontrolle mit Sensoren auf "high" durchführen

Continues on next page
3HAC044398-001 Revision: C 79

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.8 Grippers

Continued

MT PartCheck high, gpPartControl;

ENDPROC

ENDMODULE

A check is conducted to see if all the part sensors of the part controls of the gripper
are busy.
Instead of labels like Sensor 1, the electrical identifier can be used which might
be helpful for technical service staff.

Continuative example 1: One actuator and one part control
!

MoveJ *, vmax, fine, tGRP1;

!

!open actator 11 without monitoring (simultaneously to robot
movement)

MT_GripSet gsOpen, gdGRP1_STG11\NoCheck;

!

MoveJ *, vmax, z200, tGRP1;

MoveL *, vmax, z50, tGRP1;

!

!Check if the required position has been reached

MT_GripCheck gsOpen, gdGRP1_STG11;

!

!Move to gripping position

MoveL pGrip, vmax, fine, tGRP1;

!

!Check part control 1 for condition high (part in the gripper)

MT_PartCheck high, gstGRP1_BT01;

!

!Grip part = Close actuator 11

MT_GripSet gsClose, gdGRP1_STG11;

!

MoveL *, vmax, z50,tGRP1;

MoveJ *, vmax, z200,tGRP1;

MoveL *, vmax, z50,tGRP1;

!

!Move to drop position

MoveL pDrop, vmax, fine, tGRP1;

!

!Drop part = Open actuator 11

MT_GripSet gsOpen, gdGRP1_STG11;

!

!Move away from drop position

MoveL *, vmax, z5, tGRP1;

!

!Check part control 1 for condition low (no part in the gripper)
MT_PartCheck low, gpGRP1_BT01;

!

MoveJ *, vmax, z200, tGRP1;

MoveJ *, vmax, z200, tGRP1;

Continues on next page
80 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.8 Grippers
Continued

!

!Close actuator 11 (simultaneously to gripper movement)

MT_GripSet gsClose, gdGRP1_STG11\NoCheck;

!

MoveJ *, vmax, z5, tGRP1;

MoveJ *, vmax, z5, tGRP1;

Continuative example 2: Multiple actuators and part controls
The actuators 14 and 15 must be closed before using the actuators 11, 12 and 13
to grip a part since otherwise the clamps would collide with the machine in the grip
position.

MoveJ *, vmax, fine, tGRP1;

!

!Open actuators 11, 12 and 13

!without monitoring

MT_GripSet gsOpen,gdGRP1_STG11\Grp2:=gdGRP1_STG12

\Grp3:=gdGRP1_STG13\NoCheck;

!

!Close actuators 14 and 15 without monitoring

MT_GrpSet gsClose,gdGRP1_STG14

\Grp2:=gdGRP1_STG15\NoCheck;

!

MoveJ *, vmax, z200, tGRP1;

MoveL *, vmax, z50, tGRP1;

!

!Check actuators 11, 12 and 13 for open state

MT_GripCheck gsOpen,gdGRP1_STG11

\Grp2:=gdGRP1_STG12\Grp3:=gdGRP1_STG13;

!Check actuators 14 and 15 for closed state

MT_GripCheck gsClose,gdGRP1_STG14

\Grp2:=gdGRP1_STG15;

!

!Move to gripping position (zone fine!)

MoveL pGrip, vmax, fine, tGRP1;

!

!Check part control 1,2,3,4,5 for condition “high“

!to make sure the part is located in the gripper

MT_PartCheck high,gpGRP1_BT01\Part2:=gpGRP1_BT02

\Part3:=gpGRP1_BT03

\Part4:=gpGRP1_BT04\Part5:=gpGRP1_BT05;

!

!Grip part = Close actuators 11 , 12 , 13

!and activate load for inner part

MT_GripSet gsClose,gdGRP1_STG11\Grp2:=gdGRP1_STG12

\Grp3:=gdGRP1_STG13\PartLoad:=loInnerPart;

!

MoveL *, vmax, z50, tGRP1;

MoveJ *, vmax, z200,tGRP1;

!

Continues on next page
3HAC044398-001 Revision: C 81

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.8 Grippers

Continued

!Move to drop position (zone fine!)

MoveL pDrop, vmax, fine, tGRP1;

!

!Drop part = Open actuators 11,12,13 and

!activate load0

MT_GripSet gsOpen, gdGRP1_STG11\Grp2:=gdGRP1_STG12

\Grp3:=gdGRP1_STG13\PartLoad:=load0;

!

!Leave drop position

MoveL *, vmax, z5, tGRP1;

!

!Check part control 1,2,2,4,5 for condition “low“

MT_PartCheck low, gpGRP1_BT01\Part2:=gpGRP1_BT02

\Part3:=gdGRP1_BT03\Part4:=gpGRP1_BT04

\Part5:=gpGRP1_BT05;

MoveJ *, vmax, z200, tGRP1;

!Open actuator 14 und 15 without monitoring

MT_GrpSet gsClose, gdGRP1_STG14\Grp2:= gdGRP1_STG15\NoCheck;

Continuative example 3: Gripping and dropping multiple parts
3 actuators, 3 part controls and 3 heavy parts, that are picked in a certain order
and later dropped in the same order (part 1, 2, 3)
The following loaddata are to be used
Gripping part 1, load 1= loPart1
Gripping part 2, load 1 + 2 = loPart1_2
Gripping part 3, load 1,2 + 3 = loPart1_2_3
Dropping part 1 load 2+ 3 = loPart2_3
Dropping part 2 load 3 = loPart3
Dropping part 3 load 0 = load0
The loaddata must be identified by means of LoadIdentify for each
combination.

! Grip part 1

!

!Move to gripping position of part 1

MoveL pGrip1, vmax, fine, tGRP1;

!

!Check part control 1 for condition “1“

!(part located in the gripper)

MT_PartCheck high, gpGRP1_BT01;

!

!Grip part 1 = Close actuator 11 and set

!load for part 1

MT_GripSet gsClose, gdGRP1_STG11

\PartLoad:=loPart1;

!

MoveL *, vmax, z50, tGRP1;

Continues on next page
82 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.8 Grippers
Continued

MoveJ *, vmax, z200, tGRP1;

!

! Grip part 2

!

!Move to gripping position of part 2

MoveL pGrip2, vmax, fine, tGRP1;

!

!Check part control 2 for condition “1“

!(part located in the gripper)

MT_PartCheck high, gpGRP1_BT02;

!

!Grip part 2 = Close actuator 12 and set

!load for part 1 + part 2

MT_GripSet gsClose, gdGRP1_STG12

\PartLoad:=loPart1_2;

!

MoveL *, vmax, z50, tGRP1;

MoveJ *, vmax, z200, tGRP1;

!

! Grip part 3

!

!Move to gripping position of part 3

MoveL pGrip3, vmax, fine, tGRP1;

!

!Check part control 3 for condition “1“

!(part located in the gripper)

MT_PartCheck high, gpGRP1_BT03;

!

!Grip part 3 = Close actuator 13 and set

!load for part 1, 2 and 3

MT_GripSet gsClose, gdGRP1_STG13

\PartLoad:=loPart1_2_3;

!

MoveJ *, vmax, z200, tGRP1;

MoveJ *, vmax, z200, tGRP1;

!

! Drop part 1

!

!Move to drop position 1

MoveL pDrop1, vmax, fine, tGRP1;

!

!Drop part 1 = Open actuator 11 and set

!load for part 2 and part 3

MT_GripSet gsOpen, gdGRP1_STG11

\PartLoad:=loPart2_3;

!

!Leave drop position

MoveL *, vmax, z5, tGRP1;

!

!Check part control 1 for condition “0“

MT_PartCheck low, gpGRP1_BT01;

Continues on next page
3HAC044398-001 Revision: C 83

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.8 Grippers

Continued

!

MoveJ *, vmax, z200, tGRP1;

MoveJ *, vmax, z200, tGRP1;

!

! Drop part 2

!

!Move to drop position 2

MoveL pDrop2, vmax, fine, tGRP1;

!

!Drop part 2 = Open actuator 12 and

!set load for part 3

MT_GripSet gsOpen, gdGRP1_STG12

\PartLoad:=loPart3;

!

!Leave drop position

MoveL *, vmax, z5, tGRP1;

!

!Check part control 2 for condition “0“

MT_PartCheck low, gpGRP1_BT02;

!

MoveJ *, vmax, z200, tGRP1;

MoveJ *, vmax, z200, tGRP1;

!

! Drop part 3

!

!Move to drop position 3

MoveL pDrop3, vmax, fine, tGRP1;

!

!Drop part 2 = Open actuator 13 and

!set load0

MT_GripSet gsOpen, gdGRP1_STG13

\PartLoad:= load0;

!

!Leave drop position

MoveL *, vmax, z5, tGRP1;

!

!Check part control 3 for condition “0“

MT_PartCheck low, gpGRP1_BT03;

!

MoveJ *, vmax, z200, tGRP1;

MoveJ *, vmax, z200, tGRP1;

Continues on next page
84 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.8 Grippers
Continued

Representation in the RWMT user interface
If data of the type grpdata, grpsequence or grppart is declared, then these
declarations will be represented on the graphic user interface in the form of list
views for every data type.
The state of the actuators (control elements) and sensors can be checked through
the selection of a specific actuator in the list.
It is also possible to actuate the control elements in the Setup mode of operation
of the robot in the user interface.

en1200000758

en1300000062

3HAC044398-001 Revision: C 85
© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.8 Grippers

Continued

6.3.9 Service routines

General
This chapter explains how set up routines and service routines can be set up or
configured.
Service routines are used for service jobs and set up jobs and differ in the manner
in which they are executed:

• Service routines of the Type I are executed instead of a production program.
• Service routines of the Type II are executed in parallel with the normal

program run, hence the program pointer in the robot program is not changed.
In the service menu, all the menu declarations are displayed depending on the
permissions of the user who has logged in.
If the robot is in the required mode of operation and the specified position, then,
a service routine can be executed.

en1200000759

Differences between the service routine types
There are two types of service routines, which differ as follows:

Type IIType IProperty

YesNoWill the service routine be executed in parallel with
the stopped robot program?

NoYesProcessing possible in the automatic mode?

NoYesAre interrupts processed?

NoYesAre event routines processed

NoYesCan the service routine be started through an external
program number selection?

Based on the type of processing of the service routines. one has to decide the type
that is to be used with the help of the requirement of the service routine that is to
be required.
Example for the service routine type I:

Continues on next page
86 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.9 Service routines

The robot should execute movements and should be in a position to move safely
to the home position through the HomeRun function. Furthermore, if a processing
program is interrupted, it should be continued afterwards.
Example for the service routine type II:
The robot should not execute any movements, or after cancellation, should be
moved manually to the home position. The service routine should be executed
through an interruption in the processing program. The processing program should
be continued again after the service routine has ended.

Declaring a service routine
A service routine is defined through a menu declaration of the data type menudata.
Example:

CONST menudata mnuGreiferWechsel:=

["Change Gripper","Gripper","station-gripper.png",
"GripperChange","",3.TRUE,1000,1,50];

Apart from the menu text, a category as well as an icon that will be displayed in
front of the menu entry can be specified.
If a large number of service routines are used, then, the display of menu entries
can be filtered with the help of the category, so that only the entries with identical
category are displayed.
Positive values are allowed only as a valid program code for menudata declarations.

Position dependent release
If a service routine may be executed only if the robot is at a particular position,
then the corresponding coding must be specified under
menudata.ValidPosition. If several positions are allowed then the coding
should be determined by addition (e.g. home position (ValidPosition=1) OR
safe position (ValidPosition=2) gives the ValidPosition=3).
If the position of the robot cannot be checked then the value 255 should be
specified.

Processing in the automatic mode
To be able to execute a service routine of the Type I in the automatic mode,
menudata.RunInAutoMode must be set to TRUE, so that the menu entry is
activated.

Execution by dialing the program number
Service routines of the Type I can be executed by dialing a program number
(menudata.ProgCode). To do so, the number of the corresponding service routine
is communicated instead of the program number for a processing program.

Note

To execute a service routine of the Type I, the cell mode of operation Service
should be set.

Continues on next page
3HAC044398-001 Revision: C 87

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.9 Service routines

Continued

Defining the menu type
The menudata.menu type is set through the following numbers:

1 Service routine Type I
2 Service routine Type II

User controlled menu display
To prevent service routines from being called inadvertently, the display of menu
entries can be controlled depending on the level of knowledge of the user who has
logged in.
For this, the minimum user level (menudata.MinUserLevel) of the menu
declaration is compared with the user level of the user who has logged in, and only
those menu entries whose minimum user level is less than or equal to the user
level will be displayed.

Additional information for service routines of type I
If the robot program was not running while launching a service routine, the robot
program stops after the service routine is finished.
If the execution of a service routines is allowed only if the robot is located in home
position, the robot program stops after the service routine is finished.

88 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.9 Service routines
Continued

6.3.10 Advanced HotEdit

RWMT and HotEdit
To change the robot positions during an ongoing operations, the standard HotEdit
is used.
Since there is difficulty in selecting the desired positions quickly through a filter,
the user interface is used as an intermediate step for selecting the positions.
With the help of array data declarations of the data type hoteditdata, the desired
positions are saved along with their routine name and module name as well as a
descriptive text and an icon (for example, a station icon) and offered for selection
in the HotEdit window of the user interface.

en1200000761

The aim of this pre-selection is to offer only those positions which belong to the
part which is being processed currently, for selection. Furthermore, only a few
positions will need to be modified always, as a rule (e.g. gripper positions and
deposit positions).

Program concepts for pre-selection
Depending on the structure of the program, different options are available for
creating a HotEdit declaration.
The following program structures are possible:

• No part type indexed movement routines and positions will be used (e.g.
PROC mv11_12)

• For every type (part), a program module with local data and routines will be
used. The program module is indexed in a type related manner, for example,
MODULE PART_4711.

• Global, type specific movement routines and positions are used (for example,
PROC mv11_12_T4711).

Continues on next page
3HAC044398-001 Revision: C 89

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.10 Advanced HotEdit

Declaration of the pre-selection
In order to be able to represent these program structures in a HotEditData
declaration, the following possibilities exist:
All the generally valid positions can be declared, for instance, in one or more arrays
of the data type hoteditdata.

CONST hoteditdata hedGeneral{5}:=

[[„IMM Grip Position“,…],[…],[…],[…],[…]];

Type dependent declaration

Introduction
If the naming convention is the same for all the positions that are to be modified,
then these differ only in terms of the type number or program number, hence, the
wildcard & can be used for the type number and the wildcard % can be used for
the program number in the declaration.
If the wildcard & is used and a part does not use a type code (-1), the program
code will be used automatically.

Program module
A type dependent program module MODULE PART_4711 is parameterized as
follows:

Module name for type coding 4711.PART_4711

Module name for the current type coding, for example, PART_14, if the
current type code is 14.

PART_&

Module name for the current program code, for example, PART_5, if the
current program code is 5.

PART_%

Routine name
A type dependent routine PROC mv11_12_T4711 is parameterized as follows:

Name of the routine for type coding 4711.mv11_12_T4711

Name of the routine for current type coding, for example, mv11_12_T8,
if the current type code is 8.

mv11_12_T&

Name of the routine for current program code, for example, mv11_12_T3,
if the current program code is 3.

mv11_12_T%

If we use only the placeholders:

The module name is built by using the module name prefix of the section RWMT
part settings of the process configuration, the type prefix of the section "RWMT
part settings" of the process configuration and the current type code.

- &

The module name is built by using the module name prefix of the section RWMT
part settings of the process configuration, the type prefix of the section "RWMT
part settings" of the process configuration and the current program code.

- %

Name of the position (robtraget)
A type dependent Position robtarget p11_T4711 is parameterized as follows:

Position name for type coding 4711.p11_T4711

Position name for current type coding, for example, p11_T9, if the current
type code is 9.

p11_T&

Continues on next page
90 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.10 Advanced HotEdit
Continued

Position name for current program code, for example, p11_T5, if the
current program code is 5.

p11_T%

Type dependent module, local data, and routines
CONST hoteditdata hedExample{1}:=

[[“IMM pick position“,““,“PART_&“,“mv10_11“,“p11“,““,““]];

Type dependent data and routines
CONST hoteditdata hedExample{1}:=

[[“IMM pick position“,““,““,“mv10_11_T&“,“p11_T&“,““,““]];

Type dependent HotEdit array declaration
If different positions are changed in different types, and hence these cannot be
represented by wild cards, then, the entire data declaration can be done in a type
dependent manner.
This means that the names of the constants of the HotEditData array will receive
at the end the tag or suffix _T with the corresponding type number or program
number:

CONST hoteditdata hedIMM_T4711{1}:=

[[“IMM pick position“,““,““,“mv10_11_T&“,“p11_T&“,““,““]];

Note

The menu entries of the type dependent data declarations will be displayed only
if the corresponding type has been selected.

Example
For the operations of an injection casting machine, the program is structured in
such a way that all the movements of the robot are in type dependent program
modules. The data declarations and routines are declared LOCALLY.
The naming of the unload position of the injection casting machine (PROC mv11_12),
as well as the position of depositing on the conveyor belt (PROC mv30_32) is the
same for all types, but differs only in terms of the module name.
The parts for the types 4711 and 815 must also be cut, whereby the number and
the names of the positions is differentiated by the line (PROC mv20_21) (?).
=> data declaration for the generally valid position:

CONST hoteditdata hedGeneral{2}:=[

[“IMM grip position“,“station-IMM.png“,“PART_&“,

“mv10_11“,“p11“,““,““]

[“Drop position conveyor“,“station-conveyor.png“,“PART_&“,

“mv30_31“,“p31“,““,““]

];

=> type dependent declaration
CONST hoteditdata hedCutting_T4711{2}:=[

[“Cutting positions group 1“,“station-cutter.png“,“PART_&“,

“mv20_25“,“p21_P1,p21_P2,p21_P3“,““,““]

[“Cutting positions group 2“,“station-cutter.png“,“PART_&“,

“mv20_25“,“p22_P1,p22_P2,p22_P3“,““,““]

];

Continues on next page
3HAC044398-001 Revision: C 91

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.10 Advanced HotEdit

Continued

CONST hoteditdata hedCutting_T815{2}:=[

[“Cutting positions group 1“,“station-cutter.png“,“PART_&“,

“mv20_25“,“p21_P1,p21_P2“,““,““],

[“Cutting positions group 2“,“station-cutter.png“,“PART_&“,

"mv20_25","p22_P1,p22_P2","",""],

[“Cutting positions group 3“,“station-cutter.png“,“PART_&“,

"mv20_25","p23_P1,p23_P2","",""]

];

92 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.10 Advanced HotEdit
Continued

6.3.11 External applications

General
Besides the station-dependent application screens (see Station applications on
page 65), the external application screens can be launched in RWMT, that do not
depend on a station, but have a more general purpose.
The purpose of these applications is to enlarge the possibilities to control or monitor
general functions of the application, if the possibilities of RWMT do not totally fit
the individual customer expectations.
As a difference to the station application screens, the external applications can be
launched as embedded or non-embedded applications.

Note

Embedded means, that when having started such an application, the RWMT GUI
view cannot be accessed until the application is closed. So each application
must have a Close button, to be able to come back to RWMT.

For each application screen, customized images can be used for the menu
representation in RWMT. Up to 8 different external applications can be applied to
the production view.
In the following example, 4 external applications have been assigned. One of those
applications is the standard production window of the FlexPendant, the other
applications are customer screens.

en1300000063

The following standard views of the FlexPendant can be applied to the menu:
• Production
• Rapid Editor
• Rapid Data
• Backup & Restore

Defining external applications
External applications have to be applied in the process configuration of RWMT in
the section MT Applications. Please refer to chapter MT Applications on page173
to get detailed information, since there are various ways depending on the type of
application.

3HAC044398-001 Revision: C 93
© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.3.11 External applications

6.4 General signal view

Usage

In the general signal view , upto eight tab panes can be displayed, with digital
inputs and outputs, group inputs and group outputs or analog inputs and outputs.
The outputs can be set or reset by the operator in the manual mode of operation.
In the automatic mode, this is allowed only if the access level (EIO.CFG) of the
respective signal has the corresponding permissions.

en1200000757

The configuration of a signal page is done with the help of the data types
signalpage and could be declared as CONST or LOCAL CONST.
The name of the constant of the signal page will not be evaluated, it should be
unique in the TASK.
The name of the tab pane is defined through signalpage.PageName. If several
signal page declarations contain the same page name, then all the signals in a tab
pane will be displayed, that is, more than 20 signals can be displayed per page in
this way.
The position of the respective tab pane is defined by the signalpage.PageIndex.
If the number of pages present is unknown and if one wishes to display a page on
the extreme right, then the PageIndex should be selected as greater than or equal
to 8. If a page should always appear on the extreme left, then the PageIndex

should be selected as less than or equal to 0.
If several signal page declarations contain the same PageIndex the tabs will be
sorted using the PageName.

Continues on next page
94 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.4 General signal view

Example:
CONST signalpage spEUROMAP1:=["Euromap 67",1,

"diIMM_MouldOpen","diIMM_PusherRetracted", "diIMM_PusherForwarded",

"diIMM_Core1Retracted","diIMM_Core1Forwareded","diIMM_Scrap",

"diIMM_Automatic","diIMM_MouldClosed","diIMM_MouldIntermedPos",

"diIMM_Core2Retracted","diIMM_Core1Forwareded ","diIMM_Manufact1",

"","","","","","","",""];

Declaration of a signal page with the inputs from the EUROMAP 67-interface of an
injection moulding machine.

3HAC044398-001 Revision: C 95
© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.4 General signal view

Continued

6.5 Setup view

6.5.1 General

The setup routines in the setup view are auxiliary routines that are used
while setting up the robot at the time it is commissioned for operations (for example,
measuring a work object, and so on).
This chapter explains how the setup routines can be configured.
In the setup menu all the menu declarations are displayed depending on the
permissions of the user who has logged in.
If the robot is in the required mode of operation and the specified position, then,
a setup routine can be executed by accessing the following view.

en1300000066

96 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.5.1 General

6.5.2 Declaring a setup routine

Introduction
A setup routine is defined through a menu declaration of the data type menudata.
Example:

CONST menudata mnuGripperChange:=

["Change Gripper","Gripper","station-gripper.png",
"GripperChange","",3,TRUE,1000,3,50];

Apart from the menu text, a category as well as an icon that will be displayed in
front of the menu entry can be specified.
If a large number of setup routines are used, then, the display of menu entries can
be filtered with the help of the category, so that only the entries with identical
category are displayed.

Position dependent release
If a service routine may be executed only if the robot is at a particular position,
then the corresponding coding must be specified under
menudata.ValidPosition. If several positions are allowed then the coding
should be determined by addition (e.g. home position (ValidPosition=1) OR
safe position (ValidPosition=2) gives the ValidPosition=3).
If the position of the robot cannot be checked then the value 255 should be
specified.

Processing in the automatic mode
To be able to execute a setup routine in the automatic mode,
menudata.RunInAutoMode must be set to TRUE, so that the menu entry is
activated.

Defining the menu type
The menudata.menutype menutype entry has to be set to the following number:
3: Setup routine

User controlled menu display
To prevent setup routines from being called inadvertently, the display of menu
entries can be controlled depending on the level of knowledge of the user who has
logged in.
For this, the minimum user level (menudata.MinUserLevel) of the menu
declaration is compared with the user level of the user who has logged in, and only
those menu entries whose minimum user level is less than or equal to the user
level will be displayed.

3HAC044398-001 Revision: C 97
© Copyright 2014 ABB. All rights reserved.

6 Setting up the graphic user interface
6.5.2 Declaring a setup routine

This page is intentionally left blank

7 Event handling
Usage

Depending on the task, it may be necessary to execute routines in the case of
certain program events or system events, which combine signals through the
AliasIO instruction at the time of program start, for instance. For example, the
initialization of program data or signals when starting the program.

Configuration
For simplification, all the program- and system events are made available through
a RAPID declaration.
For this, in every module in which a routine is to be executed through a program-
or system event, a declaration of the type eventdata has to be introduced.
An eventdata declaration consists of the following components:

ExplanationComponent

The event specifies the system event or program event for which
the specified routine is to be executed.

Event

The name of the routine contains a RAPID procedure without any
transfer of parameters (for example, a procedure with the name
MY_PROCEDURE), where even routines that are local to the module
can be used. Here, the module name is written separated by means
of a colon before the name of the routine (for example,
MY_MODULE:MY_PROCEDURE).

Routine

The priority indicates the sequence in which these routines are
called, for the same system event, that is, a routine with a Priority
= 1 will be called before a routine with the Priority = 10.

Sortorder

Possible events
The system events and program events are defined through the following event
numbers of the type eventnum:

EventEvent No.Constant

Restarting the robot.1EE_POWERON

Processing is started from the beginning of the
program.

2EE_START

Robot has been restarted or the processing starts
from the beginning of the program.

3EE_POWERON_OR_START

Processing starts from the current position of the
program pointer.

4EE_RESTART

Processing will be started from the beginning of
the program or from the current position of the
cursor.

5EE_START_OR_RESTART

The program was stopped:
• with the help of the stop key,
• with the help of a stop instruction,
• or with a stop after the current instruction.

6EE_STOP

A quick stop of the robot has been executed
(emergency stop).

7EE_QSTOP

Continues on next page
3HAC044398-001 Revision: C 99

© Copyright 2014 ABB. All rights reserved.

7 Event handling

EventEvent No.Constant

Program was paused by stop or emergency stop.8EE_STOP_OR_QSTOP

A program has been closed or loaded.9EE_RESET

The event will not be triggered if a system module
or a program module has been loaded.

Step-wise execution of the program forwards or
backwards.

10EE_STEP

Step-wise execution of the program forwards.11EE_STEP_FWD

Step-wise execution of the program backwards.12EE_STEP_BCK

Program was started from main and the internal
initialization of RWMT is started in the next step.

20EE_BEFORE_INIT

Program was started from main and the internal
initialization of RWMT is finished in the next step.

21EE_AFTER_INIT

Execution is always done before the robot is
waiting for a production or service request (extern-
ally or internally triggered).

22EE_WAIT_ORDER

Execution will be done before the start of the
production cycle.

23EE_BEFORE_PROD

Execution will be done after the production cycle
has ended and after the event EE_AFTER_PART.

27EE_AFTER_PROD

Execution will be done before the processing of
a service routine.

28EE_BEFORE_MENU

Execution will be done after the processing of a
service routine.

30EE_AFTER_MENU

The event will be triggered if one of the error
numbers ERR_MT_HOME (termination of current
production cycle with immediate stop after cycle
execution) or ERR_MT_ABORT (termination of
current production cycle) are raised.

31EE_ERROR

This event is triggered before the execution of the
HomeRun.

32EE_BEFORE_HOMERUN

This event is triggered after the execution of the
HomeRun.

38EE_AFTER_HOMERUN

Triggered directly before, the MT engine is left
and the robot program is finished.

33EE_PROG_END

Triggered, if a program number could be success-
fully read.

34EE_AFTER_PROG_NUMBER

Triggered, if a program number has been read by
RWMT but this program number neither matches
a partdata nor a menudata declaration.

35EE_PROGNO_UNKNOWN

The event can be used, for example, to load a
module which contains the missing partdata or
menudata declaration. After the execution of the
event, RWMT verifies again, if the program num-
ber matches a partdata or menudata. If this is still
not the case, the program execution is aborted
with an appropriate message.

Continues on next page
100 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

7 Event handling
Continued

EventEvent No.Constant

Triggered, if a routine name has been specified
in the <routine> item of a partdata declaration,
which has been selected for production, but the
specified routine does not exist in the program.

36EE_PROD_UNKNOWN

The event can be used, for example, to load a
module which contains the missing routine. After
the execution of the event, RWMT verifies again,
if the routine is available in the program. If the
routine is still not available, the program execution
is aborted with an appropriate message.

This event is triggered if a message is written to
the FlexPendant (for example, while using the in-
structions MT_ShowText, MT_ShowMessage,
MT_UIMessage,MT_WaitMsgGI,MT_WaitMsgDI,
MT_WaitMsgDO, and so on) and can for example,
be used to send the content of the message
through a socket connection to an external com-
puter.

39EE_MSG_WRITTEN

In addition to the other events this event needs
an event routine which has the msgdata as a
parameter, so that the msgdata can be processed.
Example:

PROC SendMessage(msgdata msg)

ENDPROC

If the event routine has too many or the wrong
parameter type, the error 40193 (Execution error
-Late binding procedure call) is logged and also
the error 119050 (Specified event routine does
not exist) but the program remains in execution.

This event is triggered if a message is confirmed
by means of a remote signal (refer to system
parameters RWMT API commands,
DI_Error_ACK) and expects an event routine
without any parameters.

40EE_MSG_ACKNOWLEDGED

Triggered after having executed a setup routine
in a task.

100EE_BLOCKED

Continues on next page
3HAC044398-001 Revision: C 101

© Copyright 2014 ABB. All rights reserved.

7 Event handling
Continued

Events in the context of program execution
The following flowchart shows some of the above listed events in the context of
the program execution:

en1200000762

Example
MODULE MT_Main()

…

!Routine call for the event "program start"

CONST eventdata

IMM_evStart:=[EE_START,"IMM:IMM_Initialize",1];

!Routine PowerOn to be called, when

!controller is restarted

Continues on next page
102 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

7 Event handling
Continued

CONST eventdata

IMM_evPowerOn:=[EE_POWERON,"PowerOn",1];

…

PROC Power On()

…

ENDPROC

…

ENDMODULE

MODULE IMM()

…

PROC IMM_Initialize()

…

ENDPROC

…

ENDMODULE

In this example the event declaration IMM_evStart is books an event of type
EE_START and causes an event to be triggered, if the program is started from the
beginning. It will call a routine IMM_Initialize, located in the module IMM.

3HAC044398-001 Revision: C 103
© Copyright 2014 ABB. All rights reserved.

7 Event handling
Continued

This page is intentionally left blank

8 Instruction sets
Usage

Instruction sets provide a means of setting specific variables or the digital output
signals for a machine to a pre-defined value when entering or leaving the RWMT
mode Production or when using the key switch to change the robot operation
mode between Manual and Automatic.
A typical use case is the digital signal interface in injection moulding machines
(EUROMAP). This interface expects the removal device to set its output signals to
for the injection moulding machine to high as soon as the machine quits the
Production mode of operation. It is only when these signals have been set that
the injection moulding machine will be released for manual operations.
On the other hand, if the injection moulding machine is set back to the Production
mode of operation, then the corresponding signals from the removal device must
be reset again.
Since application program of the robot need not necessarily be running during
such a change of mode, and hence cannot react on its own, Instruction Sets are
a suitable means of implementing this requirement.
The change of RWMT operation mode can be alternatively requested through a
group input or the graphical user interface.
In contrast, the change of the robot operation mode can only be done by using the
key switch and confirming the respective dialogs on the FlexPendant.
Instruction Sets are available only if the robot system is equipped with the software
option Multitasking.

Configuration of general instruction sets
Instruction Sets are data declarations of the type instset and are processed
automatically by RWMT. If the robot system has been equipped with the software
option Multitasking, then Instruction Sets will be available, otherwise not.
Instruction Sets that contain the string RunWithRobot in the name will be executed
as soon as there is a change to the Production mode of operation of the cell.
The Instruction Sets that contain the RunWithOutRobot in the name will be
executed as soon as the cell mode of operation Production changes to the cell
mode of operation Service or Without robot.
An instset declaration for a station is created as a single dimensional array
having the size 10. The name of the declaration must fit the following naming
convention has to be considered.

ExplanationName

Station-dependent instset- declaration name
for changing to theRWMT productionmode of opera-
tion.

<Stationdata.name>_RunWithRobot

Station-dependent RWMT declaration name for the
change from the RWMT production mode of operation
to the operation mode Service or Without robot.

<Stationdata.name>_RunWithoutRobot

Continues on next page
3HAC044398-001 Revision: C 105

© Copyright 2014 ABB. All rights reserved.

8 Instruction sets

ExplanationName

Station-dependent instset- declaration name
for changing to the manual mode of the robot.

<Stationdata.name>_OpModeManual

Station-dependent instset- declaration name
for changing to the automatic mode of the robot.

<Stationdata.name>_OpModeAuto

In addition to this, two general, station independent instset declarations can be
created as single dimensional array having size 15. Here, the following declaration
names have to be used:

ExplanationName

General instset- declaration name for changing to the RWMT
production mode of operation

MT_RunWithRobot

General instset- declaration name for the change from the
RWMT production mode of operation

MT_RunWithoutRobot

General instset- declaration name for changing to the manual
mode of the robot.

MT_OpModeManual

General instset- declaration name for changing to the automatic
mode of the robot.

MT_OpModeAuto

Each declaration of type InstSet covers the following information:

ExplanationComponent

Here, the data type that is to be modified is specified. Digital and analog
outputs, group outputs, data of the type num, dnum, string, bool are
possible.

Type

Declaration name of the data that is to be changed.Data name

Value to which the data should be set.Value

Name of the task that the data declaration contains.Task name

Examples
Example 1

CONST InstSet IMM_RunWithRobot{10}:=[

["GO","goTest1","5",""],

["BOOL","bWithRobot",”TRUE”,""],

["NUM","reg1","1",""],

["STRING","string1","Start",""],

["","","",""],

["","","",""],

["","","",""],

["","","",""],

["","","",""],

["","","",""]];

Example 2
CONST InstSet IMM_RunWithoutRobot{10}:=[

["GO","goTest1","0",""],

["BOOL","bWithRobot",”TRUE”,""],

["NUM","reg1","1",""],

["STRING","string1","Start",""],

["","","",""],

Continues on next page
106 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

8 Instruction sets
Continued

["","","",""],

["","","",""],

["","","",""],

["","","",""],

["","","",""]];

In the examples 1 and 2, a group output, a Boolean variable, a numerical variable,
and a string-variable will be set to a specific value if the RWMT operation mode
changes to production or leaves production.
Example 3

CONST InstSet MT_OpModeManual{15}:=[

["GO","goTest3","5",""],

["BOOL","bAutomatic",”FALSE”,""],

["NUM","reg2","7",""],

["STRING","string2","TestA",""],

["","","",""],["","","",""],["","","",""],["","","",""],

["","","",""],["","","",""],["","","",""],["","","",""],

["","","",""],["","","",""],["","","",""]];

Example 4
CONST InstSet MT_OpModeAuto{15}:=[

["GO","goTest3","7",""],

["BOOL","bAutomatic",”TRUE”,""],

["NUM","reg2","9",""],

["STRING","string2","TestB",""],

["","","",""],["","","",""],["","","",""],["","","",""],

["","","",""],["","","",""],["","","",""],["","","",""],

["","","",""],["","","",""],["","","",""]];

In the examples 3 and 4, a group output, a Boolean variable, a numerical variable,
and a string-variable will be set to a specific value if the operation mode of the
robot changes (key switch).

3HAC044398-001 Revision: C 107
© Copyright 2014 ABB. All rights reserved.

8 Instruction sets
Continued

This page is intentionally left blank

9 RAPID Library
What is the RAPID Library

The RAPID Library is collection of instructions and functions, which extend the
scope of the RAPID programming language.
This is related to the following areas:

• Message output
• Waiting for signals
• Movement functions

Contents
The following list is a compilation of all the instructions and functions of the RAPID
Library in RWMT. For more details see the chapter RAPID references on page259.

ExplanationRoutine

Instruction for outputting messages on the FlexPendant.MT_UIMessage

Instruction to wait for a specific state of a group input with
message output.

MT_WaitMsgGI

A message is shown, if the required state is not present after
a while.

Instruction to wait for a specific state of a 32-bit group input
with message output.

MT_WaitMsgGI32

A message is shown, if the required state is not present after
a while.

Instruction to wait for the high- or low- state of a digital input
with message output.

MT_WaitMsgDI

A message is shown, if the required state is not present after
a while.

Instruction to wait for a specific state of a group output with
message output.

MT_WaitMsgGO

A message is shown, if the required state is not present after
a while.

Instruction to wait for a specific state of a 32-bit group output
with message output.

MT_WaitMsgGO32

A message is shown, if the required state is not present after
a while.

Instruction to wait for the high or low state of a digital output
with message output.

MT_WaitMsgDO

A message is shown, if the required state is not present after
a while.

Movement instruction with tool check.MT_ToolCheckL

Function for comparing the angles of the robot axis of a given
position with those of the current position.

MT_JointCompare

Function for converting a position on a new work object and a
new tool.

MT_RecalcPoint

Function for moving or reorienting a TCP with respect to the
current tool.

MT_RelTCP

Function for comparison of positions.MT_PosCompare

Continues on next page
3HAC044398-001 Revision: C 109

© Copyright 2014 ABB. All rights reserved.

9 RAPID Library

ExplanationRoutine

Instruction for the dynamic call (loading) of a movement routine.
Requires compliance with the naming conventions.

MT MoveTo

Instruction for setting the start position for the MT MoveTo in-
struction.

MT SetActual
Position

Function for querying the start position for the MT MoveTo in-
struction.

MT GetActual
Position

110 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

9 RAPID Library
Continued

10 HomeRun
10.1 Introduction

10.1.1 Overview

During the program execution of the robot, situations in which the robot program
can not or may not be continued can arise.
For example:

A peripheral station has failed (fault)

Release signals are missing

Emergency off (program continuation is not possible)

The robot has collided with peripheral parts (crash)

If the occurring error cannot be rectified immediately, then the robot program must
be cancelled and the robot moved into its home position. The error must then be
rectified and the program restarted from MAIN.
If the robot program offers no possibility of moving the robot automatically into the
home position, then the plant operator must move the robot with the aid of the
joystick. If the plant operator is not familiar with handling the robot, then the
standstill time of the overall plant is increased considerably by this. The occurring
fault itself is rectified quickly as a rule.
Many faults occurring during the course of a program can be rectified in the program
with the aid of error handling. For example, if the robot is waiting for a release
signal from the periphery, then it can be moved selectively into its home position
by an operating request with the aid of error handling.
When error handling is selected the momentary position of the robot is known, so
that the robot can be moved into the home position without any collisions.
However, error handling offers no solution if an emergency stop or a collision
which stops the robot during a movement has occurred or the robot program was
restarted. In these situations the robot is not in a defined position as a rule, but is
on a movement path from which the program must be restarted by Start fromMain.
So that the robot can also move automatically into the home position in these
cases, the HomeRun functionality is used.
This offers the possibility of moving the robot after a restart of the robot program
from any automatically moved to position into the home position using existing
movement routines. If a part is located in the gripper, then it can be set down in a
defined manner at an arbitrary position.

3HAC044398-001 Revision: C 111
© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.1.1 Overview

10.1.2 HomeRun functions

HomeRun provides the following functionality:
• Simple programming of the movement sequence as in the standard baseware.
• Moving into the home position from every automatically moved to position.
• Position-related HomeRun strategy.
• Use of the movement routines available in the robot program.
• Backwards execution of movement routines (moving from the destination

point to the start point).
• Usable in MultiMove-Independent robot systems

112 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.1.2 HomeRun functions

10.1.3 Method of operation

The following concept is used so that the robot can be moved to the home position
from every position that it has automatically moved to.

• When a position is reached, a numeric value is stored in the robot program
that clearly identifies this position.

• When moving into the home position, the required movement routines which
move the robot to the home position in a defined manner are called on the
basis of the last position value that was reached. When this occurs, no robot
movements are made until the position value is found at which the robot
program was interrupted.

Note

For this purpose all robot movements must be executed with special movement
instructions which also store the robot position as a numeric value (that is,
MT_MoveL, MT_MoveJ, MT_MoveLDO, MT_TriggJ, and so on).

In order to simplify the programming effort for the automatic movement into the
home position, the robot movements that have already been created are used.

Note

However this is possible only if the movement and administration routines are
strictly separated, that is, the robot movement instructions are in their own
routines and are called up by the administration routines.

The strategy to be used with which the robot is moved into the home position
depending upon the stored position number must be produced depending on the
application.

3HAC044398-001 Revision: C 113
© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.1.3 Method of operation

10.2 First steps

10.2.1 Example program

Home Run programming is explained on the basis of the following example program.
In a plant a robot must in each case take a part from machine 1 or machine 2 and
place it on a delivery conveyor. Reject parts are placed on the reject chute.
Each station that the robot has to move to is given a two-digit or three-digit station
number, e.g. machine 1 ->no. 10, machine 2 ->no. 20, deposit belt ->no. 30, reject
chute ->no. 40.
The home position always allocated the number 999.
The robot movements are divided up into different segments, that is, the start and
end points of a movement are given a position number, which is derived from the
station number and can be found again later in the designation of the individual
movement routines.
Position layout:

en1200000763

114 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.2.1 Example program

10.2.2 What is the Home Position?

The Home Position is the position in which the robot has to be at the start of
program execution (start from main) or the position that the robot moves to at the
end of the program.
This ensures that the robot always starts from a defined position and collisions
with the system peripherals are therefore avoided.
The Home Position is selected taking the following conditions into consideration:

• The robot is outside the interference range of all machinery.
• The robot does not obstruct the machine operator when the system is being

operated in manual.
• The robot does not obstruct the service personnel if maintenance or repairs

are being carried out on the machines.

3HAC044398-001 Revision: C 115
© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.2.2 What is the Home Position?

10.2.3 Movement routines

All robot movement instructions are stored in movement routines. The name of
the movement routine always contains the start and the destination point of a
movement and can also contain a type number for differentiating several types.
mv<Startpoint>_<Destinationpoint> [_<TypeNo>];

Examples:

Moving from the machine 1 pre position to the grip position
Machine 1.

mv10_11

Moving from the machine 2 pre position to the home position.mv20_99

Moving from the machine 1 destination position to the pre pos-
ition of the conveyor for type number 3.

mv12_30_T3

The complete movement between the start and destination point is programmed
in the movement routines, whereby the first point (start point) must always be
moved to with the argument \NoMove. The use of instructions other than MT_MoveX,
MT_MoveXDO, MT_MoveXSync, STriggX, and so on, is not allowed.

PROC mv10_11()

!From: Pre position Machine 1

!To : Grip position Machine 1

!IM-Pos: 1011xx

MT_MoveJ 10,p10,v200,z10,tGripper\NoMove;

MT_MoveJ 101101,*,v800,z10,tGripper;

MT_MoveJ 101102,*,v800,z10,tGripper;

MT_MoveL 11,p11,v500,fine,tGripper;

ENDPROC

116 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.2.3 Movement routines

10.2.4 Administration routines

For each station of the system an administration routine is created which contains
the program sequence of the required function, including the movement routine
calls (for example, unload machine 1).
Example:

PROC Maschine1_Unload()

OpenGripper;

WaitDI diUnloadMachine1,high;

Reset doIRBausM1;

mv10_11;

CloseGripper;

mv11_12;

Set doStartM1;

ENDPROC

3HAC044398-001 Revision: C 117
© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.2.4 Administration routines

10.2.5 Calling up the HomeRun movement

In order to ensure that the robot always starts from the home position after a
program restart, this is automatically checked by RWMT using the HomeRun.

118 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.2.5 Calling up the HomeRun movement

10.2.6 Routines in the MT_MAIN module

The following routines in the MT_MAINmodule require application-related adaptation
for the move to the home position:

DescriptionRoutine

Direct movement to the home position.MT_HomeDirect

Adapt speed before carrying out a movement instruction.MT_SpeedUpdate

Position related definition of how the robot should move to the
home position.

MT_HomeRun

3HAC044398-001 Revision: C 119
© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.2.6 Routines in the MT_MAIN module

10.2.7 Creating the HomeRun strategy

The strategy for moving the robot into the home position is stored in the
MT_HomeRun routine
For each start or end position of the individual stations it is defined how the robot
has to behave, i.e. of the gripper has to be actuated, signal communication is
required with the machine as to which the robot should move to next.
Only the robot movement to the next position is programmed, since the MT_HomeRun
routine is called with the current position number until the robot has reached the
home position.
Example:

PROC MT_HomeRun(num Position)

!Call up movement routines of the robot

!depending on the position number

TEST Position

CASE 10:

MT_MoveRoutine "mv999_10";

CASE 11:

CloseGripper;

mv11_12;

CASE 12:

mv12_40;

CASE 20:

MT_MoveRoutine "mv99_20";

CASE 21:

CloseGripper;

mv21_22;

CASE 22:

mv22_40;

CASE 30:

mv30_40;

CASE 31:

OpenGripper;

mv31_32;

CASE 32:

mv32_999;

CASE 40:

!Wait until reject chute is ready

WaitDI diNOK_Free,high;

mv40_41;

OpenGripper;

mv41_42;

SET doNOK_Load;

CASE 41:

OpenGripper;

mv41_42;

SET doNOK_Load;

CASE 42:

mv42_99;

Continues on next page
120 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.2.7 Creating the HomeRun strategy

DEFAULT:

!Automatic continuation of intermediate positions

MT_ContHomeRun Position;

ENDTEST

ENDPROC

3HAC044398-001 Revision: C 121
© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.2.7 Creating the HomeRun strategy

Continued

10.2.8 Creating the HomeRun description

HomeRun provides an operator dialog (see Operator dialogue for the HomeRun
on page130) to show where the robot is currently located. The location is specified
by the position number, used by the MT_Move instructions and by a descriptive
text.
This text has to be provided by the integrator as shown in the chapter posname –
Assigning position description for HomeRun on page 301.

122 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.2.8 Creating the HomeRun description

10.2.9 Checking the Home position

During the execution of HomeRun, it is checked whether the robot is in the home
position. If not, the robot is moved to its home position using the HomeRun strategy.
Home position checking can be carried out either by the robot system or by means
of an external sensor. The most suitable check must be used depending on the
purpose of use.

Purpose of useType of monitoring

A sensor (for example, limit switch) is used if the position signal
from the robot is also needed in a higher-order controller when
the robot controller is switched off.

External sensor
(Digital input)

The robot controller provides a facility for monitoring robot po-
sitions with the aid of stationary or temporary world zones.

World zones

If the robot is inside a world zone, a digital output can be set
(see RAPID Reference Manual – RAPID Overview listed in the
section References on page 11).
A world zone can be used if the home position is also needed
in an external controller or in the robot system.

The home position must be monitored via a stationary world
zone if the home position is signalled to a higher-order controller
and the robot program is not executed to do this (for example,
operation without robot) or the output is used within a cross-
connection or in a background task.

-> Stationary world zone
(Digital output)

To setup a stationary world zone, see RAPID Reference
Manual – Instructions, Functions, Datatypes listed in the section
References on page 11.

The use of a temporary world zone is already integrated in
HomeRun, the use of which has to be activated in the system
parameters (see parameter CreateWZone in the chapter MT
HomeRun on page 175).

-> Temporary world zone
(Digital output)

If the position signal for the home position is only needed by
HomeRun, the check can also be carried out by means of an
internal position comparison between the home position and
the current robot position.

Internal check

In order to be able to use the internal check, no signal name
must be assigned to parameter DIO_At_Home in the system
parameters.

WARNING

If an external sensor (switch) is being used, the robot position is not checked -
it is checked whether the switch has been operated.

In this case there is a risk of a collision when the robot program starts, if:
• the robot is not in the home position and the switch is operated anyway.
• the robot has been moved with erroneous orientation in relation to the switch

using the joystick (for example, 6th axis rotated by 360°).

3HAC044398-001 Revision: C 123
© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.2.9 Checking the Home position

10.2.10 Setting up the system parameters

The settings regarding the behaviour of HomeRun and the signals for monitoring
and requesting the move to the home position are set in the HomeRun process
parameters (see the chapter MT_HomeRun – HomeRun Strategy on page 371).

124 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.2.10 Setting up the system parameters

10.2.11 Signal combinations for HomeRun with stopped program

To move a robot, whose program has been stopped, automatically into the home
position with the HomeRun request, a program start from Main must be triggered.
This can be achieved by means of logical signal combinations within the robot
controller at system level.
Example:

DescriptionSignal nameType

HomeRun requestdiIRBgoHomeDI

Switch on motors requestdiHR_MotorOnDI

(System input: MotorOn)

Start program from main requestdiHR_StartMainDI

(System input: StartMain)

All robots are in their home positionsdiHR_RobotsInHomeDI

(Cross-connection of all existing doRobXinHome out-
puts)

Robot 1 is in the home positiondoRob1inHomeDO

(for example, world zone)

Robot 2 is in the home positiondoRob2inHomeDO

Robot 3 is in the home positiondoRob3inHomeDO

Robot 4 is in the home positiondoRob4inHomeDO

Program is executeddoHR_CycleOnDO

(System output: CycleOn)

Motors are switched ondoHR_CycleOnDO

(System output: MotOnState)

Tip

The signals described above are added to the robot system during first
installation, and can be adapted as required!

Switch on motors of the robot
-Name "RWMT MotorOn" -Res "diHR_MotorOn"\

-Act1 "diIRBgoHome" -Oper1 "AND"\

-Act2 "doHR_MotorOn" -Act2_invert

Start robot programs from Main
-Name "RWMT StartMain" -Res "diHR_StartMain"\

-Act1 "diIRBgoHome" -Oper1 "AND"\

-Act2 "diHR_RobotsInHome" -Act2_invert -Oper2 "AND"\

-Act3 "doHR_CycleOn" -Act3_invert -Oper3 "AND"\

-Act4 "doHR_MotorOn"

3HAC044398-001 Revision: C 125
© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.2.11 Signal combinations for HomeRun with stopped program

10.2.12 Checking the position numbers

The use of the correct position numbers for the start, end and intermediate positions
in the movement routines is decisive for moving the robot to the home position
without collisions.
For example, when programming robot positions it may be that one or more
movement instructions are copied from another movement routine. If the
intermediate position numbers are not adapted to the name of the new movement
routine, the wrong movement routine is called up during HomeRun, which may
result in the robot colliding with the peripherals.
The following errors can occur during position number allocation:
The length of the position number if wrong.

PROC mv100_110()

MT_MoveJ 1000,p10,v100,z10,tGripper\NoMove;

MT_MoveL 100110010,*,v1000,z10,tGripper;

MT_MoveL 10011002,*,v1000,z10,tGripper;

MT_MoveL 1,p11,v500,fine,tGripper;

ENDPROC

The start and end points of the movements are not constituents of the intermediate
position:

PROC mv100_110()

MT_MoveJ 100,p10,v100,z10,tGripper\NoMove;

MT_MoveL 11012001,*,v1000,z10,tGripper;

MT_MoveL 12010002,*,v1000,z10,tGripper;

MT_MoveL 110,p11,v500,fine,tGripper;

ENDPROC

The first position of a movement routine contains an intermediate position number.
PROC mv100_110()

MT_MoveL 10011001,*,v1000,z10,tGripper;

MT_MoveL 10011002,*,v1000,z10,tGripper;

MT_MoveL 110,p11,v500,fine,tGripper;

ENDPROC

The last position of a movement routine contains an intermediate position number.
PROC mv100_110()

MT_MoveJ 100,p10,v100,z10,tGripper\NoMove;

MT_MoveL 10011001,*,v1000,z10,tGripper;

MT_MoveL 10011002,*,v1000,z10,tGripper;

ENDPROC

The first position of a movement routine does not correspond to the last position
number of the previously executed movement routine.
a) Wrong movement routine calling order:

mv100_110;

mv120_125;

b) First movement routine position number wrong:
mv100_110;

mv110_120;

PROC mv100_110()

Continues on next page
126 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.2.12 Checking the position numbers

MT_MoveJ 100,p10,v100,z10,tGripper\NoMove;

MT_MoveL 110,p11,v500,fine,tGripper;

ENDPROC

PROC mv110_120()

MT_MoveJ 100,p10,v100,z10,tGripper\NoMove;

MT_MoveL 120,p11,v500,fine,tGripper;

ENDPROC

3HAC044398-001 Revision: C 127
© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.2.12 Checking the position numbers

Continued

10.2.13 Checking the HomeRun strategy

As soon as the robot program has been started up, the HomeRun strategy should
be tested for freedom from errors.
This should be done by running the production program in manual mode, and
triggering the HomeRun at the required location.
It should normally only be necessary to test the start and end positions of a
movement, since the movement is usually automatically continued to the next end
position in the event of intermediate positions. The intermediate position number
must consist of the start and end position of the movement routine when this
occurs.
Check the strategy at the individual positions as to whether all signal handshakes
and the required functions are executed correctly.

128 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.2.13 Checking the HomeRun strategy

10.3 Use of HomeRun in RobotStudio

10.3.1 Behaviour of HomeRun in a virtual controller

To use HomeRun in the virtual controller of RobotStudio, attention must be paid
to the characteristics described in the following.
If HomeRun is used in a virtual controller (RobotStudio), the following differences
exist compared to an actual controller:

• Home position checking takes place on the basis of a position comparison,
bypassing the defined signals (world zone and input).

• The search instruction MT_SearchL always moves until the end of the
programmed position, without taking the search signal into consideration.

• If the home position has to be moved to via a direct route, the dialogue for
switching the operating mode is not displayed, and the robot starts the
movement to the home position immediately.

• If HomeRun is executed and the robot is not in the home position, the dialogue
for starting the home run appears for 10 seconds. If none of the buttons are
pressed during this time, the home run is started automatically.

3HAC044398-001 Revision: C 129
© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.3.1 Behaviour of HomeRun in a virtual controller

10.4 Operator dialogue for the HomeRun

10.4.1 Moving the robot automatically into the home position

If the robot lacks peripheral signals in order to continue the program, it can be
forced to abort the currently active processing and move to the home position
through the HomeRun request in combination with a restart of the robot program
(start from main), error handling or an interrupt (ExitCycle).
So that the robot can move automatically from its last position to the home position,
it may not have been moved with the joystick or only moved within the programmed
start area (default = 150 mm) from the last position that was moved to. If it was
moved out from the start area, then the HomeRun functionality is deactivated and
only the direct movement to the home position is possible (see the following
chapters).
If the robot can be moved automatically into the home position, then the motion is
executed in the home position if the HomeRun request has been set. If this is not
the case, the following menu is displayed on the programming unit.

en1200000767

The current robot position and the motion direction (from start position to target
position) are specified in this menu. The system operator can choose between the
following possibilities:

Displays the version of HomeRun.Info

The robot moves automatically on its programmed paths from
the displayed start position to the home position. If there are
parts in the gripper, they are deposited if necessary.

Start

Menu for moving the robot directly to the home position (in
Manual mode only).

Direct

Program execution is cancelled.Cancel

130 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.4.1 Moving the robot automatically into the home position

10.4.2 Moving the robot semi-automatically into the Home position

The following menu appears if the robot has been moved by joystick out of the
start area or a system status exists that prevents the robot from moving
automatically to the home position.

en1200000768

The last valid position is shown together with notification that the robot is not on
its path where it should be. The system operator must specify in the dialogue
whether the robot is till in the displayed position.
If the robot has been moved manually and is no longer in the displayed position,
the Yes button must be pressed. The dialogue is continued in accordance with
chapter Moving the robot manually into the home position on page 133.
If the robot is in the displayed position, the No button must be pressed. In the
dialogue that now appears, the system operator must specify whether the automatic
home run can be carried out without a collision.

en1200000769

Continues on next page
3HAC044398-001 Revision: C 131

© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.4.2 Moving the robot semi-automatically into the Home position

The robot starts the HomeRun as soon as the Yes button has been pressed. If the
No button is pressed, the dialogue is continued as described in the chapter Moving
the robot manually into the home position on page 133.

132 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.4.2 Moving the robot semi-automatically into the Home position
Continued

10.4.3 Moving the robot manually into the home position

If the robot has been moved using the joystick or it cannot be moved automatically
from the last position that was moved to into the home position, the following user
dialogue is displayed.

Note

In order to prevent damage to the robot or parts of the system during the
movement to the home position, the robot controller must be switched into manual
mode so that the system operator has full control of the robot movement.

If the robot is in automatic mode, the system operator is requested to switch to
manual mode.

en1200000770

Continues on next page
3HAC044398-001 Revision: C 133

© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.4.3 Moving the robot manually into the home position

After switching to manual mode and restarting the program, the system operator
is notified that the automatic home run is no longer active and the robot can be
moved to the home position directly via the shortest route.

en1200000771

If the YES button is pressed, the robot moves to the home position directly.

WARNING

If the robot is moved to its home position using the shortest way, it must not be
in the vicinity of disturbing contours since it moves directly to the home position
and collisions cannot be ruled out.
The responsibility for collision-free movement lies in this case with the operator!

If the robot is in the vicinity of interfering contours, it must first be moved into a
free area of the system using the joystick. In order to do this, the NO button must
be pressed in the menu shown above.
After moving the robot into a free area of the system using the joystick, the program
must be restarted in manual mode and the menu described previously is displayed
again. The robot must now be moved directly to the home position without collisions.

Tip

Generally, the manual movement of the robot should be avoided as long as the
automatic or semi-automatic movement can be used.

134 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.4.3 Moving the robot manually into the home position
Continued

10.5 Programming the HomeRun

10.5.1 General

In order to allow the robot to be moved into the home position from any position
that has been moved to automatically, all robot movements must be programmed
with the instructions MT_MoveX, MT_MoveXDO, MT_MoveXGO, MT_MoveXSync,
MT_TriggX, MT_SearchL , and so on. The X stands for the linear (L) or axis-related
(J) movement type. Please refer to the chapter Instructions on page 321 to find all
available motion instructions.
With these instructions, a position number is transferred in addition to the movement
parameters, reproducing the exact position of the robot in the plant.
The movement into the home position is executed by RWMT, if the application
program is started from Main. Since the robot orients itself to the position number
at which the program was stopped, the robot may not have been moved manually
or only a small distance (risk of collision). If the robot was moved a long distance
(>150 mm per default, start area), then the HomeRun functionality is disabled and
the home position can only be moved to directly.
The strategy to be used to move the robot from a start/destination position to the
home position must be programmed by the programmer application-related in the
MT_HomeRun routine.
If the robot is at an intermediate position, then the robot movement is continued
by renewed selection of the movement routine at the place at which it was
interrupted. The movement can be continued at an intermediate position
automatically, without explicitly calling up the movement routine, by using the
MT_ContHomeRun instruction.

3HAC044398-001 Revision: C 135
© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.5.1 General

10.5.2 Allocation of the position designations

The position designations are responsible for determining the robot in the working
area and may be allocated only once for one position. To simplify the teaching of
the movement paths, notes about the different position numbers can be filed in
the comment lines of the movement routines.
The position designations for the instructions MT_MoveX, MT_MoveXDO,
MT_MoveXGO, MT_MoveXSync, MT_TriggX, MT_SearchL, and so on must be
formed with the aid of the rules described below.

Rules for allocating position numbers
• The first and the last position in a movement routine are represented as a

two-digit or three-digit number that corresponds to the position number. (for
example, 10, 20, 30, 100, 210, , and so on.).

• The intermediate positions are identified as a six, seven or eight-digit number,
i.e. they consist of the start position and the destination position (path) and
a consecutive number between 1 and 99.
Example:
The first intermediate position number in the movement routine from 10 to
position 20 is 10|20|01, and the third intermediate position between position
300 and position 50 is 300|050|03.

• If the start position has three digits, the target position must also be specified
as a three-digit number. If the target position has only two digits, it has to be
enlarged to a three-digit number by adding a leading zero (for example,
300|050|01). If the start position is allocated with two digits and the target
position with three digits, no leading zero may be inserted (for example,
50|300|01).

• The direction of movement for automatic continuation of the movement can
be reversed by swapping the starting position and the destination position
in the intermediate positions.
Example:
If the robot moves into a machine (from 10 to 11) and the robot should always
move out of the machine automatically in the event of an error, the
intermediate positions must be 11|10|xx. If the robot is to continue to the
destination point, the intermediate positions must be 10|11|xx .

• The home position gets the number 999.
Examples for intermediate positions

Destination position 200
[3-digit]

Destination position 20
[2-digit]

Start position

10|200|01 [7-digit]10| 20|01 [6-digit]10 [2-digit]

100|200|01 [8-digit]100|020|01 [8-digit]100 [3-digit]

136 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.5.2 Allocation of the position designations

10.5.3 Structure of the movement routines

Introduction
The names of the movement routines consist of the start position, the destination
position and the type number (if necessary).
The possible HomeRun strategies are explained in the following on the example
of movement routines from position 10 to position 11 (mv10_11) and from position
11 to position 10 (mv11_10):

PROC mv10_11()

!From: Pre position Machine 1

!To : Grip position Machine 1

!IM-Pos: 1110xx

MT_MoveJ 10,p10,v100,z10,tGripper\NoMove; No movement takes place

MT_MoveL 111001,*,v1000,z10,tGripper;

MT_MoveL 111002,*,v1000,z10,tGripper;

MT_MoveL 11,p11,v500,fine,tGripper;

ENDPROC

Move back routine with identical movement sequence
In the move back routine with identical movement sequence, the movement
commands (positions and position numbers) must be programmed in the reverse
order. In this case the same number of movement commands or intermediate
positions between start and destination point must be used. This is necessary
since every position number is checked when moving into the home position. If a
different number of movement instructions or different position numbers has been
used in the return movement, automatic movement to the home position is not
possible.
If intermediate position 1110xx is used, routine mv11_10 is called up automatically
when automatic movement from an intermediate position to the home position
takes place.

PROC mv11_10()

!From: Grip position Machine 1

!To : Pre position Machine 1

!IM-Pos: 1110xx

MT_MoveJ 11,p11,v100,z10,tGripper\NoMove; No movement here

MT_MoveL 111002,*,v1000,z10,tGripper;

MT_MoveL 111001,*,v1000,z10,tGripper;

MT_MoveL 10,p10,v1000,z10,tGripper;

ENDPROC

Continues on next page
3HAC044398-001 Revision: C 137

© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.5.3 Structure of the movement routines

Backwards movement with other movement sequence
If one moves with the robot into a machine to fetch or set down a part, then when
moving out a movement sequence other than for moving in may have to be used.
The following sequence can be programmed when using a machine destination
position (for example, 12):
If intermediate position 1110xx is used, routine mv11_10 is called up automatically
when automatic movement from an intermediate position to the home position
takes place.

mv10_11; Movement from pre position to grip position

OpenGripper;

mv11_12; Movement from grip pos. to destination pos.

The movement routinesmv10_11 and mv11_10 correspond to the previous example.
If the move back routine (for example, mv11_10) is not required in the normal
program run, routine mv10_11 can be run backwards in the movement into the
home position by using the MT_MoveRoutine mv10_11 instruction.

Different movement sequences in the same positions
If only one pre position is going to be used, different position numbers must be
used in the two movement routines.

mv10_11; Movement from pre pos. to grip pos.

OpenGripper;

mv11_10; Movement from grip pos. to pre pos.

Movement to the grip position:
PROC mv10_11()

!From: Pre position Machine 1

!To : Grip position Machine 1

!IM-Pos: 1011xx

MT_MoveJ 10,p10,v100,z10,tGripper\NoMove;

MT_MoveL 101101,*,v1000,z10,tGripper;

MT_MoveL 101102,*,v1000,z10,tGripper;

MT_MoveL 11,p11,v500,fine,tGripper;

ENDPROC

Backwards movement with other movement sequence:
PROC mv11_10()

!From: Grip position Machine 1

!To : Pre position Machine 1

!IM-Pos: 1110xx

MT_MoveJ 11,p11,v100,z10,tGripper\NoMove;

MT_MoveL 111001,p101101,v1000,z10,tGripper;

MT_MoveL 111002,*,v1000,z10,tGripper;

MT_MoveL 111003,*,v1000,z10,tGripper;

MT_MoveL 10,p10,v1100,z10,tGripper;

ENDPROC

Continues on next page
138 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.5.3 Structure of the movement routines
Continued

Different intermediate position numbers were used in both routines, so that on
automatic continuation of the movement, either routine mv10_11 or routine mv11_10
is selected.
If in the case of a program cancellation during movement into the machine
(mv10_11) the movement is not continued up to grip point 11, but is moved back
to pre position 10, this must be explicitly called up in the home run strategy for
position number 1011 by means of backwards execution of routine mv10_11.
Example:

PROC MT_HomeRun(num Position)

TEST Position

CASE 1011:

MT_MoveRoutine "mv10_11"\Backw;

CASE ...

3HAC044398-001 Revision: C 139
© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.5.3 Structure of the movement routines

Continued

10.5.4 Strategy for automatic movement into the home position

Introduction
An application-dependent HomeRun strategy must be stored in the MT_HomeRun

routine, for a robot to move automatically into the home position. In this strategy
the sequence of the required movement routines or a certain program sequence
depending upon the position number must be programmed. In each case it is only
run up to the end of a movement routine and then the HomeRun strategy is called
up again with the new position. This is continued until the home position is reached.
In accordance with the rules for allocating position numbers, the are two-digit and
three-digit position numbers for the start and destination positions of a movement
routine (for example, 10, 20, 300, and so on) as well six and eight digit intermediate
positions (for example, 10|20|01, 20|305|03, 305|020|01 , and so on).
To select the movement routines with intermediate positions, only the path is taken
into account, since this specifies the start and the destination of the movement
(for example, 1020). The consecutive numbers (last two digits) are used for
searching for the start position for a movement. The HomeRun strategy must be
generated depending upon the normal program sequence, i.e. the order of the
routines to be called up or the conditions that are needed (for example, signals,
gripper opening and so on) must be incorporated in suitable locations. The required
strategy is inserted in the TEST instruction of the MT_HomeRun routine by checking
the position number and selecting the required instructions.
Example:

PROC MT_HomeRun(num Position)

TEST Position

CASE 10:

mv10_999;

CASE 11:

IF diOpenGripper=high then !Gripper is already opened

OpenGripper; !Move without part back to pre position

MT_MoveRoutine "mv10_11";

ELSE

CloseGripper; !Gripper is not open,

mv11_12; !move out of machine with part

ENDIF

CASE 30.3031:

IF diPartinGr=high THEN

!Position no. is not checked after the movement

bMT_HomeRunCheckPos:=False

Load_Belt; !Repetition of the complete process

ELSE

mv30_999;

endif

DEFAULT:

MT_ContHomeRun Position;

ENDTEST

ENDPROC

Continues on next page
140 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.5.4 Strategy for automatic movement into the home position

Tip

To simplify the production of the HomeRun strategy, movement routines that
are described by a path statement (intermediate position) can be selected
automatically with the MT_ContHomeRun instruction

In this way the direction in which the robot continues moving automatically during
the HomeRun can already be determined during movement programming by means
of the path specification
Example:
The robot moves for unloading into a machine. The movement routine for entering
the machine is mv10_11, and the routing for exiting is mv11_10. If intermediate
positions 1011xx are specified, the robot continues to move to position 11 during
the HomeRun. However, if you use intermediate positions 1110xx, the robot
automatically moves back to position 10.

Structure of the HomeRun strategy
The routine calls for the home run strategy can be structured as follows:

• Because the intermediate positions are evaluated automatically (see
MT_ContHomeRun), they only have to be taken into consideration in the
strategy if other conditions or movement reversal are required.

• It must be decided at a two-digit or three-digit pre position whether the robot
can move directly into the home position or whether it has to move to the
next station, since for instance the part must be placed in the gripper.

• If no direct movement into the home position is possible from a pre position,
then the next station must be moved to until it is possible to move into the
home position.

• If the robot is at a grip position, then it is decided by reference to the gripper's
status whether the robot moves out from the station with or without a part,
i.e. if the gripper is closed the part is taken along, if the gripper is open the
robot moves out from the station without a part.

• If there are interlocking signals for the machine (for example, open/close
clamp and so on), then these must be taken into account.

• If the robot is in a deposit position, an attempt should be made to put the
part down.

• To avoid collisions, the gripper should be opened only after a movement.

Continues on next page
3HAC044398-001 Revision: C 141

© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.5.4 Strategy for automatic movement into the home position

Continued

Behaviour at a start position
If the program is stopped, the robot is always located as a rule on the way between
two positions. Since the new position number is saved only on reaching the
destination position, HomeRun assumes that the robot is still located at the previous
position.
To prevent collisions during the movement to the home position, the saved two-digit
or three-digit start position is moved to once again for this reason.
Depending on the situation, the moving back to the start position can be deactivated
by using variable bMT_ContHomeRun in the home run strategy.
Example:

PROC MT_HomeRun(num Position)

TEST Position

CASE 10:

!deactivate moving back to position 10

bMT_ContHomeRun:=TRUE;

mv10_99;

CASE 11:

…

142 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.5.4 Strategy for automatic movement into the home position
Continued

10.5.5 Use of type-related movement routines

10.5.5.1 General

If several component types have to be managed using different movement routines
in a robot program, they can be marked using a type-dependent index in the routine
or position name.
In order to simplify the copying of type-dependent program modules, a type prefix
(for example, T) should be used, which makes it easier to make a distinction
between a position number and the type index during searching and replacement.
The type prefix to be used can be set using system parameter
PROC/MT_HOMRUN/TypePrefix.
Example:
Movement from position 10 to 20
Type index 3 and type prefix T: mv10_20_T3
Type index 5 and type prefix WN: mv10_20_WN5
Since as a rule only the movement routines but not the general sequence changes,
these movement routines can be called up using late binding (%RoutineName%)
within the MT_HomeRun routine.
According to program there can be a mixture between type-dependent and
type-independent movement routines. To avoid a difference between routines with
and without type index inside the strategy, the instruction MT_ContHomeRun has
been designed in such a way that a movement routine will be called automatically
without an index, if the movement routine with index does not exist. In order to
ensure that this works properly, the movement routine should exist only with or
only once in the program: with or without an index.
Example:

PROC MT_HomeRun(num Position)

TEST Position

CASE 10.10999:

mv10_999;

CASE 11:

IF diPartinGr=high then

%"mv11_12_T"+ValToStr(nTypeNo)%;

ELSE

OpenGripper;

MT_MoveRoutine "mv10_11"\Index:= nTypeNo;

ENDIF

CASE 12:

%"mv12_30_T"+ValToStr(nTypeNo)%;

CASE 30.30999:

mv30_999;

DEFAULT:

MT_ContHomeRun Position\Index:=nTypeNo;

ENDTEST

ENDPROC

3HAC044398-001 Revision: C 143
© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.5.5.1 General

10.5.5.2 Use of module-localised movement routines

If a program has to handle different types using different movement routines, these
and the associated robtarget can be declared locally within a type module. The
module can then be copied and renamed without the need to rework the individual
routines and declarations.
Example:

MODUL PROG_1

LOCAL CONST robtarget p10:=*

LOCAL CONST robtarget p20:=*

LOCAL PROC mv10_11()

MT_MoveJ 10,p10,v200,z10,tGripper\NoMove;

MT_MoveL 101101,*,v1500,fine,tGripper;

MT_MoveL 11,p11,v1500,fine,tGripper;

ENDPROC

ENDMODULE

Since as a rule only the movement routines but not the general sequence changes,
these movement routines can be called up using late binding
(%"Module:Routine"%) within the MT_HomeRun routine or during the normal
program sequence, (for example, %"PROG_1:mv10_11"%).
To permit movements to be continued or reversed, the instructions
MT_ContHomeRun and MT_MoveRoutine can optionally be used to pass the name
of the program module in which the movement routines are located.
Example:

PROC MT_HomeRun(num Position)

TEST Position

CASE 10,10999:

%"PROG_"+ValToStr(nTypeNo)+":mv10_999"%;

CASE 11:

IF diPartinGr=high then

%"PROG_"+ValToStr(nTypeNo)+":mv11_12"%;

ELSE

OpenGripper;

MT_MoveRoutine "mv10_11"\ModName:="PROG"\Index:=nTypeNo;

ENDIF

CASE 12:

%"PROG_"+ValToStr(nTypeNo)+":mv12_30"%;

CASE 30.30999:

!Central movement

mv30_999;

DEFAULT:

MT_ContHomeRun

Position\Module:="PROG_"+ValToStr(nTypeNo);

ENDTEST

ENDPROC

144 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.5.5.2 Use of module-localised movement routines

10.5.5.3 Use of type modules with different strategies

If the program sequences of the individual component types differ in terms of
functionality and position, a separate position-related HomeRun strategy must be
created for each component type.
Example:
Different component types are created in a robot cell, which the robot takes out of
a machine and performs different processing steps depending on the component.
The robot cell contains a gripper station to which the robot must be able to go to
in order to perform an automatic gripper change.
Possible solution:
The sequences and movement routines are stored locally in type-dependent
modules. The gripper change movement routines are stored globally in the robot
system.
For each component type a locally declared HomeRun strategy is created in the
component module for each component type, which is called up by the global
HomeRun strategy depending on the type.
All type-dependent movements to the home position are stored in this
type-dependent HomeRun strategy. All global movements (gripper changes) and
the continuation of an intermediate position are only dealt with in the global strategy
routine.
Global HomeRun strategy:

MODULE MT_Main()

PROC MT_HomeRun(num Position)

VAR string stModule;

IF nTypeCode>0 THEN

! Determine type-dependent module name

stModule:="PROG"+ValToStr(nTypeCode);

!Call type-dependent strategy

%stModule+":MT_HomeRun"% Position;

ENDIF

!Processing of type-dependent positions

TEST Position

CASE 700:

MT_MOVEROUTINE "mv999_700";

CASE 711:

IF diGrDocked=high THEN

WZW_Lock;

mv711_710;

ELSE

WZW_Unlock;

MT_MoveRoutine "mv710_711";

ENDIF

DEFAULT:

MT_ContHomeRun Position\Module:=stModule;

ENDTEST

ERROR

Continues on next page
3HAC044398-001 Revision: C 145

© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.5.5.3 Use of type modules with different strategies

IF ERRNO=ERR_CALLPROC OR ERRNO=ERR_REFUNKPRC TYNEXT;

ENDPROC

ENDMODULE

Type-dependent local HomeRun strategy:
MODULE PROG1

LOCAL PROC MT_HomeRun(num Position)

!

TEST Position

CASE 100:

mv100_999;

CASE 110:

mv110_100;

CASE 130:

OpenGripper;

MT_MoveRoutine "mv110_130"\ModName:="PROG1";

ENDTEST

!

ENDPROC

LOCAL PROC mv100_999()

…

…

ENDPROC

ENDMODULE

Program sequence
If a valid component type (for example, 1) is selected, the type-dependentHomeRun
strategy in module PROG1 is called up.
If the current robot position corresponds with one of the positions in the local
strategy (for example, 130), the relevant sequence is performed and the global
HomeRun strategy is returned to.

WARNING

The same position number is then evaluated, meaning that this can no longer
be contained within the TEST-CASE control structure, since double execution of
the robots could cause a collision.

In this case, the program pointer runs through the DEFAULT part of the TEST-CASE
control structure, and executes the MT_ContHomeRun instruction.
If the current position is a pre-position or an end position (2-3 digit number), the
instruction is exited again immediately and the HomeRun strategy is called with
the next position number.
If "MT_ContHomeRun" has been called with an intermediate position number, it is
first attempted to call the module-local routine or, if this does not exist, the global
movement routine.

146 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.5.5.3 Use of type modules with different strategies
Continued

10.5.6 MultiMove Support

HomeRun can be used in robot systems with a maximum of 4 robot manipulators,
whereby only MultiMove-Independent is supported.
The movements of the robot manipulators into the home position are not
synchronized by HomeRun which means that the strategy of each robot is
independent from the strategies of the other robots in the MultiMove system.
If there is a need to lock positions between the robot manipulators, this has to be
done in the individual strategies of the robots.
If the robots are to be moved into the home position in a certain order, event
routines for the events EE_BEFORE_INIT and EE_AFTER_INIT can be set up by
the integrator.
Example:
In this example, the following event routines have been set up:

Assigned eventRoutine

EE_BEFORE_INITBeforeHomeRun

EE_AFTER_INITAfterHomeRun

To send the robot to the home position in a sequential order, those routines can
be filled as follows:

Robot 3
Is waiting for robot 1 and 2

Robot 2
Is waiting for robot 1

Robot 1
Starts moving immediately

PROC BeforeHomeRun()PROC BeforeHomeR-
un()

PROC BeforeHomeR-
un() WaitDO doRob1in-

Home,high;WaitDO doRob1in-
Home,high;

ENDPROC

WaitDO doRob2in-
Home,high;ENDPROC

ENDPROC

PROC AfterHomeR-
un() PROC AfterHomeRun()PROC AfterHomeR-

un()WaitDI diMT_Ro-
botsIn-
Home,high;

WaitDI diMT_RobotsIn-
Home,high;

ENDPROC

WaitDI diMT_Ro-
botsIn-
Home,high;ENDPROC

ENDPROC

If a robot has reached its home position, it waits until all other robots have reached
their home positions too before continuing the program execution.
This is achieved by waiting in the AfterHomeRun routine until the digital output
doMT_RobotsinHome changes to 1. This output is built by a cross connection,
where the home position signals of all robots are combined logically´.
If the predefined outputs doRob1inHome – doRob4inHome are not to be used,
this cross connection in the system parameters must be adapted accordingly or
the individual signals must be queried.

3HAC044398-001 Revision: C 147
© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.5.6 MultiMove Support

10.5.7 Movement continuation in intermediate positions

If the robot program was stopped in an intermediate position of a movement routine
and the robot should then move into the home position, then the movement must
be restarted exactly from this intermediate position. Since processing of the
instructions starts at the beginning of a routine, a facility for preventing execution
of the robot movement until the previously moved to intermediate position has
been found has been implemented in the instructions MT_MoveX, MT_MoveXDO,
MT_TriggX, and so on.
For this purpose a check is made in the movement into the home position whether
the last moved to position number agrees with the transferred position number.
The robot movement is not performed if this is not the case. If the two position
numbers agree, then this and all following robot movements are performed again.
Example:
The robot has been stopped in position 123002. After a robot program restart, the
HomeRun is executed. The movement routine to be called up is determined from
the saved position number. In intermediate positions the consecutive number is
separated, i.e. current position 123002 becomes path number 1230, and two-digit
start or end positions are evaluated directly (for example, 12 or 30). On the basis
of path number 1230, the robot continues to end position 30 by calling up routine
mv12_30. In relation to the respective current position, movement routines are
called up until the robot is in the home position (999).

PROC mv12_30()

MT_MoveL 12,p12,… !No movement, pos.no. 12 123002

MT_MoveL 123001,… !No movement, pos.no. 123001 123002

MT_MoveL 123002,… !No movement, pos. no. 123002 = StartPos

MT_MoveL 123003,… !Movement is performed since start position

!has been found

MT_MoveL 30,p30,… !Movement is performed

ENDPROC

If the robot is between two positions, then on continuing the movement in the same
direction the saved position is no longer moved to, but the movement starts with
the following position.
The saved position is only moved to if the direction of movement reverses (for
example, 3012xx used as intermediate position number in routine mv12_30) or if
the saved position is a start or destination point (two-digit or three-digit position).

148 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.5.7 Movement continuation in intermediate positions

10.6 System characteristics

10.6.1 Position number assignment

The assignment of position numbers takes place by means of an interrupt in the
middle of a zone path of the destination point of a movement instruction.
If the destination position is moved to as a stop point (fine zone) the position
number is assigned as soon as the manipulator has come to a standstill.
The following restrictions apply:

• During execution forwards instruction-by-instruction the I/O activities are
performed but the interrupt routines do not run.

• During the execution backwards instruction-by-instruction, no trigger activities
at all are performed.

3HAC044398-001 Revision: C 149
© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.6.1 Position number assignment

10.6.2 Intermediate position in movement from the home position

If the robot is stopped during the movement from the home position to a destination
position before it has reached an intermediate position or the destination position,
then only direct movement into the home position is possible (MT_HomeDirect),
since the position number 999 is still active, but the robot is not in the home position.
An intermediate position that the robot reaches immediately after setting off should
be inserted after the home position in order to keep HomeRun active.
Example:

PROC 999_10()

MT_MoveJ 999,p999,v200,z10,tGripper\NoMove;

MT_MoveJ 99901001,p999,v1000,z10,tGripper;

MT_MoveJ 99901002,*,v2000,z10,tGripper;

MT_MoveL 10,p10, v2000,z10,tGripper;

ENDPROC

Position number 99901001 is assigned immediately when the robot starts moving.

150 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.6.2 Intermediate position in movement from the home position

10.7 Programming and configuration data

10.7.1 Introduction

All signals, data and instructions that HomeRun uses or makes available are
described in the following.

3HAC044398-001 Revision: C 151
© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.7.1 Introduction

10.7.2 Modules

The project-specific adaptations must be inserted in the routines.
• MT_HomeRun
• MT_SpeedUpdate
• MT_HomeDirect

and in the declaration pnPositions of type posname.

152 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.7.2 Modules

10.7.3 Signals

Internal signals
Signals on the system-internal I/O unit HOME.

DescriptionAdr.Signal nameType

All movements tasks are stopped0diHR_TaskStoppedDI

Task T_ROB1 is executed1doHR_Task1RunDO

Task T_ROB2 is executed2doHR_Task2RunDO

Task T_ROB3 is executed3doHR_Task3RunDO

Task T_ROB4 is executed4doHR_Task4RunDO

Position trigger signalsdoHR_Trigg10 – 49DO

Remote control signals
Signals on the I/O unit HOMESIM

DescriptionAdr.Signal nameType

HomeRun request0diIRBgoHomeDI

Switch on motors request1diHR_MotorOnDI

Start program from main request2diHR_StartMainDI

All robots are in their home posi-
tions

3diHR_RobotsInHomeDI

Robot 1 is in the home position1doRob1inHomeDO

Robot 2 is in the home position2doRob2inHomeDO

Robot 3 is in the home position3doRob3inHomeDO

Robot 4 is in the home position4doRob4inHomeDO

Program is executed5doHR_CycleOnDO

Motors are switched on6doHR_MotorOnDO

Tip

These signals are pre-installed and can be adapted in EIO.CFG if necessary.

3HAC044398-001 Revision: C 153
© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.7.3 Signals

10.7.4 Data

DescriptionTypeName

Move to start position (two or three-digit)
when searching the current position (FALSE)
or not (TRUE). These variables can be as-
signed in routine MT_HomeRun depending on
the situation.

boolbMT_ContHomeRun

Perform position check of last position moved
to in MT_HomeRun.

boolbMT_HomeRunCheckPos

HomeRun is executed.boolbMT_HomeRunActive

(readonly)

Last position number that robot moved to.stringstMT_HomeRunActPos

(readonly)

Destination position of last movement routine
to be executed.

numnMT_HomeRunTarget

(readonly)

154 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.7.4 Data

10.7.5 Instructions

DescriptionName

Continue a movement routing.MT_ContHomeRun

Program processing complete.MT_Exit

Abort current cycle and start next cycle.MT_ExitCycle

Execute movement routine (backwards)MT_MoveRoutine

Save stop positionMT_HomeRunSavePos

Axis-wise movement.MT_MoveJ

Linear robot movement.MT_MoveL

Axis-wise movement, including a gripper actionMT_GripJ

Linear movement, including a gripper actionMT_GripL

Axis-wise movement, including a gripper sequenceMT_GripSeqJ

Linear movement, including a gripper sequenceMT_GripSeqL

Linear movement, which deactivates a cartesian soft servo.MT_CSSDeactMoveL

Axis-wise movement and set digital output in corner path.MT_MoveJDO

Axis-wise movement and set group output in zone.MT_MoveJGO

Axis-wise movement and processing a RAPID procedure.MT_MoveJSync

Linear movement.MT_MoveL

Linear movement and setting a digital output in the zone.MT_MoveLDO

Linear movement and set group output in zone.MT_MoveLGO

Linear movement and processing of a RAPID procedure.MT_MoveLSync

Linear search movement of robot.MT_SearchL

Axis-wise movement with events.MT_TriggJ

Linear movements with events.MT_TriggL

Note

All of the above-mentioned instructions are available in the HomeRun instruction
list of the FlexPendant.

3HAC044398-001 Revision: C 155
© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.7.5 Instructions

10.7.6 HomeRun related routines in the MT_MAIN module

DescriptionName

Movement directly into the home positionMT_HomeDirect

Adapt speedMT_SpeedUpdate

HomeRun strategyMT_HomeRun

156 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

10 HomeRun
10.7.6 HomeRun related routines in the MT_MAIN module

11 System parameters
11.1 Introduction

During the installation of the robotic system with theRobotWareMachine Tending,
the parameter group Process in the system parameters is extended to include the
following types:

• MT Visualization settings
• MT API commands
• MT API Positions
• MT Program Selection
• MT Part Settings
• MT Applications
• MT HomeRun

Through these parameter types, the working of the RobotWare Machine Tending
is set task related. A parameter instance exists for every motion task of the robot
for this, with the name of the respective task (for example, T_ROB1, T_ROB2, T_ROB3
or T_ROB4).

Note

These instances can neither be deleted nor added.

3HAC044398-001 Revision: C 157
© Copyright 2014 ABB. All rights reserved.

11 System parameters
11.1 Introduction

11.2 MT Visualization settings

Overview
This section describes the parameter type MT Visualization Settings.

Name of the configuration
MT_GUI_SETTINGS

Type description
The type MT Visualization Settings contains parameters with which the display
behavior of the GUI can be influenced.

Usage
For each motion task, an instance with the respective task name (For example,
T_ROB1) should be present.

Activating the parameter changes
Changes in the configuration of MT Visualization Settings are activated by
restarting the user interface and a Start from main of the robot program.

Parameter
The parameter type MT Visualization Settings contains the following
parameters:

Permitted valuesDescriptionParameter

T_ROB1The configuration is loaded at the time of in-
stallation, depending on the robot existing in
the system, and can neither be deleted nor
renamed.

name

T_ROB2

T_ROB3

T_ROB4The name indicates the task of the robot for
which this configuration is applicable.

Default:""In the case of MultiMove systems, the display
is done on several tab panes. The labeling
of the tab panes or the name of the robot
station is defined through common_name.

common_name

1-4Defines the sequence of the tab panes in the
production view, the service routine and set
up routine view in the case of MultiMove
systems.

tab_index

Default:1

If no entry is made, the sequence is determ-
ined with the help of the task name.

TRUEDisable manual program selection in automat-
ic mode through the graphical user interface.

inhib_part_sel_in_auto

FALSE
TRUE: Program selection is possible only in
the manual mode

Default:TRUE

FALSE: Program selection is possible even
in the automatic mode.

TRUEUse the Operation mode selection button in
the GUI.

UseOpModeSelBtn

FALSE
TRUE: Button displayed in the GUI. Default:TRUE
FALSE: Button not displayed in the GUI.

Continues on next page
158 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

11 System parameters
11.2 MT Visualization settings

Permitted valuesDescriptionParameter

TRUEUse the Stop after cycle button in the GUI.UseStopCycleBtn

FALSETRUE: Button displayed in the GUI.
Default:TRUEFALSE: Button not displayed in the GUI.

TRUEUse the HomeRun button in the GUI.UseHomeRunBtn

FALSETRUE: HomeRun button is displayed in the
GUI. Default:TRUE
FALSE:HomeRun button is not displayed in
the GUI.

TRUEUse the Project button in the main view of
the GUI.

UseProjectBtn

FALSE
TRUE: Button displayed in the GUI. Default: TRUE
FALSE: Button not displayed in the GUI.

TRUEDisables the ghost mode (partless produc-
tion) selection in the GUI.

inhib_ghost_mode_sel

FALSE
Default:TRUE

0,0110[s]Waiting time until an error message is dis-
played in the RAPID program, for example,
while waiting for a signal.

wait_time_before_msg

Default:5[s]

1-5Column number at which the robot station is
to be displayed in station view of the produc-
tion window.

RobIconCol

Default:3

1-3Row number at which the robot station is to
be displayed in station view of the production
window.

RobIconRow

Default:2

TRUEDisabling of extra confirmation dialogs in the
GUI production view, when the start of pro-
duction, respectively a cycle is selected.

conf_dialog_progstart*
FALSE
Default:TRUE

TRUEDisabling of extra confirmation dialogs in the
GUI production view, when the HomeRun is
selected.

conf_dialog_homrun*
FALSE
Default:TRUE

TRUEDisabling of extra confirmation dialogs in the
GUI gripper view, when for example, a gripper
shall be opened or closed manually.

conf_dialog_gripper*
FALSE
Default:TRUE

TRUESome cycle types should be selectable by
one click for all available motion tasks, so
that all tasks start the cycle execution at the
same time (cycle synchronization).

cycle_select_all_robot*
FALSE
Default:TRUE

These cycle types are:
• Count cycles
• Continuous cycles

These are the cycle types where the cycle
execution buttons are shown only, if the mo-
tion tasks are stopped.
If this parameter is set to TRUE (Yes), all the
cycles with the following identical information
are started simultaneously:

• Cycle name
• Cycle index
• Cycle type

If the data is not identical, only the cycle of
the currently selected robot is started.

Continues on next page
3HAC044398-001 Revision: C 159

© Copyright 2014 ABB. All rights reserved.

11 System parameters
11.2 MT Visualization settings

Continued

Permitted valuesDescriptionParameter

Path of the pro-
ject folder.

Defines the location, where the RWMT pro-
jects are saved to.

ProjectFolder*

Default:
HOME:RWMT

This setting will not influence the project path
of a virtual controller, where the projects are
always saved under HOME:RWMT.

*) This parameter is generally valid for all motion tasks, so RWMT uses only the
value entry from the first motion task (T_ROB1). All values for this parameter in
other motion tasks will be disregarded.

160 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

11 System parameters
11.2 MT Visualization settings
Continued

11.3 MT API commands

Overview
The parameter type MT API Commands is described in this section.

Name of the Configuration
MT_API_COMMANDS

Type description
The type MT API Commands contains parameters with which the signals can be
set for the remote operation of the MT-functions as well other functional values.

Usage
For each motion task, an instance with the respective task name (for example,
T_ROB1) should be present.

Activating the parameter changes
Changes to the configuration of the MT API Commands are activated by a restart
of the GUI and Start from mainof the robot program.

Parameter
The parameter type MT API Commands contains the following parameters:

Permitted valuesDescriptionParameter

T_ROB1,The configuration is loaded at the time of in-
stallation, depending on the robot existing in
the system, and can neither be deleted nor
renamed.

name

T_ROB2,
T_ROB3,
T_ROB4The name indicates the task of the robot for

which this configuration is applicable.

Group input for setting the cell mode (Without
robot, Service, or Production).

GI_OpMode

Group output for reporting the current cell
mode Without robot, Service, Production)

GO_OpMode

0-255Group input value for the mode of operation
Operation without robot

OpMode_NoRobot

Default: 0

0-255Group input value for the mode of operation
Service.

OpMode_Service

Default: 1

0-255Group input value for the mode of operation
Production.

OpMode_Production

Default: 2

TRUE, FALSECombines the production and service opera-
tion mode so that no selection between pro-
duction and service mode has to be done in
the GUI

no_cell_opmodes

Default:TRUE

Digital input for the selection Ghost mode.DI_GhostMode_REQ

Digital output for the feedback ifGhost mode
is active.

DO_GhostMode_ACK

Continues on next page
3HAC044398-001 Revision: C 161

© Copyright 2014 ABB. All rights reserved.

11 System parameters
11.3 MT API commands

Permitted valuesDescriptionParameter

Digital input for the requestDI_Stop_Cycle

Halt after end of cycle.

TRUE, FALSEFlag to force a direct halt after cycle instead
of just requesting it when pressing the halt
after cycle button

direct_stop_after_cycle

Default:TRUE

0-600 [s]Timer which is started if a halt after cycle re-
quest is set and after unsuccessfully trying
to get a valid program number or request
from the GUI to either execute a production
or service routine.

stop_after_cycle_timeout

Default: 0 [s]

If a production or service routine can be run
before timeout, the timer is stopped and re-
set.
If the timeout is triggered before a production
or service routine can be executed, then the
Stop after cycle request changes automatic-
ally to Stop after cycle reached and the en-
gine loop is cancelled (program stop).
The value 0 [s] disables the timer.

Digital output for the error notification.DO_Error

Group output for transmitting the error do-
main.

GO_Error_Domain

Group output for transmitting the error num-
ber.

GO_Error_No

Digital input for acknowledging an error.DI_Error_ACK

Activate speed override 1.DI_Speed1_REQ

Signal is high:
The speed of movement is set with the instruc-
tion SpeedRefresh to Speed1_Value.
Signal is low:
The speed of movement will be set to 100%.

Speed override 1 is active (high).DO_Speed1_ACK

10-100 [%]Speed override 1 in percentage.Speed1_Value

Default: 30 [%]

Activate speed override 2.DI_Speed2_REQ

Signal is high:
The speed of movement will be set to
Speed2_Value.
Signal is low:
The speed of movement will be set to 100%.

Speed override 2 is active (high)DO_Speed2_ACK

10-100 [%]Speed override 2 in percentageSpeed2_Value

Default:50[%]

Digital input for checking the pressurized air.DI_AirPressure_OK

Signal = 1: Pressurized air OK
Signal = 0: Pressurized air error

Continues on next page
162 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

11 System parameters
11.3 MT API commands
Continued

Note

If no signals have been assigned for individual functions, then this function will
not be used in the robot program.

3HAC044398-001 Revision: C 163
© Copyright 2014 ABB. All rights reserved.

11 System parameters
11.3 MT API commands

Continued

11.4 MT API positions

Overview
This section describes the parameter type MT API positions.

Name of the configuration
MT_API_POSITION

Type description
The type MT API Positions contains the parameters through which the signals
for the position messages (for example, world zone signals for the home position,
safe position or service positions) as well as the requests for moving to one of
these position can be set.

Usage
For every task of the robot, an instance with the respective task name (for example,
T_ROB1) should be present.

Activating the parameter changes
Changes in the configuration of the MT API positions a by a restart of the GUI
and through a Start from main of the robot program.

Note

If static world zones are used for the position monitoring, a warm start of the
controller may be necessary.

Parameter
The parameter type MT API Positions contains the following parameters:

Permitted valuesDescriptionParameter

T_ROB1,T_ROB2,
T_ROB3, T_ROB4

The configuration is loaded at the time of in-
stallation, depending on the robot existing in
the system, and can neither be deleted nor
renamed.

name

The name indicates the task of the robot for
which this configuration is applicable.

Digital input or output for checking whether
the robot is present in the Home position.

DIO_At_Home

High: robot is located in the Home position

Digital input or output for checking if the robot
is present in the Safe position.

DIO_At_Safe

Digital input or output for checking if the robot
is present in the Service position 1.

DIO_At_Service1

Digital input or output for checking if the robot
is present in the Service position 2.

DIO_At_Service2

Digital input or output for checking if the robot
is present in the Service position 3.

DIO_At_Service3

Continues on next page
164 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

11 System parameters
11.4 MT API positions

Permitted valuesDescriptionParameter

Digital input for requesting a trip of the robot
to the Home position.

DI_Go_Home

Digital Input for requesting a trip of the robot
to the Service position 1.

DI_Go_Service1

Moving to service position 1 is allowed in
operation mode Production as well as in op-
eration mode Service. The only precondition
is that the robot is located in home position
before.
A menudata declaration with a predefined
name and the respective service routine must
have been declared by the application pro-
grammer (for more details, see Special ser-
vice routines on page 247).

Digital Input for requesting a trip of the robot
to the Service position 2.

DI_Go_Service2

Moving to service position 1 is allowed in
operation mode Pproduction as well as in
operation mode Service. The only precondi-
tion is that the robot is located in home posi-
tion before.
A menudata declaration with a predefined
name and the respective service routine must
have been declared by the application pro-
grammer (for more details, see Special ser-
vice routines on page 247).

Digital Input for requesting a trip of the robot
to the Service position 3.

DI_Go_Service3

Moving to service position 1 is allowed in
operation mode Production as well as in op-
eration mode Service. The only precondition
is that the robot is located in home position
before.
A menudata declaration with a predefined
name and the respective service routine must
have been declared by the application pro-
grammer (for more details, see Special ser-
vice routines on page 247).

0-998Position number of the safe position.
If, during Start from main, the robot is in
the safe position (DIO_At_Safe), then the
start position for the instruction MoveTo will
be set to this position number, so that error
free processing is possible.

Note

The assignment of a position number <>0
may only be done, if there is only one safe-
position. Otherwise a collision could happen
because when having more than one safe
position, the assigned number would be am-
biguous.

Pos_no_Safe

Default: 0

Continues on next page
3HAC044398-001 Revision: C 165

© Copyright 2014 ABB. All rights reserved.

11 System parameters
11.4 MT API positions

Continued

Permitted valuesDescriptionParameter

TRUE, FALSECheck of production start position. If this
parameter is set to Yes, then RWMT will
perform a position check at the beginning of
each production cycle. In this case, the robot
must be located in the home position or safe
position. The check can only succeed, if the
respective signals have been provided in the
process configuration (see above in this
table). If the switch is set to No, the robot
does not need to be located in a specific po-
sition, before the production cycle can be
executed.

Check_prod_startpos

Default: TRUE

Note

If no signals have been assigned for individual functions, then this function will
not be used in the robot program.

166 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

11 System parameters
11.4 MT API positions
Continued

11.5 MT Program selection

Overview
This section describes the parameter type MT Program selection.

Name of the configuration
MT_PRG_SELECT

Type description
The type MT Program Selection contains the definition of the interface, which
is necessary to transfer a program number.

Usage
For every task of the robot, an instance with the respective task name (for example,
T_ROB1) should be present.

Activating the parameter changes
Changes to the configuration of the MT Program Selection are activated by a
restart of the GUI and through a Start from main of the robot program.
Alternatively, a warm start of the robot controller can be executed.

Parameter
The parameter type MT Program Selection contains the following parameters:

Permitted valuesDescriptionParameter

T_ROB1,T_ROB2,
T_ROB3, T_ROB4

The configuration is loaded at the time of in-
stallation, depending on the robot existing in
the system, and can neither be deleted nor
renamed.

name

The name indicates the task of the robot for
which this configuration is applicable.

TRUE, FALSECyclic reading of the program number.cyclic_prg_read

Default: FalseTRUE: To execute a processing program or
service routine, the program number is read
in every cycle, using the selected handshake
signals.
FALSE: The program number is read after
the Start from main, once, using the se-
lected handshake signals.
After this, the same processing program will
be executed repeatedly.

Group input.GI_Prg_Number

Program number (See part data)

Group output.GO_Prg_Number

Returns the program number.

Group input.GI_Check_Code1

Test code 1, for example, form code (See part
data).

Group input.GI_Check_Code2

Test code 2 (See part data)

Continues on next page
3HAC044398-001 Revision: C 167

© Copyright 2014 ABB. All rights reserved.

11 System parameters
11.5 MT Program selection

Permitted valuesDescriptionParameter

Group input.GI_Check_Code3

Test code 3 (See part data)

Group input.GI_Check_Code4

Test code 4 (See part data)

Group input.GI_Check_Code5

Test code 5 (See part data)

Group input.GI_Check_Code6

Test code 6 (See part data)

Group input.GI_Check_Code7

Test code 7 (See part data)

Group input.GI_Check_Code8

Test code 8 (See part data)

Group input.GI_Tool_Code

Gripper coding (See partdata and gripdata)

Digital output.DO_Prg_Request

Request for program number.
(Ready for data transmission

Digital input.DI_Prg_Valid

Program number is valid

Digital output.DO_Prg_RunACK

Acknowledgement of program number
transfer from robot

Digital output.DO_Prg_Running

Selected program will be executed

Group input.GI_Cycle_Index

Selection of production cycle

Digital input.DI_Reset_CycCnt

Request for resetting the cycle counter after
the production has been cancelled.

Digital output.DO_ResCycCnt_ACK

Acknowledgement cycle counter was reset

TRUE, FALSETransfer of program number will be done with
user controls.

EnableUserProg

Default: False
TRUE: The program number will be trans-
ferred through the user defined routine
MT_GetUserProgNo.
FALSE: The program number will be trans-
ferred internally through the defined hand-
shake signals.

5 – 600 [s]Maximum time in seconds while waiting for
a valid program number. After time has ex-
ceeded, the event
EE_TIMEOUT_PROG_NUMBER is triggered
where the user can force stop after cycle.

wait_time_prog_number

Default: 10 [s]

Continues on next page
168 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

11 System parameters
11.5 MT Program selection
Continued

Signal flow chart
The following diagrams show alternative signal flows for communicating the program
number since RWMT considers, that not all possible signals are to be used for
each application, depending on the integrator’s concept. It depends on the signals
that have been provided in the process configuration, which signal flow takes place.
Overview of signal combinations for program number transfer:

87654321Signal

XXXXXXXXGI_Prg_Number

XXXXXGO_Prg_Number

XXXDI_Prg_Valid

XXXDO_Prg_Request

XXXDO_Prg_RunACK

XXXXXXXDO_Prg_Running

Alternative flowchart for combination 1

xx1400000755

Alternative flowchart for combination 2

xx1400000756

Continues on next page
3HAC044398-001 Revision: C 169

© Copyright 2014 ABB. All rights reserved.

11 System parameters
11.5 MT Program selection

Continued

Alternative flowchart for combination 3

xx1400000757

Alternative flowchart for combination 4

xx1400000758

Alternative flowchart for combination 5

xx1400000759

Alternative flowchart for combination 6

xx1400000760

Alternative flowchart for combination 7

xx1400000761

Continues on next page
170 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

11 System parameters
11.5 MT Program selection
Continued

Alternative flowchart for combination 8

xx1400000762

Additional information are given in the chapter Parameterization of the MT Program
Selection on page 203.

3HAC044398-001 Revision: C 171
© Copyright 2014 ABB. All rights reserved.

11 System parameters
11.5 MT Program selection

Continued

11.6 MT Part settings

Overview
In this section, the parameter type MT Part Settings will be described.

Name of the configuration
MT_PART_SETTINGS

Type description
The type MT_Part_Settings contains parameters to define how part type related
information is to be handled.

Usage
An instance with the respective task name (for example, T_ROB1) must be present
for each robot task.

Activating the parameter changes
Changes to the configuration of the MT_Part_Settings are activated through a
Start from main of the robot program.

Parameter
The parameter type MT_Part_Settings contains the following parameters:

Permitted valuesDescriptionParameter

T_ROB1,The configuration is loaded at the time of installation,
depending on the robot existing in the system, and
can neither be deleted nor renamed.

name

T_ROB2,
T_ROB3,The name indicates the task of the robot for which this

configuration is applicable. T_ROB4

General module name of the part type modules without
type prefix and without part type number.

partmod_name

For example,: if a specific part type module for part
type 137 shall be PART_T137”, then the value for this
parameter must be: PART
(without type prefix T and without part type number
137).

Default:TType prefix to be used for type-dependent movement
routines.

TypePrefix

172 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

11 System parameters
11.6 MT Part settings

11.7 MT Applications

Overview
In this section, the parameter type MT Applications will be described.

Name of the configuration
MT_APPLICATIONS

Type description
The type MT Applications contains parameters to declare external, station
independent FlexPendant applications, that can be called from the production view
of the GUI.

Usage
For each application, an instance with the respective name APP1…APP8 should
be present.

Activating the parameter changes
Changes to the configuration of the MT Applications are activated by a restart
of the GUI.

Parameter
The parameter type MT Appplications contains the following parameters:

Permitted valuesDescriptionParameter

APP1, APP2,,
APP3, APP4, ,
APP5, APP6,,
APP7, APP8,

Unique name of the application settings, must be se-
lected from list.

name

Name of the application, appearing in the application
pull-down menu in the production view of the RWMT
GUI

MenuName

The file name of the image which will be shown on the
left side of a menu entry (max. 32x32 pixel). Menu
height depends on the largest image.

Image

Name of the application DLL, including the file extenderDLLname

TRUE, FALSECan be either embedded (application is started as child
of the RWMT GUI) or as a separate application.

Embedded

Default:FALSE

Default:
ABB.Robotics.
SDK.Views

Namespace of application. (Standard name space.
ABB.Robotics.SDK.Views is used, if field is empty.

Namespace

Class (view) of the application that shall be started,
not needed for external (not embedded) applications.

Class

Continues on next page
3HAC044398-001 Revision: C 173

© Copyright 2014 ABB. All rights reserved.

11 System parameters
11.7 MT Applications

Limitations and characteristics
• If there is just one station application for a specific station, its name,

respectively its icon will be shown directly in the menu bar in the GUI station
view.

• To be able to run an embedded applications on a virtual controller, the
application files (DLL’s) must be located in the Home or System directory.
At the real controller there a no limitations.

• The embedded applications should have a button which closes the window,
otherwise, there is no way to close the application.

• (FP-SDK): The app should use error handling, so that each error will be
handled by the application itself.

• (FP-SDK): The constructor of the application should be the standard
constructor which has no parameters. Each application must create the
required data by itself.

• (FP-SDK): When closing the application, all used resources must be released
by means of the Dispose method, so that no memory leaks appear.

• (FP-SDK): The Interface ITpsViewActivation“ should be implemented, so
that the methods Activate and Deactivate will be called if the control goes
from the passive state to the active state, that is, becomes visible in the client
view. Normally, this is where subscriptions to controller events are set up.

• (FP-SDK): Only TpsForms can be used.

174 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

11 System parameters
11.7 MT Applications
Continued

11.8 MT HomeRun

Overview
This section describes which system parameters of HomeRun are used, and how
they have to be set.

Name of the Configuration
MT_HOMERUN

Type description
The HomeRun type contains the parameters with which the behaviour of the
automatic move to the home position can be influenced.

Usage
An instance with the respective task name (for example, T_ROB1) must be present
for each robot task.

Activating the parameter changes
Changes to the configuration of HomeRun are activated by a robot program Start

from main.

Parameter
The HomeRun parameter type contains the following parameters:

Permitted valuesDescriptionParameter

T_ROB1,T_ROB2,
T_ROB3, T_ROB4

The configuration is loaded during installation
depending on the robots that exist in the system,
and can be neither deleted nor renamed.

name

The name specifies the robot task to which this
configuration applies.

TRUE, FALSESelection/deselection of HomeRun. Allows to
decide wether HomeRun shall be used in the ap-
plication program or not.

UseHomRun

Default: TRUE

Digital output that is set when the HomeRun is
being executed.

DO_HomeRunActive

TRUE, FALSEA temporary world zone is set up for monitoring
the home position.

CreateWZone

Default: FALSE
In order to do this, an output must have been set
up for monitoring the home position.
The position of the robot after executing the
MT_HomeDirect routine is used as the home
position.
Only available if the World Zones option is used,
which is part of the RWMT option key.

10-1000Maximum speed (mm/s) that is set when the move
to the home position takes place (VelSet).

MaxSpeed

Default:500

10-80Maximum speed override (%) that is set when the
move to the home position takes place (VelSet).

Override

Default:50

Continues on next page
3HAC044398-001 Revision: C 175

© Copyright 2014 ABB. All rights reserved.

11 System parameters
11.8 MT HomeRun

Permitted valuesDescriptionParameter

0-150Maximum permitted distance (mm) that the robot
may be moved away from the last moved to posi-
tion to enable automatic movement into the home
position.

StartArea

Default: 150

A value of 0 disables the check.
If the robot has been moved manually using the
joystick after deactivation of the check and is then
to move automatically to the home position, it will
move into the home position via the last stored
position number, which may cause a collision.
In order to avoid this, the robot should be moved
to the home position inManualmode after moving
the robot manually.
After starting the program from Main without any
external request for the home position, the robot
can be moved directly to the home position in
manual mode by pressing theDirectmenu button.

External axes number 7-12 which shall not be
used for home position verification.

NotUsedExtAxes

This is necessary if an external axis is controlled
by an external device, for example, when using
one of the options MaschineSync or Conveyor
tracking.
The axis which is not required will be deactivated
by representation of the axis number (7 -12).
If several axes shall be deselected for home pos
verification, the axis numbers have to be separ-
ated by a blank or a comma character, like 7 8 12
or like 7,8,12.

TRUE, FALSETRUE: Stop program execution after movement
into the home position.

StopInHome

Default: TRUE
FALSE: Program is continued after reaching the
home position.

TRUE, FALSETRUE: Terminate program execution and start
move to the home position when digital input
DI_Go_Home is activated.

AbortProgram

Default: TRUE

TRUE, FALSETRUE: Abort movement of robot into home position
when input DI_Go_Home is reset.

HoldToRun

Default: TRUE

TRUE, FALSEWhen using one of the instructions MTMoveL or
MT_MoveJ together with the NoMove argument,
the following settings will cause the behaviour as
described:

NoMoveByFwd

Default: TRUE

TRUE: MT_MoveL and MT_MoveJ instruction with
NoMove-Argument will be executed for instruc-
tion-wise approach in manual mode of the robot
only.
FALSE: MT_MoveL and MT_MoveJ instruction with
NoMove-Argument will always be executed in
manual mode.
In automatic mode of the robot controller, this
parameter does not affect the behaviour of the
above mentioned instructions.

Continues on next page
176 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

11 System parameters
11.8 MT HomeRun
Continued

Permitted valuesDescriptionParameter

TRUE, FALSETRUE: The programmed trigger events of the
movement instructions are executed ifHomeRun
is active.

ExecTriggEvt

Default: TRUE

FALSE: No trigger events executed with HomeRun
active.

TRUE, FALSETRUE: Wait until DI_Go_Home input switches to 0
as soon as the home position has been reached.

WaitGoHomeLow

Default: TRUE
FALSE: The status of DI_Go_Home is ignored after
the home position has been reached.

TRUE, FALSETRUE: The MT_SpeedUpdate user routine is called
up before executing a movement instruction so
that the speed data can be adapted.

SpeedUpdate

Default: TRUE

FALSE: The MT_SpeedUpdate user routine is not
called up.

3HAC044398-001 Revision: C 177
© Copyright 2014 ABB. All rights reserved.

11 System parameters
11.8 MT HomeRun

Continued

This page is intentionally left blank

12 User permissions
12.1 Application permissions

RobotWare Machine Tending provides the following application permissions,
which can be used to release the access permissions for the individual functions
of the GUI in a user specific manner.

DescriptionApplication 'Grant'

If this is activated, the user can manually select a part in the
component view.

Select Parts
RWMT_SEL_PARTS

If this has been activated, the user is not allowed to select or
deselect stations.

Station selection
RWMT_SEL_STATION

If this has been activated, the ghost mode may be requested
through the GUI.

GhostMode access
MT_GHOSTMODE

If this has been activated, the user can operate the gripper
manually through the GUI, that is, the control elements as well
as the gripper sequences can be executed.

Gripper control
MT_GRIPPER

If this has been activated, the signals of the stations or the
general signal page can be set or reset.

Signal write access
MT_WRITE_SIGNALS

This Grant corresponds to the minUserLevel field of the data
type stationvariable. The user who has logged in may
change the station variable, if he activates the Grant and the
minUserLevel of the station variable is less than or equal to
this user level.

Variable Write access
MT_VAR_WRITE

Contains the access to the
reset button

Min. Value: 0. Max. Value: 255.

Note

If a user has the permission Full Access then the user level is
set to 255.

If this has been activated, the user may reset the station vari-
ables through the reset button.

Variable Reset access
MT_VAR_RESET

This Grant corresponds to the minUserLevel field of the data
type menudata. The user who has logged in gets the respective
set up or service menu entry, if this Grant is activated and the
minUserLevel of the menu entry is less than or equal to this
user level.

Run Menu User Level
MT_MENU_USERLEV

Min. Value: 0, Max. Value: 255.

Note

If a user has the permission Full Access , then the user level
is set to 255.

If this has been activated, the user can change the cycle set-
tings.

Change cycle settings
MT_CYCLESETTING

If this has been activated, the test mode may be requested or
switched off through the GUI.

Testmode access
MT_TESTMODE

Continues on next page
3HAC044398-001 Revision: C 179

© Copyright 2014 ABB. All rights reserved.

12 User permissions
12.1 Application permissions

DescriptionApplication 'Grant'

This will allow the user to access projects by means of the
RWMT project view.

Project Manager access
MT_PROJECT_MANAGER

180 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

12 User permissions
12.1 Application permissions
Continued

12.2 User groups

During the installation of the robotic system, the standard user groups Operator,
Service, and Programmer are provided with the following permissions:

ProgrammerServiceOperatorApplication right

XXXSelect Parts
MT_SEL_PARTS

XXXStation selection
MT_SEL_STATION

XGhostMode access
MT_GHOSTMODE

XXGripper control
MT_GRIPPER

XXSignal write access
MT_WRITE_SIGNALS

200100Variable Write access
MT_VAR_WRITE

XXXVariable Reset access
MT_VAR_RESET

20010020Run Menu User Level
MT_MENU_USERLEV

XXChange cycle settings
MT_CYCLESETTING

XTestmode access
MT_TESTMODE

XXProject Manager access
MT_PROJECT_MANAGER

Note

If a user has logged in with administrator permissions (FullAccess), then he will
also have all the permissions of RWMT. Furthermore, the user levels for
MT_VAR_WRITE and MT_MENU_USERLEV are set to 255.

3HAC044398-001 Revision: C 181
© Copyright 2014 ABB. All rights reserved.

12 User permissions
12.2 User groups

12.3 User level for service menus and change of variable

The service menu and setup menu as well as the station variables make use of
the user administration of the robot, to display the service routines or to release
the change of variable, for which the user who has logged in has the required
permissions.
Through the grants MT_MENU_USERLEV and MT_VAR_WRITE a user level between
0 and 255 is set, which will be used for releasing the menudata or stationdata.
Here, the value 255 is equivalent to the grant Full Access, that is, all the service
routines will be displayed or all the variables will be released for change.
For a menudata declaration to be displayed, the grant MT_MENU_USERLEV value
of the user should be greater than or equal to the Min-User-Level value of the
respective menudata declaration.
Example:
The following two service routines are declared as service menus:

CONST menudata mnuGripperChange:=

["Change gripper","Gripper","station-gripper.png",
"GripperChange","",3,TRUE,0,1,10];

CONST menudata mnuTC_Unlock:=

["Unlock change
system","gripper","station-gripper.png","TC_Unlock","",255,FALSE,0,2,100];

A user has logged in with the grant MT_MENU_USERLEV 20.
In the service menu, the entry for the Change gripper is displayed, since the user
level 10 at least is required for the display.
The service routine Unlock change system is not displayed, since the required
minimum user level is 100.
A user has logged in with the user level 100, then all the service routines whose
min user level is less than or equal to 100 will be displayed.

182 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

12 User permissions
12.3 User level for service menus and change of variable

12.4 Setting up the user permissions

The setting up of user permissions is the responsibility of the system operator,
who has to assign the passwords as well as the corresponding permissions to the
individual users.
To setup the user permissions:

InformationActionNo.

en1300000067

Start RobotStudio1

en1200000774

Setup connection to robot2

en1200000775

Request write access to the robot3

en1200000776

Call user administration4

en1200000777

en1200000780

Switch to the Groups page and se-
lect or create the required group

5

en1200000781

On the right side, the control permis-
sions will be displayed.
Through the combination list field,
switch to the Application permis-
sions, so that the permissions RW-
MT are displayed.

6

Continues on next page
3HAC044398-001 Revision: C 183

© Copyright 2014 ABB. All rights reserved.

12 User permissions
12.4 Setting up the user permissions

InformationActionNo.

If necessary, new groups can be
created or the previously described
permissions for the groups Operat-
or, Service or Programmer can be
changed.

7

en1200000782

Switch to the Users page and add
the user with the required permis-
sions.

8

en1200000783

Log in to the robot under the corres-
ponding user name.

9

184 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

12 User permissions
12.4 Setting up the user permissions
Continued

13 Mode of operation of the robot cell
13.1 General

The mode of operation of the robot is not the same as the position of the mode
selection switch of the robot controls, but refers to the behavior of the robot
program.
Basically, there are three modes of operation in RWMT:

• Operation without robot
• Service
• Production

Depending on the requirement, the mode of operation of the robot cell can be
selected in two different ways:

• from outside, through a group input, defined in the PROC.CFG (See the
chapter Parameterization of the MT API Commands on page 195)

• using the button in the graphical user interface (refer to RWMT- Operating
Manual listed in the section References on page 11).

Both, the change from or to the RWMT operation mode Production as well as the
change from the manual mode of the robot to the automatic mode and vice versa
through the key switch plays a role in the execution of the Instruction Sets. These
are used for setting output signals or RAPID data to specific values in an automated
manner. For more details, see Instruction sets on page 105.
If you do not need to differ between the RWMT operation modes, this can be
disabled by means of the process configuration section MT API Commands
(parameter no cell operation mode).

3HAC044398-001 Revision: C 185
© Copyright 2014 ABB. All rights reserved.

13 Mode of operation of the robot cell
13.1 General

13.2 Operation without robot

Definition
The Operation without robot is a mode of operation in which the machines that
form the periphery of the robot are used for production, without involving the robot
in the production.
This could be the case, for instance, if parts are ejected from the robot cell during
the production through a device, and it is then necessary to feed these to the
processing line subsequently with the help of the machines surrounding the robot.
During operations without the robot, the robot program can run in theory, but the
RWMT Engine cannot load any production routines or execute any other action.
This operation mode can be selected only through the external interface, but not
through the graphical user interface.

186 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

13 Mode of operation of the robot cell
13.2 Operation without robot

13.3 Service mode

Definition
The service mode makes it possible to execute setup routines and service routines
based on the menudata declarations that are mentioned in the chapters Service
routines on page 86 and Setup view on page 96.
Normal production routines cannot be executed if this mode of operation is set.

3HAC044398-001 Revision: C 187
© Copyright 2014 ABB. All rights reserved.

13 Mode of operation of the robot cell
13.3 Service mode

13.4 Production mode

Definition
In this mode of operation, production routines can be called for the part types that
are to be handled and the defined production processes can be loaded. This is
usually done on the basis of the partdata declarations that are mentioned in the
chapter Part data on page 68.
Setup routines or service routines cannot be executed in this mode of operation.

Normal production mode
The normal production mode represents a complete production, including the
handling of parts, and possibly with the involvement of different production cycles
such as start up cycles and idle run cycles (see the chapter Program cycles on
page 73 .

Production without parts (Ghost mode)
The ghost mode stands for a production process with the usual process logic of
the normal production mode, but without any handling of parts.
The ghost mode can be activated only before and after a production cycle. It cannot
be activated while processing.
The ghost mode request can be set either through the graphical user interface or
by means of the external command interface (see chapter Parameterization of the
MT API Commands on page 195).
This Sub-mode of production is meant for testing the program logic at the time of
commissioning, when no parts are available yet for the handling, but processes
have to be checked. It is regularly required in automobile assembly lines, for
instance.
Whether the gripper is nevertheless made to perform open and close operations
or whether the gripper messages can be queried, can be programmed in a flexible
manner by using the functions provided by RWMT (for this, see grpdata –
Configuration of a control element of the gripper on page 271).
The instructions and functions MT_GripSet – Controlling the gripper on

page 363, MT_GripCheck – Check position of the control element of

the gripper on page 340, MT_PartCheck – Part controls on the

gripper on page 409 and MT_GhostModeActive – Ask if the ghost mode

is active on page 486 support the ghost mode. For more information, see
References on page 11.

188 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

13 Mode of operation of the robot cell
13.4 Production mode

14 Programming
14.1 Introduction

This chapter is meant as a guiding line for the program preparations in RAPID
using the MT. The most important steps in the program preparations is explained
here. The steps should be executed in the specified sequence.
This section gives an idea of how to work with RWMT when creating a customized
application program. To keep the size of this chapter reasonable, it does not contain
an explanation for each parameter or instruction. To get the full content, please
refer to the chapters System parameters on page 157 and RAPID references on
page 259.

3HAC044398-001 Revision: C 189
© Copyright 2014 ABB. All rights reserved.

14 Programming
14.1 Introduction

14.2 Parameterization of the MT Visualization settings

Opening the parameter window
The display parameters influence the appearance and the behavior of the MT user
interface.
To enter or modify the individual display parameters, the corresponding parameter
window must be opened first in RobotStudio, as shown in the following table.

ExplanationProcedure in RobotStudio

en1200000807

In the Explorer of the robot controls, under
Configuration, select the process paramet-
ers.

en1200000808

In the process parameters window, select
the entry MT Visualization Settings.

Continues on next page
190 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.2 Parameterization of the MT Visualization settings

ExplanationProcedure in RobotStudio

en1200000809

By double clicking on the parameter row that
is displayed, open the parameter window for
the MT Visualization settings .

en1200000825

en1200000810

Descriptive text robot
This parameter represents the text under the robot icon in RWMT. In multimove
applications it represents the name on the robot tabs.

Parameter windowExplanation

en1200000814

Text that appears under the robot icon in the
station view of RWMT.
Example:

Continues on next page
3HAC044398-001 Revision: C 191

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.2 Parameterization of the MT Visualization settings

Continued

Position of the robot in the GUI
This parameter defines the column or row of the station view of RWMT in which
the robot is displayed.

Parameter windowExplanation

en1200000813

Example:
Column 3, Row 2

en1200000812

Extra Dialogs
This parameter allows to enable or disable extra dialogs.

Parameter windowExplanation

en1300000068

Disabling of extra confirmation dialogs in the
GUI production view, when the start of pro-
duction, respectively a cycle is selected.
The deselection of the extra dialog should
only be used for experienced operators.

en1300000069

Disabling of extra confirmation dialogs in the
GUI production view, when the HomeRun is
selected.
The deselection of the extra dialog should
only be used for experienced operators.

en1300000070

Disabling of extra confirmation dialogs in the
GUI gripper view, when for example, a grip-
per shall be opened or closed manually.
The deselection of the extra dialog should
only be used for experienced operators.

Blocking the manual program selection
If the program selection, that is, the selection of the part type that is to be handled
for the production, is done externally through a program number, it may be useful
to block the manual selection at the RWMT user interface.

Parameter windowExplanation

en1200000815

Blocking the manual program selection in
the user interface (GUI)

Continues on next page
192 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.2 Parameterization of the MT Visualization settings
Continued

Blocking the manual mode selection
In case the mode of operation (production, service, without robot, see the chapter
Mode of operation of the robot cell on page 185) is selected externally through the
signal interface, it may be useful to block the manual selection at the RWMT user
interface.

Parameter windowExplanation

en1200000816

Blocking the manual mode selection in the
user interface (GUI)

Disable ghost mode
In case the customer does not need a part-less production (ghost mode) for
commissioning/test purpose, the selection of this functionality in the RWMT user
interface can be disabled.

Parameter windowExplanation

en1300000071

Disabling of the ghost mode (partless produc-
tion) selection in the GUI.
Please note that the ghost mode selection
by digital remote signals is possible anyway.

Display Home Run button
If the request for run-in (start up) of the home position is done externally through
the signal interface, it may be useful to the block the manual request at the RWMT
user interface (GUI).

Parameter windowExplanation

en1200000817

Display of the Home Run button on the RW-
MT user interface (GUI)

Setting the waiting period for message outputs
The waiting period for the state of a signal before a message is displayed by RWMT
is specified here.
This refers in particular to the RWMT Wait instructions in accordance with the
chapter Instructions on page 321.

Parameter windowExplanation

en1200000818

Waiting period while waiting for the state of
a signal before a message is displayed.

Continues on next page
3HAC044398-001 Revision: C 193

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.2 Parameterization of the MT Visualization settings

Continued

Start all robots in multimove system at the same time
The waiting period while waiting for the state of a signal before a message is
displayed by RWMT is specified here.

Parameter windowExplanation

en1300000072

Some cycle types should be selectable by
one click for all available motion tasks, so
that all tasks start the cycle execution at the
same time (cycle synchronization).
These cycle types are:

• Count cycles
• Continuous cycles

These are the cycle types where the cycle
execution buttons are shown only, if the mo-
tion tasks are stopped.
If this parameter is set to TRUE (Yes), all the
cycles with the following identical information
are started simultaneously:

• Cycle name
• Cycle index
• Cycle type

If the data is not identical, only the cycle of
the currently selected robot is started.

194 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

14 Programming
14.2 Parameterization of the MT Visualization settings
Continued

14.3 Parameterization of the MT API Commands

Opening the parameter window
To enter the individual command parameters or to modify them, first the
corresponding parameter window should be opened in RobotStudio, as shown in
the following table.

ExplanationProcedure
(in Robot Studio)

en1200000807

In the Explorer of the robot controls under
Configuration, select the process paramet-
ers.

en1300000079

In the process parameters window, now se-
lect the entry MT API Commands.

Continues on next page
3HAC044398-001 Revision: C 195

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.3 Parameterization of the MT API Commands

ExplanationProcedure
(in Robot Studio)

en1300000073

By double clicking on the parameter row that
is displayed, open the parameter window for
the MT API Commands.

en1200000825

en1200000810

External pre-selection of mode
With the external mode selection, it is possible to set one of the modes of operation
in accordance with the chapter Mode of operation of the robot cell on page 185
through remote control.

ExplanationProcedure
in Robot Studio

en1300000074

The digital group input is
mandatory for the remote operated selection
of the mode of operation.
Optionally, an acknowledgement can be
output by the robot controls as digital group
output.
Further, the values that are expected by the
robot controls for the group input modes of
operation can be modified now.
If the operation mode is changed in the
graphical user interface, the group output
might be different to the group input.

Continues on next page
196 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.3 Parameterization of the MT API Commands
Continued

ExplanationProcedure
in Robot Studio

en1300000075

Combining the production and service oper-
ation mode is possible so that no selection
between production and service mode has
to be done in the GUI

Ghost mode
If it should be possible to request a ghost mode of operation in accordance with
the chapter Production mode on page 188 through remote control, then, the
corresponding signals must be assigned here as well.

Parameter WindowExplanation

en1300000076

The ghost mode-signals are optional.
The digital input represents the request for
the ghost mode.
The digital output is the acknowledgement
from the robot controls, stating that the ghost
mode request has been recognized and that
the ghost mode has been activated.

Halt after end of cycle
The Halt after end of cycle is normally requested by the operator if the production
is to be ended. The robot will complete the handling tasks that are still pending,
and then move to the home position.

Parameter WindowExplanation

en1200000821

The requestHalt after end of cycle is gener-
ated through a digital input signal.

en1300000077

Flag to force a direct halt after cycle instead
of just requesting it when pressing the halt
after cycle button. This is used to simplify
the halt after cycle process in the user pro-
gram.

Continues on next page
3HAC044398-001 Revision: C 197

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.3 Parameterization of the MT API Commands

Continued

Parameter WindowExplanation

en1300000078

The parameter
stop_after_cycle_timeoutmakes mostly
sense in applications where startup cycles
or emptying cycles are needed and where
no direct halt after cycle (see Preparation of
the robot program on page 219) should be
possible.
Imagine that stop after cycle request is
triggered, but this request cannot be handled
by the user program because the engine
loops internally (because for example, no
valid program number is set).
This is solved by a timer which is started if a
halt after cycle request is set and after unsuc-
cessfully trying to get a valid program num-
ber or request from the GUI to either execute
a production or service routine.
If a production or service routine can be run
before timeout, the timer is stopped and re-
set.
If the timeout is triggered before a production
or service routine can be executed, then the
Stop after cycle request changes automatic-
ally to Stop after cycle reached and the en-
gine loop is cancelled (program stop).
The value 0 [s] disables the timer.

Communicating the error number
If errors occur in the program run, it may be necessary to report these to a higher
order control. This is done by outputting the error notifications with the help of the
instruction MT_ShowMessage and the data type msgdata.

Parameter WindowExplanation

en1200000822

The output signal Error active reports that
an error that is described by the group sig-
nals Error domain and Error number is
pending.
Optionally, the digital input error confirma-
tion can be used to delete the error output.

Continues on next page
198 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.3 Parameterization of the MT API Commands
Continued

Speed specifications
Two parameterizable speed specifications can be used to move the robot with a
reduced speed instead of with the normal (programmed) speed. This can be used,
for instance, after the new part type has been commissioned, to start production
cautiously.

Parameter WindowExplanation

en1200000823

Through the digital input signals, one of two
reduced speeds can be requested.
The digital output signals can be used option-
ally for a feedback requested speed is act-
ive.
Each of the two reduced speeds must be
entered as a % value of the programmed
speed.

If both speed requests are set simultaneously, speed 1 gets the priority.
If both speed requests are set simultaneously and one of both speed requests is
reset, then the remaining speed request becomes active.

Pressurized air monitoring
In most handling cells, components such as the robot gripper are operated with
pressurized air. Hence, it is useful to monitor these through a pressurized air
monitor, which reports the IO-state of the pressurized air to the robot. In case the
pressurized air fails, then the robot will abort the production till the air is available
again. Even the HomeRun cannot be executed in this case.

Parameter WindowExplanation

en1200000824

Through a digital input, the pressurized air
can be monitored.

3HAC044398-001 Revision: C 199
© Copyright 2014 ABB. All rights reserved.

14 Programming
14.3 Parameterization of the MT API Commands

Continued

14.4 Parameterization of the MT API Positions

Opening the parameter window
To enter or modify the individual position parameters, the corresponding parameter
window must be opened first in RobotStudio, as shown in the following table.

ExplanationProcedure in Robot Studio

en1200000807

In the Explorer of the robot controls, under
Configuration, select the process parameters.

en1300000080

In the process parameters window, select
the entry MT API Positions.

en1300000081

By double clicking on the parameter row that
is displayed, open the parameter window for
the MT API Positions

en1200000825

en1300000082

Continues on next page
200 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.4 Parameterization of the MT API Positions

Number of the safety position
The safety position number refers to the use of the concept of dynamic movement
calls and the naming conventions as described in the chapter The program
architecture on page 251. Dynamic calls of movement routines are executed by
using the instruction MT_MoveTo – Dynamic execution of a movement

routine on page 405.

Parameter WindowExplanation

en1300000083

Number of the safe position

Note

The assignment of a position number <>0
may only be done, if there is only one safe-
position. Otherwise a collision could happen
because when having more than one safe
position, the assigned number would be am-
biguous.

Position requests
If RWMT is used, the robot can be moved to definite, pre-defined positions as
described in the table.

Parameter WindowExplanation

en1300000084

With the help of a digital input signal, the ro-
bot can be sent to the home position. For
implementing the trip to the home position,
it is advisable to use the HomeRun (see the
HomeRun chapter). It can be used, for in-
stance, for restoring the initial conditions
after an error.
After having reached the home position, the
program will terminate.

en1300000085

With the help of a digital input signal, the ro-
bot can be send to one of a maximum of
three service positions.
For the run-in (start up) in one of these posi-
tions, RWMT will call the concerned, pre-
defined routine, if requested, in accordance
with the chapter Special service routines on
page 247.
To move to a service position, the cell opera-
tion mode must be switched to Service and
the robot has to be located in home position.

Continues on next page
3HAC044398-001 Revision: C 201

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.4 Parameterization of the MT API Positions

Continued

Position feedback
If the robot is present in one of the pre-defined positions for RWMT, then a feedback
must be sent through a digital input or output. Thus, it is mandatory to allocate the
parameters described in the following table.

Parameter WindowExplanation

en1300000086

Response stating that the robot is in the
home position.
For implementing the trip to the home posi-
tion, it is advisable to use the HomeRun (for
this, See chapter HomeRun). This can be
used, for instance, for restoring the initial
conditions after an error.

en1300000087

Response stating that the robot is in one of
the three possible service positions.
For the run-in (start up) of one of these posi-
tions, RWMT will call the concerned, pre-
defined routine, if needed, in accordance with
the ChapterSpecial service routines on
page 247.

en1300000088

Response stating that the robot is in the safe
position (Safety Position).
The safe position here normally refers to a
position of the robot after a production cycle,
which has to be located in an area outside
all the machines in a safe area.
In some applications, the robot does not need
to return to a common safe position, but is
allowed to remain in the end position of the
previously served station. The robot can start
from there into the next cycle.
In such a configuration the output In safe
position has to be set if the robot has
reached any appropriate position outside all
machines and has to be reset if the robot
starts a new cycle.

xx1400000763

Check of production start position. If this
parameter is set toYes, then RWMT performs
a position check at the beginning of each
production cycle. In this case, the robot must
be located in the home position or safe posi-
tion. The check can only succeed, if the re-
spective signals have been provided in the
process configuration (see above in this
table). If the switch is set to No, the robot
does not need to be located in a specific po-
sition, before the production cycle can be
executed.

Note

To execute a production cycle, the robot must be either located in the safe position
or in the home position.

202 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

14 Programming
14.4 Parameterization of the MT API Positions
Continued

14.5 Parameterization of the MT Program Selection

Opening the parameter window
To enter or modify the individual program selection parameters, the corresponding
parameter window must be opened first in RobotStudio, as shown in the following
table.

ExplanationProcedure in Robot Studio

en1200000807

In the Explorer of the robot controls, under
Configuration, select the process paramet-
ers.

en1300000089

In the process parameters window, now se-
lect the entry MT Program selection.

Continues on next page
3HAC044398-001 Revision: C 203

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.5 Parameterization of the MT Program Selection

ExplanationProcedure in Robot Studio

en1300000090

By double clicking on the displayed paramet-
er row, open the parameter window for the
MT Program selection.

en1200000825

en1300000091

Communicating the program numbers
With an interface to the external program number communication, the production
process for a specific part type can be selected in a remote controlled manner.
Since experience shows that the interfaces for communicating the program numbers
differ from customer to customer (for example, handshake signals), the signals
that are known from different applications are considered.
The program number that is communicated successfully, will be compared by
RWMT with the existing part data for production respectively menu data for service
routines (See the chapters Part data on page 68, Service routines on page 86, and
Setup view on page 96).
If the program number, which has been transferred, fits the program number of a
component and if simultaneously the operation mode is set to ‘production’ then
the production routine executed, which is related to the component.

Continues on next page
204 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.5 Parameterization of the MT Program Selection
Continued

If the program number, which has been transferred, fits the program number of a
service routine and if simultaneously the operation mode is set to ‘service’ then
the service routine is executed.

Parameter WindowExplanation

en1300000092

The minimum for communicating the program
numbers is a signal group for reading the
program number.

en1300000093

Depending on the other, optional signals that
have been selected, RWMT will modify its
behavior with respect to the program number
communication.
If the program number has to be read before
every production cycle, then this can be se-
lected under Cyclic prg no reading. en1300000094
Through a group output Program-No, the
program number that has been read can be
reported back for checking.

en1300000095Through the parameter Program request
it is possible for RWMT to actively request
the program number.

en1300000096
The higher order controls can communicate
through Prog no. valid that a program num-
ber that is valid for reading is waiting.

en1300000097

Through Prog Confirmation the robot con-
trols can acknowledge the reading of the
program number.
The parameter Prog running is meant for
reporting to the higher order controls that the
program number that has been communic-
ated has been accepted for the production
and is executed. The signal remains high as
long as the processing is ongoing.

en1300000098

Cycle settings
As described in the chapter Program cycles on page 73, the production cycles for
a part type that is to be handled could differ (for example, Start-up cycles, normal
cycles, idle run cycles). For a remote selection of these cycles, RWMT offers the
interface that is described below.

Parameter WindowExplanation

en1300000099

With the help of a group input, the cycle can
be pre-selected through remote control

en1300000100

RWMT manages a cycle counter for the pro-
cess control. If it is necessary to abort the
production due to an error, for instance, then
the counter can be reset remotely, to restore
the initial state.
RWMT can acknowledge this resetting as an
option.
Alternatively the cycle counter can be reset
through the robot station view of the graphic-
al user interface.

Continues on next page
3HAC044398-001 Revision: C 205

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.5 Parameterization of the MT Program Selection

Continued

Tool codes and check codes
For a particular part type that is to be handled, pre-conditions could exist for the
production, such as the correct gripper should be clamped to the robot or that a
processing machine is fitted with the mold that is necessary for the part.
In the event that the robot grippers or the tools of the processing machines provide
a check code, this can be checked by RWMT before starting the production. This
is done by comparison with the part that has been selected by the program number
(See the chapter Setting up the graphic user interface (GUI) => Part data and the
data type partdata – Part data on page 298).

Parameter WindowExplanation

en1300000101

Up to 8 check codes (test codes) for the
system peripherals can be managed by RW-
MT.

en1300000102

The tool code is meant for checking whether
the correct gripper has been flanged.

Execute user defined programs
In RWMT, it is possible to execute the user defined programs. This makes it
possible for instance, to bypass the RWMT mechanism for communicating the
program numbers, if necessary. More information about this is provided in the
chapter User defined programs on page 243.

Parameter WindowExplanation

en1300000103

If it should be possible to execute User
defined programs , then the value YES
should be set here.

Time-out while waiting for a program number
If no (valid) program number is provided by an external plc and no program is
selected by the operator on the GUI, the user program cannot execute a halt after
end of cycle request.

Parameter WindowExplanation

en1300000104

Maximum time in seconds while waiting for
a valid program number. After the waiting
time has exceeded, the event
EE_TIMEOUT_PROG_NUMBER is triggered
where the user can force halt after end of
cycle.

206 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

14 Programming
14.5 Parameterization of the MT Program Selection
Continued

14.6 Parameterization of the MT part settings

Opening the parameter window
To enter the individual part settings parameters or to modify them, first the
corresponding parameter window should be opened in RobotStudio, as shown in
the following table.

ExplanationProcedure in Robot Studio

en1200000807

In the Explorer of the robot controls under
Configuration, select the process paramet-
ers.

en1300000105

In the process parameters window, now se-
lect the entry MT Part Settings.

en1300000106

By double clicking on the parameter row that
is displayed, open the parameter window for
the MT Part Settings.

en1200000825

en1300000107

Continues on next page
3HAC044398-001 Revision: C 207

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.6 Parameterization of the MT part settings

Part type module
Some of the RWMT RAPID instructions need to know, in which module the part
type related movement routines are located. For example, MT_MoveTo: Dynamic
execution of a movement routine. Please refer to those instructions for further
information.

Parameter WindowExplanation

en1300000108

General module name of the part type mod-
ules without type prefix and without part type
number.
For example, if a specific part type module
for part type 137 shall be Movement_T137,
then the value for this parameter must be:
Movement (without type prefix T and without
part type number 137).

Part Type prefix
Some of the RWMT RAPID instructions use part type prefixes. For example,
MT_MoveTo: Dynamic execution of a movement routine. Please refer to those
instructions for further information.

Parameter WindowExplanation

en1300000109

Type prefix to be used for type-dependent
movement routines.

208 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

14 Programming
14.6 Parameterization of the MT part settings
Continued

14.7 Parameterization of the MT applications

Opening the parameter window
The application parameter settings allow to add FlexPendant applications to the
production view of the RWMT GUI, so that those applications can be started
directely from there.
To enter or modify the individual application parameters, the corresponding
parameter window must be opened first in Robot Studio, as shown in the following
table.

ExplanationProcedure in RobotStudio

en1200000807

In the Explorer of the robot controls, under
Configuration, select the process paramet-
ers.

en1300000110

In the process parameters window, select
the entry MT Applications.

Continues on next page
3HAC044398-001 Revision: C 209

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.7 Parameterization of the MT applications

ExplanationProcedure in RobotStudio

en1300000111

By double clicking on one of the parameter
rows APP1 – APP8, open the parameter
window for the specific MT application set-
tings of the selected application.
As shown, up to 8 different applications can
be configured.

en1200000825

The application definitions in the process
configuration are not station dependent. To
define applications in the submenu of each
station view, please refer to chapter Setting
up the graphic user interface => Stations =>
Station applications.

en1300000112

Declaration of a new FlexPendant application
These parameters define mainly the location of a FlexPendant application, its
appearance in the RWMT GUI and its startup behaviour.

Parameter WindowExplanation

en1300000113

Unique name of the application settings, must
be called App1 upto App10

en1300000115

Name of the application, appearing in the
pull-down menu of the RWMT GUI.
Example:

en1200000850

Continues on next page
210 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.7 Parameterization of the MT applications
Continued

Parameter WindowExplanation

en1300000116

File name of the image that will be shown on
the left side of the menu entry (max. 32x32
pixel) Menu height depends on the largest
image
Example:

en1200000850

en1300000117

Name of the application DLL, including the
file extender.
Some entries are predefined and can be se-
lected to open the following standard Flex-
Pendant views:

• Production view
• Data editor
• RAPID editor
• Backup and restore view

en1300000118

en1300000119

Start mode of the application. Can be either
embedded (application is started as child of
the RWMT GUI) or as a separate external
application

Namespace of application. (Standard
namespace ABB.Robotics.SDK.Views is
used, if field is empty and app should be
launched (not embedded)

Class (view) of the application that shall be
started, not needed for external (not embed-
ded) applications

Setting example 1: External ScreenMaker application
1 Copy ScreenMaker application and image file into home directory
2 Set menu text
3 Set image file name, for example, image.gif (path is not required)
4 Set DLL file name, use TpsView+ ScreenMaker-project name, for

example, TpsViewExtended.gtpu.dll. (File extension gtpu.dll is not required,
will be set automatically)

Continues on next page
3HAC044398-001 Revision: C 211

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.7 Parameterization of the MT applications

Continued

5 Select External as startup mode
6 Namespace field could remain empty (Namespace

ABB.Robotics.SDK.Views is used for external application)
7 Set name of the main screen as class name.

en1300000122

Setting example 2: Embedded ScreenMaker application
1 Set menu text
2 Set image file name, for example, image.gif (no path required)
3 Set DLL file name, use TpsView + ScreenMaker-project name, (for

example, TpsViewExtended.dll. (File extension .dll is not required, will
be set automatically)

4 Select Embedded as startup mode
5 Set ScreenMaker-project name as Namespace.
6 Set name of the ScreenMaker screen as class name, for example, Monitor.
7 Add main screen name, if application variables are used in ScreenMaker

project (for example, Monitor:MainScreen).
8 In the ScreenMaker view of RobotStudio set the property

ReuseScreenInstance of the screen which is to be opened to TRUE.

Continues on next page
212 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.7 Parameterization of the MT applications
Continued

en1300000123

en1300000124

Setting example 3: External FlexPendant SDK application
1 Copy ScreenMaker application and image file into home directory
2 Set menu text
3 Set image file name, for example, image.gif (no path required)
4 Set DLL file name, use TpsViewExample.gtpu.dllname, (File extension

.dll is not required, will be set automatically)
5 Select External as startup mode
6 Field Namespace could remain empty. (Namespace

ABB.Robotics.SDK.Views is used for external application
7 Set main screen as class name, (for example, TpsViewExample. (Ask

programmer of the application or use the object browser from Visual Studio).

Continues on next page
3HAC044398-001 Revision: C 213

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.7 Parameterization of the MT applications

Continued

en1300000125

Setting example 4: Embedded FlexPendant SDK application
1 Set menu text
2 Set image file name, for example, image.gif (no path required)
3 Set DLL file name, use TpsViewIRC5App1.dll . (File extension .dll is

not required, will be set automatically)
4 Select Embeddedl as startup mode
5 SetNamespace, please refer to FP-SDK project.
6 Set class name of the FP-SDK screen, for example, SettingsView.

en1300000126

214 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

14 Programming
14.7 Parameterization of the MT applications
Continued

14.8 Parameterization of the MT HomeRun

Opening the parameter window
The HomeRun parameter settings allow to configure the HomeRun behaviour as
needed for the individual production situation.
To enter or modify the individual HomeRun parameters, the corresponding
parameter window must be opened first in Robot Studio, as shown in the following
table.

ExplanationProcedure in RobotStudio

en1200000807

In the Explorer of the robot controls, under
Configuration, select the process paramet-
ers.

en1300000127

In the process parameters window, select
the entry MT Applications.

Continues on next page
3HAC044398-001 Revision: C 215

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.8 Parameterization of the MT HomeRun

ExplanationProcedure in RobotStudio

en1300000128

By double clicking on the parameter row that
is displayed, open the parameter window for
the MT HomeRun settings.

en1200000825

en1300000129

HomeRun settings
These parameters define the behaviour of HomeRun while it is executed

Parameter WindowExplanation

en1300000130

The programmer must take the decision
wether to use HomeRun or even not.
ABB recommends the usage of HomeRun
since it will give a valuable support to each
kind of machine tending application.

en1300000131

Signal for example, to inform a cell controller
that HomeRun is active.
Active HomeRun means, that the HomeRun
functionality has been triggered by the oper-
ator and the robot currently tries to go back
to the home position

Continues on next page
216 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.8 Parameterization of the MT HomeRun
Continued

Parameter WindowExplanation

en1300000132

The purpose of a temporary world zone here
is, to set the signal, which indicates, that the
robot is in the home position.
This parameter should only be used, if the
home position is not indicated by a physical
home switch.
The signal which indicates the home position,
has to be assigned in the MT API Positions
parameters

en1300000133

Maximum speed (mm/s) that is set when the
move to the home position takes place (Vel-
Set).
To avoid the damage of the robot and peri-
pheral devices, the maximum speed should
be kept in a reasonable range.

en1300000134

Maximum speed override (%) that is set when
the move to the home position takes place.
To avoid the damage of the robot and peri-
pheral devices, the maximum speed override
should be kept in a reasonable range.

Maximum permitted distance (mm) that the
robot may be moved away from the last
automatically moved to position to enable
automatic movement into the home position.
A value of 0 disables the check. To avoid the
damage of the robot and peripheral devices,
the check should be enabled.

en1300000136

External axes number 7-12 which shall not
be used for home position verification.
This is necessary if an external axis is con-
trolled by an external device, for example,
when using one of the options
MachineSyncor Conveyor tracking.

Example: Deactivation of axis no. 9

en1300000137
The axis which is not required will be deactiv-
ated by representation of the axis number (7
-12). Example: Deactivation of axes no. 7, 8, 12

en1300000138

If several axes shall be deselected for home
pos verification, the axis numbers have to be
separated by a blank or a comma character,
like 7 8 12 or like 7,8,12.

en1300000139

The setting of this parameter depends on if
the production shall be continued directely
after HomeRun execution or not.

en1300000140

If this functionality is enabled, the operator
can abort the program while execution.
It should be disabled, if the production shall
not be aborted. Then, HomeRun can only be
triggered if the program has been stopped
before.

Continues on next page
3HAC044398-001 Revision: C 217

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.8 Parameterization of the MT HomeRun

Continued

Parameter WindowExplanation

en1300000141

By enabling theHold to run functionality, the
operator can interrupt the HomeRun by
simply releasing the HomeRun switch.
This gives the operator more control while
watching the robot going back to home posi-
tion.

en1300000142

HomeRun uses the normal movement
routines of the production to return to home
position.
If trigger instructions are used in the move-
ment routines, that shall not be executed
while HomeRun, this functionality has to be
disabled.

en1300000143

To be sure that for example, the HomeRun
switch works properly, this parameter has to
be enabled. It will finish the HomeRun only,
if the request signal for HomeRun becomes
low (handshake).

en1300000144

TRUE: The MT_SpeedUpdate user routine
is called up before executing a movement
instruction so that the speed data can be
adapted.
FALSE: The MT_SpeedUpdate user routine
is not called up.

218 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

14 Programming
14.8 Parameterization of the MT HomeRun
Continued

14.9 Preparation of the robot program

14.9.1 Sample programs and templates

Some sample programs that are delivered as part of the additional option can serve
as the basis for an application program. It might be more convenient to start with
a ready-made program and modify it to fit the individual application.
However, it is also possible to independently design the application program from
scratch. In this case, refer to the program module MT_Main as a template.
Both, the sample programs and the MT_Main template, can be found in the
subfolder Program example of the RWMT add-in folder as shown below.

en1300000145

3HAC044398-001 Revision: C 219
© Copyright 2014 ABB. All rights reserved.

14 Programming
14.9.1 Sample programs and templates

14.9.2 Declarations

Updating the version data
Every program module and system module of the application program should
contain version information. This is done be entering a declaration of the type
versiondata.
Example:

MODULE MT_MAIN

…

!Version of this module

CONST versiondata vdMT_MAIN_VERSION:=

["MT_MAIN.MOD","V 1.0","2011-03-30"];

…

ENDMODULE

Declare events
RWMT provides a mechanism for calling routines through system events and
program events (See the chapter Event handling on page 99).
Example:

MODULE MT_MAIN

…

!Initialize world zones while warm start

CONST eventdata edPOWER_ON:=

[EE_POWERON,"MT_MAIN:MT_PowerOn",1];

!Initialize application when starting the robot program

CONST eventdata edUSER_INIT:=

[EE_AFTER_INIT,"MT_MAIN:UserInit",1]; …

…

PROC MT_PowerOn()

!

!Define worldzone for home position

WZSphDef\Inside,shHomePos,p999.trans,50;

!Define which output to be set when located in home

WZDOSet\Stat,wzHomePos\Inside,shHomePos,doIRBinHome,1;

!

ENDPROC

PROC UserInit()

!

!Switch off vacuum gripper

MT_GripSet gsVacuumOff,gdSucker1;

!

…

!

ENDPROC

ENDMODULE

Continues on next page
220 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.9.2 Declarations

In this example, the Power On routine is called in the MT_Main module as soon
as the robot controls executes a hot start or is switched on.
The MT_UserInit routine is called as soon as the interne initialization of RWMT is
complete after the EE_AFTER_INIT event.

Note

It is necessary to call the initialization routine through an event instead of as the
first call in the main()-Routine since the only call in the main()-Routine MT_Execute
should be for the Execution-Engine.

Declare part data
The part data declarations in RWMT play an important role, since they are the
starting point for executing the production.
The use of part data is the pre-requisite for a meaningful use of RWMT.
Details pertaining to this are given in this manual in the chapter Part data on
page 68.
Example:

MODULE MT_MAIN

…

!Part data example

CONST partdata MT_pdVCylinderHead4718:=

["Part
4718","MT_Production_T2","",FALSE,4718,2,4,3,[-1,-1,-1,-1,-1,-1,-1,-1],
"Part4738.GIF",

[1.5,[0,0,0.001],[1,0,0,0],0,0,0],""];

…

PROC MT_Production()

!

…

!

ENDPROC

ENDMODULE

The part of the type cylinder head 4718 that is declared in this example has the
Routine MT_Production as production routine. The part can be selected for
production by calling the program number 4718 remotely or through the RWMT
graphic user interface (GUI). In this way, then, the corresponding production routine
can be called by RWMT at the start of production.
The part makes use of the concept of production cycles (see the chapter Program
cycles on page 73).
Apart from this program number, it also has the type number 2 for internal use in
the robot program.
The production can be done with this part only if a robot gripper having the gripper
code 3 has been mounted. Other check codes (test codes) will not be queried.

Continues on next page
3HAC044398-001 Revision: C 221

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.9.2 Declarations

Continued

Declare cycles
While declaring a part as described in the previous section, it is necessary to define
using a flag whether this part works with the cycle concept of RWMT or not.
It is advisable to use production cycles whenever the process of production is not
the same each time (Details and examples: see the Chapter Program cycles on
page 73).
In the following example, the module that is provided with a part declaration in the
previous section is extended to include a cycle declaration.
Example:

MODULE MT_MAIN

…

!Part data example

CONST partdata MT_pdVCylinderHead4718:=

["Part
4718","Production","",FALSE,4718,10,4,3,[-1,-1,-1,-1,-1,-1,-1,-1]
,

"Part4738.GIF",[1.5,[0,0,0.001],[1,0,0,0],0,0,0],"pdvPart4738"];

…

!Definition of the cycle list

TASK PERS cycledata MT_CycleList{20}:=

[

["Filling","",1,1,10,0,2,0],

["Normal","",2,1,100,0,3,0],

["Emptying","",3.10,1,0,0,0],

["Part Outfeed","",5,2,3,0,0,0],

["","",0,0,0,0,0,0],

["","",0,0,0,0,0,0],

["","",0,0,0,0,0,0],

["","",0,0,0,0,0,0],

["","",0,0,0,0,0,0],

["","",0,0,0,0,0,0],

["","",0,0,0,0,0,0],

["","",0,0,0,0,0,0],

["","",0,0,0,0,0,0],

["","",0,0,0,0,0,0],

["","",0,0,0,0,0,0],

["","",0,0,0,0,0,0],

["","",0,0,0,0,0,0],

["","",0,0,0,0,0,0],

["","",0,0,0,0,0,0],

["","",0,0,0,0,0,0]

];

PROC Production()

!

!If filling cycle has been selected

IF MT_GetCycleIndex()=1 THEN

…

!If normal cycle has been selected

ELSEIF MT_GetCycleIndex()=2 THEN

Continues on next page
222 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.9.2 Declarations
Continued

…

!If emptying cycle has been selected

ELSEIF MT_GetCycleIndex()=3 THEN

…

!If feed out cycle for inspection has been selected

ELSEIF MT_GetCycleIndex()=5 THEN

…

ENDIF

…

!

ENDPROC

ENDMODULE

The part data of the type cylinder head 4718 which has been declared in this
example will be executed with four different cycles.
First, the filling cycle is executed 10 times, for example, for loading a buffer.
This is followed automatically by the normal cycle for 100 run through.
This is again followed automatically by the idle run cycle with 10 executions, for
instance, to clear a buffer.
The selected cycle is queried through the RAPID function MT_GetCycleIndex

(See the chapter Functions on page 473)

Declare Instruction Sets
Instruction Sets are meant for setting signals and persistent to a pre-defined value,
if there is a change in the mode of operation from or to the RWMT production mode
or if the robot operation mode is changed from manual to automatic or vice versa
(For more details, See Instruction sets on page 105). Instruction Sets can only be
used if the RobotWare option Multitasking is present.
Example:

MODULE IMM

…

!Flag <Production with robot>

TASK PERS bool IMM_bWithRobot:=TRUE;

…

!Instruction set for change to operation mode

!"with robot"

CONST InstSet IMM_RunWithRobot{10}:=

[

["do","doIRB_OPMode","0","T_ROB1"],

["bool","IMM_bWithRobot","TRUE","T_ROB1"],

["","","",""],["","","",""],["","","",""],

["","","",""],["","","",""],["","","",""],

["","","",""],["","","",""]

];

!Instruction set for change to operation mode

!"without robot"

CONST InstSet IMM_RunWithoutRobot{10}:=

[

Continues on next page
3HAC044398-001 Revision: C 223

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.9.2 Declarations

Continued

["do","doIRB_OPMode","1","T_ROB1"],

["bool","IMM_bWithRobot","FALSE","T_ROB1"],

["","","",""],

["","","",""],

["","","",""],

["","","",""],

["","","",""],

["","","",""],

["","","",""],

["","","",""]

];

…

ENDMODULE

In the present example, an output signal is set to 0 and a Boolean persistent is set
to TRUE if RWMT is changed to the mode of operation With robot, that is, the
mode of operation for the production.
The output signal will be set to 1 and the Boolean variable will be set to FALSE if
RWMT moves out of the With robot mode of operation, that is, if the mode of
operation changes to production.

Declaring message data
For outputting messages on the programming device, the data and instructions
provided by RWMT should be used, so that the messages are displayed on the
RWMT user interface and do not overlap this screen. Details of the data declaration
and the instructions for the message output are available in the chapter User
program messages on page 44.
Example:

MODULE IMM

…

CONST msgdata IMM_msgEnter:=[10,1,btnNone,

"Waiting for conditions to enter the IMM.",

"","","","","",1,""];

…

PROC IMM_Unload()

…

!Wait for conditions to enter the machine area

MT_WaitMsgDi IMM_sdiMouldOpenPos,high,IMM_msgEnter;

…

ENDPROC

…

ENDMODULE

The robot program outputs a message on the RWMT user interface, which is
expected for the permission for entering the machine.
Once this release or permission has been granted, the message will be deleted
again.

Continues on next page
224 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.9.2 Declarations
Continued

Declaring station data
Station data enable a visualization on the RWMT graphic user interface (GUI) of
the stations that are to be served by the robot, as described in the chapter Stations
on page 45. See chapter The station concept on page 248 for the optimum use of
the station concept.
Example:

MODULE IMM

…

!Base information about this station to be shown in GUI

LOCAL PERS stationdata IMM_Station:=

["IMM","IMM","Injection Moulding Machine",

"station-IMM.png","diIMM_En_OPMode","diIMM_MouldClosed",

"diIMM_Error","",TRUE,FALSE,1,1];

…

ENDMODULE

The station data IMM_Station maps an injection moulding machine. Through the
declaration, a station image is created on the RWMT screen with the image
station-IMM.png with the caption as IMM .

en1300000146

The station shows readiness (green ring) for loading on the RWMT user in-
terface, if the digital input signal diIMM_En_OPMode is high".

The station reports busy (yellow ring), if the digital input signal
diIMM_MouldClosed is high.

If the error signal diIMM_Error is high, then the station will show this as an
error (red ring)

None of the above mentioned states is present (grey ring).

Declaring the station variables
Station variables are variables that play a role in the programming of a specific
station (machine). This can be represented, as part of the station view on the RWMT
graphic user interface with its values and these could also be manipulated if needed.
The details for this can be obtained from the section Station variables on page 55.
Example:

MODULE IMM

…

!Base information about this station to be shown in GUI

LOCAL PERS stationdata IMM_Station:=

["IMM","SGM","Injection Moulding Machine",

"station-IMM.png","diIMM_En_OPMode","diIMM_MouldClosed",

Continues on next page
3HAC044398-001 Revision: C 225

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.9.2 Declarations

Continued

"diIMM_Error","",TRUE,FALSE,1,1];

!

!Station variables to be monitored or modified in GUI

LOCAL CONST stationvariable IMM_Variables1{5}:=

[

["IMM operation mode with robot","bWithRobot",

"IMM","T_ROB1",0,0,FALSE,FALSE,FALSE,0,1],

["IMM mould has been closed","bMouldClosed",

"IMM","T_ROB1",0,0,FALSE,FALSE,FALSE,0,1],

["Part rejected by IMM","bRejectedPart","IMM",

"T_ROB1",0,0,FALSE,FALSE,FALSE,0,1],

["IMM unloading time","nUnloadTime","IMM",

"T_ROB1",0,99999,TRUE,TRUE,TRUE,0,1],

["IMM condition wait time","ntWaitTime","IMM",

"T_ROB1",0,99999,TRUE,TRUE,TRUE,0,1]];

…

ENDMODULE

The declaration shows 5 variables, which will be displayed in RWMT if the station
symbol of the injection moulding machine is selected.
The values of the variables bWithRobot, bMouldClosed and bRejectedPart

cannot be edited here, the values of the variables nUnloadTime and ntWaitTime
can be modified both in the automatic mode as well as in the set up mode between
0 and99999 .

Declaring station signals
Station signals are signals that play a role in the programming of a specific station
(machine). This can be represented, under certain circumstances, as part of the
station view on the RWMT graphic user interface with its current states, and these
states could also be manipulated if necessary.
The details pertaining to this can be obtained from the Chapter Station variables
on page 55.
Example:

MODULE IMM

…

!Digital inputs of IMM

VAR signaldi IMM_sdiMouldOpenPos;

VAR signaldi IMM_sdiEjec_BackPos;

VAR signaldi IMM_sdiEjec_ForwPos;

VAR signaldi IMM_sdiCorePullPos1;

VAR signaldi IMM_sdiCorePullPos2;

VAR signaldi IMM_sdiReject;

VAR signaldi IMM_sdiEn_OPMode;

VAR signaldi IMM_sdiMouldClosed;

VAR signaldi IMM_sdiInterMouldPos;

VAR signaldi IMM_sdiNoPartAvaible;

!

!Digital outputs of IMM

VAR signaldo IMM_sdoEn_Mould;

VAR signaldo IMM_sdoIRB_OPMode;

Continues on next page
226 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.9.2 Declarations
Continued

VAR signaldo IMM_sdoEn_EjecBack;

VAR signaldo IMM_sdoEn_EjecForw;

VAR signaldo IMM_sdoEn_CPullPos2;

VAR signaldo IMM_sdoEn_CPullPos1;

VAR signaldo IMM_sdoEn_FMouldOp;

VAR signaldo IMM_sdoMouldAreaFree;

!Base information about this station to be shown in GUI

LOCAL PERS stationdata IMM_Station:=

["IMM","SGM","Injection Moulding Machine",

"station-IMM.png","diIMM_En_OPMode","diIMM_MouldClosed",

"diIMM_Error","",TRUE,FALSE,1,1];

!

!IO mappings for signals / alias signals

LOCAL CONST stationsignal IMM_Signals{18}:=

[

["Mould is open","diMouldOpenPos","IMM_sdiMouldOpenPos"],

["Ejectors back","diEjec_BackPos","IMM_sdiEjec_BackPos"],

["Ejectors fwd","diEjec_ForwPos","IMM_sdiEjec_ForwPos"],

["Core pullers pos 1","diCorePullPos1","IMM_sdiCorePullPos1"],

["Core pullers pos 2","diCorePullPos2","IMM_sdiCorePullPos2"],

["Reject","diReject","IMM_sdiReject"],

["Automatic mode","diEn_OPMode","IMM_sdiEn_OPMode"],

["Mould is closed","diMouldClosed","IMM_sdiMouldClosed"],

["Mould inter. pos","diInterMouldPos","IMM_sdiInterMouldPos"],

["No part available","diNoPartAvaible","IMM_sdiNoPartAvaible"],

["Start IMM","doEn_Mould","IMM_sdoEn_Mould"],

["IRB operation mode","doIRB_OPMode","IMM_sdoIRB_OPMode"],

["retrace ejectors","doEn_EjecBack","IMM_sdoEn_EjecBack"],

["Push ejectors","doEn_EjecForw","IMM_sdoEn_EjecForw"],

["Core pullers pos 2","doEn_CPullPos2","IMM_sdoEn_CPullPos2"],

["Core pullers pos 1","doEn_CPullPos1","IMM_sdoEn_CPullPos1"],

["Enable mould opening","doEn_FMouldOp","IMM_sdoEn_FMouldOp"],

["Mould area is free","doMouldAreaFree","IMM_sdoMouldAreaFree"]

];

For each of the digital interface signals, an alias signal has been declared in the
example. The assignment of an alias signal is not mandatory. It is just a possibility
to standardize the program code, independent from customized naming of physical
signals.
The alias signals are automatically linked with the physical signals through the
stationsignal declaration by RWMT, if the instruction MT_AliasIO is called with a
stationsignal argument.
The physical signals will also be displayed in RWMT, if the station symbol of the
injection moulding machine is selected.
Thus, the stationsignal declaration has two functions:

• Displaying the signals in the GUI
• Assignment of the physical signals to the alias signals

Continues on next page
3HAC044398-001 Revision: C 227

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.9.2 Declarations

Continued

If one wishes to display only the signals in the GUI and not use the alias signals,
then these should be omitted simply in the stationsignal declaration.

HotEdit declarations
With the HotEdit declarations, a filter can be defined for using the standard HotEdit,
so that only selected robot positions such as positions from a specific machine
are displayed. More information is available in the chapter Advanced HotEdit on
page 89.
Example:

MODULE IMM

…

!Hotedit position declarations

LOCAL CONST hoteditdata MT_he_IMM{1}:=

[

["IMM","station-IMM.png","Movement","mv101_102","p102","",""]

];

…

ENDMODULE

MODULE Movement

…

!Hotedit position declarations

CONST robtarget p102:=…;

!Movement routine from start position of IMM

!to enter position of IMM

PROC mv101_102

MoveJ p101.v1000.z10.tGripper;

MoveL p102,v1000.fine,tGripper;

ENDPROC

…

ENDMODULE

The hoteditdata declaration in the IMM module creates an entry in the
HotEdit-menu of the RWMT user interface.
If this entry is selected, then the Standard-HotEdit will be loaded with the sole
position p102.

228 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

14 Programming
14.9.2 Declarations
Continued

14.9.3 Program initialization

Initialization through the RWMT event handling
Normally, the initialization is first done through a handling program on start from
main() , that is, variables and digital output signals, for instance, will be reset to a
pre-defined value.
This process of initialization cannot take place in programs with RWMT
implementation, because there must not be something added to the main routine,
excepting the call of the RWMT engine and a stop instruction. Otherwise it cannot
be guaranteed, that the program executes safely, because some of the RWMT
features have to be initialized internally, before they are allowed to be used.

PROC main()

!

!Call the execution engine

MT_Execute;

Stop;

!

ENDPROC

To carry out an initialization nevertheless, the initialization routine must be called
through the event mechanism that is provided by RWMT, as shown in the following
example:

MODULE MT_MAIN

…

!Initialize application when starting the robot program

CONST eventdata edUSER_INIT:=

[EE_AFTER_INIT,"MT_MAIN:UserInit","",1]; …

…

PROC UserInit()

!Switch off vacuum gripper

MT_GripSet gsVacuumOff,gdSucker1;

!Reset part load

GripLoad load0;

!

ENDPROC

ENDMODULE

More information about events is available in the chapterEvent handling on page99.

3HAC044398-001 Revision: C 229
© Copyright 2014 ABB. All rights reserved.

14 Programming
14.9.3 Program initialization

14.9.4 Design of the production routines

Call (load)
While the initialization on starting from main(), the robot must be either located
in the home position or in the safe position, depending on the settings in the process
configuration (see chapter System parameters on page157). Otherwise, RWMT will
call the HomeRun function to ensure, that the robot is located in the home position
before the next steps. Then, the handling program will request a program number
if there are different part types or production flows to be considered. After that it
calls a production routine in cyclic manner. The production routine describes in
which order the different machines inside a production cell shall be served.
RWMT cares about the transfer of the program number as well as for the call of
the depending production routine.
The production routine is called automatically by means of the information given
in a user-defined partdata declaration. The following condition must be fulfilled
if the corresponding production routine is to be called:

• The partdata declaration contains the name of the production routine.
• The tool codes and check codes (test codes), if present, are ok.
• The production was started at the GUI or by remote control with the correct

program number of the partdata declaration.
Example:

MODULE MT_MAIN

…

!Part data example

CONST partdata pdVCylinderHead:=

["Part
4718","Production","",FALSE,2,10,2,3,[-1,-1,-1,-1,-1,-1,-1,-1],"Part1.GIF",

[1.5,[0,0,0.001],[1,0,0,0],0,0,0],"pdvPart1"];

…

PROC Production()

!

…

!

ENDPROC

ENDMODULE

Querying of cycles in the production routine
In the simplest case, a partdata declaration without additional cycle declaration is
present. In this case, there is no need for RWMT to query any cycle information in
the production routine.
Example:

MODULE MT_MAIN

…

!Part data example

Continues on next page
230 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.9.4 Design of the production routines

TASK PERS partdata pdVCylinderHead4718:=

["Part
4718","Production","",TRUE,2,10,2,3,[-1,-1,-1,-1,-1,-1,-1,-1],
"Part4738.GIF",

[1.5,[0,0,0.001],[1,0,0,0],0,0,0],"pdvPart4738"];

…

PROC Production()

…

UnloadMachine1;

LoadMachine2;

UnloadMachine2;

LoadConveyor;

…

ENDPROC

…

ENDMODULE

On the other hand, if a partdata declaration with an additional cycle declaration
is present, this cycle information should be queried using the
MT_GetCycleIndex() function in the production routine for calling the correct
production cycle.
Example:

MODULE MT_MAIN

…

!Part data example

TASK PERS partdata pdVCylinderHead:=

["Part
4718","Production","",FALSE,2,10,4,3,[-1,-1,-1,-1,-1,-1,-1,-1],
"Part1.GIF",

[1.5,[0,0,0.001],[1,0,0,0],0,0,0],"pdvPart1"];

…

!Definition of the cycle list

TASK PERS cycledata MT_CycleList{20}:=

[

["Filling cycle","",1,1,10,0,2,0],

["Normal cycle","",2,1,100,0,3,0],

["Emptying cycle","",3,10,1,0,0,0],

["Part Outfeed","",5,2,3,0,0,0],

["","",0,0,0,0,0,0],["","",0,0,0,0,0,0],

["","",0,0,0,0,0,0],["","",0,0,0,0,0,0],

["","",0,0,0,0,0,0],["","",0,0,0,0,0,0],

["","",0,0,0,0,0,0],["","",0,0,0,0,0,0],

["","",0,0,0,0,0,0],["","",0,0,0,0,0,0],

["","",0,0,0,0,0,0],["","",0,0,0,0,0,0],

["","",0,0,0,0,0,0],["","",0,0,0,0,0,0],

["","",0,0,0,0,0,0],["","",0,0,0,0,0,0]

];

PROC Production()

…

Continues on next page
3HAC044398-001 Revision: C 231

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.9.4 Design of the production routines

Continued

…

!If filling cycle has been selected

IF MT_GetCycleIndex()=1 THEN

FillingCycle;

!If normal cycle has been selected

ELSEIF MT_GetCycleIndex()=2 THEN

NormalCycle;

!If emptying cycle has been selected

ELSEIF MT_GetCycleIndex()=3 THEN

EmptyingCycle;

!If feed out cycle for inspection has been selected

ELSEIF MT_GetCycleIndex()=5 THEN

FeedOutCycle;

…

ENDPROC

PROC FillingCycle()

…

UnloadInfeedConveyor;

LoadBuffer;

…

ENDPROC

PROC NormalCycle()

…

UnloadBuffer;

LoadMachine;

UnloadInfeedConveyor;

LoadBuffer;

UnloadMachine;

LoadOutfeedConveyor;

…

ENDPROC

PROC EmptyingCycle()

…

UnloadBuffer;

LoadMachine;

UnloadMachine;

LoadOutfeedConveyor;

…

ENDPROC

PROC FeedOutCycle()

…

UnloadBuffer;

LoadMachine;

UnloadMachine;

LoadInspectionConveyor;

Continues on next page
232 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.9.4 Design of the production routines
Continued

…

ENDPROC

…

ENDMODULE

3HAC044398-001 Revision: C 233
© Copyright 2014 ABB. All rights reserved.

14 Programming
14.9.4 Design of the production routines

Continued

14.9.5 Halt after end of cycle

Triggering
Halt after end of cycle is normally requested by the operator if the production is
to be ended. The robot will complete the handling tasks that are still pending, and
then move to the home position, if the HomeRun functionality has been enabled
in the process configuration (see the section MT HomeRun on page 175).
The triggering takes place through a request on the graphic user interface or by a
request from outside, through a digital input signal (See the section
Parameterization of the MT API Commands on page 195).

Evaluation in the robot program
The evaluation in the robot program includes the following points in the case of a
Halt after end of cycle request in RWMT:

• Recognition of the request
• Executing the necessary processes before the end of production
• Acknowledgement of the request at the end of production

For recognizing the request Halt after end of cycle, the MT_EndOfCycleReq()
function is available in RWMT.
With the help of the instruction MT_EndOfCycleAck, the request can be
acknowledged. The RWMT Engine recognizes this acknowledgement after quitting
the production routine that has been called through the partdata declaration and
stops the execution of the production.
Furthermore, MT_EndOfCycleOk() provides a function for querying whether or
not Halt after end of cycle has been acknowledged already in the previous
production cycle.

Halt after end of cycle while Production is running
The behavior of the the halt after end of cycle functionality depends mainly on the
setting of the parameter direct_stop_after_cycle in the process configuration
(see the section MT API commands on page 161).
When setting this parameter to TRUE, it causes a direct halt after end of cycle
after finishing a production loop, if either the operator sends a request or if the
program executes one of the instructions MT_EndOfCycleAck or
MT_SetEndOfCycle.
In many cases, it is enough to recognize a Halt after end of cycle request at the
end of a production cycle and to stop the program execution immediately. This is
mostly the case if the request Halt after end of cycle is not to be followed by a
run-out cycle where emptying of machines or buffers is necessary.
In example 1, the instructionMT_EndOfCycleAck – Acknowledge the request "Halt
after end of cycle" on page331, which is normally used to acknowledge aHalt after
end of cycle request, has been omitted. The reason is that the parameter
direct_stop_after_cycle has been set to TRUE. So no acknowledgement
must be done in the application program. As soon as the production routine has

Continues on next page
234 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.9.5 Halt after end of cycle

been left and the program pointer returns to the RWMT engine, the production will
be finished.
Example 1:

PROC MT_Production()

...

!If stop after cycle has been requested

IF MT_EndOfCycleReq() THEN

!Move to home position

MT_MoveTo 999;

!Do some final initialization work

ResetAllSignals;

ENDIF

!

ENDPROC

In many other cases, the program cannot be terminated directly since for example,
machines or buffers have to be emptied before. In such applications, the parameter
direct_stop_after_cycle should be set to FALSE, so that the program can
take the decision, where to permit the Halt after end of cycle.
In those cases, the instruction MT_EndOfCycleAck (see MT_EndOfCycleAck –
Acknowledge the request "Halt after end of cycle" on page331) is used to permit a
Halt after end of cycle after this has been requested by the operator. The function
MT_EndOfCycleOK is used to check, if the permission has been given somewhere
in the production cycle and to do some final work before leaving the production
loop.
Example 2:

PROC Select()

!

!call production routine

Production;

!

!if end of cycle request has been acknowledged

IF MT_EndOfCycleReqOK() THEN

!move to home position

MT_MoveTo 999;

!Do some final initialization work

ResetAllSignals;

ENDIF

!

ENDPROC

PROC Production()

!

!if stop after cycle has not been requested

IF MT_EndOfCycleReq()=FALSE THEN

!unload the machine

UnloadMachine;

!if the part quality is ok

IF bPartControlOK=TRUE THEN

!start next machine cycle

Continues on next page
3HAC044398-001 Revision: C 235

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.9.5 Halt after end of cycle

Continued

StartMachine1;

!Place part at conveyor

loadConveyor;

If the part quality is not ok

ELSE

!put the part to the scrap box

LoadScrapBox;

ENDIF

!if stop after cycle has been requested

ELSE

!unload the machine

UnloadMachine;

!if the part quality is ok

IF bPartControlOK=TRUE THEN

!Place part at conveyor

LoadConveyor;

If the part quality is not ok

ELSE

!put the part to the scrap box

LoadScrapBox;

ENDIF

!confirm stop after cycle

MT_EndOfCycleAck;

ENDIF

!

ENDPROC

In some cases, it might be useful to induce the Halt after end of cycle request or
even a direct stop after cycle in the application program itself by means of the
instruction MT_SetEndOfCycle (see MT_SetEndOfCycle – Set the "Halt after end
of cycle" state on page 425).

236 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

14 Programming
14.9.5 Halt after end of cycle
Continued

14.9.6 Error handling and return to the home position

How to use the RWMT error numbers
The following sections describe the options for handling an error in the RWMT
based application programs. These options are based on the RWMT error numbers
ERR_MT_HOMERUN and ERR_MT_ABORT. When using these error numbers in the
application program, behind each ERROR statement of all error handling sections,
where the error shall be handled, the respective error number must be mentioned
in parentheses. If the error is not handled in the application program as stated in
the following example, the error is passed through directely to the RWMT engine,
without any further influence by the application program.
Example:

PROC Routine1()

Routine1;

Routine2;

ERROR(ERR_MT_HOMERUN,ERR_MT_ABORT)

IF ERRNO=ERR_MT_HOMERUN THEN

...

ELSEIF ERRNO=ERR_MT_ABORT THEN

...

ENDIF

RAISE;

ENDPROC

PROC Routine2()

...

RAISE ERR_MT_HOMERUN;

...

ERROR(ERR_MT_HOMERUN)

IF ERRNO=ERR_MT_HOMERUN THEN

...

ENDIF

RAISE;

ENDPROC

PROC Routine3()

...

RAISE ERR_MT_ABORT;

...

ERROR(ERR_MT_ABORT)

IF ERRNO=ERR_MT_ABORT THEN

...

ENDIF

RAISE;

ENDPROC

In this example, the procedure Routine1 calls the procedures Routine2 and
Routine3. The procedure Routine2 raises the error ERR_MT_HOMERUN and the
procedure Routine3 raises the error ERR_MT_ABORT. In their respective error

Continues on next page
3HAC044398-001 Revision: C 237

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.9.6 Error handling and return to the home position

handlers both routines handle the error and raise it to the error handler of the
procedureRoutine1. The procedureRoutine1 handles both the errors individually.
For more details note the ERROR statements and the error numbers in parentheses
behind them and refer to the chapter Error recovery => Error recovery with long
jump in the Technical reference manual - RAPID kernel.

With HomeRun
If an error occurs in the program run, then, it may be necessary to send the robot
back to the home position.
If RWMT is run with HomeRun, then the instructions that are provided by this
functionality can be used (refer to the chapter, HomeRun on page 111).

Note

ABB explicitly recommends the use of HomeRun for the safe return to the home
position. If HomeRun is not used, then the following request signals for the return
to the home position must be evaluated by the Integrator in the application
program itself:

• Parameter DI_GOHOME (see the chapter MT API positions on page 164)
• Digital outputs doT_ROB1_GoHome to doT_ROB4_GoHome, that have been

set by RWMT on requesting the home position in the user interface.

Without HomeRun, regular error handling
If HomeRun shall not be used so the next appropriate but less comfortable way to
bring the robot back to home position is to use the normal error handling.
For this purpose, the loading and unloading routines contain their own error
handling section to handle errors inside the station. and raise them to the calling
routines through using the RAISE instruction.
Example:

MODULE MT_MAIN

!Part data example

TASK PERS partdata MT_pdVCylinderHead4718:=

["Part
4718","Production","",TRUE,2,10,4,3,[-1,-1,-1,-1,-1,-1,-1,-1],"Part4738.GIF",

[1.5,[0,0,0.001],[1,0,0,0],0,0,0],"pdvPart4738"];

…

PROC Production()

!unload 1st machine

UnloadMachine1;

!load 2nd machine

LoadMachine1;

ERROR (ERR_MT_ABORT)

IF ERRNO= ERR_MT_ABORT THEN

!force end of cycle

MT_EndOfCycleAck;

!jump to error handler of RWMT engine

RAISE;

Continues on next page
238 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.9.6 Error handling and return to the home position
Continued

ENDIF

ENDPROC

PROC UnloadMachine1()

VAR bool bTimeOut;

!move to preposition outside machine 1

MoveTo 10;

!wait for release or timeout

WaitUntil diReleaseMachine1=high\MaxTime:=5

\TimeFlag:= bTimeOut;

!release has not been given => jump to error handler

IF bTimeOut RAISE ERR MT ABORT;

…

!do unloading here

…

ERROR (ERR_MT_ABORT)

!jump to error handler of calling routine

IF ERRNO= ERR MT ABORT RAISE;

ENDPROC

PROC LoadMachine2()

VAR bool bTimeOut;

!move to preposition outside machine 2

MoveTo 20;

!wait for release or timeout

WaitUntil diReleaseMachine2=high\MaxTime:=5

\TimeFlag:= bTimeOut;

!release has not been given => jump to error handler

IF bTimeOut RAISE ERR MT ABORT;

…

!do loading here

…

ERROR (ERR_MT_ABORT)

IF ERRNO= ERR MT ABORT THEN

!move to scrap box

LoadScrapBox;

!jump to error handler of calling routine

RAISE;

ENDIF

ENDPROC

ENDMODULE

Note

RWMT provides an own error number ERR_MT_ABORT for this purpose

This error number can be used to jump from each desired position inside the user
program to the error handler of the RWMT engine. If no Halt after end of cycle has
been triggered before, the production continues from the beginning.

Continues on next page
3HAC044398-001 Revision: C 239

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.9.6 Error handling and return to the home position

Continued

The robot must be sent to home position (see Strategy for automatic movement
into the home position on page 140) or safe position (see Movement continuation
in intermediate positions on page 148) before jumping to the error handler of the
RWMT engine because otherwise the production cannot be continued afterwards.
Further information regarding error handling concepts can be found in the Technical
Reference Manual RAPID - Overview listed in the section References on page 11.

Without HomeRun, simple error handling
If no HomeRun and no regular error handling shall be used, there is another very
simple mechanism of RWMT to send the robot back to home position.
Therefor the user program triggers an error through a RAISE instruction with error
number ERR_MT_HOMERUN. As a result, the program pointer jumps back into the
RWMT engine.
The engine sets the status Halt after end of cycle reached and calls the routine
MT_HomeDirect. This routine is to be provided by the integrator in the user program
and must be filled with appropriate instructions to move the robot back to home
position.
After execution of this routine, the program terminates.
Example:

MODULE MT_MAIN

…

!Part data example

TASK PERS partdata MT_pdVCylinderHead4718:=

["Part
4718","Production","",TRUE,2,10,4,3,[-1,-1,-1,-1,-1,-1,-1,-1],"Part4738.GIF",

[1.5,[0,0,0.001],[1,0,0,0],0,0,0],"pdvPart4738"];

…

PROC Production()

…

…

IF diReleaseMachine=0 THEN

!Trigger error handling to go back to home position

RAISE ERR_MT_HOME_RUN;

ENDIF

…

ERROR (ERR_MT_ABORT)

RAISE;

ENDPROC

PROC MT_HomeDirect()

…

!Insert here your code to go to home position

!after you have raised with error number

!ERR_MT_HOME_RUN

…

ENDPROC

…

Continues on next page
240 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.9.6 Error handling and return to the home position
Continued

ENDMODULE

Note

ABB does not suggest to use this alternative because in a central routine, it
cannot be clearly said where the robot is physically. So a danger of collision
remains.

However this alternative is useful, if the way back to home position is always the
same, which sometimes is the case in very simple applications.
ABB suggests the use of HomeRun on page 111 or to implement Error handling
and return to the home position on page 237.

3HAC044398-001 Revision: C 241
© Copyright 2014 ABB. All rights reserved.

14 Programming
14.9.6 Error handling and return to the home position

Continued

14.9.7 Change of tools

Triggering and handling in the program
If a gripper replacement is necessary, because different products have to be
handled and if robot gripper tools are operated with a coding, then RWMT can
compare the current coding with the specification for the product by using the
partdata declaration of the current product.
If there is a difference between the current gripper coding and the gripper code for
the chosen product, it is possible that one has forgotten to re-equip the gripper.
In this case, RWMT calls a MT_ChangeTool routine instead of the production
routine, which should be provided for by the application programmer and with
equipped with suitable instructions for a gripper replacement.
In this routine, RWMT hands over the code of the current gripper tool as the first
argument and the code of the gripper that is to be used as the second argument.
After calling the MT_ChangeTool routine, the RWMT Engine will once again check
if the current gripper code matches with the specification. If this is not yet the case,
perhaps because the routine does not exist or the gripper has not been changed,
then RWMT will output an error message. In this case, the production routine will
no be executed.
Routine to be provided:

PROC MT_ChangeTool(

VAR signalgi CurrToolCode,

num ReqToolCode)

!

!Insert your tool changing instructions here

!

ENDPROC

242 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

14 Programming
14.9.7 Change of tools

14.9.8 User defined programs

Usage and conventions
In some cases, it may be necessary to execute production routines in a user defined
manner. This happens, for instance, if

• the mechanism that has been integrated in RWMT for communicating the
program numbers should or can not be used or

• if both the mechanism that has been integrated with RWMT for communicating
the program numbers as well as other RWMT functions such as cycle handling
and check code monitoring should not be used.

For these cases, RWMT provides the option for calling the user defined routine
MT_GetUserProgNo, where the user specific program number transfer is done and
where, if required, the current production routine can be selected.
In order that this routine can be executed by RWMT, this should be released first
in the process parameters (see chapter Parameterization of the MT Program
Selection on page 203).
The user defined routinemust be provided for by the programmer in the application
program and should be in accordance with the following convention:

ExplanationValueConvention

The user defined routine is called by RWMT
under its defined name.

MT_GetUserProgNoName

Argument that can be described in the
routine for the program number that is to
be evaluated by RWMT.

INOUT dnum ProgNoArgument1

Value allocation <=0 is necessary, to pre-
vent the argument from being evaluated.

Argument that can be described in the
routine for the name of the routine that is to
be called by RWMT.

INOUT string RoutineArgument 2

Value allocation "" (blank string) necessary,
to prevent the argument from being evalu-
ated.

Within the MT_GetUserProgNo routine, only one of the two arguments ProgNo
or Routine may be used. If both are used, then only the first argument ProgNo
will be evaluated.

Handling in the program
If the argument ProgNo is used, then RWMT will search for a partdata declaration,
which contains the corresponding program number and will execute the production
routine that is defined in the declaration.
In this case, only the RWMT mechanism for reading a program number will be
bypassed. All the other mechanisms such as the handling of cycles as well as the
evaluation of check codes (test codes) will be executed.
Example 1:

Continues on next page
3HAC044398-001 Revision: C 243

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.9.8 User defined programs

In the following design of the MT_GetUserProgNo routine, the RWMT searches
for a partdata declaration with the program number 7 and the corresponding
production routine will be called.

PROC MT_GetUserProgNo(

INOUT dnum ProgNo,

INOUT string Routine)

!

!Program number 7 assigned

ProgNo:=7;

!

ENDPROC

Example 2 :
In this example, the routine MT_GetUserProgNo is used to build an individual
handshake for data transfer. This might be useful if the handshake signals, provided
by RWMT, do not fit the requirements.

PROC MT_GetUserProgNo(

INOUT dnum ProgNo,

INOUT string Routine)

!

!Program number assigned by serial interface

ProgNo:=GetProgNoFromRS232();

!

ENDPROC

If the argument Routine is used, then RWMT will try to call a production routine,
whose name fits the value of Routine.
If so, the RWMT mechanism for reading a program number as all other mechanisms
like the cycle handling as well as the check code evaluation are bypassed.
Example 3:
The routine UserProduction has to be called.

PROC MT_GetUserProgNo(

INOUT dnum ProgNo,

INOUT string Routine)

!

!Production routine name assigned

Routine:="UserProduction";

!

ENDPROC

Depending on the specific conditions, either the program number or the routine
name can be assigned, as shown by the following example.
Example 4:

PROC MT_GetUserProgNo(

INOUT dnum ProgNo,

INOUT string Routine)

!

VAR dnum dnProgNo

!user defined hand shake

!to read the program number

IF diProgNoReady=high THEN

Continues on next page
244 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.9.8 User defined programs
Continued

dnProgNo=giProgNo;

Set doProgNoAck;

...

!select the routine name which shall

!be executed

TEST dnProgNo

CASE 1,2,3,4,5:

Routine:="Production_T"+Valtostr(dnProgNo)

CASE 100,101:

!call service routines (menudata) or standard

!partdata

ProgNo:=dnProgNo;

ENDTEST

ENDIF

!

ENDPROC

3HAC044398-001 Revision: C 245
© Copyright 2014 ABB. All rights reserved.

14 Programming
14.9.8 User defined programs

Continued

14.10 Designing the service routines

14.10.1 Normal service routines

Data declaration and service routine
Similar to the declarations of the type partdata and the corresponding production
routines, there also exists a data type menudata – Menu declaration for

service routines or set up routines on page 290, which controls the
execution of service routines under RWMT.
The setting up is discussed in detail in the chapters Service routines on page 86,
and Setup view on page 96 .
The following example illustrate the use once again:

MODULE MT_MAIN

…

!Menu data for service routines to be called

!

CONST PERS menudata mnChangeGripper:=

["Change gripper","Service","","ChangeGripper",

"",1,TRUE,7,1,1];

CONST PERS menudata mnCleanGripper:=

["Clean the gripper ","Service","","CleanGripper",

"",1,TRUE,9,1,1];

…

…

PROC ChangeGripper()

!

!Implement here your instructions

!to change the gripper

!

ENDPROC

…

…

PROC CleanGripper()

!

!Implement here your instructions

!to clean the gripper

!

ENDPROC

The two service routines for changing or cleaning the gripper can be called either
in remote manner through the program numbers 7 or 9 or directly from the RWMT
user interface.

246 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

14 Programming
14.10.1 Normal service routines

14.10.2 Special service routines

RWMT provides the possibility to move the robot to 3 different service positions.
These service positions can be requested remotely through digital inputs that have
to be assigned as shown in the chapter Parameterization of the MT API Positions
on page 200.
To select those service positions in the graphical user interface, menudata
declarations have to be provided as for the normal service routines.
Those declarations must be applied the predefined names mnuServicePos1,
mnuServicePos2, and mnuServicePos3.
The declarations are predefined in the template file MT_Main.mod. The application
programmer should equip them with the appropriate data or delete them, if not
used. Furthermore, the service position routines have to be created and equipped
by the application programmer.
Example:

CONST menudata mnuServicePos1:=

["Service position 1","Positions","",
"ServicePos1","",3,TRUE,5,1,50];

PROC ServicePos1()

!

!Move to service position 1

MoveTo 991;

!Wait a little bit there...

WaitTime\InPos, 2;

!Move back to home position

MoveTo 999;

!

ENDPROC

The menu data declaration is of type 1, which means that the execution of the
corresponding routine also sets the program pointer to this routine. See chapter
menudata – Menu declaration for service routines or set up routines on page 290
to learn more about menu data declarations and their different types.
The ServicePos1 routine is called in the service menu. The menu will be displayed
only if at least one user has logged in with service permissions. The menu can be
called in the automatic mode of the robot through the GUI or through the external
program number selection (program number 5), if the robot is in the home position
or safe position.
The corresponding routine first of all moves the robot to the service position
(position number 991). After having reached the position and 2 more seconds
waiting time, the robot is moved back to the home position.

3HAC044398-001 Revision: C 247
© Copyright 2014 ABB. All rights reserved.

14 Programming
14.10.2 Special service routines

14.11 Suggestions for designing the program

14.11.1 The station concept

Explanation
The station concept of RWMT describes the perspective of the production unit and
the corresponding mapping or representation in the robot program.
A robot cell consists of individual machines, conveyor belts and devices, apart
from the robot. These are referred to in general as a station.
As described in the chapter Stations on page 45, these stations are represented
graphically with their properties (state, station signals, station variables, station
applications) by RWMT
The station concept can be considered in the actual robot program too, apart from
the visualization, by placing all the data and routines of a station at one location.
This can be achieved by adhering to the following rules:

• All the data and routines of a station are present in one single RAPID module
and are declared as LOCAL.

• Physical signals of a station will be associated with the local alias signals.
• The station routines are called with the help of Late Binding specifying name

of the module.
Example:

MODULE MT_MAIN

…

PROC Production()

…

!Unload the injection moulding machine

%"IMM1: Unload"%;

!Place the part on the conveyor

%"CNV1:Load"%;

…

ENDPROC

MODULE CNV1

!Version of this station

LOCAL CONST versiondata vd_CNV1:=

["CNV1.mod","V 0.10","2011-03-01"];

!

!Digital inputs

LOCAL VAR signaldi sdiLoadCNV;

!Digital outputs

LOCAL VAR signaldo sdoIRBOutOfCNV;

LOCAL VAR signaldo sdoPulseCNV;

!

!IO mappings for signals / alias signals

LOCAL CONST stationsignal CNV1_Signals{3}:=[

["Release to load conveyor","diLoadCNV1","sdiLoadCNV"],

["Robot out of conveyor","doIRBOutOfCNV1","sdoIRBOutOfCNV"],

["Pulse conveyor","doPulseCNV1","sdoPulseCNV"]];

Continues on next page
248 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.11.1 The station concept

!

!Base information about this station to be shown in GUI

PERS stationdata CNV1_Station:=

["CNV1","Conveyor 1","Conveyor 1 to outfeed good parts",

"station-conveyor.png","","","","",TRUE,FALSE,5,3];

!

!Station variables to be monitored or modified in GUI

LOCAL CONST stationvariable CNV1_Variables1{1}:=

[["Conveyor condition wait time”, "ntWaitTime",

"Conveyor","T_ROB1",0,99999,TRUE,TRUE,TRUE,0,1]];

!

!Event definition for station initialization

LOCAL CONST eventdata evStart:=

[EE_START,"CNV1:Initialize","",1];

!

!Waiting time for conditions

LOCAL PERS num ntWaitTime:=0;

!

LOCAL PERS msgdata msgLoad:=[30,1,btnNone,

"Wait for conveyor loading release.","","","","","",1,""];

!

!Hotedit position declarations

LOCAL CONST hoteditdata MT_he_CNV1{1}:=

[

["Conveyor 1","station-conveyor.png","Movement",

"mv300_301","p301","",""]

];

!

LOCAL PROC Initialize()

!

!Connect the physical signals to the alias

!signals of this station

MT_AliasIO CNV1_Signals\ModuleName:=CNV1;

!

!Set signals to their initial state

Set sdoIRBOutOfCNV;

Reset sdoPulseCNV;

!

ENDPROC

LOCAL PROC Load()

!

!Set this station as the active station at the GUI

MT_SetActiveStation CNV1_Station;

!

!Move to preposition of conveyor

MoveTo 300;

!Wait for conditions to enter conveyor area

MT_WaitMsgDi sdiLoadCNV,high,msgLoad;

!Move to place position at conveyor

MoveTo 301;

!

Continues on next page
3HAC044398-001 Revision: C 249

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.11.1 The station concept

Continued

!Switch off vacuum

MT_GripSet gsVacuumOff,gdSucker1\PartLoad:= load0;

!

!Move to end position outside conveyor

MoveTo 302;

!

ERROR

RAISE;

ENDPROC

ENDMODULE

In the example shown above the station CNV1 (first conveyor) can be duplicated
by means of a text editor. This is done by copying the module CNV1 and insert it.
Then the prefix CNV1 must be replaced by CNV2
In addition a new number group must be provided because the second conveyor
will need different robot positions than the first one.
A new number group is not mandatory if the movement content of the new CNV2
module is declared as local.

Advantages of the station concept
• Through the local data maintenance, identical copies of station modules can

be used within a program, for example, if a processing machine appears
several time sin a row in the same execution.

• During regular program creation for different plants or systems, a library can
be built up, in which the individual station modules represent the behavior
and the actuation of the corresponding machine completely. In subsequent
projects, this library can be accessed, thereby saving time spent on the
programming.

Example for a station library:

en1300000151

250 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

14 Programming
14.11.1 The station concept
Continued

14.11.2 The program architecture

Task description
As an example, a robot program should be prepared with the following conditions:

• There is one single logical program run of the kind
- Unload Station A
- Load Station B

• There are two types of parts, which should not be handled by the robot with
this program run.

• Later on, more part types could be added to this program run.
• There should be only one single robot program for all the part types.
• All the part types have different loading and unloading positions on the

machines.
• It should be possible to test the movement processes independent of the

logical program run.

Solution approach
The simplest solution to this task consists in,

• decouple the movement calls completely from the process logic and
• calling individual movement processes dynamically in routines, during run

time.
The following sections show the conventions for implementation.

Modularization
A program which should contain different part types for the same run, essentially
differs only in terms of the gripper positions and depositing positions that should
be approached in the stations / machines.
For this reason, it is useful to separate the actual production process from the
movement instructions and movement data.
In our example, this means in concrete terms that routines for the program
initialization as well as the loading and unloading of stations will be placed along
with the production routine in a common program module.
All the movement instructions pertaining to a part type will be located along with
the corresponding movement data (robtarget declarations, tool data declarations,
wobjdata declarations) in a separate part type module.
All the other movement instructions, which do not belong to any part type, will be
placed along with all the corresponding movement data (robtarget declarations,

Continues on next page
3HAC044398-001 Revision: C 251

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.11.2 The program architecture

tool data declarations, wobjdata declarations) in a general movement module. The
following figure illustrates the architecture:

en1300000152

Naming conventions for positions
Position names basically begin with the letter p.
Special standard positions can be given descriptive names (pHome, pBereit, and
so on.).
All the other positions are named in accordance with the following convention:

DescriptionFormat

p:Position-PrefixpXXX

XXX: 2- or 3-digit numerical station namepXXX_Tt

Tt:type number for indexing by part types with or without the type
prefix T

Examples of valid position names:

Preliminary position outside the processing machinep100

Continues on next page
252 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.11.2 The program architecture
Continued

Grip position within processing machinep101

Preliminary position outside the press for part type with Index 7p200_T7

Loading position in the press for part type with Index 7p201_T7

For subordinate, intermediate positions, sequential numbering or even the selection
of the asterisk * position is found to be useful, since it is not possible to find an
intelligent, self explanatory name for every position, which also fits the maximum
length of a position name.
A sequence of *-positions (even individual positions) should always be enclosed
by uniquely named positions, for example, p100, *,...,p101.

Use and naming of movement routines
The name for movement routines always denotes the starting point and the end
point of a movement. In general, all the movement routines begin with the prefix
mv.
mvStart_End [_T<TypNr>]

Examples:

Moves the robot from the pre-position of the processing machine
into the gripping position in the processing machine.

mv100_101

Moves the robot from the pre-position of the processing machine
to the gripping position inside this machine for part type 5.

mv200_201_T5

Basically, the first position (start position) is approached only in the programming
mode and at low speed. In this way, an uncontrolled movement from the end
position back to the start position while testing the movements of the robot can be
prevented.
A system operator should not be prevented from running a movement routine in
the continuous mode, which means that after the last instruction in the routine, the
1st instruction will be processed once again. A low speed can thus prevent
uncontrolled movement and heavy damages.
Example:

PROC mv100_101()

!From : Prepos processing machine

!To: Gripping pos processing machine

IF OpMode()<>OP_AUTO MoveJ p100,v200.z10.tGripper;

MoveJ *,v2500.z10.tGripper;

MoveL p101,v2500.z10.tGripper;

ENDPROC

If different part types with different movement routines have to be handled in a
robot program, but with the same program run, then these are described by a type
dependent index, which is provided with an additional prefix, for example, T.
Example:
Movement from Position 200 to 201 for type number 7 with the type prefix T:

PROC mv200_201_T7()

!From : Prepos trimming press

!To: Loading pos trimming press

Continues on next page
3HAC044398-001 Revision: C 253

© Copyright 2014 ABB. All rights reserved.

14 Programming
14.11.2 The program architecture

Continued

IF OpMode()<>OP_AUTO MoveJ p200_T7,v200.z10.tGripper;

MoveJ *,v2500.z10. tGripper;

MoveL p201_T7,v2500.z10. tGripper;

ENDPROC

Calling the movement routines
By relocating the data that is relevant to movement, the administrative program
can now be formulated in a very general manner.
However, a mechanism is required for calling the respective, required movement
routines for the part type that is to be handled currently during the program run.
This is done preferably by calling routines with subsequent binding (Late Binding
%string%).
Example:

%“mv100_101_T“+ValToStr(nTypNr)%; (with type prefix)

or with

CallByVar „mv100_101_T“,nTypNr;

Alternatively, the instruction MT_MoveTo could be used. Its use is described in the
chapter RAPID Reference => Instructions => MoveTo -Dynamic execution of a
movement routine ..

Example for the implementation
Additional program can be found in the RWMT add-in folder in the Program
Example subfolder.

254 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

14 Programming
14.11.2 The program architecture
Continued

14.12 Program test

14.12.1 General safety measures

Extra caution is advised in general while testing a robot program. This includes
the following, among other things:

• Careful inspection of the program code before starting the test.
• Ruling out of all risks to other persons who may be working in the vicinity of

the system.
• Testing at low speed in the set up mode of the robot.

3HAC044398-001 Revision: C 255
© Copyright 2014 ABB. All rights reserved.

14 Programming
14.12.1 General safety measures

14.12.2 Validating the gripper functions

If the data type grpdata as well as the RWMT instructions for gripper actuation
are used in the application program, then, in the grpdata declaration of a gripper
that has not been tested yet, the element Valid should be set to FALSE (validation
status).
This is to prevent the starting of production in an inadvertent manner with an
untested gripper. This is relevant in particular to more complex grippers.
After a gripper has been tested successfully, in its grpdata declaration the element
Valid should be set to TRUE, so as to be able to carry out production with this
gripper.

256 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

14 Programming
14.12.2 Validating the gripper functions

14.12.3 Test mode

With the help of the test mode, a station can be activated even if it announces itself
currently as not ready through an existing, external signal.
This is necessary during the commissioning for testing the program run even with
stations that are currently not yet ready for operation.
The test mode is activated and deactivated through the RWMT user interface. To
do so, the robot icon should be selected first in the station view.

In the view that opens, now switch to the Debugging area of the test mode (green
tick mark is set) or switched off (green tick mark is not set).

Switching on the test mode ensures that the station is activated in RWMT, if
• the station has been activated from the GUI AND

- the deactivation on the user interface has been released in the process
parameters
OR

- an external signal has been defined, which can activate or deactivate
the station through remote controls. The state of the signal does not
play any role here.

• the deactivation on the user interface has not been released in the process
parameters, nor has an external signal been defined, which can activate or
deactivate the station through remote control.

With the test mode, also the disabled buttons for the cycle handling are shown in
the graphical user interface, if the cycle handling is done exclusively externally
through a group input.

3HAC044398-001 Revision: C 257
© Copyright 2014 ABB. All rights reserved.

14 Programming
14.12.3 Test mode

This page is intentionally left blank

15 RAPID references
15.1 Data types

15.1.1 cellopmode – Cell operation mode

Usage
cellopmode is used for defining the available cell operation modes of RWMT.
This must not be mistaken for the robot operation mode.
The predefined cell operation mode constants can be used for comparison with
the function MT_GetOperationMode (see, MT_GetOperationMode – Current cell
operation mode on page 483).

Pre-defined data
cellopmode can contain the following values:

Operation modeNumberConstant

Without robot0OP_NO_ROBOT

Service1OP_SERVICE

Production2OP_PRODUCTION

Properties
cellopmode is an alias data type for num and hence inherits its properties.

3HAC044398-001 Revision: C 259
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.1 cellopmode – Cell operation mode

15.1.2 Cycledata – Program cycle setting

Usage
cycledata is used to define program cycles for the finishing process of a part.

Description
In RWMT, program cycles are used for the process control of a part program and
are called by the system operator through the GUI or through an external selection.
Four different types of cycles are supported:

• Continuous cycles
• Counter cycles
• Action cycles
• Periodic cycles

The cycle setting is done through the array MT_CycleList{20} of the data type
cycledata.
The evaluation of the cycle that is to be processed is done by RWMT, which assigns
the required cycle index that is necessary in each case to the persistent entity
MT_nCycleIndex. In the processing program, the runs of the required cycles must
be created in a corresponding manner.

Restriction

Note

The cycle data field must be declared as TASK PERS, since the GUI should be
in a position to describe the data field.

The field is reduced to 20 cycles.

Basic example
TASK PERS cycledata MT_CycleList{20}:=[

["Production","",1,0,0,0,0,0],

["Warm-up","cycle-warm-up-robot.gif",2,1,3,0,1,0],

["","",0,0,0,0,0,0],["","",0,0,0,0,0,0],

["","",0,0,0,0,0,0],["","",0,0,0,0,0,0],

["","",0,0,0,0,0,0],["","",0,0,0,0,0,0],

["","",0,0,0,0,0,0],["","",0,0,0,0,0,0],

["","",0,0,0,0,0,0],["","",0,0,0,0,0,0],

["","",0,0,0,0,0,0],["","",0,0,0,0,0,0],

["","",0,0,0,0,0,0],["","",0,0,0,0,0,0],

["","",0,0,0,0,0,0],["","",0,0,0,0,0,0],

["","",0,0,0,0,0,0],["","",0,0,0,0,0,0]]

PROC Bauteil1()

TEST MT_nCycleIndex

CASE 1:

Production;

CASE 2:

Start up;

Continues on next page
260 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.2 Cycledata – Program cycle setting

ENDTEST

ENDPROC

Definition of a production cycle and of a start up cycle.

Components

Data type: stringName

Name of the cycle in the GUI (maximum 10 characters).

Data type: stringImage

The file name of the image button of size 62x55 pixel that is to be
displayed in front of the menu entry. For this, the image must be
present either directly in the HOME: directory or in the SYSTEM:
directory.

ImageNumber

Furthermore, it is also possible
to use one of the images shown
on the left by specifying the im-
age number.
Example:
Cycledata.Image:= "1";

xx1300000171

""

xx1300000172

"1"

xx1300000173

"2"

xx1300000174

"3"

xx1300000175

"4"

xx1300000176

"5"

Data type: numIndex

Unique cycle index, which is queried by an external cycle selection
or is communicated through the GUI and is queried in the robot
program.

Continues on next page
3HAC044398-001 Revision: C 261

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.2 Cycledata – Program cycle setting

Continued

Data type: cycletypeType

The cycle type is defined through the following values:

CycleValue

Continuous cycle0

Counter cycle1

Action cycle2

Periodic cycle3

Data type: numNoOfExecSet

Number of cycles to be executed.
(Not applicable to continuous cycles).

Data type: numInterval

Number of processing cycles to be executed before the periodic
cycle is executed.
(Is applicable only to periodic cycles).

Data type: numContIndex

Index of the cycle, which is to be executed after a counter cycle
ends. If the value 0 is used, then the program will be ended.
Example:
Cycledata.ContIndex: = 1;

In the basic example, after 3 cycles of the start up cycle have been
executed, the cycle 1 (production) will be executed.

Note

To continue a counter cycle, only indices of continuous cycles or
counter cycles can be used.
(Applicable only for counter cycles).

Data type: numNoOfExecAct

Internal cycle counter for counting the cycles executed.

Structure
< Dataobject of cycledata>

< Name of string >

< Image of string >

< Index of num >

< Type of cycletype>

< NoOfExecSet of num >

< Interval of num >

< ContIndex of num >

< NoOfExecAct of num >

262 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.2 Cycledata – Program cycle setting
Continued

15.1.3 cycletype – Type of cycle

Usage
cycletype is used for defining the cycle type of a processing cycle (SeeCycledata
– Program cycle setting on page 260).

Pre-defined data
cycletype can contain the following values:

CycleNo.Constant

Continuous cycle0CT_CONTINUOUS

Counter cycle1CT_COUNT_CYCLES

Action cycle2CT_COUNT_CYC_ACTION

Periodic cycle3CT_PERIODICAL

Properties
cycletype is an alias data type for num and hence inherits its properties.

3HAC044398-001 Revision: C 263
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.3 cycletype – Type of cycle

15.1.4 eventdata – Execute routine on program event or system event

Usage
eventdata is used to define which routine is to be processed in the case of a
system event or program event.

Description
If a system event or program event occurs, then all the event declarations in the
robot program (eventdata) will be checked with the help of the event number
(eventnum) and the event routines that are appropriate for the respective event
will be executed in the sorting sequence (eventdata.Sortorder).
All the system events (for example, Start, Stop, , and so on.) can be declared by
specifying the event number, the routine and the sorting sequence in the RAPID
program, without necessitating a change in the system parameters.
If program modules or system modules are loaded only where required, then, a
specific routine can be executed automatically through the event declaration, which
is present in the module which is to be loaded, without necessitating a change in
the robot system.

Basic examples
CONST eventdata edMy_POWERON:=

[EE_POWERON, "MyModule:MyPOWERON",10];

System event: The MyPOWERON routine in the MyModule module will be executed
when the controls are switched on.

CONST eventdata edMy_INIT:=

[EE_BEFORE_INIT, "MyModule:MyInit",10];

Program event: The MyInit routine in the MyModulemodule of the RWMT Engine
will be called at program start from Main before the program initialization.

Components

Data type: eventnumEvent

Event for which the specified routine is to be executed

Data type: stringRoutine

The name of the routine contains a RAPID procedure without any
transfer of parameters (for example, MyINIT), where even routines
that are local to the module can be used. Here, the module name is
written separated by means of a colon before the name of the routine
(f MyModule:MyINIT)

Data type: numSortOrder

Processing sequence (0-100) of the routines for the same system
event, that is, the routine of an event declaration with a SortOrder
1 will be called before a routine with the SortOrder 10.

Properties
The event must be declared as a constant.
It may never be LOCAL.

Continues on next page
264 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.4 eventdata – Execute routine on program event or system event

The name of the declaration is of no consequence, since the system will be
searched for all the declarations of the data type eventdata.
However the declaration name must be unique.

Structure
< Dataobject of eventdata>

< event of eventnum >

< Routine of string >

< SortOrder of num >

3HAC044398-001 Revision: C 265
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.4 eventdata – Execute routine on program event or system event

Continued

15.1.5 eventnum – Program event number or system event number

Usage
eventnum is used to define the system event or program event for which the
assigned event routine is to be executed.

Description
If a system event or program event occurs, then all the event declarations in the
robot program will be checked with the help of the event number and the routines
of the event declaration that are appropriate for the respective event will be
executed.

Basic examples
CONST eventdata edMy_START:=

[EE_START, "MyModule:MySTART","",10];

The MySTART routine in the MyModulemodule will be processed from the beginning
on starting (start from Main).

Pre-defined data
The system events and program events are defined through the following event
number:

EventEvent No.Constant

Restarting the robot controller.1EE_POWERON

Processing is started from the beginning of the
program.

2EE_START

Robot was restarted or the processing will start
when the program starts.

3EE_POWERON_OR_START

Processing starts from the current position of
the program pointer.

4EE_RESTART

Processing starts from the beginning of the pro-
gram or from the current position of the cursor.

5EE_START_OR_RESTART

The program was stopped:
• with the help of the Stop key,
• with the help of a Stop instruction,
• or with a stop after the current instruction.

6EE_STOP

A quick stop of the robot has been executed (for
example, emergency stop)

7EE_QSTOP

Program was paused by Stop or emergency stop.8EE_STOP_OR_QSTOP

A program was closed or loaded.9EE_RESET

The event will not be activated once a system
module or a program module has been loaded.

Step-wise execution of the program forwards or
backwards

10EE_STEP

Step-wise execution of the program forwards11EE_STEP_FWD

Step-wise execution of the program backwards12EE_STEP_BCK

Continues on next page
266 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.5 eventnum – Program event number or system event number

EventEvent No.Constant

MT_Executewas started and the initialization is
done in the next step.

20EE_BEFORE_INIT

One-time initializing after start from main() before
calling any production routine (part program).
The robot is already located in home position.

21EE_AFTER_INIT

Execution is done always if the robot is waiting
for a program number.

22EE_WAIT_ORDER

Execution will be done always before processing
of the part program.

23EE_BEFORE_PROD

Execution will be done after the processing of
the part program and after the event
EE_AFTER_PART.

27EE_AFTER_PROD

Execution will be done before the processing of
a menu routine.

28EE_BEFORE_MENU

Execution will be done after the processing of a
menu routine.

30EE_AFTER_MENU

Event will be done, if one of the error numbers
ERR_MT_HOME (termination of program with direct
Halt after end of cycle) respectively
ERR_MT_ABORT (termination of the current pro-
duction cycle) is used.

31EE_ERROR

Execution takes place at program start of
MT_Execute, if the robot is not in the home pos-
ition.

32EE_HOMERUN

Event triggers if the RWMT engine is left and
shortly before the robot program is terminated.

33EE_PROG_END

Event will be done if an external program number
has successfully been read.

34EE_AFTER_PROG_NUMBER

Triggered, if a program number has been read
by RWMT but this program number neither
matches a partdata nor a menudata declaration.

35EE_PROGNO_UNKNOWN

The event can be used for example, to load a
module which contains the missing partdata or
menudata declaration.
After execution of the event, RWMT verifies
again, if the program number matches a partdata
or menudata.if this is still not the case, the pro-
gram execution is aborted with an appropriate
message.

Triggered, if a routine name has been specified
in the <routine> item of a partdata declaration,
which has been selected for production, but the
specified routine does not exist in the program.

36EE_PROD_UNKNOWN

The event can be used for example, to load a
module which contains the missing routine.
After execution of the event, RWMT verifies
again, if the routine is available in the program.
If the routine is still not available, the program
execution is aborted with an appropriate mes-
sage.

Continues on next page
3HAC044398-001 Revision: C 267

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.5 eventnum – Program event number or system event number

Continued

EventEvent No.Constant

This event is triggered if a message is written to
the FlexPendant (for example, while using the
instructions MT_ShowText, MT_ShowMessage,
MT_UIMessage, MT_WaitMsgGI,
MT_WaitMsgDI, MT_WaitMsgDO, and so on) and
can for example, be used to send the content of
the message via a socket connection to an ex-
ternal computer.

39EE_MSG_WRITTEN

In addition to the other events this event needs
an event routine which has the msgdata as a
parameter, so that the msgdata can be pro-
cessed.
Example:

PROC SendMessage(msgdata msg)

ENDPROC

In case of the event routine has no msgdata
parameter, the routine will be called automatically
without any parameters.
If the event routine has too many or the wrong
parameter type, the error 40193 (Execution error
-Late binding procedure call) is logged and also
the error 119050 (Specified event routine does
not exist) but the program remains in execution.

This event is triggered if a message is confirmed
by means of a remote signal (please refer to
system parameters RWMT API commands,
DI_Error_ACK) and expects an event routine
without any parameters.

40EE_MSG_ACKNOWLEDGED

Event which is triggered by a task, after having
called a setup routine by means of the RWMT
GUI.

100EE_BLOCKED

Properties
cycle type is an alias data type for num and hence inherits its properties.

268 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.5 eventnum – Program event number or system event number
Continued

15.1.6 grpaction – Set and check actions in gripper sequences

Usage
grpaction supports the data type gripseq(see grpseq – Gripper sequence for
actuating several control elements on page 278). While gripseq is used for a
sequential setting of gripper actuators, the data type grpaction defines for each
sequence, if the actuators only have to be set or also checked.

Predefined gripper actions
Only the following grpaction may be used:

EventEvent
number

Constant

Gripper action to set the outputs and wait until
sensor signals have the required state.

0gaSetAndCheck

Gripper action to set the ouputs without checking
the sensor signals.

1gaSet

Gripper action to only check the sensor signals.2gaCheck

Gripper action to only check status of theClosed
sensor signals.

3gaCheckClose

Gripper action to check status only of the Open
sensor signals.

4gaCheckClose

Basic example
TASK PERS grpdata gdY1_T127:=[];

TASK PERS grpdata gdY2_T127:=[];

TASK PERS grpdata gdY3_T127:=[];

TASK PERS grpdata gdY4_T127:=[];

!gripper sequence

const grpseq gsOpen_T127{3}:=

[[gsClose,gaSetAndCheck,"gdY1_T127","","","","","",0],

[gsOpen,gaSet,"gdY2_T127","gdY3_T127","", "","","",0],

[gsClose,gaCheck,"gdY4_T127","","", "","","",0]];

In the sequence for opening the gripper for part 127, the control element Y1 is first
closed, then the control elements Y2 and Y3 are opened and then the control
element Y4 is closed.
In the first sequential step, the actuators are to be set and then checked afterwards
for the expected condition. In the second step, the actuators are only set but not
checked. In the third step the condition for the the actuator, no actuator is set but
only checked.

Components

Datatype: grpposPosition

The new position of the gripper that is expected by the actuation.

Data type: grpactionAction

Action, which has to be executed (setting and checking actions of
the gripper actuators).

Continues on next page
3HAC044398-001 Revision: C 269

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.6 grpaction – Set and check actions in gripper sequences

Data type: stringGrp1

Variable name of the actuator 1 (grpdata-declaration name)

Data type: stringGrp2

Variable name of the actuator 2 (grpdata-declaration name)

Data type: stringGrp3

Variable name of the actuator 3 (grpdata-declaration name)

Data type: stringGrp4

Variable name of the actuator 4 (grpdata-declaration name)

Data type: stringGrp5

Variable name of the actuator 5 (grpdata-declaration name)

Data type: stringGrp6

Variable name of the actuator 6 (grpdata-declaration name)

Data type: numWaitTme

Common waiting time after the complete sequence is executed.

Structure
<dataobject of grpseq>

< Position of grppos>

< Action of grpaction>

< Grp1 of string >

< Grp2 of string >

< Grp3 of string >

< Grp4 of string >

< Grp5 of string >

< Grp6 of string >

< WaitTime of num >

270 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.6 grpaction – Set and check actions in gripper sequences
Continued

15.1.7 grpdata – Configuration of a control element of the gripper

Usage
grpdata is meant for the configuration of a control element of a gripper.
With a Control element, an action can be controlled at a gripper, which normally
consists in the actuation of a valve. The concerned action can be monitored with
a maximum of 4 pairs of sensors, for example, the end positions of cylinders (open
or closed position) or a vacuum sensor can be queried.
If all the pairs of sensors or sensor positions are not required, then the
corresponding parameter for the name of the signal can remain blank.
The control element configuration is used with the instruction MT_GripSet (see
MT_GripSet – Controlling the gripper on page 363) or MT_GripCheck (see
MT_GripCheck – Check position of the control element of the gripper on page340).

Components

Data type: stringLabel

Name (description) of the gripper and/or of the control element.

Data type: byteToolCode

Gripper coding for which this configuration is valid.

Data type: boolValid

Validation status of the gripper function

Data type: numWaitTme

WaitTme is executed after the sensors have met the expected
conditions. Error message is displayed after 5sec if the sensor
conditions are not met.

Data type: boolNoGhostSet

Activate the actuation of the valve in the ghost mode (FALSE)
or deactivate it (TRUE).

Data type: boolNoGhostCheck

Activate checking of sensors in the ghost mode (FALSE) or
deactivate it (TRUE).
The flag is used, for instance, if the control element sensors do
not report the expected state in the ghost mode, for example,
in the case of vacuum grippers.

Data type: grpvalueValve

Valve actuation for the control element.

Data type: grpsensorSensor1

Sensor configuration for the 1st pair of sensors for checking
the Open or Closed position.

Data type: grpsensorSensor2

Sensor configuration for the 2nd pair of sensors for checking
the Open or Closed position.

Data type: grpsensorSensor3

Sensor configuration for the 3rd pair of sensors for checking
the Open or Closed position.

Continues on next page
3HAC044398-001 Revision: C 271

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.7 grpdata – Configuration of a control element of the gripper

Data type: grpsensorSensor4

Sensor configuration for the 4th pair of sensors for checking
the Open or Closed position.

Basic example
TASK PERS grpdata gdGripper

[

"Gripper",1,TRUE,0.5,TRUE,TRUE,

["doCloseGripper",0,"doOpenGripper",0,

"Close Gripper","Open Gripper"],

["Gripper","diGripperClosed","diGripperOpened"],

["","",""],["","",""],["","",""]

];

Gripper with an output signal for closing and an output signal for opening. The
gripper status is reported with an input forGripper is open and an input forGripper
is closed.
The setting and checking of the gripper is disabled in the ghost mode. The gripper
code for this gripper function is 1.
After setting the actuators and after a waiting period of 0.5 seconds, a check will
be done, if the gripper sensors reflect the expected gripper position.

Restriction

Note

In order to be able to represent the gripper data on the RWMT user interface
(GUI), it must be declared as a persistent entity (TASK PERS).

Structure
<dataobject of grpdata>

< Label of string>

< Toolcode of num>

< WaitTme of num>

< NoGhostSet of bool>

< NoGhostCheck of bool>

< Valve of grpvalve>

< Outp_Close of string>

< PulseLenClose of num >

< Outp_Open of string>

< PulseLenOpen of num >

< CloseText of string>

< OpenText of string>

< Sensor1 of grpsensor >

< Label of string>

< Inp_Close of string >

< Inp_Open of string >

< Sensor2 of grpsensor >

< Label of string>

< Inp_Close of string >

Continues on next page
272 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.7 grpdata – Configuration of a control element of the gripper
Continued

< Inp_Open of string >

< Sensor3 of grpsensor >

< Label of string>

< Inp_Close of string >

< Inp_Open of string >

< Sensor4 of grpsensor >

< Label of string>

< Inp_Close of string >

< Inp_Open of string >

3HAC044398-001 Revision: C 273
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.7 grpdata – Configuration of a control element of the gripper

Continued

15.1.8 grppart – Part control configuration

Usage
grppart is meant for the configuration of the part controls of a gripper.

Components

Datatype: stringLabel

Name of the part.

Datatype: numToolCode

Gripper coding for which this configuration is valid.

Datatype: grpsignalSensor1

Signal description and signal name of the robot input for the 1st part
sensor

Datatype: grpsignalSensor2

Signal description and signal name of the robot input for the 2nd
part sensor

Datatype: grpsignalSensor3

Signal description and signal name of the robot input for the 3rd
part sensor

Datatype: grpsignalSensor4

Signal description and signal name of the robot input for the 4th part
sensor

Datatype: grpsignalSensor5

Signal description and signal name of the robot input for the 5th part
sensor

Datatype: grpsignalSensor6

Signal description and signal name of the robot input for the 6th part
sensor

Datatype: grpsignalSensor7

Signal description and signal name of the robot input for the 7th part
sensor

Datatype: grpsignalSensor8

Signal description and signal name of the robot input for the 8th part
sensor

Restriction

Note

In order to be able to represent the gripper part data at the RWMT user interface
(GUI), this must be declared as persistent (TASK PERS).

Basic example
TASK PERS grppart gpComponent1:=

[["Component1",13,["Check1","diSensor1"],

["Check2","diSensor2"],["",""],["",""],

["",""],["",""],["",""],["",""]];

Continues on next page
274 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.8 grppart – Part control configuration

Configuration of the part controls for the part component 1 which is gripped with
the gripper with gripper coding 13. The checking is done through two sensors,
which are labeled as Check1 and Check2 and which use the two robot inputs
diSensor1 and diSensor2 for the query.

Structure
<dataobject of grppart>

< Label of string>

< Toolcode of num>

< Sensor1 of grpsignal >

< Label of string>

< SignalName of string>

< Sensor2 of grpsignal >

< Label of string>

< SignalName of string>

< Sensor3 of grpsignal >

< Label of string>

< SignalName of string>

< Sensor4 of grpsignal >

< Label of string>

< SignalName of string>

< Sensor5 of grpsignal >

< Label of string>

< SignalName of string>

< Sensor6 of grpsignal >

< Label of string>

< SignalName of string>

< Sensor7 of grpsignal >

< Label of string>

< SignalName of string>

< Sensor8 of grpsignal >

< Label of string>

< SignalName of string>

3HAC044398-001 Revision: C 275
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.8 grppart – Part control configuration

Continued

15.1.9 grppos – Gripper position

Usage
grpposis used to query the position of the control element (GripCheck) or to set
it (GripSet).

Basic example
GripSet gsOpen,gdGripper1;

The control element of the gripper 1 will be opened.

Pre-defined data

DescriptionSymbolic constantValue

Open control elementgsOpen1

Turn off vacuum (open)gsVacuumOff1

Withdraw control element (actuator)gsBackward1

Close control element (actuator)gsClose0

Turn on vacuum (Close)gsVacuumOn0

Move control element forwardgsForward0

Reset both outputsgsReset-1

Properties
grppos is an alias data type for num and hence inherits its properties.

276 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.9 grppos – Gripper position

15.1.10 grpsensor – Sensor configuration for the control elements of a gripper

Usage
grpsensor is meant for the configuration of the signals for the opened or closed
sensors of a gripper within the data type grpdata (see grpdata – Configuration of
a control element of the gripper on page 271).

Components

Datatype: stringLabel

Symbolic name of the sensor

Datatype: stringInp_Close

Signal name, referred to EIO.CFG, for the Closed sensor.

Datatype: stringInp_Open

Signal name, referred to EIO.CFG, for the Open sensor.

Structure
<dataobject of grpsensor>

< Label of string>

< Inp_Close of string >

< Inp_Open of string >

3HAC044398-001 Revision: C 277
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.10 grpsensor – Sensor configuration for the control elements of a gripper

15.1.11 grpseq – Gripper sequence for actuating several control elements

Usage
grpseq is meant for the sequential actuation of several control elements. The data
type is used by the instruction MT_GripSequence. Maximum six actuators that
are defined by grpdata (see grpdata – Configuration of a control element of the
gripper on page 271) can be used.
Gripper sequences are to be declared as an array of the data type grpseq. The
size of the array may be defined between 1 and 20.

Basic example
TASK PERS grpdata gdY1_T127:=[];

TASK PERS grpdata gdY2_T127:=[];

TASK PERS grpdata gdY3_T127:=[];

TASK PERS grpdata gdY4_T127:=[];

!gripper sequence

const grpseq gsOpen_T127{3}:=

[[gsClose,gaSetAndCheck,"gdY1_T127","","","","","",0],

[gsOpen,gaSetAndCheck,"gdY2_T127","gdY3_T127","", "","","",0],

[gsClose,gaSetAndCheck,"gdY4_T127","","", "","","",0]];

In the sequence for opening the gripper for part 127, the control element Y1 is first
closed, then the control elements Y2 and Y3 are opened and then the control
element Y4 is closed.
A grpaction (see grpaction – Set and check actions in gripper sequences on
page 269) constant defines the specific setting and checking action for each
sequential step. In the first sequential step, the actuators are to be set and then
checked afterwards for the expected condition. In the second step, the actuators
are only set but not checked. In the third step the condition for the the actuator,
no actuator is set but only checked.

Components

Datatype: grpposPosition

The new position of the gripper that is expected by the actuation.

Datatype: grpactionAction

Action, which has to be executed (set and check actions on the
gripper actuators)

Datatype: stringGrp1

Variable name of the actuator 1 (grpdata-declaration name)

Datatype: stringGrp2

Variable name of the actuator 2 (grpdata-declaration name)

Datatype: stringGrp3

Variable name of the actuator 3 (grpdata-declaration name)

Datatype: stringGrp4

Variable name of the actuator 4 (grpdata-declaration name)

Continues on next page
278 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.11 grpseq – Gripper sequence for actuating several control elements

Datatype: stringGrp5

Variable name of the actuator 5 (grpdata-declaration name)

Datatype: stringGrp6

Variable name of the actuator 6 (grpdata-declaration name)

Datatype: numWaitTme

Waiting time after sequence is executed

Structure
<dataobject of grpseq>

< Position of grppos>

< Action of grpaction>

< Grp1 of string >

< Grp2 of string >

< Grp3 of string >

< Grp4 of string >

< Grp5 of string >

< Grp6 of string >

< WaitTme of num >

3HAC044398-001 Revision: C 279
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.11 grpseq – Gripper sequence for actuating several control elements

Continued

15.1.12 grpsignal – Configuration of a gripper signal

Usage
grpsignal is meant for the configuration of a digital input signal within the data
type grppart (see grppart – Part control configuration on page 274).

Components

Datatype: stringLabel

Symbolic name of the sensor

Datatype: stringSignalName

Name of the robot digital input, referred to EIO.CFG.

Structure
<dataobject of grpsignal>

< Label of string>

< SignalName of string>

280 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.12 grpsignal – Configuration of a gripper signal

15.1.13 grpvalve – Valve actuation for the control element of a gripper

Usage
grpvalve is meant for the configuration of the digital signals (outputs) for the
opening or closing of a control element within the data type grpdata (see grpdata
– Configuration of a control element of the gripper on page 271).

Components

Datatype: stringOutp_Close

Physical name of the robot output for closing the control element
(See System parameter EIO.CFG).

Datatype: numPulseLenClose

Pulse length [s] for closing the control element. If the pulse length
is 0, then the output will be set permanently (static valve). If the
pulse length is greater than 0, then the output will be pulsed for the
specified time (pulse valve).

Datatype: stringOutp_Open

Physical name of the robot output for opening the control element
(See System parameter EIO.CFG).

Datatype: numPulseLenOpen

Pulse length for opening the control element. If the pulse length is
0, then the output will be set permanently (static valve). If the pulse
length is greater than 0, then the output will be pulsed for the spe-
cified time (pulse valve).

Datatype: stringCloxeText

Label text for the button for Closing the gripper in the FlexPendant
application RWMT.

Datatype: stringOpenText

Label text for the button for Opening the gripper in the FlexPendant
application RWMT.

Structure
<dataobject of grpvalve>

< Outp_Close of string>

< PulseLenClose of num >

< Outp_Open of string>

< PulseLenOpen of num >

< CloseText of string>

< OpenText of string>

3HAC044398-001 Revision: C 281
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.13 grpvalve – Valve actuation for the control element of a gripper

15.1.14 hoteditdata – Menu declaration for the HotEdit-pre-selection

Usage
hoteditdata is used to select the robot positions in a specific routine for the
Standard HotEdit.

Description
The program module, the routine as well as the robtargets are saved in a menu
entry for a change of position, through the Standard HotEdit, and loaded by selection
through the GUI.
The use of program dependent or type number dependent modules, routines or
positions is supported here through the use of wild cards.

Basic examples
Example 1:

CONST hoteditdata hedIMM_GripPos:=["IMM Gripping Pos",
"station-IMM.png", "", "mv11_12", "p12","",""];

MODULE Movement

PROC mv11_12()

MOVEL p11,…;

MOVEL p12,…;

ENDPROC

ENDMODULE

The grip position p12 in the global routine mv11_12will be displayed in the HotEdit.
Example 2:

CONST hoteditdata hedIMM_GripPos:=["IMM gripping Pos",
"station-IMM.png", "PART_T&", "mv11_12", "p12","",""];

MODULE PART_T10

LOCAL PROC mv11_12()

MOVEL p11,…;

MOVEL p12,…;

ENDPROC

ENDMODULE

The grip position p12 in the local routine of the module mv11_12 in the module
PART_T10 will be displayed in the HotEdit, if the current type number has been
set to 10.
Example 3:

CONST hoteditdata hedIMM_GripPos:=["IMM gripping Pos",
"station-IMM.png", "", "mv11_12_T&", "p12_T&","",""];

MODULE Movement

PROC mv11_12_T10()

MOVEL p11,…;

MOVEL p12_T10,…;

ENDPROC

ENDMODULE

Continues on next page
282 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.14 hoteditdata – Menu declaration for the HotEdit-pre-selection

The grip position p12_T10 in the global routine mv11_12_T10 in the module
Movement will be displayed in the HotEdit, if the current type number has been
set to 10.

Components

Datatype: stringDescription

Descriptive text that will be displayed in the HotEdit selection menu.

Datatype: stringIcon

The name of the 32x32 pixel icon that is to be displayed in front of
the menu entry. To make the background of the icon invisible, it
should be filled with the color Magenta. If the icon is larger than or
smaller than 32x32 pixels, it will be scaled to the required size.
For this, self-made icons must be present either directly in the
HOME: directory or in the SYSTEM: directory.

Datatype: stringModuleName

Name of the module, in which the routine is present along with the
positions that are to be modified.
If program number dependent or type number dependent modules
are used, then, the following wild cards can be used for the sake of
simplicity:

• &: for the part type code (please refer to partdata – Part data
on page 298)

• %: for the part program code (please refer to partdata – Part
data on page 298)

Example:
hoteditdata.ModuleName:= "PART_&"

Module Part_10 is used for the type number 10.

Datatype: stringRoutineName

Name of the routine, in which the positions that are to be modified
are located.
If program number dependent or type number dependent routines
are used, then, the following wild cards can be used for the sake of
simplicity:

• &: for the part type code (please refer to partdata – Part data
on page 298)

• %: for the part program code (please refer to partdata – Part
data on page 298)

Example:
"hoteditdata.Routinename:= "mv10_20_T%"

Routine mv10_20_T10 is used for the program number 10.

Continues on next page
3HAC044398-001 Revision: C 283

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.14 hoteditdata – Menu declaration for the HotEdit-pre-selection

Continued

Datatype: stringPositions1

Names of the positions that are to be changed.
Due to the limited length of 80 characters of a string, 3 strings are
used for specifying the positions.
If several positions are used, then these must be written separated
by a comma (for example, "p10,p20,p30")
If program number dependent or type number dependent positions
are used, then, the following wildcard can be used for the sake of
simplicity:

• &: for the part type code (please refer to partdata – Part data
on page 298)

• %: for the part program code (please refer to partdata – Part
data on page 298

Example:
"hoteditdata. Positions1:= "p10_T%,P11_T%,p20_T%"

The position "p10_T5", "p11_T5" and "p20_T5" will be dis-
played for the program number 5,

Datatype: stringPositions2

Names of the positions that are to be changed, See Positions1.

Datatype: stringPositions3

Names of the positions that are to be changed; See Positions1.

Structure
< Dataobject of hoteditdata>

< Description of string >

< Icon of string >

< ModuleName of string >

< RoutineName of string >

< Positions1 of string >

< Positions2 of string >

< Positions3 of string >

284 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.14 hoteditdata – Menu declaration for the HotEdit-pre-selection
Continued

15.1.15 infodata – Displaying the information in the production window

Usage
Infodata are used to display information in the production data display of the
production windows.

Description
In order to be able to represent data of the type bool, num, dnum, or string in the
production data display, the data field MT_InfoView of the data type infodata

must be used.
For the information to be updated automatically, this must be declared as PERS,
LOCAL PERS or as TASK PERS.
Constants and variables will be read only while starting the GUI and will not be
updated any more after this.
The size of the array MT_InfoView is the result of the number of data that is to
be displayed and is limited only by the available memory space.
If more than 7 additional bits of information are displayed, then arrows will be
displayed in the list, which can be used to scroll through the production data display.

Tip

To reduce the starting time of the GUI, it is advisable to specify the module names
of the data that is to be displayed.

Basic example
PROC MainModule

LOCAL PERS num nUnloadTime:=35;

TASK PERS bool bCutterProtect:=TRUE;

PERS num nCaliperPos:=0:

CONST infodata MT_InfoView{3}:=[

["Unloading Time","nUnloadTime","MainModule",""],

["Cutter Protection","bCutterProtect","MainModule",""],

["Caliper Pos","nCaliperPos","MainModule",""]];

…

ENDMODULE

Display of the values of the persistent entity nUnloadTime, bCutterProtect and
nCaliperPos in the production data display.

Components

Datatype: stringDescription

Text that is displayed in front of the data value as a description.

Datatype: stringVariableName

Name of the data declaration (Variable, persistent entity or constant).

Continues on next page
3HAC044398-001 Revision: C 285

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.15 infodata – Displaying the information in the production window

Datatype: stringModuleName

Name of the task that contains the data declaration.
If the module name is not specified, then the module name is
searched with the help of the name of the variable in the task.

Datatype: stringTaskname

Name of the task that contains the data declaration.
The task name should be specified only if the data declaration is in
another task.

Structure
< Dataobject of infodata>

< Description of string >

< VariableName of string >

< ModuleName of string >

< Taskname of string >

286 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.15 infodata – Displaying the information in the production window
Continued

15.1.16 instset – Execute instruction while change of cell mode of operation

Usage
instset is used while switching the RWMT mode of operation from Production
-> Service, Production -> Without robot or from Without robot -> Production or
from Service-> Production to set the outputs or to assign new values to persistent
entities.
In addition, instset declarations can also be used according to the change of the
robot operation mode (key switch).

Description
For instance in the injection moulding cells, there is the requirement that special
outputs must be set depending on the RWMT mode of operation of the injection
moulding machine, if the operations are to be carried out With or Without robot.
To ensure this, the instruction sets are declared in the robot program, which
contain the data type, the data name as well as the desired value of the persistent
entity or of the signal that is to be set.
This instruction set is executed through a background task, so that the instructions
that need to be executed while switching the RWMT mode of operation can be
executed even during the manual mode of the robot or when the program is stopped.
The instruction sets for the RWMT operation modes are entered in two generally
valid arrays having the names MT_RunWithRobot and MT_RunWithOutRobot.
Each of the arrays can record 15 instruction sets.
Furthermore, it is possible to declare for every station corresponding arrays with
a data field size of 10 elements (for example,
<stationdata.Name>_RunWithRobot or
<stationdata.Name>_RunWithOutRobot)
The arrays which contain the RunWithRobot in the name will be executed as soon
as there is a change to the cell mode of operation Production.
The arrays that contain the RunWithOutRobot in the name will be executed as
soon as the cell mode of operation Production changes to the cell mode of
operation Service or Without robot.
By analogy to the instruction set declarations for the RWMT operation modes,
instruction sets can also be declared for the available robot operation modes
manual and automatic, which are induced by using the key switch of the robot
controller.
In the same way as for the RWMT operation modes, special data declaration names
have to be used for them.
The declaration names MT_OpModeManual and MT_OpModeAuto are used for
general purpose and their arrays can record 15 instruction sets. For station related
instruction sets, the naming must be <stationdata.Name>_OpModeManual and
<stationdata.Name>_OpModeAuto. The data field size must be 10 elements in
this case.
The arrays which contain the OpModeManual in the name will be executed as soon
as the key switch of the robot is set to manual mode.

Continues on next page
3HAC044398-001 Revision: C 287

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.16 instset – Execute instruction while change of cell mode of operation

The arrays that contain the OpModeAuto in the name will be executed as soon as
the key switch of the robot is set to automatic mode and the safety dialog at the
FlexPendant has been confirmed.

Basic example
PERS bool bExample:= FALSE;

TASK PERS num nExample:= 0;

TASK PERS dnum dnExample:= 0;

TASK PERS string stExample:= "";

CONST instset MT_RunWithOutRobot{15}:=[

["DO","doSignalA","1",""],

["DO","doSignalB","1",""],

["BOOL","bExample ","FALSE",""]

["NUM","nExample ","10",""]

["DNUM","dnExample ","500",""]

["STRING","stExample ","Run without Robot",""],

["","","",""],["","","",""],["","","",""],["","","",""],

["","","",""],["","","",""],["","","",""],["","","",""],

["","","",""]];

CONST instset MT_RunWithRobot{15}:=[

["DO","doSignalA","0",""],

["DO","doSignalB","0",""],

["BOOL","bExample ","TRUE",""]

["NUM","nExample ","200",""]

["DNUM","dnExample ","12345",""]

["STRING","stExample ","Run with Robot",""],

["","","",""],["","","",""],["","","",""],["","","",""],

["","","",""],["","","",""],["","","",""],["","","",""],

["","","",""]];

The outputs doSignalA and doSignalBwill be set to "low" if the robot is switched
to the "Production" cell mode and to "high" when switching the robot to “Service
mode” or mode “Without robot”.
Furthermore, the Boolean persistent entity changes from "FALSE" to "TRUE" for
a change to "Production" mode, the numerical persistent entity changes from "10"
to "200", the dnum persistent entity changes from "500" to "12345" and the string
persistent entity changes from Run without Robot to Run with Robot.

Continues on next page
288 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.16 instset – Execute instruction while change of cell mode of operation
Continued

Components

Datatype: stringType

Data type of the data element that is to be modified.
The following data types can be used:

Data typeType

Analog OutputAO

Digital OutputDO

Group OutputGO

Boolean persistent entityBOOL

Numerical persistent entityNUM

Double numerical persistent entityDNUM

String PersistentSTRING

Datatype: stringDataName

Name of the persistent entity or of the signal, for example, "doSig-
nal1".

Datatype: stringValue

Value of the persistent entity or of the signal, for example, "1".

Datatype: stringTaskName

Name of the task that contains the data declaration.
The task name should be specified only if the data declarations is
in another task.

Restriction
Only persistent data declarations can be modified ("PERS" or "TASK PERS").

Structure
< Dataobject of instset>

< Type of string >

< DataName of string >

< Value of string >

< TaskName of string >

3HAC044398-001 Revision: C 289
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.16 instset – Execute instruction while change of cell mode of operation

Continued

15.1.17 menudata – Menu declaration for service routines or set up routines

Usage
menudata is used to define a service routine or set up routine, which can be called
through the service menu or set up menu. Service routines can also be started
through an external program number.

Description
The data type menudata contains all the information for displaying a menu entry
in the set up menu or service menu for calling a service routine.
The menu entries can be defined as service routine or set up routine and will be
displayed depending on the user who has logged in and the Minimum User Level
that has been set.
With the help of the program code that has been specified, it is possible to call the
service routine through an external program number selection (for example, from
a PLC). For this, the program must be present in the cell mode of operation
"Service" and should wait for the program number communication of the PLC.
Positive values (excluding 0) are allowed only as a valid program code for menudata
declarations.
Setup routines can be started simultaneously in several tasks in the case of
MultiMove systems, by specifying the corresponding task in the parameter
RunInTasks.
The setup routines are executed in the manual mode by explicitly setting the
program pointer to the corresponding routine, so that the original position of the
program pointer is lost.
There are two types of service routines, which differ in their manner of working:

• Type I service routine will be executed by the RWMT-Engine instead of a
production program and can also be called through the external program
selection. If the robot program was not running while launching a service
routine, the robot program stops after the service routine is finished. If the
execution of a service routines is allowed only if the robot is located in home
position, the robot program stops after the service routine is finished.

• Type II service routine will be executed only in the manual mode in parallel
with the program pointer, so that the robot program can be continued after
the service routine has ended. “In parallel with the program pointer“ means,
that the program pointer remains on the position, where the production has
been interrupted.

Basic examples

Service routine Type I
CONST menudata mnuGripperChange:=

["Change Gripper","Gripper","station-gripper.png",

"GripperChange","",3.TRUE,1000,1,50];

The GripperChange routine is called in the service menu. The menu will be
displayed only if at least one user has logged in with service permissions. The

Continues on next page
290 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.17 menudata – Menu declaration for service routines or set up routines

menu can be called in the automatic mode of the robot through the GUI or through
the external program number selection (program number "1000"), if the robot is in
the home position or safe position.

Service routine Type II
CONST menudata mnuTC_Unlock:=

["Unlock Tool Changer","Gripper","station-gripper.png",

"TC_Unlock","",255.FALSE,0,2,50];

The "TC_Unlock" routine is called in the service menu. The menu will be displayed
only if at least one user has logged in with service permissions. The menu can be
called in the manual mode of operation of the robot at any desired position.

Setup routine
CONST menudata mnuWObj:=

["Define Workobject","Werkobjekte","WobjBox.gif",

"Setup_Wobj","T_ROB1:T_ROB2",1,FALSE,0,3,150];

The "Setup_Wobj" routine is called through the set up menu. The menu will be
displayed only if at least one user has logged in with programmer permissions.
The set up routine will be called in the Tasks "T_ROB1" and "T_ROB2", if both the
robots are in the home position.

Tip

The declaration of the service routine should be present in every task for this.
All the data except the routine that is to be called and the valid position must be
identical here.

Components

Datatype: stringDescription

Descriptive text that will be displayed in the service menu for selec-
tion. If no description is defined, then the name of the routine that
is to be called will be displayed (ProcName).

Datatype: stringCategory

Category of the menu entry (for example, work objects, applications,
, and so on.) is meant for filtering the menu entries.

Continues on next page
3HAC044398-001 Revision: C 291

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.17 menudata – Menu declaration for service routines or set up routines

Continued

Datatype: stringImage

The name of the 32x32 pixel icon that is to be displayed in front of
the menu entry.
For this, the icon must be present either directly in the "HOME:"
directory or in the "System:" directory.
If no separate image file is specified, then, the following icons will
be represented:

Service routine Type I

Service routine Type II

Setup routine

Tip

To make the background of the icon invisible, it should be filled with
the color "Magenta".

Datatype: stringProcName

Name of the routine which is to be executed as service routine,
without handing over any parameters.
In order to be able to execute routines which are local to modules,
then module name must be specified in front of the name of the
routine, separated from it by a colon (for example, "Module
Name:RoutinenName")

Datatype: stringRunInTasks

Task list of the set up routines that are to be executed simultaneously
in several tasks in the case of a Multi-Move system.

(Only for setup
routines)

Here, the tasks are separated from each other by colons (for ex-
ample, "T_ROB1:T_ROB2")
For this, the same set up routine declaration must be contained in
every task of the robot, that is, the name of the declaration as well
as all the other data must be identical. Only the name of the routine
that is to be called as well as the valid position could be different.

Datatype: numValidPosition

Position(s) in which the robot should be present, in order to be able
to call the service routine or set up routine.

DescriptionValue

Home position (Bit 1)1

Safe position (Bit 2)2

Service position 1 (Bit 3)4

Service position 2 (Bit 4)8

Service position 3 (Bit 5)16

Any position (arbitrary)255

ValidPosition is bit coded, so that several valid positions can be
grouped together (for example, Home position or safe position ->
ValidPosition =3)

Continues on next page
292 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.17 menudata – Menu declaration for service routines or set up routines
Continued

Datatype: boolRunInAutoMode

TRUE, if the service routine is to be executable in the automatic
mode and in the manual mode of the robot.

(Only for service
routines of Type I)

FALSE, if the service routine is to be executable only in the manual
mode of the robot.

Datatype: dnumProgCode

Unique program coding, with which the service routine can be called
from outside (external call) (for example, PLC).

(Only for service
routines of Type I)

Here, only "service routines" of the Type I (MenuType=1) are called,
the "RunInAutoMode" flag will not be considered.

Datatype: numMenuType

Type of menu entry

DescriptionMenu type

Service-Routine Type I
(Execution takes place through the RWMT-
Engine)

1

Service-Routine Type II
(Execution takes place in parallel with the
program pointer)

2

Setup-Routines3

Datatype: numMinUserLevel

Minimum user level, which is necessary for displaying the routine
in the service menu.

Restrictions
A program code may be used only once
The program code should not be identical with that of a processing program.
The size of the icon is 32x32 pixels. Larger images will be modified accordingly,
but should be kept small owing to the limited size of the Flexpendant memory.

Structure
< Data object of menudata>

< Description of string >

< Category of string >

< Image of string >

< ProcName of string >

< RunInTasks of string >

< ValidPosition of num >

< RunInAutoMode of bool >

< ProgCode of dnum >

< MenuType of num >

< MinUserLevel of num >

3HAC044398-001 Revision: C 293
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.17 menudata – Menu declaration for service routines or set up routines

Continued

15.1.18 msgdata – Message declaration

Usage
The data type msgdata is used to define a message that can be displayed through
the instructions like MT_WaitMsgDI (see MT_WaitMsgDI – Wait for input signal
state on page 455), MT_WaitMsgGI (see MT_WaitMsgGI – Wait for a group input
signal on page 459), MT_WaitMsgGI32 (see MT_WaitMsgGI32 – Wait for a 32-Bit
group input signal on page461), MT_ShowMessage (seeMT_ShowMessage – Show
message on the RWMT user interface on page 427), and so on.

Description
Data of the data type msgdata contain an error domain number, an error number,
a title, a message text, an icon, buttons as well as the path to an image.

Components

Datatype: numDomain

Error domain number

Datatype: numNumber

Error number

Datatype: buttondataType

Specifies the buttons that are to be displayed. Only one of the pre-
defined button combinations of the type buttondata may be used.

!Buttons:

CONST buttondata btnNone := -1;

CONST buttondata btnOK := 0;

CONST buttondata btnAbrtRtryIgn := 1;

CONST buttondata btnOKCancel := 2;

CONST buttondata btnRetryCancel := 3;

CONST buttondata btnYesNo := 4;

CONST buttondata btnYesNoCancel := 5;

If the selected type is btnNone, then the message is shown embed-
ded in the graphical user interface, otherwise the standard UI-dialog
is used..

Datatype: stringHeader

The heading of the message window (max. 40 characters).

Datatype: stringText-1

Text row 1, which will be shown on the display. Max. 55 characters.

Datatype: stringText-2

An additional, second row of text, which will be shown on the display.
Max. 55 characters.

Datatype: stringText-3

An additional, third row of text, which will be shown on the display.
Max. 55 characters.

Datatype: stringText-4

An additional, fourth row of text, which will be shown on the display.
Max. 55 characters.

Continues on next page
294 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.18 msgdata – Message declaration

Datatype: stringText-5

An additional, fifth row of text, which will be shown on the display.
Max. 55 characters.

Datatype: icondataIcon

Defines the icon that is to be displayed. Only one of the pre-defined
icons of the type icondata may be used. Please also refer to the
Rapid Reference Manual.
Depending on the selected item, the message is shown as info
(green background), warning (yellow background) oder error (red
background).
By default, no icon will be displayed.

Datatype: stringImage

The name of the user-defined image, which will be shown beside of
the message.
To display your own images, they must be saved in the HOME: dir-
ectory or the SYSTEM: directory of the active system.
It is advisable to save the files in the HOME: directory, so that they
will be saved during a backup and restore procedure.
A hot start is necessary. After this, the FlexPendant will load the
new images.
The image that is displayed can have a breadth of 185 pixels and a
height of 300 pixels. If the image is larger, only a range of 185 x 300
pixels of the image will be displayed, from the top left corner of the
image.
It is not possible to specify a more accurate value for the permitted
size of an image or the number of images that can be loaded on to
the FlexPendant. This depends on the size of other files, which have
been loaded on to the FlexPendant. The program execution will be
continued if an image which has not been loaded on to the FlexPend-
ant is used.

Basic examples
CONST msgdata msgProgNumber:=[6,1,btnOK,"Header",

"Waiting for program number","Signal PLC_gi_Progammnummer", "",
"","", iconWarning,"Happy.jpg"];

MT_WaitMsgGI giProgNumber, NOTEQ, 0, msgProgNumber;

Continues on next page
3HAC044398-001 Revision: C 295

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.18 msgdata – Message declaration

Continued

Display of a text message after a certain time. While displaying a text message,
an additional image, an icon and the button will be displayed, in accordance with
the specifications in the data msgProgNumber.

en1200000785

Structure
< Dataobject of msgdata>

< Domain of num >

< Number of num >

< Type of buttondata >

< Header of string >

< Text1 of string >

< Text2 of string >

< Text3 of string >

< Text4 of string >

< Text5 of string >

< Icon of icondata >

< Image of string >

296 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.18 msgdata – Message declaration
Continued

15.1.19 partcodes – Check codes for a part

Usage
partcodes is used to define the check codes for a part in the partdata (see
partdata – Part data on page 298) declarations.

Description
partcodes is used exclusively through the data type partdata.
The eight check codes (test codes) correspond to the eight check code group
inputs which are set in the system parameters PROC/ MT_PRG_SELECT. (See also
MT Program selection on page 167).

Components

Datatype: dnumCode1

Test code 1

Datatype: dnumCode2

Test code 2

Datatype: dnumCode3

Test code 3

Datatype: dnumCode4

Test code 4

Datatype: dnumCode5

Test code 5

Datatype: dnumCode6

Test code 6

Datatype: dnumCode7

Test code 7

Datatype: dnumCode8

Test code 8

Structure
< Dataobject of partcodes>

< Code1 of dnum > < Code2 of dnum >

< Code3 of dnum > < Code4 of dnum >

< Code5 of dnum > < Code6 of dnum >

< Code7 of dnum > < Code8 of dnum >

3HAC044398-001 Revision: C 297
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.19 partcodes – Check codes for a part

15.1.20 partdata – Part data

Usage
partdata is used to define the data for a part which are required for processing
it.

Description
Every part requires a part declaration, which contains for example, the name, the
processing routine as well as the required coding (program number, gripper code
and a max. of 8 additional check codes (test codes)) for starting the processing of
the part.
The above mentioned codes require positive values (excluding 0), otherwise they
are not considered by RWMT.
The file name can still be specified in an image file, which can be displayed in the
parts view of the GUI.
If the program code does not correspond to the required coding that is to be used
in the robot program, then the parameter "TypeCode" can be used.
Through this, for instance, a part can be called using the program number "12" by
the PLC and the type code "4711" will be used in the robot program for the routines
and positions.
The parameter “AuxCode” is a unique code as the program code and the type code
and allows to address for example, a vision system, which might have different
numbers for part types than a PLC or the robot.
The function MT_GetAuxCode (see MT_GetAuxCode – Reading the auxiliary code
of the current part type on page479)provides the auxiliary code to the user program.
Through the parameter AdvPart, the data name of a data declaration belonging
to a part, and which contains more part specific data, can be specified.
For this, a data type such as partadv, which contains the required data contains
and which creates a declaration of this data type for every part, must be declared.
Example:

RECORD partadv

num Value1;

num Value2;

ENDRECORD

CONST partadv pdvPart_T1:=[10.5];

CONST partdata pdPart_T1:=["Bauteil 1","Part_T1","",TRUE,
1,4,3,1,[0,0,0,0,0,0,0,0],"Part1.GIF",

[1.5,[0,0,0.001],[1,0,0,0],0,0,0],"pdvPart_T1"];

The extended data for the current part is got through the following function
"GetCurrPartAdv":

nValue1:=GetCurrPartAdv().Value1;

Basic example
CONST partdata pdPart_T1:=["Bauteil 1","Part_T1","",

TRUE,1,4,3,-1,[-1,-1,-1,-1,-1,-1,-1,-1],

Continues on next page
298 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.20 partdata – Part data

"Part1.GIF",[1.5,[0,0,0.001],[1,0,0,0],0,0,0],""];

Declaration for the part with program number 1, part type number 4 and auxiliary
number 3.

Components

Data type: stringDescription

Name of the part

Data type: stringRoutine

Name of the processing routine

Data type: stringRunInTasks

RunInTask is used within the GUI to select the part in the specified
tasks for execution.

Data type: boolNoCycles

TRUE, part does not use any program cycles.
FALSE, part uses program cycles.

Data type: dnumProgCode

Program number through which the part is started by the external
part selection

Data type: dnumTypeCode

Type coding that can be used in the robot program.

Data type: dnumAuxCode

Alternative program number to address for example, a vision system
which uses program numbers that are different from the robot’s
program numbers.

Data type: numToolCode

Gripper coding.
If a gripper coding greater than "-1" is used, then the part will be
processed only if the group input for the gripper code has the cor-
responding value.

Data type: partcodesCheckCode

Eight additional check codes (for example, form code).
If a value greater than "-1" is used for a check code, then the part
will be processed only if the corresponding group input for the check
code has the corresponding value.

Data type: stringImage

The file name of the image of the part, having a size of 270x270 pixel
(.JPG,.GIF or.PNG).
For this, the image must be present either directly in the "HOME:"
directory or in the "System:" directory or in the directory.

Data type: loaddataPartLoad

Load of the part. This is used as the default load, if the instructions
MT_GripSet and MT_GripSequence do not provide their own optional
loaddata argument.

Data type: stringAdvPart

Reference (name of the constant or persistent entity) for an extended
part data declaration (partadv).

Continues on next page
3HAC044398-001 Revision: C 299

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.20 partdata – Part data

Continued

Structure
< Dataobject of partdata>

< Description of string >

< Routine of string >

< RunInTasks of string >

< NoCycles of bool >

< ProgCode of dnum >

< TypeCode of dnum >

< AuxCode of dnum >

< ToolCode of num >

< CheckCode of partcodes >

< Image of string >

< PartLoad of loaddata >

< AdvPart of string >

300 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.20 partdata – Part data
Continued

15.1.21 posname – Assigning position description for HomeRun

Usage
posname is used to assign a description to each position number, when using
HomeRun (see HomeRun on page 111).

Description
If triggered, HomeRun shows a user menu, in which the operator finds information
about, where the robot is currently located and where it goes next to move back
to home position.
For this purpose, the menu shows the position numbers and a related descriptive
text.
This information is obtained from a declaration of the type posname.
Conventions:

• This declaration has to be named pnPositions,
• The declaration must be located in any user module, that is, MT_MAIN
• It may not be declared as LOCAL.
• The declaration must be an array which must contain 10 (or a multiple of) 10

elements.

Basic examples
Example:

CONST posname pnPositions{10}:=

[

[100,"Prepos IMM"], [101,"Grip pos IMM"], [102,"Endpos IMM"],

[200,"Prepos conveyor"],[201,"Drop pos conveyor"],

[202,"Endpos conveyor"],[0,""],[0,""],[0,""],[0,""]

]

This information will be shown in the HomeRun menu, if a home run is requested.

Components

Data type: numPosition

Number of the position

Data type: stringName

Description of the position

Structure
< Dataobject of posname >

< Position of num >

< Name of string >

3HAC044398-001 Revision: C 301
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.21 posname – Assigning position description for HomeRun

15.1.22 projectinfo – Project definition for graphical user interface

Usage
projectinfo is used to define a RWMT project.

Description
A “RWMT project” describes, which RAPID modules and signal parameters belong
to an application. A project file is normally to be created through the Machine
Tending PowerPac (see Operating Manual - Machine Tending PowerPac listed in
the section References on page 11), which is also used to download the project
to the robot controller.
The RWMT GUI provides the possibility to load, unload, import and export so called
‘projects’.
To enable the RWMT GUI to do an assignment between program modules and
system modules, being loaded into controller RAM, and a RWMT project, the data
type projectinfo is used.
In a SingleMove application, one (and only one) declaration of the data type
projectinfohas to be implemented in any program module.
In a MultiMove application, one (and only one) declaration of the data type
projectinfo has to be implemented in any program module in task T_ROB1.
To learn more about projects, please refer to the Operating Manual - RobotWare
Machine Tending and the Operating Manual - Machine Tending Power Pack listed
in the section References on page 11.

Basic examples
Example:

CONST projectinfo piProject:=

[

"DCM_Buehler_01",

"Unloading of DCM, cooling, loading of trimming press",

"1.0",

"2012-04-29"

]

This information will be shown in project manager of the RWMT GUI.

Components

Data type: stringTitle

Title of the project. It must not contain empty spaces and should be
a brief name because it is used as the name of a project folder on
the robot controller.

Data type: stringDetails

Description of the project.

Data type: stringVersion

Version of the project.

Continues on next page
302 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.22 projectinfo – Project definition for graphical user interface

Data type: stringDate

Date of project creation or modification.

Structure
< Dataobject of projectinfo>

< Title of string >

< Details of string >

< Version of string >

< Date of string >

3HAC044398-001 Revision: C 303
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.22 projectinfo – Project definition for graphical user interface

Continued

15.1.23 signalpage – Definition of a signal page for the GUI

Usage
signalPage is used to define a tab pane for displaying a max.of 20 signals in the
GUI.

Description
In the signal window of the GUI, up to eight tab panes containing digital inputs and
outputs, group inputs and outputs or analog inputs and outputs can be displayed.
The outputs can be set or reset by the operator in the manual mode of operation.
In the automatic mode, the respective signal should have the corresponding
permissions (Accesslevel in EIO.CFG) so that it can be set by the GUI.
In order to be able to accommodate more than 20 signals on a tab pane, muss
another signal page with the same PageName element must be declared.

Basic examples
Example 1

CONST signalpage spEUROMAP1:=["Euromap 67",1,

"diIMM_MouldOpen","diIMM_PusherRetracted","diIMM_PusherFwd",

"diIMM_Core1Retr","diIMM_ Core1Fwd","diIMM_Scrap",

"diIMM_Automatic","diIMM_MouldClosed","diIMM_MouldInterPos",

"diIMM_Core2_Retr","diIMM_Core2_Fwd","diIMM_Manufact1",

"","","","","","","",""];

Display inputs of the EUROMAP 67 interface of an injection moulding machine.
Example 2

CONST signalpage spEUROMAP2:=["Euromap 67",1,

"doIMM_CloseMould","doIMM_NoIRB","doIMM_OpenMould",

"doIMM_RetrPusher","doIMM_FwdPusher","doIMM_RetrCore1 ",

"doIMM_FwdCore1","doIMM_FwdCore2","doIMM_RetrCore2",

"","","","","","","","","","",""];

Since the EUROMAP 67 interface consists of more than as 20 signals, the outputs
are declared in a second signalpage declaration with identical page name, so that
all the signals appear in one tab pane.

Components

Data type: stringPageName

Name of the tab pane.
If there are several declarations with the same page name, then,
their signals will be displayed in only one page.

Data type: numPageIndex

Index for determining the position of the tab pane in the signal win-
dow. If several pages are found with the same page index, then the
sequence is determined with the help of the page name.

Data type: stringSignal1

Signal name as per the signal configuration (EIO.CFG).

Continues on next page
304 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.23 signalpage – Definition of a signal page for the GUI

Data type: stringSignal2

Signal name as per the signal configuration (EIO.CFG).

Data type: stringSignal3

Signal name as per the signal configuration (EIO.CFG).

Data type: stringSignal4

Signal name as per the signal configuration (EIO.CFG).

Data type: stringSignal5

Signal name as per the signal configuration (EIO.CFG).

Data type: stringSignal6

Signal name as per the signal configuration (EIO.CFG).

Data type: stringSignal7

Signal name as per the signal configuration (EIO.CFG).

Data type: stringSignal8

Signal name as per the signal configuration (EIO.CFG).

Data type: stringSignal9

Signal name as per the signal configuration (EIO.CFG).

Data type: stringSignal10

Signal name as per the signal configuration (EIO.CFG).

Data type: stringSignal11

Signal name as per the signal configuration (EIO.CFG).

Data type: stringSignal12

Signal name as per the signal configuration (EIO.CFG).

Data type: stringSignal13

Signal name as per the signal configuration (EIO.CFG).

Data type: stringSignal14

Signal name as per the signal configuration (EIO.CFG).

Data type: stringSignal15

Signal name as per the signal configuration (EIO.CFG).

Data type: stringSignal16

Signal name as per the signal configuration (EIO.CFG).

Data type: stringSignal17

Signal name as per the signal configuration (EIO.CFG).

Data type: stringSignal18

Signal name as per the signal configuration (EIO.CFG).

Data type: stringSignal19

Signal name as per the signal configuration (EIO.CFG).

Data type: stringSignal20

Signal name as per the signal configuration (EIO.CFG).

Structure
< Dataobject of signalpage>

< PageName of string >

< PageIndex of num >

< Signal1 of string > < Signal2 of string >

< Signal3 of string > < Signal4 of string >

Continues on next page
3HAC044398-001 Revision: C 305

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.23 signalpage – Definition of a signal page for the GUI

Continued

< Signal5 of string > < Signal6 of string >

< Signal7 of string > < Signal8 of string >

< Signal9 of string > < Signal10 of string >

< Signal11 of string > < Signal12 of string >

< Signal13 of string > < Signal14 of string >

< Signal15 of string > < Signal16 of string >

< Signal17 of string > < Signal18 of string >

< Signal19 of string > < Signal20 of string >

306 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.23 signalpage – Definition of a signal page for the GUI
Continued

15.1.24 stationapp – External applications to be started in GUI

Usage
stationapp is used to define external applications, that can be started through
the GUI menu.

Description
Since there might be functions for stations, that are not provided by RWMT but
nevertheless needed by the customer, RWMT provides an interface to start external
FlexPendant FlexPendant applications in a specific station’s sub-view.
These applications can be programmed by the integrator or customer, using the
Flexpendant SDK or ScreenMaker (for more information, see Flexpendant SDK
and ScreenMaker manuals listed in the section References on page 11.
Conventions:
Declarations of type stationapp have to keep some conventions, so that the GUI
can assign the application to the appropriate station view.

• The name must start with a prefix, which is the same as the name element
of the related stationdata declaration.

• The prefix is followed by underline and the postfix “Applications”
• The declarations have to be arrays. The minimum array size is “1” if there is

only one application for a specific station, the maximum array size is “8” for
at least 8 customized applications for a station.

• The entries in the declarations are case sensitive.

Basic example
Assuming, there are 3 different applications, belonging to the station IMM (Injection
Moulding Machine):
Related station data is:

LOCAL PERS stationdata IMM_Station:=

[

"IMM","SGM","Machine to build plastic parts",

"station-IMM.png","IMM_sdiEn_OPMode",

"IMM_sdiMouldClosed","","",TRUE,FALSE,1,1

];

3 applications to be assigned to the IMM station:
LOCAL CONST stationapp IMM_Applications{3}:=

[

["Prog 1","","TPSViewMyApp1.dll","MyApp1","MainScreen"],

["Prog 2","","TPSViewMyApp2.dll","MyApp2","Page1"],

["Prog 3","","TPSViewMyApp3.dll","MyApp3","Frogpage"]

];

We have 3 different ScreenMaker apps that can be started. They will get the entries
“Prog1”, “Prog 2” and “Prog 3” in the RWMT GUI inside the station view of the IMM
station.

Continues on next page
3HAC044398-001 Revision: C 307

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.24 stationapp – External applications to be started in GUI

The namespace (= project name: “MyApp1”, “MyApp2”, “MyApp3”) of each
application can be retrieved from the project view of ScreenMaker, as well as the
screen of each project that shall be shown (“MainScreen”, ”Page1”, “Frogpage”).
Related project views in ScreenMaker for this example:

en1200000786

If a FlexPendant application shall be integrated, then the namespace (project name)
and the screen of the project to be called can be retrieved directely from the code
as shown in the example below, where the namespace is “TpsViewExample” and
the screen to be shown is “ViewSettings”.
Example:

namespace TpsViewExample

{

public class ViewSettings : TpsForm, ITpsViewActivation

{

…

The following view is the result of the declaration of the example above:

en1300000153

Continues on next page
308 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.24 stationapp – External applications to be started in GUI
Continued

Limitations and characteristics
• In the ScreenMaker view of RobotStudio the property “ReuseScreenInstance”

of the screen which is to be opened, must be set to TRUE.

en1300000265

• If there is just one station application for a specific station, its name,
respectively its icon will be shown directely in the menu bar in the GUI station
view.

• To be able to run an embedded applications on a virtual controller, the
application files (DLL’s) must be located in the “Home” or “System” directory.
At the real controller there a no limitations.

• The embedded applictions should have a button which closes the view,
otherwise, there is no way to close the application.

• (FP-SDK): The app should use error handling, so that each error will be
handled by the application itself.

• (FP-SDK): The constructor of the application should be the standard
constructor which has no parameters. Each application must create the
required data by itself.

• (FP-SDK): When closing the application, all used resources must be released
by means of the “Dispose” method, so that no memory leaks appear.

• (FP-SDK): The Interface “ITpsViewActivation“ should be implemented, so
that the methods “Activate” and “Deactivate” will be called if the control goes
from the passive state to the active state, i.e. becomes visible in the client
view. Normally, this is where subscriptions to controller events are set up.

• (FP-SDK): Only “TpsForms” can be used.

Components

Data type: stringMenuName

The name of the application that appears in the station menu.

Data type: stringImage

The image of the application that appears in the station menu.

Data type: stringDLLname

Name of the DLL to be launched.

Continues on next page
3HAC044398-001 Revision: C 309

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.24 stationapp – External applications to be started in GUI

Continued

Data type: stringNameSpace

Namespace (project name) of the application.

Data type: stringClass

View of the application that shall be started.

Structure
< Dataobject of stationapp >

< MenuName of string >

< Image of string >

< DLLname of string >

< NameSpace of string >

< Class of string >

310 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.24 stationapp – External applications to be started in GUI
Continued

15.1.25 stationdata – Definition of a station

Usage
stationdata is used to display a station in the GUI with all the status information.

Description
The station data contain the station name, the station image as well as the signal
definitions for the states "Ready", "Busy", "Error" and "Station deselected".
This data is used for visualizing the station in the production view.
In the robot program, this data is used to display the active station in the GUI (see
the instruction MT_SetActiveStation – Set station symbol to "active" on page 422)
as well as to check if the station has been selected or deselected (see function
MT_StationIsEnabled – Checking station pre-selection for production on page499).

Properties
Station declarations must be declared as PERS, so that these can be modified by
the GUI.

Basic example
PERS stationdata sdIMM:=

["IMM","","Injection Moulding machine",

"station-IMM.png", "diIMM_Automatic","*diIMM_MouldOpen",
"","",TRUE,FALSE,2,1];

Station declaration for an injection moulding machine that cannot be deselected,
and the signals for the "Ready" and "Busy" status.

Components

Data type: stringName

Name of the station is used as a prefix for the station variables and
station signal definition. It is mandatory to use a prefix.
Maximum length: 8 characters

Data type: stringLabel

Label text of the station symbol in the production window. If the text
for the label is blank, then the Name of the station will be displayed.
The station label can be used to display the label in the GUI in an-
other language, while the name of the station remains the same.
Maximum length: 10 characters

Data type: stringDescription

Description of the station.

Data type: stringImage

File name of the station symbol of the type ".GIF", ".JPG" or ".PNG".
Own station symbols must be contained in the directory "HOME:",
"SYSTEM:".

Continues on next page
3HAC044398-001 Revision: C 311

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.25 stationdata – Definition of a station

Data type: stringReadyState

Signal definition for the station status Ready. This component has
the lowest notification priority among the components ReadyState,
BusyState, and ErrorState.
For the definition of a status message, digital inputs and outputs,
as well as Boolean persistent entities can be used.
To link several signals for a status message, the following notation
must be used:

Invert the signal or the Boolean persistent en-
tity

*

AND connection&

OR connection!

The restriction to 80 characters for a string should be adhered to
while selecting the name of the signal, that is, the longer the names
of the signals, the fewer the number of signals that can be joined
together.

Note

If a blank string is used for the "ReadyState", then, this will be inter-
preted as "Station is ready".
Example:
Station.ReadyState:="diIMM_Automatic &
diIMM_MouldOpen"

Data type: stringBusyState

Signal definition for the station status Busy (See ReadyState). This
component has the medium notification priority among the compon-
ents ReadyState, BusyState, and ErrorState.

Note

If a blank string is used for the BusyState then, this status will not
be considered in the evaluation.

Data type: stringErrorState

Signal definition for the station status Error (See ReadyState). This
component has the highest notification priority among the compon-
ents ReadyState, BusyState, and ErrorState.

Note

If a blank string is used for the ErrorState then, his status will not
be considered in the evaluation.

Data type: stringExtEnable

Name of the digital inputs or output through which the station is
selected or deselected. Here, the "high" state of the signal means
"Station selected" and the "low" state means "Station deselected".
If no signal name is defined, then the station is selected or
deselected through the GUI.
To invert the function of the signal, the characters "*" should be
added before the name of the signal.
Example:Station.ExtEnable:="*diWithoutMachine";

Data type: boolEnabled

Station has been selected (TRUE) or deselected (FALSE).

Continues on next page
312 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.25 stationdata – Definition of a station
Continued

Data type: boolAllowDisable

The selection or deselection of the station through the GUI is allowed
(TRUE) or not allowed (FALSE).
If a signal is used for selecting or deselecting the station (See Ex-
tEnable), then this parameter will be ignored and the station selection
cannot be modified through the GUI.

Data type: numColumn

Column of the station symbol in the production window (Permitted
values: 1-5)

Data type: numRow

Row of the station symbol in the production window (Permitted val-
ues: 1-3)

Structure
< Dataobject of stationdata >

< Name of string >

< Label of string >

< Description of string >

< Image of string >

< ReadyState of string >

< BusyState of string >

< ErrorState of string >

< ExtEnable of string >

< Enabled of bool >

< AllowDisable of bool >

< Column of num >

< Row of num >

3HAC044398-001 Revision: C 313
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.25 stationdata – Definition of a station

Continued

15.1.26 stationsignal – Allocation of station signals to alias names

Usage
stationsignal is used to assign a station signal (signaldi, signaldo,
signalgi, signalgo, signalai or signalao) to an alias name, which is used
in a station module.

Description
Several stations, which differ in their function only in terms of the signals used,
can exist in a robot cell (for example, loading of several conveyor belts)
In order to be able to create a station module as a generally applicable template,
the station signals are accessed within the robot program through alias names.
The allocation of the signals of the respective station to the alias names in the
program module is done through the MT_ALIASIO instruction (for more details,
see MT_AliasIO – Connecting of alias signals on page 321).
In order that this allocation can take place in an automated manner in the robot
program, and so that even the GUI can access the station status signals, this signal
allocation takes place in a station specific manner through an array of the data
type stationsignal.
This data type provides an additional description to clarify the meaning of the
signal. This is used, when editing a project in the MachineTending Power Pack.

Basic examples
Example 1

MODULE CNV1

!Digital signals

LOCAL VAR signaldi adiReadyToLoad;

LOCAL VAR signaldo adoIRBOutOfArea;

LOCAL VAR signaldo adoStartCNV;

!IO mappings for signals / alias signals

LOCAL CONST stationsignal CNV1_Signals{3}:=[

["Conveyor loading release","diLoadCNV",

"adiReadyToLoad"],

["Robot outside conveyor","doIRBOutOfCNV1",

"adoIRBOutOfArea"],

["Start conveyor","doCNV_Start",adoStartCNV"]];

Allocation of the signals of the first conveyor belt.
The robot itself also represents a station and can provide a signal page. The name
of the respective declaration must start with the prefix Robot_ as shown in the
following example:
Example 2

LOCAL CONST stationsignal Robot_Signals{4}:=

[

["Request motors on","diHR_MotorOn",""],

Continues on next page
314 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.26 stationsignal – Allocation of station signals to alias names

["Request start main","diHR_StartMain",""],

["Status program running","doHR_CycleOn",""],

["Status motors are switched on","doHR_MotorOn",""]

Assignment of some station-independent signals to the robot.

Components

Data type: stringDescription

Description of the signal’s purpose

Data type: stringSignalname

The signal name from the E/A-configuration

Data type: stringAliasName

The variable name of the signal that has been declared in the RAPID-
program.

Structure
< Dataobject of station signal >

< Description of string >

< Signalname of string >

< AliasName of string >

The GUI shows the new signal description within the station signal view. If this
description is empty the GUI uses the signal label in the EIO.CFG.

3HAC044398-001 Revision: C 315
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.26 stationsignal – Allocation of station signals to alias names

Continued

15.1.27 stationvariable – Display the data declarations of a station

Usage
stationvariable is used to display the data declarations of the type bool, num,
dnum or string (no arrays allowed) in a station data page of the GUI or to modify
their values.

Description
Station specific data declarations (variables or persistent entities) are displayed
in the station view and can be modified depending on the parameterization,
constants can only be displayed.
In opposite to variable entities, the persistent entities are updated automatically.
In order to be able to modify the values of data declarations, the user should have
logged in to the controls with the user permission "MT_VAR_WRITE" and the
corresponding "MinUserLevel".
In order to be able to modify the values by using the "Reset" button, the user should
have logged in to the controls with the user permission "MT_VAR_RESET".

Basic examples
Example 1

MODULE IMM

LOCAL PERS num nIMM_UnloadTime:=0;

LOCAL PERS bool bIMM_WithCorePullers:=FALSE;

LOCAL PERS num nIMM_WaitTime:=5;

TASK PERS num nIMM_PartCounter:=0;

CONST stationvariable IMM_VARIABLES{4}:=[

["Unloading time","nIMM_UnloadTime","IMM","",0,0,FALSE,

FALSE,FALSE,0,0],

["With Core Pullers","bIMM_WithCorePullers","IMM","",0,0,

TRUE,FALSE,FALSE,0,100],

["Waiting Time","nIMM_WaitTime","IMM","",0,20,

TRUE,TRUE,FALSE,0,10],

["Part Counter","nIMM_PartCounter","IMM","",0,0,

FALSE,TRUE,TRUE,0,10]];

ENDMODULE

In the station "IMM", four data declarations are displayed as follows:
The numerical persistent entity nIMM_UnloadTime will be displayed, but cannot
be modified.
The Boolean persistent entity bIMM_WithCorePullers will be displayed as a
selection field and can be modified by users who have the MinUserlevel of at
least 100 in the manual mode of the robot.

Continues on next page
316 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.27 stationvariable – Display the data declarations of a station

The numerical persistent entity nIMM_WaitTime can be modified in the automatic
and manual modes of operation of the robot in the range between 0 and 20 by
users having the MinUserlevel of at least 10.
The numerical persistent entity nIMM_PartCounter can be set in the automatic
and manual modes of operation of the robot with the "Reset" button to the value
0 if the user has the MinUserlevel of at least 10.
Since the robot itself also represents a station, it can provide variable pages. The
name of the respective declaration must start with the prefix Robot_, as shown in
the following example:
Example 2

LOCAL CONST stationvariable Robot_Variables1{4}:=[

["Request-No. <Nodata>","nNoDataReq","","T_ROB1",

0,99999,TRUE,FALSE,FALSE,0,1],

["Request-No. <Type>","nTypeReq","","T_ROB1",

0,99999,TRUE,FALSE,FALSE,0,1],

["Request-No. <Count of parts>","nCntPartsReq","","T_ROB1",

0,99999,TRUE,FALSE,FALSE,0,1],

["Request-No. <Dist. of parts>","nDisPartsReq","","T_ROB1",

0,99999,TRUE,FALSE,FALSE,0,1]];

Components

Data type: stringDescription

Descriptive text that will be displayed in the GUI.

Data type: stringVariableName

Name of the variable, persistent entity or constant

Data type: stringModuleName

Name of the module in which the VariableName has been declared.
If no module name has been specified, then the data declaration
will be searched in the specified task.

Data type: stringTaskName

Name of the task in which the VariableName has been declared.
If no task name is specified, then the task name that is contained in
the stationvariable declaration will be used.

Data type: dnumMinValue

Lower limit for the "num" or "dnum" data declaration

Data type: dnumMaxValue

Upper limit for the "num" or "dnum" data declaration.

Tip

If MinValue and MaxValue are identical (for example, "0", then no
limitation is used.

Continues on next page
3HAC044398-001 Revision: C 317

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.27 stationvariable – Display the data declarations of a station

Continued

Data type: boolEditable

TRUE, if the value of the data declaration can be changed in the
GUI.
FALSE, if the value of the data declaration is meant only for display
in the GUI.

CAUTION

Constants cannot be edited

Data type: boolChangeInAuto

TRUE, if the value of the data declaration can be changed in the GUI
in the automatic mode.
FALSE, if the value of the data declaration can be changed only in
the manual mode in the GUI.

Data type: boolResetButton

TRUE, if a "Reset" button is to be displayed in the GUI, using which
the "num" or "dnum"-data declaration can be set to the previously
set value.
FALSE, if no "Reset" button is to be used.

Data type: dnumResetValue

Value that is to be assigned on activating the "Reset" button to the
"num" or "dnum"-data declaration.

Data type: numMinUserLevel

Minimum user level that is necessary in order to be able to change
the data declaration. If the user permissions are not enough, then
only the value of the data declaration will be displayed.

Structure
< Dataobject of stationvariable >

< Description of string >

< VariableName of string >

< ModuleName of string >

< Taskname of string >

< MinValue of dnum >

< MaxValue of dnum >

< Editable of bool >

< ChangeInAuto of bool >

< ResetButton of bool >

< ResetValue of dnum >

< MinUserLevel of num >

318 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.27 stationvariable – Display the data declarations of a station
Continued

15.1.28 userbutton – User button on the Touchscreen

Usage
The data type userbutton is used for assigning separate texts to the function
keys in a dialog box, which is displayed with MT_UIMessage (see MT_UIMessage
– Message display based on UIMessageBox on page 451).

Basic examples
Const userbutton btntest:=["Continue”,"","","","Wait"];

MT_UIMessage msgProgTestUserBtn\BtnArray:=btntest;

Display of a text message with the function keys "Continue" and "Wait".

en1200000788

Structure
< Dataobject of userbutton>

< Button1 of string >

< Button2 of string >

< Button3 of string >

< Button4 of string >

< Button5 of string >

3HAC044398-001 Revision: C 319
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.28 userbutton – User button on the Touchscreen

15.1.29 versiondata – Version data of the application module

Usage
versiondata is used to capture the version information of the program modules
or system modules of the applications.

Description
The version information of the applications as well as of the program modules and
system modules are saved in data declarations, so that these can be called easily.
The version data must be modified in the event of changes to the modules.

Basic example
CONST versiondata vdMyModule:=["MY_MODULE","1.0","2012-05-03"];

The module MY_MODULE is located in the Version "1.0" dated "2012-05-03" in the
robot controller.

Components

Data type: stringModuleName

Name of the RAPID-Module (e.g: "MY_MODULE")

Data type: stringVersion

Serial version number of the module (for example, "1.1")

Data type: stringDate

Date of change (for example, "2012-05-03").

Structure
< Dataobject of versiondata>

< ModuleName of string >

< Version of string >

< Date of string >

320 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.1.29 versiondata – Version data of the application module

15.2 Instructions

15.2.1 MT_AliasIO – Connecting of alias signals

Usage
MT_AliasIO connects all alias signals, that are inside a stationsignal (see
stationsignal – Allocation of station signals to alias names on page314) declaration
to the appropriate physical signals that are also part of this declaration.

Basic Example
MODULE CNV1

!Digital signals

LOCAL VAR signaldi adiReadyToLoad;

LOCAL VAR signaldo adoIRBOutOfArea;

LOCAL VAR signaldo adoStartCNV;

!IO mappings for signals / alias signals

LOCAL CONST stationsignal CNV1_Signals{3}:=[

[”CNV1 loading release”,"diLoadCNV","adiReadyToLoad"],

[”Robot out of CNV1”"doIRBOutOfCNV1","adoIRBOutOfArea"],

[”Start conveyor CNV1”,"doCNV_Start",adoStartCNV"]];

…

LOCAL PROC Init()

!Connect alias signals to their physical representations.

MT_AliasIO CNV1_Signals\ModuleName:=CNV1;

ENDPROC

…

ENDMODULE

Program Execution
MT_AliasIO has to be called with the desired stationsignal declaration before
the depending alias signals can be used in the robot program.

Arguments
MT_AliasIO iomaplist \ModuleName

iomaplist Data type: stationsignal

List with alias signals and their physical representations.
ModuleName Data type: string

Name of the module, which contains the stationsignal declaration.

Syntax
MT_AliasIO

[iomaplist ’:=’] < expression (IN) of stationsignal >

[’\’ ModuleName ’:=’ < expression (IN) of string >] ’;’

3HAC044398-001 Revision: C 321
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.1 MT_AliasIO – Connecting of alias signals

15.2.2 MT_ChangeTool – Changing the current tool

Usage
The procedure MT_ChangeTool is used, if the part does not fit the gripper, which
is mounted on the robot, after a program number has been passed.
Using the handed over gripper code, a manual or automatic tool change can be
executed.
This routine can be used by the application programmer to change a wrong tool
by the appropriate one.
The routine has to be created by the application programmer and has to be filled
with reasonable code for gripper changing actions.

Basic example
!Part type 1

CONST partdata pdPart_T1:=

["Part type 1"," Production ","", TRUE, 1,-1,-1,3,

[-1,-1,-1,-1,-1,-1,-1,-1], "Part1.GIF",

[1.5,[0,0,0.001],[1,0,0,0],0,0,0],"pdvPart_T1"];

PROC MT_ChangeTool(

VAR signalgi CurrToolCode,

num ReqToolCode)

!Undock the current tool

UndockCurrentTool;

!Dock the required tool

DockReqTool ReqToolCode;

ENDPROC

In the routine MT_ChangeTool first the current tool is undocked and then the
required one is docked.

Program run
Before calling the production routine for the selected part, RWMT will check if a
tool code has been assigned to this and if this matches with the current tool code.
If this is not the case, then the routine MT_ChangeTool is called, which will offer
the system programmer the possibility to switch to the correct tool.
After this, RWMT once again checks the current tool. If this is still not the same as
the one required for the production, then an error message is output.

Syntax
MT_ChangeTool

[CurrToolCode ’:=’] < expression (VAR) of signalgi > ’,’

[ReqToolCode’:=’] < expression (IN) of num > ’;’

322 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.2 MT_ChangeTool – Changing the current tool

15.2.3 MT_ClearMessage – Delete message on the RWMT user interface

Usage
With the instruction MT_ClearMessage, a message that has been displayed on
the RWMT user interface with the help of MT_ShowMessage can be deleted.
The instruction MT_ShowMessage is also available for background tasks.

Basic example
const msgdata msgLoadMachine:=[30,1,0,"No loading release from

machine","There is no loading release given","by the
machine.","","","",1,""];

!Show message that the machine is not ready for loading

MT_ShowMessage msgLoadMachine;

…

…

!Delete message

MT_ClearMessage;

The program will output on the RWMT user interface the message to the effect that
the machine is not ready for loading.

en1300000154

The message will be deleted by executing the MT_ClearMessage instruction.

Program execution
By using the instruction MT_ShowMessage, a message will be displayed on the
RWMT user interface until a new message is output, or the message will be deleted
again with the help of the instruction MT_ClearMessage.

Syntax
MT_ClearMessage ’;’

More information

SeeInformation about

msgdata – Message declaration on page 294Data type Msgdata

MT_ShowMessage – Show message on the RW-
MT user interface on page 427

Displaying a message on the RWMT user
interface

3HAC044398-001 Revision: C 323
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.3 MT_ClearMessage – Delete message on the RWMT user interface

15.2.4 MT_ContHomeRun – Continue a movement routine

Usage
MT_ContHomeRun is used to be able to automatically continue a movement from
an intermediate position within the "MT_HomeRun" routine.
Using the instruction outside the "MT_HomeRun" routine is not permitted!

Basic example
PROC MT_HomeRun(num Position)

TEST Position

CASE 10:

mv10_999

CASE ...

...

DEFAULT:

MT_ContHomeRun Position;

ENDTEST

ENDPROC

An arbitrarily started movement, which is identified by a four to six-digit path
designation, is continued automatically.

Arguments
MT_ContHomeRun Position [\ModName] [\Prefix] [\Index] [|DIndex]

[\NoAutoBackw] [\ERR]

Data type: numPosition

Position or path designation from which the movement routine to
be selected is determined.

Data type: numModName

Name of the module where the required movement routines are
located. This is only needed if the movement routines are declared
as LOCAL.

Data type: string\Prefix

Type prefix. Only necessary for type-depending movement routines
and only if the standard type prefix “T” is not used. Example of a
type related declaration name: mv10_30_T137, if the prefix is “T”
and the part type number of the current partdata declaration is 137

Data type: num[\Index]

Index to select movement routines type-dependently. The index is
appended to the routine name with an underscore, using the
standard type prefix or the explicitly specified prefix. Only one of
the parameters \Index or \DIndex may be used.

Data type: dnum[\DIndex]

Index to select movement routines type-dependently. The index is
appended to the routine name with an underscore, using the
standard type prefix or the explicitly specified prefix. Only one of
the parameters \Index or \DIndex may be used.

Continues on next page
324 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.4 MT_ContHomeRun – Continue a movement routine

Data type: switch[\NoAutoBackw]

If this switch is not set and the required movement routine does not
exist, it is checked whether the movement routine exists in the op-
posite direction. Should this be the case, then this movement routine
is executed backwards. If this movement routine does not exist
either, then an error message is output.

Data type: bool[\ERR]

A variable that is set to TRUE if no movement routine for continuing
the movement was found.
If this optional variable is omitted, an error message is output.

Program execution
In order to obtain the path designation, the last two digits are taken from the six
to eight-digit current intermediate position number and passed to the MT_HomeRun
routine.
This four to six-digit path designation is passed to the MT_ContHomeRun

instruction, which uses it to determine the name of the required movement routine.
Example:
Position = 1020 (Movement routine "mv10_20"

Type index
If an index for type-dependent routines is transferred as optional argument (\Index),
then all movement routines with this index are called up, paying attention to the
standard type prefix.
Example:

TEST Position

CASE 10:

mv10_999;

DEFAULT:

MT_ContHomeRun Position\Index:=nTypeNo;

ENDTEST

If no index for type-dependent routines is transferred as optional argument
(\Index), then all movement routines with the type index of the current part type
(see partdata – Part data on page298) are called up, paying attention to the standard
type prefix.
If the position number contains the value 1020 and the variable nTypeNo (index)
contains the value 5, the routine "mv10_20_5" is called. If the routine "mv10_20_5"
does not exist, "mv10_20" is called automatically.
If a type prefix has been defined in the system parameters (for example, "T"), all
routines with a "T" in front of the index are called up (for example, "mv10_20_T5").
Movement routines may exist either only with index or only without index (for
example, "mv10_20" or "mv10_20_T1").

Type prefix
The \Prefix parameter is used if movement routines with different type prefixes are
used in a program (for example, "T" for general and "G" for gripper-dependent
movement routines).

Continues on next page
3HAC044398-001 Revision: C 325

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.4 MT_ContHomeRun – Continue a movement routine

Continued

Proceed as follows in order to call up the movement routine with the required type
prefix with MT_ContHomeRun:
The generally valid type prefix is defined in the system parameters.
An attempt is made to call up the movement routine with the standard type prefix
by using the \ERR error variables.
If no movement routine is found, the error variable is set to TRUE and then
MT_ContHomeRun is called up again with the alternative type prefix.
Example:

PROC MT_HomeRun()

VAR bool bError;

TEST Position

CASE 10:

mv10_999;

DEFAULT:

!Call up routines with standard prefix and

!current type number

MT_ContHomeRun Position\Index:=nTypeNo\ERR:=bError;

!If no movement routine is found,

!use alternative type prefix

IF bError THEN

!If no movement routine is found,

!an error message is issued

MT_ContHomeRun Position\Prefix:=”G”\Index:=nGripCode;

ENDTEST

ENDPROC

Type module
By default, the standard module name of the system parameters is used together
with the standard type prefix (see also chapter MT Part settings on page 172).
Example for the module name, if the current part type is 3:
In order to be able to use module-local movement routines, the module name can
be passed to MT_ContHomeRun as an optional parameter.
Example:

PROC MT_HOMERUN(num Position)

TEST Position

…

DEFAULT:

MT_ContHomeRun Position \ModName:="PROG_"+ValToStr(nTypeNo);

ENDTEST

ENDPROC

MODULE PROG_1

LOCAL PROC mv10_20()

…

ENDPROC

ENDMODULE

Continues on next page
326 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.4 MT_ContHomeRun – Continue a movement routine
Continued

Automatic backwards processing
If movements are to be continued automatically and the required movement routine
is only available in the opposite direction, the optional argument \NoAutoBackw
should not be used.
As a result, the routine to the opposite direction is executed backwards.
If the position number contains 2010 and only the routine “mv10_20” exists, then
the routine “mv10_20” is performed starting with the last position (20) backwards
to the first position (10) (see also MT_MoveRoutine – Execute a movement routine
at HomeRun on page 403).

Note

Here it must be noted that only HomeRun-specific movement instructions (for
example, MT_MoveL, MT_TriggL) may be in this movement routine, since the
robot may otherwise collide with the peripherals.

Movement continuation checking order
In order for all module-local and globally declared movement routines to be taken
into consideration by the MT_ContHomeRun instruction, the following calling order
is used in the absence of a movement routine, depending on the parameters that
are used:

Routine

Local movement routine with index (forwards)

Local movement routine without index (forwards)

Local movement routine with index (backwards)

Local movement routine without index (backwards)

Global movement routine with index (forwards)

Global movement routine without index (forwards)

Global movement routine with index (backwards)

Global movement routine without index (backwards)

Syntax
MT_ContHomeRun

[Position ’:=’] < expression (IN) of num> ’,’

[’\’ ModName ’:=’ < expression (IN) of string >]

[’\’ Prefix ’:=’ < expression (IN) of string >]

[’\’ Index ’:=’ < expression (IN) of num >]

[’\’ DIndex ’:=’ < expression (IN) of dnum >]

[’\’ NoAutoBackw]

[’\’ ERR ’:=’ < expression (INOUT) of bool >]’;’

Other information

SeeInformation about

MT_HomeRun – HomeRun Strategy on page 371HomeRun strategy

Continues on next page
3HAC044398-001 Revision: C 327

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.4 MT_ContHomeRun – Continue a movement routine

Continued

SeeInformation about

MT_MoveRoutine – Execute a movement routine
at HomeRun on page 403

Backwards processing of a movement
routine

Strategy for automatic movement into the home
position on page 140

Programming the HomeRun strategy

328 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.4 MT_ContHomeRun – Continue a movement routine
Continued

15.2.5 MT_CSSDeactMoveL – Linear movement and cartesian softservo disabling

Usage
CSSDeactMoveL is used to move the tool center point (TCP) linearly to a given
stop point destination while shifting the robot back to stiff control. Any force offset
applied by CSSForceOffsetAct is also deactivated.
When the robot reaches the destination position, the numeric value that is passed
is saved as the current position.
This instruction can only be used in the Main task T_ROB1 or in motion tasks in
the case of a MultiMove system.
The instruction basically corresponds to a CSSDeactMoveL with some additions.

Basic example
Position No. 11:
MT_CSSDeactMoveL 11, p11, v200, tGripper;

The TCP of the tGripper tool moves linearly at speed v200 to a stop point, which
is position p11. When the position is reached, "11" is stored as the current position.
Intermediate position of movement from 10 to 11:
MT_CSSDeactMoveL 101101,* ,vmax, tGripper;

The TCP of the tGripper tool moves linearly to the position programmed in the
instruction (marked with an *) and then saves “111001” as current position.

Arguments
MT_CSSDeactMoveL ActPos ToPoint speed Tool [\Wobj]

Data type: dnumActPos

Contains the position number of the position to be moved to.

Data type: robtargetToPoint

The destination point of the robot and external axes. It is defined as
a named position or stored directly in the instruction (marked with
an * in the instruction).

Data type: speeddataspeed

The speed programmed for the movement. The speed data define
the velocity of the TCP, of the tool reorientation and of external axes.
The TCP speed allowed for CSSDeactMoveL is limited to 500 mm/s

Data type: tooldataTool

The tool in use when the robot moves. The tool centre point is moved
to the specified destination point.

Data type: wobjdata[\Wobj]

The work object (tool coordinate system) to which the robot position
in the instruction is related. This argument can be omitted. In this
case the position relates to the world coordinate system.

Continues on next page
3HAC044398-001 Revision: C 329

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.5 MT_CSSDeactMoveL – Linear movement and cartesian softservo disabling

Program execution
After reaching the programmed position, the transferred position number is saved
as current robot position.
If the robot is moved to the home position using the HomeRun, the position
number-dependent movement routine is called up by the "MT_HomeRun" routine,
and the first position to be moved to (start position) is searched for, i.e. no
movement takes place until the saved robot position is identical with the position
number in the movement instruction.
Since the “linear” or “axis-related” movement mode is saved in every movement
command, it is assured that the movement to the start position is performed with
the same movement mode as was used previously.
The stiffness of the robot is gradually increased during the movement. When the
stop point is reached the robot will be stiff.

Limitations
There are the following limitations:

• Deactivation can only be done in stop points.
• The programmed TCP speed is not allowed to exceed 500 mm/s.
• Only allowed in a motion controlling task.
• When executing this instruction in the backward direction, only the movement

will be executed while the stiffness of the robot will not be influenced.

Syntax
MT_CSSDeactMoveL

[ActPos ’:=’] < expression (IN) of dnum> ’,’

[ToPoint ’:=’] < expression (IN) of robtarget > ’,’

[Speed ’:=’] < expression (IN) of speeddata > ’,’

[Tool ’:=’] < persistent (PERS) of tooldata >

[’\’WObj ’:=’ < persistent (PERS) of wobjdata >] ’;’

Other information

SeeInformation about

Applicationmanual SoftMove listed in the section
References on page 11.

CSSDeactMoveL – Linear robot move-
ment.

330 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.5 MT_CSSDeactMoveL – Linear movement and cartesian softservo disabling
Continued

15.2.6 MT_EndOfCycleAck – Acknowledge the request "Halt after end of cycle"

Usage
MT_EndOfCycleAck is used to acknowledge a "Halt after end of cycle" request.
Here the request can be triggered by a digital input signal or even at the RWMT
user interface.

Basic example
PROC Production()

!If halt after end of cycle is requested

IF MT_ EndOfCycleReq() THEN

!empty the cell

RunOutCycle;

!Notification, that end of cycle has been reached

MT_EndOfCycleAck;

ELSE

!Execute normal production cycle

NormalCycle;

ENDIF

…

…

!If halt after end of cycle has been already confirmed

!in the production cycle => move to home position

IF MT_EndOfCycleOk() MoveTo 999;

ENDPROC

At the start of the production cycle, there is a query asking if "Halt after end of
cycle" has been requested (MT_EndOfCycleReq). If this is the case, then a run-out
cycle is executed so that for example, remaining parts in the cell can be outfeeded
Now the request for “Halt after end of cycle“ is confirmed through
MT_EndOfCycleAck. When now leaving the production routine and returning to
the RWMT engine the program will be finished.
In the further execution of the production routine, it will be checked by means of
the function MT_EndOfCycleOk, if a request for “Halt after end of cycle” has been
already confirmed. If this is the case, the robot moves to home position

Program execution
If, after the "Halt after end of cycle" has been requested by the application program,
this request is acknowledged, then the program run will end, leaving the application
programs and returning to the RWMT Engine. A fresh program start will then start
from the first program instruction (program start "from main").
If the “direct halt after end of cycle” has been enabled in the system parameters
(see the chapter MT API commands on page 161), parameter
direct_stop_after_cycle then the acknowledgement can be done directely
without a previous request.

Syntax
MT_EndOfCycleAck ´;´

Continues on next page
3HAC044398-001 Revision: C 331

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.6 MT_EndOfCycleAck – Acknowledge the request "Halt after end of cycle"

More information

SeeInformation about

MT_EndOfCycleReq –Recognizing the request
"Halt after end of cycle" on page 475

Query if the request "Halt after end of cycle"
is present

MT_EndOfCycleOk – Check if "Halt after end
of cycle" was acknowledged on page 473

Query if the "Halt after end of cycle" request
has been acknowledged already

332 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.6 MT_EndOfCycleAck – Acknowledge the request "Halt after end of cycle"
Continued

15.2.7 MT_Execute – Execution of the RWMT Engine

Usage
MT_Execute executes the engine of the RobotWare Machine Tending. The engine
is responsible for executing the actions that have been requested by the system
operator (for example, production cycles and service routines).
MT_Execute must be called in the start up routine main() of every movement task.
The routine main() should not contain any other instructions, functions or conditions
apart from this call, and a subsequent stop instruction. Otherwise it cannot be
guaranteed that RWMT will work correctly.

Basic examples
PROC main()

!Aufruf der RWMT engine

MT_Execute;

Stop;

ENDPROC

The RWMT Engine will be called. The operator can now call production cycles or
service routines remotely or by means of the graphical user interface.
If the program pointer leaves the engine, then the Stop command will stop the
program run.

Program execution
If the RWMT Engine is called with the help of the MT_Execute instruction, the
program pointer will remain within the engine until a Halt after end of cycle or the
home position is requested.

Syntax
MT_Execute ´;´

3HAC044398-001 Revision: C 333
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.7 MT_Execute – Execution of the RWMT Engine

15.2.8 MT_Exit – Program processing complete

Usage
MT_EXIT is used to save the current robot position and cancel program execution.
The restart of the program is then inhibited, which means that the program can
only be restarted from the first instruction in the “Main” routine (unless the program
pointer has been moved manually).
In order to ensure that Homepos-Running works correctly, the instruction MT_EXIT
has to be used instead of EXIT if a serious errors occur or to permanently cancel
program execution.

Basic example
ErrWrite "Fatal error","Illegal state";

MT_EXIT;

Program execution is stopped after the current robot position has been saved and
cannot be restarted from this position.

Syntax
MT_Exit ’;’

Other information

SeeInformation about

Technical ReferenceManual – Instructions, Functions
and Data Types listed in the section References on
page 11.

EXIT - Stop program execution

MT_ExitCycle – Abort current cycle and start next cycle
on page 335

MT_ExitCycle – Abort current
cycle and start next cycle.

334 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.8 MT_Exit – Program processing complete

15.2.9 MT_ExitCycle – Abort current cycle and start next cycle

Usage
MT_ExitCycle is used to save the current robot position, cancel the current cycle
and set the program pointer (PP) back to the first instruction of the "main" routine.
If “continuous” execution mode has been selected, program execution is continued
with the next cycle.
If “cyclic” execution mode has been selected, program execution stops at the first
instruction of the "main" routine.

Basic example
VAR intnum irHomeRun;

PROC MT_AfterHomeRun()

IDelete irHomeRun;

CONNECT irHomeRun WITH T_HomeRun;

ISignalDI\Single,diIRBgoHome,high,irHomeRun;

ENDPROC

TRAP T_HomeRun

IDelete irHomePos;

StopMove;

ClearPath;

MT_ExitCycle;

ENDTRAP

After reaching the home position, an interrupt is connected to the diIRBgoHome
input. As soon as this input switches to high , interrupt routine T_HomeRun is
called up. This stops robot movement, saves the current robot position and then
continues program execution in the "main" routine.

Program execution
Execution of MT_ExitCycle leads to the following result in the current task:

• Current robot movement is stopped
• The robot position is saved through MT_HomeRunSavePos

• All robot movement paths that have not yet been executed are deleted in all
planes (both in the normal plane and the StorePath-plane)

• All instructions that have started but not yet ended are interrupted in all
execution planes (both in the normal plane and the Interrupt plane)

• The program pointer is set to the first instruction of the main routine
Program execution continues with execution of the next cycle
All other modal settings in the program and the system are not influenced by
MT_ExitCycle :
The current value of variables or persistents.
Any movement settings such as the StorePath-RestoPath sequence, world zones,
, and so on.
Open files, folders , and so on.

Continues on next page
3HAC044398-001 Revision: C 335

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.9 MT_ExitCycle – Abort current cycle and start next cycle

Defined interrupts , and so on.

Note

If the entry routine is defined with "Move PP to Routine ..." or "Call Routine ..."
when using MT_ExitCycle in routine calls, MT_ExitCycle interrupts the current
cycle and moves the program pointer back to the first instruction of the entry
routine (instead of the "main" routine, as specified above).

Arguments
MT_ExitCycle [\GoHome]

Data type: switch[\GoHome]

This switch is used to stop program execution and move the robot
to the home position without an explicit request (dialogue or digital
signal).

Syntax
MT_ExitCycle’

[’\’ GoHome]’;’

Other information

SeeInformation about

Technical ReferenceManual – Instructions, Functions
and Data Types listed in the section References on
page 11.

ExitCycle - Abort current cycle
and start next cycle

MT_Exit – Program processing complete on page334MT_Exit - Program processing
complete

336 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.9 MT_ExitCycle – Abort current cycle and start next cycle
Continued

15.2.10 MT_GetUserProgNo – User defined program execution

Usage
MT_GetUserProgNo is used to to fit the customer needs of how to transfer a
program number, if the RWMT mechanism can not be modified in a satisfying way.
Provisions for the procedure should be made by the application programmer and
programmed in detail if necessary.
RWMT is delivered and installed with a template MT_MAIN.mod. This module
represents a template for the application program and also contains, among other
routines, the procedure MT_GetUserProgNo.

Basic examples
Example 1:
In the following example MT_GetUserProgNo assigns a constant program number
7 so that RWMT can look up a partdata declaration with this program number and
can call the related production routine.

PROC MT_GetUserProgNo(

INOUT dnum ProgNo,

INOUT string Routine)

!

!Program number 7 assigned

ProgNo:=7;

!

ENDPROC

Example 2:
In this case MT_GetUserProgNo is used for an individual program number transfer
through a serial port.

PROC MT_GetUserProgNo(

INOUT dnum ProgNo,

INOUT string Routine)

!

!Program number assigned by serial interface

ProgNo:=GetProgNoFromRS232();

!

ENDPROC

In this case, RWMT tries to call a production routine by ist name, if the argument
Routine has been passed.
In this case, all RWMT mechanisms for reading a program number as well as for
evaluating the check codes, are bypassed.
Example 3:
The routine UserProduction is called constantly.

PROC MT_GetUserProgNo(

INOUT dnum ProgNo,

INOUT string Routine)

!

!Production routine name assigned

Continues on next page
3HAC044398-001 Revision: C 337

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.10 MT_GetUserProgNo – User defined program execution

Routine:="UserProduction";

!

ENDPROC

Example 4:
It is also possible to pass a program number or a routine name, depending on the
conditions, as shown below:

PROC MT_GetUserProgNo(

INOUT dnum ProgNo,

INOUT string Routine)

!

VAR dnum dnProgNo

!user defined hand shake

!to read the program number

IF diProgNoReady=high THEN

dnProgNo=giProgNo;

Set doProgNoAck;

...

!select the routine name which shall

!be executed

TEST dnProgNo

CASE 1,2,3,4,5:

Routine:="Production_T"+Valtostr(dnProgNo)

CASE 100,101:

!call service routines (menudata) or standard

!partdata

ProgNo:=dnProgNo;

ENDTEST

ENDIF

!

ENDPROC

Program run
The procedure MT_GetUserProgNo will be called by RWMT automatically if there
is no program pre-selection of part type at the RWMT user interface.
The procedure MT_GetUserProgNo will only be used if this has been released in
the process configuration.

Arguments
MT_GetUserProgNo ProgNo Routine

Data type: dnumProgNo

The program number of the part type that is to be selected. This
program number must appear in exactly one declaration of the
type partdata. A program number may be specified only if the
argument Routine has not been passed respectively is an empty
string.
When using the argument ProgNo, the evaluation of the tool
code and further check codes is done as usual.

Continues on next page
338 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.10 MT_GetUserProgNo – User defined program execution
Continued

Data type: stringRoutine

The production routine that is to be called. A routine may be
specified only if the argument ProgNo has not been passed or
if the value is <=0.
When using the argument Routine, no evaluation of the tool
code and further check codes is done.

Syntax
MT_GetUserProgNo

[ProgNo ’:=’ < expression (INOUT) of dnum >]

[Routine’:=’ < expression (INOUT) of string >]

’;’

More information

SeeInformation about

partdata – Part data on page 298Part types

3HAC044398-001 Revision: C 339
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.10 MT_GetUserProgNo – User defined program execution

Continued

15.2.11 MT_GripCheck – Check position of the control element of the gripper

Usage
MT_GripCheck is used to wait until all the control elements of the gripper have
attained the desired position. Up to 6 control elements can be queried
simultaneously.

Basic examples
MT_GripCheck gsClose,gdGRP1_Y2;

The system waits till the control element Y2 of the gripper 1 is closed.
MT_GripCheck gsOpen,gdGRP1_Y2;

The system waits till the control element Y2 of the gripper 1 is open.
MT_GripCheck gsClose,gdGRP1_Y1\Grp2:=gdGRP1_Y2;

The system waits till the control elements Y1 and Y2 of the gripper 1 are closed.

Arguments
MT_GripCheck [\CheckOpen] | [\CheckClose] Position Grp1 [\Grp2]

[\Grp3] [\Grp4] [\Grp5] [\Grp6] [\ErrorNo] [\Fault]

Data type: switch[\CheckOpen]

Checks the status of the "opened"-response only

Data type: switch[\CheckClose]

Checks the status of the "closed"-response only

Data type: grpposPosition

Desired connection status (for example, Control element or control
elements opened or closed)

Data type: grpdataGrp1

Gripper data of the first control element that is to be monitored.

Data type: grpdata[\Grp2]

Gripper data of the second control element that is to be monitored.

Data type: grpdata[\Grp3]

Gripper data of the third control element that is to be monitored.

Data type: grpdata[\Grp4]

Gripper data of the fourth control element that is to be monitored.

Data type: grpdata[\Grp5]

Gripper data of the fifth control element that is to be monitored.

Data type: grpdata[\Grp6]

Gripper data of the sixth control element that is to be monitored.

Data type: num\Error No

Combined error domains and error number as positive integer, which
can be used for display in the event of errors. The last four digits
represent the error number, the digits preceding this represent the
error domain.

Data type: switch[\Fault]

If the switch fault is set, a gripper related message will appear as a
fault message, otherwise it will appear as a warning message.

Continues on next page
340 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.11 MT_GripCheck – Check position of the control element of the gripper

Program execution
The program will be continued only if all the sensors of the control elements have
attained the corresponding open or closed positions.
Only those signals that contain a valid signal name will be considered.
If the query is for 'closed', all the "Closed"-signals must be set to "high" and all the
"Open"-signals must be set to "low".
If the query is for 'opened', all the "Closed"-signals must be set to "low" and all the
"Open"-signals must be set to "high".
By using the \CheckClose or \CheckOpen switch, it is possible to omit the query
for the opposite "opened" or "closed" case.
If a sensor fails to reach the required state within the defined waiting period, then
an error message is output.

Syntax
MT_GripCheck

[´\CheckOpen]|[´\CheckClose] ’,’

[Position] ´:=´ < expression (IN) of grppos>]

[Grp1] ´:=´ < expression (IN) of grppdata>]

[´\Grp2 ´:=´ < expression (IN) of grpdata>]

[´\Grp3 ´:=´ < expression (IN) of grpdata>]

[´\Grp4 ´:=´ < expression (IN) of grpdata>]

[´\Grp5 ´:=´ < expression (IN) of grpdata>]

[´\Grp6 ´:=´ < expression (IN) of grpdata>]

[´\ErrorNo ´:=´ < expression (IN) of num>]

[´\´Fault´]

´;´

More information

SeeInformation about

grpdata – Configuration of a control element of the gripper on page271Gripper data

grppos – Gripper position on page 276Gripper position

3HAC044398-001 Revision: C 341
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.11 MT_GripCheck – Check position of the control element of the gripper

Continued

15.2.12 MT_GripCheckType – Check pos. of the control element of the gripper

Usage
MT_GripCheckType is used to wait until all the control elements of the gripper
have attained the desired position. Up to 6 control elements can be queried
simultaneously.
MT_GripCheckType provides mainly the same functionality as MT_GripCheck
but considers part type specific type numbers and type prefixes as follows:

• There might be different grippers for each part type in the production cell.
The grippers might work differently, thus each gripper will need its own
grpdata declarations.

• Instead of assigning the grpdata directly as this is done with MT_GripCheck,
a string is provided to MT_GripCheckType which represents the name of
the grpdata but without part type number and part type prefix.

• MT_GripCheckType will internally complete the grpdata name, depending
on the current settings for the type prefix and the type number. Then the
instruction will execute the appropriate type-depending grpdata declaration.

Basic examples
Assuming, the current part type number is 6 and the standard part type prefix is
“T”
MT_GripCheckType gsClose,"gdGRP_Y2";

The system waits till the control element Y2 of the gripper is closed (grpdata
gdGRP_Y2_T6)
MT_ GripCheckType gsOpen,"gdGRP_Y2"\Prefix:= "P";

The system waits till the control element Y2 of the gripper is open (grpdata
gdGRP_Y2_P6).
MT_ GripCheckType gsClose,"gdGRP_Y1"\Grp2:="gdGRP_Y2";

The system waits till the control elements Y1 and Y2 of the gripper are closed
(grpdata gdGRP_Y1_P6 and gdGRP_Y2_P6).

Arguments
MT_GripCheckType [\CheckOpen] | [\CheckClose] Position Grp1

[\Grp2] [\Grp3] [\Grp4] [\Grp5] [\Grp6] [\Prefix] [\ErrorNo]

[\Fault]

Data type: switch[\CheckOpen]

Checks the status of the "opened"-response only

Data type: switch[\CheckClose]

Checks the status of the "closed"-response only

Data type: grpposPosition

Desired connection status (for example, Control element or control
elements opened or closed)

Continues on next page
342 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.12 MT_GripCheckType – Check pos. of the control element of the gripper

Data type: stringGrp1

Gripper data name of the first control element that is to be actuated,
without part type prefix and without part type number.

Data type: string[\Grp2]

Gripper data name of the second control element must that is to be
actuated, without part type prefix and without part type number.

Data type: string[\Grp3]

Gripper data name of the third control element that is to be actuated,
without part type prefix and without part type number.

Data type: string[\Grp4]

Gripper data name of the fourth control element that is to be actu-
ated, without part type prefix and without part type number.

Data type: string[\Grp5]

Gripper data name of the fifth control element that is to be actuated,
without part type prefix and without part type number.

Data type: string[\Grp6]

Gripper data name of the sixth control element that is to be actuated,
without part type prefix and without part type number.

Data type: string[\Prefix]

Assigns another part type prefix apart from the default prefix.

Data type: num[\ErrorNo]

Combined error domains and error number as positive integer, which
can be used for display in the event of errors. The last four digits
represent the error number, the digits preceding this represent the
error domain.

Data type: switch[\Fault]

If the switch fault is set, a gripper related message will appear as a
fault message, otherwise it will appear as a warning message.

Program execution
The program will be continued only if all the sensors of the control elements have
attained the corresponding open or closed positions.
Only those signals that contain a valid signal name will be considered.
If the query is for 'closed', all the "Closed"-signals must be set to "high" and all the
"Open"-signals must be set to "low".
If the query is for 'opened', all the "Closed"-signals must be set to "low" and all the
"Open"-signals must be set to "high".
By using the \CheckClose or \CheckOpen switch, it is possible to omit the query
for the opposite "opened" or "closed" case.
If a sensor fails to reach the required state within the defined waiting period, then
an error message is output.

Syntax
MT_GripCheckType

[´\CheckOpen]|[´\CheckClose] ’,’

[Position] ´:=´ < expression (IN) of grppos>]

[Grp1] ´:=´ < expression (IN) of string>]

[´\Grp2 ´:=´ < expression (IN) of string >]

Continues on next page
3HAC044398-001 Revision: C 343

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.12 MT_GripCheckType – Check pos. of the control element of the gripper

Continued

[´\Grp3 ´:=´ < expression (IN) of string >]

[´\Grp4 ´:=´ < expression (IN) of string >]

[´\Grp5 ´:=´ < expression (IN) of string >]

[´\Grp6 ´:=´ < expression (IN) of string >]

[´\Prefix ´:=´ < expression (IN) of string >]

[´\ErrorNo ´:=´ < expression (IN) of num>]

[´\´Fault´]

´;´

More information

SeeInformation about

grpdata – Configuration of a control element of the gripper on page271Gripper data

grppos – Gripper position on page 276Gripper position

344 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.12 MT_GripCheckType – Check pos. of the control element of the gripper
Continued

15.2.13 MT_GripJ – Robot axis movement with gripper settings

Usage
MT_GripJ is used similarly to MT_MoveJ to move the robot quickly from one point
to another, if this movement does not have to be in a straight line. When the robot
reaches the destination position, the numeric value that is passed is saved as the
current position.
The robot and the external axes move to the destination position along a non-linear
path. All axes reach the destination position simultaneously.
In addition, a gripper action in the target position is executed.
This instruction can only be used in the Main task T_ROB1 or in motion tasks in
the case of a MultiMove system.
The instruction basically corresponds to a MoveJ with some additions.

Basic example
Gripping pre-position no. 10:
MT_GripJ 10, p10, v1000, z30, tGripper, gsOpen, gdGRP1_Y2;

The TCP of the tGripper tool moves to position p10 in an axle-related way at speed
v1000 and zone data z30. When the position is reached, "11" is stored as the current
position.
The control element Y2 of the gripper 1 will be opened when having reached position
p10.

Arguments
MT_GripJ

[\Conc] ActPos ToPoint speed [\T] zone [\Inpos]

Tool [\Wobj] Position Grp1 [\Grp2] [\Grp3] [\Grp4] [\Grp5] [\Grp6]
[\PartLoad] | [\SetLoad] | [\ResetLoad] [\NoCheck] |
[\CheckOpen] | [\CheckClose] [\Prefix] [\ErrorNo] [\Fault]

Data type: switch[\Conc]
Concurrent The following instructions are executed whilst the robot is in motion.

Further information can be obtained from the MoveJ instruction.

Data type: dnumActPos

Contains the position number of the position to be moved to.

Data type: robtargetToPoint

The destination point of the robot and external axes. It is defined as
a named position or stored directly in the instruction (marked with
an * in the instruction).

Data type: speeddataspeed

The speed programmed for the movement. The speed data define
the velocity of the TCP, of the tool reorientation and of external axes.

Data type: num[\T](Time)

This argument is used to specify the time in seconds during which
a movement of the manipulator and of the external axes should be
executed. This value is then substituted for the corresponding speed
data.

Continues on next page
3HAC044398-001 Revision: C 345

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.13 MT_GripJ – Robot axis movement with gripper settings

Data type: zonedataZone

Zone data for the movement. Zone data describe the distance in
which the axes must stand from the destination point before the
next instruction is executed.

Data type: stoppointdata[\Inpos]

This argument is used to specify the convergence criteria for the
position of the robot’s TCP in the stop point. The stop point data
substitutes the zone specified in the Zone parameter.

Data type: tooldataTool

The tool in use when the robot moves. The tool centre point is moved
to the specified destination point.

Data type: wobjdata[\Wobj]

The work object (tool coordinate system) to which the robot position
in the instruction is related. This argument can be omitted. In this
case the position relates to the world coordinate system.

Data type: grpposPosition

Desired position (for example, opening or closing the control element
or the control elements).

Data type: grpdataGrp1

Gripper data of the first control element that is to be actuated.

Data type: grpdata[\Grp2]

Gripper data of the second control element must that is to be actu-
ated.

Data type: grpdata[\Grp3]

Gripper data of the third control element that is to be actuated.

Data type: grpdata[\Grp4]

Gripper data of the fourth control element that is to be actuated.

Data type: grpdata[\Grp5]

Gripper data of the fifth control element that is to be actuated.

Data type: grpdata[\Grp6]

Gripper data of the sixth control element that is to be actuated.

Data type: loaddata[\PartLoad]

Load data that will be activated on closing or opening the gripper.

Data type: switch[\SetLoad]

Sets the load of the currently selected part (see partdata – Part data
on page 298).

Data type: switch[\ResetLoad]

Resets the load to load0.

Data type: switch[\NoCheck]

If this switch is used, the system will not wait till the sensors have
reached the required position.

Data type: switch[\CheckOpen]

If this switch is used, the system will wait till the “open” sensors
have reached the required position. No check for “closed” sensors
will be performed.

Data type: switch[\CheckClose]

If this switch is used, the system will wait till the “closed” sensors
have reached the required position. No check for “open” sensors
will be performed.

Continues on next page
346 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.13 MT_GripJ – Robot axis movement with gripper settings
Continued

Data type: string[\Prefix]

A type prefix, which is different from the prefix which has been set
in the system parameters (See the chapters MT Part settings on
page 172 and Use of type-related movement routines on page 143).

Data type: num[\ErrorNo]

Combined error domains and error number as positive integer, which
can be used for display in the event of errors. The last four digits
represent the error number, the digits preceding this represent the
error domain.

Data type: switch[\Fault]

If the switch fault is set, a gripper related message will appear as a
fault message, otherwise it will appear as a warning message.

Program execution
After reaching the programmed position, the transferred position number is saved
as current robot position.
If the robot is moved to the home position using HomeRun, the position
number-dependent movement routine is called up by the "MT_HomeRun" routine,
and the first position to be moved to (start position) is searched for, that is, no
movement takes place until the saved robot position is identical with the position
number in the movement instruction.
Since the “linear” or “axis-related” movement mode is saved whenever a movement
command is executed, it is ensured that the movement to the start position is
performed with the same movement mode that was used previously.
In the target position, the specified valves of the gripper will be actuated. This is
followed by a waiting time which is defined by the longest one of all available
actuators.
If a sensor fails to reach the required state within the defined waiting period, then
an error message will be output on the programming device and a corresponding
error code will be sent for example, to an external PLC. To be able to send an error
code, this must be process configuration first (See the chapter MT API commands
on page 161).

Tip

In the "Ghost mode", the "NoGhostSet" flag is evaluated in every control element
declaration. If the flag has been set to "TRUE" then the sensors will not be
checked. If the flag has been set to "FALSE" then the sensors will be checked
even in the ghost mode.

Tip

In the "Ghost mode" the "NoGhostCheck" flag is evaluated in every control
element declaration. If the flag has been set to "TRUE", the valve will not be
actuated. If the flag has been set to "FALSE", then the actuation is done even in
the ghost mode.

Continues on next page
3HAC044398-001 Revision: C 347

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.13 MT_GripJ – Robot axis movement with gripper settings

Continued

Restrictions
The optional parameters \PartLoad, \SetLoad and \ResetLoad cannot be used
in common.
The optional parameters \NoCheck, \CheckOpen and \CheckClose cannot be
used in common as well.

Syntax
MT_GripJ

[’\’Conc ’,’]

[ActPos ’:=’] < expression (IN) of dnum> ’,’

[ToPoint ’:=’] < expression (IN) of robtarget > ’,’

[speed ’:=’] < expression (IN) of speeddata >

[’\’T ’:=’ < expression (IN) of num > ’,’]

[zone ’:=’] < expression (IN) of zonedata >

[’\’Inpos’:=’< expression (IN) of stoppointdata > ’,’]

[Tool ’:=’] < persistent (PERS) of tooldata >

[’\’WObj ’:=’ < persistent (PERS) of wobjdata >]

[Position] ´:=´ < expression (IN) of grppos>]

[Grp1 ´:=´ < expression (IN) of grpdata>]

[´\´Grp2 ´:=´ < expression (IN) of grpdata>]

[´\´Grp3 ´:=´ < expression (IN) of grpdata>]

[´\´Grp4 ´:=´ < expression (IN) of grpdata>]

[´\´Grp5 ´:=´ < expression (IN) of grpdata>]

[´\´Grp6 ´:=´ < expression (IN) of grpdata>]

[´\´PartLoad ´:=´ < expression (IN) of loaddata>]

| [´\´SetLoad´]

| [´\´ResetLoad´]

[´\´NoCheck´]

| [´\´CheckOpen´]

| [´\´CheckClosed´]

[´\´Prefix ´:=´ < expression (IN) of string>]

[´\´ErrorNo]´:=´ < expression (IN) of num>]

[´\´Fault] ’;’

Other information

SeeInformation about

Technical Reference Manual – Instructions, Functions and Data
Types listed in the section References on page 11.

MoveJ

Robot axis movement

MT_MoveJ – Robot axis movement on page 374MT_MoveJ

Robot axis movement

MT_GripSet – Controlling the gripper on page 363MT_GripSet

Controlling the gripper

348 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.13 MT_GripJ – Robot axis movement with gripper settings
Continued

15.2.14 MT_GripL – Robot linear movement with gripper settings

Usage
MT_GripL is used similarly to MT_MoveL to move the robot quickly from one point
to another, if this movement has to be in a straight line. When the robot reaches
the destination position, the numeric value that is passed is saved as the current
position.
The robot and the external axes move to the destination position along a linear
path. All axes reach the destination position simultaneously.
In addition, a gripper action in the target position is executed.
This instruction can only be used in the Main task T_ROB1 or in motion tasks in
the case of a MultiMove system.
The instruction basically corresponds to a MoveL with some additions.

Basic example
Gripping position no. 11:
MT_GripL 11, p11, v1000, fine, tGripper, gsClose, gdGRP1_Y2;

The TCP of the tGripper tool moves to position p11 in an linear way at speed v1000
and zone data fine. When the position is reached, "11" is stored as the current
position.
The control element Y2 of the gripper 1 will be closed when having reached position
p11.

Arguments
MT_GripJ

[\Conc] ActPos ToPoint speed [\T] zone [\Inpos]

Tool [\Wobj] Position Grp1 [\Grp2] [\Grp3] [\Grp4] [\Grp5] [\Grp6]
[\PartLoad] | [\SetLoad] | [\ResetLoad] [\NoCheck] |
[\CheckOpen] | [\CheckClose] [\Prefix] [\ErrorNo] [\Fault]

Data type: switch[\Conc]
Concurrent The following instructions are executed whilst the robot is in motion.

Further information can be obtained from the MoveJ instruction.

Data type: dnumActPos

Contains the position number of the position to be moved to.

Data type: robtargetToPoint

The destination point of the robot and external axes. It is defined as
a named position or stored directly in the instruction (marked with
an * in the instruction).

Data type: speeddataspeed

The speed programmed for the movement. The speed data define
the velocity of the TCP, of the tool reorientation and of external axes.

Data type: num[\T](Time)

This argument is used to specify the time in seconds during which
a movement of the manipulator and of the external axes should be
executed. This value is then substituted for the corresponding speed
data.

Continues on next page
3HAC044398-001 Revision: C 349

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.14 MT_GripL – Robot linear movement with gripper settings

Data type: zonedataZone

Zone data for the movement. Zone data describe the distance in
which the axes must stand from the destination point before the
next instruction is executed.

Data type: stoppointdata[\Inpos]

This argument is used to specify the convergence criteria for the
position of the robot’s TCP in the stop point. The stop point data
substitutes the zone specified in the Zone parameter.

Data type: tooldataTool

The tool in use when the robot moves. The tool centre point is moved
to the specified destination point.

Data type: wobjdata[\Wobj]

The work object (tool coordinate system) to which the robot position
in the instruction is related. This argument can be omitted. In this
case the position relates to the world coordinate system.

Data type: grpposPosition

Desired position (for example, opening or closing the control element
or the control elements)

Data type: grpdataGrp1

Gripper data of the first control element that is to be actuated

Data type: grpdata[\Grp2]

Gripper data of the second control element must that is to be actu-
ated

Data type: grpdata[\Grp3]

Gripper data of the third control element that is to be actuated

Data type: grpdata[\Grp4]

Gripper data of the fourth control element that is to be actuated

Data type: grpdata[\Grp5]

Gripper data of the fifth control element that is to be actuated

Data type: grpdata[\Grp6]

Gripper data of the sixth control element that is to be actuated

Data type: loaddata[\PartLoad]

Load data that will be activated on closing or opening the gripper.

Data type: switch[\SetLoad]

Sets the load of the currently selected part (see partdata – Part data
on page 298).

Data type: switch[\ResetLoad]

Resets the load to load0.

Data type: switch[\NoCheck]

If this switch is used, the system will not wait till the sensors have
reached the required position.

Data type: switch[\CheckOpen]

If this switch is used, the system will wait till the “open” sensors
have reached the required position. No check for “closed” sensors
will be performed.

Data type: switch[\CheckClose]

If this switch is used, the system will wait till the “closed” sensors
have reached the required position. No check for “open” sensors
will be performed.

Continues on next page
350 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.14 MT_GripL – Robot linear movement with gripper settings
Continued

Data type: string[\Prefix]

A type prefix, which is different from the prefix which has been set
in the system parameters (See the chapters MT Part settings on
page 172 and Use of type-related movement routines on page 143).

Data type: num[\ErrorNo]

Combined error domains and error number as positive integer, which
can be used for display in the event of errors. The last four digits
represent the error number, the digits preceding this represent the
error domain.

Data type: switch[\Fault]

If the switch fault is set, a gripper related message will appear as a
fault message, otherwise it will appear as a warning message.

Program execution
After reaching the programmed position, the transferred position number is saved
as current robot position.
If the robot is moved to the home position using the HomeRun, the position
number-dependent movement routine is called up by the "MT_HomeRun" routine,
and the first position to be moved to (start position) is searched for, i.e. no
movement takes place until the saved robot position is identical with the position
number in the movement instruction.
Since the “linear” or “axis-related” movement mode is saved whenever a movement
command is executed, it is ensured that the movement to the start position is
performed with the same movement mode that was used previously.
In the target position, the specified valves of the gripper will be actuated. This is
followed by a waiting time which is defined by the longest one of all available
actuators.
If a sensor fails to reach the required state within the defined waiting period, then
an error message will be output on the programming device and a corresponding
error code will be sent, for example, to an external PLC. To be able to send an
error code, this must be configured in the process configuration first (See the
chapter MT API commands on page 161).

Tip

In the "Ghost mode", the "NoGhostSet" flag is evaluated in every control element
declaration. If the flag has been set to "TRUE" then the sensors will not be
checked. If the flag has been set to "FALSE" then the sensors will be checked
even in the ghost mode.

Tip

In the "Ghost mode" the "NoGhostCheck" flag is evaluated in every control
element declaration. If the flag has been set to "TRUE", the valve will not be
actuated. If the flag has been set to "FALSE", then the actuation is done even in
the ghost mode

Continues on next page
3HAC044398-001 Revision: C 351

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.14 MT_GripL – Robot linear movement with gripper settings

Continued

Restrictions
The optional parameters \PartLoad, \SetLoad and \ResetLoad cannot be used in
common.
The optional parameters \NoCheck, \CheckOpen and \CheckClose cannot be used
in common as well.

Syntax
MT_GripL

[’\’Conc ’,’]

[ActPos ’:=’] < expression (IN) of dnum> ’,’

[ToPoint ’:=’] < expression (IN) of robtarget > ’,’

[speed ’:=’] < expression (IN) of speeddata >

[’\’T ’:=’ < expression (IN) of num > ’,’]

[zone ’:=’] < expression (IN) of zonedata >

[’\’Inpos’:=’< expression (IN) of stoppointdata > ’,’]

[Tool ’:=’] < persistent (PERS) of tooldata >

[’\’WObj ’:=’ < persistent (PERS) of wobjdata >]

[Position] ´:=´ < expression (IN) of grppos>]

[Grp1 ´:=´ < expression (IN) of grpdata>]

[´\´Grp2 ´:=´ < expression (IN) of grpdata>]

[´\´Grp3 ´:=´ < expression (IN) of grpdata>]

[´\´Grp4 ´:=´ < expression (IN) of grpdata>]

[´\´Grp5 ´:=´ < expression (IN) of grpdata>]

[´\´Grp6 ´:=´ < expression (IN) of grpdata>]

[´\´PartLoad ´:=´ < expression (IN) of loaddata>]

| [´\´SetLoad´]

| [´\´ResetLoad´]

[´\´NoCheck´]

| [´\´CheckOpen´]

| [´\´CheckClosed´]

[´\´Prefix ´:=´ < expression (IN) of string>]

[´\´ErrorNo]´:=´ < expression (IN) of num>]

[´\´Fault] ’;’

Other information

SeeInformation about

Technical ReferenceManual – Instructions, Functions and
Data Types listed in the section References on page 11.

MoveL

Linear robot movement

MT_MoveL – Linear robot movement. on page 388MT_MoveL

Linear robot movement

MT_GripSet – Controlling the gripper on page 363MT_GripSet

Controlling the gripper

352 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.14 MT_GripL – Robot linear movement with gripper settings
Continued

15.2.15 MT_GripSeqJ – Robot axis movement with gripper sequence

Usage
MT_GripJ is used similarly to MT_MoveJ to move the robot quickly from one point
to another, if this movement does not have to be in a straight line. When the robot
reaches the destination position, the numeric value that is passed is saved as the
current position.
The robot and the external axes move to the destination position along a non-linear
path. All axes reach the destination position simultaneously.
In addition, a gripper sequence is executed in the target position.
This instruction can only be used in the Main task T_ROB1 or in motion tasks in
the case of a MultiMove system.
The instruction basically corresponds to a MoveJ with some additions.

Basic example
!gripper data

const grpdata gdY1_T127:=[];

const grpdata gdY2_T127:=[];

const grpdata gdY3_T127:=[];

const grpdata gdY4_T127:=[];

!gripper sequence for opening the gripper

const grpseq gsOpenGripper{3}:=

[[gsClose,"gdY1_T127","","","","",""],

[[gsOpen,"gdY2_T127","gdY3_T127","", "","",""],

[[gsClose,"gdY4_T127","","", "","",""]];

MT_GripSeqJ 10, p10, v1000, z30, tGripper

\Sequence:= gsOpenGripper;

In the sequence declaration gsOpenGripper, the control element Y1 is first closed,
then the control elements Y2 and Y3 are opened and then the control element Y4
is closed.
The TCP of the tGripper tool moves to position p10 in an axle-related way at
speed v1000 and zone data z30. When the position is reached, "10" is stored as
the current position.
When having reached the position, the gripper sequence is called to open the
gripper.

Arguments
MT_GripSeqJ

[\Conc] ActPos ToPoint speed [\T] zone [\Inpos]

Tool [\Wobj] [\Sequence] | [SeqName] [\Prefix] [\PartLoad] |
[SetLoad] | [ResetLoad] [\ErrorNo] [\Fault]

Data type: switch[\Conc]
Concurrent The following instructions are executed whilst the robot is in motion.

Further information can be obtained from the MoveJ instruction.

Continues on next page
3HAC044398-001 Revision: C 353

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.15 MT_GripSeqJ – Robot axis movement with gripper sequence

Data type: dnumActPos

Contains the position number of the position to be moved to.

Data type: robtargetToPoint

The destination point of the robot and external axes. It is defined as
a named position or stored directly in the instruction (marked with
an * in the instruction).

Data type: speeddataspeed

The speed programmed for the movement. The speed data define
the velocity of the TCP, of the tool reorientation and of external axes.

Data type: num[\T] (Time)

This argument is used to specify the time in seconds during which
a movement of the manipulator and of the external axes should be
executed. This value is then substituted for the corresponding speed
data.

Data type: zonedataZone

Zone data for the movement. Zone data describe the distance in
which the axes must stand from the destination point before the
next instruction is executed.

Data type: stoppointdata[\Inpos]

This argument is used to specify the convergence criteria for the
position of the robot’s TCP in the stop point. The stop point data
substitutes the zone specified in the Zone parameter.

Data type: tooldataTool

The tool in use when the robot moves. The tool centre point is moved
to the specified destination point.

Data type: wobjdata[\Wobj]

The work object (tool coordinate system) to which the robot position
in the instruction is related. This argument can be omitted. In this
case the position relates to the world coordinate system.

Data type: grpseq[\Sequence]

Array with the gripper sequence. Only one of the arguments \Se-
quence or \SeqName should be used.

Data type: string[\SeqName]

Name of the gripper sequence that is to be executed. Only one of
the arguments \Sequence or \SeqName should be used.

Data type: string[\Prefix]

A type prefix, which is different from the prefix which has been set
in the system parameters (See the chapters MT Part settings on
page 172 and Use of type-related movement routines on page 143).

Data type: loaddata[\PartLoad]

New gripper load after the sequence is executed.

Data type: switch[\SetLoad]

Sets the load of the currently selected part (see partdata – Part data
on page 298).

Data type: switch[\ResetLoad]

Resets the load to load0.

Data type: num[\ErrorNo]

Combined error domains and error number as positive integer, which
can be used for display in the event of errors. The last four digits
represent the error number, the digits preceding this represent the
error domain.

Continues on next page
354 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.15 MT_GripSeqJ – Robot axis movement with gripper sequence
Continued

Data type: switch[\Fault]

If the switch fault is set, a gripper related message will appear as a
fault message, otherwise it will appear as a warning message.

Program execution
After reaching the programmed position, the transferred position number is saved
as current robot position.
If the robot is moved to the home position using HomeRun, the position
number-dependent movement routine is called up by the "MT_HomeRun" routine,
and the first position to be moved to (start position) is searched for, i.e. no
movement takes place until the saved robot position is identical with the position
number in the movement instruction.
Since the “linear” or “axis-related” movement mode is saved whenever a movement
command is executed, it is ensured that the movement to the start position is
performed with the same movement mode that was used previously.
After reaching the target position, the valves of the control elements that have been
passed is opened or closed one after the other, depending on the selection.
If all the sensors fail to reach the required state within the defined waiting period,
then, an error message will be output.

Limitations
When using SeqName the array size for the gripper sequence is limited to 20
elements.

Restrictions
The optional parameters \PartLoad, \SetLoad and \ResetLoad cannot be used in
common.

Syntax
MT_GripSeqJ

[’\’Conc ’,’]

[ActPos ’:=’] < expression (IN) of dnum> ’,’

[ToPoint ’:=’] < expression (IN) of robtarget > ’,’

[speed ’:=’] < expression (IN) of speeddata >

[’\’T ’:=’ < expression (IN) of num > ’,’]

[zone ’:=’] < expression (IN) of zonedata >

[’\’Inpos’:=’< expression (IN) of stoppointdata > ’,’]

[Tool ’:=’] < persistent (PERS) of tooldata >

[’\’WObj ’:=’ < persistent (PERS) of wobjdata >]

[´\´Sequence ´:=´ < expression {IN} of grpseq >] |

[´\´SeqName ´:=´ < expression (IN) of string >]

[´\´Prefix ´:=´ < expression (IN) of string >]

[´\´PartLoad ´:=´ < expression (PERS) of loaddata >] |

[´\´SetLoad] |

[´\´ResetLoad]

[´\´ErrorNo] ´:=´ < expression (IN) of num>]

[´\´Fault] ’;’

Continues on next page
3HAC044398-001 Revision: C 355

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.15 MT_GripSeqJ – Robot axis movement with gripper sequence

Continued

Other information

SeeInformation about

Technical Reference Manual – Instructions, Functions and
Data Types listed in the section References on page 11

MoveJ

Robot axis movement

MT_MoveJ – Robot axis movement on page 374MT_MoveJ

Robot axis movement

MT_GripSequence – Sequential actuation of gripper actuators
on page 361

MT_GripSequence

Sequential gripper actuation

356 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.15 MT_GripSeqJ – Robot axis movement with gripper sequence
Continued

15.2.16 MT_GripSeqL – Linear robot movement with gripper sequence

Usage
MT_GripL is used similarly to MT_MoveJ to move the robot quickly from one point
to another, if this movement has to be in a straight line. When the robot reaches
the destination position, the numeric value that is passed is saved as the current
position.
The robot and the external axes move to the destination position along a linear
path. All axes reach the destination position simultaneously.
In addition, a gripper sequence is executed in the target position.
This instruction can only be used in the Main task T_ROB1 or in motion tasks in
the case of a MultiMove system.
The instruction basically corresponds to a MoveL with some additions.

Basic example
!gripper data

const grpdata gdY1_T127:=[];

const grpdata gdY2_T127:=[];

const grpdata gdY3_T127:=[];

const grpdata gdY4_T127:=[];

!gripper sequence for opening the gripper

const grpseq gsOpenGripper{3}:=

[[gsClose,"gdY1_T127","","","","",""],

[[gsOpen,"gdY2_T127","gdY3_T127","", "","",""],

[[gsClose,"gdY4_T127","","", "","",""]];

MT_GripSeqL 16, p16, v1000, fine, tGripper

\Sequence:= gsOpenGripper;

In the sequence declaration gsOpenGripper, the control element Y1 is first closed,
then the control elements Y2 and Y3 are opened and then the control element Y4
is closed.
The TCP of the tGripper tool moves to position p16 in an axle-related way at speed
v1000 and zone data fine. When the position is reached, "16" is stored as the
current position.
When having reached the position, the gripper sequence is called to open the
gripper.

Arguments
MT_GripSeqL

[\Conc] ActPos ToPoint speed [\T] zone [\Inpos]

Tool [\Wobj] [\Sequence] | [SeqName] [\Prefix] [\PartLoad] |
[SetLoad] | [ResetLoad] [\ErrorNo] [\Fault]

Data type: switch[\Conc]
Concurrent The following instructions are executed whilst the robot is in motion.

Further information can be obtained from the MoveJ instruction.

Data type: dnumActPos

Contains the position number of the position to be moved to.

Continues on next page
3HAC044398-001 Revision: C 357

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.16 MT_GripSeqL – Linear robot movement with gripper sequence

Data type: robtargetToPoint

The destination point of the robot and external axes. It is defined as
a named position or stored directly in the instruction (marked with
an * in the instruction).

Data type: speeddataspeed

The speed programmed for the movement. The speed data define
the velocity of the TCP, of the tool reorientation and of external axes.

Data type: num[\T] (Time)

This argument is used to specify the time in seconds during which
a movement of the manipulator and of the external axes should be
executed. This value is then substituted for the corresponding speed
data.

Data type: zonedataZone

Zone data for the movement. Zone data describe the distance in
which the axes must stand from the destination point before the
next instruction is executed.

Data type: stoppointdata[\Inpos]

This argument is used to specify the convergence criteria for the
position of the robot’s TCP in the stop point. The stop point data
substitutes the zone specified in the Zone parameter.

Data type: tooldataTool

The tool in use when the robot moves. The tool centre point is moved
to the specified destination point.

Data type: wobjdata[\Wobj]

The work object (tool coordinate system) to which the robot position
in the instruction is related. This argument can be omitted. In this
case the position relates to the world coordinate system.

Data type: grpseq\Sequence

Array with the gripper sequence. Only one of the arguments \Se-
quence or \SeqName should be used.

Data type: string\SeqName

Name of the gripper sequence that is to be executed. Only one of
the arguments \Sequence or \SeqName should be used.

Data type: string[\Prefix]

A type prefix, which is different from the prefix which has been set
in the system parameters (See the chapters MT Part settings on
page 172 and Use of type-related movement routines on page 143).

Data type: loaddata\PartLoad

New gripper load after the sequence is executed.

Data type: switch[\SetLoad]

Sets the load of the currently selected part (see partdata – Part data
on page 298).

Data type: switch[\ResetLoad]

Resets the load to load0.

Data type: num[\ErrorNo]

Combined error domains and error number as positive integer, which
can be used for display in the event of errors. The last four digits
represent the error number, the digits preceding this represent the
error domain.

Continues on next page
358 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.16 MT_GripSeqL – Linear robot movement with gripper sequence
Continued

Data type: switch[\Fault]

If the switch fault is set, a gripper related message will appear as a
fault message, otherwise it will appear as a warning message.

Program execution
After reaching the programmed position, the transferred position number is saved
as current robot position.
If the robot is moved to the home position using the HomeRun, the position
number-dependent movement routine is called up by the "MT_HomeRun" routine,
and the first position to be moved to (start position) is searched for, i.e. no
movement takes place until the saved robot position is identical with the position
number in the movement instruction.
Since the “linear” or “axis-related” movement mode is saved whenever a movement
command is executed, it is ensured that the movement to the start position is
performed with the same movement mode that was used previously.
Whe having reached the target position, the valves of the control elements that
have been passed will be opened or closed one after the other, depending on the
selection.
If all the sensors fail to reach the required state within the defined waiting period,
then, an error message will be output.

Limitations
When using SeqName the array size for the gripper sequence is limited to 20
elements.

Restrictions
The optional parameters \PartLoad, \SetLoad and \ResetLoad cannot be
used in common.

Syntax
MT_GripSeqL

[’\’Conc ’,’]

[ActPos ’:=’] < expression (IN) of dnum> ’,’

[ToPoint ’:=’] < expression (IN) of robtarget > ’,’

[speed ’:=’] < expression (IN) of speeddata >

[’\’T ’:=’ < expression (IN) of num > ’,’]

[zone ’:=’] < expression (IN) of zonedata >

[’\’Inpos’:=’< expression (IN) of stoppointdata > ’,’]

[Tool ’:=’] < persistent (PERS) of tooldata >

[’\’WObj ’:=’ < persistent (PERS) of wobjdata >]

[´\´Sequence ´:=´ < expression {IN} of grpseq >] |

[´\´SeqName ´:=´ < expression (IN) of string >]

[´\´Prefix ´:=´ < expression (IN) of string >]

[´\´PartLoad ´:=´ < expression (PERS) of loaddata >] |

[´\´SetLoad] |

[´\´ResetLoad]

[´\´ErrorNo] ´:=´ < expression (IN) of num>]

[´\´Fault] ’;’

Continues on next page
3HAC044398-001 Revision: C 359

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.16 MT_GripSeqL – Linear robot movement with gripper sequence

Continued

Other information

SeeInformation about

Technical Reference Manual – Instructions, Functions and
Data Types listed in the section References on page 11.

MoveL

Linear robot movement

MT_MoveJ – Robot axis movement on page 374MT_MoveL

Robot linear movement

MT_GripSequence – Sequential actuation of gripper actuators
on page 361

MT_GripSequence

Sequential gripper actuation

360 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.16 MT_GripSeqL – Linear robot movement with gripper sequence
Continued

15.2.17 MT_GripSequence – Sequential actuation of gripper actuators

Usage
MT_GripSequence is used to actuate several control elements on the gripper,
one after the other, using just one instruction. This makes it easier to actuate more
complex grippers.

Basic examples
!gripper data

const grpdata gdY1_T127:=[];

const grpdata gdY2_T127:=[];

const grpdata gdY3_T127:=[];

const grpdata gdY4_T127:=[];

!gripper sequence

const grpseq gsOpen_T127{3}:=

[[gsClose,"gdY1_T127","","","","",""],

[[gsOpen,"gdY2_T127","gdY3_T127","", "","",""],

[[gsClose,"gdY4_T127","","", "","",""]];

In the sequence declaration gsOpen_T127 for opening the gripper for part 127,
the control element Y1 is first closed, then the control elements Y2 and Y3 are
opened and then the control element Y4 is closed.
This sequence is called as follows in the robot program:
GripSequence\Sequence:=gsOpen_T127;

Arguments
MT_GripSequence [\Sequence] | [SeqName] [\Prefix] [\PartLoad] |

[SetLoad] | [ResetLoad] [\ErrorNo] [\Fault]

Data type: grpseq[\Sequence]

Array with the gripper sequence. Only one of the arguments \Se-
quence or \SeqName should be used.

Data type: string[\SeqName]

Name of the gripper sequence that is to be executed. Only one of
the arguments \Sequence or \SeqName should be used.

Data type: string[\Prefix]

Type prefix. Only necessary, if a type-depending gripper sequence
is declared and only if the standard type prefix “T” is not used. Ex-
ample of a type related gripper sequence name: gsOpenGrip-
per_T137, if the prefix is “T” and the part type number of the current
partdata declaration is 137.

Data type: loaddata[\PartLoad]

New gripper load after the sequence is executed.

Data type: switch[\SetLoad]

Sets the load of the currently selected part (see partdata).

Data type: switch[\ResetLoad]

Resets the load to load0.

Continues on next page
3HAC044398-001 Revision: C 361

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.17 MT_GripSequence – Sequential actuation of gripper actuators

Data type: num[\ErrorNo]

Combined error domains and error number as positive integer, which
can be used for display in the event of errors. The last four digits
represent the error number, the digits preceding this represent the
error domain.

Data type: switch[\Fault]

If the switch fault is set, a gripper related message will appear as a
fault message, otherwise it will appear as a warning message.

Program execution
The valves of the control element that has been passed will be opened or closed
one after the other, depending on the selection.
If all the sensors fail to reach the required state within the defined waiting period,
then, an error message will be output.

Limitations
When using SeqName the array size for the gripper sequence is limited to 20
elements.

Restrictions
The optional parameters \PartLoad, \SetLoad and \ResetLoad cannot be used in
common.

Syntax
MT_GripSequence

[´\´Sequence ´:=´ < expression {IN} of grpseq >] |

[´\´SeqName ´:=´ < expression (IN) of string >]

[´\´Prefix ´:=´ < expression (IN) of string >]

[´\´PartLoad ´:=´ < expression (PERS) of loaddata >] |

[´\´SetLoad] |

[´\´ResetLoad]

[´\´ErrorNo] ´:=´ < expression (IN) of num>]

[´\´Fault]´;´

More information

SeeInformation about

grpdata – Configuration of a control element of the gripper on page271Gripper data

grpseq – Gripper sequence for actuating several control elements on
page 278

Gripper sequences

362 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.17 MT_GripSequence – Sequential actuation of gripper actuators
Continued

15.2.18 MT_GripSet – Controlling the gripper

Usage
MT_GripSet is used for actuating control elements at the grippers. Up to 6 control
elements can be actuated simultaneously.

Basic examples
MT_GripSet gsClose,gdGRP1_Y2;

The control element Y2 of the gripper 1 will be closed.
MT_GripSet gsOpen,gdGRP1_Y2\NoCheck;

The control element Y2 of the gripper 1 will be opened, without the sensors being
monitored while doing so

MT_GripSet gsClose,gdGRP1_Y1\Grp2:=gdGRP1_Y2\PartLoad:=loPart;

The control elements Y1 and Y2 of the gripper 1 will be closed. As soon as both
the control elements have attained the Closed position, the load data of the part
will be activated.

MT_GripSet gsReset,gdGRP1_Y2;

Both valve outputs for the control element Y2 of the gripper 1 will be reset (for
example, while the gripper is undocking).

Arguments
MT_GripSet Position Grp1 [\Grp2] [\Grp3] [\Grp4] [\Grp5] [\Grp6]

[\PartLoad] | [\SetLoad] | [\ResetLoad] [\NoCheck] |
[\CheckOpen] | [\CheckClose] [\ErrorNo] [\Fault]

Data type: grpposPosition

Desired position (for example, opening or closing the control element
or the control elements)

Data type: grpdataGrp1

Gripper data of the first control element that is to be actuated

Data type: grpdata[\Grp2]

Gripper data of the second control element must that is to be actu-
ated

Data type: grpdata[\Grp3]

Gripper data of the third control element that is to be actuated

Data type: grpdata[\Grp4]

Gripper data of the fourth control element that is to be actuated

Data type: grpdata[\Grp5]

Gripper data of the fifth control element that is to be actuated

Data type: grpdata[\Grp6]

Gripper data of the sixth control element that is to be actuated

Data type: loaddata[\PartLoad]

Load data that will be activated on closing or opening the gripper.

Data type: switch[\SetLoad]

Sets the load of the currently selected part (see partdata – Part data
on page 298).

Continues on next page
3HAC044398-001 Revision: C 363

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.18 MT_GripSet – Controlling the gripper

Data type: switch[\ResetLoad]

Resets the load to load0.

Data type: switch[\NoCheck]

If this switch is used, the system will not wait till the sensors have
reached the required position.

Data type: switch[\CheckOpen]

If this switch is used, the system will wait till the “open” sensors
have reached the required position. No check for “closed” sensors
will be performed.

Data type: switch[\CheckClose]

If this switch is used, the system will wait till the “closed” sensors
have reached the required position. No check for “open” sensors
will be performed.

Data type: num[\ErrorNo]

Combined error domains and error number as positive integer, which
can be used for display in the event of errors. The last four digits
represent the error number, the digits preceding this represent the
error domain.

Data type: switch[\Fault]

If the switch fault is set, a gripper related message will appear as a
fault message, otherwise it will appear as a warning message.

Program execution
The valves of the control elements that have been passed will be opened or closed
depending on the selection. Only those signals that contain a valid signal name
will be considered.
To begin with, all the valves will be actuated. This is followed by a waiting time
which is defined by the longest one of all available actuators.
If a sensor fails to reach the required state within the defined waiting period, then
an error message will be output on the programming device and a corresponding
error code will be sent for example, to an external PLC. To send an error code, this
must be configured in the process configuration first (see chapter MT API
commands on page 161).

Tip

In the "Ghost mode", the "NoGhostSet" flag is evaluated in every control element
declaration. If the flag has been set to "TRUE" then the sensors will not be
checked. If the flag has been set to "FALSE" then the sensors will be checked
even in the ghost mode.

Tip

In the "Ghost mode" the "NoGhostCheck" flag is evaluated in every control
element declaration. If the flag has been set to "TRUE", the valve will not be
actuated. If the flag has been set to "FALSE", then the actuation is done even in
the ghost mode.

Continues on next page
364 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.18 MT_GripSet – Controlling the gripper
Continued

Restrictions
The optional parameters \PartLoad, \SetLoad and \ResetLoad cannot be used
together.
The optional parameters \NoCheck, \CheckOpen and \CheckClose cannot be
used together as well.

Syntax
MT_GripSet

[Position] ´:=´ < expression (IN) of grppos>]

[Grp1 ´:=´ < expression (IN) of grpdata>]

[´\´Grp2 ´:=´ < expression (IN) of grpdata>]

[´\´Grp3 ´:=´ < expression (IN) of grpdata>]

[´\´Grp4 ´:=´ < expression (IN) of grpdata>]

[´\´Grp5 ´:=´ < expression (IN) of grpdata>]

[´\´Grp6 ´:=´ < expression (IN) of grpdata>]

[´\´PartLoad ´:=´ < expression (IN) of loaddata>]

| [´\´SetLoad´]

| [´\´ResetLoad´]

[´\´NoCheck´]

| [´\´CheckOpen´]

| [´\´CheckClose´]

[´\´ErrorNo] ´:=´ < expression (IN) of num>]

| [´\´Fault´]´;

More information

SeeInformation about

grpdata – Configuration of a control element of the gripper on page271Gripper data

grppos – Gripper position on page 276Gripper position

3HAC044398-001 Revision: C 365
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.18 MT_GripSet – Controlling the gripper

Continued

15.2.19 MT_GripSetType – Controlling the gripper

Usage
MT_GripSetType is used for actuating control elements at the grippers. Up to 6
control elements can be actuated simultaneously.
MT_GripSetType provides mainly the same functionality as MT_GripSet but
considers part type specific type numbers and type prefixes as follows:
There might be different grippers for each part type in the production cell. The
grippers might work differently, thus each gripper will need its own grpdata
declarations.
Instead of assigning the grpdata directly as this is done with MT_GripSet, a string
is provided to MT_GripSetType which represents the name of the grpdata but
without part type number and part type prefix.
MT_GripSetType will internally complete the grpdata name, depending on the
current settings for the type prefix and the type number. Then the instruction will
execute the appropriate type-depending grpdata declaration.

Basic examples
Assuming, the current part type number is 6 and the standard part type prefix is T

MT_GripSetType gsClose,"gdGRP_Y2";

The control element Y2 of the gripper for part type 6 (gripdata gdGRP_Y2_T6)
will be closed.

MT_GripSetType gsOpen,"gdGRP_Y2"\NoCheck\Prefix:="P";

The control element Y2 of the gripper for part type 6 (gripdata gdGRP_Y2_P6) will
be opened, without the sensors being monitored while doing so.

MT_GripSetType gsClose,"gdGRP_Y1"\Grp2:="gdGRP_Y2"\PartLoad:=loPart;

The control elements Y1 and Y2 of the gripper for part type 6 (gripdata
gdGRP_Y1_T6 and gdGRP_Y2_T6) will be closed. As soon as both the control
elements have attained the closed position, the load data of the part will be
activated.

MT_GripSetType gsReset,"gdGRP_Y2";

Both valve outputs for the control element Y2 of the gripper for part type 6 (gripdata
gdGRP_Y2_T6) will be reset, for example, while the gripper is undocking.

Arguments
MT_GripSetType Position Grp1 [\Grp2] [\Grp3] [\Grp4] [\Grp5] [\Grp6]

[\PartLoad] | [\SetLoad] | [\ResetLoad] [\NoCheck] |
[\CheckOpen] | [\CheckClose] [\Prefix][\ErrorNo] [\Fault]

Data type: grpposPosition

Desired position (for example, opening or closing the control element
or the control elements)

Data type: stringGrp1

Gripper data name of the first control element that is to be actuated,
without part type prefix and without part type number.

Continues on next page
366 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.19 MT_GripSetType – Controlling the gripper

Data type: string[\Grp2]

Gripper data name of the second control element must that is to be
actuated, without part type prefix and without part type number.

Data type: string[\Grp3]

Gripper data name of the third control element that is to be actuated,
without part type prefix and without part type number.

Data type: string[\Grp4]

Gripper data name of the fourth control element that is to be actu-
ated, without part type prefix and without part type number.

Data type: string[\Grp5]

Gripper data name of the fifth control element that is to be actuated,
without part type prefix and without part type number.

Data type: string[\Grp6]

Gripper data name of the sixth control element that is to be actuated,
without part type prefix and without part type number.

Data type: loaddata[\PartLoad]

New gripper load after the sequence is executed.

Data type: switch[\SetLoad]

Sets the load of the currently selected part (see partdata – Part data
on page 298).

Data type: switch[\ResetLoad]

Resets the load to load0.

Data type: switch[\NoCheck]

If this switch is used, the system will not wait till the sensors have
reached the required position.

Data type: switch[\CheckOpen]

If this switch is used, the system will wait till the “open” sensors
have reached the required position. No check for “closed” sensors
will be performed.

Data type: switch[\CheckClose]

If this switch is used, the system will wait till the “closed” sensors
have reached the required position. No check for “open” sensors
will be performed.

Data type: string[\Prefix]

Assigns another part type prefix apart from the default prefix.

Data type: num[\ErrorNo]

Combined error domains and error number as positive integer, which
can be used for display in the event of errors. The last four digits
represent the error number, the digits preceding this represent the
error domain.

Data type: switch[\Fault]

If the switch fault is set, a gripper related message will appear as a
fault message, otherwise it will appear as a warning message.

Program execution
The valves of the control elements that have been passed will be opened or closed
depending on the selection. Only those signals that contain a valid signal name
will be considered.

Continues on next page
3HAC044398-001 Revision: C 367

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.19 MT_GripSetType – Controlling the gripper

Continued

To begin with, all the valves will be actuated. This is followed by a waiting time
which is defined by the longest one of all available actuators.
If a sensor fails to reach the required state within the defined waiting period, then
an error message will be output on the programming device and a corresponding
error code will be sent, for example, to an external PLC. To send an error code,
this must be configured in the process configuration first (see the chapter MT API
commands on page 161) .

Tip

In the "Ghost mode", the "NoGhostSet" flag is evaluated in every control element
declaration. If the flag has been set to "TRUE" then the sensors will not be
checked. If the flag has been set to "FALSE" then the sensors will be checked
even in the ghost mode.

Tip

In the "Ghost mode" the "NoGhostCheck" flag is evaluated in every control
element declaration. If the flag has been set to "TRUE", the valve will not be
actuated. If the flag has been set to "FALSE", then the actuation is done even in
the ghost mode.

Restrictions
The optional parameters \PartLoad, \SetLoad and \ResetLoad cannot be used in
common.
The optional parameters \NoCheck, \CheckOpen and \CheckClose cannot be used
in common as well.

Syntax
MT_GripSet

[Position] ´:=´ < expression (IN) of grppos>]

[Grp1 ´:=´ < expression (IN) of string>]

[´\´Grp2 ´:=´ < expression (IN) of string >]

[´\´Grp3 ´:=´ < expression (IN) of string >]

[´\´Grp4 ´:=´ < expression (IN) of string >]

[´\´Grp5 ´:=´ < expression (IN) of string >]

[´\´Grp6 ´:=´ < expression (IN) of string >]

[´\´PartLoad ´:=´ < expression (IN) of loaddata>]

| [´\´SetLoad´]

| [´\´ResetLoad´]

[´\´NoCheck´]

| [´\´CheckOpen´]

| [´\´CheckClose´]

[´\´Prefix ´:=´ < expression (IN) of string >]

[´\´ErrorNo] ´:=´ < expression (IN) of num>]

| [´\´Fault´]´;´

Continues on next page
368 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.19 MT_GripSetType – Controlling the gripper
Continued

More information

SeeInformation about

grpdata – Configuration of a control element of the gripper on page271Gripper data

grppos – Gripper position on page 276Gripper position

3HAC044398-001 Revision: C 369
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.19 MT_GripSetType – Controlling the gripper

Continued

15.2.20 MT_HomeDirect – Movement directly to the home position

Usage
MT_HomeDirect is used in the application program to move the robot directly to
the home position.
This routine has to be implemented by the integrator

Basic example
PROC MT_HomeDirect()

MoveJ p999,v200,fine,tGripper;

ENDPROC

The robot moves directly to the home position at slow speed.

Program execution
If the robot has been manually moved out of the start area of the last position that
was moved to automatically (max. 150 mm) or an undefined condition exists, the
HomeRun (see HomeRun on page 111) strategy cannot be used. In this case, the
robot can only be moved to the home position directly or manually using the joystick.
In this case the robot must be moved manually into a free area in the vicinity of
the home position. The robot is then moved to the home position directly after
operator entry on the programming unit. The "MT_HomeDirect" routine is called
up, in which the direct movement to the home position is stored.

Syntax
MT_HomeDirect ’;’

370 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.20 MT_HomeDirect – Movement directly to the home position

15.2.21 MT_HomeRun – HomeRun Strategy

Usage
MT_HomeRun is used in the application program to define the strategy for moving
the robot to the home position on the basis of the current position number.
In order to do this it must be defined for each start, end or intermediate position
which signals are to be set or interrogated, and which movement routines have to
be called up in order to move the robot to the next position without colliding.
The MT_HomeRun routine is called with the respective current position until the
robot has reached the home position. This routine has to be provided by the
programmer / integrator.

Basic example
PROC MT_HomeRun(num Position)

TEST Position

CASE 10:

mv10_999;

CASE ...

DEFAULT:

MT_ContHomeRun …;

ENDTEST

ENDPROC

If the robot is at position 10, then the movement routine mv10_999 is selected.

Arguments
MT_HomeRun Position

Data type: numPosition

Two to six digit position number that is used to decide where
the robot is going next.

Program execution
HomeRun calls the MT_HomeRun routine and passes the current robot position
as a two to six-digit value. Within MT_HomeRun the decision is made how to
continue to the next position from this position and what conditions (signals,
open/close gripper) must be observed.
The call-up of MT_HomeRun is repeated until the robot is in the home position.

Tip

If the robot is back at the starting position (for example, position 30 � 31 � 30)
after a program part repetition (for example, loading the conveyor), the variable
bMT_HomeRunCheckPos must be set to FALSE to avoid an error message
(position check deactivation).

Example:
TEST Position

Continues on next page
3HAC044398-001 Revision: C 371

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.21 MT_HomeRun – HomeRun Strategy

CASE 30:

IF diPartinGripper=high THEN

Load_Belt;

bMT_HomeRunCheckPos:=FALSE;

ELSE

mv30_999;

ENDIF

CASE ...

ENDTEST

If the robot is in position 30 (belt pre-position) and has a part in the gripper, the
routine for loading the belt is called up. Since the robot has subsequently returned
to position 30, variable bMT_HomeRunCheckPos is set to FALSE.

Syntax
MT_HomeRun

[Position ’:=’] < expression (IN) of num> ’;’

More information

SeeInformation about

Strategy for automatic movement into the home
position on page 140

Creating the HomeRun strategy

MT_ContHomeRun –Continue amovement routine
on page 324

Continuation of robot movement

MT_MoveRoutine – Execute a movement routine
at HomeRun on page 403

Backwards processing of a movement
routine

372 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.21 MT_HomeRun – HomeRun Strategy
Continued

15.2.22 MT_HomeRunSavePos – Saving the stop position

Usage
MT_HomeRunSavePos is used to save the current robot position (robtarget) as
soon as the robot stops moving.
With the aid of this position a check is made in HomeRun whether the robot has
been moved manually.

Basic example
PROC main()

...

IF ... RAISE 1;

ERROR

IF ERRNO=1 THEN

MT_HomeRunSavePos;

RETURN;

ENDIF

ENDPROC

The current robot position is saved in the error handler and the program is restarted
from the beginning (start from "main“).

Program execution
If the move to the home position is to take place without a program stop from the
program sequence or the error handling or triggered via an interrupt, the current
robot position must first be saved by directly calling the MT_HomeRunSavePos
instruction.
Example:

TRAP T_HomePos

IDelete irHomePos;

StopMove;

MT_HomeRunSavePos;

ExitCycle;

ENDTRAP

Syntax
MT_HomeRunSavePos ’;’

More information

SeeInformation about

MT_Exit – Program processing complete on
page 334

MT_Exit - Program processing complete

MT_ExitCycle – Abort current cycle and start
next cycle on page 335

MT_ExitCycle – Abort current cycle and
start next cycle.

3HAC044398-001 Revision: C 373
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.22 MT_HomeRunSavePos – Saving the stop position

15.2.23 MT_MoveJ – Robot axis movement

Usage
MT_MoveJ is used to move the robot quickly from one point to another, if this
movement does not have to be in a straight line. When the robot reaches the
destination position, the numeric value that is passed is saved as the current
position.
The robot and the external axes move to the destination position along a non-linear
path. All axes reach the destination position simultaneously.
This instruction can only be used in the Main task T_ROB1 or in motion tasks in
the case of a MultiMove system.
The instruction basically corresponds to a MoveJ with some additions.

Basic example
Position No. 11:
MT_MoveJ 11, p11, v1000, z30, tGripper;

The TCP of the tGripper tool moves to position p11 in an axle-related way at speed
v1000 and zone data z30. When the position is reached, "11" is stored as the current
position.
Intermediate position of movement from 10 to 11:
MT_MoveJ 111001,* ,vmax, z30, tGripper;

The TCP of the tGripper tool moves in an axis-related way to the position
programmed in the instruction (marked with an *) and then saves “111001” as
current position.

Arguments
MT_MoveJ [\Conc] ActPos ToPoint speed [\T] zone [\Inpos]

Tool [\Wobj] [\NoMove]

Data type: switch[\Conc] Concurrent

The following instructions are executed whilst the robot is in
motion.
Further information can be obtained from the MoveJ instruction.

Data type: dnumActPos

Contains the position number of the position to be moved to.

Data type: robtargetToPoint

The destination point of the robot and external axes. It is defined
as a named position or stored directly in the instruction (marked
with an * in the instruction).

Data type: speeddataspeed

The speed programmed for the movement. The speed data
define the velocity of the TCP, of the tool reorientation and of
external axes.

Data type: num[\T] (Time)

This argument is used to specify the time in seconds during
which a movement of the manipulator and of the external axes
should be executed. This value is then substituted for the cor-
responding speed data.

Continues on next page
374 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.23 MT_MoveJ – Robot axis movement

Data type: zonedataZone

Zone data for the movement. Zone data describe the distance
in which the axes must stand from the destination point before
the next instruction is executed.

Data type: stoppointdata[\Inpos]

This argument is used to specify the convergence criteria for
the position of the robot’s TCP in the stop point. The stop point
data substitutes the zone specified in the Zone parameter.

Data type: tooldataTool

The tool in use when the robot moves. The tool centre point is
moved to the specified destination point.

Data type: wobjdata[\Wobj]

The work object (tool coordinate system) to which the robot
position in the instruction is related. This argument can be
omitted. In this case the position relates to the world coordinate
system.

Data type: switch[\NoMove]

This switch is used in the first position of a movement routine
and serves to avoid stop functions by moving to a position twice.

Program execution
After reaching the programmed position, the transferred position number is saved
as current robot position.
If the robot is moved to the home position using HomeRun, the position
number-dependent movement routine is called up by the "MT_HomeRun" routine,
and the first position to be moved to (start position) is searched for, i.e. no
movement takes place until the saved robot position is identical with the position
number in the movement instruction.
Since the linear or axis-related movement mode is saved whenever a movement
command is executed, it is ensured that the movement to the start position is
performed with the same movement mode that was used previously.
To find the start position of a movement, the two-digit respectively the three-digit
start point of the movement must always be contained as first movement command
in the movement routine. The \NoMove switch is set for this instruction to avoid
stop points.
When using the instruction MT_MoveJ together with the NoMove argument, the
following settings will cause the behaviour as described:

• TRUE: MT_MoveJ instruction with NoMove-Argument will be executed for
instruction-wise approach in manual mode of the robot only.

• FALSE: MT_MoveJ instruction with NoMove-Argument will always be executed
in manual mode.

In automatic mode of the robot controller, this parameter does not affect the
behaviour of the instruction.

Note

In programming mode, this position (\NoMove) is only moved to if the program
line is executed forwards one instruction at a time.

Continues on next page
3HAC044398-001 Revision: C 375

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.23 MT_MoveJ – Robot axis movement

Continued

Syntax
MT_MoveJ

[’\’Conc ’,’]

[ActPos ’:=’] < expression (IN) of dnum> ’,’

[ToPoint ’:=’] < expression (IN) of robtarget > ’,’

[speed ’:=’] < expression (IN) of speeddata >

[’\’T ’:=’ < expression (IN) of num > ’,’]

[zone ’:=’] < expression (IN) of zonedata >

[’\’Inpos’:=’< expression (IN) of stoppointdata > ’,’]

[Tool ’:=’] < persistent (PERS) of tooldata >

[’\’WObj ’:=’ < persistent (PERS) of wobjdata >]

[’\’NoMove] ’;’

Other information

SeeInformation about

Technical Reference Manual – Instructions, Functions and
Data Types listed in the section References on page 11.

MoveJ - Robot axis movement

376 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.23 MT_MoveJ – Robot axis movement
Continued

15.2.24 MT_MoveJDO – Robot axis movement and setting of a digital output

Usage
MT_MoveJDO is used to move the robot quickly from one point to another, if this
movement does not have to be in a straight line.
The position number assignment and the setting/resetting of the digital output
signal take place in the middle of the corner path.
The robot and the external axes move to the destination position along a non-linear
path. All axes reach the destination position simultaneously.
This instruction can only be used in the Main task T_ROB1 or in motion tasks in
the case of a MultiMove system.
The instruction basically corresponds to a MoveJDO with additions extensions.

Basic example
MT_MoveJDO 11, p11, v1000, z30, tGripper, doIRBoutArea, 1;

The TCP of the tGripper tool moves in an axis-related way to position p11 at speed
v1000 and with zone data z30. In the middle of path of the zone of p11 the position
number "11" is saved as the current position and output doIRBoutArea is set to
"1".

Arguments
MT_MoveJDO [\Conc] ActPos ToPoint speed [\T] zone [\Inpos] Tool

[\Wobj] Signal Value [\DODelay]

Data type: switch[\Conc]
Concurrent The following instructions are executed whilst the robot is in motion.

Further information can be obtained from the MoveJ instruction.

Data type: dnumActPos

Contains the position number of the position to be moved to

Data type: robtargetToPoint

The destination point of the robot and external axes. It is defined as
a named position or stored directly in the instruction (marked with
an * in the instruction).

Data type: speeddataSpeed

The speed programmed for the movement. The speed data define
the velocity of the TCP, of the tool reorientation and of external axes.

Data type: num[\T](Time)

This argument is used to specify the time in seconds during which
a movement of the manipulator and of the external axes should be
executed. This value is then substituted for the corresponding speed
data.

Data type: zonedataZone

Zone data for the movement. Zone data describe the distance in
which the axes must stand from the destination point before the
next instruction is executed.

Continues on next page
3HAC044398-001 Revision: C 377

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.24 MT_MoveJDO – Robot axis movement and setting of a digital output

Data type: stoppointdata[\Inpos]

This argument is used to specify the convergence criteria for the
position of the robot’s TCP in the stop point. The stop point data
substitutes the zone specified in the Zone parameter.

Data type: tooldataTool

The tool in use when the robot moves. The tool centre point is moved
to the specified destination point.

Data type: wobjdata[\Wobj]

The work object (tool coordinate system) to which the robot position
in the instruction is related. This argument can be omitted. In this
case the position relates to the world coordinate system.

Data type: signaldoSignal

The name of the digital output.

Data type: dionumValue

The required value of the signal (0 or 1 or high or low).

Data type: num[\DODelay]
Digital Output
Delay

Used to delay the setting of output signals after the robot has
reached the specified position. There is no delay if this argument is
omitted.
The delay is not synchronized with the movement.

Program execution
More information about axis-specific movements can be found in the explanations
for instruction MoveJDO or MoveJ.
The digital output signal and the passed position number are set/reset in the middle
of the corner path for fly-by points, as shown in the following figure.

en1200000791

The specified I/O signal is set/reset in continuous and forwards one step at a time
execution mode, but not in backwards one step at a time execution mode.
If the robot is moved to the home position using the HomeRun routine, the position
number-dependent movement routine is called up by the MT_HomeRun routine,

Continues on next page
378 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.24 MT_MoveJDO – Robot axis movement and setting of a digital output
Continued

and the first position to be moved to (start position) is searched for, that is, no
movement takes place until the saved robot position is identical with the position
number in the movement instruction.

Note

The MT_MoveJDO instruction may never be used as the first movement
instruction in a movement routine. MT_MoveL or MT_MoveJ with the \NoMove
argument must always be used for this purpose.

Note

No digital output processing takes place during backwards instruction by
instruction execution or when searching for the first position, nor during
backwards movement with "MT_MoveRoutine".

Tip

The output is not set or reset during movement to the home position if the
execution of trigger events (ExecTriggEvt) has been disabled in the system
parameters (FALSE).

Syntax
MT_MoveJDO

[’\’Conc ’,’]

[ActPos ’:=’] < expression (IN) of dnum> ’,’

[ToPoint ’:=’] < expression (IN) of robtarget > ’,’

[speed ’:=’] < expression (IN) of speeddata >

[’\’T’:=’ < expression (IN) of num >] ’,’

[zone ’:=’] < expression (IN) of zonedata >

[’\’Inpos ’:=’ < expression (IN) of stoppointdata >] ’,’

[Tool ’:=’] < persistent (PERS) of tooldata >

[’\’WObj ’:=’ < persistent (PERS) of wobjdata >]

[Signal’:=’] < variable (VAR) of signaldo >

[Value’:=’] < expression (IN) of dionum >

[’\’DODelay’:=’ < variable (IN) of num >]’;’

Other information

SeeInformation about

Technical Reference Manual – Instructions, Func-
tions and Data Types listed in the section Refer-
ences on page 11.

MoveJ - Robot axis movement

Technical Reference Manual – Instructions, Func-
tions and Data Types listed in the section Refer-
ences on page 11.

MoveJDO - Robot axis movement and
setting of a digital output in the corner
path

3HAC044398-001 Revision: C 379
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.24 MT_MoveJDO – Robot axis movement and setting of a digital output

Continued

15.2.25 MT_MoveJGO – Robot axis movement and setting of a group output

Usage
MT_MoveJGO is used to move the robot quickly from one point to another, if this
movement does not have to be in a straight line.
The position number assignment and the setting of the group output signal take
place in the middle of the corner path.
The robot and the external axes move to the destination position along a non-linear
path. All axes reach the destination position simultaneously.
This instruction can only be used in the Main task T_ROB1 or in motion tasks in
the case of a MultiMove system.

Basic example
MT_MoveJGO 11, p11, v1000, z30, tGripper, goArea, 11;

The TCP of the tGripper tool moves in an axis-related way to position p11 at speed
v1000 and with zone data z30, and then saves "11" as the current position. Group
output goArea is set to 11 in the middle of the path in the zone of p11.
MT_MoveJGO 11, p11, v1000, z30, tGripper, goArea,0xFFFFFF;

The 32-bit group output goArea is set to the hexadecimal value "FFFFFF" or
4294967295 in the middle of the path.

Arguments
MT_MoveJGO [\Conc] ActPos ToPoint speed [\T] zone [\Inpos] Tool

[\Wobj] [Signal Value [\DODelay]

Data type: switch[\Conc]
Concurrent The following instructions are executed whilst the robot is in motion.

Further information can be obtained from the MoveL instruction.

Data type: dnumActPos

Contains the position number of the position to be moved to

Data type: robtargetToPoint

The destination point of the robot and external axes. It is defined as
a named position or stored directly in the instruction (marked with
an * in the instruction).

Data type: speeddataspeed

The speed programmed for the movement. The speed data define
the velocity of the TCP, of the tool reorientation and of external axes.

Data type: num[\T](Time)

This argument is used to specify the time in seconds during which
a movement of the manipulator and of the external axes should be
executed. This value is then substituted for the corresponding speed
data.

Data type: zonedatazone

Zone data for the movement. Zone data describe the distance in
which the axes must stand from the destination point before the
next instruction is executed.

Continues on next page
380 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.25 MT_MoveJGO – Robot axis movement and setting of a group output

Data type: stoppointdata[\Inpos]

This argument is used to specify the convergence criteria for the
position of the robot’s TCP in the stop point. The stop point data
substitutes the zone specified in the Zone parameter.

Data type: tooldataTool

The tool in use when the robot moves. The tool centre point is moved
to the specified destination point.

Data type: wobjdata[\Wobj]

The work object (tool coordinate system) to which the robot position
in the instruction is related. This argument can be omitted. In this
case the position relates to the world coordinate system.

Data type: signalgoSignal

The name of the digital group output

Data type: dnumValue

The required integer value of the signal between 0 and 4294967295
(max. group output width 32 bits)

Data type: num[\DODelay]
Digital Output
Delay

Used to delay the setting of the group output after the robot has
reached the specified position. There is no delay if this argument is
omitted.
The delay is not synchronized with the movement.

Program execution
More information about axis-specific movements can be found in the explanations
for instruction MoveJDO or MoveJ.
The digital group output and the passed position number are set/reset in the middle
of the corner path for fly-by points, as shown in the following figure.

en1300000155

Continues on next page
3HAC044398-001 Revision: C 381

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.25 MT_MoveJGO – Robot axis movement and setting of a group output

Continued

The specified I/O signal is set/reset in continuous and "forwards one step at a time"
execution mode, but not in "backwards one step at a time" execution mode.

Note

The MT_MoveJGO instruction may never be used as the first movement
instruction in a movement routine. MT_MoveL or MT_MoveJ with the \NoMove
argument must always be used for this purpose.

Note

No digital group output processing takes place during backwards instruction by
instruction execution or when searching for the first position, nor during
backwards movement with "MT_MoveRoutine".

Tip

The digital group output is not set or reset during movement to the home position
if the execution of trigger events (ExecTriggEvt) has been disabled in the system
parameters (FALSE).

Syntax
MT_MoveJGO

[’\’Conc ’,’]

[ActPos ’:=’] < expression (IN) of dnum> ’,’

[ToPoint ’:=’] < expression (IN) of robtarget > ’,’

[speed ’:=’] < expression (IN) of speeddata >

[’\’T’:=’ < expression (IN) of num >] ’,’

[zone ’:=’] < expression (IN) of zonedata >

[’\’Inpos ’:=’ < expression (IN) of stoppointdata >] ’,’

[Tool ’:=’] < persistent (PERS) of tooldata >

[’\’WObj ’:=’ < persistent (PERS) of wobjdata >]

[Signal’:=’] < variable (VAR) of signalgo >

[Value’:=’] < expression (IN) of dionum >

[’\’DODelay’:=’ < variable (IN) of num >]’;’

Other information

SeeInformation about

Technical Reference Manual – Instructions,
Functions and Data Types

MoveJ - Robot axis movement

Technical Reference Manual – Instructions,
Functions and Data Types

MoveJDO - Robot axis movement and set-
ting of a digital output in the corner path

382 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.25 MT_MoveJGO – Robot axis movement and setting of a group output
Continued

15.2.26 MT_MoveJSync – Axis-wise movement and processing a procedure

Usage
MT_MoveJSync (Move Joint Synchronously) is used to move the robot quickly
from one point to another, if this movement does not have to be in a straight line.
The position number assignment and the execution of the specified RAPID
procedure takes place in the centre of the corner path.
The robot and the external axes move to the destination position along a non-linear
path. All axes reach the destination position simultaneously.
This instruction can only be used in the Main task T_ROB1 or in motion tasks in
the case of a MultiMove system.
The instruction basically corresponds to a MoveJSync with the addition of the
position number.

Basic example
Example 1:

MT_MoveJSync 111001,p111001,vmax, z30, tGripper,"OpenGripper";

The TCP of the tGripper tool moves in an axis-related way to the position
programmed in the instruction p111001 and then saves 111001 as the current
position. The OpenGripper procedure OpenGripper is processed in the middle of
the corner path at p111001 .
Example 2:

MT_MoveJSync 111002,*,vmax,z30,tGripper,"MySync"\PNum:=2;

The TCP moves in an axis-related way to the position programmed in the instruction
and calls up the procedure "MySync“ with the numeric passing parameter "2".

Arguments
MT_MoveJSync [\Conc] ActPos ToPoint speed [\T] zone [\Inpos] Tool

[\Wobj] ProcName [\PNum] [\PDnum] [\PStr]

Data type: switch[\Conc]
Concurrent The following instructions are executed whilst the robot is in motion.

Further information can be obtained from the MoveL instruction.

Data type: dnumActPos

Contains the position number of the position to be moved to

Data type: robtargetToPoint

The destination point of the robot and external axes. It is defined as
a named position or stored directly in the instruction (marked with
an * in the instruction).

Data type: speeddataspeed

The speed programmed for the movement. The speed data define
the velocity of the TCP, of the tool reorientation and of external axes.

Data type: num[\T] (Time)

This argument is used to specify the time in seconds during which
a movement of the manipulator and of the external axes should be
executed. This value is then substituted for the corresponding speed
data.

Continues on next page
3HAC044398-001 Revision: C 383

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.26 MT_MoveJSync – Axis-wise movement and processing a procedure

Data type: zonedataZone

Zone data for the movement. Zone data describe the distance in
which the axes must stand from the destination point before the
next instruction is executed.

Data type: stoppointdata[\Inpos]

This argument is used to specify the convergence criteria for the
position of the robot’s TCP in the stop point. The stop point data
substitutes the zone specified in the Zone parameter.

Data type: tooldataTool

The tool in use when the robot moves. The tool centre point is moved
to the specified destination point.

Data type: wobjdata[\Wobj]

The work object (tool coordinate system) to which the robot position
in the instruction is related. This argument can be omitted. In this
case the position relates to the world coordinate system.

Data type: stringProcName

Name of the RAPID procedure to be executed at the middle of the
corner path in the destination point.

Data type: num[\PNum]

Numeric passing parameter to be passed to the calling RAPID pro-
cedure.

Data type: dnum[\PDnum]

Double numeric passing parameter to be passed to the calling
RAPID procedure.

Data type: string[\PStr]

String to be passed to the calling RAPID procedure.

Continues on next page
384 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.26 MT_MoveJSync – Axis-wise movement and processing a procedure
Continued

Program execution
More information about axis-specific movements can be found in the explanations
for instruction MoveJSync or MoveJ.
The specified RAPID procedure and the position number are processed when the
TCP reaches the middle of the corner path at the destination point of the
MT_MoveJSync instruction.

en1200000793

The execution of the specified RAPID procedure in different execution modes:

Execution of RAPID procedureExecution mode

According to this descriptionContinuously or Cycle

In the stop pointForward step

Not at allBackward step

Not at allDuring backwards movement with MT_MoveRoutine

At the stop pointUse of "fine" points

MT_MoveJSync is an encapsulation of the TriggInt and TriggJ instructions.
The procedure call is executed at TRAP level.
If the centre of the corner path at the destination point is reached during the
slowdown after a program stop, the procedure is not called up (program execution
is stopped). The procedure call is executed when the next program start takes
place.

Note

The MT_MoveJSync instruction may never be used as the first movement
instruction in a movement routine. MT_MoveL or MT_MoveJ with the \NoMove

argument must always be used for this purpose.

Continues on next page
3HAC044398-001 Revision: C 385

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.26 MT_MoveJSync – Axis-wise movement and processing a procedure

Continued

Note

The specified RAPID procedure is not processed during backwards instruction
by instruction execution or when searching for the first position, nor during
backwards movement with MT_MoveRoutine.

Tip

The RAPID procedure is not executed during movement to the home position if
the execution of trigger events (ExecTriggEvt) has been disabled in the system
parameters (FALSE).

Use of the RAPID routine
Local routines
A routine that is declared locally in the module can be called up by specifying the
module name, for example, "Module:Routine"
Example:

MT_MoveJSync 10,p10,v1000,z10,tGripper,"MyModule:MySync

MODULE MyModule

LOCAL PROC MySync()

…

ENDPROC

ENDMODULE

The procedure that is declared locally in the "MyModule" module ("MySync") will
call up the centre of the corner path p10.
Use of parameters
A num, a dnum and/or a string parameter can also be passed to a RAPID routine.
During the creation of the calling RAPID routine it must be ensured that it contains
the relevant passing parameters.
If several parameters are used, the order (num, dnum, string) must be taken into
consideration.
Example:

PROC mv10_11()

MT_MoveJSync 101101,*,v1000,z10,tGripper,"MySync1"\PNum:=1;

MT_MoveJSync 101102,*,v1000,z10,tGripper,"MySync2"

\PStr:="Test";

MT_MoveJSync 101103,*,v1000,z10,tGripper,"MySync3"

\PNum:=5\PDnum:=10\PStr:="Test";

ENDPROC…

PROC MySync1(num Value)

Tpwrite "Sync 1: "\Num:=Value;

ENDPROC

PROC MySync2(string Value)

Tpwrite "Sync 2: "+Value;

ENDPROC

PROC MySync3(num Value1, dnum Value2, string Value3)

Continues on next page
386 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.26 MT_MoveJSync – Axis-wise movement and processing a procedure
Continued

Tpwrite "Sync 3: "+Valtostr(Value1)+ "/"+ Value3;

TEST Value2

CASE 10:

…

CASE 11:

…

ENDTEST

ENDPROC

Limitations
The MT_MoveJSync instruction cannot be used at interrupt level.
The specified RAPID procedure cannot be tested with stepwise execution.
When the robot reaches the centre of the corner path, the RAPID routine is usually
executed after a delay of 20-30s, depending on the type pf movement being made
at the time.
A change of execution mode from continuous or cyclic to forwards or backwards
after a program stop results in an error. This error tells the user that the mode
change can result in the RAPID procedure being omitted from the queue for
execution on the path.

Syntax
MT_MoveJSync

[’\’Conc ’,’]

[ActPos ’:=’] < expression (IN) of dnum> ’,’

[ToPoint ’:=’] < expression (IN) of robtarget > ’,’

[Speed ’:=’] < expression (IN) of speeddata >

[’\’T’:=’ < expression (IN) of num >] ’,’

[Zone ’:=’] < expression (IN) of zonedata >

[’\’Inpos ’:=’ < expression (IN) of stoppointdata >]’,’

[Tool ’:=’] < persistent (PERS) of tooldata >

[’\’WObj ’:=’ < persistent (PERS) of wobjdata >]

[ProcName ’:=’] < variable (IN) of string >

[’\’PNum:=’< expression (IN) of num >]’,’

[’\’PDnum’:=’< expression (IN) of dnum >]

[’\’PStr’:=’< expression (IN) of string >]’;’

Other information

SeeInformation about

Technical Reference Manual – Instructions, Func-
tions and Data Types listed in the section Refer-
ences on page 11.

MoveJSync - Move robot by means of
axis movement and execution of a
RAPID procedure

Technical Reference Manual – Instructions, Func-
tions and Data Types listed in the sectionRefer-
ences on page 11.

TriggInt - Definition of a position-de-
pendent interrupt

Technical Reference Manual – Instructions, Func-
tions and Data Types listed in the section Refer-
ences on page 11.

TriggJ - Axis-wise robot movement
with events.

3HAC044398-001 Revision: C 387
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.26 MT_MoveJSync – Axis-wise movement and processing a procedure

Continued

15.2.27 MT_MoveL – Linear robot movement.

Usage
MoveL is used to move the tool centre point (TCP) linearly to a specified destination.
If the TCP is to remain stationary, this instruction can also be used to reorient the
tool.
When the robot reaches the destination position, the numeric value that is passed
is saved as the current position.
This instruction can only be used in the Main task T_ROB1 or in motion tasks in
the case of a MultiMove system.
The instruction basically corresponds to a MoveL with some additions.

Basic example
Position No. 11:
MT_MoveL 11, p11, v1000, z30, tGripper;
The TCP of the tGripper tool moves to position p11 linearly at speed v1000 and
with zone data z30. When the position is reached, "11" is stored as the current
position.
Intermediate position of movement from 10 to 11:
MT_MoveL 111001,* ,vmax, z30, tGripper;
The TCP of the tGripper tool moves linearly to the position programmed in the
instruction (marked with an *) and then saves “111001” as current position.

Arguments
MT_MoveL [\Conc] ActPos ToPoint speed [\T] zone [\Inpos]

Tool [\Wobj] [\NoMove] [\Corr]

Data type: switch[\Conc]
Concurrent The following instructions are executed whilst the robot is in motion.

Further information can be obtained from the MoveL instruction.

Data type: dnumActPos

Contains the position number of the position to be moved to

Data type: robtargetToPoint

The destination point of the robot and external axes. It is defined as
a named position or stored directly in the instruction (marked with
an * in the instruction).

Data type: speeddataspeed

The speed programmed for the movement. The speed data define
the velocity of the TCP, of the tool reorientation and of external axes.

Data type: num[\T] (Time)

This argument is used to specify the time in seconds during which
a movement of the manipulator and of the external axes should be
executed. This value is then substituted for the corresponding speed
data.

Continues on next page
388 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.27 MT_MoveL – Linear robot movement.

Data type: zonedataZone

Zone data for the movement. Zone data describe the distance in
which the axes must stand from the destination point before the
next instruction is executed.

Data type: stoppointdata[\Inpos]

This argument is used to specify the convergence criteria for the
position of the robot’s TCP in the stop point. The stop point data
substitutes the zone specified in the Zone parameter.

Data type: tooldataTool

The tool in use when the robot moves. The tool centre point is moved
to the specified destination point.

Data type: wobjdata[\Wobj]

The work object (tool coordinate system) to which the robot position
in the instruction is related. This argument can be omitted. In this
case the position relates to the world coordinate system.

Data type: switch[\Corr]

Correction data that has been written in a correction entry using the
CorrWrite instruction is added to the path and the destination position
if this argument is present.

Data type: switch[\NoMove]

This switch is used in the first position of a movement routine and
serves to avoid stop functions by moving to a position twice.

Program execution
After reaching the programmed position, the transferred position number is saved
as current robot position.
If the robot is moved to the home position using the HomeRun routine, the position
number-dependent movement routine is called up by the MT_HomeRun routine,
and the first position to be moved to (start position) is searched for, that is, no
movement takes place until the saved robot position is identical with the position
number in the movement instruction.
Since the linear or axis-related movement mode is saved in every movement
command, it is assured that the movement to the start position is performed with
the same movement mode as was used previously.
To find the start position of a movement, the two-digit respectively the three-digit
start point of the movement must always be contained as first movement command
in the movement routine. The \NoMove switch is set for this instruction to avoid
stop points.
When using the instruction MT_MoveL together with the NoMove argument, the
following settings will cause the behaviour as described:

• TRUE: MT_MoveL instruction with NoMove-Argument will be executed for
instruction-wise approach in manual mode of the robot only.

• FALSE: MT_MoveL instruction with NoMove-Argument will always be executed
in manual mode.

Continues on next page
3HAC044398-001 Revision: C 389

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.27 MT_MoveL – Linear robot movement.

Continued

In automatic mode of the robot controller, this parameter does not affect the
behaviour of the instruction.

Note

In programming mode, this position (\NoMove) is only moved to if the program
line is executed forwards one instruction at a time.

Syntax
MT_MoveL

[’\’Conc ’,’]

[ActPos ’:=’] < expression (IN) of dnum> ’,’

[ToPoint ’:=’] < expression (IN) of robtarget > ’,’

[Speed ’:=’] < expression (IN) of speeddata >

[’\’T ’:=’ < expression (IN) of num > ’,’]

[Zone ’:=’] < expression (IN) of zonedata >

[’\’Inpos’:=’< expression (IN) of stoppointdata > ’,’]

[Tool ’:=’] < persistent (PERS) of tooldata >

[’\’WObj ’:=’ < persistent (PERS) of wobjdata >]

[’\’NoMove]

[’\’Corr]’;

Other information

SeeInformation about

Technical Reference Manual – Instructions,
Functions and Data Types listed in the section
References on page 11.

MoveJSync - Move robot by means of axis
movement and execution of a RAPID proced-
ure

390 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.27 MT_MoveL – Linear robot movement.
Continued

15.2.28 MT_MoveLDO – Linear movement and setting a digital output in the zone

Usage
MT_MoveLDO is used to move the tool centre point (TCP) linearly to a specified
destination. The position number assignment and the setting/resetting of the digital
output signal take place in the middle of the corner path.
If the TCP is to remain stationary, this instruction can also be used to reorient the
tool.
This instruction can only be used in the Main task T_ROB1 or in motion tasks in
the case of a MultiMove system
The instruction basically corresponds to a MoveLDO with some additions.

Basic example
MT_MoveLDO 11, p11, v1000, z30, tGripper, doIRBoutArea, 1;

The TCP of the tGripper tool moves in a linear way to position p11 at speed v1000
and with zone data z30. In the middle of path of the zone of p11 the position number
"11" is saved as the current position and output doIRBoutArea is set to "1".

Arguments
MT_MoveLDO

[\Conc] ActPos ToPoint speed [\T] zone [\Inpos] Tool [\Wobj] Signal
Value [\DODelay] [\Corr]

Data type: switch[\Conc]
Concurrent The following instructions are executed whilst the robot is in motion.

Further information can be obtained from the MoveL instruction.

Data type: dnumActPos

Contains the position number of the position to be moved to

Data type: robtargetToPoint

The destination point of the robot and external axes. It is defined as
a named position or stored directly in the instruction (marked with
an * in the instruction).

Data type: speeddataspeed

The speed programmed for the movement. The speed data define
the velocity of the TCP, of the tool reorientation and of external axes.

Data type: num[\T] (Time)

This argument is used to specify the time in seconds during which
a movement of the manipulator and of the external axes should be
executed. This value is then substituted for the corresponding speed
data.

Data type: zonedataZone

Zone data for the movement. Zone data describe the distance in
which the axes must stand from the destination point before the
next instruction is executed.

Data type: stoppointdata[\Inpos]

This argument is used to specify the convergence criteria for the
position of the robot’s TCP in the stop point. The stop point data
substitutes the zone specified in the Zone parameter.

Continues on next page
3HAC044398-001 Revision: C 391

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.28 MT_MoveLDO – Linear movement and setting a digital output in the zone

Data type: tooldataTool

The tool in use when the robot moves. The tool centre point is moved
to the specified destination point.

Data type: wobjdata[\Wobj]

The work object (tool coordinate system) to which the robot position
in the instruction is related. This argument can be omitted. In this
case the position relates to the world coordinate system.

Data type: signaldoSignal

The name of the digital output.

Data type: dionumValue

The required value of the signal (0 or 1 or high or low).

Data type: num[\DODelay]
Digital Output
Delay

Used to delay the setting of output signals after the robot has
reached the specified position. There is no delay if this argument is
omitted.
The delay is not synchronized with the movement.

Data type: switch[\Corr]

Correction data that has been written in a correction entry using the
CorrWrite instruction is added to the path and the destination position
if this argument is present.

Program execution
More information about linear movements can be found in the explanations for
instruction MoveLDO or MoveL.
The digital output signal and the passed position number are set/reset in the middle
of the corner path for fly-by points, as shown in the the following figure.

en1200000794

The specified I/O signal is set/reset in continuous and forwards one step at a time
execution mode, but not in backwards one step at a time execution mode.
If the robot is moved to the home position using the HomeRun routine, the position
number-dependent movement routine is called up by the MT_HomeRun routine,
and the first position to be moved to (start position) is searched for, that is, no

Continues on next page
392 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.28 MT_MoveLDO – Linear movement and setting a digital output in the zone
Continued

movement takes place until the saved robot position is identical with the position
number in the movement instruction.

Note

The MT_MoveLDO instruction may never be used as the first movement
instruction in a movement routine. MT_MoveL or MT_MoveJ with the \NoMove
argument must always be used for this purpose.

Note

No digital output processing takes place during backwards instruction by
instruction execution or when searching for the first position, nor during
backwards movement with "MT_MoveRoutine".

Tip

The output is not set or reset during movement to the home position if the
execution of trigger events (ExecTriggEvt) has been disabled in the system
parameters (FALSE).

Syntax
MT_MoveLDO

[’\’Conc ’,’]

[ActPos ’:=’] < expression (IN) of dnum> ’,’

[ToPoint ’:=’] < expression (IN) of robtarget > ’,’

[speed ’:=’] < expression (IN) of speeddata >

[’\’T’:=’ < expression (IN) of num >] ’,’

[zone ’:=’] < expression (IN) of zonedata >

[’\’Inpos ’:=’ < expression (IN) of stoppointdata >]’,’

[Tool ’:=’] < persistent (PERS) of tooldata >

[’\’WObj ’:=’ < persistent (PERS) of wobjdata >]

[Signal’:=’] < variable (VAR) of signaldo >

[Value’:=’] < expression (IN) of dionum >

[’\’DODelay’:=’ < variable (IN) of num >]

[’\’Corr]’;’

Other information

SeeInformation about

Technical Reference Manual – Instructions, Func-
tions and Data Types listed in the sectionReferences
on page 11.

MoveL – Linear robot movement.

Technical Reference Manual – Instructions, Func-
tions and Data Types listed in the sectionReferences
on page 11.

MoveLDO - Linear robot movement
and setting of a digital output in the
zone

3HAC044398-001 Revision: C 393
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.28 MT_MoveLDO – Linear movement and setting a digital output in the zone

Continued

15.2.29 MT_MoveLGO – Linear robot movement and set group output in zone

Usage
MT_MoveLGO is used to move the tool centre point (TCP) linearly to a specified
destination. The position number assignment and the setting of the digital group
output take place in the middle of the corner path.
If the TCP is to remain stationary, this instruction can also be used to reorient the
tool.
This instruction can only be used in the Main task T_ROB1 or in motion tasks in
the case of a MultiMove system.

Basic example
MT_MoveLGO 11, p11, v1000, z30, tGripper, goArea, 11;
The TCP of the tGripper tool moves in a linear way to position p11 at speed v1000
and with zone data z30, and then saves "11" as the current position. Group output
goArea is set to 11 in the middle of the path in the zone of p11.
MT_MoveJGO 11, p11, v1000, z30, tGripper, goArea,0xFFFFFF;
The 32-bit group output goArea is set to the hexadecimal value "FFFFFF" or
4294967295 in the middle of the path.

Arguments
MT_MoveLGO

[\Conc] ActPos ToPoint speed [\T] zone [\Inpos]

Tool [\Wobj] Signal Value [\DODelay] [\Corr]

Data type: switch[\Conc]
Concurrent The following instructions are executed whilst the robot is in motion.

Further information can be obtained from the MoveL instruction.

Data type: dnumActPos

Contains the position number of the position to be moved to

Data type: robtargetToPoint

The destination point of the robot and external axes. It is defined as
a named position or stored directly in the instruction (marked with
an * in the instruction).

Data type: speeddataspeed

The speed programmed for the movement. The speed data define
the velocity of the TCP, of the tool reorientation and of external axes.

Data type: num[\T] (Time)

This argument is used to specify the time in seconds during which
a movement of the manipulator and of the external axes should be
executed. This value is then substituted for the corresponding speed
data.

Data type: zonedataZone

Zone data for the movement. Zone data describe the distance in
which the axes must stand from the destination point before the
next instruction is executed.

Continues on next page
394 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.29 MT_MoveLGO – Linear robot movement and set group output in zone

Data type: stoppointdata[\Inpos]

This argument is used to specify the convergence criteria for the
position of the robot’s TCP in the stop point. The stop point data
substitutes the zone specified in the Zone parameter.

Data type: tooldataTool

The tool in use when the robot moves. The tool centre point is moved
to the specified destination point.

Data type: wobjdata[\Wobj]

The work object (tool coordinate system) to which the robot position
in the instruction is related. This argument can be omitted. In this
case the position relates to the world coordinate system.

Data type: signaldoSignal

The name of the digital output.

Data type: dionumValue

The required value of the signal (0 or 1 or high or low).

Data type: num[\DODelay]
Digital Output
Delay

Used to delay the setting of output signals after the robot has
reached the specified position. There is no delay if this argument is
omitted.
The delay is not synchronized with the movement.

Data type: switch[\Corr]

Correction data that has been written in a correction entry using the
CorrWrite instruction is added to the path and the destination po-
sition if this argument is present.

Program execution
More information about axis-specific movements can be found in the explanations
for instruction MoveLDO or MoveL.
The digital group output and the passed position number are set/reset in the middle
of the corner path for fly-by points, as shown in the figure below.

en1200000795

Continues on next page
3HAC044398-001 Revision: C 395

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.29 MT_MoveLGO – Linear robot movement and set group output in zone

Continued

The specified I/O signal is set/reset in continuous and "forwards one step at a time"
execution mode, but not in "backwards one step at a time" execution mode.

Note

The MT_MoveLGO instruction may never be used as the first movement
instruction in a movement routine. MT_MoveL or MT_MoveJ with the \NoMove
argument must always be used for this purpose.

Note

No digital group output processing takes place during backwards instruction by
instruction execution or when searching for the first position, nor during
backwards movement with "MT_MoveRoutine".

Tip

The digital group output is not set or reset during movement to the home position
if the execution of trigger events (ExecTriggEvt) has been disabled in the system
parameters (FALSE).

Syntax
MT_MoveJGO

[’\’Conc ’,’]

[ActPos ’:=’] < expression (IN) of dnum> ’,’

[ToPoint ’:=’] < expression (IN) of robtarget > ’,’

[speed ’:=’] < expression (IN) of speeddata >

[’\’T’:=’ < expression (IN) of num >] ’,’

[zone ’:=’] < expression (IN) of zonedata >

[’\’Inpos ’:=’ < expression (IN) of stoppointdata >]’,’

[Tool ’:=’] < persistent (PERS) of tooldata >

[’\’WObj ’:=’ < persistent (PERS) of wobjdata >]

[Signal’:=’] < variable (VAR) of signalgo >

[Value’:=’] < expression (IN) of dionum >

[’\’DODelay’:=’ < variable (IN) of num >]

[’\’Conc]’;’

Other information

SeeInformation about

Technical Reference Manual – Instructions, Func-
tions and Data Types listed in the sectionReferences
on page 11.

MoveL – Linear robot movement.

Technical Reference Manual – Instructions, Func-
tions and Data Types listed in the sectionReferences
on page 11.

MoveLDO - Linear robot movement
and setting of a digital output in the
zone

396 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.29 MT_MoveLGO – Linear robot movement and set group output in zone
Continued

15.2.30 MT_MoveLSync – Linear movement and execution of a RAPID procedure

Usage
MT_MoveLSync (Move Linearly Synchronously) is used to move the tool centre
point (TCP) linearly to a specified destination.
The position number assignment and the execution of the specified RAPID
procedure takes place in the centre of the corner path.
If the TCP is to remain stationary, this instruction can also be used to reorient the
tool.
This instruction can only be used in the Main task T_ROB1 or in motion tasks in
the case of a MultiMove system.
The instruction basically corresponds to a MoveLSync with the addition of the
position number.

Basic example
Example 1:

MT_MoveLSync 111001,p111001,vmax, z30, tGripper,"OpenGripper";

The TCP of the tGripper tool moves in a linear to the position programmed in the
instruction p111001 and then saves 111001 as the current position. The
OpenGripper procedure OpenGripper is processed in the middle of the corner path
at p111001 .
Example 2:

MT_MoveLSync 111002,*,vmax,z30,tGripper,"MySync"\PStr:= "Hello";

The TCP moves linear to the position programmed in the instruction and calls up
the procedure "MySync“ with the passing parameter "Hello".

Arguments
MT_MoveLSync

[\Conc] ActPos ToPoint speed [\T] zone [\Inpos]

Tool [\Wobj] ProcName [\PNum] [\PDnum] [\PStr] [\Corr]

Data type: switch[\Conc]
Concurrent The following instructions are executed whilst the robot is in motion.

Further information can be obtained from the MoveL instruction.

Data type: dnumActPos

Contains the position number of the position to be moved to

Data type: robtargetToPoint

The destination point of the robot and external axes. It is defined as
a named position or stored directly in the instruction (marked with
an * in the instruction).

Data type: speeddataspeed

The speed programmed for the movement. The speed data define
the velocity of the TCP, of the tool reorientation and of external axes.

Continues on next page
3HAC044398-001 Revision: C 397

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.30 MT_MoveLSync – Linear movement and execution of a RAPID procedure

Data type: num[\T] (Time)

This argument is used to specify the time in seconds during which
a movement of the manipulator and of the external axes should be
executed. This value is then substituted for the corresponding speed
data.

Data type: zonedataZone

Zone data for the movement. Zone data describe the distance in
which the axes must stand from the destination point before the
next instruction is executed.

Data type: stoppointdata[\Inpos]

This argument is used to specify the convergence criteria for the
position of the robot’s TCP in the stop point. The stop point data
substitutes the zone specified in the Zone parameter.

Data type: tooldataTool

The tool in use when the robot moves. The tool centre point is moved
to the specified destination point.

Data type: wobjdata[\Wobj]

The work object (tool coordinate system) to which the robot position
in the instruction is related. This argument can be omitted. In this
case the position relates to the world coordinate system.

Data type: stringProcName

Name of the RAPID procedure to be executed at the middle of the
corner path in the destination point.

Data type: num[\PNum]

Numeric passing parameter to be passed to the calling RAPID pro-
cedure.

Data type: dnum[\PDnum]

Double numeric passing parameter to be passed to the calling
RAPID procedure.

Data type: string[\PStr]

String to be passed to the calling RAPID procedure.

Data type: switch[\Corr]

Correction data that has been written in a correction entry using the
CorrWrite instruction is added to the path and the destination position
if this argument is present.

Continues on next page
398 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.30 MT_MoveLSync – Linear movement and execution of a RAPID procedure
Continued

Program execution
More information about linear movements can be found in the explanations for
instruction MoveLSync or MoveL.
The specified RAPID procedure and the position number are processed when the
TCP reaches the middle of the corner path at the destination point of the
MT_MoveLSync instruction.

en1200000796

Execution of the specified RAPID procedure in different execution modes:

Execution of RAPID procedureExecution mode

According to this descriptionContinuously or Cycle

In the stop pointForward step

Not at allBackward step

Not at allDuring backwards movement with MT_MoveRoutine

At the stop pointUse of "fine" points

MT_MoveLSync is an encapsulation of the TriggInt and TriggL instructions.
The procedure call is executed at TRAP level.
If the centre of the corner path at the destination point is reached during the
slowdown after a program stop, the procedure is not called up (program execution
is stopped). The procedure call is executed when the next program start takes
place.

Note

The MT_MoveLSync instruction may never be used as the first movement
instruction in a movement routine. MT_MoveL or MT_MoveJ with the \NoMove

argument must always be used for this purpose.

Continues on next page
3HAC044398-001 Revision: C 399

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.30 MT_MoveLSync – Linear movement and execution of a RAPID procedure

Continued

Note

The specified RAPID procedure is not processed during backwards instruction
by instruction execution or when searching for the first position, nor during
backwards movement with "MT_MoveRoutine".

Tip

The RAPID procedure is not executed during movement to the home position if
the execution of trigger events (ExecTriggEvt) has been disabled in the system
parameters (FALSE).

Use of the RAPID routine
Local routines
A routine that is declared locally in the module can be called up by specifying the
module name, for example, "Module:Routine"
Example:

MT_MoveLSync 10,p10,v1000,z10,tGripper,"MyModule:MySync

MODULE MyModule

LOCAL PROC MySync()

…

ENDPROC

ENDMODULE

The procedure that is declared locally in the "MyModule" module ("MySync") will
call up the centre of the corner path p10.
Use of parameters
A num, a dnum and/or a string parameter can also be passed to a RAPID routine.
During the creation of the calling RAPID procedure it must be ensured that it
contains the required passing parameters.
If several parameters are used, the order (num, dnum, string) must be taken
into consideration.
Example:

PROC mv10_11()

MT_MoveLSync 101101,*,v1000,z10,tGripper,"MySync1"\PNum:=1;

MT_MoveLSync 101102,*,v1000,z10,tGripper,"MySync2"

\PStr:="Test";

MT_MoveLSync 101103,*,v1000,z10,tGripper,"MySync3"

\PNum:=5\PDnum:=10\PStr:="Test";

ENDPROC

PROC MySync1(num Value)

Tpwrite "Sync 1: "\Num:=Value;

ENDPROC

PROC MySync2(string Value)

Tpwrite "Sync 2: "+Value;

ENDPROC

PROC MySync3(num Value1, dnum Value2, string Value3)

Continues on next page
400 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.30 MT_MoveLSync – Linear movement and execution of a RAPID procedure
Continued

Tpwrite "Sync 3: "+Valtostr(Value1)+ "/"+ Value3;

TEST Value2

CASE 10:

…

CASE 11:

…

ENDTEST

ENDPROC

Limitations
The MT_MoveLSync instruction cannot be used at interrupt level.
The specified RAPID procedure cannot be tested with stepwise execution.
When the robot reaches the centre of the corner path, the RAPID routine is usually
executed after a delay of 20-30s, depending on the type pf movement being made
at the time.
A change of execution mode from continuous or cyclic to forwards or backwards
after a program stop results in an error. This error tells the user that the mode
change can result in the RAPID procedure being omitted from the queue for
execution on the path.

Syntax
MT_MoveLSync

[’\’Conc ’,’]

[ActPos ’:=’] < expression (IN) of dnum> ’,’

[ToPoint ’:=’] < expression (IN) of robtarget > ’,’

[Speed ’:=’] < expression (IN) of speeddata >

[’\’T’:=’ < expression (IN) of num >] ’,’

[Zone ’:=’] < expression (IN) of zonedata >

[’\’Inpos ’:=’ < expression (IN) of stoppointdata >]’,’

[Tool ’:=’] < persistent (PERS) of tooldata >

[’\’WObj ’:=’ < persistent (PERS) of wobjdata >]

[ProcName ’:=’] < variable (IN) of string >

[’\’PNum:=’< expression (IN) of num >]’,’

[’\’PDnum’:=’< expression (IN) of dnum >]

[’\’PStr’:=’< expression (IN) of string >]

[’\’Corr]’;’

Other information

SeeInformation about

Technical ReferenceManual – Instructions, Functions
and Data Types listed in the section References on
page 11.

MoveL – Linear robot movement.

Technical ReferenceManual – Instructions, Functions
and Data Types listed in the section References on
page 11.

MoveLSync - Linear robot movement
and execution of a RAPID procedure

Technical ReferenceManual – Instructions, Functions
and Data Types listed in the section References on
page 11.

TriggInt - Definition of a position-
dependent interrupt

Continues on next page
3HAC044398-001 Revision: C 401

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.30 MT_MoveLSync – Linear movement and execution of a RAPID procedure

Continued

SeeInformation about

Technical ReferenceManual – Instructions, Functions
and Data Types listed in the section References on
page 11.

TriggL - Linear robot movements
with events.

402 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.30 MT_MoveLSync – Linear movement and execution of a RAPID procedure
Continued

15.2.31 MT_MoveRoutine – Execute a movement routine at HomeRun

Usage
MT_MoveRoutine is used within the HomeRun strategy to execute the specified
movement routine in forward or backward direction.

Basic example
TEST Position

CASE 100:

MT_MoveRoutine "mv100_999";

CASE 101:

MT_MoveRoutine "mv100_101"\Back;

CASE 401:

MT_MoveRoutine "mv401_405";

CASE 401400:

MT_MoveRoutine "mv400_401"\Back;

If robot has reached the position 100 the routine mv100_999 will be executed.
If robot was stopped in position 101, the routine mv100_101 will be executed in
backward direction, so that the robot will move from position 101 to position 100.
If robot has reached the position 401, the routine mv401_405 will be tried to execute.
If robot was stopped at an intermediate position between position 400 and 401,
the routine mv400_401 will be tried to execute in backward direction.

Limitations

Note

When MT_MoveRoutine is being used, no move instructions other than the
MT_Move instructions may be used within a movement routine.

Arguments
MT_MoveRoutine Routine [\ModName] [\Prefix] [\Index] | [\DIndex]

[\Backw]

Data type: stringRoutine

Name of the movement routine which should be executed.

Data type: stringModName

Name of the module where the required movement routines are
located. This is only needed if the movement routines are declared
as LOCAL.

Data type: string\Prefix

Type prefix. Only necessary for type-depending movement routines
and only if the standard type prefix “T” is not used. Example of a
type related declaration name: mv10_30_T137, if the prefix is “T”
and the part type number of the current partdata declaration is 137.

Continues on next page
3HAC044398-001 Revision: C 403

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.31 MT_MoveRoutine – Execute a movement routine at HomeRun

Data type: num[\Index]

Index to select movement routines type-dependently. The index is
appended to the routine name without an underscore, using the
standard type prefix as specified in the process parameters or the
explicitly specified prefix. Only one of the parameters \Index or
\DIndex may be used.

Data type: dnum[\DIndex]

Index to select movement routines type-dependently. The index is
appended to the routine name with an underscore, using the
standard type prefix or the explicitly specified prefix. Only one of
the parameters \Index or \DIndex may be used.

Data type: switch[\Backw]

Execute the movement in backward direction.

Program execution
The specified routine name and the type code of the currently used partdata
declaration will be used to build the name of the corresponding moving routine
and call it dynamically.
The movement routines have the following naming structure:

“mv”<START>”_”<TARGET> [”_”< [<PREFIX>] [<INDEX>]>]

Structure examples:

DescriptionRoutine name

Moves the robot from position 100 to position 101. This routine depends
on a part type with part type prefix “T” and the part type index “1”

mv100_101 _T1

Moves the robot from position 100 to position 101. This routine does not
depend on a part type.

mv100_101

Syntax
MT_MoveRoutine

[Routine ´:=´] < expression (IN) of string >

[´\´ ModName ´:=´ < expression (IN) of string>]

[´\´ Prefix ´:=´ < expression (IN) of string>]

[´\´ Index ´:=´ < expression (IN) of num>]

[´\´ DIndex ´:=´ < expression (IN) of dnum>]

[´\´ Backw]´;´

Related information

SeeInformation about

MT_MoveTo – Dynamic execution of a move-
ment routine on page 405

MT_MoveTo – Execute a robot movement
routine

MT_HomeRun –HomeRunStrategy on page371Move backward while HomeRun

404 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.31 MT_MoveRoutine – Execute a movement routine at HomeRun
Continued

15.2.32 MT_MoveTo – Dynamic execution of a movement routine

Usage
The procedure MT_MoveTo is used to move from the current robot position to the
desired target position. For this, the robot forms a string using the saved start
position and the target position that has been passed. This string represents the
name of the movement routine that is to be called. The movement routine will be
called dynamically and the target position will be saved as the new start position.

Programming
The way how MT_MoveTo tries to call a movement routine, depends on the
availability of information as follows:

• Common module name in the process configuration in the section MT PART
SETTINGS (please refer to MT Part settings on page 172).

• Type prefix in the process configuration also in section “MT PART SETTINGS”
(please refer toMT Part settings on page 172).

• Type Code in currently used partdata declaration (please refer to partdata –
Part data on page 298).

The following examples clarify the proceeding:
If a common module name is set in the process configuration under MT API
positions, then MT_MoveTo will try to call a movement routine in the following
order, until one has been found for execution:
1) Local type-depending routine in type-depending module
Example :

• Common module name in the proc.cfg is “Movement”
• Type prefix in the proc.cfg is “T”
• Type code of the currently executed partdata is “13”

Routine, which MT_MoveTo will try to call:
MODULE Movement_T13

…

LOCAL PROC mv10_20_T13()

…

ENDPROC

…

ENDMODULE

2) Local type-depending routine in type-independent module
Example:

• Common module name in the proc.cfg is “Movement”
• Type prefix in the proc.cfg is “T”
• Type code of the currently executed partdata is “13”

Routine, which MT_MoveTo will try to call:
MODULE Movement

…

LOCAL PROC mv10_20_T13()

Continues on next page
3HAC044398-001 Revision: C 405

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.32 MT_MoveTo – Dynamic execution of a movement routine

…

ENDPROC

…

ENDMODULE

3) Local type-independent routine in type-depending module
Example:

• Common module name in the proc.cfg is “Movement”
• Type prefix in the proc.cfg is “T”
• Type code of the currently executed partdata is “13”

Routine, which MT_MoveTo will try to call:
MODULE Movement_T13

…

LOCAL PROC mv10_20()

…

ENDPROC

…

ENDMODULE

4) Global type-depending routine somewhere in the program
Example:

• Type prefix in the proc.cfg is “T”
• Type code of the currently executed partdata is “13”

Routine, which MT_MoveTo will try to call:
PROC mv10_20_T13()

…

ENDPROC

5) Global type-independent routine somewhere in the program
Example:
Routine, which MT_MoveTo will try to call:

PROC mv10_20()

…

ENDPROC

If a common module name is not set in the process configuration under MT API
positions, then MT_MoveTo will try to call a movement routine in the following
order:
1) Global type-depending routine somewhere in the program
Example:

• Type prefix in the proc.cfg is “T”
• Type code of the currently executed partdata is “13”

Routine, which MT_MoveTo will try to call:
PROC mv10_20_T13()

…

ENDPROC

2) Global type-independent routine somewhere in the program
Example:

Continues on next page
406 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.32 MT_MoveTo – Dynamic execution of a movement routine
Continued

Routine, which MT_MoveTo will try to call:
PROC mv10_20()

…

ENDPROC

If none of the above metioned conditions is fulfilled, then an error message will be
output.

Basic example
!Startposition is 10 (where the robot has moved before)

!Type prefix in proc.cfg is default (= “T“)

!Common module name in the proc.cfg is “Movement”

!Type index of currently selected part is 8

…

!Call the movement routine mv10_20_T8 in module Movement_T8

MT_MoveTo 20;

…

…

MODULE Movement_T8

…

PROC mv10_20_T8()

…

ENDPROC

…

ENDMODULE

Arguments
MT_MoveTo

Target [\ModName] [\Prefix] [\Index] [\Dindex]

Data type: numTraget

The position number of the target position

Data type: stringModName

Name of the module, in which the movement routine is contained.
This argument should be used only for routines that have been de-
clared locally.

Data type: stringPrefix

Possible type prefix for the Index or DIndex.

Data type: numIndex

Type number that is to be appended to the movement routine as
index, when using data type num.

Data type: dnumDIndex

Type number that is to be appended to the movement routine as
index, when using data type dnum.

Syntax
MT_MoveTo

[Target ’:=’] < expression (IN) of num >

[’\’ ModName ’:=’ < expression (IN) of string >]

[’\’ Prefix ’:=’ < expression (IN) of string >]

[’\’ Index ’:=’ < expression (IN) of num >]

Continues on next page
3HAC044398-001 Revision: C 407

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.32 MT_MoveTo – Dynamic execution of a movement routine

Continued

[’\’ DIndex ’:=’ < expression (IN) of dnum >] ’;’

More information

SeeFor information about

MT_SetActualPosition – Setting the current pos-
ition for MT_MoveTo on page 424

Setting the current position for using
MT_MoveTo

MT_GetActualPosition – Reading the start posi-
tion for MT_MoveTo on page 478

Reading the current position for using
MT_MoveTo

408 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.32 MT_MoveTo – Dynamic execution of a movement routine
Continued

15.2.33 MT_PartCheck – Part controls on the gripper

Usage
MT_PartCheck is used to check the component control sensors on a gripper. If
the sensor status does not correspond to the state which is to be checked, then,
an error message is output after a waiting period.
The check can be queried, optionally, for "part controls busy" or "part controls
free".
Upto 5 different component configurations can be assigned at the same time.

Basic examples
Example 1:
MT_PartCheck low, gpGRP1_BT2;

A check is conducted to see if all the part sensors of the part controls 2 of the
gripper 1 are busy.
Example 2:
MT_PartCheck high, gpGRP1_BT1\Part2:= gpGRP1_BT2;

A check is conducted to see if all the part sensors of the part controls 1 and 2 of
the gripper 1 are busy.

Arguments
MT_PartCheck Value Part1 [\Part2] [\Part3] [\Part4]

[\Part5] [\ErrorNo] [\Fault]

Data type: dionumValue

The desired value of the component control sensors (high or low or
1 or 0)

Data type: grppartPart1

Part control configuration of the first part which is to be monitored.

Data type: grppart[\Part2]

Part control configuration of the second part which is to be mon-
itored.

Data type: grppart[\Part3]

Part control configuration of the third part which is to be monitored.

Data type: grppart[\Part4]

Part control configuration of the fourth part which is to be monitored.

Data type: grppart[\Part5]

Part control configuration of the fifth part which is to be monitored.

Data type: num[\ErrorNo]

Combined error domains and error number as positive integer, which
can be used for display in the event of errors. The last four digits
represent the error number, the digits preceding this represent the
error domain.

Data type: switch[\Fault]

If the switch fault is set, a gripper related message will appear as a
fault message, otherwise it will appear as a warning message.

Continues on next page
3HAC044398-001 Revision: C 409

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.33 MT_PartCheck – Part controls on the gripper

Program execution
All the part sensors that are contained in the part configurations will be checked
and an error message is issued if a sensor does not report the desired state.
The program will be continued only if all the part sensors give the expected
response.
Only those signals that contain a valid signal name will be considered.

Restrictions
In the "Ghost mode", the component control sensors are not checked if the
requested value for the sensors is high (1).

Syntax
MT_PartCheck

[Value] ´:=´ < expression (IN) of dionum>]

[Part1] ´:=´ < expression (IN) of grpppart>]

[´\Part2] ´:=´ < expression (IN) of grpppart >]

[´\Part3] ´:=´ < expression (IN) of grpppart >]

[´\Part4] ´:=´ < expression (IN) of grpppart >]

[´\Part5] ´:=´ < expression (IN) of grpppart >]

[´\ErrorNo] ´:=´ < expression (IN) of num>]

[´\Fault]

´;´

More information

SeeInformation about

grppart – Part control configuration on page 274grppart

410 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.33 MT_PartCheck – Part controls on the gripper
Continued

15.2.34 MT_PartCheckType – Part controls on the gripper

Usage
MT_PartCheckType is used to check the component control sensors on a gripper.
If the sensor status does not correspond to the state which is to be checked, then,
an error message is output after a waiting period.
The check can be queried, optionally, for "part controls busy" or "part controls
free". Up to 5 different component configurations can be assigned at the same
time.
MT_PartCheckType provides mainly the same functionality as MT_PartCheck but
considers part type specific type numbers and type prefixes as follows:
There might be different grippers for each part type in the production cell. The
grippers might work differently, thus each gripper will need its own grppart
declarations.
Instead of assigning the grppart directly as this is done with MT_PartCheck, a
string is provided to MT_PartCheckTypewhich represents the name of the grppart
but without part type number and part type prefix.
MT_PartCheckType will internally complete the grppart name, depending on the
current settings for the type prefix and the type number. Then the instruction will
execute the appropriate type-depending grppart declaration.

Basic examples
Assuming, the current part type number is 6 and the standard part type prefix is
“T”:
Example 1:
MT_PartCheck low, ”gpGRP_BT2”;

A check is conducted to see if all the part sensors of the part controls 2 of the
gripper are busy (grppart gpGRP_BT2_T6).
Example 2:
MT_PartCheck

high,”gpGRP_BT1”\Part2:=”gpGRP_BT2”\Prefix:=”P”;

A check is conducted to see if all the part sensors of the part controls 1 and 2 of
the gripper are busy (grppart gpGRP_BT1_P6 and gpGRP_BT2_P6).

Arguments
MT_PartCheckType Value Part1 [\Part2] [\Part3] [\Part4]

[\Part5] \ [Prefix] \[ErrorNo] \[Fault]

Data type: dionumValue

The desired value of the component control sensors (high or low or
1 or 0)

Data type: stringPart1

Name of the part control configuration of the first part which is to be
monitored, without part type prefix and without part type number.

Continues on next page
3HAC044398-001 Revision: C 411

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.34 MT_PartCheckType – Part controls on the gripper

Data type: string[\Part2]

Name of the part control control configuration of the second part
which is to be monitored, without part type prefix and without part
type number.

Data type: string[\Part3]

Name of the part control control configuration of the third part which
is to be monitored, without part type prefix and without part type
number.

Data type: string[\Part4]

Name of the part control control configuration of the fourth part
which is to be monitored, without part type prefix and without part
type number.

Data type: string[\Part5]

Name of the part control control configuration of the fifth part which
is to be monitored, without part type prefix and without part type
number.

Data type: string[\Prefix]

Assigns another part type prefix apart from the default prefix.

Data type: num[\ErrorNo]

Combined error domains and error number as positive integer, which
can be used for display in the event of errors. The last four digits
represent the error number, the digits preceding this represent the
error domain.

Data type: switch[\Fault]

If the switch fault is set, a gripper related message will appear as a
fault message, otherwise it will appear as a warning message.

Program execution
All the part sensors that are contained in the part configurations will be checked
and an error message is issued if a sensor does not report the desired state.
The program will be continued only if all the part sensors give the expected
response. Only those signals that contain a valid signal name will be considered.

Restrictions
In the "Ghost mode", the component control sensors are not checked if the
requested value for the sensors is high (1).

Syntax
MT_PartCheck

[Value] ´:=´ < expression (IN) of dionum>]

[Part1] ´:=´ < expression (IN) of string>]

[´\Part2] ´:=´ < expression (IN) of string >]

[´\Part3] ´:=´ < expression (IN) of string >]

[´\Part4] ´:=´ < expression (IN) of string >]

[´\Part5] ´:=´ < expression (IN) of string >]

[´\Prefix] ´:=´ < expression (IN) of string >]

[´\ErrorNo] ´:=´ < expression (IN) of num>]

[´\Fault]

´;´

Continues on next page
412 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.34 MT_PartCheckType – Part controls on the gripper
Continued

More information

SeeInformation about

grppart – Part control configuration on page 274grppart

3HAC044398-001 Revision: C 413
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.34 MT_PartCheckType – Part controls on the gripper

Continued

15.2.35 MT_ResetActiveStation – Set station symbol to "inactive"

Usage
MT_ResetActiveStation should be used to represent on the RWMT user interface
that the robot is not serving any station at the moment.
A station here could mean a specific machine, a conveyor belt or a slide within the
production cell.
The operator can thus recognize on the RWMT user interface where the robot is
working at the moment:

Station ready, not served by robot:

Station ready, robot serves the station:

Basic example
LOCAL PERS stationdata DCM_Station:=

["DCM","DCM","Die casting machine","station-DCM.png",

"diDCMReady","diMouldClosed","","",TRUE,FALSE,1,1];

PROC UnloadDCM()

!Wait until DCM is ready for unloading

MT_WaitMsgDI diUnloadDCM,high,msgUnloadDCM;

!Robot serves the machine now

MT_SetActiveStation DCM_Station;

!Machine is being unloaded

…

…

!The robot has finished serving the machine

MT_ResetActiveStation;

…

ENDPROC

The robot waits for the release to move into the die casting machine. Once it gets
this release, the program will set the symbol of this station to active on the RWMT

user interface with the help of the instruction MT_SetActiveStation:
After the pressure casting machine has been unloaded, the robot program will set
the symbol to inactive, with the help of the instruction MT_ResetActiveStation:

Continues on next page
414 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.35 MT_ResetActiveStation – Set station symbol to "inactive"

Program execution
The use of the instructionsMT_SetActiveStation andMT_ResetActiveStation
will influence only the station symbols on the RWMT user interface (GUI), but not
the program run itself.

Note

If after serving a machine there is a next station which is marked as “served by
robot“ by using MT_SetActiveStation, then it is not necessary to use
ResetActiveStation.

Syntax
MT_ResetActiveStation ’;’

More information

SeeInformation about

stationdata – Definition of a station on page 311Data type stationdata

Stations on page 45Setting up of stations

MT_SetActiveStation – Set station symbol to "active"
on page 422

Instruction MT_SetActiveStation

3HAC044398-001 Revision: C 415
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.35 MT_ResetActiveStation – Set station symbol to "inactive"

Continued

15.2.36 MT_ResetFirstCycle – Declare first cycle as finished

Usage
MT_ResetFirstCycle resets the internal RWMT “first cycle” flag. This flag is
automatically set to TRUE, when starting RWMT from the beginning (from “main”).
The purpose of MT_ResetFirstCycle is to reset the “first cycle” flag before having
finished the first production loop.

Basic example
PROC MyProduction()

…

RAISE ERR_MT_ABORT;

…

ERROR (ERR_MT_ABORT)

IF ERRNO = ERR_MT_ABORT MT_ResetFirstCycle;

RAISE;

ENDPROC

Program execution
MT_ResetFirstCycle resets the internal RWMT “first cycle flag”.

Arguments
MT_ResetFirstCycle ;

No arguments.

Syntax
MT_ResetFirstCycle ’;’

More information

SeeInformation about

MT_FirstCycle – Requesting first cycle status on page477Requesting “first cycle” status

416 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.36 MT_ResetFirstCycle – Declare first cycle as finished

15.2.37 MT_SearchL – Linear search movement of robot

Usage
MT_SearchL (Search Linear) is used to search for a position with a linear movement
of the Tool Centre Point (TCP). The robot monitors a digital input signal during the
movement. If the signal adopts the required value, the robot reads off the current
position immediately.
The position number is only assigned if a position has been found.
This instruction is typically suitable for the use of a surface detection sensor. The
MT_SearchL instruction can be used to determine the outline of a workpiece, for
example..
This instruction can only be used in the Main task T_ROB1 or in motion tasks in
the case of a MultiMove system.
When search instructions are being used it is important to configure the I/O system
so that there is an extremely short time between the setting of the physical signal
and the arrival of the information about the setting in the system.
The instruction basically corresponds to the SearchL instruction with the addition
of the position number.

Basic example
VAR robtarget pSearch;

MT_SearchL \Stop,11, diSensor, pSearch, p10, v100, tSensor;

The tSensor TCP is moved linearly to position p10 . If the value of the diSensor

signal changes to high, the position is saved in pSearch, the robot stops moving
and position number 11 is saved as the current position

Arguments
MT_SearchL

[\Stop] | [\PStop] | [\SStop] | [\Sup] , ActPos,Signal

[\Flanks] | [\PosFlank] | [\NegFlank] | [\HighLevel] | [\Lowlevel]

SearchPoint,ToPoint, speed \V \T, Tool [\WObj] [\Corr];

Data type: switch[\Stop] Stiff
Stop The robot movement stops as quickly as possible without keeping

the TCP on the path (hard stop) if the value of the search signal
changes to active.
However, before the stop the robot travels back a short way and is
not moved back to the position that was searched for, i.e. the position
where the signal change took place.

Data type: switch[\PStop] Path
Stop The robot movement stops as quickly as possible and keeps the

TCP on the path (soft stop) if the value of the search signal changes
to active. However, before the stop the robot travels back a certain
way and is not moved back to the position that was searched for,
i.e. the position where the signal change took place.

Continues on next page
3HAC044398-001 Revision: C 417

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.37 MT_SearchL – Linear search movement of robot

Data type: switch[\SStop] Soft
Stop The robot movement stops as quickly as possible and keeps the

TCP close to or on the path (soft stop) if the value of the search
signal changes to active.
However, before the stop the robot only travels back a short way
and is not moved back to the position that was searched for, i.e. the
position where the signal change took place. SStop is faster than
PStop. However, if the robot exceeds a speed of 100 mm/s it stops
tangentially in the direction of movement, which results in less devi-
ation from the path.

Data type: switch[\Sup]
Supervision The search instruction reacts sensitively to signal activation during

a complete movement (flying search), i.e. even after the first signal
change has been indicated. If several correspondences are found
during a search, a rectifiable error is generated in ToPoint with the
robot.
If the \Stop, \PStop, \SStop or \Sup argument is omitted (no switch
used):

• The movement (flying search) at the position specified in the
ToPoint argument is continued (as with the \Sup argument)

• An error is signalled for no hits, but no error is signalled for
several hits (the first hit is returned as the SearchPoint).

Data type: dnumActPos

Contains the position number of the position to be moved to.

Data type: signaldiSignal

Name of signal to be monitored.

Data type: switch[\Flanks]

The positive and negative flank of the signal applies for a search
result.

Data type:switch[\PosFlank]

The positive edge of the signal is valid for a search hit.

Data type:switch[\NegFlank]

The negative edge of the signal is valid for a search hit.

Data type:switch[\HighLevel]

The same functionality as if not using \Flanks switch.
The positive edge of the signal is valid for a search hit and a signal
supervision will be activated at the beginning of a search process.
This means that if the signal has the positive value already at the
beginning of a search process or the communication with the signal
is lost then the robot movement is stopped as quickly as possible,
while keeping the TCP on the path (soft stop). A user recovery error
(ERR_SIGSUPSEARCH) will be generated and can be handled in the
error handler.

The negative edge of the signal is valid for a search hit and a signal
supervision will be activated at the beginning of a search process.
This means that if the signal has value 0 already at the beginning
of a search process or the communication with the signal is lost
then the robot movement is stopped as quickly as possible, while
keeping the TCP on the path (soft stop). A user recovery error
(ERR_SIGSUPSEARCH) will be generated and can be handled in the
error handler.

[\LowLevel]

Continues on next page
418 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.37 MT_SearchL – Linear search movement of robot
Continued

Data type: robtargetSearchPoint

The position of the TCP and the external axes if the search signal
has been triggered. The position is specified in the outermost co-
ordinate system, taking the specified tool, workpiece and active
ProgDisp/ExtOffs coordinate system into consideration.

Data type: robtargetToPoint

The destination point of the robot and external axes. It is defined as
a named position or stored directly in the instruction (marked with
an *). SearchL always uses as stop point as zone data for the des-
tination.

Data type: speeddataspeed

The speed programmed for the movement. The speed data define
the velocity of the TCP, of the tool reorientation and of external axes.

Data type: num[\V] Speed

This argument is used to specify the velocity of the TCP in mm/s
directly in the instruction. It is then substituted for the corresponding
velocity specified in the speed data.

Data type: num[\T] Time

This argument specifies the total time in seconds for which the robot
moves. It then replaces the corresponding speed data.

Data type: tooldataTool

The tool in use when the robot moves. The tool centre point is moved
to the specified destination point.

Data type: wobjdata[\WObj] Work
Object The work object (coordinate system) to which the robot position in

the instruction relates.
This argument can be omitted; in this case the position relates to
the world coordinate system. However, if a stationary TCP or coordin-
ated external axes are used, this argument must be specified so
that a linear path in relation to the workpiece is possible.

Data type: switch[\Corr]
Correction Correction data that has been written in a correction entry using the

CorrWrite instruction is added to the path and the destination position
if this argument is present.

Program execution
More information about linear search movements can be found in the explanations
for instruction MT_SearchL.
The movement always ends with a stop point, i.e. the robot stops at the destination
point. With a flying search, i.e. the \Sup argument has been used or no switch
has been specified, the robot always continues moving to the programmed
destination point. If a search is carried out using the \Stop, \PStop or \SStop
switch, the robot movement stops with the first search result.

Continues on next page
3HAC044398-001 Revision: C 419

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.37 MT_SearchL – Linear search movement of robot

Continued

The SearchL instruction saves the position of the TCP when the value of the digital
signal changes, as required.

Note

The MT_SearchL instruction may never be used as the first movement instruction
in a movement routine. MT_MoveX must always be used with the \NoMove

argument for this purpose.

Limitation
If backwards instruction by instruction execution is taking place, the robot moves
directly to the programmed destination position.

Note

If a virtual controller (for example, RobotStudio) is being used, the search
movement is not performed. The robot moves directly to the programmed
destination position instead.

Backwards execution of a movement routine (see MT_MoveRoutine – Execute a
movement routine at HomeRun on page403) that uses the MT_SearchL instruction
is not possible.

Syntax
MT_SearchL

[’\’Stop’,’]|[’\’PStop’,’]|[’\’SStop’,’]|[’\’Sup’,’]

[ActPos ’:=’] < expression (IN) of dnum> ’,’

[Signal ’:=’] < variable (VAR) of signaldi >

[‘\’Flanks]’,’

[‘\’PosFlank]’,’

[‘\’NegFlank]’,’

[‘\’HighLevel]’,’

[‘\’LowLevel]’,’

[SearchPoint’:=’] < var or pers (INOUT) of robtarget>’,’

[ToPoint’ :=’] < expression (IN) of robtarget >

[speed ’:=’] < expression (IN) of speeddata >

[’\’V ’:=’ < expression (IN) of num >] |

[’\’T ’:=’ < expression (IN) of num >] ’,’

[Tool ´:=´] < persistent (PERS) of tooldata >

[’\’WObj’ :=’ < persistent (PERS) of wobjdata >]

[’\’Corr]’;

Other information

SeeInformation about

Technical Reference Manual – Instructions, Functions
and Data Types listed in the section References on
page 11.

SearchL - Linear search move-
ment of robot

Continues on next page
420 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.37 MT_SearchL – Linear search movement of robot
Continued

SeeInformation about

Technical Reference Manual – Instructions, Functions
and Data Types listed in the section References on
page 11.

MoveL – Linear robot movement.

3HAC044398-001 Revision: C 421
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.37 MT_SearchL – Linear search movement of robot

Continued

15.2.38 MT_SetActiveStation – Set station symbol to "active"

Usage
MT_SetActiveStation should be used at appropriate places in the application
program to show on the RWMT user interface which station the robot is currently
serving.
A station here could mean a specific machine, a conveyor belt or a slide within the
production cell.

Station ready, not served by robot:

Station ready, robot serves the station:

Basic example
LOCAL PERS stationdata DCGM_Station:=

["DCM","DCM","Die casting machine","station-DCM.png",

"diDCMReady","diMouldClosed","","",TRUE,FALSE,1,.1];

PROC UnloadDCM()

!Wait until DCM is ready for unloading

MT_WaitMsgDI diUnloadDCM,high,msgUnloadDCM;

!Robot serves the machine now

MT_SetActiveStation DCGM_Station;

!Machine is being unloaded

…

…

!The robot has finished serving the machine

MT_ResetActiveStation;

…

ENDPROC

The robot waits for the release to move into the die casting machine. Once it gets
this release, the program will set the symbol of this station to active on the RWMT

user interface with the help of the instruction MT_SetActiveStation:
After the pressure casting machine has been unloaded, the robot program will set
the symbol to inactive, with the help of the instruction MT_ResetActiveStation:

Continues on next page
422 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.38 MT_SetActiveStation – Set station symbol to "active"

Program execution
The use of the instructionsMT_SetActiveStation andMT_ResetActiveStation
will influence only the station symbols on the RWMT user interface (GUI), but not
the program run itself.

Note

If after serving a machine there is a next station which is marked as “served by
robot“ by using MT_SetActiveStation, then it is not necessary to use
ResetActiveStation.

Arguments
MT_SetActiveStation station

Data type: stationdatastation

The station whose station pictogram is to be set to "active".

Program execution
The use of instructions MT_SetActiveStation and MT_ResetActiveStation

will only influence the station symbols on the RWMT user interface (GUI), but not
the program run itself.

Syntax
MT_SetActiveStation

[station ’:=’] < expression (IN) of stationdata > ’;’

More information

SeeInformation about

stationdata – Definition of a station on page 311Data type stationdata

Stations on page 45Setting up of stations

MT_ResetActiveStation – Set station symbol to
"inactive" on page 414

Instruction MT_ResetActiveStation

3HAC044398-001 Revision: C 423
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.38 MT_SetActiveStation – Set station symbol to "active"

Continued

15.2.39 MT_SetActualPosition – Setting the current position for MT_MoveTo

Usage
With the help of the instruction MT_SetActualPosition, the start position, which
is used by the instruction MT_MoveTo, can be initialized.
It might be necessary to define the start position once again, for example, after
having moved the robot without the MT_Move instruction.

Basic example
!Set 999 (Home) as the start position

MT_SetActualPosition 999;

…

!Call the global movement routine mv999_20

MT_MoveTo 20;

!Call the global movement routine mv20_30

MT_MoveTo 30;

…

Arguments
MT_SetActualPosition ActPos

Data type: numActPos

The new start position for using the MT_MoveTo instruction.

Syntax
MT_SetActualPosition

[ActPos ’:=’] < expression (IN) of num > ’;’

More information

SeeInformation about

MT_MoveTo – Dynamic execution of a move-
ment routine on page 405

Call movement routines with MT_MoveTo
dynamically

MT_GetActualPosition – Reading the start posi-
tion for MT_MoveTo on page 478

Reading the current position for using
MT_MoveTo

424 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.39 MT_SetActualPosition – Setting the current position for MT_MoveTo

15.2.40 MT_SetEndOfCycle – Set the "Halt after end of cycle" state

Usage
MT_SetEndOfCycle allows the application program to induce the end of cycle by
setting the request or by setting the end of cycle directely.
Normally the “halt after end of cycle” is induced either through the graphic user
interface or by means of external signals. If the application program shall also be
able to induce the halt after end of cycle, the instruction MT_SetEndOfCycle can
be used.

Basic example
PROC Production()

!If the nmachine is not ready for production

IF diMachineReady=0 THEN

!force end of cycle

MT_SetEndOfCycle\Direct;

…

ENDPROC

If a machine is not ready for production, a direct halt after end of cycle can be
forced.

Arguments
MT_SetEndOfCycle [\Direct]

Data type: switch[\Direct]

The new start position for using the MT_MoveTo-instruction.

Directly set the halt after end of cycle without the need to acknowledge it through
the instruction MT_EndOfCycleAck.

Program execution
MT_SetEndOfCycle without the switch \Direct sets the request for “halt after
end of cycle”. This request must be confirmed by using the instruction
MT_EndOfCycleAck.
If the switch \Direct is used, the “halt after end of cycle” is set directly and no
confirmation is needed.

Syntax
MT_SetEndOfCycle

[’\’Direct] ’;’

More information

SeeInformation about

MT_EndOfCycleReq – Recognizing the request
"Halt after end of cycle" on page 475

Query if the request "Halt after end of
cycle" is present

MT_EndOfCycleAck – Acknowledge the request
"Halt after end of cycle" on page 331

Confirming the “Halt after end of cycle”

Continues on next page
3HAC044398-001 Revision: C 425

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.40 MT_SetEndOfCycle – Set the "Halt after end of cycle" state

SeeInformation about

MT_EndOfCycleOk – Check if "Halt after end of
cycle" was acknowledged on page 473

Query if the "Halt after end of cycle" re-
quest has been acknowledged already

426 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.40 MT_SetEndOfCycle – Set the "Halt after end of cycle" state
Continued

15.2.41 MT_ShowMessage – Show message on the RWMT user interface

Usage
With the help of MT_ShowMessage, a program message can be output on the
RWMT user interface.
This is done with the help of the data type msgdata, which has other additional
information apart from the actual message text.
By outputting this message on the user interface (GUI), it is possible to prevent it
from being overlapped by other message windows. Hence, this instruction is
recommended for all those cases where an acknowledgement is not necessary at
the programming device.
The instruction MT_ShowMessage is also available for background tasks.

Basic example
const msgdata msgLoadMachine:=

[30,1,0,"No loading release from machine","There is no loading
release given","by the machine","","","",1,""];

!Show message that the machine is not ready for loading

MT_ShowMessage msgLoadMachine;

…

…

!Delete message

MT_ClearMessage;

The program will output on the RWMT user interface the message to the effect that
the machine is not ready for loading.

en1300000272

The message will be deleted by executing the MT_ClearMessage instruction.

Arguments
MT_ShowMessage msgdata msg [\Subheader] [\Info] [\ NoErrorLog]

[\Ack]

Data type: msgdata[msg]

The message that has to be output, along with the message attrib-
utes.

Data type: string[\Subheader]

Additional subheader displayed below header.

Data type: string[\Info]

Additional information displayed below message text.

Continues on next page
3HAC044398-001 Revision: C 427

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.41 MT_ShowMessage – Show message on the RWMT user interface

Data type: switch[\NoErrorLog]

Optional switch that determines whether the warning or the error
message should not be written into the event log.

Data type: switch[\Ack]

Shows an acknowledge button in the user interface, which closes
the message.
If it is necessary to get a confirmation feedback, the event
EE_MSGBTN_PRESSED can be subscribed, so that a routine is ex-
ecuted each time if the button is pressed. This routine can be used
to set signals, variables, or do other things as illustrated in the fol-
lowing example:
Example:

CONST eventdata edMsgBtnPressed:=["EE_MS-
GBTN_PRESSED","MSGBTN_PRESSED",1];

!Reset the error signals if message button is
pressed

PROC MSGBTN_PRESSED()

Reset doError;

Setgo goError, 0;

ENDPROC

A message with an acknowledge button will cause the details to be
displayed automatically, so that the operator can press the acknow-
ledge button.
The display of the message details can be enabled or disabled by
clicking onto the title row of the message.
If a message without a button is displayed and the title row is clicked,
the details of further messages will be automatically displayed only
if they contain a button.
In case of a message with a button is displayed and the title row is
clicked, no further message details will be displayed until the title
row is clicked again.

Program execution
When using MT_ShowMessage, a message is shown in the graphical user interface,
until a new message is shown by MT_ShowMessage or the current message is
deleted through the instruction MT_ClearMessage.
If the argument of type msgdata contains an error icon then an error number is
sent to an external PLC, if this has been parametrized in the process configuration
(please refer to MT API commands on page 161).

Syntax
MT_ShowMessage

[msg ’:=’] < expression (IN) of msgdata >

[’\’ Ack]

’;’

More information

SeeInformation about

msgdata – Message declaration on page 294Data type msgdata

MT_ClearMessage – Delete message on the RWMT
user interface on page 323

Deleting a message in the RWMT GUI

Continues on next page
428 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.41 MT_ShowMessage – Show message on the RWMT user interface
Continued

SeeInformation about

MT_ShowText – Delete single line message on the
RWMT user interface on page 430

Showing a simple text message

3HAC044398-001 Revision: C 429
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.41 MT_ShowMessage – Show message on the RWMT user interface

Continued

15.2.42 MT_ShowText – Delete single line message on the RWMT user interface

Usage
With the help of MT_ShowText, a single line program message can be output on
the RWMT user interface.
This is done with the help of the data type string.
By outputting a message on the user interface (GUI), it is possible to prevent this
from being overlapped by other message windows. Hence, this instruction is
recommended for all those cases where an acknowledgement is not necessary at
the programming device.
Using MT_ShowText erfolgt instead of MT_ShowMessage for simple, single row
messages. Unlike the MT_ShowMessage, there is no need to declare any message
of the data type msgdata in advance.
The instruction MT_ShowText is also available for background tasks.

Basic example
!Show message that machine is not ready for loading

IF diLoadRelease=low THEN

MT_ShowText “No loading release from machine.“;

ENDIF

WaitUntil diLoadingRelease=high;

!Delete message

MT_ClearMessage;

The program will output on the RWMT user interface the message to the effect that
the machine is not ready for loading. The message is cleared as soon as the release
is given.

en1300000273

Arguments
MT_ShowText [\Warning] | [\Fault] [\Number], str [\ NoErrorLog]

[\Ack]

Data type: switch[\Warning]

If this switch is not set, then the text that is to be output appears as
a warning message which is highlighted in yellow. If none of the
switches [\Warning] or [\Fault] is set, then the text that is to
be output appears as information that is highlighted in green.

Data type: switch[\Fault]

If this switch is set, then the text that is to be output appears as an
error message which is highlighted in red. If none of the switches
[\Warning] or [|Fault] is set, then the text that is to be output
appears as information that is highlighted in green.

Continues on next page
430 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.42 MT_ShowText – Delete single line message on the RWMT user interface

Data type: num[\Number]

A positive integer can be passed as a combined error domain and
error number; in this case, this will be displayed along with the
message. Here, the last 4 digits represent the error number and the
digits preceding it represent the error domain.
Example: 112345 => Error domain 11, Error number 2345
If the switch [\Fault] is set, then an error number is sent to an external
PLC, if this has been parametrized in the process configuration
(please refer to MT API commands on page 161).

Data type: msgdatastr

The message text that is to be output.

Data type: switch[\NoErrorLog]

Optional switch that determines whether the warning or the error
message should not be written into the event log.

Data type: switch[\Ack]

Displays an acknowledge button in the user interface, which closes
the message.
If it is necessary to get a confirmation feedback, the event
EE_MSGBTN_PRESSED can be subscribed, so that a routine is ex-
ecuted each time if the button is pressed. This routine can be used
to set signals, variables or do other things as illustrated in the follow-
ing example:
Example:

CONST eventdata edMsgBtnPressed:=["EE_MS-
GBTN_PRESSED","MSGBTN_PRESSED",1];

!Reset the error signals if message button is
pressed

PROC MSGBTN_PRESSED()

Reset doError;

Setgo goError, 0;

ENDPROC

The display of the acknowledge button can be enabled or disabled
by clicking the title row of the message.
If a message without a button is displayed and the title row is clicked,
the details of further messages will be automatically displayed only
if they contain a button.
In case of a message with a button is displayed and the title row is
clicked, no further message details will be displayed until the title
row is clicked again.

Program execution
By using the instruction MT_ShowText a message will be displayed on the RWMT
user interface until a new message is output, or the message will be deleted again
with the help of the instruction MT_ClearMessage).

Syntax
MT_ShowText

[’\’ Warning]

[’\’ Fault]

[’\’ Number ’:=’] < expression (IN) of num > ’,’

[str ’:=’] < expression (IN) of text>

[’\’ Ack]’;’

Continues on next page
3HAC044398-001 Revision: C 431

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.42 MT_ShowText – Delete single line message on the RWMT user interface

Continued

More information

SeeInformation about

MT_ShowMessage – Show message on the
RWMT user interface on page 427

Displaying a message on the RWMT user
interface

MT_ClearMessage – Delete message on the
RWMT user interface on page 323

Deleting a message on the RWMT user
interface

432 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.42 MT_ShowText – Delete single line message on the RWMT user interface
Continued

15.2.43 MT_ShowTPSViewRWMT – Open the RWMT graphic user interface

Usage
MT_ShowTPSViewRWMT opens the graphic user interface of RWMT.It can be used
to ensure, that the user interface is opened automatically through the RAPID
program, if it has been closed by the operator before.

Basic example
!Show message that machine is not ready for loading

MT_ShowTPSViewRWMT;

Arguments
MT_ShowTPSViewRWMT

No arguments

Program execution
If the RWMT user interface is not open, it will be started when executing the
instruction MT_ShowTPSViewRWMT.

Syntax
MT_ShowTPSViewRWMT ’;’

3HAC044398-001 Revision: C 433
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.43 MT_ShowTPSViewRWMT – Open the RWMT graphic user interface

15.2.44 MT_SpeedUpdate – Adapting the speed

Usage
MT_SpeedUpdate is used in the application program to modify the programmed
robot speed before executing a movement instruction, for example, in the event
of SafeMove applications.
The MT_SpeedUpdate routine is only used if the "SpeedUpdate" parameter has
been set to TRUE in the system parameters.
This routine has to be provided by the programmar/integrator.
It is recommended to put this routine into a NOVIEW-module, since this routine will
be executed with every MT_Move instruction and the program pointer will step into
the routine in single step execution mode.

Basic example
PROC MT_SpeedUpdate(INOUT speeddata speed)

const speeddata vSafety := [200, 15, 200, 15];

!SafeMove is not synchronized

IF diPSC1CSS=0 and speed.v_tcp>200 speed:=vSafety;

!

ENDPROC

If SafeMove™ is not synchronized and the programmed speed is greater than 200
mm/s, the TCP speed for the next movement is set to 200 mm/s and the
reorientation speed is limited to 15°/s.

Arguments
MT_SpeedUpdate speed

Data type: speeddataspeed

Speed for next movement instruction.

Program execution
If the speed update has been set in the system parameters, the MT_SpeedUpdate
routine is always called with the programmed speed as the parameter before
executing a movement instruction.
This speed information can be overwritten depending on external conditions,
meaning that the robot does not perform the next movement with the programmed
speed, but with the overwritten speed.

Tip

For example, this functionality can be used to reduce the speed if a
non-synchronised SafeMove robot is being used.

Syntax
MT_SpeedUpdate

Continues on next page
434 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.44 MT_SpeedUpdate – Adapting the speed

[speed ’:=’] < expression (INOUT) of speeddata> ’;’

Other information

SeeInformation about

Technical Reference Manual – Instructions, Functions
and Data Types listed in the section References on
page 11.

speeddata - speed information

3HAC044398-001 Revision: C 435
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.44 MT_SpeedUpdate – Adapting the speed

Continued

15.2.45 MT_StartCycleTimer – Start recording the cycle time

Usage
MT_StartCycleTimer is used to start the recording of the cycle time in the
production and to visualize this on the RWMT user interface as a progressive cycle
time.
In this way, the time required for the current cycle can be recorded.

Basic example
…

!Start cycle timer

MT_StartCycleTimer;

!Unload machine

UnloadMachine;

!Feed out the part

LoadConveyor;

!Stop cycle timer

MT_StopCycleTimer;

…

At the start of the current production cycle, the measurement of the cycle time is
started.
After this, the cycle is executed (unloading the machine, ejection).
Finally, the cycle time recording is stopped and the cycle time that has been
determined will be displayed in seconds on the RWMT screen.

en1300000156

Program execution
By using the instruction MT_StartCycleTimer, the measurement of the cycle
time is started.

Syntax
MT_StartCycleTimer ’;’

Continues on next page
436 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.45 MT_StartCycleTimer – Start recording the cycle time

More information

SeeInformation about

MT_StopCycleTimer – Stop recording the cycle time on
page 438

Stopping the cycle time recording

3HAC044398-001 Revision: C 437
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.45 MT_StartCycleTimer – Start recording the cycle time

Continued

15.2.46 MT_StopCycleTimer – Stop recording the cycle time

Usage
With the help of MT_StopCycleTimer, the recording of the cycle time in the
production will be stopped and this will be visualized on the RWMT user interface
as the time that has been determined.

Basic example
…

!Start cycle timer

MT_StartCycleTimer;

!Unload machine

UnloadMachine;

!Feed out the part

LoadConveyor;

!Stop cycle timer

MT_StopCycleTimer;

…

At the start of the current production cycle, the measurement of the cycle time is
started.
After this, the cycle is executed (unloading the machine, ejection).
Finally, the cycle time recording is stopped and the cycle time that has been
determined will be displayed in seconds on the RWMT screen.

en1300000156

Program execution
By using the instruction MT_StopCycleTimer, the measurement of the cycle time
is stopped.

Syntax
MT_StopCycleTimer ’;’

Continues on next page
438 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.46 MT_StopCycleTimer – Stop recording the cycle time

More information

SeeInformation about

MT_StartCycleTimer – Start recording the cycle time on
page 436

Starting the cycle time recording

3HAC044398-001 Revision: C 439
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.46 MT_StopCycleTimer – Stop recording the cycle time

Continued

15.2.47 MT_ToolCheckL – Checking a tool

Usage
MT_ToolCheckL is used to move to a tool testing position in a linear manner and
to determine byvisual inspection if the tool is present at the test point.
If the robot is not at the test point, then the system operator ca move the robot to
the test position with the help of the controlling lever and get the TCP computed
afresh with the help of the shifted position.

Basic example
PROC CheckTool1()

MoveJ p999, v500, z50,tTool1;

MoveJ […],v500,z50, tTool1;

MoveL […], v100,z10, tTool1;

ToolCheckL pTool1CheckPos, v50, tTool1;

MoveL […], v50,fine, tTool1;

MoveL […], v100,z10, tTool1;

MoveJ […],v500,z50, tTool1;

MoveJ p999, v500, z50, tTool1;

ENDPROC

The tool test position of the tool which belongs to the tooldata tTool1 is
approached and the dialog for the visual inspection will be displayed.

Arguments
MT_ToolCheckL ToPoint speed Tool [\Limit]

Data type: robtargetToPoint

The target position of the robot and the external axis.

Data type: speeddataSpeed

The speed data that are applicable for movements. Speed data
define the speed of the working point of the tool, the reorientation
of the tool and the external axes.

Data type: tooldataTool

The tool that is used during the movement. The tool working point
(TCP) is the point moves at the specified target position.

Data type: num[\Limit]

Permitted deviation from the original tool data.
If this parameter not used, then the max. deviation is 10 mm.

Continues on next page
440 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.47 MT_ToolCheckL – Checking a tool

Program execution
The robot moves to the tool test position in a linear manner, as a "fine" point and
the following dialog will be displayed:

en1300000157

If the "Yes" key is pressed then the robot will move back to the basic setting.
If the "No" key is pressed, then the following dialog will be output, and then the
program will be stopped.

en1300000158

As soon as the program is stopped, robot must be moved with the help of the
controlling lever to the desired test position and the program should be started
again.
The tool declaration that has been passed will be computed afresh with the help
of the shift in position and the test position will be approached with the corrected
tool data.

Continues on next page
3HAC044398-001 Revision: C 441

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.47 MT_ToolCheckL – Checking a tool

Continued

After this, the dialog with the result of the calculation is displayed:

en1300000159

If the "Yes" button is pressed, then the tool data that has been calculated will be
imported for the tool.
If the "No" button is pressed, then the correction can be repeated or the original
tool data can be retained as it is and the robot will move back to the basic setting.

Note

If the instruction MT_ToolCheckL is called for the first time with a tool, then its
tool data will be saved in a file ("HOME:/<tool>.wz).

This data will be used as the basis for the maximum permitted displacement. By
deleting the file, the basic tool definition can be replaced.

Syntax
MT_ToolCheckL

[ToPoint ’:=’] < expression (IN) of robtarget > ’,’

[Speed ’:=’] < expression (IN) of speeddata >

[Tool ’:=’] < persistent (PERS) of tooldata >

[’\’ Limit ’:=’] < expression (IN) of num >]’;’

442 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.47 MT_ToolCheckL – Checking a tool
Continued

15.2.48 MT_TriggJ – Axis-wise robot movements with events

Usage
MT_TriggJ (TriggJoint) is used to set output signals and/or interrupt routines
at approximately defined positions whilst the robot moves quickly from one point
to another, whereby this movement does not have to be in a straight line. This
position number assignment takes place in the middle of the corner path.
One or more (maximum of 7) events can be defined using the TriggIO,

TriggEquip, TriggInt, TriggCheckIO, TriggSpeed or TriggRampAO

instruction. Then reference can be made to these definitions with the TriggJ
instruction.
This instruction can only be used in the Main task T_ROB1 or in motion tasks in
the case of a MultiMove system.
The instruction basically corresponds to a TriggJ with some additions.

Basic example
VAR triggdata trGlueing_On;

VAR triggdata trGlueing_Off;

PROC InitTrigger()

TriggIO trGlueing_On, 10 \Start \DOp:=doGlueing, 1;

TriggIO trGlueing_Off, 10 \Start \DOp:= doGlueing, 0;

ENDPROC

PROC mv10_11()

MT_MoveJ 10, p10, v1000, z30, tGripper\NoMove;

MT_TriggJ 101101,p101101,v500,trGluing_On,z10,tGripper;

...

MT_TriggL 101105,p101105,v500,trGluing_Off,z10,tGripper;

…

ENDPROC

The digital output signal doGlueing is set if the TCP of the robot is 10 mm in front
of point p101101 . 101101 is then saved as the current position.
The digital output signal doGlueing is reset if the TCP of the robot is 10 mm in
front of point p101105 . 101105 is then saved as the current position.

Arguments
MT_TriggJ [\Conc] ActPos ToPoint speed [\T] Trigg1 [\T2] [\T3]

[\T4] [\T5] [\T6] [\T7] zone [\Inpos] Tool [\WObj]

Data type: switch[\Conc]
Concurrent The following instructions are executed whilst the robot is in motion.

Further information can be obtained from the MoveL instruction.

Data type: dnumActpos

Contains the position designation of the position to be moved to.

Continues on next page
3HAC044398-001 Revision: C 443

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.48 MT_TriggJ – Axis-wise robot movements with events

Data type: robtargetToPoint

The destination point of the robot and external axes. It is defined as
a named position or stored directly in the instruction (marked with
an * in the instruction).

Data type: speeddataSpeed

The speed programmed for the movement. The speed data define
the velocity of the TCP, of the tool reorientation and of external axes.

Data type: num[\T] (Time)

This argument is used to specify the time in seconds during which
a movement of the manipulator and of the external axes should be
executed. This value is then substituted for the corresponding speed
data.

Data type: triggdataTrigg1

A trigger condition-related and trigger activity-related variable that
has been defined previously in the program using the TriggIO,
TriggEquip, TriggInt, TriggSpeed, TriggCheckIO or
TriggRampAO instructions.

Data type: triggdata[\T2] (Trigg2)

A trigger condition-related and trigger activity-related variable that
has been defined previously in the program using the TriggIO,
TriggEquip, TriggInt, TriggSpeed, TriggCheckIO or
TriggRampAO instructions.

Data type: triggdata[\T3] (Trigg3)

A trigger condition-related and trigger activity-related variable that
has been defined previously in the program using the TriggIO,
TriggEquip, TriggInt, TriggSpeed, TriggCheckIO or
TriggRampAO instructions.

Data type: triggdata[\T4] (Trigg4)

A trigger condition-related and trigger activity-related variable that
has been defined previously in the program using the TriggIO,
TriggEquip, TriggInt, TriggSpeed, TriggCheckIO or
TriggRampAO instructions.

Data type: triggdata[\T5] (Trigg5)

A trigger condition-related and trigger activity-related variable that
has been defined previously in the program using the TriggIO,
TriggEquip, TriggInt, TriggSpeed, TriggCheckIO or
TriggRampAO instructions.

Data type: triggdata[\T6] (Trigg6)

A trigger condition-related and trigger activity-related variable that
has been defined previously in the program using the TriggIO,
TriggEquip, TriggInt, TriggSpeed, TriggCheckIO or
TriggRampAO instructions.

Data type: triggdata[\T7] (Trigg7)

A trigger condition-related and trigger activity-related variable that
has been defined previously in the program using the TriggIO,
TriggEquip, TriggInt, TriggSpeed, TriggCheckIO or
TriggRampAO instructions.

Data type: zonedataZone

Zone data for the movement. Zone data describe the distance in
which the axes must stand from the destination point before the
next instruction is executed.

Continues on next page
444 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.48 MT_TriggJ – Axis-wise robot movements with events
Continued

Data type: stoppointdata[\Inpos]

This argument is used to specify the convergence criteria for the
position of the robot’s TCP in the stop point. The stop point data
substitutes the zone specified in the Zone parameter.

Data type: tooldataTool

The tool in use when the robot moves. The tool centre point is moved
to the programmed destination point.

Data type: wobjdata[\Wobj]

The work object (tool coordinate system) to which the robot position
in the instruction is related. This argument can be omitted. In this
case the position relates to the world coordinate system.

Program execution
More information about axis-specific movements and trigger functions can be
found in the explanations for instruction MoveJ and TriggJ.
The passed position number is saved as the current robot position in the middle
of the corner path of the destination position.

Note

The MT_TriggJ instruction may never be used as the first movement instruction
in a movement routine. MT_MoveL or MT_MoveJwith the \NoMove argument must
always be used for this purpose.

Note

The specified RAPID procedure is not processed during backwards instruction
by instruction execution or when searching for the first position, nor during
backwards movement with MT_MoveRoutine.

Tip

The trigger events are not executed during movement to the home position if
the execution of trigger events (ExecTriggEvt) has been disabled in the system
parameters (FALSE).

Syntax
MT_TriggJ

[’\’Conc ’,’]

[ActPos ’:=’] < expression (IN) of dnum> ’,’

[ToPoint ’:=’] < expression (IN) of robtarget > ’,’

[speed ’:=’] < expression (IN) of speeddata >

[’\’T’:=’ < expression (IN) of num >] ’,’

[Trigg1 ’:=’] < Variable (VAR) as triggdata >

[’\’T2 ’:=’ < Variable (VAR) as triggdata >]

[’\’T3 ’:=’ < Variable (VAR) as triggdata >]

[’\’T4 ’:=’ < Variable (VAR) as triggdata >]

[’\’T5 ’:=’ < Variable (VAR) as triggdata >]

[’\’T6 ’:=’ < Variable (VAR) as triggdata >]

Continues on next page
3HAC044398-001 Revision: C 445

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.48 MT_TriggJ – Axis-wise robot movements with events

Continued

[’\’T7 ’:=’ < Variable (VAR) as triggdata >]

[Zone ’:=’] < expression (IN) of zonedata >

[’\’Inpos ’:=’ < expression (IN) of stoppointdata >]’,’

[Tool ’:=’] < persistent (PERS) of tooldata >

[’\’ WObj ’:=’ < persistent (PERS) of wobjdata >]’;’

446 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.48 MT_TriggJ – Axis-wise robot movements with events
Continued

15.2.49 MT_TriggL – Linear robot movements with events

Usage
MT_TriggL (Trigg Linear) is used to set output signals and/or interrupt routines
in fixed positions whilst the robot is making linear movements. This position number
assignment takes place in the middle of the corner path.
One or more (maximum of 7) events can be defined using the TriggIO,

TriggEquip, TriggInt, TriggCheckIO, TriggSpeed or TriggRampAO
instruction. Then reference can be made to these definitions with the TriggL

instruction.
This instruction can only be used in the Main task T_ROB1 or in motion tasks in
the case of a MultiMove system.
The instruction basically corresponds to a TriggL with some additions.

Basic example
VAR triggdata trGlueing_On;

VAR triggdata trGlueing_Off;

PROC InitTrigger()

TriggIO trGlueing_On, 10 \Start \DOp:=doGlueing, 1;

TriggIO trGlueing_Off, 10 \Start \DOp:= doGlueing, 0;

ENDPROC

PROC mv10_11()

MT_MoveJ 10, p10, v1000, z30, tGripper\NoMove;

MT_TriggJ 101101,p101101,v500,trGluing_On,z10,tGripper;

...

MT_TriggL 101105,p101105,v500,trGluing_Off,z10,tGripper;

…

ENDPROC

The digital output signal doGlueing is set if the TCP of the robot is 10 mm in front
of point p101101 . 101101 is then saved as the current position.
The digital output signal doGlueing is reset if the TCP of the robot is 10 mm in
front of point p101105 . 101105 is then saved as the current position.

Arguments
MT_TriggL [\Conc] ActPos ToPoint speed [\T] Trigg1 [\T2]

[\T3] [\T4] [\T5] [\T6] [\T7] zone [\Inpos]

Tool [\WObj] [\Corr]

Data type: switch[\Conc]
Concurrent The following instructions are executed whilst the robot is in motion.

Further information can be obtained from the MoveL instruction.

Data type: dnumActpos

Contains the position designation of the position to be moved to.

Continues on next page
3HAC044398-001 Revision: C 447

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.49 MT_TriggL – Linear robot movements with events

Data type: robtargetToPoint

The destination point of the robot and external axes. It is defined as
a named position or stored directly in the instruction (marked with
an * in the instruction).

Data type: speeddataSpeed

The speed programmed for the movement. The speed data define
the velocity of the TCP, of the tool reorientation and of external axes.

Data type: num[\T] (Time)

This argument is used to specify the time in seconds during which
a movement of the manipulator and of the external axes should be
executed. This value is then substituted for the corresponding speed
data.

Data type: Data type: triggdataTrigg1

A trigger condition-related and trigger activity-related variable that
has been defined previously in the program using the TriggIO,
TriggEquip, TriggInt, TriggSpeed, TriggCheckIO or
TriggRampAO instructions.

Data type: Data type: triggdata[\T2] (Trigg2)

A trigger condition-related and trigger activity-related variable that
has been defined previously in the program using the TriggIO,
TriggEquip, TriggInt, TriggSpeed, TriggCheckIO or
TriggRampAO instructions.

Data type: triggdata[\T3] (Trigg3)

A trigger condition-related and trigger activity-related variable that
has been defined previously in the program using the TriggIO,
TriggEquip, TriggInt, TriggSpeed, TriggCheckIO or
TriggRampAO instructions.

Data type: triggdata[\T4] (Trigg4)

A trigger condition-related and trigger activity-related variable that
has been defined previously in the program using the TriggIO,
TriggEquip, TriggInt, TriggSpeed, TriggCheckIO or
TriggRampAO instructions.

Data type: triggdata[\T5] (Trigg5)

A trigger condition-related and trigger activity-related variable that
has been defined previously in the program using the TriggIO,
TriggEquip, TriggInt, TriggSpeed, TriggCheckIO or
TriggRampAO instructions.

Data type: triggdata[\T6] (Trigg6)

A trigger condition-related and trigger activity-related variable that
has been defined previously in the program using the TriggIO,
TriggEquip, TriggInt, TriggSpeed, TriggCheckIO or
TriggRampAO instructions.

Data type: triggdata[\T7] (Trigg7)

A trigger condition-related and trigger activity-related variable that
has been defined previously in the program using the TriggIO,
TriggEquip, TriggInt, TriggSpeed, TriggCheckIO or
TriggRampAO instructions.

Data type: zonedataZone

Zone data for the movement. Zone data describe the distance in
which the axes must stand from the destination point before the
next instruction is executed.

Continues on next page
448 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.49 MT_TriggL – Linear robot movements with events
Continued

Data type: stoppointdata[\Inpos]

This argument is used to specify the convergence criteria for the
position of the robot’s TCP in the stop point. The stop point data
substitutes the zone specified in the Zone parameter.

Data type: tooldataTool

The tool in use when the robot moves. The tool centre point is moved
to the programmed destination point.

Data type: wobjdata[\Wobj]

The work object (tool coordinate system) to which the robot position
in the instruction is related. This argument can be omitted. In this
case the position relates to the world coordinate system.

Data type: switch[\Corr]

Correction data that has been written in a correction entry using the
CorrWrite instruction is added to the path and the destination position
if this argument is present.

Program execution
More information about linear movements and trigger functions can be found in
the explanations for instruction MoveL and TriggL.
The passed position number is saved as the current robot position in the middle
of the corner path of the destination position.

Note

The MT_TriggL instruction may never be used as the first movement instruction
in a movement routine. MT_MoveL or MT_MoveJ with the \NoMove argument
must always be used for this purpose.

Note

The specified RAPID procedure is not processed during backwards instruction
by instruction execution or when searching for the first position, nor during
backwards movement with MT_MoveRoutine.

Tip

The trigger events are not executed during movement to the home position if
the execution of trigger events (ExecTriggEvt) has been disabled in the system
parameters (FALSE).

Syntax
MT_TriggL

[’\’Conc ’,’]

[ActPos ’:=’] < expression (IN) of dnum> ’,’

[ToPoint ’:=’] < expression (IN) of robtarget > ’,’

[speed ’:=’] < expression (IN) of speeddata >

[’\’T’:=’ < expression (IN) of num >] ’,’

[Trigg1 ’:=’] < Variable (VAR) as triggdata >

[’\’T2 ’:=’ < Variable (VAR) as triggdata >]

Continues on next page
3HAC044398-001 Revision: C 449

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.49 MT_TriggL – Linear robot movements with events

Continued

[’\’T3 ’:=’ < Variable (VAR) as triggdata >]

[’\’T4 ’:=’ < Variable (VAR) as triggdata >]

[’\’T5 ’:=’ < Variable (VAR) as triggdata >]

[’\’T6 ’:=’ < Variable (VAR) as triggdata >]

[’\’T7 ’:=’ < Variable (VAR) as triggdata >]

[Zone ’:=’] < expression (IN) of zonedata >

[’\’Inpos ’:=’ < expression (IN) of stoppointdata >]’,’

[Tool ’:=’] < persistent (PERS) of tooldata >

[’\’WObj ’:=’ < persistent (PERS) of wobjdata >]

[’\’Corr]’;’

450 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.49 MT_TriggL – Linear robot movements with events
Continued

15.2.50 MT_UIMessage – Message display based on UIMessageBox

Usage
MT_UIMessage is used for outputting a message that has been declared as msgdata
on the programming device.
MT_UIMessage essentially corresponds to the function UIMessageBox

Basic example
MT_UIMessage msgProgValid\NoErrorLog;

Message output msgProgValid, whereby the entry will be suppressed in the event
log.

Arguments
MT_UIMessage Msg [\SubHeader] [\Info] [\NoErrorLog] [\DOBreak]

[\DIBreak] [\Buttonresult] [\BtnArray] [\MaxTime]
[\NoErrorDelete]

Data type: msgdataMsg

Message text and error number declaration

Data type: string[\Subheader]

Optional text which is output above the message text.

Data type: string[\Info]

Optional additional text which is output under the message text.

Data type: switch[\NoErrorLog]

Optional switch that will prevent the error text from being written
into the event log. If the switch not used, then all the messages,
whose error domains and error domain number are greater than
zero will be entered in the event log.

Data type: signaldo[\DOBreak]

The digital output signal, which can interrupt the operator dialog. In
case no button selected, if the signal is set to 1 (or is already at 1),
the program will continue.

Data type: signaldi[\DIBreak]

The digital input signal, which can interrupt the operator dialog. In
case no button selected, if the signal is set to 1 (or is already at 1),
the program will continue.

Data type: btnres[\Buttonresult]

The numerical value of the button that was pressed in the shown
dialog.
Generally, the pre-defined symbolic constants of the type btnres are
used as return value.
If a BtnArray is passed, then, the values 11 to 15 will be returned
for the function keys.

Data type: userbutton[\BtnArray]

Separate definition of buttons that are saved in the data type user-
button.

Data type: num[\MaxTime]

The maximum time in seconds for which the program execution will
wait. If no key is selected within this time, then the program will be
continued.

Continues on next page
3HAC044398-001 Revision: C 451

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.50 MT_UIMessage – Message display based on UIMessageBox

Data type: switch[\NoErrorDelete]

If the error domain and error number of this message is greater than
0, this information is send through the appropriate digital group
outputs (if available). The switch \NoErrorDelete prevents the
group outputs from being reset after the message has been con-
firmed.

Program execution
The message window with the icon, the header, the message rows, image and
buttons will be displayed in accordance with the programmed arguments. The
program execution waits till a user presses a button or the message window is
interrupted by a timeout or a signal. The user selection (button result) could be
returned to the program.

en1300000160

If the cancel signal DIBreak or DOBreak is used, then the message will be ended
prematurely and the program run will continue.
If the domain number and the error number are greater than zero, then these will
be communicated to the PLC through the group outputs as error. In addition to
this, the message will be entered in the event log, if this is not prevented explicitly
by the optional parameter \NoErrorLog.

Syntax
MT_UIMessage

[Msg ´:=´ < expression (IN) of msgdata >]

[´\Subheader´:=´ < expression (IN) of string >]

[´\Info´:=´ < expression (IN) of string>]

[´\NoErrorLog´]

[´\DOBreak ´:=´ < expression (VAR) of signaldo >]

[´\DIBreak ´:=´ < expression (VAR) of signaldi >]

[´\Buttonresult ´:=´ < expression (INOUT) of btnres >]

[´\BtnArray ´:=´ < expression (IN) of userbutton >]

[´\MaxTime ´:=´ < expression (IN) of num >]

[´\NoErrorDelete ´:=´ < expression (IN) of switch >]

Continues on next page
452 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.50 MT_UIMessage – Message display based on UIMessageBox
Continued

More information

SeeInformation about

Technical Reference Manual – Instructions, Functions and Data Types
listed in the section References on page 11

Instruction
UIMessageBox

msgdata – Message declaration on page 294Data type
msgdata

3HAC044398-001 Revision: C 453
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.50 MT_UIMessage – Message display based on UIMessageBox

Continued

15.2.51 MT_UserInit – User routine for initialization

Usage
MT_UserInit is a routine for user initialization purpose, which should reasonably
be located in the module MT_Main.mod but can also be located in any other
user-defined RAPID module.
If the user program needs some initial steps to be done, when the program is
started “from main”, then those steps can be placed in the routine MT_UserInit.
RWMT provides the routine MT_UserInit in the template module MT_Main.mod,
which comes with the additional option. If it is not needed it can be removed by
the integrator.

Basic example
PROC MT_UserInit()

!Do user initialization here

ENDPROC

Arguments
MT_UserInit

No arguments.

Program execution
The routine will be called automatically after the internal RWMT initialization (after
the EE_AFTER_INIT event (see Event handling on page 99)). It does not need to
be called by the user program itself.

Syntax
MT_UserInit´;´

454 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.51 MT_UserInit – User routine for initialization

15.2.52 MT_WaitMsgDI – Wait for input signal state

Usage
MT_WaitMsgDI is used to wait for the expected status of an input signal and if the
condition is not fulfilled, to display a message on the Flexpendant.
The message will, beside of the user-defined content, automatically contain the
signals which have not reached the expected state.

Basic example
MT_WaitMsgDI diRelease1,high\diAnd:=diRelease2 \SecValue :=

high,msgScrtest2\MaxTime:=1\NoErrorLog;

The instruction waits till the input signals diRelease1 and diRelease2 are "high".

Arguments
MT_WaitMsgDI [\InPos]|[\ZeroSpeed] diSignal Value

[\diAND]|[\diOR]|[diXOR][\SecValue] Msg [\SubHeader] [\Info]
[\NoSignalInfo] [\MaxTime] [\NoErrorLog] [\Pollrate] [\ERR]

Data type: switch[\InPos]

If this argument is used, then the robot and the external axes must
have reached the stop point (ToPoint of the current movement in-
struction) before the processing can continue.

Data type: switch[\ZeroSpeed]

If this argument is used, then the robot and the external axes must
have the speed zero before the processing can continue.

Data type: signaldidiSignal

The name of the digital input signal.

Data type: dionumValue

The desired value of the signal.

Data type: signaldi[\diAnd]

Optional name of a digital input, which is queried through an AND
query together with diSignal.

Data type: signaldi[\diOR]

Optional name of a digital input, which is queried through an OR
query together with the diSignal.

Data type: signaldi[\diXOR]

Optional name of a digital input, which is queried through an XOR
query together with the diSignal.

Data type: dionum[\SecValue]

The desired value of the second signal. If this parameter is not
passed, then the signal will be queried for high.

Data type: msgdataMsg

Message that is to be displayed. In the data type msgdata, all the
data is saved for display on the hand held programming device.

Data type: string[\Subheader]

Optional additional text which is output above the message text.

Data type: string[\Info]

Optional additional text which is output under the message text.

Continues on next page
3HAC044398-001 Revision: C 455

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.52 MT_WaitMsgDI – Wait for input signal state

Data type: switch[\NoSignalInfo]

Optional switch which omits the automatically created additional
information about signals, that have not reached the expected state.

Data type: num[\MaxTime]

Optional value, duration for which the instruction waits for the signal
before a message is displayed. The default waiting period is 5
seconds.

Data type: switch[\NoErrorLog]

Optional switch that determines whether the error text should be
written into the event log or not.

Data type: num[\Pollrate]

The polling rate in seconds, for checking if the condition has been
fulfilled. This means that the MT_WaitMsgDIwill check the condition
immediately, and in case the value is other than TRUE the check
will be repeated with the specified polling rate. The minimum value
for the polling rate is 0.01 s. If this argument not used wird, then the
default polling rate of 0.1 s will be set.

Data type: errnum[\ERR]

Error number that is raised to the calling routine in the case of a re-
quest to abort the program execution (HomeRun request or Abort
or Cancel has been pressed in the user dialog).

Program execution
The instruction waits for a definite time for the condition to be fulfilled. If the
condition is not fulfilled, then, with the help of an internal use of MT_UIMessage a
message will be displayed and the error number that is declared in the message
will be communicated to the PLC.

Syntax
MT_WaitMsgDI

[´\InPos´]

| [´\ZeroSpeed´]

[diSignal´:=´ < expression (VAR) of signaldi >]

[Value´:=´ < expression (IN) of dionum >]

[´\diAnd´:=´ < expression (IN) of signaldi >]

| [´\diOr´:=´ < expression (IN) of signaldi >]

| [´\diXOr´:=´ < expression (IN) of signaldi >]

[´\SecValue´:=´ < expression (IN) of dionum >]

[Msg ´:=´ < expression (IN) of > msgdata]

[´\Subheader´:=´ < expression (IN) of string >]

[´\Info´:=´ < expression (IN) of string>]

[´\NoSignalInfo´]

[´\MaxTime´:=´ < expression (IN) of num >]

[´\NoErrorLog´]

[´\Pollrate´:=´ < expression (IN) of num >]

[´\Err´:=´ < expression (IN) of errnum >]

456 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.52 MT_WaitMsgDI – Wait for input signal state
Continued

15.2.53 MT_WaitMsgDO – Wait for output signal state

Usage
MT_WaitMsgDO is used to wait for a group output signal and if the condition is
not fulfilled, to display a message on the Flexpendant.
The message will, beside of the user-defined content, automatically contain the
signals which have not reached the expected state.

Basic example
MT_WaitMsgDO doStart1,high\doAnd:=doStart2\SecValue:=high,

msgStart\MaxTime:=1\NoErrorLog;

The instruction waits till the output signals doStart1 and doStart2 change to
"high". If this does not happen within one second, then, an error message will be
output, but this will not be written into the event log.

Arguments
MT_WaitMsgDO [\InPos]|[\ZeroSpeed] doSignal Value

[\doAND]|[\doOR]|[\SecValue] Msg [\SubHeader] [\Info]
[\NoSignalInfo] [\MaxTime] [\NoErrorLog] [\Pollrate] [\ERR]

Data type: switch[\InPos]

If this argument is used, then the robot and the external axes must
have reached the stop point (ToPoint of the current movement in-
struction) before the processing can continue.

Data type: switch[\ZeroSpeed]

If this argument is used, then the robot and the external axes must
have the speed zero before the processing can continue.

Data type: signaldodoSignal

The name of the digital output signal.

Data type: dionumValue

The desired value of the signal.

Data type: signaldo[\doAnd]

Optional name of a digital output, which is queried through an AND
query together with doSignal.

Data type: signaldo[\doOR]

Optional name of a digital input, which is queried through an OR
query together with the doSignal.

Data type: dionum[\SecValue]

The desired value of the second signal. If this parameter is not
passed, then the signal will be queried for high.

Data type: msgdataMsg

Message that is to be displayed. In the data type msgdata, all the
data is saved for display on the hand held programming device.

Data type: string[\Subheader]

Optional additional text which is output above the message text.

Data type: string[\Info]

Optional additional text which is output under the message text.

Continues on next page
3HAC044398-001 Revision: C 457

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.53 MT_WaitMsgDO – Wait for output signal state

Data type: switch[\NoSignalInfo]

Optional switch which omits the automatically created additional
information about signals, that have not reached the expected state.

Data type: num[\MaxTime]

Optional value, duration for which the instruction waits for the signal
before a message is displayed. The default waiting period is 5
seconds.

Data type: switch[\NoErrorLog]

Optional switch that determines whether the error text should be
written into the event log or not.

Data type: num[\Pollrate]

The polling rate in seconds, for checking if the condition has been
fulfilled. This means that MT_WaitMsgDO will check the condition
immediately, and in case a value other than TRUE is present, the
check will be repeated with the specified polling rate. The minimum
value for the polling rate is 0.01 s. If this argument not used wird,
then the default polling rate of 0.1 s will be set.

Data type: errnum[\ERR]

Error number that is raised to the calling routine in the case of a re-
quest to abort the program execution (HomeRun request or Abort
or Cancel has been pressed in the user dialog).

Program execution
The instruction waits for a definite time for the condition to be fulfilled. If the
condition is not fulfilled, then, with the help of an internal use of MT_UIMessage a
message will be displayed and the error recognition that is declared in the message
will be communicated to the PLC.

Syntax
MT_WaitMsgDO

[´\InPos´]

| [´\ZeroSpeed´]

[doSignal´:=´ < expression (VAR) of signaldo >]

[Value´:=´ < expression (IN) of dionum >]

[´\doAnd´:=´ < expression (IN) of signaldo >]

| [´\doOr´:=´ < expression (IN) of signaldo >]

[´\SecValue´:=´ < expression (IN) of dionum >]

[Msg ´:=´ < expression (IN) of > msgdata]

[´\Subheader´:=´ < expression (IN) of string >]

[´\Info´:=´ < expression (IN) of string>]

[´\NoSignalInfo´]

[´\MaxTime´:=´ < expression (IN) of num >]

[´\NoErrorLog´]

[´\Pollrate´:=´ < expression (IN) of num >]

[´\Err´:=´ < expression (IN) of errnum >]

458 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.53 MT_WaitMsgDO – Wait for output signal state
Continued

15.2.54 MT_WaitMsgGI – Wait for a group input signal

Usage
MT_WaitMsgGI is used to wait for a group input signal and if the condition is not
fulfilled, to display a message on the Flexpendant.
The message will, beside of the user-defined content, automatically contain the
signals which have not reached the expected state.

Basic example
MT_WaitMsgGI giProgNumber, NOTEQ, 0, msgProgNumber;

The instruction waits till the group input signal giProgNumber is not equal to zero.

Arguments
MT_WaitMsgGI [\InPos]|[\ZeroSpeed] giSignal OPValue Value Msg

[\SubHeader] [\Info] [\NoSignalInfo] [\MaxTime] [\NoErrorLog]
[\Pollrate] [\ERR]

Data type: switch[\InPos]

If this argument is used, then the robot and the external axes must
have reached the stop point (ToPoint of the current movement in-
struction) before the processing can continue.

Data type: switch[\ZeroSpeed]

If this argument is used, then the robot and the external axes must
have the speed zero before the processing can continue.

Data type: signalgigiSignal

The name of the digital input group signal.

Data type: opnumOPValue

"OPValue" will be used for comparing of the value of the signal with
the required "Value".

Data type: signaldo[\doAnd]

Optional name of a digital output, which is queried through an AND
query together with doSignal.
The following constants can be used for the comparison:

CommentSymbolic constantsValue

Less thanLT1

Less than or equalLTEQ2

EqualEQ3

Not equalNOTEQ4

Greater than or equalGTEQ5

Greater thanGT6

Data type: numValue

The desired value of the signal. Must be an integer within the validity
range of the digital group input signal.
Permitted range of numbers: 0 to 8388608.

Data type: msgdataMsg

Specification of the message declaration which will be output after
a waiting period on the programming device.

Continues on next page
3HAC044398-001 Revision: C 459

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.54 MT_WaitMsgGI – Wait for a group input signal

Data type: string[\Subheader]

Optional additional text which is output above the message text.

Data type: string[\Info]

Optional additional text which is output under the message text.

Data type: switch[\NoSignalInfo]

Optional switch which omits the automatically created additional
information about signals, that have not reached the expected state.

Data type: num[\MaxTime]

Optional value, duration for which the instruction waits for the signal
before a message is displayed. The default waiting period is 5
seconds.

Data type: switch[\NoErrorLog]

Optional switch that determines whether the error text should be
written into the event log or not.

Data type: num[\Pollrate]

The polling rate in seconds, for checking if the condition has been
fulfilled. This means that the MT_WaitMsgGIwill check the condition
immediately, and case of a value other than TRUE, the check will
be repeated with the specified polling rate. The minimum value for
the polling rate is 0.01 s. If this argument not used wird, then the
default polling rate of 0.1 s will be set.

Data type: errnum[\ERR]

Error number that is raised to the calling routine in the case of a re-
quest to abort the program execution (HomeRun request or Abort
or Cancel has been pressed in the user dialog).

Program execution
The instruction waits for a definite time for the condition to be fulfilled. If the
condition is not fulfilled, then, with the help of an internal use of MT_UIMessage a
message will be displayed and the error recognition that is declared in the message
will be communicated to the PLC.

Syntax
MT_WaitMsgGI

[´\InPos´]

| [´\ZeroSpeed´]

[giSignal´:=´ < expression (VAR) of signalgi >]

[OPValue´:=´ < expression (IN) of opvalue >]

[Value´:=´ < expression (IN) of num >]

[Msg ´:=´ < expression (IN) of > msgdata]

[´\Subheader´:=´ < expression (IN) of string >]

[´\Info´:=´ < expression (IN) of string>]

[´\NoSignalInfo´]

[´\MaxTime´:=´ < expression (IN) of num >]

[´\NoErrorLog´]

[´\Pollrate´:=´ < expression (IN) of num >]

[´\Err´:=´ < expression (IN) of errnum >]

460 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.54 MT_WaitMsgGI – Wait for a group input signal
Continued

15.2.55 MT_WaitMsgGI32 – Wait for a 32-Bit group input signal

Usage
MT_WaitMsgGI32 is used to wait for a 32 bit wide group input signal and if the
condition is not fulfilled, to display a message on the Flexpendant.
The message will, beside of the user-defined content, automatically contain the
signals which have not reached the expected state.

Basic example
MT_WaitMsgGI32 giProgNumber, NOTEQ, 0, msgPrognumber;

The instruction waits till the group input signal giProgNumber is not equal to zero.

Arguments
MT_WaitMsgGI32 [\InPos]]|[\ZeroSpeed] giSignal OPValue Value Msg

[\SubHeader] [\Info] [\NoSignalInfo] [\MaxTime] [\NoErrorLog]
[\Pollrate] [\ERR]

Data type: switch[\InPos]

If this argument is used, then the robot and the external axes must
have reached the stop point (ToPoint of the current movement in-
struction) before the processing can continue.

Data type: switch[\ZeroSpeed]

If this argument is used, then the robot and the external axes must
have the speed zero before the processing can continue.

Data type: signalgigiSignal

The name of the digital input group signal.

Data type: opnumOPValue

OPValue is used for comparing the value of the signal with the re-
quired value.
The following constants can be used for the comparison:

CommentSymbolic constantsValue

Less thanLT1

Less than or equalLTEQ2

EqualEQ3

Not equalNOTEQ4

Greater than or equalGTEQ5

Greater thanGT6

Data type: dnumValue

The desired value of the signal. Must be an integer within the validity
range of the digital group input signal.
Permitted range of numbers: 0 to 4294967295

Data type: msgdataMsg

Specification of the message declaration which will be output after
a waiting period on the programming device.

Data type: string[\Subheader]

Optional additional text which is output above the message text.

Continues on next page
3HAC044398-001 Revision: C 461

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.55 MT_WaitMsgGI32 – Wait for a 32-Bit group input signal

Data type: string[\Info]

Optional additional text which is output under the message text.

Data type: switch[\NoSignalInfo]

Optional switch which omits the automatically created additional
information about signals, that have not reached the expected state.

Data type: num[\MaxTime]

Optional value, duration for which the instruction waits for the signal
before a message is displayed. The default waiting period is 5
seconds.

Data type: switch[\NoErrorLog]

Optional switch that determines whether the error text should be
written into the event log or not.

Data type: num[\Pollrate]

The polling rate in seconds, for checking if the condition has been
fulfilled. This means that the MT_WaitMsgGI32 will check the con-
dition immediately, and in the case of a value other than TRUE, the
check will be repeated with the specified polling rate. The minimum
value for the polling rate is 0.01 s. If this argument not used wird,
then the default polling rate of 0.1 s will be set.

Data type: errnum[\ERR]

Error number that is raised to the calling routine in the case of a re-
quest to abort the program execution (HomeRun request or Abort
or Cancel has been pressed in the user dialog).

Program execution
The instruction waits for a definite time for the condition to be fulfilled. If the
condition is not fulfilled, then, with the help of an internal use of MT_UIMessage a
message will be displayed and the error recognition that is declared in the message
will be communicated to the PLC.

Syntax
MT_WaitMsgGI32

[´\InPos´]

| [´\ZeroSpeed´]

[giSignal´:=´ < expression (VAR) of signalgi >]

[OPValue´:=´ < expression (IN) of opvalue >]

[Value´:=´ < expression (IN) of dnum >]

[Msg ´:=´ < expression (IN) of > msgdata]

[´\Subheader´:=´ < expression (IN) of string >]

[´\Info´:=´ < expression (IN) of string>]

[´\NoSignalInfo´]

[´\MaxTime´:=´ < expression (IN) of num >]

[´\NoErrorLog´]

[´\Pollrate´:=´ < expression (IN) of num >]

[´\Err´:=´ < expression (IN) of errnum >]

462 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.55 MT_WaitMsgGI32 – Wait for a 32-Bit group input signal
Continued

15.2.56 MT_WaitMsgGO – Wait for a group output signal

Usage
MT_WaitMsgGO is used to wait for a group output signal and if the condition is not
fulfilled, to display a message on the Flexpendant.
The message will, beside of the user-defined content, automatically contain the
signals which have not reached the expected state.

Basic example
MT_WaitMsgGO goExample, NOTEQ, 0, msgExample;

The instruction waits till the group output signal goExample is not equal to zero.

Arguments
MT_WaitMsgGO [\InPos]|[\ZeroSpeed] goSignal OPValue Value Msg

[\SubHeader] [\Info] [\NoSignalInfo] [\MaxTime] [\NoErrorLog]
[\Pollrate] [\ERR]

Data type: switch[\InPos]

If this argument is used, then the robot and the external axes must
have reached the stop point (ToPoint of the current movement in-
struction) before the processing can continue.

Data type: switch[\ZeroSpeed]

If this argument is used, then the robot and the external axes must
have the speed zero before the processing can continue.

Data type: signalgogoSignal

The name of the digital group output signal.

Data type: opnumOPValue

"OPValue" will be used for comparing the value of the signal with
the required "Value".
The following constants can be used for the comparison:

CommentSymbolic constantsValue

Less thanLT1

Less than or equalLTEQ2

EqualEQ3

Not equalNOTEQ4

Greater than or equalGTEQ5

Greater thanGT6

Data type: numValue

The desired value of the signal. Must be an integer within the validity
range of the digital group input signal.
Permitted range of numbers: 0 to 8388608.

Data type: msgdataMsg

Specification of the message declaration which will be output after
a waiting period on the programming device.

Data type: string[\Subheader]

Optional additional text which is output above the message text.

Continues on next page
3HAC044398-001 Revision: C 463

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.56 MT_WaitMsgGO – Wait for a group output signal

Data type: string[\Info]

Optional additional text which is output under the message text.

Data type: switch[\NoSignalInfo]

Optional switch which omits the automatically created additional
information about signals, that have not reached the expected state.

Data type: num[\MaxTime]

Optional value, duration for which the instruction waits for the signal
before a message is displayed. The default waiting period is 5
seconds.

Data type: switch[\NoErrorLog]

Optional switch that determines whether the error text should be
written into the event log or not.

Data type: num[\Pollrate]

The polling rate in seconds, for checking if the condition has been
fulfilled. This means that the MT_WaitMsgGOwill check the condition
immediately, and in the case of a value other than TRUE, the check
will be repeated with the specified polling rate. The minimum value
for the polling rate is 0.01 s. If this argument not used wird, then the
default polling rate of 0.1 s will be set.

Data type: errnum[\ERR]

Error number that is raised to the calling routine in the case of a re-
quest to abort the program execution (HomeRun request or Abort
or Cancel has been pressed in the user dialog).

Program execution
The instruction waits for a definite time for the condition to be fulfilled. If the
condition is not fulfilled, then, with the help of an internal use of MT_UIMessage a
message will be displayed and the error recognition that is declared in the message
will be communicated to the PLC.

Syntax
MT_WaitMsgGO

[´\InPos´]

| [´\ZeroSpeed´]

[goSignal´:=´ < expression (VAR) of signalgo >]

[OPValue´:=´ < expression (IN) of opvalue >]

[Value´:=´ < expression (IN) of num >]

[Msg ´:=´ < expression (IN) of > msgdata]

[´\Subheader´:=´ < expression (IN) of string >]

[´\Info´:=´ < expression (IN) of string>]

[´\NoSignalInfo´]

[´\MaxTime´:=´ < expression (IN) of num >]

[´\NoErrorLog´]

[´\Pollrate´:=´ < expression (IN) of num >]

[´\Err´:=´ < expression (IN) of errnum >]

464 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.56 MT_WaitMsgGO – Wait for a group output signal
Continued

15.2.57 MT_WaitMsgGO32 – Wait for a 32-Bit group output signal

Usage
MT_WaitMsgGO32 is used to wait for a 32 bit wide group input signal and if the
condition is not fulfilled, to display a message on the Flexpendant.
The message will, beside of the user-defined content, automatically contain the
signals which have not reached the expected state.

Basic example
MT_WaitMsgGO32 goExample, NOTEQ, 0, msgExample;

The instruction waits till the group output signal goExample is not equal to zero.

Arguments
MT_WaitMsgGO32 [\InPos]]|[\ZeroSpeed] goSignal OPValue Value Msg

[\SubHeader] [\Info] [\NoSignalInfo] [\MaxTime] [\NoErrorLog]
[\Pollrate] [\ERR]

Data type: switch[\InPos]

If this argument is used, then the robot and the external axes must
have reached the stop point (ToPoint of the current movement in-
struction) before the processing can continue.

Data type: switch[\ZeroSpeed]

If this argument is used, then the robot and the external axes must
have the speed zero before the processing can continue.

Data type: signalgogoSignal

The name of the digital group output signal.

Data type: opnumOPValue

"OPValue" will be used for comparing the value of the signal with
the required "Value".
The following constants can be used for the comparison:

CommentSymbolic constantsValue

Less thanLT1

Less than or equalLTEQ2

EqualEQ3

Not equalNOTEQ4

Greater than or equalGTEQ5

Greater thanGT6

Data type: dnumValue

The desired value of the signal. Must be an integer within the validity
range of the digital group input signal.
Permitted range of numbers: 0 to 4294967295

Data type: msgdataMsg

Specification of the message declaration which will be output after
a waiting period on the programming device.

Data type: string[\Subheader]

Optional additional text which is output above the message text.

Continues on next page
3HAC044398-001 Revision: C 465

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.57 MT_WaitMsgGO32 – Wait for a 32-Bit group output signal

Data type: string[\Info]

Optional additional text which is output under the message text.

Data type: switch[\NoSignalInfo]

Optional switch which omits the automatically created additional
information about signals, that have not reached the expected state.

Data type: num[\MaxTime]

Optional value, duration for which the instruction waits for the signal
before a message is displayed. The default waiting period is 5
seconds.

Data type: switch[\NoErrorLog]

Optional switch that determines whether the error text should be
written into the event log or not.

Data type: num[\Pollrate]

The polling rate in seconds, for checking if the condition has been
fulfilled. This means that the MT_WaitMsgGO32 will check the con-
dition immediately, and in the case of a value other than TRUE, the
check will be repeated with the specified polling rate. The minimum
value for the polling rate is 0.01 s. If this argument not used wird,
then the default polling rate of 0.1 s will be set.

Data type: errnum[\ERR]

Error number that is raised to the calling routine in the case of a re-
quest to abort the program execution (HomeRun request or Abort
or Cancel has been pressed in the user dialog).

Program execution
The instruction waits for a definite time for the condition to be fulfilled. If the
condition is not fulfilled, then, with the help of an internal use of MT_UIMessage a
message will be displayed and the error recognition that is declared in the message
will be communicated to the PLC.

Syntax
MT_WaitMsgGO32

[´\InPos´]

| [´\ZeroSpeed´]

[goSignal´:=´ < expression (VAR) of signalgo >]

[OPValue´:=´ < expression (IN) of opvalue >]

[Value´:=´ < expression (IN) of dnum >]

[Msg ´:=´ < expression (IN) of > msgdata]

[´\Subheader´:=´ < expression (IN) of string >]

[´\Info´:=´ < expression (IN) of string>]

[´\NoSignalInfo´]

[´\MaxTime´:=´ < expression (IN) of num >]

[´\NoErrorLog´]

[´\Pollrate´:=´ < expression (IN) of num >]

[´\Err´:=´ < expression (IN) of errnum >]

466 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.57 MT_WaitMsgGO32 – Wait for a 32-Bit group output signal
Continued

15.2.58 MT_WaitMsgSync – Synchronization of movement tasks

Usage
MT_WaitMsgSync is used to synchronize several movement tasks with each other.
The instruction waits for a definite time for the specified tasks to synchronize with
each other.
If the synchronization has not happened even after the waiting period has lapsed,
then the instruction will decide with the help of the error number that has been
passed, whether to continue waiting or end the waiting process.

Basic example
VAR syncident sidStart;

PERS tasks tskAllRobots{2}:=[["T_ROB1"],["T_ROB2"]];

CONST msgdata msgStart:=…

…

MT_WaitMsgSync sidStart,tskAllRobots,msgStart;

…

The system waits for the synchronization of the movement tasks T_ROB1 and
T_ROB2 with the help of the Sync-ID sidStart. After 10 seconds have elapsed
without synchronization, the message msgStart will be displayed.

Arguments
MT_WaitMsgSync SyncID TaskList Msg [\SubHeader] [\Info]

[\MaxTime] [\NoErrorLog]

Data type: syncidentSyncID

ID for specifying the correct synchronization process.

Data type: tasksTasklist

List of tasks that are to be synchronized

Data type: msgdataMsg

Message that is to be output if the maximum waiting period is ex-
ceeded

Data type: string[\Subheader]

Optional additional text which is output above the message text.

Data type: string[\Info]

Optional additional text which is output under the message text.

Data type: num[\MaxTime]

Optional value, duration for which the instruction waits for the syn-
chronization before a message is displayed. The default waiting
period is 10 seconds.

Data type: switch[\NoErrorLog]

Optional switch that determines whether the error text should be
written into the event log or not.

Continues on next page
3HAC044398-001 Revision: C 467

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.58 MT_WaitMsgSync – Synchronization of movement tasks

Program execution
The instruction waits for a definite time for the corresponding tasks to be
synchronized. If this does not happen, a message will be displayed.

Restrictions
This instruction may only be used in Multimove applications.

Syntax
MT_WaitMsgSync

[SyncID´:=´ < expression (VAR) of syncident >]

[TaskList´:=´ < expression (IN) of tasks >]

[Msg ´:=´ < expression (IN) of > msgdata]

[´\Subheader´:=´ < expression (IN) of string >]

[´\Info´:=´ < expression (IN) of string>]

[´\MaxTime´:=´ < expression (IN) of num >]

[´\NoErrorLog´]´;´

468 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.58 MT_WaitMsgSync – Synchronization of movement tasks
Continued

15.2.59 MT_WaitTimeDI – Wait for input signal until time limit is exceeded

Usage
MT_WaitTimeDI is used to wait for the expected status of an input signal and if
the condition is not fulfilled, to raise with a specified error number.
When raising to the error handler, a message will be shown. The message will,
beside of the user-defined content, automatically contain the signals which have
not reached the expected state.

Basic example
CONST errnum ERR_RELEASE:=78;

PROC Release()

!Wait until release is given or timeout

MT_WaitTimeDI diRelease,high, msgRelease,3, ERR_RELEASE;

ERROR

IF ERRNO = ERR_RELEASE THEN

RAISE;

ELSE

…

ENDIF

ENDPROC

The instruction waits till the input signals diRelease is "high". If the expected signal
state is not reached until the maximum waiting time of 3 seconds is exceeded, the
program flow is continued in the error handler, using the assigned error number.

Arguments
MT_WaitTimeDI diSignal Value [\diAND]|[\diOR] [\low] msg

[\NoSignalInfo] MaxTime ERR

Data type: signaldidiSignal

The name of the digital input signal.

Data type: dionumValue

The desired value of the signal.

Data type: signaldi[\diAND]

Optional name of a digital input, which is queried through an AND
query together with diSignal.

Data type: signaldi[\diOR]

Optional name of a digital input, which is queried through an OR
query together with the diSignal.

Data type: switch[\low]

If this parameter is passed, then the signal will be queried for low,
otherwise for high.

Data type: msgdatamsg

Message that is to be displayed. In the data type msgdata, all the
data is saved for display on the hand held programming device.

Continues on next page
3HAC044398-001 Revision: C 469

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.59 MT_WaitTimeDI – Wait for input signal until time limit is exceeded

Data type: switch[\NoSignalInfo]

Optional switch which omits the automatically created additional
information about signals, that have not reached the expected state.

Data type: numMaxTime

Duration for which the instruction waits for the signal before a
message is displayed and the error handler is called. The default
waiting period is 5 seconds.

Data type: errnumERR

Error number which is called in the case of a timeout and is forwar-
ded to the routine that has been called.

Program execution
The instruction waits for a definite time for the condition to be fulfilled. If the
condition is not fulfilled, then, with the help of an internal use of MT_UIMessage a
message will be displayed, the error recognition that is declared in the message
will be communicated to the PLC and the error handler is called using the specified
error number.

Syntax
MT_WaitTimeDI

[diSignal´:=´ < expression (VAR) of signaldi >]

[Value ´:=´ < expression (IN) of dionum >]

[´\diAND ´:=´ < expression (IN) of signaldi >]

| [´\diOR ´:=´ < expression (IN) of signaldi >]

[´\low´]

[msg ´:=´ < expression (IN) of > msgdata]

[´\NoSignalInfo´]

[MaxTime ´:=´ < expression (IN) of num >]

[ERR ´:=´ < expression (IN) of errnum >]

470 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.59 MT_WaitTimeDI – Wait for input signal until time limit is exceeded
Continued

15.2.60 MT_WaitTimeDO – Wait for output signal until time limit is exceeded

Usage
MT_WaitTimeDO is used to wait for the expected status of an output signal and if
the condition is not fulfilled, to raise with a specified error number.
When raising to the error handler, a message will be shown. The message will,
beside of the user-defined content, automatically contain the signals which have
not reached the expected state.

Basic example
CONST errnum ERR_RELEASE:=78;

PROC Release()

!Wait until release is given or timeout

MT_WaitTimeDO doRelease,high, msgRelease,3, ERR_RELEASE;

ERROR

IF ERRNO = ERR_RELEASE THEN

RAISE;

ELSE

…

ENDIF

ENDPROC

The instruction waits till the input signals doRelease is "high". If the expected
signal state is not reached until the maximum waiting time of 3 seconds is exceeded,
the program flow is continued in the error handler, using the assigned error number.

Arguments
MT_WaitTimeDO doSignal Value [\doAND]|[\doOR] [\low] msg

[\NoSignalInfo] MaxTime ERR

Data type: signaldodoSignal

The name of the digital output signal.

Data type: dionumValue

The desired value of the signal.

Data type: signaldo[\doAND]

Optional name of a digital output, which is queried through an AND
query together with doSignal.

Data type: signaldo[\doOR]

Optional name of a digital output, which is queried through an OR
query together with the doSignal.

Data type: switch[\low]

If this parameter is passed, then the signal will be queried for low,
otherwise for high.

Data type: msgdatamsg

Message that is to be displayed. In the data type msgdata, all the
data is saved for display on the hand held programming device.

Continues on next page
3HAC044398-001 Revision: C 471

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.60 MT_WaitTimeDO – Wait for output signal until time limit is exceeded

Data type: switch[\NoSignalInfo]

Optional switch which omits the automatically created additional
information about signals, that have not reached the expected state.

Data type: numMaxTime

Duration for which the instruction waits for the signal before a
message is displayed and the error handler is called. The default
waiting period is 5 seconds.

Data type: errnumERR

Error number which is called in the case of a timeout and is forwar-
ded to the routine that has been called.

Program execution
The instruction waits for a definite time for the condition to be fulfilled. If the
condition is not fulfilled, then, with the help of an internal use of MT_UIMessage a
message will be displayed, the error recognition that is declared in the message
will be communicated to the PLC and the error handler is called using the specified
error number.

Syntax
MT_WaitTimeDO

[doSignal´:=´ < expression (VAR) of signaldo >]

[Value ´:=´ < expression (IN) of dionum >]

[´\doAND ´:=´ < expression (IN) of signaldo >]

| [´\doOR ´:=´ < expression (IN) of signaldo >]

[´\low´]

[msg ´:=´ < expression (IN) of > msgdata]

[´\NoSignalInfo´]

[MaxTime ´:=´ < expression (IN) of num >]

[ERR ´:=´ < expression (IN) of errnum >]

472 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.2.60 MT_WaitTimeDO – Wait for output signal until time limit is exceeded
Continued

15.3 Functions

15.3.1 MT_EndOfCycleOk – Check if "Halt after end of cycle" was acknowledged

Usage
MT_EndOfCycleOk is used to check if the "Halt after end of cycle" request has
been acknowledged already by the application program. The function returns TRUE,
if the request has been acknowledged already, else it returns FALSE.

Basic example
PROC Production()

!If "halt after end of cycle" has been requested

IF MT_EndOfCycleReq() THEN

!Execute run-out cycle

RunOutCycle;

!Send notification: "halt after end of cycle reached"

MT_EndOfCycleAck;

ELSE

!Execute normal production cycle

NormalCycle;

ENDIF

…

…

!Move to home if program has confirmed "halt after end

!of cycle reached" before

IF MT_EndOfCycleOk() MoveTo 999;

ENDPROC

At the start of the production cycle, there is a query asking if "halt after end of
cycle" has been requested (MT_EndOfCycleReq). If this is the case, then a run-out
cycle is executed for example, for emptying part buffers in the cell.
Now the program confirms the request for “halt after end of cycle” by “halt after
end of cycle reached” (instruction MT_EndOfCycleAck). This causes the RWMT
engine to terminate the program after having left the production routine.
In the further production flow, the user program makes sure through the function
MT_EndOfCycleOk that it has confirmed the “halt after end of cycle” before. If this
is the case then the robot moves to home position.

Return value
Data type: bool
TRUE, ifHalt after end of cycle request has been acknowledged, otherwise FALSE.

Program execution
With the check MT_EndOfCycleOk, it is possible to determine whether the
application program has acknowledged the current "Halt after end of cycle" request.

Continues on next page
3HAC044398-001 Revision: C 473

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.3.1 MT_EndOfCycleOk – Check if "Halt after end of cycle" was acknowledged

If the request has been acknowledged already, it means that the program will be
ended after the routines of the current production cycle and subsequent return to
the RWMT Engine.

Syntax
MT_EndOfCycleOk ´(´ ´)´

A function with a return value of the type bool.

More information

SeeInformation about

MT_EndOfCycleAck – Acknowledge the request
"Halt after end of cycle" on page 331

Confirmation of the "halt after end of
cycle" request

MT_EndOfCycleReq – Recognizing the request
"Halt after end of cycle" on page 475

Recognizing request for "halt after end
of cycle"

474 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.3.1 MT_EndOfCycleOk – Check if "Halt after end of cycle" was acknowledged
Continued

15.3.2 MT_EndOfCycleReq – Recognizing the request "Halt after end of cycle"

Usage
MT_EndOfCycleReq is used to recognize a "Halt after end of cycle" request. Here
the request can be triggered by a digital input signal or even at the RWMT user
interface.
The function returns TRUE if "Halt after end of cycle" has been requested, else it
returns FALSE.

Basic example
PROC Production()

!If “halt after end of cycle“ has been requested

IF MT_ EndOfCycleReq() THEN

!Execute run-out cycle

RunOutCycle;

!Send notification: “halt after end of cycle reached“

MT_EndOfCycleAck;

ELSE

!Execute normal production cycle

NormalCycle;

ENDIF

…

…

!Move to home if program has confirmed “halt after end

!of cycle reached” before

IF MT_EndOfCycleOk() MoveTo 999;

ENDPROC

At the start of the production cycle, there is a query asking if "halt after end of
cycle" has been requested (MT_EndOfCycleReq). If this is the case, then a run-out
cycle is executed for example, for emptying part buffers in the cell.
Now the program confirms the request for “halt after end of cycle” by “halt after
end of cycle reached” (instruction MT_EndOfCycleAck). This causes the RWMT
engine to terminate the program after having left the production routine.
In the further production flow, the user program makes sure through the function
MT_EndOfCycleOk that it has confirmed the “halt after end of cycle” before. If this
is the case then the robot moves to home position.

Return value
Data type: bool
TRUE, if Halt after end of cycle has been requested, otherwise FALSE.

Program execution
If, after the "Halt after end of cycle" has been requested by the application program,
this request is acknowledged, then the program run will end, leaving the application
programs and returning to the RWMT Engine. A fresh program start will then start
from the first program instruction (program start "from main").

Continues on next page
3HAC044398-001 Revision: C 475

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.3.2 MT_EndOfCycleReq – Recognizing the request "Halt after end of cycle"

Syntax
MT_EndOfCycleReq ´(´ ´)´
A function with a return value of the type bool.

More information

SeeInformation about

MT_EndOfCycleAck – Acknowledge the re-
quest "Halt after end of cycle" on page 331

Acknowledgement of the "Halt after end of
cycle" request

MT_EndOfCycleOk – Check if "Halt after end
of cycle" was acknowledged on page 473

Query if the "Halt after end of cycle" request
has been acknowledged already

476 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.3.2 MT_EndOfCycleReq – Recognizing the request "Halt after end of cycle"
Continued

15.3.3 MT_FirstCycle – Requesting first cycle status

Usage
MT_FirstCycle is used to find out if the production loop is executed for the first
time after a “start from main”.
The function returns TRUE if the production loop is executed for the first time,
otherwise it returns FALSE.

Basic example
PROC Production()

!If this is the first production cycle

IF MT_ FirstCycle() THEN

!Execute tool cleaning

ToolCleaning;

ENDIF

!Do the normal production

…

…

ENDPROC

At the beginning of the production routine, the tool is cleaned if this is the first
production loop after “start from main”.

Return value
Data type: bool
TRUE, if this is the first cycle, otherwise FALSE.

Program execution
The function MT_FirstCycle returns the “first cycle” state which can be used.
For example, for different actions apart from the normal (not first) production flow.
The first cycle status must be reset actively by using the instruction
MT_ResetFirstCycle. It will not be reset automatically.

Syntax
MT_FirstCycle ´(´ ´)´´
A function with a return value of the type bool.

More information

SeeInformation about

MT_ResetFirstCycle – Declare first cycle as finished on page416Ending the first cycle state

3HAC044398-001 Revision: C 477
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.3.3 MT_FirstCycle – Requesting first cycle status

15.3.4 MT_GetActualPosition – Reading the start position for MT_MoveTo

Usage
MT_GetActualPosition is used to read the start position that is used by the
MT_MoveTo instruction as a numerical value.
With the help of the instruction MT_SetActualPosition, the start position, which
is used by MT_MoveTo, can be initialized.
The procedure MT_MoveTo is used to move from the current robot position to the
desired target position. For this, the robot forms a string using the saved start
position and the target position that has been passed. This string represents the
name of the movement routine that is to be called. The movement routine will be
called dynamically and the target position will be saved as the new start position.
At the start of a program, it may be necessary to read the start position or assign
it once again.

Basic example
If the current position is neither the basic setting (10)

!nor the home position (999)

IF GetActualPosition() <> 10 AND GetActualPosition() <> 999 THEN

!Start position is 999 (home).

MT_SetActualPosition 999;

ENDIF

…

!Call movement routine mv999_20

MT_MoveTo 20;

!Call the movement routine mv20_30

MT_MoveTo 30;

…

Return value
Data type: num
Current start position, which is used by MT_MoveTo instruction.

Syntax
GetActualPosition

’(’ ’)’

Function with a return value of the type num.

More information

SeeInformation about

MT_MoveTo – Dynamic execution of a
movement routine on page 405

Call movement routines with MT_MoveTo
dynamically

stationdata – Definition of a station on
page 311

Setting the current position for using
MT_MoveTo

478 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.3.4 MT_GetActualPosition – Reading the start position for MT_MoveTo

15.3.5 MT_GetAuxCode – Reading the auxiliary code of the current part type

Usage
MT_GetAuxCode is used to read the auxiliary code of the current part type (for
current partdata declaration, please refer to the chapter partdata – Part data on
page 298).
This information can be used, if external equipment like a vision system uses
different part numbers than the robot program.

Basic example
!Send current auxiliary code instead of the part type

!number because of a different convention in the vision system

SendToVisionSystem MT_GetAuxCode();

…

Return value
Data type: dnum
Auxiliary code of the current part type.

Syntax
GetAuxCode

’(’ ’)’

Function with a return value of the type dnum.

More information

SeeInformation about

partdata – Part data on page 298Data type partdata

3HAC044398-001 Revision: C 479
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.3.5 MT_GetAuxCode – Reading the auxiliary code of the current part type

15.3.6 MT_GetCycleCountDown – Count-down value for currently executed cycle

Usage
The MT_GetCycleCountDown function reads the count-down value of the cycle
which is currently executed.

Basic example
PROC MT_Main

CONST eventdata edAfterProd:= [EE_AFTER_PROD," MT_Main:
AfterProdEventRoutine","",1];

VAR num nCycCntDown:=0;

CONST infodata MT_InfoView{1}:=

[["Parts to be produced","nCycCntDown","MainModule",""]];

…

…

PROC

…

nCycCntDown:= MT_GetCycleCountDown();

…

ENDPROC

ENDMODULE

The event routine AfterProdEventRoutine is executed after each production
cycle and reads the current value of the cycle count-down. The infodata declaration
shows the value in the GUI.

Return value
Data type: num
Count-down value of the cycle which is currently executed.

Program execution
Each cycledata declaration has a “current number of executions” and a “set number
of executions”. GetCycleCountDown calculates and returns the remaining number
of executions for the currently executed cycle.

Syntax
MT_GetCycleCountDown ´(´ ´)´

A function with a return value of the type num.

More information

SeeInformation about

Cycledata – Program cycle setting on page 260Cycle declarations
(cycledata)

480 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.3.6 MT_GetCycleCountDown – Count-down value for currently executed cycle

15.3.7 MT_GetCycleIndex – Reading the current cycle index

Usage
MT_GetCycleIndex is used to determine the cycle that is to be executed currently.
Cycles are execution variants during the production, such as in a production
process, in which the system is first filled (filler cycle), then the normal production
takes place (normal cycles) and at the end of the production, the system is run idle
(idle run cycles).
The cycle thus tells the application program which subordinate run (for example,
filler cycle of the system) is to be executed.
For this, the function returns the numerical index of the current cycle.

Basic example
!List of cycles

TASK PERS cycledata MT_CycleList{20}:=

[

["Start-up","",1,1,2,0,2,0],

["Normal","",2,1,3,0,3,0],

["Run-out","",3,1,1,0,0,0],

…

PROC Produktion()

!If a start up cycle is to be executed

IF MT_GetCycleIndex()=MT_CycleList{1}.Index THEN

StartUpCycle;

!If a normal cycle is to be executed

ELSEIF MT_GetCycleIndex()=MT_CycleList{2}.Index THEN

NormalCycle;

!If idle run cycle is to be executed

ELSEIF MT_GetCycleIndex()=MT_CycleList{3}.Index THEN

RunOutCycle;

ENDIF

ENDPROC

Depending on the specification of the RWMT Engine, a specific cycle is to be
executed.

Return value
Data type: num
The current cycle index.

Program execution
Depending on the cycle index, a specific processing cycle must be executed in
the program. It is not mandatory to use cycles in the production program is, but
RWMT supports it.

Continues on next page
3HAC044398-001 Revision: C 481

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.3.7 MT_GetCycleIndex – Reading the current cycle index

Syntax
MT_GetCycleIndex ´(´ ´)´

A function with a return value of the type num.

More information

SeeInformation about

Program cycles on page 73Setting up of cycles

482 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.3.7 MT_GetCycleIndex – Reading the current cycle index
Continued

15.3.8 MT_GetOperationMode – Current cell operation mode

Usage
MT_GetOperationMode returns the current RWMT cell operation mode.

Basic example
PROC Production()

…

!Find out cell operation mode

IF MT_GetOperationMode()=2 THEN

MT_Showtext ”RWMT operation mode is <Production>”;

…

ENDIF

…

ENDPROC

The current cell operation mode is retrieved.

Return value
Data type: num
The current cell operation mode.

Program execution
MT_GetOperationMode returns the current cell operation mode. The value which
is returned depends on the settings in the system configuration (see MT API
commands on page 161).
Excerpt:

en1300000274

Syntax
MT_GetOperationMode ´(´ ´)´

A function with a return value of the type num.

More information

SeeInformation about

Cycledata – Program cycle setting on page 260Cycle declarations
(cycledata)

3HAC044398-001 Revision: C 483
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.3.8 MT_GetOperationMode – Current cell operation mode

15.3.9 MT_GetPartType – Querying the current part type code

Usage
With the help of MT_GetPartType, the current part type code of the type dnum
can be read.
To each declaration of type partdata a program number and, if present, a type code
is related.
The type code is used to have a mapping between the program number, transferred
by for example, an external PLC and a number that is to be used in the robot
program.

Basic example
CONST partdata pdPartType1:=

["Teiletyp 1","Produktion","",FALSE,120,1,…;

CONST partdata pdPartType2:=

["Teiletyp 2","Production","",FALSE,199,2,…;

PROC Produktion()

…

!Call production routine by means of the type code

%“Prod_T“+ValToStr(MT_GetPartType());

…

ENDPROC

PROC Prod_T1()

…

ENDPROC

PROC Prod_T2()

…

ENDPROC

Depending on the part that has been assigned by the RWMT engine for the
production, either the routine Prod_T1 or Prod_T2 are called.

Return value
Data type: dnum
The current part type code.

Program execution
With the query MT_GetPartType, the part type code of the current part can be
used for selecting the other program run.

Syntax
MT_GetPartType ´(´ ´)´

A function with a return value of the type dnum.

484 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.3.9 MT_GetPartType – Querying the current part type code

15.3.10 MT_GetToolCode – Current tool code

Usage
The MT_GetToolCode function reads the code of the current tool. The tool code
is an integer >=0. If no tool code is agreed on, then the function returns -1.
The Toolcode is provided by a group input which has to be assigned in the process
parameters of RWMT (see MT Program selection on page 167).

Basic example
CONST partdata pdComponent8:=["Part with cycles",

"Production","", FALSE,1,8,3,27,[-1,-1,-1,-1,-1,-1,-1,-1],
"Part8.GIF",[1.5,[0,0,0.001],[1,0,0,0],0,0,0],""];

PROC Production()

…

!Assign tool for production

IF MT_GetToolCode()=pdComponent8.Toolcode THEN

tCurrent := tTool8;

ELSEIF

…

ENDIF

…

ENDPROC

The appropriate tooldata is assigned for production.

Return value
Data type: num
The current tool code.

Program execution
By specifying the tool code through MT_GetToolCode, the current code of the tool
at the robot can be queried.
The appropriate tooldata can be assigned, when knowing the current tool code.

Syntax
MT_GetToolCode ´(´ ´)´

A function with a return value of the type num.

More information

SeeInformation about

partdata – Part data on page 298Part types (Partdata)

3HAC044398-001 Revision: C 485
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.3.10 MT_GetToolCode – Current tool code

15.3.11 MT_GhostModeActive – Ask if the ghost mode is active

Usage
Through the function MT_GhostModeActive, it is possible to determine whether
a ghost mode is active currently.
A ghost mode should be provided always if the logical production process of the
system is to be tested without real parts.
The ghost mode can be requested through the RWMT user interface (GUI) or by
an external signal.
MT_GhostModeActive returns TRUE, if a ghost mode is present, otherwise it
returns FALSE.

Basic example
PROC LoadMachine()

…

!Load the machine

LoadMachine;

!if real components are handled

IF MT_GhostModeActive()=FALSE THEN

!Start machine

StartMachine;

ENDIF

…

ENDPROC

If no ghost mode is present, that is, if the processing machine is actually loaded
with a part, then this can be started for processing the part.

Return value
Data type: bool
TRUE, if the ghost mode is active, otherwise FALSE.

Program execution
The ghost mode can be recognized with the query MT_GhostModeActive and the
program run modified accordingly.

Syntax
MT_GhostModeActive ´(´ ´)´

A function with a return value of the type bool.

486 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.3.11 MT_GhostModeActive – Ask if the ghost mode is active

15.3.12 MT_GripIsEmpty – Check if gripper is empty

Usage
MT_GripIsEmpty is used to check indirectly if a gripper is empty, by checking if
the control element for closing the gripper, switching on the vacuum, , and so on.
is reset.
Upto 6 control elements can be checked simultaneously for this.

Basic example
TASK PERS grpdata gdGripper:=

[

"gripper",1,TRUE,0.5,TRUE,TRUE,

["doCloseGripper",0,"doOpenGripper",0,

"Close Gripper","Open Gripper"],

["Gripper","diGripperClosed","diGripperOpen"],

["","",""],["","",""],["","",""]

];

Gripper with an output signal for closing and an output signal for opening. The
gripper status is reported with an input for "Gripper is open" and an input for
"Gripper is closed".

!Check, if gripper is empty

IF MT_GripIsEmpty(gdGripper\Output)=FALSE THEN

TPWrite “Gripper is not empty !”

Stop;

ENDIF

There is a query asking if the gripper is empty. For this, the "closed" response
(diGripperClosed) must be low. Since the switch \Output is set, even the
actuating output (doClosegripper) should be low. If the gripper is not empty, a
message will be output and the program will be stopped.

Return value
Data type: bool
TRUE, if the gripper is empty, otherwise FALSE.

Arguments
MT_GripIsEmpty Grp1 \Grp2 \Grp3 \Grp4 \Grp5 \Grp6 \Output

Data type: grpdataGrp1

First element that is to be checked.

Data type: grpdata[\Grp2]

Second element that is to be checked.

Data type: grpdata[\Grp3]

Third element that is to be checked.

Continues on next page
3HAC044398-001 Revision: C 487

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.3.12 MT_GripIsEmpty – Check if gripper is empty

Data type: grpdata[\Grp4]

Fourth element that is to be checked.

Data type: grpdata[\Grp5]

Fifth element that is to be checked.

Data type: grpdata[\Grp6]

Sixth element that is to be checked.

Data type: switch[\Output]

Switch for checking even the output signals for actuating the actuat-
ors.

Program execution
With the check MT_GripIsEmpty, it is possible to determine indirectly if a part is
present in the gripper, by checking the gripper messages (for example, "Gripper
closed") and if necessary, even the actuating signals of the actuators (for example,
"Close gripper") for the state low.

Syntax
MT_GripIsEmpty

’(’

[Grp1 ’:=’ < expression (IN) of grpdata>]

[’\’ Grp2 ’:=’ < expression (IN) of grpdata>]

[’\’ Grp3 ’:=’ < expression (IN) of grpdata>]

[’\’ Grp4 ’:=’ < expression (IN) of grpdata>]

[’\’ Grp5 ’:=’ < expression (IN) of grpdata>]

[’\’ Grp6 ’:=’ < expression (IN) of grpdata>]

[’\’Output]

’)’

A function with a return value of the type bool.

More information

SeeInformation about

grpdata – Configuration of a control element of the
gripper on page 271

Data type gripper data

488 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.3.12 MT_GripIsEmpty – Check if gripper is empty
Continued

15.3.13 MT_GripIsEmptyType – Check if gripper is empty

Usage
MT_GripIsEmptyType is used to check indirectly if a gripper is empty, by checking
if the control element for closing the gripper, switching on the vacuum, , and so
on. is reset.
Up to 6 control elements can be checked simultaneously for this.
MT_GripIsEmptyType provides mainly the same functionality as MT_GripIsEmpty
but considers part type specific type numbers and type prefixes as follows:
There might be different grippers for each part type in the production cell. The
grippers might work differently, thus each gripper will need its own grpdata
declarations.
Instead of assigning the grpdata directly as this is done with MT_GripIsEmpty,
a string is provided to MT_GripIsEmptyType which represents the name of the
grpdata but without part type number and part type prefix.
MT_GripIsEmptyType will internally complete the grpdata name, depending on
the current settings for the type prefix and the type number. Then the function will
return the state for the appropriate type-depending grpdata declaration.

Basic example
Assuming, the current part type number is 6 and the standard part type prefix is
“T”. Assuming a gripper with an output signal for closing and an output signal for
opening. The gripper status is reported with an input for "Gripper is open" and an
input for "Gripper is closed".

TASK PERS grpdata gdGripper_T6:=

[

"gripper",1,TRUE,0.5,TRUE,TRUE,

["doCloseGripper",0,"doOpenGripper",0,

"Close Gripper","Open Gripper"],

["Gripper","diGripperClosed","diGripperOpen"],

["","",""],["","",""],["","",""]

];

!Check, if gripper is empty

IF MT_GripIsEmpty("gdGripper”\Output)=FALSE THEN

TPWrite “Gripper is not empty !”

Stop;

ENDIF

There is a query asking if the gripper is empty (grpdata gdGripper_T6) . For
this, the "closed" response (diGripperClosed) must be low. Since the switch
\Output is set, even the actuating output (doCloseGripper) should be low. If the
gripper is not empty, a message will be output and the program will be stopped.

Return value
Data type: bool

Continues on next page
3HAC044398-001 Revision: C 489

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.3.13 MT_GripIsEmptyType – Check if gripper is empty

TRUE, if the gripper is empty, otherwise FALSE.

Arguments
MT_GripIsEmptyType Grp1 [\Grp2] [\Grp3] [\Grp4] [\Grp5] [\Grp6]

[\Prefix] \Output

Data type: stringGrp1

First element that is to be checked.

Data type: string[\Grp2]

Second element that is to be checked.

Data type: string[\Grp3]

Third element that is to be checked.

Data type: string[\Grp4]

Fourth element that is to be checked.

Data type: string[\Grp5]

Fifth element that is to be checked.

Data type: string[\Grp6]

Sixth element that is to be checked.

Data type: switch[\Output]

Switch for checking even the output signals for actuating the actuat-
ors.

Data type: string[\Prefix]

Assigns another part type prefix apart from the default prefix.

Program execution
With the check MT_GripIsEmpty, it is possible to determine indirectly if a part is
present in the gripper, by checking the gripper messages (for example, "Gripper
closed") and if necessary, even the actuating signals of the actuators (for example,
"Close gripper") for the state low.

Syntax
MT_GripIsEmptyType

’(’

[Grp1 ’:=’ < expression (IN) of string >]

[’\’ Grp2 ’:=’ < expression (IN) of string >]

[’\’ Grp3 ’:=’ < expression (IN) of string >]

[’\’ Grp4 ’:=’ < expression (IN) of string >]

[’\’ Grp5 ’:=’ < expression (IN) of string >]

[’\’ Grp6 ’:=’ < expression (IN) of string >]

[’\’Output]

[’\’Prefix’:=’ < expression (IN) of string>] ’)’

A function with a return value of the type bool.

Continues on next page
490 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.3.13 MT_GripIsEmptyType – Check if gripper is empty
Continued

More information

SeeInformation about

grpdata – Configuration of a control element of the gripper on
page 271

Data type gripper data

3HAC044398-001 Revision: C 491
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.3.13 MT_GripIsEmptyType – Check if gripper is empty

Continued

15.3.14 MT_JointCompare – Axis by axis comparison of two positions

Usage
The MT_JointCompare function compares the position that has been handed
over, axis by axis, with the current position of the robot.
The permitted deviation can be specified for all the axes with the same value
(Deviation) or it can be set separately for every axis (DevAx).
If the optional parameter DevAx is passed, the global value Deviation will not be
considered.

Basic example
VAR jointtarget jLimit:= [[5,5,4,2,2,2], [2,2,2,2,2,2]];

!Compare position pHome with global limit value for all axis

IF MT_JointCompare (pHome, 2, tGripper) THEN

Tpwrite „Robot near home position“;

ENDIF

!Compare position p10 mit axis-specific limits:

IF
MT_JointCompare(p10,0,\Limit:=jLimit,\tool:=tGripper\Wobj:=wPallet)

THEN

Tpwrite „Roboter near position p10“;

ENDIF

Return value
Data type: bool
If the difference between the angular settings of all the axes of the position that
has been passed and the current position of the robot is less than the permitted
deviation, then the value TRUE will be returned. If the deviation is larger, FALSE
will be returned.

Arguments
MT_JointCompare (Point Deviation \DevAx tool \ WObj)

Data type: robtargetPoint

The position that is to be compared.

Data type: numDeviation

The maximum permitted deviation between the two positions for all
the axes in degrees

Data type: jointtargetDevAx

The maximum permitted deviation between the two positions for all
the axes in degrees.

Data type: tooldatatool

The tool with which the position that has been passed was pro-
grammed.

Data type: wobjdata[\WObj]

The work object with which the position that has been passed was
programmed.

Continues on next page
492 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.3.14 MT_JointCompare – Axis by axis comparison of two positions

Syntax
MT_JointCompare'('

[Point:=’] < expression (IN) of robtarget> ','

[Deviation:=’] < expression (IN) of num>

['\' DevAx:=’ < expression (IN) of jointtarget>]

[tool :=’] < persistent (PERS) of tooldata>

['\' WObj :=’ < persistent (PERS) of wobjdata>]

')'

A function with a return value of the type bool.

3HAC044398-001 Revision: C 493
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.3.14 MT_JointCompare – Axis by axis comparison of two positions

Continued

15.3.15 MT_PosCompare – Determine linear deviation from a position

Usage
The MT_PosCompare function calculates the length of the vector between the robot
position that has been handed over, and the current position.

Basic example
CONST robtarget pHome:=…;

CONST num nDeviation:=10;

PERS tooldata tGripper:=…;

PERS wobjdata wTable:=…;

!If the robot is in the home position.

IF MT_PosCompare(pHome,nDeviation\tool:=tGripper\Wobj:=wTable)

THEN

!Start production

Production;

ELSE

TPWrite "The robot is not located in home position.“;

ENDIF

The MT_PosCompare function checks if the robot is present at a distance not
exceeding 10 mm from its home position. If this is the case, then the production
will be started, else an error message will be output.

Return value
Data type: bool
If the length of the vector is greater than the maximum deviation that has been
passed, then the function returns FALSE, else TRUE.

Arguments
MT_PosCompare Point Deviation \tool \WObj

Data type: robtargetPoint

Position, to which the linear distance from the current position is to
be determined.

Data type: numDeviation

Maximum permitted linear distance from Point to the current position.

Data type: tooldata[\tool]

Tool, in which the linear distance is to be determined. If no tool has
been specified, then tool0 will be assumed.

Data type: wobjdata[\WObj]

Work object, in which the linear distance is to be determined. If no
work object has been specified, then wobj0 will be assumed.

Syntax
MT_PosCompare '('

[Point ’:=’ <expression (IN) of robtarget>]','

[Deviation ’:=’ <expression (IN) of num>]

Continues on next page
494 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.3.15 MT_PosCompare – Determine linear deviation from a position

[‘\’ Tool:=’] < persistent (PERS) of tooldata> ','

[‘\’ Wobj:=’] < persistent (PERS) of wobjdata> ')'

A function with a return value of the type bool.

3HAC044398-001 Revision: C 495
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.3.15 MT_PosCompare – Determine linear deviation from a position

Continued

15.3.16 MT_RecalcPoint – recalculating a position in a new coordinate system

Usage
The functionMT_RecalcPoint recomputes a position, which has been programmed
with a specific tool and work object, at a position with the same spatial position
but with new tool and work object.

Basic example
PERS tooldata tOld:=…;

PERS tooldata tNew:=…;

PERS wobjdata wOld:=…;

PERS wobjdata wNew:=…;

CONST robtarget pOld:=…;

VAR robtarget pNew:=…;

!Re-calculate position based on new tool data and workobject data

pNew:=MT_RecalcPoint(pOld,tOld,tNew,wOld,wNew);

Return value
Data type: robtarget
Recomputed position, based on new tool and work object.

Arguments
MT_RecalcPoint (Point tOld tNew wOld wNew)

Data type: robtargetPoint

The position to be re-calculated

Data type: tooldatatOld

The existing tool

Data type: tooldatatNew

The new tool

Data type: wobjdatawOld

The existing work object

Data type: wobjdatawNew

The new work object

Syntax
RecalcPoint'('

[Point:=’] < expression (IN) of robtarget> ','

[tOld :=’] < persistent (PERS) of tooldata> ','

[tNew :=’] < persistent (PERS) of tooldata> ','

[wOld :=’] < persistent (PERS) of wobjdata> ','

[wNew :=’] < persistent (PERS) of wobjdata > ')'

A function with a return value of the type robtarget.

496 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.3.16 MT_RecalcPoint – recalculating a position in a new coordinate system

15.3.17 MT_RelTCP – Moving (translation) and rotation of the tool coordinates

Usage
The function MT_RelTCP uses the tool data (tooldata), the values of the
displacement and rotation that have been passed, to compute a new tool coordinate
system, and returns this as tool data.

Basic example
!Tool with 45° rotation around the z-axis compared to the

!original tool

tGripper:=MT_RelTCP(tOriginal\Dz:=45);

Return value
Data type: tooldata
Displaced and rotated tool.

Arguments
MT_RelTCP Tool \Dx \Dy \Dz \Rx \Ry \Rz

Data type: tooldataTool

The name of the tool that is to be moved

Data type: num[\Dx]

Displacement value in the direction of the X-axis

Data type: num[\Dy]

Displacement value in the direction of the Y-axis

Data type: num[\Dz]

Displacement value in the direction of the Z-axis

Data type: num[\Rx]

Rotation value about the X-axis

Data type: num[\Ry]

Rotation value about the Y-axis

Data type: num[\Rz]

Rotation value about the Z-axis

Syntax
MT_RelTCP '('

[Tool:=’] < persistent (PERS) of tooldata>

[‘\’Dx ’:=’ <expression (IN) of num>]

[‘\’Dy ’:=’ <expression (IN) of num>]

[‘\’Dz ’:=’ <expression (IN) of num>]

[’\’Rx ’:=’ <expression (IN) of num>]

[’\’Ry ’:=’ <expression (IN) of num>]

[’\’Rz ’:=’ <expression (IN) of num>]

')'

A function with a return value of the type tooldata.

3HAC044398-001 Revision: C 497
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.3.17 MT_RelTCP – Moving (translation) and rotation of the tool coordinates

15.3.18 MT_RobotInHome – Checking whether the robot is in the home position.

Usage
MT_RobotInHome routine is used to check whether the robot is in the home
position.

Basic example
PROC Test()

!

IF MT_RobotInHome() THEN

TPWrite “Robot is in home position”;

ELSE

TPWrite “Robot is not in home position”;

ENDIF

!

ENDPROC

Return value
Data type: bool
TRUE: Robot is in the home position.
FALSE: Robot is not in the home position.

Program execution
The digital input or output for the "In home position" signal, which is defined in the
system parameters, is interrogated and the result returned.
If no signal has been defined or a virtual controller is used, checking takes place
on the basis of a position comparison with a maximum permitted deviation of 1°
in each axis.

Syntax
MT_RobotInHome’(’ ’)’

498 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.3.18 MT_RobotInHome – Checking whether the robot is in the home position.

15.3.19 MT_StationIsEnabled – Checking station pre-selection for production

Usage
MT_StationIsEnabled is used to check if a Station (for example, a processing
machine) has been selected for the production.

Basic example
!Declaration of cutting station

LOCAL PERS stationdata CUT_Station:=

["CUT","Cutting Tool","Station for Cutting",

"station-cutter.png","","CUT_sdiCuttInFwdPos",

"","",TRUE,FALSE,1.3];

PROC Production()

…

!If the cutting station has been pre-selected

IF MT_StationIsEnabled(CUT_Station) THEN

!Start cutting process

CutIt;

ELSE

…

ENDPROC

In the production routine, a query is run to determine if the cutting station has been
selected for the current production. If this is the case, then the work piece will be
cut, otherwise not.

Return value
Data type: bool
The function returns TRUE, if a station has been pre-selected, otherwise it returns
FALSE.

Arguments
MT_StationIsEnabled std

Data type: stationdatastd

The station, for which the query is to be run, to see if it has been
pre-selected.

Program execution
With the check MT_StationIsEnabled, it is possible to determine if a station has
been selected for the current production.
By pre-selecting the individual stations, the process of a production cycle can be
modified to suit the requirements for processing a work piece.

Syntax
MT_StationIsEnabled ’(’

[std ’:=’] < expression (IN) of stationdata> ’)’

Continues on next page
3HAC044398-001 Revision: C 499

© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.3.19 MT_StationIsEnabled – Checking station pre-selection for production

A function with a return value of the type bool.

More information

SeeInformation about

stationdata – Definition of a station on page 311Data type station data

500 3HAC044398-001 Revision: C
© Copyright 2014 ABB. All rights reserved.

15 RAPID references
15.3.19 MT_StationIsEnabled – Checking station pre-selection for production
Continued

16 Fault rectification (debugging)
16.1 Evaluation of the event log messages

Causes and measuresError textNo.

Read release was not granted. The external program
number was not read.

Prog no reading error119000

Check the program number handshake.

Read release was not reset. The external program
number was not read.

Prog no reading error119001

Check the program number handshake.

Service position is not registered: Signal has not been
set. Program waiting for message from the service
position.

No service position feed-
back

119002

Check the service position signal mentioned.

Home position is not reported. Signal has not been
set. Program is waiting for message from the home
position.

No home position feed-
back

119003

Check the home position signal mentioned.

The program number is already in use. Error in
partdata declaration. Program is waiting for new pro-
gram number.

Double use of program no119004

Check the partdata declarations for double use of
program numbers.

The program number is already in use. Error in me-
nudata declaration. Program is waiting for new pro-
gram number.

Double use of program no119005

Check the menudata declarations.

Conditions for production are not fulfilled. The mode
of operation does not have the expected value.

Wrong operation mode119006

Program continues to check the conditions.
Set the necessary mode of operation.

Tool code is not correct. The tool code does not have
the expected value.

Wrong tool code119007

Create correct code for flanged tool.
Allocation of the correct tool code in the part data.

Check code is not correct. The check code does not
have the expected value. Provide correct check code.
Allocation of the correct check code in the part data.

Wrong check code119008

Conditions for service are not fulfilled. The mode of
operation does not have the expected value.

Wrong operation mode119009

Set the necessary mode of operation.

Dynamically called routine does not exist.Routine not available119010
Check if the routine call is correct.
Check if the routine that has been called exists.

Robot not in home for first cycle. Signal has not been
set.

No home position feed-
back

119011

Move the robot to the home position first.
Check the home position signal mentioned.

Continues on next page
3HAC044398-001 Revision: C 501

© Copyright 2014 ABB. All rights reserved.

16 Fault rectification (debugging)
16.1 Evaluation of the event log messages

Causes and measuresError textNo.

No pressurized air is reported. Signal has not been
set. Program waits for pressurized air report. Robot
will remain paused till the pressurized air is present
again.

Air pressure missing119012

Check the pressurized air system.

In the PROC.CFG, no position signal has been defined
for ROBOT IN HOME/SAFEPOS/SERVICEPOS.

Missing position signal119013

In the system parameters PROC, configure a corres-
ponding signal.

The robot is not found in any of the start positions that
are defined in the menu data.

Start position not allowed119014

Check the parameter ValidPosition in the correspond-
ing menudata declaration.

The routine MT_GetUserProgNo has been selected,
but without valid data for the program number or the
routine that is to be called.

User program cannot be
called

119015

It must be either passed a valid routine name or a
valid program number.
You may not pass both.

The robot is not located in the home position nor in
the safe position.

No valid start position for
robot

119016

Hence, no production routines or service routines can
be executed.
Program continues to check the conditions.
Make sure that the robot is either in the home position
or in the safe position at the end of a production cycle.

Neither a part type for production nor a service routine
has been selected. Therefor no production- or service
routine can be executed.

No part or service routine
preselected

119017

Please choose a part type or service routine either on
the FlexPendant or remote controlled, depending on
your individual solution.

No cycle has been selected. The production routine
cannot be executed since it needs a cycle selection
first of all.

Missing preselection of
cycle

119018

After execution of the service routine the robot is
neither located in home nor in safe position.

No valid end position for
robot

119019

A data element is not defined in the instruction set ar-
ray. Instruction will not be executed on switching the
mode of operation!

Instruction set fault119020

Change the data declaration in the specified array.

The type of a signal in the instruction set does not
correspond to that in the system parameters.

Wrong signal type in in-
struction set

119021

Instruction will not be executed on switching the mode
of operation!
Change the signal type of the specified signal in the
instruction set (permitted values: DO,GO or AO).

A signal is not defined in the system parameters.Data object not defined in
instruction set

119022
Instruction will not be executed on switching the mode
of operation!
Change the signal name of the specified signal in the
instruction set or declare the signal in the system
parameters.

Continues on next page
502 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

16 Fault rectification (debugging)
16.1 Evaluation of the event log messages
Continued

Causes and measuresError textNo.

A persistent in the specified task could not be de-
scribed.

Instruction set access er-
ror

119023

Check if the specified persistent has been declared in
the required task or if the name has been written cor-
rectly.

The value of a persistent could not be converted for
the corresponding data type.

Instruction set value error119024

Check if the value specified corresponds to the data
type.

Logging is actually activated. in the file system. Log-
ging will be stopped at a certain percentage of remain-
ing space.

Logging-file system space
critical

119030

Check if you can release disk space by deleting obsol-
ete files.

Logging is actually activated and has to be stopped
because of insufficient disk space.

Logging-file system space
not sufficient

119031

Check if you can release disk space by deleting obsol-
ete files.

The routine that has been defined in the event does
not exist.

Event routine undefined119050

The routine will not be executed.
Check if the specified routine has been declared locally
or if the routine name or the module name matches
with the declaration.

The position value for the tool function MT_GRIPSET
should lie between 1 and 3! (1: Open, 2: Closed, 3:
Reset)

Wrong tool position value119100

Change the position value and set the program pointer
once again to the current MT_Gripset instruction to
actuate the gripper function once again.

The position value for the gripper function
MT_GRIPCHECK should lie between 1 and 2! (1: Open,
2: Closed)

Wrong gripper position
value

119101

Change the position value and set the program pointer
once again to the current MT_Gripset instruction to
actuate the gripper function once again.

Wrong check position.Wrong check value119102
The check value for the gripper function MT_PART-
CHECK should lie between
0 and 1.
Change the check value and set the program pointer
once again to the current MT_Gripset-instruction to
actuate the gripper function once again.

Tool code of the gripper does not correspond to the
coding in the gripper data.

Wrong tool code119103

The gripper function that has been called will not be
executed!
Check the tool code in the grpdata.

Tool code of the gripper does not correspond to the
coding in the part controls (grppart). The gripper
function that has been called will not be executed!

Wrong tool code119104

Check the tool code in the gripper data.

Continues on next page
3HAC044398-001 Revision: C 503

© Copyright 2014 ABB. All rights reserved.

16 Fault rectification (debugging)
16.1 Evaluation of the event log messages

Continued

Causes and measuresError textNo.

The digital output signal for actuating a control element
is not present in the controls.

Wrong signal declaration119105

Gripper function that has been called will not be ex-
ecuted.
Please check the name of the signal in the grpdata.

The signal for actuating a control element must be a
digital output!

Wrong signal type119106

The gripper function that has been called will not be
executed.
Please check the name of the signal in the grp data.

The digital input signal for the gripper is not present
in the controls.

Wrong signal declaration119107

Gripper function that has been called will not be ex-
ecuted.
Please check the name of the signal in the grp data.

The feedback signal for the control element must be
a digital input!

Wrong signal type119108

Gripper function that has been called will not be ex-
ecuted
Please check the name of the signal in the grp data.

A digital input signal for the part controls is not present
in the controls.

Wrong signal declaration119109

Gripper function that has been called will not be ex-
ecuted.
Please check the name of the signal in the grppart.

The signals for the part controls must be digital inputs.Wrong signal type119110
Gripper function that has been called will not be ex-
ecuted.
Please check the name of the signal in the grppart.

The size of the gripper sequence array lies outside the
permitted range.

Gripper sequence array
fault

119111

Gripper function that has been called will not be ex-
ecuted.
Change the size of the sequence array. Permitted array
sizes: 1-20.

The size of gripper sequence array does not match
the required standard dimension.

Gripper sequence array
fault

119112

When declaring a gripper sequence , the array dimen-
sion is limited to {5}, if the dimension is not explicitly
defined by the optional parameter "ArraySize".

A gripper sequence should be passed for the execu-
tion.

No valid gripper119113

The gripper function that has been called will not be
executed!
Change the routine call MT_GrpSequence.

A control element declaration does not exist in a grip-
per sequence.

Error in gripper sequence119114

The gripper function that has been called will not be
executed!
Check and change the specified name of the variable
of the concerned control element in the gripper se-
quence!

Continues on next page
504 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

16 Fault rectification (debugging)
16.1 Evaluation of the event log messages
Continued

Causes and measuresError textNo.

The grpdata declaration does not exist.grpdata declaration not
available

119115
Change variable name of the grpdata in the calling
routine !

The grppart declaration does not exist.grppart declaration not
available

119116
Change variable name of the grppart in the calling
routine !

Cause:Robot has not moved !119900
The position number is identical before and after call-
ing the "MT_HomeRun" routine.

Position: xxxxxx

Action:
If the robot returns to the same position after executing
a complete movement sequence (for example, loading
a chute), the bMT_HomeRunCheckPos variable must
be set to FALSE to disable checking (see chapter
Strategy for automatic movement into the home posi-
tion on page 140).
If a movement is carried out in the opposite direction
(for example, forward with mv10_11 and backwards
with mv11_10), the number of intermediate positions
may be wrong or the numbering may not correspond
in both routines (see the section Movement routines
on page 116).

Action:Invalid intermediate posi-
tion number length.

119901
Check number of digits in specified intermediate pos-
itions.Only 6-8 digit position

numbers allowed! Intermediate position numbers may only have 6-8 di-
gits.Position: xxxxxx

Cause:Intermediate position con-
tains neither start nor des-
tination position number.

119902
An intermediate position must contain the start and
destination position in the first 4-6 digits (movement
path).Start: xxx
Only a direction change is permitted for intermediate
position numbers (for example, from destination to
start), not a movement path change.

Destination: yyy
Position: xxxyyyzz

Action:
Adapt the intermediate position to the start and destin-
ation positions.

Tip

If the error message is output in manual mode, the
position check can be deactivated until the next restart
by continuing the program instruction by instruction.

Continues on next page
3HAC044398-001 Revision: C 505

© Copyright 2014 ABB. All rights reserved.

16 Fault rectification (debugging)
16.1 Evaluation of the event log messages

Continued

Causes and measuresError textNo.

Cause:Each movement routine
must contain a 2 or 3 digit
start and end position.

119903
Either the start position is missing in the current
movement routine, or the destination position is
missing in the previously executed routine.In the current and previ-

ously executed movement
routines, the

Action:
Insert the start position into the current routine using
the \NoMove argument and check whether the position
number of the end position from the previously routine
is identical to the start position of the current move-
ment routine.

Tip

If the error message is output in manual mode, the
position check can be deactivated until the next restart
by continuing the program instruction by instruction.

movement instruction with
position number XX is
missing!

Cause:The start and end posi-
tions of a movement
routine must be 2 or 3-di-
git.

119904
Start position missing from movement routine.
Action:
Insert start position into current routine using the
\NoMove.

Tip

If the error message is output in manual mode, the
position check can be deactivated until the next restart
by continuing the program instruction by instruction.

A movement routine may
not start or end with a 6 or
8-digit intermediate posi-
tion number!
Current position: ea2

Cause:Start and end positions
must have 2 or 3 digits

119905
Position number length invalid!

and intermediate positions
must have 6 or 8 digits.

Action:
Check position number 1

If the robot is located outside the start area and
therefore can only be moved directly into the home
position, the data of the actual robot position are writ-
ten to the error protocol (user log).

HomeposRunning position
info:
Start range: <> mm
Current position: <>

119906

Spacing axes 1-6: <> mm
Spacing axes 7-12: <> mm

Cause:The robot must be moved
directly to the home posi-
tion.

119907
Robot cannot be moved automatically to home posi-
tion!
Action:
You must switch to "Manual" mode to move the robot
directly to the home position.

Cause:Operating mode change
required!

119908
Robot can only be moved directly to the home position.

Manual mode 250mm/s is
required to move the robot
directly to the home posi-
tion.

Continues on next page
506 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

16 Fault rectification (debugging)
16.1 Evaluation of the event log messages
Continued

Causes and measuresError textNo.

Cause:Home position not
reached!

119909
The monitoring signal for the home position is still
active after the HomeRun.Please check monitoring

of home position! Action:
Check signal for home position - controller restart may
be required if the home position is monitored via a
stationary world zone.

Cause:Routine MT_HomeDirect
does not exist !

119910
The MT_HomeDirect routine is missing.
Action:
Create the MT_HomeDirect routine in accordance
with the description in chapter MT_HomeDirect –
Movement directly to the home position on page 370.

Cause:RoutineMT_HomeRun does
not exist!

119911
MT_HomeRun routine is missing.
Action:
Create the MT_HomeRun routine in accordance with
the description in chapter Strategy for automatic
movement into the home position on page 140.

Cause:Reference to unknown
routine in MT_MoveSync
instruction.

119912
The routine specified in MT_MoveJSync or
MT_MoveLSync does not exist, or the passing paramet-
ers do not match the parameters of the routine.Position: xxxxxx

Routine: sssss Action:
Adapt the routine name or the passing parameters.

Cause:Unable to call movement
routine defined by position
number when movement
continued.

119913
No movement routine found when automatically con-
tinuing movement with MT_ContHomeRun.
Action:

Position: xxxxxx Check intermediate position number in movement
routine or HomeRun strategy.Routine: ssssss

Cause:Backward movement is not
possible!

119914
The specified movement routine does not exist when
moving backwards with MT_MoveRoutine or
MT_ContHomeRun without parameter\NoAutoBackw.

The movement routine that
was calledmvXX_YY does
not exist ! Action:

Create the necessary routine in accordance with de-
scription in the chapterMovement routines on page116.
Modify the name of the movement routine when calling
up the MT_MoveRoutine routine in the MT_HomeRun
routine in the HOME_USER.MOD module, and do not
execute the routine backwards.
If you use movement routines with a type index (for
example, mv10_20_1 or mv10_20_T1), please check
whether the correct type index has been set in the
system parameters.

Continues on next page
3HAC044398-001 Revision: C 507

© Copyright 2014 ABB. All rights reserved.

16 Fault rectification (debugging)
16.1 Evaluation of the event log messages

Continued

Causes and measuresError textNo.

Cause:Search instructions
MT_SearchL cannot be
executed backwards!

119915
The routine that is called by MT_MoveRoutine or
MT_ContHomeRun that is to be executed backwards
contains the MT_SearchL instruction.Position: xxxxxx
Action:
Modify the intermediate position number or the routine
call so that the movement routine is not executed
backwards.

Cause:Checking of the home pos-
ition via the output was not
deactivated after changing
the home position (robtar-
get).

119916
The home position has been changed, meaning that
the stationary world zone does not signal the home
position after moving to it.
Action:
Controller restart is required.
The home position is now checked by means of an
internal position comparison.

Cause:The DO_IN_HOME output
for monitoring the home
position via a temporary
world zone cannot be re-
set.

119917
When the temporary world zone for monitoring the
home position was created, the output remained active
after the world zone was deleted. The subsequent re-
set of the output failed because the output was still
active.
Action:
Check where the output is still being processed, and
check the configuration of the output.

Cause:The DO_IN_HOME output
for monitoring the home
position needed to be set
to 0 before initializing the
temporary world zone.

119918
After deletion of the temporary world zone for monitor-
ing the home position, the output was still set and had
to be set to 0.
Action:
Check where the output is still being processed, and
check the configuration of the output.

Cause:Software option "608-1
World Zones" is required
to monitor the monitoring
of the home position via a
temporary world zone!

119919
A temporary world zone for monitoring the home pos-
ition can only be used if the "608-1 World Zones" op-
tion is available in the robot system.
Action:
Create a new robot system with the "World Zones"
option or deactivate the use of the world zone for the
home position in the system parameters
(PROC/MT_HOMERUN/ CreateWZone).

Cause:Digital input DI_GO_HOME
has not yet been reset!

119920
The request to move to the home position is still not
set after reaching the home position.
Action:
Reset the request or change the process system
parameter WaitGoHomeLow to FALSE, so that the
program does not wait for the change to "low".

Continues on next page
508 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

16 Fault rectification (debugging)
16.1 Evaluation of the event log messages
Continued

Causes and measuresError textNo.

Reason:The MT_ContHomeRun in-
struction can only be used
within the HomeRun
strategy!

119921
The MT_ContHomeRun instruction was used in a pro-
gram section that is not executed during a HomeRun.
Action:
Only use the MT_ContHomeRun instruction within the
HomeRun strategy.

Cause:The MT_MoveRoutine in-
struction can only be used
within the HomeRun
strategy!

119922
The MT_MoveRoutine instruction was used in a pro-
gram section that is not executed during a HomeRun.
Action:
Only use the MT_MoveRoutine instruction within the
HomeRun strategy.

Cause:The position number must
be numeric

119924
Conversion error when reading out the current posi-
tion.

3HAC044398-001 Revision: C 509
© Copyright 2014 ABB. All rights reserved.

16 Fault rectification (debugging)
16.1 Evaluation of the event log messages

Continued

16.2 Logging the RWMT engine actions

What the log does
The recording or logging of actions within the RWMT Engine provides an opportunity
for an advanced error analysis, in case there are any unexpected problems while
using the RWMT.
Therefor a log file will be created in the home directory of the current robotic system.
This log file contains advanced information that can be evaluated by XXX.

Activating and deactivating the log
The logging is activated or deactivated through the RWMT user interface. To do
so, the robot icon should be selected first in the station view.

en1200000803

In the view that opens, now, the type of data that is to be logged should be
determined in the "Debugging" area, using the check box:

en1300000179

The following filter options are available:

Data that is to be loggedFilter

No information is recordedOff

Only information about the min execution loop of the RWMT
Engine, in which the higher order selection of the next action
takes place, will be collected.

Execution Loop

Only information about the evaluation of the program requests
or service requests to the RWMT Engine is recorded.

Execution Handling

Only information about the cycle handling is recorded.Cycle Selection Handling

Only information about the evaluation of production requests
and the conditions associated with them is collected.

Production Handling

Only information about the evaluation of service requests and
the conditions associated with them is collected.

Service

Only information pertaining to the transmission of an external
program number will be recorded.

Program Number Handling

All the available information will be recorded.Log Everything

Continues on next page
510 3HAC044398-001 Revision: C

© Copyright 2014 ABB. All rights reserved.

16 Fault rectification (debugging)
16.2 Logging the RWMT engine actions

Executing the recording (logging)
A different filter is to be selected instead of the filter Off. As soon as the robot
program is started, the recording in accordance with the selected filter.
To end the recording, the filter should be reset again to Off.
The log file is located in a directory of the current system with the following
convention for the names of the directory:
HOME \ LOG \ MT_LOG_<Year>_<Month>

The file name is in accordance with the following convention:
MT_LOG_<Taskname>_<Year>_<Month>_<Day>.CSV

Example:

en1200000805

This file can be transferred with the help of RobotStudio to a local PC and viewed
there, for instance, with the help of Microsoft Excel or any other software product,
which can read the format of a CSV-file.

3HAC044398-001 Revision: C 511
© Copyright 2014 ABB. All rights reserved.

16 Fault rectification (debugging)
16.2 Logging the RWMT engine actions

Continued

This page is intentionally left blank

Index
A
API commands, 161, 195
API positions, 164, 200

C
cell operation mode, 36, 185

E
event log messages, 501

F
fault rectification, 501

G
general signal view, 94
graphical user interface, 37

general signal view, 94
production view, 40
project view, 38
setup view, 37, 96

gripper, 77

H
Hardware prerequisites, 19
HomeRun, 34, 111, 175, 215

programming, 135
RobotStudio, 129
strategy, 128

HomeRun strategy, 120
HotEdit, 89

I
Installation, 21
instruction sets, 105

L
language, 28
log activation, 510
log deactivation, 510

M
MachineTending PowerPac, 32
MultiMove, 28

N
normal service routine, 246

P
part settings, 172, 207
process parameters, 35
production mode, 188

production view, 40
program architecture, 251
program selection, 167, 203
program test, 255
project view, 38

R
RAPID library, 109
RAPID references, 259

Data types, 259
Functions, 473
Instructions, 321

robot program, 219
RobotWare Machine Tending, 17, 31

applications, 209
base, 33
concept, 31
events, 34
gripper, 33
hardware prerequisites, 19
HomeRun, 34
installation, 21
instruction sets, 34
library, 33
MultiMove, 28
properties, 29
software option, 19
software prerequisites, 19
Usage, 17
user interface, 31

S
safety, 16
service mode, 187
service routine, 246
setup view, 96
Software prerequisites, 19
special service routine, 247
startup view, 37
station concept, 248
system characteristics, 27
system parameters, 157

U
user groups, 181
user interface, 31, 37, 85

production view, 40
project view, 38
startup view, 37

user permissions, 36, 179

V
visualization settings, 158, 190

3HAC044398-001 Revision: C 513
© Copyright 2014 ABB. All rights reserved.

Index

Contact us

ABB AB
Discrete Automation and Motion
Robotics
S-721 68 VÄSTERÅS, Sweden
Telephone +46 (0) 21 344 400

ABB AS, Robotics
Discrete Automation and Motion
Nordlysvegen 7, N-4340 BRYNE, Norway
Box 265, N-4349 BRYNE, Norway
Telephone: +47 51489000

ABB Engineering (Shanghai) Ltd.
5 Lane 369, ChuangYe Road
KangQiao Town, PuDong District
SHANGHAI 201319, China
Telephone: +86 21 6105 6666

www.abb.com/robotics

3H
AC

04
43

98
-0

01
,R

ev
C,

en

	Cover Page
	Table of contents
	1 What is RobotWare MachineTending?
	Usage

	2 System prerequisites
	Hardware
	Software

	3 Installation
	3.1 Setup
	Installation and system generation

	3.2 Data Storage
	Documentation
	Program examples
	Stations
	Graphics for the user interface (GUI)

	3.3 Notes on the next steps
	Introduction
	Setting up the graphic user interface (GUI)
	Parameterization of RWMT
	Understanding the concept of cell operation modes (modes)
	Carry out RAPID-programming
	Assign user permissions
	Initiate measures for detecting errors

	4 System characteristics
	4.1 Introduction
	

	4.2 Restrictions
	MultiMove
	Hot-Plug-Option for FlexPendant
	Safe return to starting position
	Language

	4.3 Properties
	Maximum number of open windows
	Background colors
	User permissions

	5 The RWMT concept
	What is RWMT
	Overview of the RWMT components
	The user interface
	RAPID data types, instructions, and functions
	Process parameters
	Concept for the cell operation mode
	User permissions

	6 Setting up the graphic user interface
	6.1 Startup view
	Purpose

	6.2 Project view
	6.2.1 General
	

	6.2.2 Identification
	

	6.3 Production view
	6.3.1 General
	Purpose
	Information in the production window
	Information in menus

	6.3.2 Production information
	Cycle time
	Other production data

	6.3.3 User program messages
	Types of message output
	Message output in the GUI

	6.3.4 Stations
	6.3.4.1 Introduction to stations
	Station states
	Preparing the station library
	Station name
	Station label
	Station description
	Station images
	Station status
	Use of ALIAS signals
	Using a signal for the station selection
	Parameterization of the station selection
	Position of the station symbols

	6.3.4.2 Station variables
	Display in the GUI
	Creating lists of variables
	Changing the values of the variables in the GUI

	6.3.4.3 Station signals
	Displaying signals in the GUI
	Displaying the signal descriptions
	Use of ALIAS-signals

	6.3.4.4 Station applications
	General
	Defining station applications
	Limitations

	6.3.5 General Signals
	Displaying signals in the GUI

	6.3.6 Part data
	Use of part data
	Explanation of the part data-components
	Examples for parameterization
	Representation on the RWMT screen

	6.3.7 Program cycles
	Use of cycle types
	Explanation of the various types of cycles
	Sample applications
	Example for parameterization
	Representation on the RWMT screen
	External cycle selection

	6.3.8 Grippers
	Overview
	Control elements
	Sequences
	Part controls
	Continuative example 1: One actuator and one part control
	Continuative example 2: Multiple actuators and part controls
	Continuative example 3: Gripping and dropping multiple parts
	Representation in the RWMT user interface

	6.3.9 Service routines
	General
	Differences between the service routine types
	Declaring a service routine
	Position dependent release
	Processing in the automatic mode
	Execution by dialing the program number
	Defining the menu type
	User controlled menu display
	Additional information for service routines of type I

	6.3.10 Advanced HotEdit
	RWMT and HotEdit
	Program concepts for pre-selection
	Declaration of the pre-selection
	Type dependent declaration
	Introduction
	Program module
	Routine name
	Name of the position (robtraget)
	Type dependent module, local data, and routines
	Type dependent data and routines
	Type dependent HotEdit array declaration

	Example

	6.3.11 External applications
	General
	Defining external applications

	6.4 General signal view
	Usage

	6.5 Setup view
	6.5.1 General
	

	6.5.2 Declaring a setup routine
	Introduction
	Position dependent release
	Processing in the automatic mode
	Defining the menu type
	User controlled menu display

	7 Event handling
	Usage
	Configuration
	Possible events
	Events in the context of program execution
	Example

	8 Instruction sets
	Usage
	Configuration of general instruction sets
	Examples

	9 RAPID Library
	What is the RAPID Library
	Contents

	10 HomeRun
	10.1 Introduction
	10.1.1 Overview
	

	10.1.2 HomeRun functions
	

	10.1.3 Method of operation
	

	10.2 First steps
	10.2.1 Example program
	

	10.2.2 What is the Home Position?
	

	10.2.3 Movement routines
	

	10.2.4 Administration routines
	

	10.2.5 Calling up the HomeRun movement
	

	10.2.6 Routines in the MT_MAIN module
	

	10.2.7 Creating the HomeRun strategy
	

	10.2.8 Creating the HomeRun description
	

	10.2.9 Checking the Home position
	

	10.2.10 Setting up the system parameters
	

	10.2.11 Signal combinations for HomeRun with stopped program
	

	10.2.12 Checking the position numbers
	

	10.2.13 Checking the HomeRun strategy
	

	10.3 Use of HomeRun in RobotStudio
	10.3.1 Behaviour of HomeRun in a virtual controller
	

	10.4 Operator dialogue for the HomeRun
	10.4.1 Moving the robot automatically into the home position
	

	10.4.2 Moving the robot semi-automatically into the Home position
	

	10.4.3 Moving the robot manually into the home position
	

	10.5 Programming the HomeRun
	10.5.1 General
	

	10.5.2 Allocation of the position designations
	
	Rules for allocating position numbers

	10.5.3 Structure of the movement routines
	Introduction
	Move back routine with identical movement sequence
	Backwards movement with other movement sequence
	Different movement sequences in the same positions

	10.5.4 Strategy for automatic movement into the home position
	Introduction
	Structure of the HomeRun strategy
	Behaviour at a start position

	10.5.5 Use of type-related movement routines
	10.5.5.1 General
	

	10.5.5.2 Use of module-localised movement routines
	

	10.5.5.3 Use of type modules with different strategies
	
	Program sequence

	10.5.6 MultiMove Support
	

	10.5.7 Movement continuation in intermediate positions
	

	10.6 System characteristics
	10.6.1 Position number assignment
	

	10.6.2 Intermediate position in movement from the home position
	

	10.7 Programming and configuration data
	10.7.1 Introduction
	

	10.7.2 Modules
	

	10.7.3 Signals
	Internal signals
	Remote control signals

	10.7.4 Data
	

	10.7.5 Instructions
	

	10.7.6 HomeRun related routines in the MT_MAIN module
	

	11 System parameters
	11.1 Introduction
	

	11.2 MT Visualization settings
	Overview
	Name of the configuration
	Type description
	Usage
	Activating the parameter changes
	Parameter

	11.3 MT API commands
	Overview
	Name of the Configuration
	Type description
	Usage
	Activating the parameter changes
	Parameter

	11.4 MT API positions
	Overview
	Name of the configuration
	Type description
	Usage
	Activating the parameter changes
	Parameter

	11.5 MT Program selection
	Overview
	Name of the configuration
	Type description
	Usage
	Activating the parameter changes
	Parameter
	Signal flow chart

	11.6 MT Part settings
	Overview
	Name of the configuration
	Type description
	Usage
	Activating the parameter changes
	Parameter

	11.7 MT Applications
	Overview
	Name of the configuration
	Type description
	Usage
	Activating the parameter changes
	Parameter
	Limitations and characteristics

	11.8 MT HomeRun
	Overview
	Name of the Configuration
	Type description
	Usage
	Activating the parameter changes
	Parameter

	12 User permissions
	12.1 Application permissions
	

	12.2 User groups
	

	12.3 User level for service menus and change of variable
	

	12.4 Setting up the user permissions
	

	13 Mode of operation of the robot cell
	13.1 General
	

	13.2 Operation without robot
	Definition

	13.3 Service mode
	Definition

	13.4 Production mode
	Definition
	Normal production mode
	Production without parts (Ghost mode)

	14 Programming
	14.1 Introduction
	

	14.2 Parameterization of the MT Visualization settings
	Opening the parameter window
	Descriptive text robot
	Position of the robot in the GUI
	Extra Dialogs
	Blocking the manual program selection
	Blocking the manual mode selection
	Disable ghost mode
	Display Home Run button
	Setting the waiting period for message outputs
	Start all robots in multimove system at the same time

	14.3 Parameterization of the MT API Commands
	Opening the parameter window
	External pre-selection of mode
	Ghost mode
	Halt after end of cycle
	Communicating the error number
	Speed specifications
	Pressurized air monitoring

	14.4 Parameterization of the MT API Positions
	Opening the parameter window
	Number of the safety position
	Position requests
	Position feedback

	14.5 Parameterization of the MT Program Selection
	Opening the parameter window
	Communicating the program numbers
	Cycle settings
	Tool codes and check codes
	Execute user defined programs
	Time-out while waiting for a program number

	14.6 Parameterization of the MT part settings
	Opening the parameter window
	Part type module
	Part Type prefix

	14.7 Parameterization of the MT applications
	Opening the parameter window
	Declaration of a new FlexPendant application
	Setting example 1: External ScreenMaker application
	Setting example 2: Embedded ScreenMaker application
	Setting example 3: External FlexPendant SDK application
	Setting example 4: Embedded FlexPendant SDK application

	14.8 Parameterization of the MT HomeRun
	Opening the parameter window
	HomeRun settings

	14.9 Preparation of the robot program
	14.9.1 Sample programs and templates
	

	14.9.2 Declarations
	Updating the version data
	Declare events
	Declare part data
	Declare cycles
	Declare Instruction Sets
	Declaring message data
	Declaring station data
	Declaring the station variables
	Declaring station signals
	HotEdit declarations

	14.9.3 Program initialization
	Initialization through the RWMT event handling

	14.9.4 Design of the production routines
	Call (load)
	Querying of cycles in the production routine

	14.9.5 Halt after end of cycle
	Triggering
	Evaluation in the robot program
	Halt after end of cycle while Production is running

	14.9.6 Error handling and return to the home position
	How to use the RWMT error numbers
	With HomeRun
	Without HomeRun, regular error handling
	Without HomeRun, simple error handling

	14.9.7 Change of tools
	Triggering and handling in the program

	14.9.8 User defined programs
	Usage and conventions
	Handling in the program

	14.10 Designing the service routines
	14.10.1 Normal service routines
	Data declaration and service routine

	14.10.2 Special service routines
	

	14.11 Suggestions for designing the program
	14.11.1 The station concept
	Explanation
	Advantages of the station concept

	14.11.2 The program architecture
	Task description
	Solution approach
	Modularization
	Naming conventions for positions
	Use and naming of movement routines
	Calling the movement routines
	Example for the implementation

	14.12 Program test
	14.12.1 General safety measures
	

	14.12.2 Validating the gripper functions
	

	14.12.3 Test mode
	

	15 RAPID references
	15.1 Data types
	15.1.1 cellopmode – Cell operation mode
	Usage
	Pre-defined data
	Properties

	15.1.2 Cycledata – Program cycle setting
	Usage
	Description
	Restriction
	Basic example
	Components
	Structure

	15.1.3 cycletype – Type of cycle
	Usage
	Pre-defined data
	Properties

	15.1.4 eventdata – Execute routine on program event or system event
	Usage
	Description
	Basic examples
	Components
	Properties
	Structure

	15.1.5 eventnum – Program event number or system event number
	Usage
	Description
	Basic examples
	Pre-defined data
	Properties

	15.1.6 grpaction – Set and check actions in gripper sequences
	Usage
	Predefined gripper actions
	Basic example
	Components
	Structure

	15.1.7 grpdata – Configuration of a control element of the gripper
	Usage
	Components
	Basic example
	Restriction
	Structure

	15.1.8 grppart – Part control configuration
	Usage
	Components
	Restriction
	Basic example
	Structure

	15.1.9 grppos – Gripper position
	Usage
	Basic example
	Pre-defined data
	Properties

	15.1.10 grpsensor – Sensor configuration for the control elements of a gripper
	Usage
	Components
	Structure

	15.1.11 grpseq – Gripper sequence for actuating several control elements
	Usage
	Basic example
	Components
	Structure

	15.1.12 grpsignal – Configuration of a gripper signal
	Usage
	Components
	Structure

	15.1.13 grpvalve – Valve actuation for the control element of a gripper
	Usage
	Components
	Structure

	15.1.14 hoteditdata – Menu declaration for the HotEdit-pre-selection
	Usage
	Description
	Basic examples
	Components
	Structure

	15.1.15 infodata – Displaying the information in the production window
	Usage
	Description
	Basic example
	Components
	Structure

	15.1.16 instset – Execute instruction while change of cell mode of operation
	Usage
	Description
	Basic example
	Components
	Restriction
	Structure

	15.1.17 menudata – Menu declaration for service routines or set up routines
	Usage
	Description
	Basic examples
	Service routine Type I
	Service routine Type II
	Setup routine

	Components
	Restrictions
	Structure

	15.1.18 msgdata – Message declaration
	Usage
	Description
	Components
	Basic examples
	Structure

	15.1.19 partcodes – Check codes for a part
	Usage
	Description
	Components
	Structure

	15.1.20 partdata – Part data
	Usage
	Description
	Basic example
	Components
	Structure

	15.1.21 posname – Assigning position description for HomeRun
	Usage
	Description
	Basic examples
	Components
	Structure

	15.1.22 projectinfo – Project definition for graphical user interface
	Usage
	Description
	Basic examples
	Components
	Structure

	15.1.23 signalpage – Definition of a signal page for the GUI
	Usage
	Description
	Basic examples
	Components
	Structure

	15.1.24 stationapp – External applications to be started in GUI
	Usage
	Description
	Basic example
	Limitations and characteristics
	Components
	Structure

	15.1.25 stationdata – Definition of a station
	Usage
	Description
	Properties
	Basic example
	Components
	Structure

	15.1.26 stationsignal – Allocation of station signals to alias names
	Usage
	Description
	Basic examples
	Components
	Structure

	15.1.27 stationvariable – Display the data declarations of a station
	Usage
	Description
	Basic examples
	Components
	Structure

	15.1.28 userbutton – User button on the Touchscreen
	Usage
	Basic examples
	Structure

	15.1.29 versiondata – Version data of the application module
	Usage
	Description
	Basic example
	Components
	Structure

	15.2 Instructions
	15.2.1 MT_AliasIO – Connecting of alias signals
	Usage
	Basic Example
	Program Execution
	Arguments
	Syntax

	15.2.2 MT_ChangeTool – Changing the current tool
	Usage
	Basic example
	Program run
	Syntax

	15.2.3 MT_ClearMessage – Delete message on the RWMT user interface
	Usage
	Basic example
	Program execution
	Syntax
	More information

	15.2.4 MT_ContHomeRun – Continue a movement routine
	Usage
	Basic example
	Arguments
	Program execution
	
	Type index
	Type prefix
	Type module
	Automatic backwards processing
	Movement continuation checking order

	Syntax
	Other information

	15.2.5 MT_CSSDeactMoveL – Linear movement and cartesian softservo disabling
	Usage
	Basic example
	Arguments
	Program execution
	Limitations
	Syntax
	Other information

	15.2.6 MT_EndOfCycleAck – Acknowledge the request "Halt after end of cycle"
	Usage
	Basic example
	Program execution
	Syntax
	More information

	15.2.7 MT_Execute – Execution of the RWMT Engine
	Usage
	Basic examples
	Program execution
	Syntax

	15.2.8 MT_Exit – Program processing complete
	Usage
	Basic example
	Syntax
	Other information

	15.2.9 MT_ExitCycle – Abort current cycle and start next cycle
	Usage
	Basic example
	Program execution
	Arguments
	Syntax
	Other information

	15.2.10 MT_GetUserProgNo – User defined program execution
	Usage
	Basic examples
	Program run
	Arguments
	Syntax
	More information

	15.2.11 MT_GripCheck – Check position of the control element of the gripper
	Usage
	Basic examples
	Arguments
	Program execution
	Syntax
	More information

	15.2.12 MT_GripCheckType – Check pos. of the control element of the gripper
	Usage
	Basic examples
	Arguments
	Program execution
	Syntax
	More information

	15.2.13 MT_GripJ – Robot axis movement with gripper settings
	Usage
	Basic example
	Arguments
	Program execution
	Restrictions
	Syntax
	Other information

	15.2.14 MT_GripL – Robot linear movement with gripper settings
	Usage
	Basic example
	Arguments
	Program execution
	Restrictions
	Syntax
	Other information

	15.2.15 MT_GripSeqJ – Robot axis movement with gripper sequence
	Usage
	Basic example
	Arguments
	Program execution
	Limitations
	Restrictions
	Syntax
	Other information

	15.2.16 MT_GripSeqL – Linear robot movement with gripper sequence
	Usage
	Basic example
	Arguments
	Program execution
	Limitations
	Restrictions
	Syntax
	Other information

	15.2.17 MT_GripSequence – Sequential actuation of gripper actuators
	Usage
	Basic examples
	Arguments
	Program execution
	Limitations
	Restrictions
	Syntax
	More information

	15.2.18 MT_GripSet – Controlling the gripper
	Usage
	Basic examples
	Arguments
	Program execution
	Restrictions
	Syntax
	More information

	15.2.19 MT_GripSetType – Controlling the gripper
	Usage
	Basic examples
	Arguments
	Program execution
	Restrictions
	Syntax
	More information

	15.2.20 MT_HomeDirect – Movement directly to the home position
	Usage
	Basic example
	Program execution
	Syntax

	15.2.21 MT_HomeRun – HomeRun Strategy
	Usage
	Basic example
	Arguments
	Program execution
	Syntax
	More information

	15.2.22 MT_HomeRunSavePos – Saving the stop position
	Usage
	Basic example
	Program execution
	Syntax
	More information

	15.2.23 MT_MoveJ – Robot axis movement
	Usage
	Basic example
	Arguments
	Program execution
	Syntax
	Other information

	15.2.24 MT_MoveJDO – Robot axis movement and setting of a digital output
	Usage
	Basic example
	Arguments
	Program execution
	Syntax
	Other information

	15.2.25 MT_MoveJGO – Robot axis movement and setting of a group output
	Usage
	Basic example
	Arguments
	Program execution
	Syntax
	Other information

	15.2.26 MT_MoveJSync – Axis-wise movement and processing a procedure
	Usage
	Basic example
	Arguments
	Program execution
	Use of the RAPID routine
	Limitations
	Syntax
	Other information

	15.2.27 MT_MoveL – Linear robot movement.
	Usage
	Basic example
	Arguments
	Program execution
	Syntax
	Other information

	15.2.28 MT_MoveLDO – Linear movement and setting a digital output in the zone
	Usage
	Basic example
	Arguments
	Program execution
	Syntax
	Other information

	15.2.29 MT_MoveLGO – Linear robot movement and set group output in zone
	Usage
	Basic example
	Arguments
	Program execution
	Syntax
	Other information

	15.2.30 MT_MoveLSync – Linear movement and execution of a RAPID procedure
	Usage
	Basic example
	Arguments
	Program execution
	Use of the RAPID routine
	Limitations
	Syntax
	Other information

	15.2.31 MT_MoveRoutine – Execute a movement routine at HomeRun
	Usage
	Basic example
	Limitations
	Arguments
	Program execution
	Syntax
	Related information

	15.2.32 MT_MoveTo – Dynamic execution of a movement routine
	Usage
	Programming
	Basic example
	Arguments
	Syntax
	More information

	15.2.33 MT_PartCheck – Part controls on the gripper
	Usage
	Basic examples
	Arguments
	Program execution
	Restrictions
	Syntax
	More information

	15.2.34 MT_PartCheckType – Part controls on the gripper
	Usage
	Basic examples
	Arguments
	Program execution
	Restrictions
	Syntax
	More information

	15.2.35 MT_ResetActiveStation – Set station symbol to "inactive"
	Usage
	Basic example
	Program execution
	Syntax
	More information

	15.2.36 MT_ResetFirstCycle – Declare first cycle as finished
	Usage
	Basic example
	Program execution
	Arguments
	Syntax
	More information

	15.2.37 MT_SearchL – Linear search movement of robot
	Usage
	Basic example
	Arguments
	Program execution
	Limitation
	Syntax
	Other information

	15.2.38 MT_SetActiveStation – Set station symbol to "active"
	Usage
	Basic example
	Program execution
	Arguments
	Program execution
	Syntax
	More information

	15.2.39 MT_SetActualPosition – Setting the current position for MT_MoveTo
	Usage
	Basic example
	Arguments
	Syntax
	More information

	15.2.40 MT_SetEndOfCycle – Set the "Halt after end of cycle" state
	Usage
	Basic example
	Arguments
	Program execution
	Syntax
	More information

	15.2.41 MT_ShowMessage – Show message on the RWMT user interface
	Usage
	Basic example
	Arguments
	Program execution
	Syntax
	More information

	15.2.42 MT_ShowText – Delete single line message on the RWMT user interface
	Usage
	Basic example
	Arguments
	Program execution
	Syntax
	More information

	15.2.43 MT_ShowTPSViewRWMT – Open the RWMT graphic user interface
	Usage
	Basic example
	Arguments
	Program execution
	Syntax

	15.2.44 MT_SpeedUpdate – Adapting the speed
	Usage
	Basic example
	Arguments
	Program execution
	Syntax
	Other information

	15.2.45 MT_StartCycleTimer – Start recording the cycle time
	Usage
	Basic example
	Program execution
	Syntax
	More information

	15.2.46 MT_StopCycleTimer – Stop recording the cycle time
	Usage
	Basic example
	Program execution
	Syntax
	More information

	15.2.47 MT_ToolCheckL – Checking a tool
	Usage
	Basic example
	Arguments
	Program execution
	Syntax

	15.2.48 MT_TriggJ – Axis-wise robot movements with events
	Usage
	Basic example
	Arguments
	Program execution
	Syntax

	15.2.49 MT_TriggL – Linear robot movements with events
	Usage
	Basic example
	Arguments
	Program execution
	Syntax

	15.2.50 MT_UIMessage – Message display based on UIMessageBox
	Usage
	Basic example
	Arguments
	Program execution
	Syntax
	More information

	15.2.51 MT_UserInit – User routine for initialization
	Usage
	Basic example
	Arguments
	Program execution
	Syntax

	15.2.52 MT_WaitMsgDI – Wait for input signal state
	Usage
	Basic example
	Arguments
	Program execution
	Syntax

	15.2.53 MT_WaitMsgDO – Wait for output signal state
	Usage
	Basic example
	Arguments
	Program execution
	Syntax

	15.2.54 MT_WaitMsgGI – Wait for a group input signal
	Usage
	Basic example
	Arguments
	Program execution
	Syntax

	15.2.55 MT_WaitMsgGI32 – Wait for a 32-Bit group input signal
	Usage
	Basic example
	Arguments
	Program execution
	Syntax

	15.2.56 MT_WaitMsgGO – Wait for a group output signal
	Usage
	Basic example
	Arguments
	Program execution
	Syntax

	15.2.57 MT_WaitMsgGO32 – Wait for a 32-Bit group output signal
	Usage
	Basic example
	Arguments
	Program execution
	Syntax

	15.2.58 MT_WaitMsgSync – Synchronization of movement tasks
	Usage
	Basic example
	Arguments
	Program execution
	Restrictions
	Syntax

	15.2.59 MT_WaitTimeDI – Wait for input signal until time limit is exceeded
	Usage
	Basic example
	Arguments
	Program execution
	Syntax

	15.2.60 MT_WaitTimeDO – Wait for output signal until time limit is exceeded
	Usage
	Basic example
	Arguments
	Program execution
	Syntax

	15.3 Functions
	15.3.1 MT_EndOfCycleOk – Check if "Halt after end of cycle" was acknowledged
	Usage
	Basic example
	Return value
	Program execution
	Syntax
	More information

	15.3.2 MT_EndOfCycleReq – Recognizing the request "Halt after end of cycle"
	Usage
	Basic example
	Return value
	Program execution
	Syntax
	More information

	15.3.3 MT_FirstCycle – Requesting first cycle status
	Usage
	Basic example
	Return value
	Program execution
	Syntax
	More information

	15.3.4 MT_GetActualPosition – Reading the start position for MT_MoveTo
	Usage
	Basic example
	Return value
	Syntax
	More information

	15.3.5 MT_GetAuxCode – Reading the auxiliary code of the current part type
	Usage
	Basic example
	Return value
	Syntax
	More information

	15.3.6 MT_GetCycleCountDown – Count-down value for currently executed cycle
	Usage
	Basic example
	Return value
	Program execution
	Syntax
	More information

	15.3.7 MT_GetCycleIndex – Reading the current cycle index
	Usage
	Basic example
	Return value
	Program execution
	Syntax
	More information

	15.3.8 MT_GetOperationMode – Current cell operation mode
	Usage
	Basic example
	Return value
	Program execution
	Syntax
	More information

	15.3.9 MT_GetPartType – Querying the current part type code
	Usage
	Basic example
	Return value
	Program execution
	Syntax

	15.3.10 MT_GetToolCode – Current tool code
	Usage
	Basic example
	Return value
	Program execution
	Syntax
	More information

	15.3.11 MT_GhostModeActive – Ask if the ghost mode is active
	Usage
	Basic example
	Return value
	Program execution
	Syntax

	15.3.12 MT_GripIsEmpty – Check if gripper is empty
	Usage
	Basic example
	Return value
	Arguments
	Program execution
	Syntax
	More information

	15.3.13 MT_GripIsEmptyType – Check if gripper is empty
	Usage
	Basic example
	Return value
	Arguments
	Program execution
	Syntax
	More information

	15.3.14 MT_JointCompare – Axis by axis comparison of two positions
	Usage
	Basic example
	Return value
	Arguments
	Syntax

	15.3.15 MT_PosCompare – Determine linear deviation from a position
	Usage
	Basic example
	Return value
	Arguments
	Syntax

	15.3.16 MT_RecalcPoint – recalculating a position in a new coordinate system
	Usage
	Basic example
	Return value
	Arguments
	Syntax

	15.3.17 MT_RelTCP – Moving (translation) and rotation of the tool coordinates
	Usage
	Basic example
	Return value
	Arguments
	Syntax

	15.3.18 MT_RobotInHome – Checking whether the robot is in the home position.
	Usage
	Basic example
	Return value
	Program execution
	Syntax

	15.3.19 MT_StationIsEnabled – Checking station pre-selection for production
	Usage
	Basic example
	Return value
	Arguments
	Program execution
	Syntax
	More information

	16 Fault rectification (debugging)
	16.1 Evaluation of the event log messages
	

	16.2 Logging the RWMT engine actions
	What the log does
	Activating and deactivating the log
	Executing the recording (logging)

	Index

