The Company

We are an established world force in the design and manufacture of instrumentation for industrial process control, flow measurement, gas and liquid analysis and environmental applications.

As a part of ABB, a world leader in process automation technology, we offer customers application expertise, service and support worldwide.

We are committed to teamwork, high quality manufacturing, advanced technology and unrivalled service and support.

The quality, accuracy and performance of the Company's products result from over 100 years experience, combined with a continuous program of innovative design and development to incorporate the latest technology.

The NAMAS Calibration Laboratory No. 0255 is just one of the ten flow calibration plants operated by the Company, and is indicative of ABB's dedication to quality and accuracy.

Use of Instructions

⚠️ **Warning.**
An instruction that draws attention to the risk of injury or death.

⚠️ **Caution.**
An instruction that draws attention to the risk of damage to the product, process or surroundings.

🌟 **Note.**
Clarification of an instruction or additional information.

ℹ️ **Information.**
Further reference for more detailed information or technical details.

Although **Warning** hazards are related to personal injury, and **Caution** hazards are associated with equipment or property damage, it must be understood that operation of damaged equipment could, under certain operational conditions, result in degraded process system performance leading to personal injury or death. Therefore, comply fully with all **Warning** and **Caution** notices.

Information in this manual is intended only to assist our customers in the efficient operation of our equipment. Use of this manual for any other purpose is specifically prohibited and its contents are not to be reproduced in full or part without prior approval of the Marketing Communications Department.

Health and Safety
To ensure that our products are safe and without risk to health, the following points must be noted:
1. The relevant sections of these instructions must be read carefully before proceeding.
2. Warning labels on containers and packages must be observed.
3. Installation, operation, maintenance and servicing must only be carried out by suitably trained personnel and in accordance with the information given.
4. Normal safety precautions must be taken to avoid the possibility of an accident occurring when operating in conditions of high pressure and/or temperature.
5. Chemicals must be stored away from heat, protected from temperature extremes and powders kept dry. Normal safe handling procedures must be used.
6. When disposing of chemicals ensure that no two chemicals are mixed.

Safety advice concerning the use of the equipment described in this manual or any relevant hazard data sheets (where applicable) may be obtained from the Company address on the back cover, together with servicing and spares information.
1 INTRODUCTION

1.1 Introduction

Warning. This instrument uses a high intensity light source which emits ultraviolet (UV) radiation and must NOT be viewed with the naked eye. Under normal operating conditions it is not possible to see the light source, but if the sensor is dismantled with the power applied, it may be possible to expose the eyes to the strobe flash.

The monitor employs a broad-spectrum xenon strobe lamp to generate pulses of light which pass through the sample water in the flowcell to a filtering and detection system. The received light pulses are analysed at two wavelengths: the measurement wavelength of 220nm and the reference wavelength of 275nm, at which the sample constituents of interest do not absorb. This dual light path system provides information which allows the measured value to be corrected for any dissolved organics and turbidity in the sample. The monitor is calibrated with a pure solution of a known nitrate content.

An automatic, microprocessor-controlled, dual-wiper system cleans the flowcell optical windows periodically to ensure that the cell remains functional. Samples containing large solids and/or very high concentrations of solids must be pre-filtered.

1.2 Main Components of the System – Fig. 1.1

![Fig. 1.1 Main Components of the System](image-url)
2 MECHANICAL INSTALLATION

Caution. Attention should be given to the prevention of damage to the equipment, e.g. through dropping, scraping or otherwise abusing it during the installation process. Although the equipment is ruggedly constructed, it contains precision optical components which may be damaged if subjected to impacts or shock loading.

2.1 Siting Requirements – Fig. 2.1

2.1.1 Monitor

Caution.
- Mount in a location free from excessive vibration.
- Mount away from harmful vapours and dripping fluids.

The monitor should be fixed to a wall or support in such a position to make reading the displays and operating the keypad convenient. It is advised that a suitable switched and fused isolating box is installed to the right of the monitor, in a position which allows the power to be switched on or off while standing in front of the display.

2.1.2 Flowcell Assembly

The flowcell assembly is supplied on a mounting bracket. This must be fixed to a suitable vertical surface such that convenient servicing and calibration is afforded. Allow suitable space to the left and right of the unit for accessing the sensors.

Note. For ease of use it is recommended that the flowcell should be mounted at about chest height.

Fig. 2.1 Siting Requirements

IP65

C – Within Environmental Limits
2.2 Installing the Transmitter – Fig. 2.2 and Fig. 2.3

Mark-out the fixing centers of the four mounting holes – see Fig. 2.2.

Drill suitable holes for the type of fixings to be used.

Fix the instrument securely to the wall.

Fig. 2.2 Overall Dimensions of the Transmitter

Fig. 2.3 Transmitter Fixing Details
2.3 Installing the Flowcell – Fig. 2.4

[Notes]
- Connecting pipework can be: flexible plastic or rigid PVC, polypropylene or metal depending on the installation.
- Isolating valves should be fitted to allow removal of the instrument, if necessary.
- Space should be left on each side of the assembly to allow access to the sensors.

For maintenance purposes the following minimum clearances are recommended:

<table>
<thead>
<tr>
<th>Side</th>
<th>Description</th>
<th>Clearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td>(for receiver removal)</td>
<td>150 mm</td>
</tr>
<tr>
<td>Right</td>
<td>(for emitter removal)</td>
<td>100 mm</td>
</tr>
<tr>
<td>Top</td>
<td>(for filling with standard solution)</td>
<td>200 mm</td>
</tr>
</tbody>
</table>

[Fig. 2.4 Overall Dimensions and Mounting Details of Sensor]
2.4 Mounting the De-bubbler – Fig. 2.5

Important Note
The de-bubbler MUST be mounted vertically with the flow upwards.

Removable fitting
To Fit 12 mm i.d. Tube

Sample Inlet

Fig. 2.5 Overall Dimensions and Mounting Details of the De-bubbler

2.4.1 Set Up Procedure for Optional De-bubbler – Fig. 2.6

Note. Sample regulating valves together with a flow indicator are recommended to ensure easy maintenance and consistent performance. These devices are not supplied with the 7330 Series Nitrate Monitoring system.

Caution. To prevent degassing of the sample, which can cause very erratic readings, it is recommended that these measurements be not greater than 150mm.

Caution. To ensure adequate flowrate through the sensor, it is recommended that the De-bubbler unit is installed at least 0.5m above the sensor outlet. This may need to be increased where long or small bore tubing is used.

Fig. 2.6 Typical System Installation
Warning.
- Although certain instruments are fitted with internal fuse protection, a suitably rated external protection device, e.g. fuse or miniature circuit breaker (m.c.b.), must also be fitted by the installer.
- Before making any connections, ensure that the power supply, any high voltage-operated control circuits and high common mode voltage are switched off.

3.1 Access to Terminals – Fig. 3.1

Release the lower panel and remove from the front of the instrument.

Fig. 3.1 Access to the Terminal Block

3.2 Connections, General

Warning. The power supply earth (ground) must be connected to ensure safety to personnel, reduction of the effects of RFI and correct operation of the power supply interference filter.

Information.
- Earthing (grounding) – stud terminal(s) is fitted to the transmitter case for bus-bar earth (ground) connection – see Fig. 3.3.
- Cable routing – always route the signal cable and mains-carrying/relay cables separately, ideally in earthed (grounded) metal conduit.
- Cable glands & conduit fittings – ensure a moisture-tight fit when using cable glands, conduit fittings and blanking plugs/bungs (M20 holes). The M16 glands ready-fitted to wall-mounted instruments accept cable of between 4 and 7 mm diameter.
- Relays – the relay contacts are voltage-free and must be appropriately connected in series with the power supply and the alarm/control device which they are to actuate. Ensure that the contact rating is not exceeded. Refer also to Section 3.2.1 for relay contact protection details when the relays are to be used for switching loads.

3.2.1 Relay Contact Protection and Interference Suppression – Fig. 3.2

If the relays are used to switch loads on and off, the relay contacts can become eroded due to arcing. Arcing also generates radio frequency interference (RFI) which can result in instrument malfunction and incorrect readings. To minimize the effects of RFI, arc suppression components are required; resistor/capacitor networks for AC applications or diodes for DC applications. These components can be connected either across the load or directly across the relay contacts. On 7330 instruments the RFI components must be fitted to the relay terminal block along with the supply and load wires – see Fig. 3.2.

For AC applications the value of the resistor/capacitor network depends on the load current and inductance that is switched. Initially, fit a 100R/0.022 µF RC suppressor unit (part no. B9303) as shown in Fig. 3.2A. If the instrument malfunctions (incorrect readings) or resets (display shows 88888) the value of the RC network is too low for suppression – an alternative value must be used. If the correct value cannot be obtained, contact the manufacturer of the switched device for details on the RC unit required.

For DC applications fit a diode as shown in Fig. 3.2B. For general applications use an IN5406 type (600V peak inverse voltage at 3A – part no. B7363).

Note. For reliable switching the minimum voltage must be greater than 12V and the minimum current greater than 100 mA.
3 ELECTRICAL CONNECTIONS...

3.3 Transmitter Connections – Fig. 3.3

Warning. The power supply earth (ground) must be connected to ensure safety to personnel, reduction of the effects of RFI and correct operation of the power supply interference filter.

Caution. Slacken terminal screws fully before making connections.

Note. Refer to Fig. 3.1 for Access to Terminals.

Warning. The power supply earth (ground) must be connected to ensure safety to personnel, reduction of the effects of RFI and correct operation of the power supply interference filter.

Caution. Slacken terminal screws fully before making connections.

Note. Refer to Fig. 3.1 for Access to Terminals.

Terminal	**Connection Details**
1 | UV signal input
2 | Reference signal input
3 | Receiver 0 V
4 | Receiver 12 V supply
5 | Emitter + ve trigger
6 | Emitter – ve trigger
7 | Emitter 12 V supply
8 | Emitter 12 V supply
9 | Emitter earth
10 | Cleaner 0 V
11 | Cleaner 12 V supply
12 | Cleaner initiate impulse
13 | Not used

Fig. 3.3 Transmitter Connections – All Sensors
3.3.1 Out of Sample Alarm Input Connections
A digital input is supplied which can be connected to a low flow indicator or sump level switch. This can be used to give indication of the loss of the sample flow or an unacceptable drop in water level. The input is linked to the internal system relay when selected in the programme.

The input can be configured in the software to accept an input from a device which has normally open or closed contacts – see Section 5.5.

If this input is not required, leave it open circuit.

3.3.2 Alarm Relay Connections
Up to two alarm relays can be provided with connections to the single set of contacts for each alarm – see Fig. 3.3. Alarms can be connected using suitable signal cable.

The operating sense of the relays can be changed using the service programmes – see Section 5.6, Set Up Outputs. This enables normally open or normally closed configurations.

3.3.3 Out of Service Alarm
This alarm can be remotely transmitted via an internal relay provided. This is a fail-safe relay which is de-energised in the event of a diagnostics alarm – see Section 6.3.1 for details.

3.4 Selecting the Mains Voltage – Fig. 3.4

3.5 Start Up
When all sample/drain connections have been made and electrical/signalling installation has been completed and checked, switch on the power supply.

Proceed to Section 5 for programming details.

Fuses

<table>
<thead>
<tr>
<th>No.</th>
<th>Function</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mains in</td>
<td>500 mA</td>
</tr>
<tr>
<td>2</td>
<td>24 V out</td>
<td>1 A</td>
</tr>
<tr>
<td>3</td>
<td>Mains in</td>
<td>500 mA</td>
</tr>
<tr>
<td>4</td>
<td>12 V out</td>
<td>1 A</td>
</tr>
<tr>
<td>5</td>
<td>Mains in</td>
<td>500 mA</td>
</tr>
</tbody>
</table>

Fig. 3.4 Selecting the Mains Voltage

1. Unlock and carefully remove the upper enclosure cover.
2. Disconnect the front panel ribbon cable at the main p.c.b. end.
3. Identify the mains tappings on the 2 p.c.b’s and select the required mains voltage using the links supplied.
4. Offer the cover up to the enclosure and reconnect the ribbon cable
5. Replace and lock secure the upper enclosure cover

Caution. Support the cover during the unlocking procedure to prevent it falling and possibly damaging the ribbon cable and/or p.c.b.

Note. For 110 V both 110 V tappings on each board MUST be linked. Spare links for this purpose are packed with the spare fuse.
4 CONTROLS AND DISPLAYS

4.1 Displays – Fig. 4.1
The upper display window comprises a 4-digit, 7-segment digital line and shows actual values (Concentration) of Nitrate. The lower display comprises two 16-character dot-matrix lines showing the current programme parameters.

4.2 Switch Familiarisation – Figs 4.1 and 4.2

![Diagram of Controls and Displays]

Fig. 4.1 Location of Controls and Displays
Fig. 5.1 Overall Programming Chart
5.2 Operating Display Page

Note. This is the default page. The programme returns from any of the programming pages to this point if no data has been entered after four minutes.

Nitrate Operating Page

This is for display only. See **Set Up Outputs** page for programming details.

This is for display only. See **Set Up Outputs** page for programming details.

Switching the Lamp On/Off

In the interests of safety it is essential that the lamp is switched off before carrying out any maintenance on the sensor. When off, ‘Lamp Disabled’ is displayed in the lower window of the ‘Nitrate’ page; the top window will be blank.

Press the switch to disable the lamp and to switch the lamp back on.

Manual Cleaning

Press the switch to change No to Yes and press the switch to start a manual clean.

Advance to **Sensor Calibrate** Operating Page – Section 5.3.
5.3 Sensor Calibration

Note. Output held during a calibration.

Note. The calibration pages have a 60 minute timeout after which the instrument reverts to normal operation.

‘Calibration’ Operating Page

Calibration Access Code
Use the [▲] and [▼] switches to enter the appropriate number code between 0000 and 9999.

Fill the flowcell with carbon-free de-ionized water.

This message is displayed for about one minute, then changes to ‘Fill Span Sol.’.

Fill the flowcell with the required calibration solution.
Set the display to the value of the span standard solution within the range of 30 to 80 mg/l as NO₃⁻, or 4 to 15 mg/l as N.

This message is displayed for about one minute, then changes to ‘Cal. Complete’.

Advance to Security Code Operating Page – Section 5.4.
5.4 Security Code

Secure Parameter Access
Use the ▲ and ▼ switches to enter the appropriate security code, number between 0000 and 9999.

Advance to Set Up Parameter operating page – Section 5.5.

5.5 Set Up Parameter

Set Up Parameter Operating Page

Display Type
Select as Nitrate (NO$_3^-$) or Nitrogen (N).

Caution. Casual switching of this parameter will default the calibration parameter, necessitating sensor re-calibration.

Enter a damping value in the range 1 to 20. This is used to prevent short term variations in reading, typically due to bubbles in the sample. Always use the lowest value which gives an acceptably stable reading.

Organic Compensation
Set to ‘No’ if turbidity is the predominant interference, or set to ‘Yes’ where organics is more predominant.

Reference Factor
This enables the reference compensation factor to be changed to suit a particular application. Range: 0.00 to 9.000
Adjust to independent test value.

Cleaning Interval
Enter required interval between automatic cleaning procedures. Options: 15, 30, 45 & 60 minutes. 2, 4, 6, 12 & 24 hours.

Flow Alarm Input Configuration
Set the normal ‘none’ alarm condition (normally open or closed), or disable by setting to ‘Off’.

Alter ‘Set Up Parameter’ Security Code
Enter value in the range 0000 to 9999.

Alter ‘Calibration’ Security Code
Enter value in the range 0000 to 9999.

Advance to Set Up Outputs Operating Page – Section 5.6.
5.6 Set Up Outputs

Set Up Outputs Operating Page

Set the current output span between the limits 0 to 20 and 0 to 100 mg/L as NO₃⁻, and 4 to 20 mg/L as N.

Set the current output to a default in the event of a diagnostic alarm.

Select the current output:
- 4 to 20mA
- 0 to 20mA
- 0 to 10mA

Set the value within the current output span. The instrument automatically transmits a test signal to represent the current output range.

Alarm 1 Action
This can be set as a high or low alarm contact. Select High or Low as appropriate. Select Off to disable this alarm.

Adjust setpoint to a value within the range of the sensor.

Alarm 2 Action
This can be set as a high or low alarm contact. Select High or Low as appropriate. Select Off to disable this alarm.

Adjust setpoint to a value within the range of the sensor.

Advance to Factory Settings Operating Page.

5.7 Factory Settings

These parameters are set at the factory and will not require adjustment on site.
6 MAINTENANCE

6.1 Zero Standard
Calibration is performed using nitrate and organic free deionized water. In some cases, distilled water, while less chemically pure, may contain less organic carbon than deionized water.

The zero standard solution should be as fresh as possible but, if storage is unavoidable, a glass container should be used to avoid possible contamination due to leaching of chemicals from a plastic bottle.

6.1.1 Span Standard
Two standard solutions of known nitrate concentration appropriate to the measuring range are required within the range of 20 to 60 mg/l as NO\textsubscript{3}– or 4 to 15 mg/l as N. To prepare a stock solution of 1000 mg/l follow the instructions below:

Nitrate as NO\textsubscript{3}–
- a) Dissolve 1.371 (±0.001) g analytical reagent grade sodium nitrate in high purity water, and make up to 1 litre with more high purity water.

Nitrate as N
- b) Dissolve 6.070 (±0.001) g analytical reagent grade sodium nitrate in high purity water, and make up to 1 litre with more high purity water.

- c) Dilute the stock solution appropriately with more high purity water to make up the standard solution within the range given in Section 5.3. Store in plastic bottles.

Note. The mass relationship of nitrate (NO\textsubscript{3}–) to nitrogen (N) is 62/14.

6.1.2 Calibration Checks
The system uses an optical system with very stable electronics which avoids the risk of electronic drift. Therefore, routine calibration is normally unnecessary. However, it may be necessary to routinely check the system accuracy (particularly after cleaning). The should then be considered as a calibration check and not a calibration adjustment.

The calibration check can be simply carried out by filling the flowcell with the Zero and Span Standards and observing the readings on the Operating Display Page.

6.2 Scheduled Servicing

Warning. Do NOT open the emitter unit as it uses high voltage which could cause serious injury or death.

Caution. Both emitter and receiver units contain no user serviceable parts and are sealed in clean air conditions at the factory. Opening them could lead to degraded performance. See also the warning above.

The following servicing schedule has been produced as a general guide only. Because the systems are designed for a wide range of applications, where the nature of the sample can vary considerably, it may be necessary to amend the schedule to suit the particular installation and sample conditions.

6.2.1 Cleaning the Flowcell
The required automatic cleaning frequency of the flow chamber and optical windows can only be determined by plant experience. It is recommended that checks are made are appropriate intervals.

Routine servicing is limited to manually cleaning out the flowcell to remove any fouling or sediment which has accumulated over a lengthy period. In particular, if there is a need to calibrate the instrument it is important that no contamination occurs when setting the zero condition. To clean out the sensor, the cell must be ‘split’. Four stainless steel screws hold it together, but two of them provide a jacking action when unscrewed, thus affording a controlled splitting operation. See Section 6.2.3, Fig. 6.2, for details.

6.2.2 Dismantling the Flowcell for Cleaning – Fig 6.1

Warning. This instrument uses a high intensity light source which emits UV radiation and must NOT be viewed with the naked eye. Under normal operating conditions it is not possible to see the light source, but if the sensor is dismantled with the power applied, it may be possible to expose the eyes to the strobe flash.

Caution. Always switch off the power to the instrument before starting any service work.

The emitter and receiver modules contain precision optical components and must be handled accordingly. In particular, the emitter contains all of the power supply, voltage control and lamp components and is quite heavy. Do not support on the wires entering the enclosure.

Care must be taken while handling the emitter module and, for safety reasons, it must NEVER be operated while outside the measurement cell.

Important Notes.
- Ensure that O-rings are removed with the screw collars; it is possible for these seals to be left inside the flowcell.
- During the cleaning procedure, support the modules to remove any strain from the cables.
- Grub screw pins ensure that the modules locate in only one position.
- The emitter module is heavier than the receiver, so extra support is needed.
Clean the inside of the flow chamber and other assemblies thoroughly. Use mild detergent and rinse with de-ionized water.

Inspect the wiper blades for wear or damage and fit new ones if necessary – see Fig. 6.3 for assembly details.

Split the flowcell to access the flow chamber – see Fig. 6.2 for procedure.

Reassemble flowcell using new seals. Ensure that the modules locate in the keways before tightening the collars.

Fig. 6.1 Cleaning the Flowcell

Fig. 6.2 Splitting the Flowcell

Remove the four stainless steel closing screws holding the flowcell halves together.

Thread two of the stainless steel screws into holes provided and advance them slowly and evenly to push the cell halves apart. When the O-ring seal is clear of the body the cell halves should separate easily.

Thoroughly check and clean the inside of the cell. The wiper blades can also be serviced/changed – see Fig. 6.3.

Reassemble.
Note. The proper functioning of the wiper system depends on the correct assembly of the washers and orientation of the wiper blade.

1. Remove the wiper blade securing nut.
2. Remove the blade and washers from the drive shaft.
3. Before reassembling the components on the drive shaft, perform a Manual Clean (section 5.2) to 'park' the blade.
4. Reassemble the components on the drive shaft in the order shown and ensure that the blade is correctly oriented on the shaft before tightening the nut (see below). Also ensure that the blade is in the parked position.
5. Perform another Manual Clean (section 5.2) to 'park' the blade as a final check.

Fig. 6.3 Servicing the Wipers

Ensure that this surface of the wiper blade faces the direction of rotation.
6.3 Unscheduled Servicing

6.3.1 Monitor Diagnostic Information
The software incorporates diagnostic facilities which provide information on the status of the instrument (lower line of the Programme Parameters display) in the Operating Display Page. All diagnostic messages result in de-energising the ‘Out of Service’ relay with the exception of the ‘Out of Range’ condition.

Due to the fail-safe operation of the relay, an alarm condition is generated in the event of a loss of mains supply.

<table>
<thead>
<tr>
<th>Display Message</th>
<th>Cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flashing numeric display</td>
<td>Measured value higher than the full scale value of the sensor.</td>
<td>None.</td>
</tr>
<tr>
<td>Alarm One/Two</td>
<td>Either Alarm 1 or 2 is in the alarm state.</td>
<td>None.</td>
</tr>
<tr>
<td>Lamp Disabled</td>
<td>The flowcell light source has been manually disabled in the Operating Display Page.</td>
<td>See Section 5.2.</td>
</tr>
<tr>
<td>Flow Failure</td>
<td>Loss of sample/flow pressure detected by the external sample switch contact.</td>
<td>Re-instate sample.</td>
</tr>
<tr>
<td>Loss of Signal</td>
<td>No signal received from the two receivers. Possible causes:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a) Flowcell requires cleaning.</td>
<td>Dismantle flowcell – see Section 6.2.2.</td>
</tr>
<tr>
<td></td>
<td>b) Failure of the automatic cleaner.</td>
<td>Dismantle flowcell to reveal wiper – see Section 6.2.3 – and check operation of cleaner by performing a manual clean – see Section 5.2.</td>
</tr>
<tr>
<td></td>
<td>c) Faulty connections between sensor and transmitter.</td>
<td>Check sensor connections in the transmitter – see Section 3.3.</td>
</tr>
<tr>
<td></td>
<td>d) Failure of lamp power supply.</td>
<td>Suspect an electronic malfunction*.</td>
</tr>
<tr>
<td></td>
<td>e) Failure of either the emitter or receiver.</td>
<td>Suspect an electronic malfunction*.</td>
</tr>
<tr>
<td>No Reply- Timeout</td>
<td>There is a hardware problem between the internal circuit boards.</td>
<td>Suspect an electronic malfunction*.</td>
</tr>
<tr>
<td>Conversion Error</td>
<td>There is a hardware communication problem regarding signal interrogation.</td>
<td>Suspect an electronic malfunction*.</td>
</tr>
<tr>
<td>Bad Data</td>
<td>There is a hardware communication problem regarding signal interrogation.</td>
<td>Suspect an electronic malfunction*.</td>
</tr>
</tbody>
</table>

* These conditions indicate an internal electronic malfunction which cannot be rectified by other than ABB personnel. This information is useful in identifying the cause of the problem and facilitating repair, either on site or in the factory.

Table 6.1 Diagnostic Information

6.3.2 Unstable or Erratic Readings
This is usually caused by air bubbles entrained in the sample and is usually more pronounced on the low level sensor due to its greater sensitivity. These bubbles are usually as a result of degassing of the sample caused by a drop in sample pressure, or a rise in temperature. Cleaning the optical windows and increasing the flow through the flowcell usually overcomes the problem. If severe, it is recommended that a de-bubbler unit is installed – see Section 2.4.
6.4 Replacing the Emitter and Receiver Modules

Having replaced the emitter/receiver module(s) (procedure in Section 6.4.1) it will be necessary to adjust the emitter brightness (procedure in Section 6.4.2).

Please observe all Warnings, Cautions and Notes in Section 6.2.2.

6.4.1 Changing the Modules

1) Electrically isolate the equipment.

2) Disconnect the receiver and/or emitter wires at the receiver/emitter.

3) Follow the procedures in Fig. 6.1 for removing the modules.

4) Check that the ‘O’ ring is fitted to the new emitter/receiver.

5) Insert the emitter/receiver modules into the flowcell; rotate them to align with internal keys before tightening the collars.

6) Connect the appropriate wires the emitter/receiver (see Fig. 3.3).

7) Switch on the mains supply and allow the instrument to warm up for five minutes.

6.4.2 Adjusting the Emitter Brightness

1) Fill the flowcell with high purity water.

2) Enter the Factory Programming Page (see overpage) using the security code 73. If this has been changed at any time, use 7300.

3) Scroll to Interrogate Display.

4) Remove the small plug on the left hand side of the emitter. Inside is a multi-turn potentiometer which may be adjusted using a small bladed screwdriver.

5) Bearing in mind that the display updates every six seconds, adjust the brightness control so that a Signal Total Value of ‘3900’ ±300 is displayed.

6) Check that the two Peak values are between 50 and 62; otherwise contact Stonehouse.

7) When adjusted correctly, fit the plug into the body of the receiver.

8) Carry out a calibration (see Section 5.3).

9) Return the instrument to normal operation (see Section 5.2).
Factory Settings

These parameters are set at the factory and will not need further adjustment on site. Access must only be undertaken by nominated personnel.

Secure Factory Settings Access

Enter the required security code (between 0000 and 9999). Access will be denied if an incorrect value is entered.

Displays the raw signals from the sensor.

S = UV254 Signal, R = IR880 Reference Signal.

This value is updated after a sensor calibration and is for diagnostic purposes only.

This value is updated after a sensor calibration and is for diagnostic purposes only.

This value is updated after a sensor calibration and is for diagnostic purposes only.

This value is updated after a sensor calibration and is for diagnostic purposes only.

This value is updated after a sensor calibration and is for diagnostic purposes only.

This value is updated after a sensor calibration and is for diagnostic purposes only.

This value is updated after a sensor calibration and is for diagnostic purposes only.

This value is updated after a sensor calibration and is for diagnostic purposes only.

This setting does not need to be adjusted.

Continued...
Low Linear Val.
20.00 mg/l

Calculating Coef.

Low Linear Coef.
1.29

High Linear Val.
80.0 mg/l

Calculating Coef.

High Linear Coef.
1.38

Alter Fac. Code
0000

To Operating Page

This setting does not need to be adjusted.

After 'Factory Setting' security code enter value in the range 0000 to 9999.

Note.
To reset factory default settings:
1) Switch off the instrument.
2) Switch on again with the down arrow switch pressed.
7 SPECIFICATION

Range: 0 to 100 mg/l as NO₃⁻
 0 to 20 mg/l as N

Maximum current output
scale expansion: 0 to 20 mg/l as NO₃⁻
 0 to 4 mg/l as N

Display Resolution: 0.1 mg/l as NO₃⁻
 0.01 mg/l as N

Accuracy: ±2 mg/l as NO₃⁻
 ±0.5 mg/l as N

Reproducibility: ±1 mg/l as NO₃⁻
 ±0.25 mg/l as N

Response time: Normally three minutes for
 90% step change depending on signal damping factor.

Interference:
 Organics 60 mg/l C
 Turbidity 400 NTU

Sample flow-rate: 0.5 to 5 l/min (free of air bubbles). A higher minimum
 flow-rate is required at high turbidity levels.

Sample temperature: 0 to 40°C.

Sample pressure: 3 bar maximum.

Lamp life: Rated by the manufacturer at
 1.2 x 10⁹ flashes per min.
 (10 years continuous operation at the rate of one
 flash at 6 second intervals (typical) equates to 5.2% of
 the rated lamp life).

Display:
 Measured value: 4-digit backlit LCD window.
 Information: 2 x 16-character dot matrix,
 backlit LCD window.

Current output: 0 to 10, 0 to 20 and 4 to
 20mA.

Maximum load
Resistance: 750 Ω.

Accuracy: ±0.25% of FSD or ±0.5% of
 reading.

Diagnostics: Out of sample.
 Lamp disabled.
 Loss of signal.
 Electronic failure.

Set points and relays:
 Number of setpoints: Programmable over the
 instrument range.
 Relay contacts: single pole changeover.
 Diagnostic relay: Out of service, single pole/
 single contact.
 Rating: 250V AC, 5A maximum
 noninductive.

Internal wiper cleaning
system: Programmable operation
 frequency 15, 30, 45 & 60
 minutes. 2, 4, 6, 12 & 24
 hours.

Power supply: 100 to 130V AC and 200 to
 260V AC, 50 to 60Hz.

Power consumption: Less than 15W.

Environmental data:
 Operating temperature: 0 to 40°C.
 Protection: IP65 enclosure.
 Operating humidity: Up to 95% non-condensing.

Maximum distance between
transmitter and sensor: 200mm to 750mm

Overall dimensions:
 Transmitter: 252mm wide
 453mm high
 133mm deep

 Sensors:
 Low range: 327mm wide
 410mm high
 High range: 408mm wide
 373mm high
 191mm deep

Weight (ex packing):
 Transmitter: 11kg
 Sensor: 6kg
PRODUCTS & CUSTOMER SUPPORT

Products

Automation Systems
- for the following industries:
 - Chemical & Pharmaceutical
 - Food & Beverage
 - Manufacturing
 - Metals and Minerals
 - Oil, Gas & Petrochemical
 - Pulp and Paper

Drives and Motors
- AC and DC Drives, AC and DC Machines, AC motors to 1kV
- Drive systems
- Force Measurement
- Servo Drives

Controllers & Recorders
- Single and Multi-loop Controllers
- Circular Chart, Strip Chart and Paperless Recorders
- Paperless Recorders
- Process Indicators

Flexible Automation
- Industrial Robots and Robot Systems

Flow Measurement
- Electromagnetic Magnetic Flowmeters
- Mass Flow Meters
- Turbine Flowmeters
- Wedge Flow Elements

Marine Systems & Turbochargers
- Electrical Systems
- Marine Equipment
- Offshore Retrofit and Refurbishment

Process Analytics
- Process Gas Analysis
- Systems Integration

Transmitters
- Pressure
- Temperature
- Level
- Interface Modules

Valves, Actuators and Positioners
- Control Valves
- Actuators
- Positioners

Water, Gas & Industrial Analytics Instrumentation
- pH, conductivity, and dissolved oxygen transmitters and sensors
- ammonia, nitrate, phosphate, silica, sodium, chloride, fluoride, dissolved oxygen and hydrazine analyzers.
- Zirconia oxygen analyzers, katharometers, hydrogen purity and purge-gas monitors, thermal conductivity.

Customer Support

We provide a comprehensive after sales service via a Worldwide Service Organization. Contact one of the following offices for details on your nearest Service and Repair Centre.

United Kingdom
ABB Limited
Tel: +44 (0)1453 826 661
Fax: +44 (0)1453 827 856

United States of America
ABB Inc.
Tel: +1 (0) 755 883 4366
Fax: +1 (0) 755 883 4373

Client Warranty
Prior to installation, the equipment referred to in this manual must be stored in a clean, dry environment, in accordance with the Company's published specification. Periodic checks must be made on the equipment's condition.

In the event of a failure under warranty, the following documentation must be provided as substantiation:
1. A listing evidencing process operation and alarm logs at time of failure.
2. Copies of operating and maintenance records relating to the alleged faulty unit.