ABB Solar inverters
Quick installation guide
CDD

In addition to what is explained in this guide, the safety and installation instructions in the technical manual must be read and followed.

The technical manual and the interface and management software for the product are available at the website.

1. Change the direction of the antenna.

2. The antenna has deadzone at its end. It should not be facing the metal or reinforced concrete.

3. When the CDD is first started up, a search is performed to find available wireless networks. The display shows the number of networks detected (XX) and level of the signal (variable from 1 to 4 and indicated with the characters “ ”). The second line shows the network name (SSID), the level of the signal (variable from 1 to 4 and indicated with the characters “ ”), and the security type (Open, WPA/WPA2) of the network.

4. Install an extension cable for the antenna (CDD Antenna Extension Cable). The cable allows the antenna to be installed at a distance over the obstacles for the radio signal.

5. The RF signal quality is displayed using the CDD (GENERAL INFORMATION: See step 9). The RF signal quality is displayed using the CDD (GENERAL INFORMATION: See step 9).

6. Install the antenna in an outdoor-rated plastic box, 15cm / 6in above roof, in line-of-sight of panels.

7. The RF signal quality is displayed using the CDD (GENERAL INFORMATION: See step 9).

8. The antenna has deadzone at its end. It should not be facing the metal or reinforced concrete.

Before starting the connection, the system is important to consider the possible scenarios (see below) and evaluate the right position for CDD and MICRO inverters.

- Evaluate possible obstacles that can restrict or modify the radio communication among MICROs and CDD. It must be analyzed the communication quality and the right position (as shown in the step 4) considering the possibility of having to extend the radio antenna externally (CDD Antenna Extension Cable).

- Evaluate possible obstacles that can restrict or modify the radio communication among MICROs and CDD. It must be analyzed the communication quality and the right position (as shown in the step 4) considering the possibility of having to extend the radio antenna externally (CDD Antenna Extension Cable).

- Evaluate possible obstacles that can restrict or modify the radio communication among MICROs and CDD. It must be analyzed the communication quality and the right position (as shown in the step 4) considering the possibility of having to extend the radio antenna externally (CDD Antenna Extension Cable).

- Evaluate possible obstacles that can restrict or modify the radio communication among MICROs and CDD. It must be analyzed the communication quality and the right position (as shown in the step 4) considering the possibility of having to extend the radio antenna externally (CDD Antenna Extension Cable).

- Evaluate possible obstacles that can restrict or modify the radio communication among MICROs and CDD. It must be analyzed the communication quality and the right position (as shown in the step 4) considering the possibility of having to extend the radio antenna externally (CDD Antenna Extension Cable).

- Evaluate possible obstacles that can restrict or modify the radio communication among MICROs and CDD. It must be analyzed the communication quality and the right position (as shown in the step 4) considering the possibility of having to extend the radio antenna externally (CDD Antenna Extension Cable).

- Evaluate possible obstacles that can restrict or modify the radio communication among MICROs and CDD. It must be analyzed the communication quality and the right position (as shown in the step 4) considering the possibility of having to extend the radio antenna externally (CDD Antenna Extension Cable).

- Evaluate possible obstacles that can restrict or modify the radio communication among MICROs and CDD. It must be analyzed the communication quality and the right position (as shown in the step 4) considering the possibility of having to extend the radio antenna externally (CDD Antenna Extension Cable).

- Evaluate possible obstacles that can restrict or modify the radio communication among MICROs and CDD. It must be analyzed the communication quality and the right position (as shown in the step 4) considering the possibility of having to extend the radio antenna externally (CDD Antenna Extension Cable).

- Evaluate possible obstacles that can restrict or modify the radio communication among MICROs and CDD. It must be analyzed the communication quality and the right position (as shown in the step 4) considering the possibility of having to extend the radio antenna externally (CDD Antenna Extension Cable).

- Evaluate possible obstacles that can restrict or modify the radio communication among MICROs and CDD. It must be analyzed the communication quality and the right position (as shown in the step 4) considering the possibility of having to extend the radio antenna externally (CDD Antenna Extension Cable).

- Evaluate possible obstacles that can restrict or modify the radio communication among MICROs and CDD. It must be analyzed the communication quality and the right position (as shown in the step 4) considering the possibility of having to extend the radio antenna externally (CDD Antenna Extension Cable).

- Evaluate possible obstacles that can restrict or modify the radio communication among MICROs and CDD. It must be analyzed the communication quality and the right position (as shown in the step 4) considering the possibility of having to extend the radio antenna externally (CDD Antenna Extension Cable).

- Evaluate possible obstacles that can restrict or modify the radio communication among MICROs and CDD. It must be analyzed the communication quality and the right position (as shown in the step 4) considering the possibility of having to extend the radio antenna externally (CDD Antenna Extension Cable).

- Evaluate possible obstacles that can restrict or modify the radio communication among MICROs and CDD. It must be analyzed the communication quality and the right position (as shown in the step 4) considering the possibility of having to extend the radio antenna externally (CDD Antenna Extension Cable).

- Evaluate possible obstacles that can restrict or modify the radio communication among MICROs and CDD. It must be analyzed the communication quality and the right position (as shown in the step 4) considering the possibility of having to extend the radio antenna externally (CDD Antenna Extension Cable).

- Evaluate possible obstacles that can restrict or modify the radio communication among MICROs and CDD. It must be analyzed the communication quality and the right position (as shown in the step 4) considering the possibility of having to extend the radio antenna externally (CDD Antenna Extension Cable).

- Evaluate possible obstacles that can restrict or modify the radio communication among MICROs and CDD. It must be analyzed the communication quality and the right position (as shown in the step 4) considering the possibility of having to extend the radio antenna externally (CDD Antenna Extension Cable).

- Evaluate possible obstacles that can restrict or modify the radio communication among MICROs and CDD. It must be analyzed the communication quality and the right position (as shown in the step 4) considering the possibility of having to extend the radio antenna externally (CDD Antenna Extension Cable).

- Evaluate possible obstacles that can restrict or modify the radio communication among MICROs and CDD. It must be analyzed the communication quality and the right position (as shown in the step 4) considering the possibility of having to extend the radio antenna externally (CDD Antenna Extension Cable).

- Evaluate possible obstacles that can restrict or modify the radio communication among MICROs and CDD. It must be analyzed the communication quality and the right position (as shown in the step 4) considering the possibility of having to extend the radio antenna externally (CDD Antenna Extension Cable).

- Evaluate possible obstacles that can restrict or modify the radio communication among MICROs and CDD. It must be analyzed the communication quality and the right position (as shown in the step 4) considering the possibility of having to extend the radio antenna externally (CDD Antenna Extension Cable).

- Evaluate possible obstacles that can restrict or modify the radio communication among MICROs and CDD. It must be analyzed the communication quality and the right position (as shown in the step 4) considering the possibility of having to extend the radio antenna externally (CDD Antenna Extension Cable).

- Evaluate possible obstacles that can restrict or modify the radio communication among MICROs and CDD. It must be analyzed the communication quality and the right position (as shown in the step 4) considering the possibility of having to extend the radio antenna externally (CDD Antenna Extension Cable).
6. Firmware upgrade can be made in two different ways:

- **Firmware upgrade via Aurora Vision** following the procedure on page 16. Once the registering phase will be completed the upgrade process will be automatically triggered.
- **Firmware upgrade via CDD local update** (both with Ethernet and Wireless connection).

Businesses and software necessary to perform the upgrade

- **Personal computer**, Ethernet cable or wireless LAN: CDD to be updated - CDD Firmware (Ethernet and Wireless)

The CDD Firmware is available on the web site: https://registration.abb.blogspot.com. Upload the firmware, saves them on your PC and then follow the procedure below.

1. Launch the browser internet explorer.
2. Enter the IP address of the CDD to access the local menu (visible on the display).
3. Once the home page has appeared, click on “upgrade” – “CDD local upgrade”.
4. Access to the menu by entering the “CDD” function and pressing “Micro Manager”.
5. Click on “view information” and the firmware is X.X. XX (where X.X.X refers to the firmware version) and click “open”.
6. Click on “open”.
7. Click on the file name under the CDD firmware.
8. Select the firmware and click “open”.
9. Click “upload”.
10. The file is correctly uploaded.
11. Now the firmware is installed on the C.C.D.
12. Click on the “view information” and the firmware version.
13. On the display of the CDD that the firmware installed is the one uploaded menu “view information” – “firmware”.

Instructions for data acquisition

1. Press the UPS button on the CDD for 3 seconds and then enter the password 0010.
2. Check on the display of the CDD that the release installed is the one uploaded (menu “view information”→“firmware rel.”)
3. Wait for the reboot (30 seconds) and click “home”.
4. Check on the display that the CDD reboots.
5. Once the home page has appeared, click on “upgrade”→“CDD local Upgr.”
6. Validates the data for each individual inverter. The various menus allow you to:
 - **Acquisition of MICRO inverters** via the integrated web server
 - **Acquisition of MICRO inverters** via the local Web Portal
 - **Acquisition of MICRO inverters** via the DDE protocol

Configuration of the Internet connection

- **TCP/IP** (Transmission Control Protocol/Internet Protocol)
- **default gateway**
- **domain name server**
- **netmask**
- **IP address**
- **hostname**
- **domain name**
- **physical network adapter**

1. To start the self-registration process go to https://register.auroravision.net/cdd?mac=AA:BB:CC:DD:EE:FF:GG:II (the page will be automatically opened if at the moment the CDD has been correctly configured).
2. Provide details about your solar power site/home.
3. To start the self-registration process go to https://register.auroravision.net/cdd?mac=AA:BB:CC:DD:EE:FF:GG:II (the page will be automatically opened if at the moment the CDD has been correctly configured).
4. Your site information defaults to the homeowner’s address but can be updated to a different address for alternate locations such as the homeowner’s second home.

Web Sever

To complete the self-registration procedure you will receive an e-mail asking for confirmation to do the update, you will be sent to the plant owner.

Contact us

www.abb.com/solarinverters