TSP341-N
Sensor for non-invasive temperature measurement

Introduction
The temperature sensor TSP341-N allows for reliable temperature measurement without intervention in the process. Plant safety is clearly increased as a result. Thanks to the quick and easy surface mounting and by eliminating the thermowell and the need to open the process, substantial cost reductions are achieved.

* The temperature sensor TSP341-N belongs to ABB's product family SensyTemp TSP. It is listed in the related type examination certificates for explosion protection as SensyTemp TSP341-N.

Additional Information
Additional documentation on TSP341-N is available for download free of charge at www.abb.com/temperature. Alternatively simply scan this code:
Table of contents

1 Safety ... 3
 General information and instructions 3
 Warnings .. 3
 Intended use ... 4
 Improper use .. 4
 Notes on data safety 4
 Warranty provisions 4
 Manufacturer's address 4

2 Use in potentially explosive atmospheres in accordance with ATEX and IECEx 5
 General ... 5
 Notice on the ‘Ex i – Intrinsic safety’ type of protection declaration 5
 Ex marking .. 5
 ‘Ex i – Intrinsic safety’ type of protection 5
 ‘Ex i – intrinsic safety’ type of protection in accordance with the NAMUR recommendation ... 5
 ‘Ex d - flameproof (enclosure)’ type of protection .. 5
 General information 6
 Thermal resistance 6
 Type of protection Ex i, intrinsic safety 7
 Permissible ambient temperature 7
 TSP341-N connection data 7
 Type of protection Ex d - flameproof (enclosure) 8
 Temperature Data 8
 Installation instructions 8
 Type of protection Ex i, intrinsic safety 9
 Installation notes for 'Ex d - flameproof (enclosure)' type of protection 9
 Cable glands for type of protection 'Ex d' 9
 Plastic cable gland M20 x 1.5 for ‘Ex i’ type of protection .. 10
 Electrical connections 11
 Grounding ... 11
 Intrinsic safety proof 11
 Type of protection Ex i, intrinsic safety 11
 Type of protection Ex d - flameproof (enclosure) 12
 Commissioning .. 12
 Operating instructions 13
 Damage to the 'Flameproof (enclosure)– Ex d' type of protection 13
 Protection against electrostatic discharges 13
 Repair ... 13

3 Design and function 14
 Non-invasive temperature measurement 14
 System structure 15

4 Product identification 16
 Name plate ... 16

5 Transport and storage 17
 Inspection .. 17
 Transporting the device 17
 Storing the device 17
 Ambient conditions 17

6 Installation .. 17
 Safety instructions 17
 Achieving IP rating IP 66 / IP 67 17
 General Notes .. 18
 Temperature data 18
 Ambient temperature at connection head 18
 Cable gland .. 19
 Conductor material 19
 Mounting ... 19
 Selecting clamp collars 19
 Assembly of the temperature sensor 20
 Insulation of the measuring point 21
 Electrical connections 21
 Safety instructions 21
 Cable glands ... 22
 Requirements for achieving the IP rating 22
 Conductor material 22
 Terminal layout ... 23
 Protection of the transmitter from damage caused by highly energetic electrical interferences ... 23

7 Commissioning and operation 24
 Safety instructions 24
 General ... 24
 Checks prior to commissioning 24
 Operation / control 25
 Process display ... 25
 HART Device Type ID 25
 Parameterization 25
 Error messages on the LCD display 25

8 Diagnosis / error messages 26
 Error messages ... 26
 Malfunctions .. 26

9 Maintenance ... 27
 Safety instructions 27
 Cleaning .. 27

10 Repair ... 27
 Safety instructions 27
 Returning devices 27

11 Dismounting and disposal 28
 Dismounting ... 28
 Disposal .. 28

12 Specification ... 28

13 Additional documents 28

14 Appendix ... 29
 Return form .. 29
1 Safety

General information and instructions

These instructions are an important part of the product and must be retained for future reference.
Installation, commissioning, and maintenance of the product may only be performed by trained specialist personnel who have been authorized by the plant operator accordingly. The specialist personnel must have read and understood the manual and must comply with its instructions.
For additional information or if specific problems occur that are not discussed in these instructions, contact the manufacturer.
The content of these instructions is neither part of nor an amendment to any previous or existing agreement, promise or legal relationship.
Modifications and repairs to the product may only be performed if expressly permitted by these instructions.
Information and symbols on the product must be observed.
These may not be removed and must be fully legible at all times.
The operating company must strictly observe the applicable national regulations relating to the installation, function testing, repair and maintenance of electrical products.

Warnings

The warnings in these instructions are structured as follows:

⚠️ **DANGER**
The signal word ‘DANGER’ indicates an imminent danger. Failure to observe this information will result in death or severe injury.

⚠️ **WARNING**
The signal word ‘WARNING’ indicates an imminent danger. Failure to observe this information may result in death or severe injury.

⚠️ **CAUTION**
The signal word ‘CAUTION’ indicates an imminent danger. Failure to observe this information may result in minor or moderate injury.

Notice
The signal word ‘NOTICE’ indicates possible material damage.

Note
‘Note’ indicates useful or important information about the product.
1 Safety

Intended use

Temperature sensor for non-invasive measurement of the temperature of fluid measuring media in piping and in vessels. The device is designed for use exclusively within the values stated on the name plate and in the specifications (see Specifications in the operating instruction or data sheet).

- The permissible ambient temperature range may not be up-scaled or down-scaled.
- The IP rating must be observed during operation.
- For use in potentially explosive atmospheres, follow the respective guidelines.

Improper use

The following are considered to be instances of especially improper use of the device:

- For use as a climbing aid, for example for mounting purposes.
- For use as a bracket for external loads, for example as a support for piping, etc.
- Material application, for example by painting over the housing, name plate or welding/soldering on parts.
- Material removal, for example by spot drilling the housing.

Notes on data safety

This product is designed to be connected to and to communicate information and data via a network interface. It is operator’s sole responsibility to provide and continuously ensure a secure connection between the product and your network or any other network (as the case may be). Operator shall establish and maintain any appropriate measures (such as but not limited to the installation of firewalls, application of authentication measures, encryption of data, installation of anti-virus programs, etc.) to protect the product, the network, its system and the interface against any kind of security breaches, unauthorized access, interference, intrusion, leakage and / or theft of data or information. ABB Automation Products GmbH and its affiliates are not liable for damages and / or losses related to such security breaches, any unauthorized access, interference, intrusion, leakage and / or theft of data or information.

Warranty provisions

Using the device in a manner that does not fall within the scope of its intended use, disregarding this manual, using underqualified personnel, or making unauthorized alterations releases the manufacturer from liability for any resulting damage. This renders the manufacturer’s warranty null and void.

Manufacturer’s address

ABB Automation Products GmbH
Measurement & Analytics
Schillerstr. 72
32425 Minden
Germany
Tel: +49 571 830-0
Fax: +49 571 830-1806

Customer service center
Tel: +49 180 5 222 580
Email: automation.service@de.abb.com
2 Use in potentially explosive atmospheres in accordance with ATEX and IECEx

General
The temperature sensor TSP341-N belongs to ABB's product family SensyTemp TSP. It is listed in the related type examination certificates for explosion protection as SensyTemp TSP341-N.

Special regulations must be observed in potentially explosive atmospheres as regards the power supply, signal inputs / outputs and ground connections. The information relating specifically to explosion protection that appears within the individual chapters must be observed.

All parts must be installed in accordance with the manufacturer's specifications, as well as relevant standards and regulations. For commissioning and operation, the respectively applicable regulations, especially for the protection of employees, should be complied with.

IP rating
The connection parts of the temperature sensor must be installed so that at least the IP rating of the type of protection used can be achieved.

Temperature classes
By default, the temperature sensors are marked with the T6 temperature class. If the existing explosive gas atmosphere is to be assigned a temperature class of T5, T4, T3, T2, or T1, the temperature sensors can be used at correspondingly higher process temperatures, according to the specifications of the temperature class.

Notice on the 'Ex i – Intrinsic safety' type of protection declaration
Type examination certificates for the 'Ex i – Intrinsic safety' type of protection of the TSP341-N cover the complete device, including the integrated transmitter and an optional LCD indicator.

Therefore, the transmitter and the indicator in the TSP341-N do not require a separate type examination certificate. The PTB 01 ATEX 2200 X and IECEx PTB 11.0111 X type examination certificates of the TSP300 do not apply to the TSP341-N.

The certification was carried out on the basis of the following standards:
- IEC 60079-0:2011 Ed. 6, modified + Cor.: 2012 + Cor.: 2013
- EN 60079-0:2012+A11:2013
- IEC 60079-11:2011 Ed. 6 + Cor.: 2012
- EN 60079-11:2012

Ex marking

'Ex i – Intrinsic safety' type of protection

<table>
<thead>
<tr>
<th>Model TSP341-N-D2 in zone 0, 1, 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATEX</td>
</tr>
<tr>
<td>Type examination certificate: PTB 18 ATEX 2002 X</td>
</tr>
<tr>
<td>Ex marking</td>
</tr>
<tr>
<td>ATEX II 1 G Ex ia IIC T6...T1 Ga</td>
</tr>
<tr>
<td>ATEX II 2 G Ex ib IIC T6...T1 Ga</td>
</tr>
</tbody>
</table>

Table 1: ATEX Ex marking, 'Ex i – intrinsic safety' type of protection

<table>
<thead>
<tr>
<th>Model TSP341-N-J2 in zone 0, 1, 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>IECEx</td>
</tr>
<tr>
<td>Type examination certificate: IECEX PTB 18.0041 X</td>
</tr>
<tr>
<td>Ex marking</td>
</tr>
<tr>
<td>Ex ia IIC T6...T1 Ga</td>
</tr>
<tr>
<td>Ex ib IIC T6...T1 Ga</td>
</tr>
</tbody>
</table>

Table 2: IECEx Ex marking, 'Ex i – intrinsic safety' type of protection

'Ex i – intrinsic safety' type of protection in accordance with the NAMUR recommendation

<table>
<thead>
<tr>
<th>Model TSP341-N-N3 in zone 0, 1, 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATEX</td>
</tr>
<tr>
<td>Type examination certificate: PTB 18 ATEX 2002 X</td>
</tr>
<tr>
<td>Ex marking</td>
</tr>
<tr>
<td>NE24 and ATEX II 1 G Ex ia IIC T6...T1 Ga</td>
</tr>
<tr>
<td>NE24 and ATEX II 2 G Ex ib IIC T6...T1 Ga</td>
</tr>
</tbody>
</table>

Table 3: NE24 and ATEX Ex marking, 'Ex i – intrinsic safety' type of protection

'Ex d - flameproof (enclosure)' type of protection

<table>
<thead>
<tr>
<th>Model TSP341-N-D7 in zone 1, 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATEX</td>
</tr>
<tr>
<td>Type examination certificate: PTB 99 ATEX 1144 X</td>
</tr>
<tr>
<td>Ex marking</td>
</tr>
<tr>
<td>ATEX II 2 G Ex db IIC T6/T4 Gb</td>
</tr>
</tbody>
</table>

Table 4: ATEX Ex marking, 'Ex d – flameproof (enclosure)' type of protection

<table>
<thead>
<tr>
<th>Model TSP341-N-J7 in zone 1, 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>IECEx</td>
</tr>
<tr>
<td>Type examination certificate: IECEX PTB 12.0039 X</td>
</tr>
<tr>
<td>Ex marking</td>
</tr>
<tr>
<td>Ex db IIC T6/T4 Gb</td>
</tr>
</tbody>
</table>

Table 5: IECEx Ex marking, 'Ex d – flameproof (enclosure)' type of protection
Use in potentially explosive atmospheres in accordance with ATEX and IECEx

General information

Thermal resistance
In addition to measurement of the surface temperature, a temperature measurement at a reference test point at small physical distance is made to improve measuring accuracy. For this, the measuring inset has two temperature sensors in two separate mineral insulated cables.

The following data applies for both temperature sensors, see also Temperature rise in the event of a fault on page 6.

<table>
<thead>
<tr>
<th>Heat resistance R_{th} for mineral insulated cable Ø 3 mm (0.12 in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta t = 200 , K/W \times 0.038 , W = 7.6 , K$</td>
</tr>
</tbody>
</table>

Resistance thermometer without thermowell

$K/W = kelvin per watt$

Note
The specified thermal resistance R_{th} should be indicated under the conditions 'stationary gas (environment)' and 'mineral insulated cable without thermowell'.

Temperature rise in the event of a fault
In the event of a fault, the temperature sensors will exhibit a temperature rise Δt as appropriate for the applied power. This temperature rise Δt must be considered when determining permissible temperature classes, see Permissible ambient temperature on page 7.

Note
A dynamic short-circuit current that occurs in the measurement circuit for a matter of milliseconds in the event of a fault is irrelevant with regard to heating.

The temperature rise Δt can be calculated using the following formula:

$$\Delta t = R_{th} \times P_o \left[K/W \times W \right]$$

Δt Temperature rise

R_{th} Thermal resistance

P_o Output power of the integrated transmitter

Example:
Resistance thermometer diameter approximately 3 mm (0.12 in) without thermowell:

$R_{th} = 200 \, K/W,$

$P_o = 38 \, mW$

$\Delta t = 200 \, K/W \times 0.038 \, W = 7.6 \, K$

For a transmitter output power $P_o = 38 \, mW$, a temperature rise of approx. 8 K results in the event of a fault.

In consideration of this temperature rise, the maximum possible surface temperatures T_{surf} arise for temperature classes T1 to T6, as presented in Table 6.
Type of protection Ex i, intrinsic safety

Permissible ambient temperature
The following table shows the permissible ambient temperature $T_{\text{amb.}}$ for the corresponding equipment protection levels Ga (zone 0) and Gb (zone 1) as a function of the material of the connection head (aluminum or stainless steel), the thermal insulation at the measuring point and the surface temperature $T_{\text{surf.}}$ at the measuring point.

The surface temperatures ($T_{\text{surf.}}$) are determined as follows:

\[
T_{\text{surf.}} = T_6 \text{ to } T_3 - 5 \degree C - 8 \degree C \text{ (}\Delta t\text{ in the event of an error)}
\]

\[
T_{\text{surf.}} = T_2 \text{ to } T_1 - 10 \degree C - 8 \degree C \text{ (}\Delta t\text{ in the event of an error)}
\]

For $\Delta t = 8 \degree C$, see Temperature rise in the event of a fault on page 6.

Note
The ambient temperatures specified in the following table must be processed in accordance with EN 60079-14 for device protection level Ga (zone 0).

<table>
<thead>
<tr>
<th>$T_{\text{surf.}}$</th>
<th>Maximum permissible ambient temperature $T_{\text{amb.}}$ for equipment protection levels Ga (zone 0) and Gb (zone 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aluminum connection head</td>
</tr>
<tr>
<td></td>
<td>Without insulation</td>
</tr>
<tr>
<td>400 °C (T1)*</td>
<td>48 °C</td>
</tr>
<tr>
<td>282 °C (T2)</td>
<td>62 °C</td>
</tr>
<tr>
<td>187 °C (T3)</td>
<td>71 °C</td>
</tr>
<tr>
<td>122 °C (T4)</td>
<td>77 °C</td>
</tr>
<tr>
<td>72 °C (T6)</td>
<td>52 °C</td>
</tr>
</tbody>
</table>

Table 6: Ambient temperature for equipment protection levels Ga (zone 0) and Gb (zone 1)

Note
The standard supplied M20 × 1.5 plastic cable gland has a limited temperature range of −40 to 70 °C (−40 to 158 °F). When using the supplied cable gland, make sure that the ambient temperature is within this range.

TSP341-N connection data
The integrated transmitter is based on the TTH300 HART from ABB.

The intrinsic safety type examination certificates PTB 18 ATEX 2002 X and IECEx PTB 18.0041 X apply to the complete temperature sensor TSP341-N with integrated transmitter, so the type examination certificates for the TTH300 are not applicable.

When connecting the TSP341-N to certified intrinsically safe circuits, the following maximum input values must be observed.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. voltage U_i</td>
<td>30 V</td>
</tr>
<tr>
<td>Short-circuit current I_i</td>
<td>130 mA</td>
</tr>
<tr>
<td>Max. power P_i</td>
<td>0.8 W</td>
</tr>
<tr>
<td>Internal inductance L_i</td>
<td>0.5 mH</td>
</tr>
<tr>
<td>Internal capacitance C_i</td>
<td>0.57 nF</td>
</tr>
</tbody>
</table>

Table 7: Electrical data
Use in potentially explosive atmospheres in accordance with ATEX and IECEx

Type of protection Ex d - flameproof (enclosure)

With connection head, the TSP341-N can be used in 'Ex d – flameproof (enclosure)' type of protection in zone 1.

- The connection conditions listed in the type examination certificate PTB 99 ATEX 1144 X or IECEx PTB 12.0039 X must be observed.
- For the TSP341-N with 'Ex d – flameproof (enclosure)' type of protection, the self-heating of the sensor in the event of a fault should be considered, see Thermal resistance on page 6.
- The temperature class and maximum permissible surface temperature or the temperature at the reference test point should be determined accordingly.

Temperature Data

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>T<sub>amb.</sub> with LCD indicator</th>
<th>T<sub>amb.</sub> without LCD indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 to T4</td>
<td>-20 to 70 °C (−4 to 158 °F)</td>
<td>-40 to 85 °C (−40 to 185 °F)</td>
</tr>
<tr>
<td>T6</td>
<td>-20 to 67 °C (−4 to 152 °F)</td>
<td>-40 to 67 °C (−40 to 152 °F)</td>
</tr>
</tbody>
</table>

Table 8: Ambient temperature on the connection head

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>Maximum surface temperature T<sub>surf.</sub> in Zone 1*</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>400 °C (752 °F)**</td>
</tr>
<tr>
<td>T2</td>
<td>288 °C (550 °F)</td>
</tr>
<tr>
<td>T3</td>
<td>193 °C (379 °F)</td>
</tr>
<tr>
<td>T4</td>
<td>128 °C (262 °F)</td>
</tr>
<tr>
<td>T5</td>
<td>93 °C (199 °F)</td>
</tr>
<tr>
<td>T6</td>
<td>78 °C (172 °F)</td>
</tr>
</tbody>
</table>

Table 9: Permissible surface temperature

* Also applies for the temperature at the reference test point
** Maximum measuring range of the device: 400 °C (752 °F)

Installation instructions

Avoid increases in the ambient temperature by ensuring equipment is at a sufficient distance from system components with excessively high temperatures. It must be ensured that heat dissipation can take place by means of unrestricted air circulation. You must avoid exceeding the maximum permissible ambient temperature as per the approved temperature class.

The assembly and disassembly may only be performed by specialist personnel who have knowledge of the concept of the corresponding types of Ex protection. Compliance with the Ex temperature classes must be ensured through suitable measures.

It is essential to ensure compliance with the EC-type-examination certificates for the equipment, including the documents associated with these.

The temperature sensors must be integrated in the potential equalization of the installation location.

The installation, commissioning, maintenance and repair of devices in potentially explosive atmospheres must only be carried out by appropriately trained personnel. Works may be carried out only by persons, whose training has included instructions on different types of protection and installation techniques, concerned rules and regulations as well as general principles of zoning.

The person must possess the appropriate competences for the type of work to be conducted.

The safety instructions for electrical apparatus in potentially explosive areas must be in accordance with Directive 2014/34/EU (ATEX) and IEC 60079-14 (Installation of electrical equipment in potentially explosive areas).

Comply with the applicable regulations for the protection of employees to ensure safe operation.

Consider the following points when installing the TSP341-N in potentially explosive atmospheres:

- Operation in areas with flammable dust (dust explosion protection) is not permissible.
Type of protection Ex i, intrinsic safety

WARNING

Explosion hazard

Explosion hazard due to improper installation of devices with aluminum housing.

When using the device in areas that require the device safety level EPL “Ga” (Zone 0), the devices must be installed with aluminum housings, protected against strong mechanical impacts or friction.

Note

When operating the complete device in zone 0 (EPL ‘Ga’), the compatibility of the device materials with the surrounding atmosphere must be ensured.

Encapsulation material used for the integrated transmitter:

- Polyurethane (PUR), WEVO PU-417

Apart from that, no additional specific information needs to be observed for mechanical installation.

Installation notes for ‘Ex d - flameproof (enclosure)’ type of protection

If the temperature on the cable entries of the device is over 70°C (158 °F), connection leads with sufficient temperature resistance must be used.

Cable glands for type of protection ‘Ex d’

Devices with type of protection ‘Ex d’ supplied without cable glands

For devices with ‘Ex d - flameproof (enclosure)’ type of protection supplied without cable glands, refer to the notes in **Type of protection Ex d - flameproof (enclosure)** on page 8.

When installing cable glands provided by the operator, observe the data sheet, instruction and approval notes of the cable gland.

Devices in ‘Ex d’ type of protection with cable gland

If devices in ‘Ex d – flameproof (enclosure)’ type of protection with cable gland are ordered, an Ex d certified cable gland is factory-installed.

This case occurs if the cable gland is not deselected in the order by entering the ‘Cable input options – U1 or U2’ order code.

Data on the factory-installed Ex d cable gland

- **Thread:** M20 × 1.5
- **Temperature range:** −40 to 85 °C (−40 to 185 °F)
- **Cable outside diameter:** 3.2 to 8.7 mm (0.13 to 0.34 in)
- **Material:** nickel-plated brass

Note

In such cases, the value ‘U1’ (thread M20 × 1.5) is provided on the additional plate for explosion-protected apparatus in the type designation in accordance with the approval.

The cable gland is only suited for fixed installations and non-reinforced cables with round and smooth plastic sleeves and suitable outside diameter. The cables must be attached appropriately in order to prevent them being pulled out or twisted.

The operating instruction and approvals supplied with the cable glands, as well as any applicable requirements in accordance with EN 60079-14 must be taken into account accordingly.

Installation instructions

The sealing rings of the cable glands harden at low temperatures.

- Before installation, bring the sealing rings to a temperature of at least 20 °C (68 °F) for at least 24 hours.
- Before inserting the sealing rings and fixing them onto the cable gland, knead the rings to make sure they are soft and flexible.

IP rating IP66 / 67 is only achieved by installing the black neoprene sealing ring between the cable gland and the housing and by observing the tightening torque of 3.6 Nm (Figure 2, item 2).

Cables must be protected against extreme mechanical loads (caused by tension, torsion, crushing, and so on). Even under operating conditions, it must be ensured that the cable entry remains hermetically sealed. The customer must provide a strain relief device for the cable.
.... 2 Use in potentially explosive atmospheres in accordance with ATEX and IECEx

... Installation instructions

![Diagram of cable gland installation](image)

1. Check that cable used is suitable (i.e., check the mechanical resilience, temperature range, creep resistance, resistance to chemicals, outside diameter, and so on).
2. Strip the cable in accordance with Figure 1.
3. Check the outer sleeve for damage and soiling.
4. Insert the cable in the cable gland.

![Diagram of cable gland tightening](image)

5. Tighten the cable gland until the cable is firmly enclosed by the sealing ring (Figure 2, item 1). Do not tighten more than 1.5-times of the specified torque on the cases (see assembly instructions)!

Maintenance

Check the cable glands during each scheduled maintenance. If the cable is slack, retighten the cap(s) of the cable glands. If it is not possible to retighten them, the cable gland will need to be replaced.

Plastic cable gland M20 × 1.5 for ‘Ex i’ type of protection

The standard supplied M20 × 1.5 plastic cable gland has a limited temperature range.

Type examination certificate

IMQ 13 ATEX 010 X and IECEx IMQ 13.0003X, Manufacturer code HIBM-MX2DSC.

Permissible ambient temperature range

The permissible ambient temperature range of the cable gland is −40 to 70 °C (−40 to 158 °F). When using the cable gland, make sure that the ambient temperature is within this range.

Notes on installation

The cable gland has two gaskets to support a clamping area of 4 to 7 mm (0.16 to 0.28 in) and 7 to 13 mm (0.28 to 0.51 in). Depending on the cable outside diameter, observe the following points:

- For a clamping area of 7 to 13 mm (0.28 to 0.51 in), the inner gasket should be carefully removed.
- For a clamping area of 4 to 7 mm (0.16 to 0.28 in) (both gaskets required), installation should be made with a tightening torque of 3.5 Nm.
- For a clamping area of 7 to 13 mm (0.28 to 0.51 in) (outer gasket only), installation should be made with a tightening torque of 4.5 Nm.

On the cable side, when installing the connection of the cable gland and cable, check for tightness to make sure that the required IP rating is correct.

The cable gland is not suited for use as a blind plug. Use suited blind plugs only!

The cable glands are suited for fixed installations only.

The cables must be attached appropriately in order to prevent them being pulled out or twisted.

The information in the instruction of the cable gland (Safety, Maintenance and Mounting Instructions) should be observed!
Electrical connections

Grounding

Note
The device shall be included in the equipotential bonding system using the grounding terminal intended for this purpose.

If, for functional reasons, the intrinsically safe circuit needs to be grounded by means of a connection to the potential equalization, it may only be grounded at one point.

Intrinsic safety proof
If the temperature sensors are operated in an intrinsically safe circuit, proof that the interconnection is intrinsically safe must be provided in accordance with DIN VDE 0165/Part 1 (EN 60079-25 and IEC 60079-25).

The supply isolators / distributed control system (DCS) inputs must feature intrinsically safe input protection circuits to eliminate hazards (spark formation).

In order to provide proof of intrinsic safety, the electrical limit value must be used as the basis for the EC-type examination certificates for the equipment (devices); this includes the capacitance and inductance values of the cables.

Proof of intrinsic safety is said to have been provided if the following conditions are fulfilled when a comparison is carried out in relation to the limit values of the equipment:

- \(U_i \geq U_o \)
- \(I_i \geq I_o \)
- \(P_i \geq P_o \)
- \(L_i + L_c \) (cable) \(\leq L_o \)
- \(C_i + C_c \) (cable) \(\leq C_o \)

Type of protection Ex i, intrinsic safety

Ex marking

Model TSP341-N-D2
ATEX II 1 G Ex ia IIC T6...T1 Ga (zone 0, 1, 2)
ATEX II 2 G Ex ib IIC T6...T1 Gb (zone 1, 2)

Model TSP341-N-N3
NE 24 and ATEX II 1 G Ex ia IIC T6...T1 Ga (zone 0, 1, 2)
NE 24 and ATEX II 2 G Ex ib IIC T6...T1 Gb (zone 1, 2)

Model TSP341-N-J2
IECEx ia IIC T6...T1 Ga (zone 0, 1, 2)
IECEx ib IIC T6...T1 Gb (zone 1, 2)

Figure 3: Intrinsic safety installation check

Figure 4: Interconnection 'Ex i – intrinsic safety' type of protection

The TSP341-N is approved for use in zone 0 in 'Ex i – intrinsic safety' type of protection.

With this instrumentation, it must be ensured that the power feed only comes from an approved intrinsically safe electrical circuit of the appropriate category.

A supply isolator with 'Ex ia' type of protection is required for use in zone 0.

Electric and limit values must not be exceeded, see TSP341-N connection data on page 7 and Permissible ambient temperature on page 7.
... 2 Use in potentially explosive atmospheres in accordance with ATEX and IECEx

Type of protection Ex d - flameproof (enclosure)

Ex marking

Model TSP341-N-D7:
ATEX II 2 G Ex db IIC T6/T4 Gb (Zone 1 und 2)
Model TSP341-N-J7:
IECEx db IIC T6/T4 Gb (Zone 1 and 2)

Connection notes

- The power supply of the transmitter must be limited by an upstream fuse with a fuse current rating of 32 mA.
- Maximum input terminal voltage of the transmitter: 30 V DC
- The ‘Ex d – flameproof (enclosure)’ type of protection can only be achieved by correctly installing a specially certified cable gland with Ex d type of protection and a corresponding marking.
- As far as the installation and mounting of components is concerned (explosion-proof cable entries, connection parts), only those components are approved which at the least technically comply with the current version of the PTB 99 ATEX 1144 X type examination certificate and for which a separate examination certificate exists. At the same time, it is imperative that the operating conditions listed in the respective component certificates are complied with.

Commissioning

The commissioning and parameterization of the device may also be carried out in potentially explosive atmospheres using a handheld terminal that has been approved accordingly under consideration of an intrinsic safety installation check. Alternatively, an Ex modem can be connected to the circuit outside the potentially explosive atmosphere.
Operating instructions

DANGER
Risk of explosion due to hot parts
Hot parts inside the device pose an explosion hazard.
- Never open the device immediately after switch-off.
- A waiting time of at least four minutes should be observed before opening the device.

DANGER
Explosion hazard when opening the device
Explosion hazard when opening the device with activated power supply.
- Before opening the device, switch off the power supply.

Damage to the ‘Flameproof (enclosure)– Ex d’ type of protection
The cover thread is used as a flameproof joint for the ‘Flameproof (enclosure) – Ex d’ type of protection.
- During assembly / disassembly of the device, make sure that the cover thread does not get damaged.
- Devices with damaged threads must no longer be used in potentially explosive atmospheres.

Protection against electrostatic discharges
The painted surface of the housing and the plastic parts inside the device can store electrostatic charges.

WARNING
Risk of explosion!
The device must not be used in areas in which process-related electrostatic charging of the housing may occur.
- The device must be maintained and cleaned so that any dangerous electrostatic charge is avoided.

Repair

DANGER
Explosion hazard
Explosion hazard due to improper repair of the device. Faulty devices must not be repaired by the operator.
- The device may only be repaired by the ABB Service Department.
- Repairs on flameproof joints are not permitted.
3 Design and function

Non-invasive temperature measurement

Classic temperature measurement in process technology is made by directly introducing the temperature sensor into the measuring medium. The measuring medium (gaseous, liquid or paste-like) is usually in a vessel or piping. The measuring medium can stand idle or flow at high speed. Then especially abrasive measuring media are critical.

Figure 6: Classic installation of temperature sensors in piping

Depending on the material properties, the temperature sensor needs special protection to protect it from chemical and mechanical loads. For example, abrasive dust or sands, which move through the piping at high speeds, present a special challenge.

To protect the temperature sensor, the thermowells used must be inspected regularly and replaced as needed. Chemically aggressive or abrasive media can lead to the erosion of thermowell material. A thermowell placed in flowing media can also begin to vibrate due to vortex formation and in extreme cases it can break. Therefore, guidelines and standards for the stability of thermowells have become more restrictive over time, and so the costs of maintenance and exchange have increased as well.

In addition to current costs, other costs are already incurred during planning and design of an installation for openings in vessels and piping, through which the temperature sensor is introduced into the measuring medium. Here, for example, flanges or structural reinforcements are required.

The costs mentioned above can be eliminated if the process temperature could be measured indirectly and outside of the process. Using non-invasive temperature measurement, it is often possible to record process temperatures with an accuracy which is sufficient for the application.

ABB’s first new-generation sensor from the line of sensors for non-invasive temperature measurement in process technology is the TSP341-W (‘W’ stands for ‘wireless’) introduced in 2014. Thanks to its WirelessHART® wireless communications protocol, the sensor is especially suited for later expansions in industrial installations.

The TSP341-N* surface temperature sensor now combines non-invasive temperature measurement with the established HART® communications protocol in two-wire technology. Therefore, the device can also be integrated into existing structures without any issues whatsoever.

The ‘N’ in TSP341-N stands for non-invasive temperature measurement here. The calculation algorithms developed by ABB for non-invasive temperature measurement take ambient conditions, among other factors, into account during the measurement and therefore increase the accuracy of the surface measurement significantly.

Surface temperature measurement is especially suited in low-viscosity measuring media, in measuring media with high thermal conductivity and in processes with high medium velocity or turbulent flow. Examples: water, watery solutions and water-based liquids as well as fast flowing oil or saturated steam.

* The temperature sensor TSP341-N belongs to ABB’s product family SensyTemp TSP. It is listed in the related type examination certificates for explosion protection as SensyTemp TSP341-N.
System structure

The TSP341-N temperature sensor contains a temperature transmitter based on the TTH300 by ABB with integrated calculation algorithms for non-invasive temperature measurement.

The transmitter has an analog 4 to 20 mA current output and supports communication through the HART 7® protocol. As an option, the type AS LCD indicator can be integrated.

The transmitter supports two connected temperature sensors. One sensor measures the surface temperature at the measuring point, while a second sensor measures the temperature at the reference test point near the measuring point.

By using the algorithms for accurate non-invasive temperature calculation, a process temperature range of −40 to 400 °C (−40 to 752 °F) with an ambient temperature of −40 to 85 °C (−40 to 185 °F) is covered.

The transmitter can be configured using the software provided by ABB with TSP341-N-support (DTM and EDD) and tools such as Field Information Manager (FIM) in accordance with the current conditions of use.

For non-invasive temperature measurement, the temperature sensor is fastened to a piping or vessel surface. Installation is made using two clamp collars, which fix the retaining plate to the foot of the sensor.

Clips with different expansion coefficients are available to adapt to the piping or vessel material. Metallic materials are required for surface measurement. The surface under the measurement sensor must be straight, without foreign matter and without any coating.

To shorten the response time of the sensor, there is a hole in the retaining plate, through which the sensor element is guided directly to the surface of the measuring point.

During installation, make sure that the measuring tip with the integrated sensor element has optimal contact with the measuring point.

In addition, insulation to protect against the influence of ambient temperature is recommended by applying suited insulation materials.

Pure surface measurement is often less accurate than temperature measurement directly in the process. However, thanks to the ambient temperature effect taken into consideration by the TSP341-N, the accuracy has been improved to the point that along with the obtainable response time, it is comparable to the values of classic measurement using a thermowell.

Accuracy and response time can be increased even more with suited insulation at the measuring point.

Through the device configuration option (DTM, EDD, FIM) provided for the TSP341-N, the insulation of the measuring point is taken into consideration during temperature calculation (preset upon delivery of the device).

As a result, measuring accuracy and response time achieve values which make non-invasive temperature measurement a reasonable and cost-saving alternative to measurement in the process.
4 Product identification

Name plate

Note
The name plates displayed are examples. The device identification plates affixed to the device can differ from this representation.

Note
The values specified on the name plate are maximum values and do not take process-related stress into consideration. This should be taken into consideration when working with the instruments.

Figure 8: TSP341-N name plate (example for ‘Ex i – intrinsic safety’ type of protection)

‘Ex i – intrinsic safety’ type of protection additional plate

Figure 9: Additional plate for explosion-protected apparatus, example for Ex i – intrinsic safety type of protection

Additional plate for ‘Ex d – flameproof (enclosure)’ type of protection

Figure 10: Additional plate for explosion-protected apparatus, example for ‘Ex d – flameproof (enclosure)’ type of protection
5 Transport and storage

Inspection
Check the devices immediately after unpacking for possible damage that may have occurred from improper transport. Details of any damage that has occurred in transit must be recorded on the transport documents. All claims for damages must be submitted to the shipper without delay and before installation.

Transporting the device
Observe the following instructions:
- Do not expose the device to humidity during transport. Pack the device accordingly.
- Pack the device so that it is protected against vibrations during transport, for example, by using air-cushioned packing.

Storing the device
Bear the following points in mind when storing devices:
- Store the device in its original packaging in a dry and dust-free location.
- Observe the permitted ambient conditions for transport and storage.
- Avoid storing the device in direct sunlight.
- In principle, the devices may be stored for an unlimited period. However, the warranty conditions stipulated in the order confirmation of the supplier apply.

Ambient conditions
The ambient conditions for the transport and storage of the device correspond to the ambient conditions for operation of the device. Adhere to the device data sheet!

Returning devices
For the return of devices, follow the instructions in Repair on page 27.

6 Installation

Safety instructions

⚠️ DANGER
Explosion hazard
Improper installation and commissioning of the device carries a risk of explosion.
- For use in potentially explosive atmospheres, observe the information in Use in potentially explosive atmospheres in accordance with ATEX and IECEx on page 5!

⚠️ CAUTION
Risk of burns due to hot measuring media
The device surface temperature may exceed 70 °C (158 °F), depending on the measuring medium temperature!
- Before starting work on the device, make sure that it has cooled sufficiently.

Achieving IP rating IP 66 / IP 67
The user must take appropriate measures to ensure that the required IP rating according to the IEC 60529 standard is achieved.

The IP rating IP 66 / 67 is only achieved after the device has been correctly and fully installed, as described in this chapter.
- Suited cable glands should be used.
- Unused device inputs must be closed off using suited plugs.

See also Cable gland on page 19 and Cable glands on page 22.
... 6 Installation

General Notes

When installing the temperature sensor, observe the following points:

- The temperature sensor must be firmly and securely installed in a way that conforms to the application.
- The temperature sensor must be installed at angle of 90° to the piping / vessel.
- The retaining plate of the temperature sensor must lie flat on the measuring point, if necessary remove existing coatings and impurities beforehand.
- The retaining plate of the temperature sensor must be installed on the piping / vessel using suited clamp collars. Select the length of the clamp collars and the material according to the installation position.
- The IP rating will no longer apply in the event of damage to the connection head or the threads, gaskets or cable glands on the connection head.
- The connection leads must be firmly connected to the terminals.
- After connecting the connection lines with a suited tool (screwdriver, wrench), securely close and seal the connection head. Be sure to observe here that the sealing rings of the connection heads are clean and undamaged.
- Insulation of the measuring point is recommended to increase measuring accuracy, but is not an absolute requirement. When operating without insulation, the transmitter can be appropriately configured through DTM / EDD / FIM.

Temperature data

Ambient temperature at connection head

Note

During use in potentially explosive atmospheres, restrictions in permissible ambient temperature are possible which comply with additional data included in Use in potentially explosive atmospheres in accordance with ATEX and IECEx on page 5 as well in declarations of conformity and type examination certificates!

<table>
<thead>
<tr>
<th>Permissible ambient temperature range T_{amb} on the connection head</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection head without LCD indicator</td>
</tr>
<tr>
<td>Connection head with LCD indicator</td>
</tr>
</tbody>
</table>

Table 10: Ambient temperature on the connection head

When using a surface sensor, temperature measurement is performed in direct contact with the hot surface. Without suited insulation of the measuring point, the permissible ambient temperature must be reduced to prevent an up-scale of limit values.

The following table shows as an example the maximum ambient temperature T_{amb} for the TSP341-N at different surface temperatures T_{surf} for the TSP341-N with integrated LCD indicator.

<table>
<thead>
<tr>
<th>Surface temperature T_{surf}</th>
<th>Maximum permissible ambient temperature T_{amb}</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 °C (212 °F)</td>
<td>66 °C (150.8 °F)</td>
</tr>
<tr>
<td>200 °C (392 °F)</td>
<td>61 °C (141.8 °F)</td>
</tr>
<tr>
<td>300 °C (572 °F)</td>
<td>58 °C (136.4 °F)</td>
</tr>
<tr>
<td>400 °C (752 °F)</td>
<td>55 °C (131.0 °F)</td>
</tr>
</tbody>
</table>

Table 11: Ambient temperature as a function of surface temperature

Note

The operator must make sure, with the help of measurements if needed, that the maximum permissible temperature in the connection head is not up-scaled in intrinsically safe devices.

For detailed information on insulating the measuring point, see Insulation of the measuring point on page 21.
Cable gland
The plastic cable gland for cable outer diameters of 4 to 13 mm (0.16 to 0.51 in.) used as a standard is suited for a temperature range of −40 to 70 °C (−40 to 158 °F). For temperatures outside this range, an appropriate cable gland can be installed.

The metal cable gland for Ex d (flameproof enclosure) used as a standard for cable outer diameters of 3.2 to 8.7 mm (0.13 to 0.34 inch) covers a permissible temperature range of −40 to 85 °C (−40 to 185 °F).

Conductor material
If the temperature on the cable entries of the device is over 70° C (158 °F), connection leads with sufficient temperature resistance must be used.

Mounting

![Diagram of assembly on piping (example)](image)

Selecting clamp collars
The minimum pipe diameter for installation of the TSP341-N is DN 40. Select the length of clamp collars according to the installation situation. The length of the clamp collars should be approximately 150 mm (6 in) longer than the required circumference.

Clamp collars are available for pipe diameters of DN 40 to 2500. Depending on the expansion coefficients of the piping, clamp collars made of different materials are used.

The following materials are available:
- Chrome-steel 1.4016 (ASTM 430),
 \[\alpha = 10 \text{ to } 10.5 \times 10^{-6} / \text{K} \]
- Stainless steel 1.4301 (ASTM 304),
 \[\alpha = 16 \text{ to } 17.5 \times 10^{-6} / \text{K} \]

Nominal diameter DN 40 to DN 80
Universal clamps type PG 174, width 10 mm (0.4 in)

Nominal diameter > DN 80
Universal clamps type PG 174, width 18 mm (0.7 in)

More information on the universal clamps is available at www.oetiker.com.
6 Installation

Mounting

Assembly of the temperature sensor

NOTICE
Impairment of the device function
For trouble-free operation of the temperature sensor, the following points should be observed:

- If fluid accumulation in the extension tube can be expected at the installation location, install the temperature sensor with connection head above the horizontal line.
- The extension tube and retaining plate are tightened at the plant with a torque of 70 Nm, do not loosen this connection!
- Make sure that both sensor elements of the TSP341-N do not come into contact with each other at the ends, in the area of the retaining plate.
- Make sure that no lateral forces (e.g. due to shifting of the retaining plate) are exerted on the protruding surface sensor during assembly.
- Make sure that both contact areas of the retaining plate are set level on the measuring point over their entire length.
- To avoid measurement errors, make sure that the measuring tip of the surface sensor has optimal contact with the surface.

1. Remove the plastic transport protection on the retaining plate before assembly.
2. The measuring point must be flat, metallic bright and free of coatings, impurities and foreign substances. Clean the measuring point as needed.
3. Cut the clamp collar to the appropriate length, circumference + 150 mm (6 in).

CAUTION
Risk of injury
Risk of injury due to sharp edges of the clamp collar band.

- To avoid injuries, deburr the sharp edges of the clamp collar band with a file and chamfer the corners of the clamp collar band.

4. Loosen the mounting nut of the screwed connection from the extension tube and connection head by 3.5 to 4 turns maximum.
5. Gently pull the connection head away from the extension tube.
6. Place the clamp collars around the piping to the left and right of the measuring point and loosely tighten.
7. Place the temperature sensor with the retaining plate on the measuring point and slide the clamp collars laterally over the retaining plate.
8. **18 mm clamp collar:**
 Secure the clamp collars in the threaded holes of the retaining plate using the supplied M5 screws and safety washers (alternatively also after tightening the collars).
 10 mm clamp collar:
 Push the clamp collars are far in as possible during assembly on the retaining plate.
 Then, place the supplied screws (M5) and safety washers in the threaded holes of the retaining plate to the left and right respectively to secure against slipping (alternatively also after tightening the collars).
9. Align the retaining plate level at the measuring point and tighten the clamp collars on the turnbuckle
 Tightening torque:
 - 18 mm clamp collar: 10 Nm
 - 10 mm clamp collar: 3 Nm
 For clamp collar band lengths > 1 m (3.3 ft), use an additional turnbuckle per meter of clamp collar band length if necessary.
10. Turn the connection head to the desired position.
11. To fix the connection head in the desired position, tighten the mounting nut with a torque of 35 Nm.
Insulation of the measuring point

Insulation of the measuring point is recommended to increase measuring accuracy, but is not an absolute requirement. When operating without insulation, the transmitter can be appropriately configured through DTM / EDD / FIM.

The insulation also protects the connection head from excessive temperatures due to heat radiation from the piping. Pressure-resistant, elastic mineral wool mats with higher raw density have proven to be especially suited. The material must be suited for the measuring medium temperature range which can appear and for current ambient conditions.

NOTICE

Impact on measuring accuracy

Impairment of measuring accuracy due to improper insulation of the measuring point.
- Insulate measuring point to the height ‘h_{max}’ as presented in Figure 11 only.
- The extension tube should not be insulated above the measuring point.

Electrical connections

Safety instructions

WARNING

Risk of injury due to live parts.

Improper work on the electrical connections can result in electric shock.
- Connect the device only with the power supply switched off.
- Observe the applicable standards and regulations for the electrical connection.

The electrical connection may only be established by authorized specialist personnel.

Notices on electrical connection in this instruction must be observed; otherwise, electric safety and the IP-rating may be adversely affected.

Safe isolation of electric circuits which are dangerous if touched is only guaranteed when the connected devices fulfill the requirements of EN 61140 (basic requirements for secure separation).

To ensure safe isolation, install supply lines so that they are separate from electrical circuits which are dangerous if touched, or implement additional isolation measures for them.
... 6 Installation

... Electrical connections

Cable glands
The temperature sensor TSP341-N is supplied with a M20 × 1.5 cable gland. The supplied cable gland is suited for use under the following conditions.

Data of the supplied plastic cable gland
- Thread: M20 × 1.5
- Temperature range: −40 to 70 °C (−40 to 158 °F)
- Cable outside diameter: 5.5 to 13 mm (0.22 to 0.51 in)
- Material: polyamid

For differing temperatures, an appropriately specified cable gland must be installed.

Note
In devices for use in potentially explosive atmospheres, observe the information in Devices in ‘Ex d’ type of protection with cable gland on page 9 and Plastic cable gland M20 × 1.5 for ‘Ex i’ type of protection on page 10!

Alternatively, the temperature sensor can be supplied without cable glands, but with an M20 × 1.5 or ½ in NPT thread. In this case, the user must take appropriate measures to ensure that the necessary IP-rating is achieved, the temperature range maintained and that the cable gland used is approved in accordance with the standard on which our certificate is based.

To achieve the IP rating, the cable gland used must be approved for the cable diameter. The IP rating IP 66 / IP 67 or NEMA 4X of the used cable gland used must be checked. The operating temperature range of the cable gland used must not be up-scaled.

Observe tightening torque in accordance with information in the data sheet / operating instruction for cable gland used.

In practice, you may find the specified IP rating can no longer be achieved if certain cables and lines are used in conjunction with the cable gland. Deviations from the test conditions as set out in the IEC 60529 standard must be checked. Check the cables’ concentricity, transposition, external hardness, sheath, and surface roughness.

Requirements for achieving the IP rating
- Only use cable glands in the specified clamping area.
- When using very soft cable types, do not use them in the lower clamping area.
- Only use round cables or cables with a slightly oval-shaped cross section.
- Frequent opening / closing is possible but may have a negative effect on the IP rating.
- If cables are demonstrating pronounced cold flow behavior, the cable glands will need to be retightened.
- Cables with VA wire mesh require special cable glands.

Conductor material

NOTICE

Danger of wire breakage
The use of conductive material with solid wires can lead to wire breakage.
- For the electrical connection of the temperature sensor, only use cable material with flexible conductors.

Power supply
- Cable type: flexible standard cable material
- Maximum wire cross-section: 1.5 mm² (AWG 16)
Terminal layout
The transmitter used in the TSP341-N temperature sensor is based on the TTH300 from ABB.

1. terminals 1 to 3 for sensor 1
2. terminals 4 to 6 for sensor 2
3. terminals 8/+ and 7/− for current output of 4 to 20 mA and HART communication
4. LCD indicator interface

Figure 13: Pin assignment of the integrated transmitter

Terminals 1 to 6 are internally connected to the TSP341-N sensors.
The power supply and signal are routed in the same line and must be implemented as a SELV or PELV circuit in accordance with the relevant standard (standard version).

- For the explosion-proof design, the guidelines in accordance with the Ex standard must be adhered to.
- The cable wires must be provided with end sleeves.
- The user is responsible for ensuring EMC-compliant cabling.

The power supply and signal are routed in the same line and must be implemented as a SELV or PELV circuit in accordance with the relevant standard (standard version).
For the explosion-proof design, the guidelines in accordance with the Ex standard must be adhered to.
- The cable wires must be provided with end sleeves.
- The user is responsible for ensuring EMC-compliant cabling.

Protection of the transmitter from damage caused by highly energetic electrical interferences
The transmitter has no switch-off elements. Therefore, overcurrent protective devices, lightning protection, or voltage disconnection options must be provided at the plant.

NOTICE
Temperature transmitter damage!
Overvoltage, overcurrent and high-frequency interference signals on the supply connection as well as sensor connection side of the device can damage the temperature transmitter.

A. Do not weld
B. No high-frequency interference signals / switching operations of large consumers
C. No overvoltage due to lightning

Figure 14: Warning signs

Overcurrent and overvoltage can occur through for example welding operations, switching operations of large electric consumers, or lightning in the vicinity of the transmitter, sensor, as well as connector cables. Temperature transmitters are sensitive devices on the sensor side as well. Long connector cables to the sensor can encourage damaging interference. This can already happen if temperature sensors are connected to the transmitter during installation, but are not yet integrated into the system (no connection to the supply isolator / DCS)!
6 Installation

Electrical connections

Suitable protective measures
The following items should be observed to protect the transmitter from sensor-side damage:

- In the vicinity of the transmitter, sensor and sensor connector cable in case of a connected sensor, high-energy overvoltage, overcurrent and high-frequency interference signals due to welding operations, lightning, circuit breakers or large consumers of electricity among others should be absolutely avoided.
- The connection cable of the sensor on the transmitter should be disconnected when performing welding work in the vicinity of the installed transmitter, sensor, as well as supply lines from the sensor to the transmitter.
- This corresponds accordingly also applies to the supply side, if there is a connection there.

7 Commissioning and operation

Safety instructions

⚠️ CAUTION
Risk of burns due to hot measuring media
The device surface temperature may exceed 70 °C (158 °F), depending on the measuring medium temperature!

- Before starting work on the device, make sure that it has cooled sufficiently.

If there is a chance that safe operation is no longer possible, take the device out of operation and secure it against unintended startup.

General

When so ordered, the temperature sensor is ready for operation after assembly and installation of the connections.

The parameters of the integrated transmitter are preset at the factory. This default setting can be changed at any time through HART communication (DTM, EDD, FIM).

For more information about the transmitter, refer to the commissioning instruction CI/TTH300, the operating instruction OI/TTH300, as well as the data sheet DS/TTH300.

Checks prior to commissioning

The following points must be checked before commissioning the device:

- Check the installation of the sensor for optimal contact with the measuring point and correct insulation.
- Correct wiring in accordance with Electrical connections on page 21.
- Potential equalization must be connected.
- The connected lines must be checked for firm seating. Only firmly seated lines ensure full functionality.
- The ambient conditions must correspond to the information given on the name plate and in the data sheet.
- If devices are to be used in potentially explosive atmospheres, the temperature and electric data in accordance with Use in potentially explosive atmospheres in accordance with ATEX and IECEx on page 5 must be maintained.
Operation / control

Process display
Only for devices with optional LCD indicator.

1. Measuring point tagging (Device TAG)
2. Current process values
3. ‘Parameterization protected’ symbol

Figure 15: Process display (example)

The process display appears on the LCD display when the device is powered on. It shows information about the device and current process values.

HART Device Type ID
TSP341-N: 0x1A0E

Parameterization
The device does not have operating elements for parameterization on site. Parameterization takes place via the HART interface.

The following parameters are preset upon delivery:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Factory setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulation around the measuring point</td>
<td>provided</td>
</tr>
<tr>
<td>Characteristic behavior</td>
<td>Increasing 4 to 20 mA</td>
</tr>
<tr>
<td>Output behavior for error</td>
<td>Override / 22 mA</td>
</tr>
<tr>
<td>Damping output (T63)</td>
<td>Off</td>
</tr>
</tbody>
</table>

Note
- The measuring range of the device will be specified when the order is placed. The measuring range can also be adjusted, just like the parameters described above.
- Write protection is implemented through standard HART communication write protection or with the use of hardware write protection (local write protection, via DIP switch on the device).

Error messages on the LCD display
Only for devices with optional LCD indicator.

If the event of an error, a message consisting of a symbol or letter (device status) and a number (DIAG NO.) will appear at the bottom of the process display.

The diagnostic messages are divided into the following groups in accordance with the NAMUR classification scheme:

<table>
<thead>
<tr>
<th>ID code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>OK or Information</td>
</tr>
<tr>
<td></td>
<td>Device is functioning or information is available</td>
</tr>
<tr>
<td>C</td>
<td>Check Function</td>
</tr>
<tr>
<td></td>
<td>Device is undergoing maintenance (for example simulation)</td>
</tr>
<tr>
<td>S</td>
<td>Off Specification</td>
</tr>
<tr>
<td></td>
<td>Device or measuring point is being operated outside of the specifications</td>
</tr>
<tr>
<td>M</td>
<td>Maintenance Required</td>
</tr>
<tr>
<td></td>
<td>Request service to prevent the measuring point from failing</td>
</tr>
<tr>
<td>F</td>
<td>Failure</td>
</tr>
<tr>
<td></td>
<td>Error; measuring point has failed</td>
</tr>
</tbody>
</table>

Additionally, the diagnostic messages are divided into the following areas:

<table>
<thead>
<tr>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronics</td>
<td>Diagnosis for device hardware.</td>
</tr>
<tr>
<td>Sensor</td>
<td>Diagnosis for sensor elements and connection lines.</td>
</tr>
<tr>
<td>Installation / Configuration</td>
<td>Diagnosis for communication interface and parameterization / configuration</td>
</tr>
<tr>
<td>Operating conditions</td>
<td>Diagnosis for ambient and process conditions.</td>
</tr>
</tbody>
</table>

Note
For a detailed description of errors and troubleshooting instructions, please see Diagnosis / error messages on page 26.
8 Diagnosis / error messages

Error messages

Note
For a detailed description of the errors and notices on troubleshooting, see transmitter operating instruction.

Malfunctions
The entire temperature measurement circuit should be tested routinely. The table below contains the most important errors together with their possible causes and suggestions for how to remedy them.

<table>
<thead>
<tr>
<th>Failure</th>
<th>Cause</th>
<th>Repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring signal fault</td>
<td>• Electrical/magnetic interspersion</td>
<td>• Electrostatic shielding via on one point grounded foil/netting.</td>
</tr>
<tr>
<td></td>
<td>• Twist wires (pairs) against magnetic interspersion.</td>
<td>• Create only one grounding point in measuring loop or ‘floating’ measuring system (not grounded).</td>
</tr>
<tr>
<td></td>
<td>• Earth Fault</td>
<td>• Humidity has possibly penetrated into the temperature sensor or the measuring inset; dry if necessary and seal again.</td>
</tr>
<tr>
<td></td>
<td>• Approval of insulation resistance</td>
<td>• Replace measuring inset.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check whether the temperature sensor is thermally overloaded.</td>
</tr>
<tr>
<td>Response times too long,</td>
<td>Incorrect position of the measuring point.</td>
<td>• Select the position of the measuring point in such a way to make sure that the measurement of the surface temperature is not distorted by external influence.</td>
</tr>
<tr>
<td>incorrect signals</td>
<td>• In the area of influence of a heat source</td>
<td>• Minimize environmental influence on the measuring point by using suited insulating materials</td>
</tr>
<tr>
<td></td>
<td>Incorrect installation method:</td>
<td>• Guarantee thermal contact, above all during surface measurements through suited contact surfaces and/or thermal conducting material.</td>
</tr>
<tr>
<td></td>
<td>• Too much heat dissipation</td>
<td>• Reinforced springs on the measuring inset.</td>
</tr>
<tr>
<td>Interruptions in</td>
<td>Vibration</td>
<td>• Relocation of the measuring point (if possible).</td>
</tr>
<tr>
<td>temperature sensor</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9 Maintenance

Safety instructions

⚠️ CAUTION
Risk of burns due to hot measuring media
The device surface temperature may exceed 70 °C (158 °F),
depending on the measuring medium temperature!
- Before starting work on the device, make sure that it has
 cooled sufficiently.

The temperature sensor does not require any maintenance if it is
used as intended under normal operating conditions.
No on-site repair or replacement of electronic parts by the user
is required.

Cleaning
When cleaning the exterior of meters, make sure that the
cleaning agent used does not corrode the housing surface and
the seals.
To avoid static charge, a damp cloth must be used for cleaning.

10 Repair

Safety instructions

⚠️ DANGER
Explosion hazard
Explosion hazard due to improper repair of the device. Faulty
devices must not be repaired by the operator.
- The device may only be repaired by the ABB Service
 Department.
- Repairs on flameproof joints are not permitted.

Returning devices

Use the original packaging or a secure transport container of an
appropriate type if you need to return the device for repair or
recalibration purposes.
Fill out the return form (see Return form on page 29) and include
this with the device.
In accordance with the EU Directive governing hazardous
materials, the owner of hazardous waste is responsible for its
disposal or must observe the following regulations for shipping
purposes:
All devices delivered to ABB must be free from any hazardous
materials (acids, alkalis, solvents, etc.).

Please contact Customer Center Service acc. to page 4 for
nearest service location.
11 Dismounting and disposal

Dismounting

⚠️ **CAUTION**

Risk of burns due to hot measuring media

The device surface temperature may exceed 70 °C (158 °F), depending on the measuring medium temperature!

- Before starting work on the device, make sure that it has cooled sufficiently.

Bear the following points in mind when dismantling the device:

- Switch off the power supply.
- Disconnect electrical connections.
- Allow device / piping to cool.
- Use suited tools to disassemble the device, taking the weight of the device into consideration.
- If the device is to be used at another location, the device should preferably be packaged in its original packing so that it cannot be damaged.
- Observe the notes in Returning devices on page 27.

Disposal

Note

Products that are marked with the adjacent symbol may **not** be disposed of as unsorted municipal waste (domestic waste).

They should be disposed of through separate collection of electric and electronic devices.

This product and its packaging are manufactured from materials that can be recycled by specialist recycling companies.

Bear the following points in mind when disposing of them:

- As of 8/15/2018, this product will be under the open scope of the WEEE Directive 2012/19/EU and relevant national laws (for example, ElektroG - Electrical Equipment Act - in Germany).
- The product must be supplied to a specialist recycling company. Do not use municipal waste collection points. These may be used for privately used products only in accordance with WEEE Directive 2012/19/EU.
- If there is no possibility to dispose of the old equipment properly, our Service can take care of its pick-up and disposal for a fee.

12 Specification

Note

The device data sheet is available in the ABB download area at www.abb.com/temperature.

13 Additional documents

Note

Declarations of conformity of the device are available in the download area of ABB at www.abb.com/temperature. In addition, these are also included with the device in case of ATEX-certified devices.
14 Appendix

Return form

Statement on the contamination of devices and components

Repair and/or maintenance work will only be performed on devices and components if a statement form has been completed and submitted. Otherwise, the device/component returned may be rejected. This statement form may only be completed and signed by authorized specialist personnel employed by the operator.

Customer details:
Company:
Address:
Contact person: Telephone:
Fax: Email:

Device details:
Type: Serial no.:
Reason for the return/description of the defect:

Was this device used in conjunction with substances which pose a threat or risk to health?
☑ Yes ☐ No
If yes, which type of contamination (please place an X next to the applicable items):
☐ biological ☐ corrosive / irritating ☐ combustible (highly / extremely combustible)
☐ toxic ☐ explosive ☐ other toxic substances
☐ radioactive

Which substances have come into contact with the device?
1.
2.
3.

We hereby state that the devices/components shipped have been cleaned and are free from any dangerous or poisonous substances.

Town/city, date Signature and company stamp
Trademarks

HART is a registered trademark of FieldComm Group, Austin, Texas, USA
Notes
Introduction

The temperature sensor TSP341-N allows for reliable temperature measurement without intervention in the process. Plant safety is clearly increased as a result. Thanks to the quick and easy surface mounting and by eliminating the thermowell and the need to open the process, substantial cost reductions are achieved.

*The temperature sensor TSP341-N belongs to ABB's product family SensyTemp TSP. It is listed in the related type examination certificates for explosion protection as SensyTemp TSP341-N.

Additional Information

Additional documentation on TSP341-N is available for download free of charge at www.abb.com/temperature. Alternatively, simply scan this code:

We reserve the right to make technical changes or modify the contents of this document without prior notice.

With regard to purchase orders, the agreed particulars shall prevail. ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB.

© ABB 2020

3KXT16L302R4201