CAUTION

It is recommended that the user become acquainted with the information in this instruction leaflet before energizing the equipment. Failure to observe this precaution may result in damage to the equipment.

SOFTWARE CAUTION NOTICE

The operation of this relay is based on Westinghouse proprietary software, resident in memory components. Purchase of this relay includes a restricted license for the use of any and all programs solely as part of the protective functions. Westinghouse reserves the right to request return of the memory components should the relay no longer be used as a protective device. The programs may not be copied, transferred or applied to any other device.

APPLICATION

The MPR is a microprocessor-based programmable relay providing the following protective functions for 3-phase ac induction motors: Overload, Locked Rotor, Jam, Instantaneous Overcurrent, Instantaneous Ground Overcurrent, Phase Differential Current, Phase Unbalance, Phase Reversal, Loss of Load, Motor Winding Overtemperature, Motor Bearing Overtemperature, Load Bearing Overtemperature, and Load Case Overtemperature.

To sense motor currents and temperatures, the MPR relay receives inputs from phase ct's, ground ct, phase differential ct's and from resistance temperature detectors (RTD's). An Emergency Restart input is available to allow a restart of a hot motor.

The MPR relay provides a digital display of motor conditions, alarm and trip output relays, alarm and trip LED indications, field settable motor parameters, and alarm, trip and time delay values.

CONSTRUCTION

The MPR relay has a Display/Interface front panel which provides a vacuum fluorescent digital display, LED indicators and function pushbuttons to allow for monitoring motor conditions and for setting of relay operating parameters. It is protected by a plastic hinged cover. External inputs to the relay are made by connections to terminal blocks on the rear of the case.

Internally, the relay consists of four printed circuit modules. 1. Power Supply/Input-Output 2. Microprocessor 3. RTD 4. Differential/Restart. Connections are made between modules through plug-in cable assemblies. The Internal Wiring/Block Diagram is shown in Fig. 1.

The MPR relay is mounted in a semiflush case similar in size to an FT-32, for panel mounting. The outline and drilling plan is shown in Fig. 19.

Power Supply/Input-Output Module

The power supply/input-output (I/O) module consists of three individual circuits - the power supply, the current input circuit, and alarm and trip output relays. The power supply provides regulated 24 volts dc, a 2.6 volt square wave voltage for the digital display and 8 volts dc, regulated to 5 volts dc on the microprocessor module. These voltages are used to operate the IC's, provide RTD current and operate the output relays.

The current input circuitry consists of three separate phase current input transformers T2, T3, T4 and a ground current transformer T5.

Alarm outputs are provided by a 24 volt dc miniature high-power relay. Trip outputs are provided by a 24 volt dc magnetic latching relay with electric reset.

All possible contingencies which may arise during installation, operation, or maintenance, and all details and variations of this equipment do not purport to be covered by these instructions. If further information is desired by purchaser regarding his particular installation, operation or maintenance of his equipment, the local ASEA BROWN BOVERI representative should be contacted.
The power supply module has a double row header, pins 1 to 22, labeled J1 which connects via a cable assembly to the microprocessor module header, J1 pins 5 to 26. External inputs and outputs of the power supply/IO module are wired to terminal blocks JB (1 to 9) and JC (10 to 18) on the rear of the case.

Microprocessor Module

The microprocessor module is a four layer printed circuit board with the inner two layers being +5 volt dc power and ground. The main components of this module are the microprocessor, an erasable-programmable-read-only-memory (EPROM), and electrically-erasable-programmable-read-only-memory (EEPROM), a bipolar prom, CMOS RAM, an analog-to-digital (A/D) converter and a custom linear IC, along with analog switches, logic gates and display drivers. The components on the microprocessor module that make up the display/Interface front panel are the seven segment digital display, 9 red light emitting diodes (LED) for alarm and trip indication, 4 yellow LED’s for relay operating functions and 5 pushbutton switches.

The microprocessor module has 3 headers which via cable assemblies, connect to the Power Supply/IO, RTD and Differential/Restart modules.

RTD Module

The RTD module contains up to 11 Balun connected input transformers, 9 multiplexers (U2-U10), a voltage amplifier and 6 precision reference resistors.

The RTD module has an 11 pin single row header labeled J2 which connects via a cable assembly, to the microprocessor module header J2, pins 1 to 11. External inputs to the RTD module are made through the 36 connector terminal strip on the rear of the case.

Differential/Restart Module

The phase differential/emergency restart module consists of three differential current input transformers T1, T2, T3, as well as a logic interface optocoupler and related circuitry for the emergency restart function.

A 10 pin double row header labeled J1 connects the differential/restart module to the microprocessor module via a cable assembly. External phase differential and emergency restart inputs are wired to terminal block JA (19 to 24) on the rear of the case. Refer to the Internal Wiring/Block Diagram in Fig. 1.

THEORY OF OPERATION

Power Supply/Input-Output

The power supply provides regulated voltages to operate the integrated circuits, the trip and alarm relays and the fluorescent display, and to provide RTD current. Refer to the power supply internal schematic (Fig. 2). Component location for this module is shown in Figure 3. Rated power supply voltage, input through case terminals JC-13 and 14, is applied to chokes L3 and L4, full wave rectified and filtered to yield a supply voltage across C7. The pulse width modulated regulator U1 maintains +43V (+29V for 48V power supply styles) across C5. When Q4 is on, current flows through L2, charging up C5. Until C5 reaches +43V, no signal is output at U1 pin 12 to turn on Q3. With Q5 off current will continue to flow through R13, R14, L1, D3 and R15 to keep Q4 on. When the voltage across C5 reaches +43V a signal is output at U1, pin 12 to turn on Q3. Current then flows through Q3, and Q4 turns off.

The +43 volts maintained at C5 is input to the center tap of T1, a ferrite pot core transformer. An 11 kHz signal at U1 pin 3 turns on Q2 to pulse dual flip flop U2 driving Q5 and Q6 to provide a square wave at the primary of T1. The secondary voltages are a rectified + 24 Vdc and +8 Vdc as well as a 2.6 volt square wave.

Phase currents IA, IB and IC are input through case terminals JB-1 to JB-6 to transformers T2, T3, and T4 located on the power supply/input-output module. These transformers have a 2 turn primary and a 3000 turn secondary to produce a 3.33 mA output for 5A input. Each phase current is full wave rectified and loaded with a 600 ohm burden resistor (R20, 21, 22). The magnitude of the current is output to the microprocessor module through J1-1,3,5 and the current sign (+ and – polarity) is output through J1-2,4,6.

For excessive overcurrent conditions, where current transformer saturations may occur, each phase current (exceeding 43V zener diode threshold Z4, Z5, Z6) is rectified and capacitor filtered by D22 and
C36. This auxiliary instantaneous overcurrent signal is output to the microprocessor module through J1-14.

Ground current is input through case terminals JB-7 and JB-8 to transformer T5 having a 5 turn primary and 3000 turn secondary. A positive full wave rectified signal of 4.05 VRMS nominal voltage is generated across R24 for 1 amp ground current. This signal is full wave rectified, filtered and output to the microprocessor module through J1-8.

Output contacts are provided by the dual coil magnetic latching trip relay K1. Trip outputs are at case terminals JC-15 to JC18. Alarm outputs at case terminals JB-9 and JC-10 to JC12 are provided by a miniature high power relay K2. Both relays are operated by +24 Vdc. Jumper pins JMP-1 to JMP-7 are provided to select contact arrangements. These have been set with jumpers in positions JMP-1, JMP-3, JMP-5 and JMP-7 to give two normally closed alarm contacts and two normally closed trip contacts.

RTD

The RTD module is designed to monitor up to 11 RTD inputs. Refer to RTD internal schematic Fig. 4. Component location for the RTD module is shown in Fig. 5. A fixed current (I\text{RTD}) is circulated through each RTD and each compensating lead. A voltage measurement is then taken across the RTD and compensating lead. By subtraction, lead resistance is corrected for and the resultant is a voltage that represents an accurate RTD temperature measurement. These voltage signals are multiplexed by U2, U5, U7 and U9, amplified by U1 and output to the microprocessor module through J2-1. U4 switches chip-select signals CS1 to CS4. The microprocessor provides digital control signals A to E at J2-4 to J2-8.

The gain of U1 is controlled by a gain signal from the microprocessor module at J2-2. RA to RF are reference resistors used to provide reference temperature information to the processor. Metal oxide varistors (MOV) connected to each input provide voltage surge suppression.

Differential/Restart

Phase differential currents I_A DIFF, I_B DIFF and I_C DIFF are input through case terminals JA-19 to JA-22 (JA-19 to JA-24 for relays without emergency restart), to transformers T3, T2 and T1. Refer to the phase differential internal schematic (Figs. 6 and 8). Component location is shown in Figs. 7 and 9. Each transformer has a 5 turn primary and 3000 turn secondary. Each signal is full wave rectified, filtered and output to the microprocessor module through J1-7, 8, 10 (J1-1 to J1-4 for relays without emergency restart).

Emergency restart is activated by momentarily applying the rated power supply voltage to case terminals JA-23 and 24 on relays with the emergency restart function. A 3-position jumper located on the Differential/Restart module is provided to select emergency restart input voltage. This jumper has been set to the power supply voltage rating of the MPR. Optocoupler U1 rectifies this signal and provides isolation from the microprocessor. A pulse signal at U1, pin 6 is output to the microprocessor module at J1-3.

Microprocessor

The primary circuitry of the microprocessor module consists of the 8-bit microprocessor (U1), a custom linear IC (U7) and a 4-channel A/D (analog to digital) converter (U12). The processor is supported by an EPROM (U3), EEPROM (U6), an external RAM (U5) and a bipolar PROM (U4). A processing speed of 12 MHz is set by crystal Y1. Refer to the microprocessor internal schematic Fig. 10. Component location is shown in Fig. 11.

The 8-bit microprocessor utilizes 5 ports for transferring of data and address information. Lines AD0 to AD15 are address bus lines. AD0 to AD7 also function as a data bus. Port P10 to P17 is an input port to service the data output of the A/D converter (U12).

The custom linear IC (U7) performs four functions: 1. Multiplexing 2. Gain control 3. Voltage regulation. 4. Processor reset. This IC contains a 4-channel multiplexer to control input of the phase and instantaneous current signals. Multiplexing signals are input at S1 and S2. The current signals are then multiplied by the appropriate gain of 1, 1/2, 1/4, or 1/16, controlled by inputs at R1 and R2. Truth tables for multiplexing and gain are shown in Tables 1 and 2. Current is then output at U7, pin 15. This level is trimmed by potentiometer P1 and input to the A/D (U12, pin 3). The custom linear IC is also used to regulate the +5 Vdc supply voltage. Finally, this IC will send out a reset signal (U7, pin 12) should the processor fail to generate the square wave input signal at RESTART (U7, pin 11).
Motor parameters and alarm, trip and time delay values are written to the non-volatile EEPROM during the setting procedure. These settings are displayed as each one is being entered or changed. The EEPROM also stores trip LED target indication. If power is lost to the relay, these settings and LED target indications are stored in the EEPROM and are recalled on power up of the relay.

Phase currents are input to the microprocessor module at J1-5, 7 and 9. The sign (polarity) of the phase current is input at J1-6, 8 and 10. The microprocessor samples each phase current along with phase current sign 3 times each cycle. After a 12 cycle period (36 samples), $I_{2\text{RMS}}$ is generated for each positive and negative sequence phase current. $I_{2\text{RMS}}$ is calculated as follows:

$$I_{2\text{RMS}} = I_1^2 + KI_2^2$$

I_1 = positive sequence component of the three-phase input currents (RMS).

I_2 = negative sequence component of the three-phase input currents (RMS).

K = weighting factor for negative sequence heating.

$I_{2\text{RMS}}$ is used for overload/overtemperature, locked rotor/jam and load loss protection functions. Positive and negative sequence currents are used in phase unbalance protection. Phase reversal protection is accomplished by examining the sequence of the 3 current phases. If a sequence other than ABC is detected (twice, for security) immediate tripping occurs.

Ground current is input to the microprocessor module at J1-12 and phase differential currents at J1-1, 2 and 3. The microprocessor samples these currents 3 times each cycle. A 2 cycle average is calculated each cycle to provide alarm and tripping functions.

For each protection function associated with a time delay, the current signal is compared to the trip and alarm settings. If the current is greater than the setting, a counter is incremented. This process continues until the counter has reached a value associated with the time delay setting, causing the relay to then alarm and trip. Loss of phase and phase unbalance protections are delayed on motor starting, based on the 1 to 10 second jam delay time setting. During running conditions, loss of phase and phase unbalance follow the time curves. Jam and load loss are delay inhibited by 2 times the locked rotor delay time setting.

The emergency restart signal is input to the microprocessor module at J3-1. When emergency restart has been activated the I_2^2 value of motor heating in memory is reset from a "tripped condition" level to a "hot motor" level. This will reset the trip relay, the trip LED and value display and allow the motor to be restarted as a "hot" start.

The microprocessor module interfaces with the RTD module through cable connections J2. A fixed current (IRT) at J2-3 is output to the RTD module, multiplexed, then circulated through each RTD and its leads. The voltage drops across the RTD and across the leads are input to the microprocessor module as VRTD at J2-1. Digital multiplexing signals (J2-4 to J2-8) switch these RTD currents and voltages. The processor calculates temperature based on VRTD. Transistors Q3 to Q6 and U26A generate IRTD based on high and low signals "One" and "Two" at U22.

U26B, Q8 and Q9 and precision resistors R60-63 are used to maintain the voltage level VRTD between 0.5 Vdc and 4.5 Vdc for input to the A/D (U12, pin 5). Signal "Three" at U22 and Q7, output to the RTD module at J2-2, provides amplifier gain for VRTD. A low signal is used for 10 ohm copper RTD's. A high signal is used with nickel and platinum RTD's.

The display/interface circuitry on the microprocessor module consists of a 9 character 7 segment vacuum fluorescent display, 9 indicating LED's, 4 relay operating function LED's and 5 user operated pushbutton switches. The display DS1 is driven by two display drivers (U16, U17). Display data is transferred from the microprocessor via DISPDDAT, DISPSK, FUNCTCS and VALUECS. Pushbutton status information is loaded to the data bus via an octal bus driver U15. Alarm and trip LED data is fed to octal latches U18 and U19. The LED's (DS2 to DS16) are driven by line drivers U20 and U21.
CHARACTERISTICS

Rated current: 1A, 5A

Maximum current
 continuous: 10A
 two seconds: 200A

Frequency: 50/60 Hz

Power supply voltage:
 120 Vac (70-132 Vac)
 125 Vdc (93.5-144 Vdc)
 48 Vdc (38.5-52.8 Vdc)
 250 Vdc (187-288 Vdc)

Burden
 Phase current ct's: .075 VA @ 5A
 Ground & Phase differential ct's: .010 VA @ 1A
 Power supply: 25 VA max.

Temperature range: -20 to +55° C (ANSI C37.90)

Accuracy:
 + 10% timing variation
 ± 5% pickup level

RTD Types:
 10 ohm copper
 100 ohm nickel
 120 ohm nickel
 100 ohm platinum

RTD Temperature (10 to 190°C)
 Accuracy: ±3° C

Contact Data
 Trip (2 form C):
 30A make and carry, 1 sec.
 7.5A interrupting, 120 Vac resistive
 Alarm (2 from C):
 5A interrupting, 120 Vac resistive

Insulation Test Voltage: 1.5 kV, 50/60 Hz, 1 minute (ANSI C37.90)

Impulse Voltage Withstand: 5 kV peak, 1.2/50 us, 0.5 joule (IEC 255-5)

Fast Transient Voltage: 5 kV, 10/100 ns
 (Proposed ANSI C37.90a)

SWC: ANSI C37.90 (1978), IEC 255.5
Time Curves

Figures 12 to 15 show MPR typical time curve characteristics. Fig. 12 represents the MPR relay utilizing RTD cold start overtemperature protection with the RTD's at a constant ambient temperature of 55°C. Locked rotor delay time is set at 6 times full load current. Each curve represents trip characteristics for various locked rotor delay times from 5 to 30 seconds. The lower three curves show the MPR's ability to track over a varied temperature range by calculating I_H based on current and RTD inputs.

Time curves with RTD protection representing a hot start are shown in Fig. 13. RTD's are set at a constant 120°C and locked rotor at 6 times full load current. Locked rotor delay time is varied from 5 to 30 seconds. Protection is provided for restarts in the hot condition by correctly producing shorter trip times.

Figures 14 and 15 illustrate tripping characteristics for overload without RTD protection. Again locked rotor is set to 6 times full load current and locked rotor delay is varied from 5 to 45 seconds. The MPR produces trip times based on I_H for both cold start and hot restart conditions. To allow the MPR to reach a hot start condition, full load current is applied for a time greater than one half of I^2t seconds, where I is the multiple of full load current and t is the locked rotor delay time. The curves in Fig. 15 reflect a shorter tripping time to protect the motor under hot restarting conditions.

On removal of current after a trip occurs the MPR relay algorithm allows for rotor cooling before restart, based on the locked rotor current and time delay settings. Relays with emergency restart can override the cooling time and reset the I^2t memory to a hot motor level. The relay will then follow the time curves for a hot start, shown in Figures 13 and 15. Minimum overload trip is set to 190% of full load current when RTD protection is provided. For protection without the additional RTD temperature information the overload trip setting is typically 125%.

FUNCTIONS AND SETTINGS

The MPR relay is designed to protect a motor by sensing any one or a combination of operating conditions in a range where damage and/or reduced operating life may result. The following sections detail the protection functions available, the protection concept involved and the operating conditions that each function considers.

Overload — Without RTD’s

Measurement of overload where RTD's are not available is accomplished by using the expression $I_H = I_1^2 + K I_2^2$, where I_1 is the positive sequence component of the three phase input currents, I_2 is the negative sequence component and K is a weighting factor to accommodate the increased influence on heating produced by negative sequence current. The relay is given a locked rotor (full voltage) current setting and a “cold” permissible locked rotor time setting. This establishes a point on the I_H^2 curve (Figure 14). This is an inverse squared curve with a cutoff at the pickup level setting. The motor is protected for all currents, from moderate overload to locked rotor levels, assuming the ambient and ventilating conditions are in accordance with the design limits.

Overtemperature — With RTD’s

Temperature conditions may be examined in a more refined way when RTD's are available. The MPR relay monitors up to 6 winding RTD's. The RTD is located between windings in the motor stator slot, and is therefore subjected to all of the same influences of heating as the stator insulation, including ambient and ventilation. The RTD has an appreciable deviation from winding temperature when the motor is subjected to a large change in current, such as during starting or upon a jam occurrence. The RTD is also a poor indicator of rotor temperature. Because of these limitations, I_H sensing is also required to complement the RTD behavior.

Excessive temperature of the RTD will cause tripping without additional time delay. Time delay is inherent in the increase in temperature of the motor itself. For large currents in excess of the I_H pickup setting, the need for tripping is sensed by a combination of RTD and current influences. Effective rotor temperature is calculated by this means.

Locked Rotor — Without RTD’s

Locked rotor current value (as a multiple of full load current) and locked rotor delay time are settings that are provided as inputs to the MPR
relay. A "cold" motor is identified through a retention of information regarding previous loading. "Hot" is identified by whether or not the motor has recently been running. It is assumed to be running if current in excess of 20% of full load current is present for a time in excess of twice the locked rotor delay setting. The MPR trip characteristic will remain in the "hot" condition following reduction of current to zero for a period determined by the time constant which is calculated from locked rotor current and time. With terminal voltage at values different from rated, locked rotor current will vary accordingly. The shape of the \(I_H \) time curve is such that the actual trip time varies with \(I_H \) in the same way as permissible locked rotor time varies with \(I_H \). The reduction in trip time for a "hot" motor is influenced by the calculated time constant.

Locked Rotor — With RTD's

An approximation of rotor temperature is calculated based on RTD temperature (to indicate previous loading history) and on \(I_H \) level. The trip time at a given value of current will be modified by the relay so that the total temperature of the limiting element in the rotor circuit will be essentially the same as for a "cold" start trip.

Jam

A sudden large increase in current after the motor is running is indicative of a jam condition on the motor. A jam is sensed when the magnitude of \(I_H \) is above the load jam trip setting.

Instantaneous Overcurrent

Detection of faults is achieved by the measurement of individual phase current levels. When the highest phase current magnitude exceeds the instantaneous overcurrent trip level setting for a period of time in excess of the instantaneous overcurrent delay setting, immediate tripping and indication will occur. This function is set, with margin, to allow for maximum locked rotor current with dc offset. Any current in excess of this setting is clearly fault current, contributed by the power system, and not starting current, not jam current nor contribution from the motor to a fault elsewhere in the system. The relay is designed to trip correctly on high fault currents even with saturated ct's.

Ground Overcurrent

Motors are generally ungrounded. By using a "through-type" ct (such as the BYZ-S 50:5) with all three phase conductors routed through it, sensitive detection of ground faults in the motor or motor supply cables can be obtained by measuring the ct secondary current. The ground fault trip current and ground fault trip delay are selectable. This delay is necessary to override such phenomenon as discharge and energization of surge protective capacitors that are often connected from phase-to-ground at the motor terminals.

Phase Differential

Additional protection for motor windings is provided by sensing the current from 3 ct's connected to measure the differential current in each winding.

Load Loss

A sudden decrease in current is indicative of a loss of load (shaft breakage or a driven load problem). If the motor is running, load loss is sensed by a drop in the magnitude of \(I_H \) below the load loss setting and remaining there for a period greater than the load loss delay setting. After this delay a trip signal is generated and load loss is indicated. Reduction of current to less than 20% of full load current is recognized as removal of the motor from the line and no tripping or indication will occur.

Phase Reversal

Phase reversal protection is based on the examination of the sequence of the three phase currents. If a reversed phase sequence occurs twice, phase reversal has been detected and an immediate trip is generated. This protection function is disabled if the motor is to be run with phases reversed by entering a setting of 9999.

Phase Unbalance

Unbalanced phase currents contain \(I_2 \) (negative sequence components). Abnormal \(I_2 \) is an alarm condition. Excessive heating caused by \(I_2 \) produces a phase unbalance trip.

Loss of phase represents an extreme case of phase unbalance. Loss of phase is identified when \(I_2 \) is very nearly equal to \(I_1 \).

Motor Bearing, Load Bearing & Load Case RTD's

The MPR relay monitors up to 2 motor bearing RTD's, 2 load bearing RTD's and 1 load case RTD.
When the resistance measured represents a temperature greater than the selected setting, trip and indication occur. Alarm settings are also selectable.

Alarm

When a protective function senses a current or temperature that has reached a preset alarm value, then an alarm condition exists. The corresponding LED will flash and the normally energized alarm relay will be de-energized and drop out. These alarm indications will exist only as long as the alarm values of current or temperature exist.

The MPR relay also has its own self-alarming indications. If the power supply voltage is lost, the “Power On” LED turns off and the alarm relay drops out. If the microprocessor stops functioning, the “Monitor On” LED which is normally flashing during relay operation, will stop flashing and remain either constant "off" or constant “on”. The alarm relay will then drop out.

Trip

When a protective function senses a current or temperature that has reached a preset trip value for the preset delay time then a trip condition exists. The corresponding LED will turn on and the trip relay will pick up. The value of current or temperature at the time the relay tripped will remain in the VALUE display after the trip condition no longer exists. Pushing the reset button will return the VALUE display to show the present motor operating values. In trip mode 1, the LED will remain on and the trip relay sealed in for all trip conditions, until manually reset. The trip relay is sealed in for all conditions except winding RTD overtemperature in mode 2. There is no trip seal-in for mode 3.

When sealed-in, the LED and trip relay can be reset after a time determined by the motor cooling algorithm, which is based on the overcurrent and/or overtemperature conditions at the time of trip, the locked rotor trip setting, locked rotor time delay settings, and previous loading conditions. Initiating emergency restart will override the cooling algorithm to reset the I²t memory to “hot” motor level. The trip relay, trip LED and VALUE display will also be reset.

If power supply voltage is lost, the trip LED will be stored in memory and will indicate on return of power supply voltage. If the power is not restored and the trip relay is sealed in, it may be manually reset. The armature of the trip relay can be pushed open by inserting a suitable size screwdriver through the hole on top of the MPR relay case.

Error Message

If a condition exists where one or more RTD’s become shorted or open, then the VALUE display will flash an error message “EEE”. The two digit number that appears in the FUNCTION display is the number of the RTD that is shorted or open, not a function number. To disable the error message, simultaneously press the RAISE and LOWER buttons. Error messages will continue to flash for each shorted or open RTD until all error messages have been disabled. When disabling more than one error message, wait for the next error message to flash on and off before pressing the RAISE and LOWER buttons again.

If the power supply voltage is removed after disabling the error messages then reapplying the error messages will be reactivated and will have to be disabled again. This will provide a warning that a malfunctioning RTD still exists.

The relay will continue to monitor, alarm and trip for any RTD’s which are still functioning and for all other MPR functions both before and after the error messages are disabled.

After the error message has been disabled and the RTD malfunction has been corrected the MPR relay must be reset in order to again monitor that RTD. This can be done by either removing then re-applying power to the relay, or by resetting the applicable RTD function (20,21,22,23) using the Setting Procedure.

Display Procedures

One of the functions of the Display/Interface front panel allows the user to read motor operating values. Motor operating values that can be viewed in the VALUE display are shown in Table 3 (functions 00 to 19). These values should be used as indicator quantities and not in place of ammeters or other standard instruments. The following procedure will display the present motor operating values for a given function.
1. Determine the function number of the parameter to be displayed.

2. Press the SELECT button. The LED below the button will turn on and the relay will be in the FUNCTION SELECT mode.

3. Press the RAISE or LOWER buttons to increment the FUNCTION display up or down 1 digit. Holding the RAISE or LOWER buttons down will cause the display to change to a fast mode. Only those functions available in a given style relay will be displayed. Functions not available will be bypassed.

4. When a function is selected, the VALUE display will show the present operating value after an approximate 1 to 3 second delay. When the SELECT button is pressed again the SELECT LED will turn off and the relay will be in a stand-by mode.

Setting Procedure

The Display/Interface front panel allows the user to set motor characteristics and alarm, trip and delay time values for the parameters shown in Table 4 (functions 20 to 56). The following is the procedure for programming settings into the MPR relay.

1. Press the SELECT button. The SELECT LED will turn on.

2. Press the RAISE or LOWER button until the desired FUNCTION number appears in the FUNCTION display. Functions not available will be bypassed.

3. The VALUE display will show the existing setting of the FUNCTION selected.

4. To enter or change the reading press the SET button. The SET LED will turn on and the SELECT LED will turn off.

5. Use the RAISE or LOWER button to choose the desired value to be entered. The relay is programmed so that an invalid setting may not be entered.

6. When the desired reading is shown, press the SET button and “0000” will appear in the VALUE display.

7. Press the SET button again and the setting chosen will appear. Now press and hold the SET button until the SET LED turns off and the SELECT LED turns on.

The new setting is now in memory and will be read out on the VALUE display. All settings remain in memory during loss of power supply voltage to the relay. When setting Type and Quantity of RTD’s (functions 20 to 23), the VALUE display will return to function 00 after step 7 and the new setting will be in memory.

Note that when setting type and quantity of RTD’s, RTD’s or substitute resistors should be connected to the terminals per the external connection diagram (Fig. 18) or the test connection diagrams (Figs. 16 and 17). If not, the VALUE display will flash “EEE”. Refer to “Error Message” described previously.

Alarm and trip functions may be disabled by entering 9999 as the setting for those functions. Locked Rotor Overcurrent Trip (function 28) and Overload Trip (function 32) cannot be disabled. RTD’s can be disabled by entering “0” into functions 20 to 23 or by entering an RTD quantity of zero for any given type of RTD. For example “30” is zero quantity of 120 ohm nickel type RTD’s.
<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>VALUE DISPLAY</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Load Current - Phase A</td>
<td>% FLC</td>
</tr>
<tr>
<td>01</td>
<td>Phase A Current</td>
<td>Amps</td>
</tr>
<tr>
<td>02</td>
<td>Phase B Current</td>
<td>Amps</td>
</tr>
<tr>
<td>03</td>
<td>Phase C Current</td>
<td>Amps</td>
</tr>
<tr>
<td>04</td>
<td>Max RTD Temp</td>
<td>°C</td>
</tr>
<tr>
<td>05</td>
<td>RTD 1 Winding Temp</td>
<td>°C</td>
</tr>
<tr>
<td>06</td>
<td>RTD 2 Winding Temp</td>
<td>°C</td>
</tr>
<tr>
<td>07</td>
<td>RTD 3 Winding Temp</td>
<td>°C</td>
</tr>
<tr>
<td>08</td>
<td>RTD 4 Winding Temp</td>
<td>°C</td>
</tr>
<tr>
<td>09</td>
<td>RTD 5 Winding Temp</td>
<td>°C</td>
</tr>
<tr>
<td>10</td>
<td>RTD 6 Winding Temp</td>
<td>°C</td>
</tr>
<tr>
<td>11</td>
<td>RTD 7 Motor Bearing Temp</td>
<td>°C</td>
</tr>
<tr>
<td>12</td>
<td>RTD 8 Motor Bearing Temp</td>
<td>°C</td>
</tr>
<tr>
<td>13</td>
<td>RTD 9 Load Bearing Temp</td>
<td>°C</td>
</tr>
<tr>
<td>14</td>
<td>RTD 10 Load Bearing Temp</td>
<td>°C</td>
</tr>
<tr>
<td>15</td>
<td>RTD 11 Load Case Temp</td>
<td>°C</td>
</tr>
<tr>
<td>16</td>
<td>Ground Fault Current</td>
<td>% Trip</td>
</tr>
<tr>
<td>17</td>
<td>Phase A Diff Current</td>
<td>% Trip</td>
</tr>
<tr>
<td>18</td>
<td>Phase B Diff Current</td>
<td>% Trip</td>
</tr>
<tr>
<td>19</td>
<td>Phase C Diff Current</td>
<td>% Trip</td>
</tr>
</tbody>
</table>

TABLE 3
<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>DATA</th>
<th>SET POINT</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Type & Qty of Winding RTD's</td>
<td>0 to 46</td>
<td>Number</td>
</tr>
<tr>
<td>21</td>
<td>Type & Qty of Motor Bearing RTD's</td>
<td>0 to 42</td>
<td>Number</td>
</tr>
<tr>
<td>22</td>
<td>Type & Qty of Load Bearing RTD's</td>
<td>0 to 42</td>
<td>Number</td>
</tr>
<tr>
<td>23</td>
<td>Type & Qty of Load Case RTD</td>
<td>0 to 41</td>
<td>Number</td>
</tr>
<tr>
<td>24</td>
<td>Motor Factor K</td>
<td>2 to 10</td>
<td>Number</td>
</tr>
<tr>
<td>25</td>
<td>CT Ratio</td>
<td>2 to 800</td>
<td>Ratio</td>
</tr>
<tr>
<td>26</td>
<td>Primary Full Load Current</td>
<td>1 to 9999</td>
<td>Amps</td>
</tr>
<tr>
<td>27</td>
<td>Frequency of Motor Current</td>
<td>50 or 60</td>
<td>Hertz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>TRIPS AND TIME DELAY</th>
<th>SET POINT</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>Locked Rotor Current Trip</td>
<td>3 to 12</td>
<td>X FLC</td>
</tr>
<tr>
<td>29</td>
<td>Locked Rotor Delay</td>
<td>1 to 99</td>
<td>Sec</td>
</tr>
<tr>
<td>30</td>
<td>Inst Overcurrent Trip</td>
<td>3 to 15</td>
<td>X FLC</td>
</tr>
<tr>
<td>31</td>
<td>Inst Overcurrent Delay</td>
<td>0.04 to 0.2</td>
<td>Sec</td>
</tr>
<tr>
<td>32</td>
<td>Overload Trip</td>
<td>100 to 190</td>
<td>% FLC</td>
</tr>
<tr>
<td>33</td>
<td>RTD Winding Temp Trip</td>
<td>10 to 190</td>
<td>ºC</td>
</tr>
<tr>
<td>34</td>
<td>RTD Motor Bearing Temp Trip</td>
<td>10 to 190</td>
<td>ºC</td>
</tr>
<tr>
<td>35</td>
<td>RTD Load Bearing Temp Trip</td>
<td>10 to 190</td>
<td>ºC</td>
</tr>
<tr>
<td>36</td>
<td>RTD Load Case Temp Trip</td>
<td>10 to 190</td>
<td>ºC</td>
</tr>
<tr>
<td>37</td>
<td>Phase Reversal Trip</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>38</td>
<td>Ground Fault Trip</td>
<td>0.1 to 1.0</td>
<td>Amps</td>
</tr>
<tr>
<td>39</td>
<td>Ground Fault Delay</td>
<td>0.1 to 1.0</td>
<td>Sec</td>
</tr>
<tr>
<td>40</td>
<td>Load Loss Trip</td>
<td>20 to 95</td>
<td>% FLC</td>
</tr>
<tr>
<td>41</td>
<td>Load Loss Delay</td>
<td>1 to 16</td>
<td>Sec</td>
</tr>
<tr>
<td>42</td>
<td>Phase Diff Trip</td>
<td>0.1 to 1.0</td>
<td>Amps</td>
</tr>
<tr>
<td>43</td>
<td>Phase Diff Delay</td>
<td>0.04 to 0.2</td>
<td>Sec</td>
</tr>
<tr>
<td>44</td>
<td>Load Jam Trip</td>
<td>0.7 to 12.0</td>
<td>X FLC</td>
</tr>
<tr>
<td>45</td>
<td>Load Jam Delay</td>
<td>1 to 10</td>
<td>Sec</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>ALARMS AND ALARM DELAY</th>
<th>SET POINT</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>Winding Temp</td>
<td>2 to 20</td>
<td>ºC Below Trip</td>
</tr>
<tr>
<td>47</td>
<td>Motor Bearing Temp</td>
<td>2 to 20</td>
<td>ºC Below Trip</td>
</tr>
<tr>
<td>48</td>
<td>Load Bearing Temp</td>
<td>2 to 20</td>
<td>ºC Below Trip</td>
</tr>
<tr>
<td>49</td>
<td>Load Case Temp</td>
<td>2 to 20</td>
<td>ºC Below Trip</td>
</tr>
<tr>
<td>50</td>
<td>Phase Unbalance</td>
<td>5 to 30</td>
<td>I₂ % of I₁</td>
</tr>
<tr>
<td>51</td>
<td>Ground Fault</td>
<td>30 to 100</td>
<td>% Trip</td>
</tr>
<tr>
<td>52</td>
<td>Load Loss</td>
<td>20 to 95</td>
<td>% FLC</td>
</tr>
<tr>
<td>53</td>
<td>Load Loss Alarm Delay</td>
<td>1 to 16</td>
<td>Sec</td>
</tr>
<tr>
<td>54</td>
<td>Phase Diff</td>
<td>30 to 100</td>
<td>% Trip</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>FEATURES</th>
<th>SET POINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>Reset Mode Selection</td>
<td>1 to 3</td>
</tr>
</tbody>
</table>

TABLE 4
FUNCTIONS 20-23 — A two digit setting is chosen to identify the type and quantity of RTD (resistance temperature detectors) in use for a particular function. All RTDs for a given function must be of the same type. The first digit identifies the type as follows:

1 - 10 ohm copper
2 - 100 ohm nickel
3 - 120 ohm nickel
4 - 100 platinum

The second digit identifies the number of RTD’s in use. A setting, for example, of 26 would represent 100 ohm nickel with a quantity of 6 RTD’s.

FUNCTION 24 — The K factor in $I_F^2 + KI_0^2$ provides a weighting influence for negative sequence current heating compared to that for positive sequence. Using ANSI/NEMA MG 1-1978, MG 1-14.34, K can be estimated conservatively: $K = 230/(1_{LR})^2$. For a motor having a per unit locked rotor current I_{LR} of 6, $K = 230/(6)^2 = 6.39$. The setting on the MPR for function 24 would be 7.0. When more explicit heating data is available on the particular motor being protected, a different value may be selected.

FUNCTION 25 — The ct ratio is entered directly. For example a 200:5 ct would require any entry of 40, A 200:1 ct would require an entry of 200.

FUNCTION 26 — The motor rated load amperes are entered.

FUNCTION 27 — Enter the appropriate frequency for the application. Either 50 or 60 hertz will be accepted.

FUNCTION 28 — Locked rotor current is entered as a multiple of full load current. In the absence of a specific, full voltage locked rotor value, an estimate of the value may be obtained from the code letter on the nameplate (See MG 1-10.36). For example, code letter G corresponds to 5.6-6.3 KVA per horsepower. The setting would be chosen in this case to be 6, the nearest even multiple.

FUNCTION 29 — Locked rotor delay is the maximum permissible time in seconds, with full voltage applied and the rotor unable to rotate. This time, in conjunction with FUNCTION 28, establishes the motor heating curve.

FUNCTION 30 — Instantaneous overcurrent trip setting is selected as a multiple of full load current. This value must be set to ignore maximum locked rotor current, including the effect of the maximum dc offset. This requires a setting of 1.5 times the maximum symmetrical locked rotor current. For the example of FUNCTION 28, a value of $1.5 \times 6.3 = 9.45$ is required. Enter a setting of 10.

FUNCTION 31 — Occasionally a delay is necessary in tripping with the “instantaneous” unit to avoid possible misoperation due to such phenomenon as surge protective capacitor intrush. A setting of 0.04 seconds will usually suffice.

FUNCTION 32 — Overload trip is selectable from 100 to 190 percent of full load current. This is the level of current above which time delay tripping occurs. Other elements, such as instantaneous trip or jam, may cause faster tripping. In general, it would be set at 105 to 115% of full load current where RTD’s are not available and at 190% where they are available.

FUNCTION 33-36 — The trip temperature is dependent on the temperature class of the particular motor insulation or expected operating temperature of bearings or case. See ANSI/NEMA MG 1-20.40 for insulation limitations. A motor rated over 1500 HP and less than 7000 volts with class B insulation may use a setting of 125 °C for the winding RTD trip level. Knowledge of the normal bearing or casing operating temperature may be used to select a trip temperature for these functions. The same setting is applicable to all RTD’s in a group. The groups are winding, motor bearing, load bearing and load case. Each group requires a setting, when RTD’s are used, and each group may be set independently.

FUNCTION 37 — Phase reversal trip is not dependent on a level setting. It is made operative by entering 1. To disable phase reversal trip and allow reversal of motor rotation, enter 9999.

FUNCTION 38 — Ground fault trip is generally set at its lowest value, 0.1 amp, when it is supplied by a “doughnut” type ct. Where this type ct is not available, the “residual” return circuit for the phase ct’s may be used to supply this circuit. A setting as high as 1.0 amp may be required to override the residual error current where this alternative arrangement is used.
FUNCTION 39 — A ground fault delay setting of 0.1 second will usually suffice to override those phenomenon which must be ignored where a “doughnut” ct scheme is used. A much longer setting, up to 1.0 second, may be required where the “residual” circuit supplies the ground current.

FUNCTION 40 — Load loss trip setting must be set below the lowest load level expected and below the alarm level set in Function 52. A minimum load level of 80% would allow an alarm level setting of 75% and a load loss trip level setting of 70%. Sudden reduction to a current level less than 20% of full load signifies removal of the motor from the line by other means, (such as a manual trip) and no alarm or trip action takes place.

FUNCTION 41 — Reduction of load below the load loss trip level for a period of time in excess of the load loss delay will cause tripping and “Load Loss” indication. A load loss delay of 1.0 second will usually suffice.

FUNCTION 42 — Phase differential trip may be set at 0.1 amperes, provided any surge protective capacitors are outside the protected zone.

FUNCTION 43 — Phase differential trip delay may generally be set to 0.04 seconds. Longer time delays up to 0.2 seconds may be required.

FUNCTION 44 — Following the presence of current greater than 20% of full load current, for a time in excess of two times the locked rotor delay that was set in Function 29, a sudden overcurrent will cause “Load Jam”. A typical jam setting is 1.5 times full load but may be increased to 3.0 or more where RTD’s are supplied.

FUNCTION 45 — The motor will contribute to a fault on the supply system and this current can approach locked rotor value. To avoid misoperation, the jam delay setting must be set to override this fault contribution. Generally, a setting of 10 seconds will suffice.

FUNCTIONS 46-49 — This alarm level (°C below trip) will serve to warn an operator of impending shutdown. A setting of 5 will generally be satisfactory for each of these functions.

FUNCTION 50 — The lowest setting compatible with normal unbalance conditions should be used. A setting of 5% will nominally be useable. A negative sequence current in excess of 5% of the positive sequence current will cause the alarm relay to dropout. A trip caused by excessive $I_1^2 + KI_2^2$, that is accompanied by a phase unbalance alarm will indicate “Phase Unbalance” only.

FUNCTION 51 — Any secondary ground current flow when the “doughnut” ct scheme is applied is abnormal and may be used to sense that a more serious problem is impending. A setting of 30% of the trip value may be used.

FUNCTION 52 — The load loss alarm must be set below the lowest expected load level and above the trip level of Function 40. This function will either be set at 5% below the minimum load level or will be disabled by setting 9999.

FUNCTION 53 — A load loss alarm delay setting of 1.0 second will usually be adequate.

FUNCTION 54 — The phase differential scheme uses “doughnut” ct’s to sense the sum of current in and out of individual phase windings of the motor. These ct’s will, under normal conditions have no secondary current flow. An alarm setting of 30% (of trip setting) will be useable, provided any surge protective equipment is outside the protected zone.

FUNCTION 55 — not used.

FUNCTION 56 — Tripping Mode Operation is selected by a number as outlined below:

1. Trip output and indication sealed in until reset. This is the factory set condition. This setting should be selected when “three-wire” ac control is used and automatic restart is not desired.

2. Trip is sealed in for all conditions except winding RTD overtemperature. An overtemperature trip will remain operative only as long as any winding RTD temperature is above the set point. All other trip conditions will seal in. This setting is used with “two-wire” ac control when automatic restart can be accomplished safely.

3. No trip seal-in. All trip signals will be maintained only as long as a trip condition exists. This setting is selected when a switch-gear type motor controller is used.
INSTALLATION

The relays should be mounted on switchboard panels or their equivalent in a location free from dirt, moisture, excessive vibration, corrosive fumes and heat. The maximum temperature outside the relay case should not exceed +55°C for normal operation.

Mount the relay vertically by means of the four mounting studs on the flanges. The mounting studs may be utilized for grounding the relay. External toothed washers are provided for use in the locations shown on the outline and drilling plan to facilitate making a good electrical connection between the relay case, its mounting studs and the relay panel. See Fig. 19 for the outline and drilling plan.

NOTE: All of the RTD's must be three wire devices having two excitation leads and one compensating lead. The excitation lead, connected with the compensated lead at the RTD, must be terminated to chassis ground at the MPR RTD terminal strip, not at the motor. These leads may or may not be tied together at the motor. Refer to Fig. 18, External Connection Diagram.

ADJUSTMENTS AND MAINTENANCE

The proper adjustments to insure correct operation of the relay have been made at the factory. Upon receipt of the relay, no further adjustments other than those covered under “SETTINGS” should be required.

Acceptance Test

The following acceptance test is recommended to insure that the relay is in proper working order. All test values in this procedure are relative to each function parameter as it was set at the factory. Refer to Table 5, Function Test Settings. Settings other than those shown in Table 5 may result in test values different from those listed in the following procedure. Functions not applicable to a given style relay will not appear in the display and the procedures should be bypassed.

1. Refer to Figs. 16 or 17, Test Connection Diagram. Connect a 0 to 25 amp balanced three-phase current source to the phase current inputs. Connect the phase differential and ground inputs to a single phase current source. Using a .050 to 50 second timer, connect “stop” to the output trip relay contacts, case terminals 15-16, and connect “start” to a switch controlling the current sources. The trip relay contacts, terminals 17-18, should also be used to open the current circuit after trip (SW-2, SW-3, and SW-5). Connect a rated power supply voltage source to case terminals 13-14. For relays with Emergency Restart, rated power supply voltage is applied to terminals 23 and 24 through a pushbutton switch (SW-4).

2. Apply power supply voltage to the relay, then press the RESET button.

3. Using the “Display Procedure” check that each function’s settings are per Table 5. If not, use the “Setting Procedure” to change a particular function to the setting required. Function 40 is disabled, 9999. Set this function to 40% for the Acceptance Test.
<table>
<thead>
<tr>
<th>Function</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Type & Qty of Winding RTD's</td>
</tr>
<tr>
<td>21</td>
<td>Type & Qty of Motor Bearing RTD's</td>
</tr>
<tr>
<td>22</td>
<td>Type & Qty of Load Bearing RTD</td>
</tr>
<tr>
<td>23</td>
<td>Type & Qty of Load Case RTD</td>
</tr>
<tr>
<td>24</td>
<td>Motor Factor K</td>
</tr>
<tr>
<td>25</td>
<td>CT Ratio</td>
</tr>
<tr>
<td>26</td>
<td>Primary Full Load Current</td>
</tr>
<tr>
<td>27</td>
<td>Frequency of Motor Current</td>
</tr>
<tr>
<td>28</td>
<td>Locked Rotor Current Trip</td>
</tr>
<tr>
<td>29</td>
<td>Locked Rotor Delay</td>
</tr>
<tr>
<td>30</td>
<td>Inst Overcurrent Trip</td>
</tr>
<tr>
<td>31</td>
<td>Inst Overcurrent Delay</td>
</tr>
<tr>
<td>32</td>
<td>Overload Trip</td>
</tr>
<tr>
<td>33</td>
<td>RTD Winding Temp Trip</td>
</tr>
<tr>
<td>34</td>
<td>RTD Motor Bearing Temp Trip</td>
</tr>
<tr>
<td>35</td>
<td>RTD Load Bearing Temp Trip</td>
</tr>
<tr>
<td>36</td>
<td>RTD Load Case Temp Trip</td>
</tr>
<tr>
<td>37</td>
<td>Phase Reversal Trip</td>
</tr>
<tr>
<td>38</td>
<td>Ground Fault Trip</td>
</tr>
<tr>
<td>39</td>
<td>Ground Fault Delay</td>
</tr>
<tr>
<td>40</td>
<td>Load Loss Trip</td>
</tr>
<tr>
<td>41</td>
<td>Load Loss Delay</td>
</tr>
<tr>
<td>42</td>
<td>Phase Diff Trip</td>
</tr>
<tr>
<td>43</td>
<td>Phase Diff Delay</td>
</tr>
<tr>
<td>44</td>
<td>Load Jam Trip</td>
</tr>
<tr>
<td>45</td>
<td>Load Jam Delay</td>
</tr>
<tr>
<td>46</td>
<td>Winding Temp</td>
</tr>
<tr>
<td>47</td>
<td>Motor Bearing Temp</td>
</tr>
<tr>
<td>48</td>
<td>Load Bearing Temp</td>
</tr>
<tr>
<td>49</td>
<td>Load Case Temp</td>
</tr>
<tr>
<td>50</td>
<td>Phase Unbalance Alarm</td>
</tr>
<tr>
<td>51</td>
<td>Ground Fault Alarm</td>
</tr>
<tr>
<td>52</td>
<td>Load Loss Alarm</td>
</tr>
<tr>
<td>53</td>
<td>Load Loss Alarm Delay</td>
</tr>
<tr>
<td>54</td>
<td>Phase Diff Alarm</td>
</tr>
<tr>
<td>56</td>
<td>Reset Mode Selection</td>
</tr>
</tbody>
</table>

TABLE 5 FUNCTION TEST SETTINGS
4. Apply 3.5 amps balanced three-phase current and note that the relay does not alarm or trip.

5. JAM. Apply 6 amps balanced three-phase current. The Overload LED will begin to flash. The alarm relay will drop out and the Jam LED will flash after 20 seconds. The trip relay will pick up and the Jam LED will remain “ON” at 30-33 seconds.

6. RESET. To reset the relay after each test, turn the power “OFF”, then “ON”. Push the RESET button to clear all relays and LED’s. Applied current will then represent a “cold” start.

7. OVERLOAD. Apply 8 amps balanced three-phase current. The Overload LED will begin to flash. The trip relay will pick up, the alarm relay will drop out and the overload LED will remain “ON” at 22 seconds. RESET.

8. LOCKED ROTOR. Apply 12 amps balanced three-phase current. The Overload LED will begin to flash. The trip relay will pick up, the alarm relay will drop out and the Locked Rotor LED will remain “ON” at 10 seconds. RESET.

9. EMERGENCY RESTART. For relays with Emergency Restart, apply trip current (12 amps three-phase). The trip relay will operate and the LED will remain “ON”. Momentarily apply rated power supply voltage to terminals 23 and 24. The trip relay, LED and VALUE display will reset. Power down to clear memory.

10. INST. CURRENT. Apply 22 amps balanced three-phase current. The trip relay will pick up, the alarm relay will drop out and the Instantaneous Current LED will remain “ON” after .060 second. RESET.

11. LOAD LOSS. Apply less than 1.2 amp balanced three-phase current. The Load Loss LED will flash and the alarm relay will drop out after 25 seconds. Apply less than .8 amp. The load loss LED will flash and the alarm relay will drop out after 25 seconds. The trip relay will pick up and the Load Loss LED will remain “ON” at 30 seconds. RESET.

12. PHASE UNBALANCE. Apply current Phase A = Phase B = 2 amps, PHASE C = 1 amp. The phase unbalance LED will flash and the alarm relay will drop out at 30-33 seconds. RESET.

13. LOSS OF PHASE. Remove Phase C and neutral and apply 2 amps to Phases A and B. The trip relay will pick up, the alarm relay will drop out and the Phase Unbalance LED will remain “ON” at 10 seconds. RESET.

14. PHASE REVERSAL. Reconnect Phase C and neutral. Reverse Phases B and C and apply 2 amps three-phase. The trip relay will pick up, the alarm relay will drop out and the Phase Reversal LED will remain “ON”. RESET. Reconnect phase A-B-C rotation.

15. GROUND FAULT. Apply greater than .050 amp single phase and note that the alarm relay drops out and the Ground Fault LED flashes. Apply greater than .100 amp. The trip relay will pick up and the LED will remain “ON”. RESET.

16. PHASE DIFF. Apply greater than .060 amp single phase and note that the alarm relay drops out and the Phase Diff. LED flashes. Apply greater than .250 amp. The trip relay will pick up and the LED will remain “ON”. RESET. Turn off the power supply voltage.

17. Connect variable resistors or decade boxes, 250 ohms minimum with 1 ohm increments, to RTD terminals 30 to 64. Connect shorting leads between the second and third terminals of each resistor input. Refer to the Test Connection Diagrams, Figs. 16 and 17. Set resistors 1 to 6 at 225 ohms, resistors 7 to 10 at 185 ohms and resistor 11 at 175 ohms.

18. Turn on the power supply voltage. Use the “Setting Procedure” to set functions 20, 21, 22 and 23 to type and quantities 36, 32 32 and 31 respectively.

19. Use the “Display Procedure” to monitor function 5, RTD 1 temperature. Increase the RTD 1 resistor to the values given in Table 6 and check alarm and trip temperatures. RESET.

20. Repeat Step 18 for all 11 RTD’s, functions 5 to 15.

21. Before removing resistors, disable functions 20 to 23 by setting them to “30”. This will prevent an “Error Message”.

22. Turn off the power supply voltage.
<table>
<thead>
<tr>
<th>RTD</th>
<th>Function</th>
<th>Temp. (°C)</th>
<th>Ohms (±3)</th>
<th>Temp. (°C)</th>
<th>Ohms (±3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>130</td>
<td>232</td>
<td>135</td>
<td>236</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>130</td>
<td>232</td>
<td>135</td>
<td>236</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>130</td>
<td>232</td>
<td>135</td>
<td>236</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>130</td>
<td>232</td>
<td>135</td>
<td>236</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>130</td>
<td>232</td>
<td>135</td>
<td>236</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>130</td>
<td>232</td>
<td>135</td>
<td>236</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>85</td>
<td>192</td>
<td>90</td>
<td>196</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>85</td>
<td>192</td>
<td>90</td>
<td>196</td>
</tr>
<tr>
<td>9</td>
<td>13</td>
<td>85</td>
<td>192</td>
<td>90</td>
<td>196</td>
</tr>
<tr>
<td>10</td>
<td>14</td>
<td>85</td>
<td>192</td>
<td>90</td>
<td>196</td>
</tr>
<tr>
<td>11</td>
<td>15</td>
<td>75</td>
<td>180</td>
<td>80</td>
<td>184</td>
</tr>
</tbody>
</table>

TABLE 6 RTD TEST VALUES
Routine Maintenance

All relays should be checked at least once every year per the Acceptance Test procedures.

Calibration

The trimpot P1 located on the microprocessor module has been calibrated at the factory and should not be disturbed unless the relay is out of calibration.

If calibration is necessary use the following procedure then recheck the relay following the “Acceptance Test” procedures. The relay’s accuracy not only depends on the trimpot’s adjustment but the accuracy of the measuring instruments used in calibration.

1. Apply three phase balanced full load current. (This is 2 amps if Functions 25 and 26 are set per Table 5.) Use an ammeter standard to measure this current.

2. Trimpot P1 is located near the bottom of the microprocessor module mounted to the front panel.

3. Monitor Function 00 and adjust P1 for 100 percent in the VALUE display. Check Functions 1, 2 and 3 for 100 ± 3%.

RENEWAL PARTS

Repair work can be done most satisfactorily at the factory. However, interchangeable parts can be furnished to the customers who are equipped for doing repair work. When ordering parts, always give the complete nameplate date.
REFERENCE DRAWINGS

Fig. 1. Internal Wiring/Block Diagram .. 1608C64
Fig. 2. MPR Power Supply Module Internal Schematic 1354D08
Fig. 3. Power Supply Module Component Location 1604C38
Fig. 4. MPR RTD Module Internal Schematic ... 1353D02
Fig. 5. RTD Module Component Location .. 1494B26
Fig. 6. MPR Differential/Restart Internal Schematic 1607C61
Fig. 7. Differential/Restart Module Component Location 1496B64
Fig. 8. MPR Phase Differential Module Internal Schematic 1605C02
Fig. 9. Phase Differential Module Component Location 1494B29
Fig. 10. MPR Microprocessor Module Internal Schematic 2388F31
Fig. 11. Microprocessor Module Component Location 1604C53
Fig. 12. MPR Typical Time Curves-Overload With RTD Protection (Cold Start) ... 619586
Fig. 13. MPR Typical Time Curves-Overload With RTD Protection (Hot Start) ... 619587
Fig. 14. MPR Typical Time Curves-Overload Without RTD Protection (Cold Start) ... 619588
Fig. 15. MPR Typical Time Curves-Overload Without RTD Protection (Hot Start) ... 619589
Fig. 16. Test Connection Diagram ... 1606C74
Fig. 17. Test Connection Diagram With Emergency Restart 1608C27
Fig. 18. External Connection Diagram ... 1352D50
Fig. 19. Outline and Drilling Plan ... 9645A54
Fig. 3 Power Supply Module Component Location
Fig. 5 RTD Module Component Location
Fig. 9 Phase Differential Module Component Location
Fig. 11 Microprocessor Module Component Location
Fig. 12 MPR Typical Time Curves-Overload With RTD Protection (Cold Start)
Fig. 13 MPR Typical Time Curves-Overload With RTD Protection (Hot Start)
Fig. 15 MPR Typical Time Curves-Overload Without RTD Protection (Hot Start)
Fig. 16 Test Connection Diagram
Fig. 17 Test Connection Diagram With Emergency Restart
OUTLINE DRAWING
SPECIAL 30 CASE - RELAY TYPE MPR

Fig. 19 Outline and Drilling Plan

ABB Power T&D Company Inc.
Relay Division 35 N. Snowdrift Rd. Allentown, PA 18106 (215) 395-7333
Printed in U.S.A.