Endura AZ40
Sensor assembly

High temperature probe assembly and seals kit
Kit references:
AZ400 758, AZ400 759, AZ400 760

Measurement made easy

1 Introduction

This publication details replacement procedures for the AZ40 high temperature probe assembly (AZ400 758) fitted to Endura AZ40 sensor assemblies with standard probes. Before carrying out any procedures, read Section 3. These procedures must be carried out by a suitably-trained technician.

Kit contains:
- High temperature probe assembly and seals kit
- This publication

Tools required
- Transmitter door key (supplied with transmitter)
- Operating instruction OI/AZ40-EN*
- 10 in adjustable spanner (wrench)
- 7/8 in. Spanner (wrench)
- Medium flat-bladed screwdriver
- Small crosshead screwdriver
- Anti-seize compound (suitable for temperatures up to 200°C [392°F])

*Operating instruction OI/AZ40-EN contains mandatory safety information and can be downloaded from the link (above) or by scanning this code:

2 For more information

Further information is available from:
www.abb.com/analytical

or by scanning these codes:

Sales
Service
Health & Safety

1. Safety precautions
Be sure to read, understand and follow the instructions contained within this document before and during use of the equipment. Failure to do so could result in bodily harm or damage to the equipment.

WARNING – Bodily injury Installation, operation, maintenance and servicing must be performed:
- by suitably trained personnel only
- in accordance with the information provided in this document
- in accordance with relevant local regulations

2. Potential safety hazards

2.1 Process conditions and requirements

WARNING – Bodily injury Environmental conditions
- High air / equipment / structure temperatures, poor air quality and adverse environmental conditions may be present when the process is running.
- It is recommended that the process is shut down before performing these procedures.
- The process must be cool enough to enable shutdown, disconnection and removal of the sensor in a safe manner and in accordance with relevant local regulations.
- Appropriate PPE, including mask and goggles must be worn when preparing the process for these procedures.

2.2 Endura AZ40 sensor – fibrous material in probe assembly

WARNING – Serious damage to health Fibrous material
- The sensor and probe assemblies (standard and high temperature versions) contain fibrous material that can be a health hazard if airborne.
- The material, predominantly – aluminosilicate refractory fibres, CAS 142844-00-6. Refractory ceramic fibres (RCF) are classified as:
 - Category 1B carcinogen under regulation (EC) No 1272/2008 – the classification, labelling and packaging regulations.
 - Category 2B carcinogen by inhalation by The International Agency for Research on Cancer (IARC).
- When removing the sensor cover and subsequent maintenance activities, exposure to the airborne fibres could occur. ABB have conducted air sampling assessments within the breathing zone of the operator and have identified that an exposure limit of 1 fibre / cubic centimetre is unlikely to occur.
- Exposure to any carcinogen must be kept as low as reasonably practicable.
- Appropriate PPE defined below, must be worn when working with probe assemblies (all installation, replacement, maintenance procedures):
 - A face fit tested, half mask conforming to EN140 (or equivalent) with a level 3 particulate filter conforming to EN 143 (or equivalent).
 - Disposable protective coveralls in accordance with Type 5 ISO 13982-1:2004 (or equivalent).
 - Goggles and gloves.

2.3 Endura AZ40 sensor / probe – installation to pressurized process

DANGER – Serious damage to health / risk to life
Pressurized equipment – do not install / remove / the sensor / probe if the process is at positive pressure
Installation, operation, maintenance and servicing of pressurized equipment must be performed:
- by suitably trained personnel only
- in accordance with the information provided in this document
- in accordance with relevant local regulations
- when process conditions are suitable to allow enough to enable installation / maintenance
3.2.4 Endura AZ40 sensor – high operational temperature on exposed parts

WARNING – Bodily injury
High temperature on exposed surfaces – see Fig. 3.1
- During operation, exposed sensor surfaces can reach 200 °C (392 °F).
- Ensure suitable PPE is available and is worn before handling the sensor.
- Do not touch exposed surfaces until the sensor / probe is cool enough to handle with PPE.

Fig. 3.1 High temperature points on exposed sensor surfaces during operation

3.2.5 Endura AZ40 sensor – weight

WARNING – Bodily injury
- The sensor weighs 9.0 kg (20 lb). When fitted with a probe / filter assembly, the combined sensor / probe weight is dependent on probe length / type plus filter option – refer to Operating instruction OI/AZ40-EN for weight details.
- The sensor / probe assembly must be mounted in accordance with the information supplied in Operating instruction OI/AZ40-EN.
- Suitable lifting equipment must be available when installing / removing the sensor / probe from the process.

3.2.6 Endura AZ40 analyzer – electrical

WARNING – Bodily injury
To ensure safe use when operating this equipment, the following points must be observed:
- up to 240 V AC may be present. Ensure the supply is isolated before removing the terminal cover
- normal safety precautions must be taken to avoid the possibility of an accident occurring when operating in conditions of high pressure and / or temperature

Safety advice concerning the use of the equipment described in this document or any relevant Material Safety Data Sheets (where applicable) can be obtained from the Company, together with servicing and spares information.

Endura AZ40 transmitter – weight

WARNING – Bodily injury
- The transmitter weighs 7.6 kg (17 lb) and must be mounted in accordance with the information supplied in Operating instruction OI/AZ40-EN.
- Suitable lifting equipment must be available when installing / removing the transmitter from the mounting.
4 Isolating the transmitter

Referring to Fig. 4.1.
1. Isolate transmitter A from incoming mains powers supplies B.

DANGER – Serious damage to health / risk to life

The transmitter must be isolated from mains power supplies before performing this procedure.

5 Shutting down / removing the sensor assembly from the process

DANGER – Serious damage to health / risk to life

Allow sufficient time for the sensor assembly to cool before performing these procedures.

5.1 Shutting the sensor assembly down at the process

Referring to Fig. 5.1.
1. Close the air supply valve A and shut down the test gas line B at the supply.

5.2 Disconnecting the sensor air and test gas supplies at the process

Referring to Fig. 5.2:
1. Disconnect air line B and test gas line C at sensor D.

Fig. 4.1 Isolating the transmitter from incoming mains power supplies

Fig. 5.1 Shutting down instrument air and test gas supplies

Fig. 5.2 Disconnecting instrument air and test gas supplies
5.3 Disconnecting the sensor electrical power and signal cables at the process

DANGER – Serious damage to health / risk to life
Allow sufficient time for the sensor assembly to cool before performing this procedure.

Referring to Fig. 5.3:
1. Use a medium flat-bladed screwdriver to unscrew 4 (captive) cover screws A and remove cover B from sensor assembly C.
2. Disconnect mains cable D from terminal block E.
3. Disconnect signal cable F from terminal block G.
4. Disconnect thermocouple cables H from terminal block I.
5. If optional blowback is fitted, disconnect cable J from terminal block K.

5.4 Removing the sensor assembly from the process

DANGER – Serious damage to health / risk to life
The transmitter must be isolated from mains power supplies before performing this procedure.

Referring to Fig. 5.4:
1. Use a 10 in. adjustable spanner (wrench) to remove 4 nuts, washers and lockwashers A securing sensor assembly B to mounting flange C. Set items aside for re-use.
2. Carefully remove the sensor assembly and the attached probe (including filter assembly) from the process.
3. Temporarily cover process opening until the sensor assembly is ready to be re-installed.
6 Removing the probe and adaptor flange (if fitted) from the sensor

CAUTION – Damage to equipment
Appropriate PPE (gloves / goggles) must be worn when performing this step. The ceramic material around the probe may be fragile after exposure to high temperature. When removing the probe from the sensor, handle with great care. Do not subject any part of the probe to shock.

Referring to Fig. 6.1:

1. If a flange adaptor [A] is fitted, use a 10 in. adjustable spanner (wrench) to loosen and remove flange mounting nuts and washers [B].
2. Remove and retain flange adaptor [A].
3. Carefully unscrew probe assembly [C] and remove from manifold [D].
4. Proceed to Section 7, page 7.

Fig. 6.1 Removing the probe and adaptor flange (if fitted) from the sensor
7 Replacement procedure

CAUTION – Damage to equipment
Appropriate PPE (gloves / goggles) must be worn when performing this step. The ceramic material around the probe is fragile. When fitting the probe to the sensor, handle with great care. Do not subject any part of the probe to shock.

Referring to Fig. 7.1:
1. If a flange adapter (A) is required, fit it to sensor assembly (B) using 4 hex nuts / washers (C).
2. Remove gland nut (D), bush (E) and Lava seal (F) from filter assembly (G).
3. Slide the gland nut (D), bush (E) and Lava seal (F) onto probe (H) with chamfered side towards filter assembly (G).
4. Apply a light coating of an anti-seize compound (suitable for temperatures up to 200 °C [392 °F]) to gland nut threads (I).
5. Slide probe shaft (H) into sealing connector (J).
6. Slide Lava seal (F), bush (E) into sealing connector (J) then thread gland nut (D) onto sealing connector (J) and tighten finger-tight.
7. Adjust probe until the insulator cement joint just contacts gland nut (D).
8. Slowly tighten gland nut (D) 1/2 a turn.
9. Check probe (H) is held firmly. If movement is detected, carefully tighten gland nut (D) a further 1/8th of a turn.
10. Repeat step 9 until probe shaft (H) is held firmly.
11. Apply a light coating of an anti-seize compound (suitable for temperatures up to 200 °C [392 °F]) to the threaded end (K) of probe (H).
12. Thread the probe with filter assembly into the 1/4 in. NPT port (L) and tighten.

13. Align spacer (M) to support the probe / filter assembly within the standoff.
14. Prepare the sensor assembly for operation by reversing the disconnection and shutdown procedures – refer to Sections 5 and 4 (pages 4 and 4).
15. Refer to Operating instruction OI/AZ40-EN to restore the analyzer to full operational condition.

Fig. 7.1 High temperature probe and filter assembly