PLUTO API de sécurité

Manuel d’utilisation

Matériel
Sommaire :

1. Généralités ... 4
2. Boîtier ... 5
3. Installation électrique .. 5
4. Entrées et sorties ... 6
4.1. I.. Entrées de sécurité logiques 12
4.2. IQ.. Entrées de sécurité logiques / sorties logiques (non sécurisées) ... 13
4.2.1. Signaux dynamiques .. 13
4.2.2. Mesure de l’intensité IQ16, IQ17 (Pluto A20 seulement) 13
4.3. Entrées analogiques .. 14
4.3.1. Entrées analogiques 0-10V / 4-20 mA (Pluto D20 et D45) ... 14
4.3.1.1.1. Dispositifs de sécurité à sorties à transistors 14
4.3.1.1.1.1. Sécurité d'utilisation 14
4.3.1.1.2. Solutions à deux canaux 14
4.3.1.1.2. Solution à un seul canal 14
4.3.1.2. 0 V .. 15
4.3.2. Architectures possibles, niveaux de sécurité réalisables et conditions requises 15
4.3.2.1. Connexion de capteurs de sortie analogiques (0-10 V) ... 16
4.3.3. Entrées analogiques (0 – 27V)................................. 16
4.4. Entrées de compteur Pluto D45 17
4.4.1. Comptage croissant ... 17
4.4.2. Comptage croissant/décroissant 18
4.4.3. Types de sortie de capteur 19
4.4.4. Paramètres « No Filt » pour les compteurs 19
4.4.5. Contrôle de vitesse avec deux capteurs 19
4.4.6. Contrôle de vitesse avec un capteur 20
4.4.7. Architectures possibles, niveaux de sécurité réalisables et conditions requises 21
4.4.7.1. Exemples d’application .. 21
4.5. Sorties de sécurité .. 22
4.5.1. Sorties relais ... 22
4.5.2. Sorties de sécurité à semi-conducteurs 22
4.5.2.1.1. Impulsions de test ... 23
4.5.2.1.1.1. Désactivation des impulsions de test 23
4.5.2. Sorties de sécurité .. 23
4.5.2.1. Impulsions de test ... 23
4.5.2.1.1. Désactivation des impulsions de test 23
4.6. Bus AS-Interface (AS-i) ... 24
4.6.1. Connexion AS-i .. 24
4.6.2. Lire les esclaves de sécurité 25
4.6.3. Types d’esclaves .. 25
4.6.4. Modes de fonctionnement 26
4.6.5. Échanger un esclave de sécurité en cours de fonctionnement 26
4.6.5.1. Échanger un esclave non de sécurité en cours de fonctionnement 27
5. Connexion des entrées .. 27
5.1. Signaux dynamiques ... 27
5.1.1. Connexion des entrées .. 27
5.1.2. Connexion des entrées/sorties IQ 28
5.2. Connexion de dispositifs de sécurité 29
6.1. Systèmes à deux canaux .. 29
6.2. Systèmes à un seul canal ... 30
6.3. Arrêt d’urgence ... 30
6.4. Contrôle des courts-circuits externes 31
6.5. Dispositifs de sécurité à sorties à transistors 32
6.6. Tapis de sécurité et bords sensibles de sécurité 32
6.7. Commandes bimanuelles ... 33
6.8. Fonction bouton-poussoir lumineux 34
6.9. Contrôle de la lampe d’inhibition (Pluto A20 seulement) ... 34
7. Connexion des sorties ... 35
7.1. Exemples de connexion .. 35
1 Généralités

Pluto est un système de sécurité programmable garantissant qu’un défaut dans le système de commande n’entraîne pas une perte de la fonction de sécurité : les fonctions du système sont en effet redondantes et autocontrôlées. À la différence des systèmes API ordinaires, Pluto utilise deux microprocesseurs qui commandent et contrôlent tous deux chaque fonction de sécurité. Chaque entrée du système est connectée séparément à chaque processeur, chacun doté de sa propre mémoire et exécutant son propre programme. Les processeurs comparent continuellement leurs résultats pour veiller à la cohérence des données.

Chaque sortie sécurisée est connectée aux deux processeurs et les conditions logiques d’activation de la sortie définies dans le logiciel de l’application sont contrôlées par les deux processeurs. La sortie n’est activée que si les deux processeurs sont d’accord.

Chaque Pluto peut être interconnecté à d’autres Pluto via un bus CAN. Le niveau de sécurité sur le bus est le même que celui à l’intérieur de chaque unité.

Pluto est conforme aux exigences de la Directive Machine de l’UE (2006/42/CE) concernant les systèmes de commande de sécurité. Le système peut toutefois être utilisé dans des applications aux exigences similaires comme les processus industriels, les chaudières, les voies ferrées, etc.

Pluto est conçu conformément aux normes de sécurité fonctionnelle pour les systèmes de commande suivantes :
- EN 954-1, Catégorie 4
- EN 62061, SIL3
- EN 13849-1, Catégorie 4 et Performance Level e
- IEC 61508-, SIL 3
- IEC-EN 61511-, SIL 3
- EN 50156-1

Pour qu’une application soit conforme à l’une des normes ci-dessus, il est nécessaire que la conception et l’installation de tout le système relatif à la sécurité (pas uniquement Pluto) avec capteurs et actuateurs soient conformes aux exigences posées.
2 Boîtier

Le boîtier de Pluto permet un montage rapide sur un rail DIN dans des armoires électriques ou d'autres boîtiers adaptés. Le câblage externe est connecté à des borniers à vis. Dans un souci de simplicité et pour éviter des erreurs de connexion lors de l'échange d'un Pluto, les blocs de connexion sont débrochables et il n'est pas nécessaire de déconnecter chaque conducteur.

L’unité doit être mise hors tension lors de la connexion et de la déconnexion.

3 Installation électrique

Le système est alimenté en 24 VDC. Il est doté d’une protection interne contre les surintensités mais doit être protégé par un fusible externe. (Voir les caractéristiques techniques).

Si plusieurs Pluto sont interconnectés via le bus, ils doivent utiliser la même mise à la terre. Il est indispensable qu’ils aient une référence de potentiel commune.

Pluto est conçu pour les applications conformes à IEC-EN 60204-1 et prend en compte les points suivants :
- « Des transformateurs doivent être utilisés pour l’alimentation des circuits de commande ».
- « Quand plusieurs transformateurs sont utilisés, il est recommandé que les bobines de ces transformateurs soient connectées de façon à ce que les tensions secondaires soient en phase. » (voir EN 60204-1, 9.1.1)

Ces exigences doivent être respectées pour la connexion des relais de sortie.
- Pour des raisons de sécurité électrique et afin de pouvoir détecter des défauts à la terre critiques à la sécurité dans les circuits à un seul canal, la borne 0V doit être connectée à un circuit de mise à la terre de protection (voir EN 60 204-1, 9.4.3.1 Méthode a).
- Pour l’installation dans des ascenseurs conformément à EN 81-1+A3 et/ou EN 81-2+A3, Pluto doit être installé dans un boîtier de classe de protection IP54 au minimum.

Le système est conçu et testé pour une installation de catégorie II selon IEC 61010-1 (tous les circuits connectés sont alimentés par l’intermédiaire des transformateurs de tension régulée).

Les câbles et les dispositifs connectés comme les capteurs, les boutons-poussoirs et les commutateurs, doivent être isolés pour 250 V.

*) Dispositif d’extinction d’étincelles

(`Pluto`s)
4 Entrées et sorties

Vue d’ensemble des E/S de la famille PLUTO A20 (sauf B22 et D20)

Entrées et sorties pour la famille A20 (sauf B22 et D20)

<table>
<thead>
<tr>
<th>Borne sur Pluto</th>
<th>Nom de l’E/S dans le logiciel</th>
<th>Type d’E/S</th>
<th>Locale/globale</th>
</tr>
</thead>
<tbody>
<tr>
<td>I0...I7</td>
<td>I_.0...I_.7</td>
<td>Entrée de sécurité</td>
<td>Globale</td>
</tr>
<tr>
<td>Q0</td>
<td>Q_.0</td>
<td>Sortie de sécurité (Relais)</td>
<td>Globale</td>
</tr>
<tr>
<td>Q1</td>
<td>Q_.1</td>
<td>Sortie de sécurité (Relais)</td>
<td>Globale</td>
</tr>
<tr>
<td>Q2</td>
<td>Q_.2</td>
<td>Sortie de sécurité (Transistor)</td>
<td>Globale</td>
</tr>
<tr>
<td>Q3</td>
<td>Q_.3</td>
<td>Sortie de sécurité (Transistor)</td>
<td>Globale</td>
</tr>
<tr>
<td>IQ10 – IQ17</td>
<td>I_.10...I_.17</td>
<td>Entrée de sécurité</td>
<td>Globale</td>
</tr>
<tr>
<td></td>
<td>Q_.10...Q_.17</td>
<td>Sortie non de sécurité</td>
<td>Locale</td>
</tr>
</tbody>
</table>

Où « _ » est le numéro du Pluto.

Vue d’ensemble des E/S du PLUTO B22

Entrées et sorties pour le Pluto B22

<table>
<thead>
<tr>
<th>Borne sur Pluto</th>
<th>Nom de l’E/S dans le logiciel</th>
<th>Type d’E/S</th>
<th>Locale/globale</th>
</tr>
</thead>
<tbody>
<tr>
<td>I0...I7</td>
<td>I_.0...I_.7</td>
<td>Entrée de sécurité</td>
<td>Globale</td>
</tr>
<tr>
<td>I20...I25</td>
<td>I_.20...I_.25</td>
<td>Entrée de sécurité</td>
<td>Locale</td>
</tr>
<tr>
<td>IQ10...IQ17</td>
<td>I_.10...I_.17</td>
<td>Entrée de sécurité</td>
<td>Globale</td>
</tr>
<tr>
<td></td>
<td>Q_.10...Q_.17</td>
<td>Sortie non de sécurité</td>
<td>Locale</td>
</tr>
</tbody>
</table>

Où « _ » est le numéro du Pluto.
Vue d’ensemble des E/S du PLUTO D20

Entrées et sorties pour le Pluto D20

<table>
<thead>
<tr>
<th>Borne sur Pluto</th>
<th>Nom de l’E/S dans le logiciel</th>
<th>Type d’E/S</th>
<th>Locale/globale</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA0…IA3</td>
<td>I_.0…I_.3</td>
<td>Entrée de sécurité / Entrée analogique de sécurité 4-20mA/0-10V</td>
<td>Globale</td>
</tr>
<tr>
<td>I4…I7</td>
<td>I_.4…I_.7</td>
<td>Entrée de sécurité</td>
<td>Globale</td>
</tr>
<tr>
<td>Q0</td>
<td>Q_.0</td>
<td>Sortie de sécurité (Relais)</td>
<td>Globale</td>
</tr>
<tr>
<td>Q1</td>
<td>Q_.1</td>
<td>Sortie de sécurité (Relais)</td>
<td>Globale</td>
</tr>
<tr>
<td>Q2</td>
<td>Q_.2</td>
<td>Sortie de sécurité (Transistor)</td>
<td>Globale</td>
</tr>
<tr>
<td>Q3</td>
<td>Q_.3</td>
<td>Sortie de sécurité (Transistor)</td>
<td>Globale</td>
</tr>
<tr>
<td>IQ10…IQ17</td>
<td>I_.10…I_.17</td>
<td>Entrée de sécurité</td>
<td>Globale</td>
</tr>
<tr>
<td></td>
<td>Q_.10…Q_.17</td>
<td>Sortie non de sécurité</td>
<td>Locale</td>
</tr>
</tbody>
</table>

Où « _ » est le numéro du Pluto.

ABB
Vue d'ensemble des E/S des PLUTO doubles

Entrées et sorties pour la famille double

<table>
<thead>
<tr>
<th>Borne sur Pluto</th>
<th>Nom de l’E/S dans le logiciel</th>
<th>Type d’E/S</th>
<th>Locale/globale</th>
</tr>
</thead>
<tbody>
<tr>
<td>I0...I7</td>
<td>I_.0...I_.7</td>
<td>Entrée de sécurité</td>
<td>Globale</td>
</tr>
<tr>
<td>I30...I37</td>
<td>I_.30...I_.37</td>
<td>Entrée de sécurité</td>
<td>Locale</td>
</tr>
<tr>
<td>I40...I47</td>
<td>I_.40...I_.47</td>
<td>Entrée de sécurité</td>
<td>Locale</td>
</tr>
<tr>
<td>Q0</td>
<td>Q_.0</td>
<td>Sortie de sécurité (Relais)</td>
<td>Globale</td>
</tr>
<tr>
<td>Q1</td>
<td>Q_.1</td>
<td>Sortie de sécurité (Relais)</td>
<td>Globale</td>
</tr>
<tr>
<td>Q2</td>
<td>Q_.2</td>
<td>Sortie de sécurité (Transistor)</td>
<td>Globale</td>
</tr>
<tr>
<td>Q3</td>
<td>Q_.3</td>
<td>Sortie de sécurité (Transistor)</td>
<td>Globale</td>
</tr>
<tr>
<td>Q4</td>
<td>Q_.4</td>
<td>Sortie de sécurité (Relais)</td>
<td>Locale</td>
</tr>
<tr>
<td>Q5</td>
<td>Q_.5</td>
<td>Sortie de sécurité (Relais)</td>
<td>Locale</td>
</tr>
<tr>
<td>IQ10 – IQ17</td>
<td>I_.10...I_.17</td>
<td>Entrée de sécurité</td>
<td>Globale</td>
</tr>
<tr>
<td>Q10...Q17</td>
<td>Q_.10...Q_.17</td>
<td>Sortie non de sécurité</td>
<td>Locale</td>
</tr>
<tr>
<td>IQ20...IQ27</td>
<td>I_.20...I_.27</td>
<td>Entrée de sécurité</td>
<td>Locale</td>
</tr>
<tr>
<td>Q20...Q27</td>
<td>Q_.20...Q_.27</td>
<td>Sortie non de sécurité</td>
<td>Locale</td>
</tr>
</tbody>
</table>

Où « _ » est le numéro du Pluto.
Vue d'ensemble des E/S du PLUTO D45

Entrées et sorties pour le Pluto D45

<table>
<thead>
<tr>
<th>Borne sur Pluto</th>
<th>Nom de l'E/S dans le logiciel</th>
<th>Type d'E/S</th>
<th>Locale/globale</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA0…IA3</td>
<td>I_.0…I_.3</td>
<td>Entrée de sécurité/Entrée analogique de sécurité 4-20mA/0-10V/Entrée compteur</td>
<td>Globale</td>
</tr>
<tr>
<td>IA4…IA7</td>
<td>I_.4…I_.7</td>
<td>Entrée de sécurité/Entrée analogique de sécurité 4-20mA/0-10V/</td>
<td>Globale</td>
</tr>
<tr>
<td>I30…I37</td>
<td>I_.30…I_.37</td>
<td>Entrée de sécurité</td>
<td>Local</td>
</tr>
<tr>
<td>I40…I47</td>
<td>I_.40…I_.47</td>
<td>Entrée de sécurité</td>
<td>Local</td>
</tr>
<tr>
<td>Q0</td>
<td>Q_.0</td>
<td>Sortie de sécurité (Relais)</td>
<td>Globale</td>
</tr>
<tr>
<td>Q1</td>
<td>Q_.1</td>
<td>Sortie de sécurité (Relais)</td>
<td>Globale</td>
</tr>
<tr>
<td>Q2</td>
<td>Q_.2</td>
<td>Sortie de sécurité (Transistor)</td>
<td>Globale</td>
</tr>
<tr>
<td>Q3</td>
<td>Q_.3</td>
<td>Sortie de sécurité (Transistor)</td>
<td>Globale</td>
</tr>
<tr>
<td>Q4</td>
<td>Q_.4</td>
<td>Sortie de sécurité (Relais)</td>
<td>Local</td>
</tr>
<tr>
<td>Q5</td>
<td>Q_.5</td>
<td>Sortie de sécurité (Relais)</td>
<td>Local</td>
</tr>
<tr>
<td>IQ10 – IQ17</td>
<td>I_.10…I_.17</td>
<td>Entrée de sécurité</td>
<td>Globale</td>
</tr>
<tr>
<td>Q10…Q17</td>
<td>Q_.10…Q_.17</td>
<td>Sortie non de sécurité</td>
<td>Local</td>
</tr>
<tr>
<td>IQ20…IQ26</td>
<td>I_.20…I_.26</td>
<td>Entrée de sécurité</td>
<td>Local</td>
</tr>
<tr>
<td>Q20…Q26</td>
<td>Q_.20…Q_.26</td>
<td>Sortie non de sécurité</td>
<td>Local</td>
</tr>
</tbody>
</table>

Où « _ » est le numéro du Pluto.
Vue d'ensemble des E/S du PLUTO B42 AS-i

<table>
<thead>
<tr>
<th>Borne sur Pluto</th>
<th>Nom de l'E/S dans le logiciel</th>
<th>Type d'E/S</th>
<th>Locale/globale</th>
</tr>
</thead>
<tbody>
<tr>
<td>I0…I3</td>
<td>I_.0…I_.3</td>
<td>Entrée de sécurité</td>
<td>Globale</td>
</tr>
<tr>
<td>I30…I37</td>
<td>I_.30…I_.37</td>
<td>Entrée de sécurité</td>
<td>Locale</td>
</tr>
<tr>
<td>I40…I47</td>
<td>I_.40…I_.47</td>
<td>Entrée de sécurité</td>
<td>Locale</td>
</tr>
<tr>
<td>Q0</td>
<td>Q_.0</td>
<td>Sortie de sécurité (Relais)</td>
<td>Locale</td>
</tr>
<tr>
<td>Q1</td>
<td>Q_.1</td>
<td>Sortie de sécurité (Relais)</td>
<td>Locale</td>
</tr>
<tr>
<td>Q2</td>
<td>Q_.2</td>
<td>Sortie de sécurité (Transistor)</td>
<td>Locale</td>
</tr>
<tr>
<td>Q3</td>
<td>Q_.3</td>
<td>Sortie de sécurité (Transistor)</td>
<td>Locale</td>
</tr>
<tr>
<td>Q4</td>
<td>Q_.4</td>
<td>Sortie de sécurité (Relais)</td>
<td>Locale</td>
</tr>
<tr>
<td>Q5</td>
<td>Q_.5</td>
<td>Sortie de sécurité (Relais)</td>
<td>Locale</td>
</tr>
<tr>
<td>IQ10 – IQ17</td>
<td>I_.10…I_.17</td>
<td>Entrée de sécurité</td>
<td>Locale</td>
</tr>
<tr>
<td>IQ20…IQ27</td>
<td>I_.20…I_.27</td>
<td>Entrée de sécurité</td>
<td>Locale</td>
</tr>
<tr>
<td>ASi+</td>
<td></td>
<td>Bus AS-i</td>
<td></td>
</tr>
<tr>
<td>ASi-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Où « _ » est le numéro du Pluto.
Vue d'ensemble des E/S des PLUTO AS-i

<table>
<thead>
<tr>
<th>Borne sur Pluto</th>
<th>Nom de l'E/S dans le logiciel</th>
<th>Type d'E/S</th>
<th>Locale/globale</th>
</tr>
</thead>
<tbody>
<tr>
<td>I0</td>
<td>I_.0</td>
<td>Entrée de sécurité</td>
<td>Globale</td>
</tr>
<tr>
<td>I1…I3</td>
<td>I_.1…I_.3</td>
<td>Entrée de sécurité</td>
<td>Locale</td>
</tr>
<tr>
<td>Q0</td>
<td>Q_.0</td>
<td>Sortie de sécurité (Relais)</td>
<td>Globale</td>
</tr>
<tr>
<td>Q1</td>
<td>Q_.1</td>
<td>Sortie de sécurité (Relais)</td>
<td>Globele</td>
</tr>
<tr>
<td>Q2</td>
<td>Q_.2</td>
<td>Sortie de sécurité (Transistor)</td>
<td>Globele</td>
</tr>
<tr>
<td>Q3</td>
<td>Q_.3</td>
<td>Sortie de sécurité (Transistor)</td>
<td>Globele</td>
</tr>
<tr>
<td>IQ10…IQ13</td>
<td>I_.10…I_.13</td>
<td>Entrée de sécurité</td>
<td>Locale</td>
</tr>
<tr>
<td></td>
<td>Q_.10…Q_.13</td>
<td>Sortie non de sécurité</td>
<td>Locale</td>
</tr>
<tr>
<td>ASI+</td>
<td>-</td>
<td>Bus AS-i</td>
<td>-</td>
</tr>
<tr>
<td>ASI-</td>
<td>-</td>
<td>Bus AS-i</td>
<td>-</td>
</tr>
</tbody>
</table>

Où « _ » est le numéro du Pluto.

Le Pluto AS-i peut aussi lire les entrées et commander les sorties des esclaves AS-i connectés au bus AS-i. Vous trouverez davantage d’information sur les différents types d’esclaves au chapitre 4.5.2 Types d’esclaves. Les configurations de Pluto correspondantes sont traitées dans le Manuel de Programmation de Pluto.
Pluto O2 est un module de sortie de sécurité avec deux groupes de sortie relais dotés de trois contacts chacun. Pluto O2 est également équipé de deux entrées de sécurité pour le contrôle et deux entrées de sécurité/sorties non de sécurité combinées (IQ).

4.1 I. Entrées de sécurité logiques

Chaque entrée est connectée séparément aux deux processeurs, ce qui facilite l'utilisation de dispositifs de sécurité à un seul canal et à deux canaux.

Les entrées peuvent recevoir un signal de +24V ou les signaux dynamiques A, B et C.
4.2 IQ. Entrées de sécurité logiques / sorties logiques (non sécurisées)

Ce groupe de bornes d’E/S fournit 4 fonctions différentes. Chaque borne est connectée aux deux processeurs et peut donc être utilisée comme une entrée de sécurité.

Chaque borne est également équipée d’un transistor de sortie et peut être configurée comme une entrée de sécurité ou une sortie non sécurisée. Ces sorties doivent être utilisées pour des fonctions ne nécessitant aucune redondance, l’éclairage de voyants ou la transmission de signaux d’état par ex.

4.2.1 Signaux dynamiques

Les bornes IQ peuvent être configurées comme des sorties dynamiques A, B ou C pour alimenter les entrées. Quand une sortie est configurée comme dynamique, un train d’impulsions unique est généré. Une entrée de sécurité peut être configurée pour accepter uniquement ce train d’impulsions spécifique comme condition d’entrée et le système détecte alors des conditions externes de court-circuit (voir la description séparée).

4.2.2 Mesure de l’intensité IQ16, IQ17 (Pluto A20 seulement)

Voir 6.9.
4.3 Entrées analogiques

4.3.1 Entrées analogiques 0-10V / 4-20 mA (Pluto D20 et D45)

Pluto D20 et Pluto D45 sont équipés respectivement de 4 et 8 entrées analogiques de sécurité 4-20 mA/0-10 V. Ces entrées (D20 : IA0 – IA3, D45 : IA0 – IA7) peuvent être configurées comme des entrées de sécurité « ordinaires », comme des entrées analogiques 0-10 V ou comme des entrées analogiques 4-20 mA. (Pour D45, IA0 – IA3 peuvent aussi être configurées comme des entrées de compteur, voir ci-dessous.) Pour qu’une application soit homologuée selon SIL 3/PL e, deux capteurs en parallèle avec une entrée chacun doivent être utilisés. Voir le manuel de programmation de Pluto.

4.3.1.1 Sécurité d’utilisation

Chaque entrée est reliée aux deux processeurs pour permettre leur utilisation comme entrées de sécurité autonomes. Certaines erreurs toutefois peuvent entraîner des mesures erronées. Il s’agit notamment d’une coupure au niveau du bornier ou du câblage entre le capteur et Pluto entraînant la lecture par Pluto d’une valeur proche de 0.

Pour un niveau supérieur de sécurité ou de redondance pour une application complète, certaines exigences et solutions sont possibles.

4.3.1.1.1 Solutions à deux canaux

Une application complète à deux canaux avec deux capteurs utilisant chacun une entrée et la comparaison des valeurs des capteurs peut être homologuée selon la catégorie 4/PL e et SIL 3. En général, les valeurs physiques doivent être dynamiques et non statiques. Dans le cas où ces valeurs physiques sont presque statiques, un test doit être réalisé quotidiennement pour la catégorie 4. Si ce n'est pas le cas, la solution peut être homologuée selon la catégorie 3/PL d uniquement.

L’application comprend normalement une fonction de désactivation utilisée en cas de dépassement d’une valeur limite telle que la température, la pression, etc. Dans la mesure où l’industrie de transformation comprend des applications qui ne se désactivent pas dans les conditions normales de fonctionnement, une procédure test est indispensable, en particulier pour le test des capteurs. Ce test peut être manuel et réalisé une fois par an.

4.3.1.1.2 Solution à un seul canal

Une fonction de sécurité avec un capteur unique utilisant une seule entrée est homologuée selon la catégorie 2, PL b..c, SIL 2. Les facteurs avec un impact sur le niveau de sécurité sont les suivants :
- Application avec un comportement dynamique prévisible.
- Détection d’une rupture de câble ou d’une autre interruption du signal. Des valeurs d’entrée proches de 0 V et 0 mA peuvent être utilisées par défaut. Exemple : utilisation de 4-20 mA comme valeurs correctes.
- Si la valeur du capteur peut être comparée avec la valeur d’une autre source. (Cette solution peut cependant être considérée comme comptant deux canaux.)
- Si des procédures automatiques de test peuvent être appliquées.
- Protection des câbles. Les câbles peuvent être protégés contre les dommages mécaniques et isolés d’autres câbles.
- Capteur homologué de type FS.

Des capteurs homologués permettent au plus une catégorie 2, PL d, SIL 2.
4.3.1.2 0 V
En général, une valeur nulle ou proche de 0 V/mA ne peut pas être considérée comme un signal réel, sauf si un comportement dynamique de l’application permet de le vérifier. Il y a deux raisons :
- 0 peut être la conséquence d’une erreur interne de Pluto. Les variables du code API sont souvent définies sur 0.
- Une valeur analogique proche de 0, 0...0,5 V/0...0,5 mA peut être due à la rupture d’un câble ou à une autre coupure au niveau du capteur relié.
 L’utilisation de la plage 4-20 mA ou 2-10 V est pour cette raison recommandée.

Remarque : si des signaux nuls sont utilisés, la vérification de l’exactitude doit être réalisée par le programme de l’application.

4.3.2 Architectures possibles, niveaux de sécurité réalisables et conditions requises
Le tableau suivant est un aperçu des niveaux de sécurité de différentes applications. Le niveau SIL / PL dépend du capteur utilisé dans l’application.

<table>
<thead>
<tr>
<th>Structure</th>
<th>Réalisable SIL / PL</th>
<th>Conditions requises, diagnostic à réaliser dans le programme de l’application</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 capteur standard</td>
<td>SIL 1 / PL c</td>
<td>Les valeurs mesurées < 3,0 mA et < 1,5 V respectivement doivent être considérées comme des conditions de défaillance. (CC ≥ 60 %)</td>
</tr>
<tr>
<td>1 capteur FS certifié (SIL 2 / PL d)</td>
<td>SIL 2 / PL d</td>
<td>Les valeurs mesurées < 3,0 mA et < 1,5 V respectivement doivent être considérées comme des conditions de défaillance. Le cas échéant, mesures additionnelles de diagnostic mentionnées dans le manuel de sécurité du capteur.</td>
</tr>
<tr>
<td>1 capteur FS certifié (SIL 3 / PL e)</td>
<td>SIL 2 / PL d</td>
<td>Les valeurs mesurées < 3,0 mA et < 1,5 V respectivement doivent être considérées comme des conditions de défaillance. Le cas échéant, mesures additionnelles de diagnostic mentionnées dans le manuel de sécurité du capteur.</td>
</tr>
<tr>
<td>2 capteurs standard (redondance homogène)</td>
<td>SIL 2.3 / PL d</td>
<td>Les valeurs mesurées < 3,0 mA et < 1,5 V respectivement doivent être considérées comme des conditions de défaillance. Contrôle que les valeurs mesurées des deux canaux concordent. (CC ≥ 60 %)</td>
</tr>
<tr>
<td>2 capteurs standard (redondance diverse)</td>
<td>SIL 3 / PL e</td>
<td>Les valeurs mesurées < 3,0 mA et < 1,5 V respectivement doivent être considérées comme des conditions de défaillance. Contrôle que les valeurs mesurées des deux canaux concordent. (CC ≥ 90 %)</td>
</tr>
</tbody>
</table>
4.3.2.1 Connexion de capteurs de sortie analogiques (0-10 V)

Il est important que le câble 0 V du capteur analogique soit connecté *directement* à la borne « 0 V » de Pluto, et non à 0 V ailleurs. Le courant dans le conducteur 0 V risque sinon d’affecter la valeur analogique mesurée.

![Diagramme de connexion de capteurs analogiques](image)

Capteur avec sortie 0-10 V. L'alimentation 0 V vers le capteur doit être connectée directement à la borne 0 V de Pluto.

Lorsque des câbles longs partent du capteur analogique, il est préférable d’utiliser un capteur de sortie de courant plutôt qu’un capteur de sortie de tension car les câbles longs peuvent entraîner une chute de tension. Ces derniers n’ont aucun impact sur une boucle de courant (4-20 mA).

4.3.3 Entrées analogiques (0 – 27V)

En fonction du modèle, Pluto est doté d’une ou plusieurs entrées analogiques. Ces entrées sont connectées à des bornes d’entrées logiques (I5 pour le Pluto A20 et I5, I6, I7 pour le Pluto B46 par ex.). Ces entrées analogiques sont lues par les deux processeurs et peuvent donc être utilisées pour les applications de sécurité.

Les valeurs lues sont disponibles dans des registres du système et peuvent être utilisées dans le programme de l’APIldS. Voir le manuel de programmation.
4.4 Entrées de compteur Pluto D45

Pour Pluto D45, les entrées IA0 – IA3 peuvent être configurées comme des entrées de compteur (comptage d'impulsions) qui fonctionnent pour des fréquences jusqu'à 14000 Hz. Les entrées de compteur IA0 – IA3 peuvent être configurées pour deux modes, le comptage croissant et le comptage croissant/décroissant.

Configuration de l'entrée de compteur

<table>
<thead>
<tr>
<th>Signal</th>
<th>Type of signal</th>
<th>Shape/Level</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA0.0</td>
<td>Counter input</td>
<td>Up</td>
<td>Non_Inv No_Filt</td>
</tr>
<tr>
<td>IA0.1</td>
<td>Undefined</td>
<td>Up</td>
<td>Non_Inv No_Filt</td>
</tr>
<tr>
<td>IA0.2</td>
<td>Undefined</td>
<td>Up,Down</td>
<td>Non_Inv No_Filt</td>
</tr>
</tbody>
</table>

4.4.1 Comptage croissant

Lorsque l'entrée est configurée pour le comptage croissant, Pluto compte les impulsions de l'entrée. Un bloc de fonction permet à l'utilisateur d'obtenir le taux d'impulsions correspondant par exemple à une vitesse. Le capteur est généralement un interrupteur de proximité ou une cellule photo-électrique. L'utilisation des blocs de fonction est décrite dans le manuel de programmation de Pluto.

Exemple de solution de capteurs pour le contrôle de vitesse. Les capteurs sont par exemple des interrupteurs de proximité ou des cellules photo-électriques. Une des entrées IA0...IA3 peut être utilisée au choix.
4.4.2 Comptage croissant/décroissant

Pour déterminer le sens d'une entrée de mouvement, IA0 et IA2 peuvent être configurés comme des compteurs croissants/décroissants. L'entrée suivante (IA1 ou IA3) est alors automatiquement réservée pour le comptage croissant/décroissant. Par conséquent, pour le comptage croissant/décroissant, IA0-IA1 et IA2-IA3 forment respectivement une paire.

Pour le comptage croissant/décroissant, il est indispensable que les capteurs produisent des impulsions A/B. Les impulsions A/B sont des signaux rectangulaires déphasés de 90° l'un par rapport à l'autre. Le capteur est généralement un codeur incrémental, 24 V HTL. L'utilisation des blocs de fonction est décrite dans le manuel de programmation de Pluto.

Les dispositifs sont généralement des codeurs incrémentaux rotatifs, 24 V (HTL).
4.4.3 Types de sortie de capteur

Les codeurs incrémentaux avec sorties HTL et push-pull respectivement peuvent être utilisés à des fréquences jusqu'à 14 kHz. Pour les capteurs à sortie « collecteur ouvert », « PNP » ou autre sortie non « push-pull », la fréquence maximale peut être généralement entre 1 et 4 kHz, mais la limite dépend de la résistance de la sortie, la longueur du câble, etc. Le signal n’aura en effet pas le temps de revenir à zéro à des fréquences supérieures. Pluto et le bloc de fonction interpréteront cette situation comme vitesse=0.

4.4.4 Paramètres « No Filt » pour les compteurs

Pour les codeurs incrémentaux avec sortie HTL et fréquences supérieures à 4 kHz, le paramètre « No Filt » doit être sélectionné.

Pour les fréquences inférieures et l'utilisation par exemple d'interrupteurs de proximité standard, l'option « No Filt » ne doit pas être sélectionnée car le filtre fournit une protection contre les perturbations.

4.4.5 Contrôle de vitesse avec deux capteurs

Vitesse excessive, vitesse de sécurité, etc.

Avec une solution à deux canaux où 2 capteurs contrôlent que la vitesse respecte des limites définies, l'application peut atteindre la catégorie 3/PL d or 4/PL e si des types différents de capteurs sont utilisés.

Tant qu’il y a une vitesse, les deux capteurs peuvent être comparés l’un à l’autre. Dans la mesure où ils doivent être égaux, la moindre défaillance de l’un est détectée.

Contrôle de l'immobilisation, deux canaux

Pour le contrôle de l'immobilisation avec deux capteurs, la catégorie 3/PL d peut être atteinte.

Une détection régulière du mouvement est cependant nécessaire pour permettre le test de l’application. Une solution typique est la suivante : chaque fois qu'un mouvement est démarré...
dans une machine, le programme API requiert une réaction correspondante des capteurs / sources de vitesse.
Remarque : les vibrations de machines peuvent causer l'indication de petites valeurs de vitesse.

En cas d'interruption du câblage vers un capteur, Pluto lit 0-vitesse pour ce capteur. La détection de ce type d'erreur dans l'application est par conséquent indispensable et requiert l'utilisation de deux capteurs indépendants dont les contrôles cycliques automatiques permettent de vérifier l'existence de mouvements dans la machine au moins deux fois par jour.

Remarque : l'utilisation de deux codeurs qui sont comparés l'un avec l'autre permet de détecter la défaillance éventuelle de l'un des capteurs. Le codeur peut normalement être de même type car l'occurrence simultanée d'une même erreur dans les deux capteurs est peu probable. Cependant, pour garantir un niveau supérieur de sécurité, il est possible d'utiliser deux capteurs différents par souci de diversité. La diversité minimise le risque de défaillance de cause commune.

4.4.6 Contrôle de vitesse avec un capteur

Vitesse excessive, vitesse de sécurité, etc.
Un seul capteur permet normalement d'atteindre la catégorie 2/PL. Toutefois, le contrôle du mouvement dynamique dans l'application permet d'atteindre la catégorie 3/PL d.

Un tel contrôle de la vitesse de sécurité (SLS) peut être le suivant :
1) Lorsque le mouvement de la machine est interrompu, Pluto contrôle que le capteur indique également un arrêt. Puis, lorsque le mouvement est démarré, le programme contrôle que la valeur indiquée par le capteur passe de l'arrêt à la vitesse espérée.
2) Une autre solution consiste à comparer la valeur du capteur avec par exemple le retour d'information d'un autre système tel que le convertisseur de fréquence. La source indépendante de l'information de vitesse doit être vérifiée.

Contrôle de l'immobilisation, un seul canal
Le contrôle de l'immobilisation avec un seul capteur permet d'atteindre la catégorie 2PL c à condition de prévoir un contrôle cyclique automatique de l'application du capteur. La fréquence est généralement plusieurs fois par jour.

Une solution pour le test consiste à lire la valeur de la vitesse à chaque démarrage et arrêt du cycle de la machine. Chaque fois qu'un mouvement est démarré dans une machine, le programme API requiert une réaction correspondante du capteur. Au démarrage, le programme peut contrôler que la valeur du capteur passe de l'arrêt à la vitesse espérée dans un certain intervalle de temps. À la commande d'arrêt, le programme peut contrôler que la valeur de la vitesse diminue jusqu'à l'immobilisation.

Remarque : en cas d'interruption du câblage vers un capteur, Pluto lit 0-vitesse. En cas de contrôle de l'immobilisation, il en résulte une perte de sécurité si cela se produit pendant un arrêt.
(conformément à la définition de la catégorie 2)
4.4.7 Architectures possibles, niveaux de sécurité réalisables et conditions requises

Le tableau suivant est un aperçu des niveaux de sécurité de différentes applications. Le niveau réalisable Cat / SIL / PL dépend du capteur utilisé dans l'application et la capacité de détection des erreurs indiquées dans la norme CEI 61800-5-2, tableau D.16.

<table>
<thead>
<tr>
<th>Structure</th>
<th>Usage</th>
<th>Réalisable Cat/ PL/ SIL</th>
<th>Conditions requises, diagnostic à réaliser dans le programme de l’application</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 capteur/codeur</td>
<td>Vitesse excessive</td>
<td>Cat 2 / PL c SIL 1</td>
<td>Contrôle du comportement dynamique (exemple : immobilisation désactivée au mouvement espéré)</td>
</tr>
<tr>
<td></td>
<td>Contrôle de l'immobilisation</td>
<td>Cat 2 / PL c SIL 1</td>
<td>Contrôle du comportement dynamique L'immobilisation ne doit pas durer plus d'une heure environ.</td>
</tr>
<tr>
<td>2 capteurs/codeurs à redondance homogène</td>
<td>Vitesse excessive</td>
<td>Cat 3 / PL d SIL 3</td>
<td>Contrôle du comportement dynamique (exemple : immobilisation désactivée au mouvement espéré)</td>
</tr>
<tr>
<td></td>
<td>Contrôle de l'immobilisation</td>
<td>Cat 3 / PL d SIL 2</td>
<td>Contrôle du comportement dynamique L'immobilisation ne doit pas durer plus d'une heure environ.</td>
</tr>
<tr>
<td>2 capteurs/codeurs à redondance diverse</td>
<td>Vitesse excessive</td>
<td>Cat 4 / PL e SIL 3</td>
<td>Contrôle du comportement dynamique (exemple : immobilisation désactivée au mouvement espéré)</td>
</tr>
<tr>
<td></td>
<td>Contrôle de l'immobilisation</td>
<td>Cat 3 / PL d SIL 2</td>
<td>Contrôle du comportement dynamique L'immobilisation ne doit pas durer plus d'une heure environ.</td>
</tr>
</tbody>
</table>

4.4.7.1 Exemples d’application

Exemple avec deux codeurs incrémentaux.

Exemple de solution à deux canaux avec un codeur et un second canal d'un convertisseur de fréquence (Cat 3/PL d/SIL 2).
4.5 Sorties de sécurité

4.5.1 Sorties relais

Chaque sortie relais libre de potentiel est rendue individuellement redondante par l’utilisation de deux contacts de relais connectés en série et commandés chacun par « son » processeur. Il est possible de n’utiliser qu’une seule sortie pour commander une fonction de sécurité. Ces sorties ne peuvent toutefois pas détecter des courts-circuits dans les câbles de connexion par exemple. Outre la commande des relais de sortie par des processeurs séparés, la puissance fournie aux bobines des relais est générée par des « pompes de charge » dont le fonctionnement est décrit dans la section sur les sorties de sécurité à transistors.

\[\text{Principe des sorties relais} \]

4.5.2 Sorties de sécurité à semi-conducteurs

Chaque sortie de sécurité logique peut être utilisée pour commander seule une fonction de sécurité. La tension de sortie nominale est de -24V DC. Le potentiel négatif est dû au principe de pompe de charge utilisé : la tension de sortie est générée par un condensateur qui est chargé et déchargé par deux transistors.

Les transistors fonctionnent en alternance. Un transistor conduit au potentiel positif (+), charge le condensateur puis est désactivé. L’autre transistor conduit ensuite et décharge le condensateur à 0 Volt. Au cours de la phase de décharge, le condensateur « aspire » le courant de la sortie ce qui crée un potentiel négatif sur la sortie. Le principe exige que tous les composants fonctionnent et changent d’état au bon moment et la défaillance d’un composant entraîne un arrêt immédiat de la génération du courant de sortie.

Les systèmes de commande ne contiennent généralement pas de potentiel négatif. Comme le niveau de tension des sorties est contrôlé, Pluto peut détecter un court-circuit entre une sortie et un potentiel étranger.
4.5.2.1 **Impulsions de test**

À des fins de tests internes et pour détecter d’éventuels courts-circuits externes, les sorties Q2 et Q3 sont mises à zéro pendant 100 à 200 µs lors de chaque cycle ; ce sont les impulsions de test.

Principe des sorties de sécurité à transistors.

Diagramme de la tension de sortie avec impulsion de test.

4.5.2.1.1 **Désactivation des impulsions de test**

Pluto Manager permet de désactiver les impulsions de test décrites ci-dessus pour les Pluto A20 v2, B20 v2, S20 v2 et D20. Voir le Manuel de Programmation de Pluto.
4.6 Bus AS-Interface (AS-i)
Pour les Pluto AS-i et B42 AS-i seulement

4.6.1 Connexion AS-i

4.6.2 Lire les esclaves de sécurité

La fonction principale de Pluto AS-i est de lire et évaluer les valeurs des esclaves de sécurité avec deux CPU. Un esclave standard peut avoir 4 variables d’entrée lues séparément par le maître. Un esclave de sécurité a aussi 4 variables d’entrée, mais physiquement, une seule entrée à un canal ou à deux canaux. Les 4 variables d’entrée sont utilisées pour envoyer un code de sécurité spécifique à chaque esclave. Le code de sécurité est transmis en 8 cycles. Pluto lit le code de sécurité, le compare avec le code stocké en mémoire. En cas de correspondance, l’entrée de l’esclave de sécurité est considérée comme active (niveau 1). Un apprentissage doit être effectué à l’installation et lors de l’échange des esclaves de sécurité afin que Pluto apprenne les codes corrects pour chaque esclave de sécurité (voir le manuel de programmation).

4.6.3 Types d’esclaves

Pluto doit être configuré pour les types d’esclaves connectés au bus AS-i. Cette configuration est effectuée dans Pluto Manager et est expliquée dans le Manuel de Programmation de Pluto. Vous trouverez ci-dessous une brève description des différents types d’esclaves pouvant être utilisés avec Pluto.

Entrée de sécurité

Il s’agit d’un esclave de sécurité avec une entrée à un ou deux canaux. Pour ceux à deux canaux, il existe deux canaux d’entrées physiques dans l’esclave, mais elles sont configurées comme une seule entrée dans Pluto/Pluto Manager. L’esclave peut aussi avoir jusqu’à 4 sorties non de sécurité. Le profil AS-I : S-x.B où x dépend de la configuration des E/S.

Esclaves standard non de sécurité

Un esclave standard non de sécurité peut avoir jusqu’à 4 entrées non de sécurité et/ou 4 sorties non de sécurité. Aussi bien les entrées que les sorties sont locales dans Pluto. Le profil AS-I : S-x.F où x dépend de la configuration des E/S.

Esclaves A/B non de sécurité

Deux esclaves A/B (un esclave A + un esclave B) partagent la même adresse. Jusqu’à 62 esclaves A/B peuvent alors être utilisés dans le réseau, au lieu de 31 qui est le maximum pour les autres types d’esclavess. Un esclave A/B non de sécurité peut avoir jusqu’à 4 entrées et/ou jusqu’à 3 sorties. Aussi bien les entrées que les sorties sont locales dans Pluto. Le profil AS-I : S-x.A où x dépend de la configuration des E/S.

Esclaves A/B de type « Combined Transaction »

Esclave entrée analogique

Il s’agit d’un esclave entrée analogique non de sécurité qui peut avoir jusqu’à 4 canaux d’entrée. Un bloc de fonction spécial est nécessaire dans le programme de l’automate. Pluto permet d’utiliser les esclaves analogiques ayant un profil AS-I : S-7.3.x où x peut être C…F en fonction du nombre de canaux. C = 1 canal, D = 2 canaux, E = 4 canaux, F = 4 canaux.

Esclaves sortie analogique

Il s’agit d’un esclave sortie analogique non de sécurité qui peut avoir jusqu’à 4 canaux de sortie. Pluto permet d’utiliser les esclaves analogiques ayant un profil AS-I : S-7.3.x où x peut être 4…6 en fonction du nombre de canaux. 4 = 1 canal, 5 = 2 canaux, 6 = 4 canaux.
Sortie de sécurité
Un esclave de sécurité a (à ce jour) une seule sortie de sécurité. Un bloc de fonction spécial est nécessaire dans le programme de l'automate. Cet esclave est généralement associé à un esclave non de sécurité pour une information d'état. Même si cet esclave non de sécurité se trouve dans le même boîtier que l'esclave sortie de sécurité, ils ont des adresses différentes et Pluto les considère comme deux esclaves séparés. La somme des « Pluto comme entrée de sécurité (PlutoAsSafeInput) » et des « esclaves de sécurité (SafeOutput) » ne doit pas dépasser 16 par Pluto.

Pluto comme entrée de sécurité
Pour un Pluto utilisé comme esclave d’entrée de sécurité. Le bloc de fonction « PlutoAsSafeInput » est utilisé dans le programme de l’automate. L’entrée de sécurité et les sorties non sécurisées sont configurées comme un esclave d’entrée de sécurité (esclave « Safe input »). La somme des « Pluto comme entrée de sécurité (PlutoAsSafeInput) » et des « esclaves de sécurité (SafeOutput) » ne doit pas dépasser 16 par Pluto.

4.6.4 Modes de fonctionnement
Il existe trois modes de fonctionnement pour Pluto sur le bus AS-i :

Maître sur le bus (Bus Master)
Pluto commande le bus AS-i. Via son programme, Pluto peut lire les entrées et commander les sorties des esclaves.

Moniteur (Monitor)
Dans ce cas, Pluto ne fait qu’écouter la communication sur le bus qui est commandé par un maître externe. Normalement, ce maître est un PLC non sécurisé pour la commande de l'application hors fonctions de sécurité.
En mode Moniteur, Pluto peut lire toutes les E/S sur le bus AS-i mais ne peut pas activer de sortie puisque le bus est commandé par un autre PLC.

Moniteur / Esclave (Monitor/Slave)
Ce mode est identique au mode « Moniteur » sauf que Pluto peut aussi être esclave du maître externe. Pluto et le PLC maître peuvent alors communiquer, 4 bits dans chaque direction.

4.6.5 Échanger un esclave de sécurité en cours de fonctionnement
Le système permet d'échanger les esclaves de sécurité sans utiliser d'outil (PC) pour modifier le programme du PLC ou d'autres paramètres.
Pour cela, tous les esclaves, sauf celui devant être échangé, doivent fonctionner et être connectés au bus AS-i. L'IDFIX doit être de type « IDFIX-DATA » ou « IDFIX-PROG ».

Certains composants AS-i contiennent deux esclaves/adresses AS-i. Il faut alors veiller à attribuer à ces deux adresses les deux adresses de l'unité à remplacer. Une adresse peut être attribuée à l'aide d'un dispositif d'adressage ou de Pluto Manager (Tools/AS-i/Change AS-i slave address).

La procédure est la suivante :
- Appuyer sur le bouton « K » pendant 2 secondes.
- Appuyer de nouveau sur le bouton « K » pour confirmer. « CC » s’affiche alors en continu.
- Le nouvel esclave de sécurité peut maintenant être connecté. Quand l’entrée est activée, « CF » (Code found=code trouvé) s’affiche.
- Appuyer sur « K » une dernière fois pour que Pluto enregistre le nouveau code et se réinitialise automatiquement.
4.6.5.1 Échanger un esclave non de sécurité en cours de fonctionnement

Pour l’échange d’un esclave non de sécurité, tous les esclaves, sauf celui qui doit être remplacé, doivent fonctionner et être connectés au bus AS-i.

- Retirer l’esclave à remplacer.
- Connecter le nouvel esclave.

5 Connexion des entrées

5.1 Signaux dynamiques

Les bornes IQ peuvent être configurées comme des sorties dynamiques. Chacune d’elles génère alors un train d’impulsions unique comme représenté sur le diagramme ci-dessous. Le système est conçu pour pouvoir détecter des courts-circuits dans le câblage externe et permettre un contrôle dynamique des capteurs, comme les monofaisceaux SPOT et les capteurs EDEN qui inversent le signal d’entrée.

Chaque entrée doit être configurée dans le logiciel pour indiquer quel type de signal doit être accepté comme un « 1 » logique. Tous les signaux ne correspondant pas au signal défini dans la configuration sont considérés comme des « 0 ».

5.1.1 Connexion des entrées I_

Les entrées de type I_ peuvent être connectées à A, B, C, A inversé, B inversé, C inversé ou +24V.

Le diagramme ci-dessous indique les connexions possibles et leurs configurations dans le logiciel.

Remarque : ces exemples ne sont donnés qu’à titre indicatif et ne correspondent à aucune application spécifique.
5.1.2 Connexion des entrées/sorties IQ..

Les E/S de type IQ- ne connaissent aucune restriction. Utilisées comme des entrées sécurisées à un seul canal, elles doivent être configurées comme dynamique A, A inversée, B, B inversée, C ou C inversée. +24V peut être utilisé pour certains dispositifs à double canal.

Configurée comme sortie dynamique

Le système n'accepte pas une connexion directe entre une sortie dynamique et une autre borne IQ. Un composant ou un module bloquant le courant depuis l'entrée doit être connecté.

Exemple de déclaration dans le logiciel

! I0.15.a_pulse
! I0.16.a_pulse.non_inv (avec une diode)

Seules des bornes IQ connectées à +24VDC ne sont pas conformes à la catégorie 4, qu'il s'agisse d'un ou deux canaux.

Des bornes IQ connectées à +24VDC respectent les de sécurité si elles sont utilisées pour le réarmement, le démarrage, etc.

Exemple de déclaration dans le logiciel

! I0.17.static

Une borne IQ connectée à +24VDC est conforme à la catégorie 4 si elle est associée à un autre signal d'entrée dynamique.

Remarque :
Les exemples ci-dessus ne sont donnés qu'à titre indicatif et ne correspondent à aucune application spécifique.
6 Connexion de dispositifs de sécurité

6.1 Systèmes à deux canaux

Pour réaliser un système de sécurité, la méthode classique consiste à utiliser des dispositifs à deux canaux. Pluto offre différentes possibilités de connexion de ces dispositifs. Des exemples de connexion de dispositifs à deux canaux sont illustrés ci-dessous. La première figure donne des exemples de connexions possibles et la seconde illustre la connexion la plus classique de dispositifs de sécurité à deux canaux.

Entrées à deux canaux avec détection de courts-circuits externes

Connexion normale de plusieurs dispositifs à deux canaux : un signal dynamique associé à un signal statique +24V.
6.2 Systèmes à un seul canal

Certaines applications de sécurité peuvent utiliser un seul canal dynamique au lieu de deux canaux. Si un dispositif électronique est alimenté avec un signal dynamique, un défaut dans l'électronique entraîne un état statique haut ou bas qui est immédiatement détecté. Si le signal est inversé au niveau du capteur, les courts-circuits aux bornes des capteurs sont aussi détectés.

Remarque :
- Les dispositifs peuvent être connectés en série, mais un court-circuit d'un nombre pair de capteurs **n'est pas** détecté.
- Un court-circuit entre deux bornes de type IQ est toujours détecté.
- Un court-circuit entre une sortie IQ et une entrée I **n'est pas** détecté.

Voir le paragraphe 13.1 pour le nombre maximum de capteurs pouvant être connectés en série.

6.3 Arrêt d'urgence

Si les fonctions d'arrêt d'urgence ne sont pas souvent utilisées, leur fonctionnement n'est pas contrôlé. Il est donc fortement recommandé de tester périodiquement et manuellement les systèmes d'arrêt d'urgence et d'inclure ce test dans les instructions de maintenance de la machine.
6.4 Contrôle des courts-circuits externes

Il existe trois méthodes principales pour éviter que des courts-circuits sur les câbles d’entrée n’entraînent une perte de la fonction de sécurité. Le schéma ci-dessous illustre ces différentes méthodes dans le cas d’un bouton d’arrêt d’urgence.

- Le premier bouton est doté de deux contacts NF alimentés par un signal dynamique et une tension +24V. Les entrées sont configurées pour n’accepter que le signal prévu et détectent donc un court-circuit entre les canaux ainsi qu’avec une tension étrangère.

- Le bouton du milieu est doté d’un contact NF et d’un NO alimentés en +24 V. Le logiciel exige que les deux entrées reçoivent des signaux opposés. En cas de court-circuit entre les câbles de connexion, les deux entrées sont activées simultanément, ce que le système n’accepte pas.

- Le dernier bouton d’arrêt d’urgence utilise une technique à un canal permettant de détecter les courts-circuits. Le signal dynamique est converti par un inverseur monté à proximité du contact. L’entrée est configurée pour n’accepter que l’inverse du signal dynamique fourni. En cas de court-circuit entre les câbles de connexion, l’entrée reçoit un signal incorrect qui est refusé par le système.
6.5 Dispositifs de sécurité à sorties à transistors

Certains dispositifs de sécurité, comme les barrières immatérielles, les monofaisceaux, les scrutateurs, etc., sont dotés de deux sorties à transistors 24 VDC autocontrôlées. Les circuits de sortie provoquent de courtes interruptions des signaux de sortie et contrôlent ainsi l’absence de court-circuit.

Les deux canaux peuvent être connectés au système comme des entrées statiques. C’est le dispositif de sécurité lui-même, et pas le Pluto, qui détecte d’éventuels défauts. Veuillez noter qu’au moins une des entrées doit être connectée à une entrée de type I_.

Les courtes interruptions des signaux de sortie sont traitées par le système de filtrage des entrées de Pluto.

\[\text{Declaration in software (Pluto no:0)}:\]

\begin{align*}
10.0, \text{ static} & & 10.1, \text{ static} \\
10.2, \text{ static} & & 10.10, \text{ static}
\end{align*}

Remarque : Au moins une des entrées doit être de type I_.

6.6 Tapis de sécurité et bords sensibles de sécurité

Les bords et tapis de sécurité doivent être alimentés par deux signaux dynamiques différents et connectés à deux entrées. Lors de l’activation, les deux entrées reçoivent un signal d’entrée inattendu et entraîne un « 0 » dans le logiciel. La programmation peut être effectuée comme pour les autres fonctions à deux canaux.

\[\text{Exemple de connexion des tapis de sécurité.}
\text{Les diodes doivent se trouver avant les tapis.}\]
6.7 Commandes bimanuelles

Exemples de bimanuelles: bimanuelle « classique » à gauche, Safeball à droite
6.8 Fonction bouton-poussoir lumineux

Un voyant et un interrupteur d’entrée (bouton-poussoir lumineux par ex.) peuvent être connectés à la même borne IQ. Une diode doit être connectée à proximité du bouton. Cette fonction est surtout prévue pour les dispositifs de réarmement et réduit le nombre de bornes IQ utilisées.

La tension de sortie est une onde carrée d’amplitude 24 V et la tension efficace aux bornes de la lampe est réduite à une valeur moyenne de 75%. Une lampe à filament ou une DEL pour 24VDC peut être utilisée.

6.9 Contrôle de la lampe d’inhibition (Pluto A20 seulement)

Le système peut mesurer l’intensité sur les sorties IQ16 et IQ17. Cette fonction est prévue pour le contrôle du courant dans une lampe d’inhibition mais une autre utilisation n’est pas exclue. Comme le matériel pour la mesure du courant n’est pas totalement redondant, la fonction doit être utilisée de façon dynamique si elle est utilisée pour des fonctions de sécurité. Le courant doit alors être lu et évalué quand la sortie est activée ET quand elle est désactivée.
7 Connexion des sorties

Vous trouverez ci-dessous des exemples de connexion de sorties qui offrent différents niveaux de protection contre les courts-circuits. Quand et où elles peuvent être utilisées dépend du type de machine/application (risque) et de l’installation électrique.

7.1 Exemples de connexion

Exemples de sorties 1 : connexion et contrôle de contacteurs.

Un défaut dans un contacteur n’entraîne pas une perte de la fonction de sécurité : il est détecté puisque les contacts NC sont connectés à une entrée.

Remarque : certains courts-circuits aux +24V et –24V peuvent activer les deux contacteurs et entraîner une perte de la fonction de sécurité.

Ces exemples de connexions peuvent être utilisés quand le niveau de sécurité maximal n’est pas exigé et quand le risque de courts-circuits est faible ou inexistant, à l’intérieur d’une armoire électrique par exemple. Exemple d’application : machines automatisées pour lesquelles la fonction de sécurité est utilisée lors de réglages, etc.
Exemples de sorties 2 : extension des contacts avec des relais de sécurité et des relais d’extension.

Ces exemples offrent le même niveau de sécurité et les mêmes avantages et désavantages que les exemples de sorties 1 et peuvent être utilisés pour les mêmes types d’applications.

Exemples de sorties 3 : protégées contre les courts-circuits

Connexion et contrôle des contacteurs avec protection contre les courts-circuits, pour les applications exigeant un niveau de sécurité maximal (Catégorie 4). Dans l’exemple utilisant la sortie Q2, le conducteur est protégé par un blindage connecté à la terre de protection. Cet exemple correspond aux applications sur des machines nécessitant des opérations manuelles, les presses par exemple.
Exemples de sorties 4 : relais de sécurité polarisés

Quand un relais de sécurité est utilisé pour l’extension d’une sortie Q2 et Q3, un court-circuit entre une tension +24 V étrangère et la connexion entre la sortie Pluto et le relais de sécurité est détectée et n’entraîne aucun danger. En effet, comme une tension de -24 V est utilisée et comme le relais de sécurité est polarisé, il ne peut pas être activé par +24 V. Tant qu’il n’existe pas de potentiel -24 V dans l’armoire (ce qui est normalement le cas), la connexion est protégée contre les défaillances.
8 Exemples d’applications
9 Communication sur le bus Pluto

Jusqu'à 32 Pluto peuvent être interconnectés via un bus CAN. Chaque Pluto peut alors lire les E/S de tous les Pluto connectés.

Chaque Pluto connecté au bus exécute son propre programme et fonctionne indépendamment des autres Pluto tout en pouvant lire les E/S des autres Pluto. Si un Pluto perd sa connexion au bus, les E/S de ce Pluto ont alors la valeur « 0 » pour tous les autres Pluto sur le bus. Tous les Pluto continuent l'exécution de leur programme et les conséquences de la défaillance dépendent du programme de l'application. Par exemple, si un bouton d'arrêt d'urgence connecté à une unité est utilisé par une autre unité comme condition pour activer une sortie, la sortie est désactivée si la communication est perdue. Les sorties activées par les E/S connectées directement au Pluto ne sont pas affectées par la perte de communication.

9.1 Câblage du bus

La longueur maximale du câble du bus CAN dépend de la vitesse de transmission. À la vitesse par défaut de 400 kbit/s, la longueur totale maximale est de 150 mètres. (Il est possible d'obtenir de plus grandes longueurs à l'aide de passerelles utilisées comme répéteurs. Voir le manuel des passerelles « Pluto Gateway Manual », chapitre 1 « Généralités » et chapitre 8 « CAN bridge mode »). Une résistance de terminaison de 120 Ω doit être installée à chaque extrémité du bus. Un Pluto seul n'étant pas connecté au bus doit aussi être doté d'une résistance de terminaison. Le bus est connecté aux bornes CH et CL à l'aide d'un câble torsadé blindé.

Connexion au bus CAN: CH à CH et CL à CL. Une résistance de terminaison à chaque extrémité du bus. Les longueurs des branches (stubs) sont limitées. Elles n'ont pas besoin de résistance de terminaison.
9.1.1 Longueurs de câbles

La longueur maximale du câble dépend de la vitesse du bus.

<table>
<thead>
<tr>
<th>Vitesse</th>
<th>Longueur de la ligne principale (trunk)</th>
<th>Longueur des branches (stubs)</th>
<th>Longueur max. de chaque branche</th>
<th>Longueur accumulée max. des branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 kbit/s</td>
<td>600 m</td>
<td>25 m</td>
<td>120 m</td>
<td></td>
</tr>
<tr>
<td>125 kbit/s</td>
<td>500m</td>
<td>20 m</td>
<td>100 m</td>
<td></td>
</tr>
<tr>
<td>200 kbit/s</td>
<td>300m</td>
<td>13 m</td>
<td>70 m</td>
<td></td>
</tr>
<tr>
<td>250 kbit/s</td>
<td>250m</td>
<td>10 m</td>
<td>50 m</td>
<td></td>
</tr>
<tr>
<td>400 kbit/s</td>
<td>150m</td>
<td>6 m</td>
<td>30 m</td>
<td></td>
</tr>
<tr>
<td>500 kbit/s</td>
<td>100m</td>
<td>5 m</td>
<td>25 m</td>
<td></td>
</tr>
<tr>
<td>800 kbit/s</td>
<td>50m</td>
<td>3 m</td>
<td>15 m</td>
<td></td>
</tr>
<tr>
<td>1 Mbit/s</td>
<td><20m</td>
<td>1 m</td>
<td>5 m</td>
<td></td>
</tr>
</tbody>
</table>

9.1.2 Connexion du blindage du câble du bus

La solution optimale pour connecter le blindage du câble de bus dépend du type de perturbation auquel le système est soumis. En cas de perturbations importantes, il peut être nécessaire de tester différentes solutions. Les figures ci-dessous illustrent deux solutions.

La Solution 1 est la solution la plus courante. Elle offre une bonne protection contre les perturbations le long du câble. Un courant peut toutefois être présent dans le blindage et, avec une tension d’alimentation perturbée de Pluto, des problèmes peuvent aussi se présenter.

La Solution 2 résout les problèmes de la solution 1 mais n’offre pas une bonne protection contre les perturbations haute fréquence.

Si les Pluto sont montés à proximité les uns des autres dans la même armoire, le blindage peut être omis.

Solution 1
Les deux extrémités à la terre.
(Pour le B42 AS-i, connecter le blindage à la borne CS)

Solution 2
Une extrémité à la terre (B42 AS-i: connecter à la borne CS) et l'autre non connectée

Possibilités de connexion du blindage du câble du bus
* Pour le B42 AS-i and D45, connecter le blindage à la borne CS
9.1.3 Éventuelle protection contre les perturbations conduites

Des perturbations conduites peuvent générer des problèmes de communication sur le bus du Pluto. Ce problème peut être résolu en connectant un condensateur entre le 0V de l'alimentation du Pluto et la terre.

Veuillez observer que cette connexion n'est pas obligatoire. Elle ne doit être envisagée qu'en cas de problème de communication sur le bus.

![Exemple de connexion de condensateur.](image)

Condensateur entre le 0V et la terre.

9.2 Temps de réponse sur le bus

Par défaut, le système fonctionne avec une vitesse de 400 kbit/s et un cycle CAN de 20 ms. Le bus ajoute généralement un temps de réponse de 10 ms (10-40 ms en cas de défaut). Ce sont ces valeurs qui sont indiquées pour le temps de réponse dans la section Caractéristiques techniques.

Pour permettre l'utilisation de câbles plus longs, il est possible de réduire la vitesse de transmission mais il faut veiller à ne pas surcharger le bus. Il existe deux solutions pour éviter la surcharge : soit limiter la quantité de Pluto connectés au bus, soit augmenter le temps de cycle du bus, ce qui augmente aussi le temps de réponse.

Veuillez noter que le « temps de cycle du bus » est défini individuellement pour chaque Pluto, ce qui signifie qu'il est possible d'attribuer de meilleurs temps de réponse à certains Pluto qu'à d'autres. Il est aussi important de noter que si l'entrée d'un Pluto commande la sortie d'un autre, seul le temps de cycle du Pluto où se trouve l'entrée est important du point de vue du temps de réponse. Le « temps de cycle du bus » de l'unité où se trouve la sortie n'a aucune influence sur le temps de réponse.

Le tableau ci-dessous indique quels paramètres choisir pour le bus en fonction du nombre de Pluto.

<table>
<thead>
<tr>
<th>Vitesse de transmission</th>
<th>100 kb/s</th>
<th>125 kb/s</th>
<th>200 kb/s</th>
<th>250 kb/s</th>
<th>400 kb/s</th>
<th>500 kb/s</th>
<th>800 kb/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temps de cycle du bus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 ms</td>
<td>3..4</td>
<td>4..6</td>
<td>8..10</td>
<td>12..14</td>
<td>18..25</td>
<td>25..32</td>
<td>32</td>
</tr>
<tr>
<td>20 ms</td>
<td>6..8</td>
<td>10..14</td>
<td>20..32</td>
<td>22..32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>30 ms</td>
<td>12..18</td>
<td>15..21</td>
<td>20..32</td>
<td>25..32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>40 ms</td>
<td>12..23</td>
<td>20..30</td>
<td>28..32</td>
<td>30..32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
</tbody>
</table>

Nombre de Pluto pouvant être connectés au bus.

Remarque 1 : le nombre d’unités dépend de l’application d’où les fourchettes de valeurs. Si une des E/S d’un Pluto change souvent d’état, il transmet davantage de télégrammes CAN.

Remarque 2 : le temps de réponse des E/S sur le bus est prolongé d’une durée égale au temps de cycle du bus.
10 Identifiant

L’identifiant est un composant externe connecté entre les bornes « ID » et « 0V » et contenant un numéro d’identification unique pouvant être lu par le système. Le numéro de l’identifiant doit être déclaré dans le programme de l’API et le programme ne fonctionne qu’avec le Pluto ayant cet identifiant. Il n’est pas obligatoire d’utiliser un identifiant pour un Pluto fonctionnant seul, mais si un identifiant est connecté au Pluto, le numéro de cet identifiant doit être déclaré dans le programme de l’API.

Cette fonction offre une protection contre l’échange involontaire d’un API. L’identifiant doit être fixé fermement à l’unité, il peut être attaché aux autres conducteurs par exemple.

Les identifiants sont indispensables quand plusieurs Pluto sont connectés au bus.
Les unités sont numérotées de 0 à 31. Il faut déclarer dans le programme de l’application quel numéro d’identifiant correspond à quel Pluto (0...31).
Exemple : ! id_pluto:01=023474526654

Il existe plusieurs types de circuits d'identifiants :

- **IDFIX-R** (préprogrammé)
 - Le numéro est programmé par le fabricant du circuit qui garantit qu’il n’existe pas deux circuits ayant le même numéro.

- **IDFIX-RW** (programmable)
 - Le numéro peut être programmé par l’utilisateur.

- **IDFIX-DATA** (programmable + stockage de données)
 - Pour Pluto AS-i et B42 AS-i. Le numéro peut être programmé par l’utilisateur et les codes de sécurité des esclaves de sécurité AS-i peuvent être stockés.

- **IDFIX-PROG 2k5 / IDFIX-PROG 10k** (programmable, stockage de données et du programme de l’automate)
 - Pour les Pluto ayant une version d’OS 2.50 ou plus (PROG 2k5), 2.52/3.2 ou plus récent (PROG 10k).
 - Peut contenir un programme d’automate faisant jusqu’à 2,3 ko. (taille maximale IDFIX-PROG 2k5 : 2,3 ko IDFIX-PROG 10k : 10 ko)
 - A toujours pour code EEEEEEEEEEE0 (PROG 2k5), ou EEEEEEEEEEE2 (PROG 10k) : un seul Pluto est autorisé dans le projet.
 - Peut-être utilisé pour sauvegarder les codes de sécurité AS-i comme l'IDFIX-DATA.
 - Est automatiquement mis à jour quand un programme est transféré dans le Pluto.
 - Er31 est affiché sur l’automate en cas de différence entre le programme de l’IDFIX-PROG et la mémoire flash. Le programme ne peut alors pas être exécuté. Ce contrôle est effectué à chaque transfert de programme et à la mise sous tension.

Connexion de l’identifiant (Black = noir; Blue = bleu)

Les identifiants sont indispensables quand plusieurs Pluto sont connectés au bus.
- Il suffit d’appuyer sur le bouton K du Pluto pour transférer le programme sauvegardé de l’DFIX-PROG à la mémoire flash, comme pour l’auto-programmation sur le bus CAN. Cela est possible en cas de message d’erreur Er20 (Pluto vide), Er 24 (Programme incorrect) ou Er 31 (Programme différent dans l’DFIX-PROG).

Les identifiants programmables (IDFIX-RW et IDFIX-DATA) peuvent être utiles quand plusieurs Pluto doivent être fournis avec le même programme, pour une machine ou une application de sécurité spécifique par ex.
11 Programmation

Les programmes d’applications (Programme API Pluto) sont développés à l’aide d’un PC standard et d’un logiciel spécifique Pluto Manager. Le PC communique avec Pluto par l’intermédiaire de son port Com ou de son port USB. Cette liaison facilite le transfert des programmes et le contrôle des entrées, des sorties, des mémoires, des temporisations quand le PC est « en ligne ».

Voir le Manuel de programmation pour davantage d’information.

11.1 Auto-programmation lors de l’échange d’un Pluto

Quand plusieurs Pluto sont connectés sur le bus CAN de Pluto, il est possible d’échanger un Pluto et charger le programme depuis un autre Pluto sur le bus.

En effet, quand un projet de programme contient plusieurs Pluto, ce projet contient les programmes de tous les Pluto et est chargé dans chaque Pluto : chaque Pluto contient donc le programme de tous les Pluto sur le bus.

Les conditions suivantes doivent être remplies :

- Le nouveau Pluto doit être vide, sans programme (Er20 affiché).
 (Pluto O2: Error LED Allumé et éteint pendant de courtes périodes (1200/80 ms))
- Le nouveau Pluto doit appartenir au projet de programme Pluto.
- L’IDFIX ne doit PAS être échangé. (Veuillez noter que les borniers sont débrochables).
- Pour les Pluto AS-i, l’identifiant doit être de type « IDFIX-DATA » ou « IDFIX-PROG ».
 (Autrement, l’apprentissage des codes doit être effectué.)

Procédure :

- Mettre le Pluto hors tension et l’échanger.
- Le mettre sous tension. Après quelques secondes, Er20 est affiché (vide).
 (Pluto O2: Error LED Allumé et éteint pendant de courtes périodes (1200/80 ms))
- Appuyer sur le bouton « K » sur la face avant du Pluto pendant 3 secondes, jusqu’à ce que « Lo » clignote. (Pluto O2: Error LED Clignotement (320/320 ms)).
- Relâcher le bouton « K » et ré-appuyer immédiatement.
 « Lo » est maintenant affiché en continu. (Pluto O2: Run LED Allumé).
- L’auto-programmation a maintenant commencé. Le bouton « K » peut être relâché. Une fois terminé, Pluto se met automatiquement en marche.

Si « Lo » n’arrête pas de clignoter (Pluto O2: Run LED Allumé):

- Contrôler la connexion du bus CAN.
- Contrôler que l’IDFIX est connecté et qu’il n’a pas été échangé.
- Contrôler que le Pluto appartient au projet de programme des autres Pluto sur le bus.
12 Nettoyage

La face avant peut être nettoyée à l’aide d’un chiffon à poussière sec. La plaque avant peut aussi être retirée pour être nettoyée ou échangée.

13 Caractéristiques techniques

Alimentation
- Tension nominale: 24 V DC
- Tolérance: +/-15%
- Interruption max.: 20 ms

Fusible externe recommandé
- A20, B16, B20, S20, B22, D20, Pluto AS-i, O2: 6A
- B46, S46, D45, B42 AS-i: 10A

Consommation de courant totale
- A20, B16, B20, S20, B22, D20, Pluto AS-i: 5A max
- B46, S46, D45, B42 AS-i: 7A max

Consommation propre de courant
- A20, B16, B20, S20, B22, D20, Pluto AS-i: 100…300 mA
- B46, S46, D45, B42 AS-i: 100…500 mA

Installation électrique :
- Catégorie II selon IEC 61010-1

Entrées de sécurité (avec les entrées de compteur)
- I0, I1, I2, ..: +24V (pour capteurs PNP)
- IQ10, IQ11, ..: +24V (pour capteurs PNP) aussi configurables comme sorties non de sécurité.
- Logique « 1 »: > 12V
- Logique « 0 »: < 8V

Intensité en entrée à 24V:
- 5,1 mA

Surtension max.
- 27 V continuellement

Entrées analogiques (0-27V)
- Plage : 0…27 V
- Famille A20: Borne I5
- Famille double: Borne I5, I6 et I7
- Pluto B42 AS-i: Borne I1, I2 et I3
- Pluto AS-i: Borne I10, I11, I12 et I13

Entrées analogiques (IA0-IA3, IA0-IA7)
- Plage : 0…10 V / 4…20mA
- D20: Borne IA0, IA1, IA2, IA3
- D45: Borne IA0, IA1, IA2, IA3, IA4, IA5, IA6, IA7
- Résolution D20: 10 bits
- Résolution D45: 12 bits
- Précision D20: ±0.75% de la valeur pleine échelle
- Précision D45: ±0.4% de la valeur pleine échelle
- Impédance D20:
 - 0 – 10V: >10 kΩ
 - 4 – 20mA: 420 Ω
- Impédance D45:
 - 0 – 10V: >10kΩ
 - 4 – 20mA: 300 Ω

Entrées de compteur (Pluto D45)
- Fréquence max.: 14 kHz pour un rapport cyclique de 50%
Sorties de sécurité
Q2-Q3 :
Sortie à transistors, -24V DC, 800 mA
Tolérance tensions de sortie :
Tension d'alimentation -1,5V pour 800mA
Q0, Q1, (Q4, 5) :
Relais AC-1: 250 V / 1.5 A
AC-15: 250 V / 1.5 A
DC-1: 50 V / 1.5 A
DC-13: 24 V / 1.5 A
Pluto O2: Q0, Q1:
13-14, 23-24
Relais, AC-12: 250 V / 5 A
AC-15: 250 V / 3 A
DC-12: 60 V / 5 A
DC-13: 24 V / 3 A
33-34
Relais, AC-12/AC-15/DC-12/DC-13: 24 V / 1.5 A

Sorties, non sécurisées
IQ10, IQ11,.. Transistor +24V, PNP collecteur ouvert
Aussi configurables comme entrées de sécurité.
Charge max./sortie :
800 mA
Charge totale max. :
A20, B16, B20, S20, B22, D20
IQ10..17 : 2,5 A
IQ10..17 : 2 A, IQ20..27 : 2A
B46, S46, D45, B42 AS-i
Pluto AS-i
IQ10..13 : 2 A
Mesure de l’intensité
IQ16, IQ17 (Pluto A20 seulement)
Plage
0-1,0 A
Précision
10%
Voyants :

Voyants d’entrées/sorties Commandés par processeur

Généralités

Boîtier
A20, B16, B20, S20, B22, D20, O2 et Pluto AS-i : 45 x 84 x 120 mm (l x h x p)
B46, S46, D45 et B42 AS-i: 90 x 84 x 120 mm (l x h x p)

Montage
Rail DIN

Temps de réponse du signal dynamique ou de l’entrée statique (+24V)
Sortie relais, Q0..Q1 (Q4..5) : < 20,5 ms + temps d’exécution du programme
Sortie à transistors, Q2-Q3 : < 16,5 ms + temps d’exécution du programme
Sortie à transistors, Q10-Q17 : < 16,5 ms + temps d’exécution du programme

Temps de réponse du signal dynamique B ou des entrées C
Sortie relais, Q0-Q1 : < 23 ms + temps d’exécution du programme
Sortie à transistors, Q2-Q3 : < 19 ms + temps d’exécution du programme
Sortie à transistors, Q10-Q17 : < 19 ms + temps d’exécution du programme

Temps de réponse Pluto O2 (entre l’entrée d’un autre Pluto et la sortie de Pluto O2)
Sortie relais, Q0, Q1 : < 33 ms + temps d’exécution du programme
Sorties, non sécurisées, Q10, Q11 : < 29 ms + temps d’exécution du programme

Paramètre logiciel « NoFilt » Temps de réponse - 5 ms (réduit de 5 ms)

Temps de réponse du bus AS-i :
Sortie à transistors : < 16,5 ms + temps d’exécution du programme
Sortie relais : < 20,5 ms + temps d’exécution du programme

Temps de réponse du bus AS-i en cas de défaut:
Sortie à transistors : < 29 ms (avec le paramètre « Short stop time »)
< 39 ms (avec le paramètre « Disturbance immunity »)
Sortie relais : < 33 ms (avec le paramètre « Short stop time »)
< 43 ms (avec le paramètre « Disturbance immunity »)

Temps d’exécution du programme : environ 10µs / instruction

Temps de réponse supplémentaire sur le bus Pluto :
Conditions normales 10 ms
Condition de défaut 10-40 ms

Q2-Q3 allongement du temps de réponse en cas de défaut : <10 ms

Temps de détection
Plus petite impulsion pouvant être détectée sur une entrée : 10 ms

Température de l’air ambiant : -10°C - + 50°C
Température, transport et stockage : - 25 - +55°C

Altitude de fonctionnement: Jusqu’à 2000 m

Humidité
EN 60 204-1: 50% à 40°C (ex 90% à 20°C)

Indice de protection, IEC 60 529
Boîtier : IP 40
Bornes : IP 20
Paramètres de sécurité

SIL selon EN 62061/IEC 61508	SIL 3
PL selon EN ISO 13849-1	PL e
Catégorie selon EN ISO 13849-1	4
DC_{avg} selon EN ISO 13849-1	Élevé
CCF selon EN ISO 13849-1	Conforme aux exigences
HFT	1
SFF	>99% pour les dispositifs à un canal
	>90% pour les dispositifs à deux canaux

Sorties à pompes de charge*

- **PFD_{AV} (intervalle de test = 20 ans)**: 1.1×10^{-4}
- **PFH_D selon EN 62061/IEC 61508**: 1.5×10^{-9}
- **MTTF_d selon EN ISO 13849-1**: Élevé/1500 ans

Sorties relais*

- **PFD_{AV} (intervalle de test = 20 ans)**: 1.5×10^{-4}
- **PFH_D selon EN 62061/IEC 61508**: 2×10^{-9}
- **MTTF_d selon EN ISO 13849-1**: Élevé/1100 ans

Entrées analogiques* (Pluto D20, D45)

- **2 capteurs (voir 4.3.2)**
- **1 capteur (voir 4.3.2)**

Entrées* de compteur (Pluto D45)

- **2 capteurs (voir 4.4.7)**
- **1 capteur (voir 4.4.7)**

Remarques :

- **PFD_{AV}** - Average probability of dangerous failure on demand
- **PFH** - Probability of dangerous failure per hour
- **MTTF_d** - Mean time to dangerous failure/channel
- **HFT** - Hardware fault tolerance
- **SFF** - Safe failure fraction
- **PL** - Performance level (selon EN ISO 13849-1)

*Entrée à sortie (bus AS-i et CAN compris)
13.1 Connexion des capteurs

Nombre maximal de capteurs connectés en série avec 100 m de câble :

<table>
<thead>
<tr>
<th>Capteur</th>
<th>Nombre max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eden</td>
<td>10</td>
</tr>
<tr>
<td>Spot 35</td>
<td>3</td>
</tr>
<tr>
<td>Spot 10</td>
<td>1</td>
</tr>
<tr>
<td>Tina</td>
<td>10</td>
</tr>
</tbody>
</table>

Longue de câble max. sans capteurs pour les entrées utilisant des signaux dynamiques (en fonction de la capacitance) :
Exemple : 10x0,75 mm² = 1000 mètres environ
14 Annexe : Liste des messages et des codes d’erreurs

Remarque : le redémarrage est effectué depuis le PC ou par une mise hors et sous tension.

Messages d’état

<table>
<thead>
<tr>
<th>N°</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mise en route</td>
</tr>
<tr>
<td>N n</td>
<td>En marche (nn = numéro de Pluto)</td>
</tr>
<tr>
<td>Lo</td>
<td>Chargement du programme.</td>
</tr>
<tr>
<td>Lo</td>
<td>« Lo » clignotant : prêt pour l’auto-programmation (programme trouvé dans un autre Pluto)</td>
</tr>
<tr>
<td>HA</td>
<td>Exécution du programme interrompue depuis le PC ou non démarrée après le chargement du programme. Peut être démarré soit depuis le PC, soit par une mise hors et sous tension.</td>
</tr>
<tr>
<td>UE</td>
<td>Erreur utilisateur spécifique à l’application, définie dans le programme de l’automate par l’attribution de la valeur (200 + n° d’erreur) à SR_PlutoDisplay.</td>
</tr>
</tbody>
</table>

Erreurs due à l'utilisation

<table>
<thead>
<tr>
<th>N°</th>
<th>Erreur et raison possible.</th>
<th>Action de RAZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Er10*</td>
<td>Sortie dynamique court-circuitée à une tension étrangère</td>
<td>Réarmement automatique</td>
</tr>
<tr>
<td>Er11*</td>
<td>IQ pour bouton-poussoir lumineux : diode manquante</td>
<td>Réarmement automatique</td>
</tr>
<tr>
<td>Er12*</td>
<td>Court-circuit entre deux entrées dynamiques</td>
<td>Réarmement automatique</td>
</tr>
<tr>
<td>Er13*</td>
<td>Sortie statique Q10..17 (Q20..27) court-circuitée à 0V ou surchargée</td>
<td>Réarmement automatique, Bouton « K »</td>
</tr>
<tr>
<td>Er14*</td>
<td>Sortie statique Q10..17 (Q20..27) court-circuitée au 24V.</td>
<td>Réarmement automatique</td>
</tr>
<tr>
<td>Er15</td>
<td>Tension d'alimentation inférieure à 18 V</td>
<td>Auto. après 3 min ou bouton « K »</td>
</tr>
<tr>
<td>Er16</td>
<td>Alimentation électrique supérieure à 30 V</td>
<td>Auto. après 3 min ou bouton « K »</td>
</tr>
<tr>
<td>Er17</td>
<td>Tension d'alimentation inférieure à 15 V. Extrêmement faible</td>
<td>Auto. après 3 min ou bouton « K »</td>
</tr>
<tr>
<td>Er18</td>
<td>Erreur bus CAN. (Court-circuit, résistance de terminaison, etc...)</td>
<td>Auto. après 3 min ou bouton « K »</td>
</tr>
<tr>
<td>Er19</td>
<td>Autre Pluto ayant le même numéro sur le bus CAN</td>
<td></td>
</tr>
<tr>
<td>Er20</td>
<td>Aucun programme API chargé</td>
<td>Charger le programme APIds</td>
</tr>
<tr>
<td>Er21</td>
<td>Erreur CRC du programme API</td>
<td>Recharger avec le programme d’API valide</td>
</tr>
<tr>
<td>Er22</td>
<td>Problème d’IDFIX. Impossible de lire l’IDFIX externe.</td>
<td>Redémarrer</td>
</tr>
<tr>
<td>Er23</td>
<td>L’IDFIX ne correspond pas à celui déclaré dans le programme.</td>
<td>Échanger l’identifiant ou mettre à jour sa valeur dans le programme.</td>
</tr>
<tr>
<td>Er24</td>
<td>Code API erroné. Instructions API invalides.</td>
<td>Charger un code valide.</td>
</tr>
<tr>
<td>Er25</td>
<td>Pour les versions comme le B16 ou B22. Sortie inexistante utilisée dans le programme.</td>
<td></td>
</tr>
<tr>
<td>Er26</td>
<td>Conflit de vitesse de communication. Le Pluto est programmé pour une autre vitesse de transmission que celle du bus. Si la vitesse de transmission est modifiée dans le programme de l’API, Pluto doit être redémarré.</td>
<td>Nouvelle programmation ou redémarrage</td>
</tr>
<tr>
<td>Er27</td>
<td>Checksum incorrecte dans un programme d’API partagé par plusieurs Pluto : un Pluto sur le bus n'est pas chargé avec le bon programme ou la bonne version de programme.</td>
<td>Nouvelle programmation, nouveau chargement ou redémarrage</td>
</tr>
<tr>
<td>Er28</td>
<td>Le programme de l’APIds ne correspond pas à la famille du Pluto (Familles : [A/B/S/D 20, 16, 22], [B/S/D 45, 46], [Pluto AS-i, B42 AS-i])</td>
<td>Passer à l’autre type de Pluto ou changer de programme.</td>
</tr>
<tr>
<td>Er29</td>
<td>Version de programme non compatible. Le programme contient des instructions compatibles avec des systèmes d'exploitation ultérieurs spécifiques au client. (Voir ci-dessous)</td>
<td>Mise à jour du système d’exploitation</td>
</tr>
<tr>
<td>Er30</td>
<td>Utilisation d’un bloc de fonction incompatible. (Voir ci-dessous)</td>
<td>Mise à jour du système d’exploitation</td>
</tr>
<tr>
<td>Er31</td>
<td>Le programme dans l’IDFIX-PROG est différent de celui dans la mémoire flash.</td>
<td>Charger le programme dans la mémoire flash à l’aide du bouton K.</td>
</tr>
</tbody>
</table>

*Le voyant de l’E/S concernée clignote.
** Des informations complémentaires sont disponibles via Pluto Manager.
Erreurs E/S

<table>
<thead>
<tr>
<th>N°</th>
<th>Erreur et raison possible.</th>
<th>Action de RAZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Er40*</td>
<td>Erreur sortie de sécurité Q2, Q3. Q2, Q3 connectées l’une à l’autre ou à une autre tension négative. / Q2, Q3 ont une charge capacitive trop élevée.</td>
<td>Bouton « K »</td>
</tr>
<tr>
<td>Er41*</td>
<td>Erreur sortie Q2 ou Q3. Surcharge ou connexion à une tension positive étrangère.</td>
<td>Bouton « K »</td>
</tr>
<tr>
<td>Er42*</td>
<td>Erreur sortie relais. Aucune réponse du contrôle de relais interne quand la sortie est désactivée.</td>
<td>Bouton « K »</td>
</tr>
<tr>
<td>Er43*</td>
<td>Erreur sortie relais. (Auto-contrôle des transistors)</td>
<td>Redémarrer</td>
</tr>
<tr>
<td>Er44*</td>
<td>Erreur sortie relais. Le relais interne ne s’enclenche pas.</td>
<td>Bouton « K »</td>
</tr>
<tr>
<td>Er45</td>
<td>Fonctions analogiques non étalonnées.</td>
<td>Le système doit être étalonné</td>
</tr>
<tr>
<td>Er46</td>
<td>Erreur entrée analogique. **(Voir ci-dessous)</td>
<td>Réarmement automatique</td>
</tr>
<tr>
<td>Er47</td>
<td>Tension positive sur Q2 et / ou Q3.</td>
<td>Réarmement automatique</td>
</tr>
</tbody>
</table>

*Le voyant de l’E/S concernée clignote.
**Des informations complémentaires sont disponibles via Pluto Manager.

Erreurs CPU

<table>
<thead>
<tr>
<th>N°</th>
<th>Erreur et raison possible.</th>
<th>Action de RAZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Er50*</td>
<td>Les processors A et B disposent d’informations d’entrée différentes. Les processors A et B lisent une entrée différemment. L’erreur est souvent due à un capteur défectueux. Le voyant de l’entrée correspondante clignote.</td>
<td>Redémarrer</td>
</tr>
<tr>
<td>Er51</td>
<td>Les processors A et B génèrent des sorties différentes. Les processors A et B attribuent des valeurs différentes à la même variable globale (Q0..Q3, GM0..11). **(Voir ci-dessous)</td>
<td>Redémarrer</td>
</tr>
<tr>
<td>Er52</td>
<td>Aucune réponse de quelque relais interne quand la sortie est désactivée (les deux relais collés).</td>
<td>Redémarrer</td>
</tr>
<tr>
<td>Er58</td>
<td>Erreur CRC table de codes de sécurité AS-i</td>
<td>Redémarrer, Apprendre les codes de sécurité AS-i</td>
</tr>
<tr>
<td>Er59</td>
<td>Erreur CRC étalonnage fonctions analogiques</td>
<td>Redémarrer</td>
</tr>
<tr>
<td>Er60</td>
<td>Autocontrôle jumelé</td>
<td>Redémarrer</td>
</tr>
<tr>
<td>Er61</td>
<td>Surveillance tempo IRQ</td>
<td>Redémarrer</td>
</tr>
<tr>
<td>Er62</td>
<td>Communication série interne</td>
<td>Redémarrer</td>
</tr>
<tr>
<td>Er63</td>
<td>CRC flash de lancement</td>
<td>Redémarrer</td>
</tr>
<tr>
<td>Er64</td>
<td>CRC flash de l’OS</td>
<td>Redémarrer, Recharger le système d’exploitation (OS)</td>
</tr>
<tr>
<td>Er65</td>
<td>CRC flash de l’API</td>
<td>Redémarrer, recharger le programme de l’APIdS</td>
</tr>
<tr>
<td>Er66</td>
<td>5 volt en-dessous/au-dessus du contrôle de tension. **(Voir ci-dessous)</td>
<td>Redémarrer</td>
</tr>
<tr>
<td>Er67</td>
<td>Erreur test CPU</td>
<td>Redémarrer</td>
</tr>
<tr>
<td>Er68</td>
<td>Erreur test RAM</td>
<td>Redémarrer</td>
</tr>
<tr>
<td>Er69</td>
<td>Dépassement du temps de cycle du balayage, programme de l’APIdS trop long.</td>
<td>Redémarrer</td>
</tr>
<tr>
<td>Er70</td>
<td>Système, somme des systèmes et contrôle de pile</td>
<td>Redémarrer</td>
</tr>
<tr>
<td>Er71</td>
<td>Pluto en train d’écrire dans IDFIX. Fonctionnent normal interrompu</td>
<td>Redémarrer</td>
</tr>
<tr>
<td>Er72</td>
<td>Erreur du système. Aucune communication du processeur AS-i</td>
<td>Redémarrer</td>
</tr>
<tr>
<td>Er73</td>
<td>Erreur système. Version de programme incorrect/erreur CRC.</td>
<td>Recharger le système d’exploitation (OS)</td>
</tr>
<tr>
<td>Er74</td>
<td>Erreur mémoire rémanente</td>
<td>Redémarrer</td>
</tr>
</tbody>
</table>

*Le voyant de l’E/S concernée clignote.
**Des informations complémentaires sont disponibles via Pluto Manager.
AS-i

<table>
<thead>
<tr>
<th>N°</th>
<th>Erreur et raison possible.</th>
<th>Action de RAZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE 01</td>
<td>AS-i hors tension</td>
<td>Réarmement automatique</td>
</tr>
<tr>
<td>AE 02</td>
<td>Aucune connexion avec le maître AS-i (en mode moniteur)</td>
<td>Réarmement automatique</td>
</tr>
<tr>
<td>AE 03</td>
<td>Code de sécurité manquant lors de l’apprentissage des codes</td>
<td>Apprendre les codes de sécurité AS-i</td>
</tr>
<tr>
<td>AE 04</td>
<td>Table de codes erronnée</td>
<td>Apprendre les codes de sécurité AS-i</td>
</tr>
<tr>
<td>AE 05</td>
<td>Erreur AS-i interne</td>
<td>Redémarrer</td>
</tr>
<tr>
<td>AC [n° nœud]</td>
<td>Erreur double canal dans un nœud de sécurité</td>
<td>Désactiver les deux canaux</td>
</tr>
<tr>
<td>An [n° nœud]</td>
<td>Le profil de l’esclave ne correspond pas.</td>
<td>Lire les esclaves AS-i</td>
</tr>
<tr>
<td>CC [n° nœud]</td>
<td>Code Change = modification de code. Pluto prêt pour l’échange d’un esclave de sécurité, un esclave manque. (Confirmation avec le bouton « K »).</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>Code Change = modification de code. Pluto est prêt pour la connexion d’un nouvel esclave de sécurité.</td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>Code Found = code trouvé. Le code du nouvel esclave de sécurité est disponible. (Confirmation avec le bouton « K »).</td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>Duplicata de code. Code déjà enregistré dans le tableau de codes de Pluto.</td>
<td></td>
</tr>
</tbody>
</table>

Voyants AS-i

L’état des voyants AS-i ne donne aucune information supplémentaire à celle donnée par le code d’erreur (sauf dans un cas comme indiqué dans le tableau ci-dessous), mais le voyant vert éteint et / ou le voyant rouge allumé indique une erreur.

<table>
<thead>
<tr>
<th>Voyant</th>
<th>Code d’erreur sur l’afficheur ?</th>
<th>Erreur et raison possible.</th>
<th>Action de RAZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vert</td>
<td>Rouge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Éteint</td>
<td>Allumé</td>
<td>Oui</td>
<td>AS-i hors tension</td>
</tr>
<tr>
<td>Allumé</td>
<td>Allumé</td>
<td>Oui</td>
<td>Erreur AS-i</td>
</tr>
<tr>
<td>Allumé</td>
<td>Allumé</td>
<td>Non</td>
<td>Pluto en mode Esclave non adressé par le maître</td>
</tr>
</tbody>
</table>

Voyants d’entrées/sorties

Les voyants des entrées et des sorties fournissent des informations utiles au dépannage.

<table>
<thead>
<tr>
<th>Voyants</th>
<th>Erreur et raison possible.</th>
<th>Action de RAZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clignotement double</td>
<td>Erreur double canal lors de l'utilisation d'un bloc de fonction à deux canaux dans le programme de l'automate (un seul des canaux a changé d'état). Clignotement double sur le canal qui s'est ouvert.</td>
<td>Ouvrir et fermer les deux canaux.</td>
</tr>
</tbody>
</table>
Pluto O2 - Voyants
Pluto O2 est doté de 6 voyants DEL à la place d'un afficheur. Ils ont les fonctions suivantes.

<table>
<thead>
<tr>
<th>Voyant</th>
<th>Description</th>
</tr>
</thead>
</table>
| **I0** | Allumé – Entrée active
Clignotement – Erreur double canal, générée par le bloc de fonction.
Ou entrée active et programme non chargé. |
| **Q0** | Allumé – Sortie active
Clignotement – Erreur (aucune réponse du contact moniteur, non activé.) |
| **Run** | Allumé – API en marche
Éteint – API à l'arrêt
Clignotement – API arrêté (par Pluto Manager) |
| **Error** | Éteint – Aucune erreur
Clignotement – Erreurs avec réinitialisation possible avec le bouton K
(Err15..Err19, Err40..Err43, Err45, Err47) ou
Confirmation de l'auto-programmation
Clignotement rapide (80/80 ms) – Erreur du système.
Allumé et éteint pendant de courtes périodes (1200/80 ms) – Er20
Allumé – Toutes les autres erreurs |
| **Q1** | Allumé – Sortie active
Clignotement – Erreur (aucune réponse du contact moniteur, non activé.) |
| **I1** | Allumé – Entrée active
Clignotement – erreur double canal, générée par le bloc de fonction.
Ou entrée active et programme non chargé. |
| **Clignotement de toutes les DEL** | Identification du module |
Déclaration CE de conformité

Système de sécurité électronique programmable (automate programmable industriel dédié sécurité) Pluto, versions A20, B20, B16, S19, S20, D20, B22, B46, S46, D45, AS-i, B42 AS-i, O2

Normes harmonisées utilisées

<table>
<thead>
<tr>
<th>Norme</th>
<th>Référence</th>
<th>Directive</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN ISO 13849-1/EN 954-1</td>
<td>Directive 2006/42/CE</td>
<td></td>
</tr>
<tr>
<td>EN 62061</td>
<td>Directive 2006/42/CE</td>
<td></td>
</tr>
<tr>
<td>EN 61496-1</td>
<td>Directive 2006/42/CE</td>
<td></td>
</tr>
<tr>
<td>EN 574</td>
<td>Directive 2006/42/CE</td>
<td></td>
</tr>
<tr>
<td>EN 692</td>
<td>Directive 2006/42/CE</td>
<td></td>
</tr>
<tr>
<td>EN 60204-1</td>
<td>Directive 2006/95/CE</td>
<td></td>
</tr>
<tr>
<td>EN 50178</td>
<td>Directive 2006/95/CE</td>
<td></td>
</tr>
<tr>
<td>EN 61000-6-2</td>
<td>Directive 2004/108/CE</td>
<td></td>
</tr>
<tr>
<td>EN 61000-6-4</td>
<td>Directive 2004/108/CE</td>
<td></td>
</tr>
<tr>
<td>EN 61000-4-1…6</td>
<td>Directive 2004/108/CE</td>
<td></td>
</tr>
</tbody>
</table>

Autres normes et documents utilisées

<table>
<thead>
<tr>
<th>Norme</th>
<th>Référence</th>
</tr>
</thead>
</table>

Examen CE de type selon 2006/42/CE

TÜV-Rheinland
Am Grauen Stein
D-51105 Köln
Allemagne
organisme notifié n°. 0035

Numéro de l'attestation d'examen CE de type

01/205/5304/13

Jesper Kristensson
Manager PRU Jokab Safety
Kungsbacka 2013-04-16
Pour nous contacter :

Australia
ABB Australia Pty Limited
Low Voltage Products
Tel: +61 (0)1300 660 299
Fax: +61 (0)1300 853 138
Mob: +61 (0)401 714 392
E-mail: kenneth.robertson@au.abb.com
Web: www.abbaustralia.com.au

Austria
ABB AB, Jokab Safety
Tel: +43 (0) 1300 853 138
Fax: +61 (0)1214 9111
E-mail: alessandro.gauza@at.abb.com
Web: www.abb.at

Belgium
ABB N.V.
Tel: +32 27186884
Fax: +32 27186831
E-mail: tech.lp@be.abb.com
Web: www.abb.com

Brazil
ABB Ltda
Produtos de Baixa Tensão
ABB Atende: 0800 014 9111
Fax: +55 11 3688-9977
Web: www.abb.com.br

Canada
ABB Inc.
Tel: +1 514 420 3100 Ext 3269
Fax: +1 514 420 3137
Mobile: +1 514 247 4025
E-mail: alan.m.brown@ca.abb.com
Web: www.abb.com

China
ABB (China) Limited
Tel: 86-21-23287948
Fax: 86-21-23288558
Mobile: 86-186 2182 1159
E-mail: harry-yarong.zhang@cn.abb.com
Web: www.abb.com.cn

Czech Republic
ABB AS, Jokab Safety
Varlabergsvägen 11
SE-434 39 Kungsbacka
Tel: +46 21 32 50 00
Fax: +46 40 67 15 601
E-mail: support.jokabsafety@se.abb.com
Web: www.abb.com/jokabsafety

Denmark
JOKAB SAFETY DK A/S
Tel: +45 44 34 14 54
Fax: +45 44 99 14 54
E-mail: info@jokabsafety.dk
Web: www.jokabsafety.dk

France
ABB France
Division Produits Basse Tension
Tel: 0825 38 63 55
Fax: 0825 87 09 26
Web: www.abb.com

Germany
ABB STOTZ-KONTAKT GmbH
Tel: +49 (0) 7424-95865-0
Fax: +49 (0) 7424-95865-99
E-mail: bueno.spaichingen@de.abb.com
Web: www.abb.com

Greece
ABB SA
Tel: +30 210.28.91.900
Fax: +30 210.28.91.999
E-mail: dimitris.voulgaris@gr.abb.com
Web: www.abb.com

Ireland
ABB Ltd.
Tel: +353 1 4057 381
Fax: +353 1 4057 312
Mobile: +353 86 2532891
E-mail: derek.kelly@ie.abb.com
Web: www.abb.com

Israel
ABB Technologies Ltd.
Tel: +972 4 851-9204
Fax: +972 52 485-6284
E-mail: contact@il.abb.com
Web: www.abb.co.il

Italy
ABB S.p.A.
Tel: +39 02 2414.1
Fax: +39 02 2414.2330
Web: www.abb.it

Korea
ABB KOREA
Low-voltage Product
Tel: +82 52 528 2203
Fax: +82 5 258 2350
Web: www.jokabsafety.co.kr

Malaysia
ABB Malaysia
Tel: +60356284888 4282
E-mail: chang-sheng.saw@my.abb.com
Web: www.abb.com

Netherlands
ABB b.v.
Tel: +31 (0) 10 - 4078 947
Fax: +31 (0) 10 – 4078 090
E-mail: info.lowvoltageproducts@nl.abb.com
Web: www.abb.nl

Norway
ABB AS
Tel: +47 0202 5906
Fax: +47 5856 0601
E-mail: Hendrik.Spies@za.abb.com
Web: www.abb.com

Poland
ABB Sp. z o.o
Tel: +48 728 401 403
Fax: +49 2202 22 23
E-mail: adam.rasinski@pl.abb.com,
safety@pl.abb.com
Web: www.abb.pl

Portugal
Asea Brown Boveri S.A.
Low Voltage Products - Baixa Tensão
Tel: +35 1 214 256 000
Fax: +35 1 214 256 390
Web: www.abb.es

Slovenia
ABB d.o.o.
Tel: +386 1 2445 455
Fax: +386 1 2445 490
E-mail: aljosa.dobersek.si.abb.com
Web: www.abb.si

Spain
ABB AS, Jokab Safety
Varlagorvägen 11
SE-434 39 Kungsbacka
Tel: +46 21 32 50 00
Fax: +46 40 67 15 601
E-mail: support.jokabsafety@se.abb.com
Web: www.abb.com/jokabsafety

Sweden
ABB AB, Jokab Safety
Varlabergsvägen 11
SE-434 39 Kungsbacka
Tel: +46 21 32 50 00
Fax: +46 40 67 15 601
E-mail: support.jokabsafety@se.abb.com
Web: www.abb.com/jokabsafety

Switzerland
ABB Schweiz AG
Industrie- und Gebäudeautomation
Tel: +41 58 586 00 00
Fax: +41 58 586 06 01
E-mail: industrieautomation@ch.abb.com
Web: www.abb.ch

Turkey
ABB Elektrik Sanayi A.Ş
Tel: 0216 528 22 00
Fax: 0216 365 29 44

United Kingdom
ABB Ltd/JOKAB SAFETY UK
Tel: +44 (0) 2476 368500
Fax: +44 (0) 2476 368401
E-mail: orders.lp@gb.abb.com
Web: www.abb.com

USA/Mexico
ABB Jokab Safety North America
Tel: +1 519 735 1055
Fax: +1 519 7351299
E-mail: jokabnaorderentry@us.abb.com
Web: www.abb.com

Web: www.abb.com