List of related manuals in English

<table>
<thead>
<tr>
<th>Drive hardware manuals and guides</th>
<th>Code (English)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS580MV hardware manual</td>
<td>2UBB004520</td>
</tr>
<tr>
<td>ACS-AP-X assistant control panels user’s manual</td>
<td>3AUA0000085685</td>
</tr>
<tr>
<td>ACS580MV Engineering Guideline</td>
<td>2UBB013672</td>
</tr>
<tr>
<td>ACS580MV Wiring Diagram</td>
<td>2UBB004441</td>
</tr>
<tr>
<td>Warranty directive</td>
<td>3BHS104420</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drive firmware manuals and guides</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS580MV primary control program firmware manual</td>
<td>3BHS811381</td>
</tr>
<tr>
<td>CPU Firmware Update Description AC500 / AC500-eCo</td>
<td>3ADR025122M0205</td>
</tr>
<tr>
<td>ACS580MV SW compatibility table</td>
<td>2UBB017471</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PC tools manuals and guides</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>User’s manual Start-up and maintenance PC tool Drive composer</td>
<td>3AUA0000094606</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option manuals and guides</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuals and quick guides for I/O extension modules, fieldbus adapters, etc.</td>
<td></td>
</tr>
</tbody>
</table>

You can find manuals and other product documents in PDF format on the Internet. See http://www.abb.com/motors&drives. For manuals not available in the Document library, contact your local ABB representative.
Table of contents

1. Introduction to the Manual
- What this chapter contains .. 9
- Applicability .. 9
- Safety instructions .. 9
- Target audience ... 10
- Contents of the manual ... 10
- Related documents .. 10
- Terms and abbreviations ... 11
- Cybersecurity disclaimer ... 12

2. Loading of the Control Software
- What this chapter contains .. 13
- Warnings .. 13
- Preparing the SW loading .. 14
 - Equipment checklist .. 14
 - Software checklist .. 14
- Software loading to ACS580MV converter 15
 - Loading control hub firmware .. 15
 - Loading CVMI2 firmware .. 17
 - Loading IO controller (AC500eco) software 19
 - Loading BCON software ... 21
 - Loading the ACS-AP-S assistant panel firmware 22
 - Loading the DSP software manually to power modules 22

3. Fault Tracing
- What this chapter contains .. 31
- Safety ... 31
- Indications .. 31
- Warnings and faults .. 31
- Pure events .. 32
- Editable messages ... 32
- Warning/fault history and analysis 32
 - Event log .. 32
 - Other data loggers .. 33
- Parameters that contain warning/fault information 33
- Warning messages ... 34
- Fault messages .. 47

4. Service Level Parameters
- What this chapter contains .. 73
- Safety ... 73
- Terms and abbreviations ... 74
6 Table of contents

Summary of groups containing service level parameters .. 74
05 Diagnostics ... 75
07 System info .. 76
10 System info .. 76
17 Control Hub I/O ... 79
21 Start/stop mode ... 79
23 Speed reference ramp ... 79
26 Torque reference chain ... 79
30 Limits .. 81
31 Fault functions ... 81
34 Protections ... 84
60 DDCS communication .. 88
79 TC Vector control ... 89
81 System control and monitoring .. 93
82 Charging, MCB control ... 94
83 Cooling system .. 95
85 SBU control and monitoring ... 97
87 AC500 I/O interface ... 98
95 HW configuration ... 100
96 System .. 104
97 Motor control ... 105
99 Motor data ... 106

5. Using ACS580MV Data Analyzer

What this chapter contains ... 105
ACS580MV data analyzer ... 105
Menu bar ... 106
File menu .. 107
View menu .. 107
Help menu .. 107
Event logger ... 108
Fault data logger .. 111
Continuous monitoring logger ... 114

6. Drive Composer Support Package

Contents of this chapter ... 119
Support package .. 119

7. POF Link Test

Contents of this chapter ... 125
Link from power modules (TX) to control hub (RX) ... 126
Test POF-1: PM TX Full Power ... 126
Test POF-2: PM Tx Half Power ... 126
What to do in case tests POF-1 or POF-2 fail .. 127
Link from control hub (TX) to power modules (RX) ... 128
Test POF-3: Hub TX Full Power .. 128
Test POF-4: Hub Tx Half Power ... 128
What to do in case tests POF-3 or POF-4 fail ... 129
8. Inspecting Power Modules

Contents of this chapter .. 131
Safety ... 132
Process ... 132
Required tools and equipment ... 133
Measurement steps .. 133
Visual inspection .. 133
Measure the resistance of fuses ... 135
Measure if DC link is short circuited 135
Measuring the diodes of rectifier and IGBT 136
Measuring points ... 137
How to open the power module (PEBB) 144
Preparation .. 144
Open the Power Module ... 145
Known Problems .. 149
KP1252 Arc inside charging relay causes power module fault 149
KP1299 De-lamination of fiber optic cause communication failure 153
KP1249 Fuse of PM control power loop failure causes control hub missing power module fault 156
KP1692 MOSFET failure causes control board power failed 157
KP1632 Failed common mode choke on HCB is leading to malfunction of PEBB 160

9. Flystart troubleshooting

Flystart troubleshooting .. 161

10. Software capacitor reforming

What this chapter contains ... 165
Capacitor reforming test .. 165
Capacitor reforming test steps ... 166
8 Table of contents
Introduction to the Manual

What this chapter contains
This chapter describes the contents of the manual. It also contains information on the compatibility, safety and intended audience.

Applicability
This manual applies to the ACS580MV primary control program version:

• MHDRE 2.74

(or newer). The loading packages are available in the Medium Voltage Drives Portal.

The firmware version of the control program is visible in parameter 07.05 Firmware version, or in the System info in the main menu on the control panel.

Safety instructions
Follow all safety instructions delivered with the drive.

• Only ABB Service and ABB certified service partners are allowed to service the drive and change any of the parameters described in this manual.

• Read the complete safety instructions before you install, commission, or use the drive. The complete safety instructions are delivered with the drive as part of the ACS580MV hardware manual.

• Read the firmware function-specific warnings and notes before changing parameter values. These warnings and notes are included in the parameter descriptions presented in chapters Fault Tracing and Service Level Parameters, as well as in the Parameters chapter of the ACS580MV primary control program firmware manual.
Target audience

This manual is intended for ABB Service and ABB certified service partner personnel who commission and troubleshoot the drives.

Contents of the manual

This manual contains the following chapters:

• **Loading of the Control Software**: describes procedures for loading the software/firmware to all parts of control hardware.
• **Fault Tracing**: lists the warning and fault messages with possible causes and actions to remove the source of the fault.
• **Service Level Parameters**: describes all parameters that require service access level. This chapter is an addition to the description of End user level parameters provided in the *ACS580MV primary control program firmware manual*.
• **Using ACS580MV Data Analyzer**: short guidelines for using the ACS580MV data analyzer PC tool. This tool can be used to analyze diagnostic data that are continuously stored on SD card in BCU.
• **Drive Composer Support Package**: describes creating and using the Support package functionality of the PC tool Drive composer. This option is typically used for fast collection of a short history data from a drive.
• **POF Link Test**: describes a procedure to test the communication between control hub and power modules.
• **Inspecting Power Modules**: describes procedure for inspection of power modules to determine potential malfunction.

Related documents

A list of related manuals is printed on the inside of the front cover.
Terms and abbreviations

<table>
<thead>
<tr>
<th>Term/abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC500 or AC500eco</td>
<td>Type of PLC used as IO controller in ACS580MV drives</td>
</tr>
<tr>
<td>ACS-AP-S</td>
<td>Type of control panel used with ACS580MV drives</td>
</tr>
<tr>
<td>AI</td>
<td>Analog input; interface for analog input signals</td>
</tr>
<tr>
<td>AO</td>
<td>Analog output; interface for analog output signals</td>
</tr>
<tr>
<td>BCU</td>
<td>BCON Control Unit - The control unit used in ACS580MV drives</td>
</tr>
<tr>
<td>DC link</td>
<td>DC circuit in the Power module between rectifier and inverter</td>
</tr>
<tr>
<td>DDCS</td>
<td>Distributed drives communication system; a protocol used in optical fiber communication</td>
</tr>
<tr>
<td>DI</td>
<td>Digital input; interface for digital input signals</td>
</tr>
<tr>
<td>DIL</td>
<td>Digital input interlock</td>
</tr>
<tr>
<td>DIO</td>
<td>Digital input/output; interface that can be used as a digital input or output</td>
</tr>
<tr>
<td>DO</td>
<td>Digital output; interface for digital output signals</td>
</tr>
<tr>
<td>Drive</td>
<td>Frequency converter for controlling AC motors. The drive consists of a several power modules which are connecting the grid side to the inverter side.</td>
</tr>
<tr>
<td>FAIO-01</td>
<td>Optional analog I/O extension module</td>
</tr>
<tr>
<td>FBA</td>
<td>Fieldbus adapter</td>
</tr>
<tr>
<td>FENA-11</td>
<td>Optional Ethernet/IP adapter</td>
</tr>
<tr>
<td>FIO-01</td>
<td>Optional digital I/O extension module</td>
</tr>
<tr>
<td>FIO-11</td>
<td>Optional digital and analog I/O extension module</td>
</tr>
<tr>
<td>FPBA-0x</td>
<td>Optional PROFIBUS DP adapter</td>
</tr>
<tr>
<td>FSACA-0x</td>
<td>Optional Modbus adapter</td>
</tr>
<tr>
<td>HTL</td>
<td>High-threshold logic</td>
</tr>
<tr>
<td>IGBT</td>
<td>Insulated gate bipolar transistor; a voltage-controlled semiconductor type widely used in inverters and IGBT supply units due to their easy controllability and high switching frequency.</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/Output</td>
</tr>
</tbody>
</table>
| Network control | With fieldbus protocols based on the Common Industrial Protocol (CIPTM), such as DeviceNet and Ethernet/IP, denotes the control of the drive using the Net Ctrl and Net Ref objects of the ODVA AC/DC Drive Profile. For more information, see www.odva.org, and the following manuals:
 • FDNA-01 DeviceNet adapter module User's manual (3AFE68573380 [English]), and
 • FENA-01/-11 Ethernet adapter module User's manual (3AUA0000093568 [English]). |
| Parameter | User-adjustable operation instruction to the drive, or signal measured or calculated by the drive |
Cybersecurity disclaimer

This product is designed to be connected to and to communicate information and data via a network interface. It is Customer’s sole responsibility to provide and continuously ensure a secure connection between the product and Customer network or any other network (as the case may be). Customer shall establish and maintain any appropriate measures (such as but not limited to the installation of firewalls, application of authentication measures, encryption of data, installation of anti-virus programs, etc) to protect the product, the network, its system and the interface against any kind of security breaches, unauthorized access, interference, intrusion, leakage and/or theft of data or information. ABB and its affiliates are not liable for damages and/or losses related to such security breaches, any unauthorized access, interference, intrusion, leakage and/or theft of data or information.
Loading of the Control Software

What this chapter contains

This chapter contains the description of equipment, tools and procedures for downloading software to all parts of control hardware in the ACS580MV converter.

Warnings

WARNING! Only ABB Service and ABB certified service partners are allowed to service the drive. Obey the safety instructions in chapter Introduction to the Manual on page 9. If you ignore them, injury or death, or damage to the equipment can occur.
Preparation of the SW loading

Equipment checklist

- Following equipment should be prepared before SW download can start:
 - SD Memory Card adapter for AC500eco MC503 (Art. Nr.: 1TNE968901R0100)
 - SD Memory Card MC502 (Art. Nr.: 1SAP180100R0001)
 - XILINX platform cable USB II for programming control hub
 - USB to mini USB cable for programming BCON SW (USB 2.0 Cable Type A - Mini-B, m-m)
 - USB to FO serial cable for programming Power modules (needed in case there are problems with normal SW download procedure)

Software checklist

- The latest MHDRE loading package (available in Medium Voltage Drives Portal)
- Drive loader 2 (available in ABB intranet)
- Drive composer pro ver. 1.9 or newer
- DriveStartup ver. 5.0 or newer (recommended ver. is 5.2 or newer available in DriveStartup installer)
- DriveStartup step definitions for ACS580MV (contained in the MHDRE loading package)
- Tera Term PC tool (available at TeraTerm)
Software loading to ACS580MV converter

- Loading control hub firmware

Control hub firmware version can be checked in parameter 07.16 Control hub FW version. To upgrade the Control hub firmware, follow the steps below:

1. Switch off the control power
2. Remove the daughter boards DB2 and DB3 to get access the X5 connector on control hub
3. Connect XILINX platform cable USB II to X5 connector on control hub
4. Switch on the control power
5. Run PROG_MHDCCH.bat batch file to program the control hub. Following window will open:

![Programming window](image)

6. After pressing Enter many messages will be shown on screen and finally the
screen will stay longer with the following message:

```
INFO: IMPACT - Downloading core file
C:/Program Files/Killax/1K4/1st_DS/ISE/spartan6/data/xc6slx75_spi.cor.
```

or regenerate the PROM file with the latest software.
Maximum TCK operating frequency for this device chain: 250000000.
Validating chain...
Boundary-scan chain validated successfully.
'1': SPI access core not detected. SPI access core will be downloaded to the
device to enable operations.
INFO: IMPACT - Downloading core file
C:/Program Files/Killax/1K4/1st_DS/ISE/spartan6/data/xc6slx75_spi.cor.
'1': Downloading core...
LCK cycle: NoWait.
LCK cycle: NoWait
done:
'1': Reading status register contents...
INFO: IMPACT.2210 - Status register values:
INFO: IMPACT: 2402 - '1': Completed downloading core to device.
'1': IDCODE is 'e7f807' (in hex).
'1': ID Check passed
'1': IDCODE is 'e7f807' (in hex).
'1': ID Check passed.
'1': Erasing Device.
'1': Using sector Erase.
'1': Erasing non-volatile quad-enable bit...
'1': Programming Flash.
```
Programming of the control hub takes 3-4 minutes.

7. When the programming is over following screen will show:

```
press any key to exit.
```

8. Turn off the control power.

9. Remove the XILINX platform cable USB II.

10. Restore all daughter boards on control hub.

**Loading CVMI2 firmware**

CVMI2 firmware version can be checked in parameter 07.17 CVMI2 FW version. To upgrade the CVMI2 firmware, follow the steps below:
18 Loading of the Control Software

1. Switch off the control power.
2. Connect XILINX platform cable USB II to X1301 connector on CVMI2.
3. Switch on the control power.
4. Run PROG_LXES.bat batch file to program the CVMI2. Following window will open:

5. After pressing Enter many messages will be shown on screen and finally the screen will stay longer with the following message:
6. When the programming is over following screen will show:

Press any key to exit.

7. Turn off the control power.

8. Remove the XILINX platform cable USB II.

**Loading IO controller (AC500eco) software**

IO controller software version can be checked in parameter 81.7 IO controller version. To upgrade the IO controller software, follow the steps below:

1. Save the following files and folders to the SD card (MC502) root folder. Files can be found in the MHDRE release package (folder `IOController SW`):
20 Loading of the Control Software

**Note:** Only MC502 SD card can be used. This is not the same SD card which is plugged into the BCU.

2. Switch off the control power
3. Install SD card adapter (MC503) into CPU PM55x
4. Insert SD memory card (MC502) into adapter MC503
5. Switch on the control power. Update operation starts. Observe the LEDs on PM55x:

<table>
<thead>
<tr>
<th>LED Description</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUN LED flashing</td>
<td>= reading from SD memory card</td>
</tr>
<tr>
<td>RUN and ERR LED flashing fast</td>
<td>= programming in progress</td>
</tr>
<tr>
<td>RUN LED flashing slowly</td>
<td>= SW download successful</td>
</tr>
<tr>
<td>ERR LED flashing slowly</td>
<td>= Error</td>
</tr>
</tbody>
</table>

6. After SW update operation finishes, switch off the control power and remove SD card and the adapter. New SW is activated after IO controller AC500eco CPU is restarted.
Loading BCON software

1. Connect PC to the assistant control panel (ACS-AP-S) with USB to mini USB cable.

2. Start Drive loader 2 and select the file LP_FirmwareUpgrade.lp from the MHDRE release package (folder 01_BCON SW). Select ACS580 for the drive type and wait until the tool identifies the connection to the drive. Click “Download” button when ready:
Note: Drive composer and DriveStartup PC tools must be closed to enable connection to the drive.

3. Downloading of a loading package lasts approximately 10 minutes. If download is successful close the Drive loader 2 tool.

Note: If the BCON SW version MHDRE 2.0.0.3 (2016-B) or newer has never been loaded to a BCON before, a ZMU-02 already containing the new software will not work. In other words, on a new drive it is not possible to simply insert the ZMU-02 containing new software but the software must be loaded using Drive loader tool as described above.

Loading the ACS-AP-S assistant panel firmware

The instructions for download of the ACS-AP-S firmware are available in the document "ACS-AP_ControlPanelUpdateInstructions.pdf" that is available with the MHDRE loading package in Medium Voltage Drives Portal (folder: \05_ControlPanel FW). Panel type and revision can be checked from the bar code sticker. HW version is defined by the first letter of serial number in the bar code sticker. Other way to check panel type and revision is to hold down the “?” key in panel power up. Appropriate info with mentioned information appears then. Refer to the ACS580MV SW compatibility table for the compatibility between BCON software and panel firmware. Update the panel firmware if not compatible.

Loading the DSP software manually to power modules

The software of power module DSP is contained in the BCON software. After the drive is charged and power modules DSPs are turned on, BCON software is checking if all the power modules have the correct software version. Only one DSP software version is compatible with one version of BCON software. If one or more power modules report different software version than the one that is required by BCON, the DSP software download from BCON is started. See description of the fault 607E PM Software update in progress for more details.

In some exceptional cases the DSP software download from BCON might not succeed. The following cases might lead to unsuccessful software download:

- Power modules have incompatible DSP SW version (see the note below).
- One or more power modules have no SW programmed.
- There is a fault activated on one or more power modules before the software download could start.

Note: BCON SW version MHDRE 2.74 is not compatible with the DSP SW version 01.00.02 (2015-A release) and older.

In case of unsuccessful DSP software download from BCON, the DSP software must be downloaded directly to all power modules. The instructions how to download the DSP software directly to power modules is given in the remainder of this chapter.
1. Disconnect the original POF links from the first power module. Connect the USB to FO serial cable to power module’s POF links. Make sure that the correct POF link is connected to TX and RX channel by obeying the color of the POF link cable and POF link connectors on power module.
2. Check the port of the USB to FO serial cable on your PC (Control panel -> System -> Device Manager):

3. Open the “Tera Term” PC tool and set the serial port to the one where Serial to POF link cable is connected (COM19 in the example here). Set the baud rate to 115200.
4. Connect the auxiliary +5.5V power supply cable (part of the USB-POF link cable) to +5V power supply connector on the power module. After that the DSP of the power module will boot up. After the DSP boots up the Tera Term receives information from DSP:
5. After Tera Term displays the text “Type ‘e’ to erase flash:” just press letter “e” on the keyboard.

6. Open the File menu and chose “Send file”: 
Select the PEBB1_CellController.bin file from the MHDRE loading package (folder 102_PowerModule SW).

**Important:** Make sure to select the option “Binary”! If not selected, the software download will fail.
7. Press "Open" to start the download:
8. Once the download is successfully finished the following message will be shown:

![Screenshot of Tera Term with boot loader messages]

9. Close the Tera Term PC tool. Disconnect the USB-POF link cable and +5.5V power supply cable, and reconnect the original POF link. Proceed to the next power module.
Loading of the Control Software
Fault Tracing

What this chapter contains

The chapter lists the warning and fault messages including possible causes and corrective actions. The causes of most warnings and faults can be identified and corrected using the information in this chapter. The basic procedures for troubleshooting that can be carried out by End user are already described in ACS580MV primary control program firmware manual and are repeated here. In addition to that, troubleshooting procedures that are only allowed for ABB Service or ABB certified service partners are described in this chapter. If it is not possible to resolve a problem using information from this chapter, the ABB support line should be contacted.

Warnings and faults are listed below in separate tables. Each table is sorted by warning/fault code.

Safety

WARNING! Only ABB Service and ABB certified service partners are allowed to service the drive. Obey the safety instructions in chapter Introduction to the Manual on page 9. If you ignore them, injury or death, or damage to the equipment can occur.

Indications

- Warnings and faults

Warnings and faults indicate an abnormal drive status. The codes and names of active warnings/faults are displayed on the control panel of the drive as well as the
Fault Tracing

Drive composer PC tool. Only the codes of warnings/faults are available over fieldbus.

Warnings do not need to be reset; they stop showing when the cause of the warning ceases. Warnings do not latch and the drive will continue to operate the motor.

Faults do latch inside the drive and cause the drive to trip. When a fault is activated the modulation is stopped and the MCB contacts are opened. After the cause of a fault has been removed, the fault can be reset from a selectable source such as the control panel, Drive composer PC tool, the digital inputs of the drive or fieldbus (see parameter 31.11 Fault reset selection). After the fault is reset, the drive can be restarted. Note that some faults require a reboot of the control unit either by switching the control power off and on, or using parameter 96.08 Control board boot – this is mentioned in the fault listing wherever appropriate.

- Pure events

In addition to warnings and faults, there are pure events that are only recorded in the event log of the drive. The codes of these events are included in the Warning messages table.

- Editable messages

For some warnings and faults, the message text can be edited and instructions and contact information added. To edit these messages, choose Menu - Settings - Edit texts on the control panel.

Warning/fault history and analysis

- Event log

All indications are stored in the event log with a time stamp and other information. The event log stores information on the last 5 faults that tripped the drive, and the last 20 secondary events that occurred. The event log can be accessed from the main Menu on the control panel. It can also be accessed (and reset) using the Drive composer PC tool.

Auxiliary codes

Some events generate an auxiliary code that often helps in pinpointing the problem. On the control panel, the auxiliary code is stored as part of the details of the event; in the Drive composer PC tool, the auxiliary code is shown in the event listing.

Fault data logger

The drive has a preset fault data logger that samples preselected drive values at 500-microsecond intervals. Approximately 22000 samples recorded 400ms before and 100ms after the tripping fault are saved into the memory unit of the drive. The fault data is accessible in the event log when viewed in the Drive composer PC tool. (The
Fault data is not accessible through the control panel. All fault data loggers are copied to the SD card and can be analyzed later using ACS50MV Data analyzer PC tool (see Using ACS580MV Data Analyzer).

The values that are recorded in the fault data log are 01.07 Motor current, 01.10 Motor torque %, 01.11 DC voltage, 01.24 Flux actual %, 01.40 Phase U2 motor current, 01.41 Phase V2 motor current, 01.42 Phase W2 motor current, 01.43 Phase U2 motor voltage, 01.44 Phase V2 motor voltage, 01.45 Phase W2 motor voltage, 01.46 Phase A average DC voltage, 01.47 Phase B average DC voltage, 01.48 Phase C average DC voltage, 01.49 Phase U1 grid current, 01.50 Phase V1 grid current, 01.51 Phase W1 grid current, 01.52 Phase A average secondary voltage, 01.53 Phase B average secondary voltage, 01.54 Phase C average secondary voltage, 24.01 Used speed reference, 30.01 Limit word 1 and 90.01 Motor speed for control. The selection of parameters cannot be changed by the user.

- **Other data loggers**

**User data logger**

A custom data logger can be configured using the Drive composer PC tool. This functionality enables the free selection of up to eight drive parameters to be sampled at selectable intervals. The triggering conditions and the length of the monitoring period can also be defined by the user within the limit of approximately 8000 samples. The collected data is not automatically saved. Minimum sampling time for User data logger is 500ms.

- **Parameters that contain warning/fault information**

The drive is able to store a list of the active faults actually causing the drive to trip at the present time. The faults are displayed in parameter group 04 Warnings and faults. The parameter group also displays a list of faults and warnings that have previously occurred.
### Warning messages

**Note:** The list also contains Pure events that only appear in the Event log.

<table>
<thead>
<tr>
<th>Code (hex)</th>
<th>Warning</th>
<th>Cause</th>
<th>What to do</th>
</tr>
</thead>
<tbody>
<tr>
<td>64FF</td>
<td>Fault reset</td>
<td>Fault reset has been demanded.</td>
<td>If the root cause for some of the active faults is still present after the reset, those faults will remain active. Root cause for the faults should be removed before reset is attempted.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Important:</strong> Resetting of the active faults should be attempted only after action has been taken to remove the suspected root cause for the faults. Pressing reset with faults still active will cause those faults to reappear in the Event logger. This reduces the number of relevant information in the Event logger and makes the later troubleshooting more difficult.</td>
</tr>
<tr>
<td>A186</td>
<td>PM states mismatch</td>
<td>Control hub has detected a combination of power modules' (PM) states that is not valid.</td>
<td>Check POF wiring to PMs (or replace). Check control hub daughter boards (or replace). Check PM SW version and update if required.</td>
</tr>
<tr>
<td>A283</td>
<td>Motor overload alarm</td>
<td>Motor average current exceeds the internal alarm limit (Par. 34.30).</td>
<td>Check that the motor parameters in group 99 Motor data correspond to the motor rating plate. Check for proper delta/star connection of the motor. Check the settings of the alarm threshold (Par. 34.30) and of the motor overloadability (Par. 34.49 - 34.52).</td>
</tr>
<tr>
<td>A2B1</td>
<td>Overcurrent</td>
<td>Output current has exceeded internal alarm limit.</td>
<td>Check motor load. Check acceleration times in parameter group 23 Speed reference ramp (rpm operation mode) or 28 Frequency reference chain (Hz operation mode). Also check parameters 46.01 Speed scaling and 46.02 Frequency scaling. Check motor and motor cable (including phasing and delta/star connection). Check there are no contactors opening and closing in motor cable. Check that the data in parameter group 99 Motor data corresponds to the motor rating plate. Check that there are no power factor correction capacitors or surge absorbers in motor cable.</td>
</tr>
<tr>
<td>A2B3</td>
<td>Earth leakage</td>
<td>Drive has detected load unbalance typically due to earth fault in motor or motor cable.</td>
<td>Check that there are no power factor correction capacitors or surge absorbers in motor cable. Check for an earth fault in motor or motor cable by measuring the insulation resistances of motor and motor cable. If no earth fault can be detected, contact the ABB support line.</td>
</tr>
<tr>
<td>Code (hex)</td>
<td>Warning</td>
<td>Cause</td>
<td>What to do</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
<td>---------------------------------------------------------------------------</td>
</tr>
<tr>
<td>A2B4</td>
<td>Short circuit</td>
<td>Short-circuit in motor cable(s) or motor.</td>
<td>Check motor and motor cable for cabling errors. Check that there are no power factor correction capacitors or surge absorbers in motor cable.</td>
</tr>
<tr>
<td>A480</td>
<td>Motor cable overload (Editable message text)</td>
<td>Calculated motor cable temperature has exceeded warning limit.</td>
<td>Check the dimensioning of the motor cable in regard to required load. Check the settings in parameter group 35 Motor thermal protection.</td>
</tr>
<tr>
<td>A490</td>
<td>Incorrect temperature sensor setup</td>
<td>Sensor type mismatch</td>
<td>Check the settings of parameters 35.1f Temperature 1 source and 35.2f Temperature 2 source.</td>
</tr>
<tr>
<td>A491</td>
<td>External temperature 1 (Editable message text)</td>
<td>Measured temperature 1 has exceeded warning limit.</td>
<td>Check the value of parameter 35.02 Measured temperature 1. Check the cooling of the motor (or other equipment whose temperature is being monitored). Check the setting of parameter 35.13 Temperature 1 warning limit.</td>
</tr>
<tr>
<td>A492</td>
<td>External temperature 2 (Editable message text)</td>
<td>Measured temperature 2 has exceeded warning limit.</td>
<td>Check the value of parameter 35.03 Measured temperature 2. Check the cooling of the motor (or other equipment whose temperature is being monitored). Check the setting of parameter 35.23 Temperature 2 warning limit.</td>
</tr>
<tr>
<td>A4A0</td>
<td>Control board temperature</td>
<td>Control unit temperature (seen in Par. 5.10) has exceeded internal alarm level (Par. 5.48).</td>
<td>Check the auxiliary code. See actions for each code below.</td>
</tr>
<tr>
<td>A5EA</td>
<td>Measurement circuit temperature</td>
<td>Problem with internal temperature measurement of the drive.</td>
<td>Contact the ABB support line. For software version 2.00.0.3 and older it is recommended to load the newest software package.</td>
</tr>
<tr>
<td>A5ED</td>
<td>Measurement circuit ADC</td>
<td>Measurement circuit problem.</td>
<td>Contact the ABB support line.</td>
</tr>
<tr>
<td>A5EE</td>
<td>Measurement circuit DFF</td>
<td>Measurement circuit problem.</td>
<td>Contact the ABB support line.</td>
</tr>
<tr>
<td>A5F4</td>
<td>Control unit battery</td>
<td>The battery of the control unit is low.</td>
<td>Replace control unit battery. Refer to the ACS580MV hardware manual for instructions on the battery replacement. This warning can be suppressed using parameter 31.40.</td>
</tr>
<tr>
<td>A682</td>
<td>Flash erase speed exceeded</td>
<td>Internal warning.</td>
<td>Can be ignored.</td>
</tr>
</tbody>
</table>
### Code (hex) | Warning | Cause | What to do
---|---|---|---
A684 | SD card | Error related to SD card used to store data on BCU | Check the auxiliary code. See actions for all the codes below.
1 | No SD card | Insert a compatible, writable SD card into the SD CARD slot of the BCU. | Note: Only 4 GB SD cards are supported with SW versions MHDRE 2.0.0.3 (2016-B) and older.
3 | SD card unreadable | | 
A685 | Power fail saving | Power fail saving is requested too frequently due to oscillating power supply to the control unit. Some of the requests may have been discarded, potentially causing data loss. | Check the power supply of the control unit. If power internally from the drive, check the supply voltage of the drive.
A690 | SD card write failed | Error happened while writing data to SD card located in BCON. | Customer should change a new SD card.
0x01 | change directory fail | | 
0x02 | make directory fail | | 
0x04 | open file fail | | 
0x10 | read space fail | | 
0x20 | seek file current writing position fail | | 
0x40 | remove file fail | | 
0x80 | remove directory fail | | 
0x640008 | Write BCON information fail | | 
0xC60008 | Write event logger fail | | 
0x0Y0008 (YY=2…E) | Write Data logger (2…14) fail | | 
A6A4 | Motor nominal value | The motor parameters are set incorrectly. The drive is not dimensioned correctly. | Check the settings of the motor parameters in parameter group 99 Motor data. Check that the drive is sized correctly for the motor.
A6A5 | No motor data | Parameters in group 99 have not been set. | Check that all the required parameters in parameter group 99 Motor data have been set. Note: It is normal for this warning to appear during the start-up and continue until the motor data is entered.
A6A6 | Supply voltage unselected | The supply voltage has not been defined. | Set supply voltage parameter (contact the ABB support line).
A6D1 | FBAA parameter conflict | The drive does not have a functionality requested by a PLC (overriding system), or requested functionality has not been activated. | Check PLC (overriding system) programming. Check settings of parameter groups 50 Fieldbus adapter (FBA) and 51 FBAA settings.
<table>
<thead>
<tr>
<th>Code (hex)</th>
<th>Warning</th>
<th>Cause</th>
<th>What to do</th>
</tr>
</thead>
</table>
| A6D2      | FBA B parameter conflict | The drive does not have a functionality requested by a PLC AC500, or requested functionality has not been activated. | - Reboot the BCU control unit to load the default values for the communication parameters.  
- Make sure that following parameters are set correctly:  
  54.1 FBA B type = RS-485 comm  
  54.2 Profile = ABB Enhanced  
- Refresh the Modbus settings by setting the parameter:  
  54.27 FBA B par refresh = Refresh  

**WARNING!** FBA B communication is reserved for drive internal communication and should not be changed by End user. |
| A6E5      | AI parametrization       | The current/voltage hardware setting of an analog input does not correspond to parameter settings. | Check the event log for an auxiliary code.  
The code identifies the analog input whose settings are in conflict.  
Adjust either the hardware setting (dip switches on BCU) or parameter 12.15/12.25.  
**Note:** Control board reboot (either by cycling the power or through parameter 96.08 Control board boot) is required to validate any changes in the hardware settings. |
| A6FA      | Trial mode active        | The drive is running in trial mode. After the trial mode has expired the drive will trip immediately and license update shall not be possible. | Contact ABB support line to get a valid license key.  
Enter a valid license key in parameters 96.71 License key part 1, 96.72 License key part 2, 96.73 License key part 3, 96.74 License key part 4 and then set the parameter 96.75 License key refresh to "Refresh". |
| A6FB      | Trial mode expires soon  | The trial mode expires soon. After the trial mode has expired the drive will trip immediately and license update shall not be possible. | Contact ABB support line to get a valid license key.  
Enter a valid license key in parameters 96.71 License key part 1, 96.72 License key part 2, 96.73 License key part 3, 96.74 License key part 4 and then set the parameter 96.75 License key refresh to "Refresh". |
<table>
<thead>
<tr>
<th>Code (hex)</th>
<th>Warning</th>
<th>Cause</th>
<th>What to do</th>
</tr>
</thead>
<tbody>
<tr>
<td>A6FD</td>
<td>Rating parametrization failed</td>
<td>When the drive is modulating, it is not possible to change some parameters.</td>
<td>Check the auxiliary code. The code identifies the parameter whose writing was not possible. The format of the code is 0x0GGG 0III. &quot;GGG&quot; represents the parameter group in decimal representation. &quot;III&quot; represents the parameter index in decimal representation. This warning indicates that the entered license key has a different setting in a very important parameter. The parametrization is successful only if the drive is not modulating. If you are sure that the settings in the license key are correct, you can apply the changes by stopping the drive and refreshing the license key. If you are not sure if the settings in the license key are correct contact the ABB support line and provide the auxiliary code.</td>
</tr>
<tr>
<td>A6FE</td>
<td>Rating not valid</td>
<td>The entered license key provides an invalid setting.</td>
<td>Check the auxiliary code. The code identifies the parameter whose setting was not valid. The format of the code is 0x0GGG 0III. &quot;GGG&quot; represents the parameter group in decimal representation. &quot;III&quot; represents the parameter index in decimal representation. Contact the ABB support line and provide the auxiliary code.</td>
</tr>
<tr>
<td>A780</td>
<td>Motor stall Programmable warning: 31.24 Stall function</td>
<td>Motor is operating in stall region because of e.g. excessive load or insufficient motor power.</td>
<td>Make sure that the motor is not mechanically blocked from rotating. Check motor load and drive ratings. Check fault function parameters 31.24…31.28 (see the description of those parameters in ACS580MV primary control program firmware manual for more details).</td>
</tr>
<tr>
<td>A781</td>
<td>Motor fan Programmable warning: 35.106 DOL starter event type</td>
<td>No feedback received from external fan.</td>
<td>Check external fan (or other equipment controlled) by the logic. Check settings of parameters 35.100…35.106 (see the description of those parameters in ACS580MV primary control program firmware manual for more details).</td>
</tr>
<tr>
<td>A797</td>
<td>Speed feedback configuration</td>
<td>The warning is related to encoder feedback that is not supported in ACS580MV.</td>
<td>Restore all parameters in groups 90, 92 and 93 to their default values. Reboot the control unit (using parameter 96.08 Control board boot) or by cycling power.</td>
</tr>
<tr>
<td>A798</td>
<td>Encoder Option Comm Loss</td>
<td>The warning is related to encoder feedback that is not supported in ACS580MV.</td>
<td>Restore all parameters in groups 90, 92 and 93 to their default values. Reboot the control unit (using parameter 96.08 Control board boot) or by cycling power.</td>
</tr>
<tr>
<td>Code (hex)</td>
<td>Warning</td>
<td>Cause</td>
<td>What to do</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------</td>
<td>----------------------------------------------------------------------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>A7AA</td>
<td>Extension AI parameterization</td>
<td>The hardware current/voltage setting of an analog input (on an I/O extension module) does not correspond to parameter settings.</td>
<td>Check the event log for an auxiliary code (format XX00 00YY). “XX” specifies the number of the I/O extension module (01: parameter group 14 I/O extension module 1, 02: 15 I/O extension module 2, 03: 16 I/O extension module 3). “YY” specifies the analog input on the module. For example, in case of I/O extension module 1, analog input AI1 (auxiliary code 0100 0001), the hardware current/voltage setting on the module is shown by parameter 14.29. The corresponding parameter setting is 14.30. Adjust either the hardware setting on the module or the parameter to solve the mismatch. <strong>Note:</strong> Control board reboot (either by cycling the power or through parameter 96.08 Control board boot) is required to validate any changes in the hardware settings.</td>
</tr>
<tr>
<td>A7AB</td>
<td>Extension I/O configuration failure</td>
<td>The I/O extension module types and locations specified by parameters do not match the detected configuration.</td>
<td>Check the event log for an auxiliary code. The code indicates which I/O extension module is affected. Check the type and location settings of the modules (parameters 14.01, 14.02, 15.01, 15.02, 16.01 and 16.02). Check that the modules are properly installed.</td>
</tr>
<tr>
<td>A7C1</td>
<td>FBA A communication Programmable warning: 50.02 FBA A comm loss func</td>
<td>Cyclical communication between drive and fieldbus adapter module A or between PLC (overriding system) and fieldbus adapter module A is lost.</td>
<td>Check status of fieldbus communication. See user documentation of fieldbus interface. Check settings of parameter groups 50 Fieldbus adapter (FBA), 51 FBA A settings, 52 FBA A data in and 53 FBA A data out. Check cable connections. Check if communication master is able to communicate.</td>
</tr>
<tr>
<td>A7C2</td>
<td>FBA B communication Programmable warning: 50.32 FBA B comm loss func</td>
<td>Cyclical communication between drive and fieldbus adapter module B or between ACS500 PLC and fieldbus adapter module B is lost.</td>
<td>- Check settings of parameter groups 50 Fieldbus adapter (FBA), 54 FBA B settings. 55 FBA B data in and 56 FBA B data out. - Reboot the BCU control unit to load the default values for the communication parameters.</td>
</tr>
</tbody>
</table>
### 40 Fault Tracing

<table>
<thead>
<tr>
<th>Code</th>
<th>Warning</th>
<th>Cause</th>
<th>What to do</th>
</tr>
</thead>
<tbody>
<tr>
<td>A7EE</td>
<td>Panel loss Programmable warning: 49.06 Communication loss action</td>
<td>Control panel or PC tool selected as active control location for drive has ceased communicating.</td>
<td>Check PC tool or control panel connection. Check control panel connector. Check BCON X13 connector pins. Disconnect and reconnect the control panel. Replace control panel in mounting platform. For software versions 2.00.0.3 and older please check SD card for damage if panel loss is detected. If SD card is damaged, return it back to factory for analysis (without formatting). <strong>Caution!</strong> In case of software version 1.41.0.2 or older, change parameter 49.05 to No action to avoid nuisance alarms.</td>
</tr>
<tr>
<td>A7F0</td>
<td>FSCA-01 firmware incompatible</td>
<td>FSCA-01 firmware version is incompatible with the drive software. Fieldbus communication will not be stable.</td>
<td>The warning is active if any of the FSCA-01 modules (used for FBA A and/or for FBA B communication) have incompatible FW version. Check parameter 54.33 FBA A appl SW ver to determine if the FSCA-01 module used for internal communication is having an incompatible FW version. Refer to the release notes for the list of compatible FW versions. If second FSCA-01 module is used for FBA A communication, check parameter 51.33 FBA A appl SW ver. Replace all FSCA-01 modules that have incompatible FW version with compatible ones.</td>
</tr>
<tr>
<td>A880</td>
<td>Motor bearing Programmable warnings: 33.14 On-time 1 warn message 33.24 On-time 2 warn message 33.55 Value counter 1 warn message 33.65 Value counter 2 warn message</td>
<td>Warning generated by an on-time timer or a value counter</td>
<td>Check the event log for an auxiliary code. Check the source of the warning corresponding to the code: 0: 33.13 On-time 1 source 1: 33.23 On-time 2 source 4: 33.53 Value counter 1 source 5: 33.63 Value counter 2 source.</td>
</tr>
<tr>
<td>A881</td>
<td>Output relay</td>
<td>Warning generated by an edge counter</td>
<td>Check the event log for an auxiliary code. Check the source of the warning corresponding to the code: 2: 33.33 Edge counter 1 source 3: 33.43 Edge counter 2 source.</td>
</tr>
<tr>
<td>A882</td>
<td>Motor starts</td>
<td>Programmable warnings: 33.35 Edge counter 1 warn message</td>
<td></td>
</tr>
<tr>
<td>A883</td>
<td>Power ups</td>
<td>Programmable warnings: 33.45 Edge counter 2 warn message</td>
<td></td>
</tr>
<tr>
<td>A884</td>
<td>Main contactor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A885</td>
<td>DC charge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code (hex)</td>
<td>Warning</td>
<td>Cause</td>
<td>What to do</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>A886</td>
<td>On-time 1 (Editable message text) Programmable warning: 33.14 On-time 1 warn message</td>
<td>Warning generated by on-time timer 1</td>
<td>Check the source of the warning (parameter 33.13 On-time 1 source).</td>
</tr>
<tr>
<td>A887</td>
<td>On-time 2 (Editable message text) Programmable warning: 33.24 On-time 2 warn message</td>
<td>Warning generated by on-time timer 2</td>
<td>Check the source of the warning (parameter 33.23 On-time 2 source).</td>
</tr>
<tr>
<td>A888</td>
<td>Edge counter 1 (Editable message text) Programmable warning: 33.35 Edge counter 1 warn message</td>
<td>Warning generated by edge counter 1</td>
<td>Check the source of the warning (parameter 33.33 Edge counter 1 source).</td>
</tr>
<tr>
<td>A889</td>
<td>Edge counter 2 (Editable message text) Programmable warning: 33.45 Edge counter 2 warn message</td>
<td>Warning generated by edge counter 2</td>
<td>Check the source of the warning (parameter 33.43 Edge counter 2 source).</td>
</tr>
<tr>
<td>A88A</td>
<td>Value integrator 1 (Editable message text) Programmable warning: 33.55 Value counter 1 warn message</td>
<td>Warning generated by value counter 1</td>
<td>Check the source of the warning (parameter 33.53 Value counter 1 source).</td>
</tr>
<tr>
<td>A88B</td>
<td>Value integrator 2 (Editable message text) Programmable warning: 33.65 Value counter 2 warn message</td>
<td>Warning generated by value counter 2</td>
<td>Check the source of the warning (parameter 33.63 Value counter 2 source).</td>
</tr>
<tr>
<td>A88C</td>
<td>Device clean</td>
<td>Warning generated by an on-time timer</td>
<td>Check the event log for an auxiliary code. Check the source of the warning corresponding to the code: 0: 33.13 On-time 1 source 1: 33.23 On-time 2 source</td>
</tr>
<tr>
<td>A88D</td>
<td>DC capacitor Programmable warnings: 33.14 On-time 1 warn message 33.24 On-time 2 warn message</td>
<td>Programmable warning: 33.14 On-time 1 warn message 33.24 On-time 2 warn message</td>
<td>Check the source of the warning corresponding to the code: 0: 33.13 On-time 1 source 1: 33.23 On-time 2 source</td>
</tr>
<tr>
<td>A88E</td>
<td>Cabinet fan Programmable warning: 33.24 On-time 2 warn message</td>
<td>Cabinet fan Programmable warning: 33.24 On-time 2 warn message</td>
<td>Check the source of the warning corresponding to the code: 0: 33.13 On-time 1 source 1: 33.23 On-time 2 source</td>
</tr>
<tr>
<td>A88F</td>
<td>Cooling fan Programmable warning: 33.24 On-time 2 warn message</td>
<td>Cooling fan Programmable warning: 33.24 On-time 2 warn message</td>
<td>Check the source of the warning corresponding to the code: 0: 33.13 On-time 1 source 1: 33.23 On-time 2 source</td>
</tr>
<tr>
<td>A88G</td>
<td>Additional cooling fan</td>
<td>Additional cooling fan</td>
<td>Additional cooling fan</td>
</tr>
<tr>
<td>A8A0</td>
<td>AI supervision Programmable warning: 12.03 AI supervision function</td>
<td>An analog signal is outside the limits specified for the analog input.</td>
<td>Check signal level at the analog input. Check the wiring connected to the input. Check the minimum and maximum limits of the input in parameter group 12 Standard AI.</td>
</tr>
</tbody>
</table>
### 42 Fault Tracing

<table>
<thead>
<tr>
<th>Code (hex)</th>
<th>Warning</th>
</tr>
</thead>
<tbody>
<tr>
<td>A8B0</td>
<td>Signal supervision 1 (Editable message text) Programmable warning: 32.06 Supervision 1 action</td>
</tr>
<tr>
<td>A8B1</td>
<td>Signal supervision 2 (Editable message text) Programmable warning: 32.16 Supervision 2 action</td>
</tr>
<tr>
<td>A8B2</td>
<td>Signal supervision 3 (Editable message text) Programmable warning: 32.26 Supervision 3 action</td>
</tr>
<tr>
<td>A881</td>
<td>External warning 1 (Editable message text) Programmable warning: 31.01 External event 1 source 31.02 External event 1 type</td>
</tr>
<tr>
<td>A882</td>
<td>External warning 2 (Editable message text) Programmable warning: 31.03 External event 2 source 31.04 External event 2 type</td>
</tr>
<tr>
<td>A883</td>
<td>External warning 3 (Editable message text) Programmable warning: 31.05 External event 3 source 31.06 External event 3 type</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cause</th>
<th>What to do</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warning generated by the signal supervision 1 function</td>
<td>Check the source of the warning (parameter 32.07 Supervision 1 signal).</td>
</tr>
<tr>
<td>Warning generated by the signal supervision 2 function</td>
<td>Check the source of the warning (parameter 32.17 Supervision 2 signal).</td>
</tr>
<tr>
<td>Warning generated by the signal supervision 3 function</td>
<td>Check the source of the warning (parameter 32.27 Supervision 3 signal).</td>
</tr>
<tr>
<td>Fault in external device 1</td>
<td>Check the external device. Check setting of parameter 31.01 External event 1 source.</td>
</tr>
<tr>
<td>Fault in external device 2</td>
<td>Check the external device. Check setting of parameter 31.03 External event 2 source.</td>
</tr>
<tr>
<td>Fault in external device 3</td>
<td>Check the external device. Check setting of parameter 31.05 External event 3 source.</td>
</tr>
</tbody>
</table>
### Fault Tracing

<table>
<thead>
<tr>
<th>Code (hex)</th>
<th>Warning</th>
<th>Cause</th>
<th>What to do</th>
</tr>
</thead>
<tbody>
<tr>
<td>A984</td>
<td>External warning 4 (Editable message text) Programmable warning: 31.07 External event 4 source 31.08 External event 4 type</td>
<td>Fault in external device 4</td>
<td>Check the external device. Check setting of parameter 31.07 External event 4 source.</td>
</tr>
<tr>
<td>A985</td>
<td>External warning 5 (Editable message text) Programmable warning: 31.09 External event 5 source 31.10 External event 5 type</td>
<td>Fault in external device 5</td>
<td>Check the external device. Check setting of parameter 31.09 External event 5 source.</td>
</tr>
<tr>
<td>AF8C</td>
<td>Process PID sleep mode</td>
<td>The drive is entering sleep mode.</td>
<td>Informative warning. See section Sleep function for process PID control (page 32), and parameters 40.41…40.49.</td>
</tr>
<tr>
<td>AFAA</td>
<td>Autoreset</td>
<td>A fault is about to be autoreset.</td>
<td>Informative warning. See the settings in parameter group 31 Fault functions.</td>
</tr>
<tr>
<td>AFE1</td>
<td>Emergency stop (off2)</td>
<td>Drive has received an emergency stop (mode selection off2) command.</td>
<td>Check that it is safe to continue operation. Then return emergency stop push button to normal position. Restart drive.</td>
</tr>
<tr>
<td>AFE2</td>
<td>Emergency stop (off1 or off3)</td>
<td>Drive has received an emergency stop (mode selection off1 or off3) command.</td>
<td>If the emergency stop was unintentional, check the source selected by parameter 21.05 Emergency stop source.</td>
</tr>
<tr>
<td>AFEA</td>
<td>Enable start signal missing (Editable message text)</td>
<td>No enable start signal received</td>
<td>Some condition prevent the drive from starting.</td>
</tr>
<tr>
<td>C6A3</td>
<td>Notice</td>
<td>This notice is shown when changing language. This notice can be observed in SD card log.</td>
<td>This is an information and has no effect of drive operation. Nothing need to do.</td>
</tr>
<tr>
<td>C6B3</td>
<td>Notice</td>
<td>This notice is shown when parameter refreshment occurs. This notice can be observed in SD card log.</td>
<td>This is an information and has no effect of drive operation. Nothing need to do.</td>
</tr>
<tr>
<td>E200</td>
<td>Control supply failure</td>
<td>Control supply failure has been detected based on monitoring of the digital signal. Alarm is activated according to selection in 81.10 Control supply monitoring.</td>
<td>Check the control supply failure signal. Check setting of the parameter 81.10 Control supply monitoring.</td>
</tr>
</tbody>
</table>

**Note:** If the drive is equipped with CPR 1 option (600ms buffer) the parameter 81.10 Control supply monitoring should be set to “Alarm low active”. With this setting it is still expected to see this warning if the control power supply is switched off by user.
## Fault Tracing

<table>
<thead>
<tr>
<th>Code (hex)</th>
<th>Warning</th>
<th>Cause</th>
<th>What to do</th>
</tr>
</thead>
<tbody>
<tr>
<td>E201</td>
<td>Trafo phase U1 temperature high</td>
<td>The winding temperature of the indicated transformer primary phase is approaching temperature limit.</td>
<td>Check cooling of the transformer (door air inlet filter pads, fan operation). Check overload settings for transformer (internally set - contact the ABB support line for more details).</td>
</tr>
<tr>
<td>E202</td>
<td>Trafo phase V1 temperature high</td>
<td>The winding temperature of the indicated transformer primary phase is approaching temperature limit.</td>
<td>Check cooling of the transformer (door air inlet filter pads, fan operation). Check overload settings for transformer (internally set - contact the ABB support line for more details).</td>
</tr>
<tr>
<td>E203</td>
<td>Trafo phase W1 temperature high</td>
<td>The winding temperature of the indicated transformer primary phase is approaching temperature limit.</td>
<td>Check cooling of the transformer (door air inlet filter pads, fan operation). (internally set - contact the ABB support line for more details).</td>
</tr>
<tr>
<td>E204</td>
<td>Ambient temperature high</td>
<td>The air inlet temperature of the inverter unit is approaching the maximum converter ambient temperature.</td>
<td>Check and improve the cooling of the electric room where converter is placed.</td>
</tr>
<tr>
<td>E205</td>
<td>INU air pressure high</td>
<td>The air pressure drop across the inverter unit is approaching the limit value.</td>
<td>Check PM heatsinks for dust pick up and clean if required. Check pressure drop sensor on control hub and replace control hub if required.</td>
</tr>
<tr>
<td>E206</td>
<td>Redundant fan running</td>
<td>Redundant fan group is active.</td>
<td>Redundant fan group is activated in case one of the standard fan group has a failure or there is high temperature or low pressure warning. See 83.11 Redundant fan control for more details on redundant fan operation. After fixing the root cause that resulted in redundant cooling fan activation, reset the warning with parameter 83.15 Fan alarm reset (reset can be done while the drive is running).</td>
</tr>
</tbody>
</table>
### Fault Tracing

<table>
<thead>
<tr>
<th>Code (hex)</th>
<th>Warning</th>
<th>Cause</th>
<th>What to do</th>
</tr>
</thead>
</table>
| E208      | AC500 communication alarm                   | The watchdog supervision of the communication link between BCU and AC500eco has detected a communication failure. Alarm is activated according to selection in parameter 50.32 FBA B comm loss func. | It is normal to see this alarm sometimes during charging and discharging of the drive as well as in case another MCB is closed near the drive. These events can introduce the short term disturbance to the communication line that can be ignored. If the alarm is repeatedly shown do the following:  
- Check the connection between BCU and AC500eco PLC.  
- Check FSCA-01 module.  
- Check that termination of the Modbus line in the module FSCA-01 is done properly (refer to the FSCA-01 manual).  
- Reboot the BCU control unit to load the default values for the communication parameters.  
- Make sure that following parameters are set correctly:  
  54.1 FBA B type = RS-485 comm  
  54.2 Profile = ABB Enhanced  
- Refresh the Modbus settings by setting the parameter:  
  54.27 FBA B par refresh = Refresh |
| E209      | MCB not available                            | MCB available signal is missing.                                     | - Check MCB available signal.  
- Check setting of parameters: 82.40 MCB available monitoring, 82.42 MCB available Grp+Indx, 82.43 MCB available BitNum.  
- Check that the selected input for MCB available signal is not forced (e.g. in parameters 87.11 AC500 CPU DI force selection and 87.12 AC500 CPU DI force data). |
| E20A      | MCB external protection                      | MCB external protection active                                      | - Check MCB external protection signal.  
- Check setting of parameters: 82.50 MCB external protection monitoring, 82.52 MCB external protection Grp+Indx, 82.53 MCB external protection BitNum.  
- Check that the selected input for MCB external protection signal is not forced (e.g. in parameters 87.11 AC500 CPU DI force selection and 87.12 AC500 CPU DI force data). |
<table>
<thead>
<tr>
<th>Code (hex)</th>
<th>Warning</th>
<th>Cause</th>
<th>What to do</th>
</tr>
</thead>
<tbody>
<tr>
<td>E20B</td>
<td>MCB ON inhibited</td>
<td>MCB ON inhibition active.</td>
<td>- Check MCB ON inhibition signal.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Check setting of parameters: 82.45 MCB ON inhibition monitoring, 82.47 MCB ON inhibition GroupIndex, 82.48 MCB ON inhibition BitNum.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Check that the selected input for MCB ON inhibited signal is not forced (e.g. in parameters 87.11 AC500 CPU DI force selection and 87.12 AC500 CPU DI force data).</td>
</tr>
<tr>
<td>E20C</td>
<td>Ambient temperature sensor failure</td>
<td>The air inlet temperature of the inverter unit has exceeded internal warning level.</td>
<td>Check air inlet temperature sensor wiring of the inverter unit.</td>
</tr>
<tr>
<td>E20D</td>
<td>TRU air filter dirty</td>
<td>Transformer unit air filter has been detected dirty.</td>
<td>Check air inlet filter pads on the transformer unit cabinet.</td>
</tr>
<tr>
<td>E20E</td>
<td>INU cooling fan 1 overload</td>
<td>Temperature relay integrated in INU cooling fan 1 has opened. A redundant fan group is activated.</td>
<td>Check wiring of fan 1 temperature contacts (open circuit, loose terminals). Check if fan is mechanically blocked or makes excessive noise (bearing problem).</td>
</tr>
<tr>
<td>E20F</td>
<td>INU cooling fan 2 overload</td>
<td>Temperature relay integrated in INU cooling fan 2 has opened. A redundant fan group is activated.</td>
<td>Check wiring of fan 2 temperature contacts (open circuit, loose terminals). Check if fan is mechanically blocked or makes excessive noise (bearing problem).</td>
</tr>
<tr>
<td>E210</td>
<td>INU cooling fan 3 overload</td>
<td>Temperature relay integrated in INU cooling fan 3 has opened. A redundant fan group is activated.</td>
<td>Check wiring of fan 3 temperature contacts (open circuit, loose terminals). Check if fan is mechanically blocked or makes excessive noise (bearing problem).</td>
</tr>
<tr>
<td>E211</td>
<td>INU cooling fan 4 overload</td>
<td>Temperature relay integrated in INU cooling fan 4 has opened. A redundant fan group is activated.</td>
<td>Check wiring of fan 4 temperature contacts (open circuit, loose terminals). Check if fan is mechanically blocked or makes excessive noise (bearing problem).</td>
</tr>
<tr>
<td>E212</td>
<td>INU air pressure low</td>
<td>The air pressure drop across inverter unit is approaching lower limit value.</td>
<td>Check or replace inverter unit air inlet filter pads. Check pressure drop sensor and measuring tube on control hub and replace control hub or tube if required.</td>
</tr>
<tr>
<td>E213</td>
<td>INU air pressure sensor failure</td>
<td>The air pressure drop across the inverter unit has exceeded internal fault level.</td>
<td>Check pressure drop sensor and measuring tube on control hub and replace control hub or tube if required.</td>
</tr>
<tr>
<td>E214</td>
<td>TRU cooling fan 1 overload</td>
<td>Temperature relay integrated in TRU cooling fan 1 has opened. A redundant fan group is activated.</td>
<td>Check wiring of fan 1 temperature contacts (open circuit, loose terminals). Check if fan is mechanically blocked or makes excessive noise (bearing problem).</td>
</tr>
<tr>
<td>Code (hex)</td>
<td>Warning</td>
<td>Cause</td>
<td>What to do</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>E215</td>
<td>TRU cooling fan 2 overload</td>
<td>Temperature relay integrated in TRU cooling fan 2 has opened. A redundant fan group is activated.</td>
<td>Check wiring of fan 2 temperature contacts (open circuit, loose terminals). Check if fan is mechanically blocked or makes excessive noise (bearing problem).</td>
</tr>
<tr>
<td>E216</td>
<td>TRU cooling fan 3 overload</td>
<td>Temperature relay integrated in TRU cooling fan 3 has opened. A redundant fan group is activated.</td>
<td>Check wiring of fan 3 temperature contacts (open circuit, loose terminals). Check if fan is mechanically blocked or makes excessive noise (bearing problem).</td>
</tr>
<tr>
<td>E217</td>
<td>DC link not discharged</td>
<td>DC link voltage is still high although the MCB open command was given 15 minutes ago.</td>
<td>Check the MCB. It might happen that one or more MCB contacts are stuck in closed position. <strong>WARNING!</strong> In this case it cannot be assumed that the converter is disconnecter from the grid! Obey all safety procedures to remove risk of injury or death.</td>
</tr>
<tr>
<td>E21B</td>
<td>TRU cooling fan 4 overload</td>
<td>Temperature relay integrated in TRU cooling fan 4 has opened. A redundant fan group is activated.</td>
<td>Check wiring of fan 4 temperature contacts (open circuit, loose terminals). Check if fan is mechanically blocked or makes excessive noise (bearing problem).</td>
</tr>
<tr>
<td>E21D</td>
<td>Cooling fan test run</td>
<td>Cooling fans are operated in the test mode independent of drive state.</td>
<td>The fan test mode is controlled by parameter 83.12 Fan control. As soon as this parameter is set to &quot;Auto run&quot; the test run is ended and the alarm is removed.</td>
</tr>
<tr>
<td>E21E</td>
<td>Control backup supply failure</td>
<td>Control backup supply failure has been detected based on monitoring of the digital signal.</td>
<td>Check the control backup supply failure signal. Check setting of the parameter 81.11 Control backup supply monitoring.</td>
</tr>
<tr>
<td>E229</td>
<td>Inductor temperature high</td>
<td>Inductor temperature is approaching the temperature limit.</td>
<td>Check cooling of the inductor.</td>
</tr>
<tr>
<td>E230</td>
<td>Inductor temperature rising high</td>
<td>Inductor temperature rising relative to ambient temperature is approaching the temperature rising limit.</td>
<td>Check cooling of the inductor.</td>
</tr>
<tr>
<td>E231</td>
<td>Incorrect operation</td>
<td>Customer gives Sync to mains and Sync to VSD command together.</td>
<td>Correct operation command.</td>
</tr>
<tr>
<td>E232</td>
<td>Inductor bypassed</td>
<td>Synchronize command is inhibited by inductor bypassed.</td>
<td>Stop the drive and open the inductor bypass contactor.</td>
</tr>
<tr>
<td>E233</td>
<td>Sync to mains not finished</td>
<td>Cannot exit Sync to mains mode if it is not finished when drive is running.</td>
<td>Stop the drive or wait until synchronize to mains is finished then exit Sync to mains mode.</td>
</tr>
<tr>
<td>E234</td>
<td>MB not closed</td>
<td>Sync to VSD mode command is inhibited by MB open status.</td>
<td>MB has already opened and motor can be controlled on VSD mode directly.</td>
</tr>
</tbody>
</table>
48  Fault Tracing

<table>
<thead>
<tr>
<th>Code (hex)</th>
<th>Warning</th>
<th>Cause</th>
<th>What to do</th>
</tr>
</thead>
<tbody>
<tr>
<td>E235</td>
<td>Sync to VSD not support</td>
<td>Sync to VSD functionality isn’t supported currently.</td>
<td>Contact your local ABB representative and pay attention to ABB latest released version.</td>
</tr>
<tr>
<td>E237</td>
<td>Phase angle sync overtime</td>
<td>1 minute after synchronization is started, RSYC-01 board still doesn’t send out stable SYNC signal.</td>
<td>Check wiring of the RSYC-01 board meets the specification. Check the RSYC-01 board. Monitor signal 12.21A12 actual value using Drive composer. Par12.21 should try to approach 5V in normal synchronizing process. If it keeps at a constant voltage, the RSYC-01 board is probably broken. Another board broken situation is that the voltage (angle and frequency) adjusting works. Par12.21 A12 actual value can stay at about 5V stably, but BCON D16 (signal 10.01 bit5) is always low (0). Check acceleration time and deceleration time settings, these two values should not be set to very long.</td>
</tr>
<tr>
<td>E238</td>
<td>RMS sync overtime</td>
<td>1 minutes after synchronization is started, voltage RMS deviation is still out of the limit.</td>
<td>Check actual voltage of grid and motor terminal via Par1.170 SBU Grid voltage and Par1.171 SBU motor voltage. If the voltage is abnormal, check PT, voltage RMS transducer board and wiring.</td>
</tr>
</tbody>
</table>

#### Fault messages

<table>
<thead>
<tr>
<th>Code (hex)</th>
<th>Fault</th>
<th>Cause</th>
<th>What to do</th>
</tr>
</thead>
<tbody>
<tr>
<td>1010</td>
<td>Power module fault</td>
<td>A general PM fault has tripped the drive. A more detailed fault message with indication of which PM has a fault is followed to this message.</td>
<td>Check the more detailed fault message with the auxiliary code followed to this fault message. The code indicates which PM is affected.</td>
</tr>
<tr>
<td>1011</td>
<td>Control hub fault</td>
<td>Control hub detects a power fail or a pressure sensor error. Connection between BCON and control hub is lost.</td>
<td>Check the control power supply. The fault may happen in case control power is lost. Check the FO connection between BCON and control hub. If no problem is identified with the power supply and connection to BCON replace the control hub.</td>
</tr>
<tr>
<td>1012</td>
<td>PM states mismatch</td>
<td>Control hub has detected a combination of PMs' states that is not valid.</td>
<td>Check POF wiring to PMs (or replace). Check control hub daughter boards (or replace). Check PM SW version and update if required. Contact the ABB support line.</td>
</tr>
<tr>
<td>Code (hex)</td>
<td>Fault</td>
<td>Cause</td>
<td>What to do</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td>----------------------------------------------------------------------</td>
<td>----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>2110</td>
<td>Trafo overcurrent</td>
<td>The transformer primary current has exceeded the trip threshold.</td>
<td>Check the event log for an auxiliary code. The code indicates the threshold which has been exceeded: 1 - Hardware overcurrent (95% of maximum measurable current) 2 - Transformer overcurrent. See the description of parameter 34.03 Grid overcurrent trip level for more details on the calculation of the trip threshold. - Check the setting in 34.03 Grid overcurrent trip level. - Check the transformer rated current shown in parameter 30.41 Rated input current. If it does not match the drive ratings, check that the correct license code has been entered in parameters 96.71 - 96.74. - Check the primary cabling. - Check the transformer. Note: If the Trafo overcurrent happens during charging on a de-rated R4 drive then the 34.03 Grid overcurrent trip level can be increased above the default value. Contact the ABB support line for the exact settings. This is only valid for de-rated R4 drives!</td>
</tr>
<tr>
<td>2113</td>
<td>Trafo no-load overcurrent</td>
<td>Transformer primary current has exceeded the fault limit (parameter 34.05 Trafo over curr no load trip level) while converter is not modulating and the inrush current has declined after MCB has been closed (the fault is blanked for 300 ms after the MCB has been open).</td>
<td>Check the settings of the parameter 34.05 Trafo over curr no load trip level. Check the transformer rated current shown in parameter 30.41 Rated input current. If it does not match the drive ratings, check that the correct license code has been entered in parameters 96.71 - 96.74. - If parameters are set correctly, it means that there is a short circuit on the secondary side of the transformer =&gt; check transformer secondaries, wiring and PMs input main power circuit. - If no HW problem on the transformer secondaries and no faulty PMs can be identified it might mean that the fault has activated because the transformer inrush current has not yet declined during the blanking time. In this case fine tuning of the inrush current blanking time is needed. Inrush current blanking time is internally set to 300ms and cannot be changed by Service engineer. In this case contact the ABB support line for more details.</td>
</tr>
</tbody>
</table>
## 50 Fault Tracing

<table>
<thead>
<tr>
<th>Code(hex)</th>
<th>Fault</th>
<th>Cause</th>
<th>What to do</th>
</tr>
</thead>
</table>
| 2116      | Trafo current sense fault phase U1 | Transformer primary current in phase U1 has exceeded the fault limit (parameter 34.07 Trafo current sensor offset) with open MCB. This occurrence indicates a potential problem with transformer current measurement chain. | Check the setting in parameter 34.07 Trafo current sensor offset. For R1 and R2 drives the settings of parameter 34.07 needs to be changed as follows:  
  - R1: 0.2  
  - R2: 0.1  
  - Check transformer current sensor.  
  - Check the CVMI2 measurement board.  
  For software versions 2.1.0.2 and older, check whether MCB has been unintentionally closed or not. If no problem with the measurement chain can be detected and the fault still cannot be reset do the following:  
  - increase the value of parameter 34.07 to make the fault reset possible.  
  - after the fault reset, restore the parameter 34.07 to its default value.  
  If the problem persists contact the ABB support line. |
| 2117      | Trafo current sense fault phase V1 | Transformer primary current in phase V1 has exceeded the fault limit (parameter 34.07 Trafo current sensor offset) with open MCB. | See the instructions in fault 2116. |
| 2118      | Unintended MCB closed | MCB close command is not given by drive | Check if MCB close command come from other sources, instead of drive. |
| 211B      | Grid current asymmetry | The difference between measured transformer primary currents has exceeded the fault limit (parameter 34.12 Grid current asymmetry trip level) for longer than 30s. | Check for grid voltage asymmetry. Check the fault limit settings in parameter 34.12 Grid current asymmetry trip level.  
For software versions 2.00.0.3 and older, check parameter 34.12 Grid current asymmetry trip level and set it to 0.2 p.u. for SYS0. For SY1 & SYS2 parameter 34.12 shall remain set at 0.1 p.u. |
| 2281      | Calibration | Measured offset of output phase current measurement or difference between output phase U2 and W2 current measurement is too big (the values are updated during current calibration). | Reboot the BCU control unit. If the problem persists try performing the current calibration again (contact the ABB support line for the procedure description). |
| 2310      | Overcurrent | Output current has exceeded internal fault limit. | Check motor load. Check acceleration times in parameter group 23 Speed reference ramp for rpm operation mode or in group 28 Frequency reference chain for Hz operation mode.  
Check motor and motor cable (including phasing and delta/star connection).  
Check that the start-up data in parameter group 99 Motor data corresponds to the motor rating plate.  
Check that there are no power factor correction capacitors or surge absorbers in motor cable. |
<table>
<thead>
<tr>
<th>Code(hex)</th>
<th>Fault</th>
<th>Cause</th>
<th>What to do</th>
</tr>
</thead>
<tbody>
<tr>
<td>2330</td>
<td>Earth leakage</td>
<td>Drive has detected load unbalance typically due to earth fault in motor or motor cable.</td>
<td>Check that there are no power factor correction capacitors or surge absorbers in motor cable. Check for an earth fault in motor or motor cables by measuring the insulation resistances of motor and motor cable. If no earth fault can be detected, contact the ABB support line.</td>
</tr>
<tr>
<td>2340</td>
<td>Short circuit</td>
<td>Short-circuit in motor cable(s) or motor.</td>
<td>Check motor and motor cable. Check that there are no power factor correction capacitors or surge absorbers in motor cable.</td>
</tr>
</tbody>
</table>
Fault Tracing

<table>
<thead>
<tr>
<th>Code (hex)</th>
<th>Fault</th>
<th>Cause</th>
<th>What to do</th>
</tr>
</thead>
<tbody>
<tr>
<td>2350</td>
<td>Motor overcurrent</td>
<td>The instantaneous motor current in phase U2 has exceeded the trip threshold.</td>
<td>Check the event log for an auxiliary code. The code indicates the threshold which has been exceeded: 1 - Inverter overcurrent 2 - Hardware overcurrent (95% of maximum measurable current) 3 - Motor overcurrent See the description of parameter 34.17 Motor overcurrent trip level for more details on the calculation of the trip threshold. - Check the setting in 34.17 Motor overcurrent trip level. - Check the converter rated current shown in parameter 30.40 Rated output current. If it does not match the drive ratings, check that the correct license code has been entered in parameters 96.71 - 96.74. - Check that the motor parameters in group 99 Motor data correspond to the motor rating plate. - Check the settings of the parameter 30.17 Maximum current and the parameters controlling the motor overloadability (par. 34.49 - 34.52). Those parameters, together with 30.40 Rated output current, determine the drive continuous operation limits and should be set lower than the motor overcurrent threshold. - Check that the ramp up time set in group 23 (rpm mode) or in group 28 (Hz mode) is big enough for the process at hand. If the problem persists, try increasing the ramp up time. - Check for motor cable phase to phase short circuit. - Check for motor winding phase to phase short circuit. - Check for proper delta/star connection of the motor. - Check that there are no power factor correction capacitors or surge absorbers in motor cable. - Check that &quot;Automatic&quot; is selected in parameter 21.19 Scalar start mode if a start into rotating motor is attempted. - Check that restart after a fault is not requested too soon - while motor is still magnetized. At least 5-10 seconds should be allowed before a new start attempt. - Check if P30.11 minimum speed is set to a positive value. If yes, set 30.11 to 0 or a negative value instead and use critical speed function.</td>
</tr>
<tr>
<td>Code( hex)</td>
<td>Fault</td>
<td>Cause</td>
<td>What to do</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------------</td>
<td>----------------------------------------------------------------------</td>
<td>---------------------------------------------------------------------------</td>
</tr>
<tr>
<td>2351</td>
<td>Motor overcurrent phase V2</td>
<td>The instantaneous motor current in phase V2 has exceeded the trip threshold.</td>
<td>See the instructions in fault 2350.</td>
</tr>
<tr>
<td>2352</td>
<td>Motor overcurrent phase W2</td>
<td>The instantaneous motor current in phase W2 has exceeded the trip threshold.</td>
<td>See the instructions in fault 2350.</td>
</tr>
</tbody>
</table>
| 2353      | Motor current sense fault phase U2 | Measured motor phase current in phase U2 is exceeding the fault limit (parameter 34.24 Motor current sensor offset) even though the modulation has been stopped for longer than blanking time (parameter 34.23 Motor curr sense fault ena delay). This occurrence indicates a potential problem with motor current measurement chain. | Check the settings in parameters 34.23 Motor curr sense fault ena delay and 34.24 Mot current sensor offset.
- Check the setting in 34.17 Motor overcurrent trip level.
- Check the converter rated current shown in parameter 30.40 Rated output current. If it does not match the drive ratings, check that the correct license code has been entered in parameters 96.71 - 96.74.
- Check that the motor parameters in group 99 Motor data correspond to the motor rating plate.
- Check the motor current sensor.
- Check the Check CVMI2 measurement board.
If no problems with the measurement chain can be detected, increase the value of parameter 34.24 to make the fault reset possible. After the fault reset, restore the parameter 34.24 to its default value. If the problem persists contact the ABB support line. |
| 2354      | Motor current sense fault phase V2 | Measured motor phase current in phase V2 is exceeding the fault limit (parameter 34.24 Motor current sensor offset) even though the modulation has been stopped for longer than blanking time (parameter 34.23 Motor curr sense fault ena delay). | See the instructions in fault 2353.                                      |
| 2355      | Motor phase U2 lost | The converter is operated at greater than 5% rated speed and motor current in phase U2 is smaller than the fault limit (parameter 34.26 Motor phase loss trip level). | Check the settings in parameter 34.26 Motor phase loss trip level.
- Check motor terminals and cabling for weak contact or open circuit. |
<p>| 2356      | Motor phase V2 lost | The converter is operated at greater than 5% rated speed and motor current in phase V2 is smaller than the fault limit (parameter 34.26 Motor phase loss trip level). | See the instructions in fault 2355.                                      |</p>
<table>
<thead>
<tr>
<th>Code (hex)</th>
<th>Fault</th>
<th>Cause</th>
<th>What to do</th>
</tr>
</thead>
<tbody>
<tr>
<td>2357</td>
<td>Motor phase W2 lost</td>
<td>The converter is operated at greater than 5% rated speed and motor current in phase W2 is smaller than the fault limit (parameter 34.26 Motor phase loss trip level).</td>
<td>See the instructions in fault 2355.</td>
</tr>
</tbody>
</table>
| 2358      | Motor overload trip           | Motor average current exceeds the fault limit (parameter 34.29 Motor overload trip level). | Check that the motor parameters in group 99 Motor data correspond to the motor rating plate.  
- Check for proper delta/star connection of the motor.  
- Check the settings of the fault threshold (Par. 34.29) and of the motor overloadability (Par. 34.49 - 34.52).                                    |
| 3230      | PM DC link overvoltage       | The measured DC link voltage of a PM exceeds the maximum level (preset to 1250 V). | Check the event log for an auxiliary code.  
The code indicates which PM is affected.  
- Check the converter primary voltage.  
- Check the deceleration times in parameter group 23 Speed reference ramp for rpm operation mode or in group 28 Frequency reference chain for Hz operation mode. If needed, increase the deceleration times.  
- Use coast-to-stop function (if applicable).  
- Use S curves to achieve smooth motor speed response without overshoot.  
- Reduce transformer primary tapping one step (if available).  
- Reduce the overvoltage limit for control (parameter 30.54 Overvoltage Limit).  
- Replace the PM (if always the same PM gives the fault). |
| 3231      | PM DC link undervoltage       | The measured DC link voltage of a PM is smaller than the minimum level (preset to 400 V). | Check the event log for an auxiliary code.  
The code indicates which PM is affected.  
- Examine the affected power module according to description given in chapter Inspecting Power Modules.  
- Replace the faulty PM. |
| 3233      | PM +5V power supply fault     | The +5V power supply of a PM has failed. | Check the event log for an auxiliary code.  
The code indicates which PM is affected.  
Replace the faulty PM. |
| 3234      | PM +5V power supply regulation fault | The measured +5V power supply voltage of a PM is out of tolerance. | Check the event log for an auxiliary code.  
The code indicates which PM is affected.  
Replace the faulty PM. |
| 3236      | PM DC link capacitors not balanced | The series connected capacitors in the DC link of a PM are heavily unbalanced. | - Check the event log for an auxiliary code.  
The code indicates which PM is affected.  
- Examine the affected power module according to description given in chapter Inspecting Power Modules.  
- Try software capacitor reforming function. Please refer to chapter software capacitor reforming for applicable conditions and instructions. |
### Fault Tracing 55

<table>
<thead>
<tr>
<th>Code(hex)</th>
<th>Fault</th>
<th>Cause</th>
<th>What to do</th>
</tr>
</thead>
</table>
| 3237      | PM input voltage deviation | The input voltage measurement of a PM has a large deviation compared to the average input voltages of all PMs. | Check the event log for an auxiliary code. The code indicates which PM is affected. **Note:** This fault is sometimes reported on more power modules, even though the actual problem is really present on only one. Most often the first power module reported in the event logger (the one tripping the converter) is the actually the affected one. However, it might happen that more power modules are actually having a failure (e.g. short circuit) or that the power module that tripped the converter is not the one with the real failure. To exclude any risk, all reported modules and corresponding secondary windings of the transformer should be analyzed according to the below listed steps:  
  - Check PM input fuses.  
  - Examine the affected power module according to description given in chapter *Inspecting Power Modules*.  
  - Replace the faulty PM.  
  - Check transformer secondary voltage - the fault might indicate short circuit on transformer secondary side. |
| 3238      | PM input overvoltage      | The measured input voltage of a PM has exceeded the fault threshold. | This protection function is obsolete. Upgrade to newest SW version. If the fault still appears with the newest version of BCON SW it means that there is incompatibility between new BCON SW and old DSP SW on power modules. In this case DSP SW needs to be loaded manually to each of the power modules according to instructions given in section *Loading the DSP software manually to power modules on page 22*. |
| 3239      | PM diode open circuit     | PM rectifier's diode open circuit is detected. | - Check the event log for an auxiliary code. The code indicates which PM is affected.  
  - Examine the affected power module according to description given in chapter *Inspecting Power Modules*.  
  - Replace the faulty PM.  
  - For software versions 2.00.0.3 and older, check parameter 95.82 PM diode open circuit threshold and change from -50v to -200v. Additionally also change parameter 95.83 PM diode open circuit qualifier from 1ms to 4ms. |
<table>
<thead>
<tr>
<th>Code(hex)</th>
<th>Fault</th>
<th>Cause</th>
<th>What to do</th>
</tr>
</thead>
<tbody>
<tr>
<td>3280</td>
<td>Standby timeout</td>
<td>Drive start is requested but the DC link voltage is too low.</td>
<td>- Check that the drive start signal (defined in Group 20) is not active before the drive is charged. If parameters 20.02 Ext1 start trigger type and/or 20.07 Ext2 start trigger type are set to “Level” this fault might activate immediately after closing the MCB. Use “Edge” trigger type instead. - If the drive is controlled over fieldbus check the corresponding settings for fieldbus control.</td>
</tr>
<tr>
<td>3330</td>
<td>Motor voltage sense fault phase U2</td>
<td>The measured motor phase to ground voltage exceeds the fault level (parameter 34.34 Motor volt sense fault trip level). This occurrence indicates a potential problem with motor voltage measurement chain.</td>
<td>- Check the settings of parameter 34.34 Motor volt sense fault trip level. - Check voltage divider resistance value. - Check CVMI2 board and wiring to it.</td>
</tr>
<tr>
<td>3331</td>
<td>Motor voltage sense fault phase V2</td>
<td>See the description of fault 3330.</td>
<td>See the instructions in fault 3330.</td>
</tr>
<tr>
<td>3332</td>
<td>Motor voltage sense fault phase W2</td>
<td>See the description of fault 3330.</td>
<td>See the instructions in fault 3330.</td>
</tr>
<tr>
<td>3333</td>
<td>Ground fault</td>
<td>The amplitude of the fundamental component in the motor common mode voltage exceeds the fault level (parameter 34.36 Ground fault trip level).</td>
<td>- Check for drive internal ground faults (secondary cabling, PMs, transformer, terminal unit). - Check for drive external ground faults (motor cable, motor windings). - Check the HVD board.</td>
</tr>
<tr>
<td>3381</td>
<td>Output phase loss</td>
<td>Motor circuit fault due to missing motor connection (all three phases are not connected).</td>
<td>Connect motor cable.</td>
</tr>
<tr>
<td>4110</td>
<td>Control board temperature</td>
<td>Control unit temperature (Par. 5.10) exceeds internal fault level (Par. 5.49).</td>
<td>Check for proper cooling of the control unit cabinet.</td>
</tr>
<tr>
<td>4220</td>
<td>PM heatsink overtemperature</td>
<td>Measured IGBT heatsink temperature of a PM has exceeded the maximum level.</td>
<td>Check the event log for an auxiliary code. The code indicates which PM is affected. - Check the heatsink fins for dust pick-up. - Check PM to air channel gasket. - Check the door air inlet filter pads.</td>
</tr>
<tr>
<td>4221</td>
<td>PM HCB overtemperature</td>
<td>Measured charging relay temperature on Heavy Copper Board (HCB) of a PM has exceeded the maximum level.</td>
<td>Check the event log for an auxiliary code. The code indicates which PM is affected. - Check the heatsink fins for dust pick-up. - Check PM to air channel gasket. - Check the door air inlet filter pads.</td>
</tr>
<tr>
<td>4981</td>
<td>External temperature 1 (Editable message text)</td>
<td>Measured temperature 1 has exceeded fault limit.</td>
<td>Check the value of parameter 35.02 Measured temperature 1. Check the cooling of the motor (or other equipment whose temperature is being measured). Check the value of parameter 35.12 Temperature 1 fault limit.</td>
</tr>
<tr>
<td>Code (hex)</td>
<td>Fault (Editable message text)</td>
<td>Cause</td>
<td>What to do</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------------------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>4982</td>
<td>External temperature 2</td>
<td>Measured temperature 2 has exceeded fault limit.</td>
<td>Check the value of parameter 35.03 Measured temperature 2. Check the cooling of the motor (or other equipment whose temperature is being measured). Check the value of parameter 35.22 Temperature 2 fault limit.</td>
</tr>
<tr>
<td>5001</td>
<td>Control board power fail</td>
<td>The power supply voltage of the BCON control board was below the internal fault limit.</td>
<td>This fault is shown in the event logger whenever the control power of the BCON is switched off. This can be in a normal situation, when the BCON is powered off intentionally, but also in the case of an auxiliary (control) power loss. If the BCON was not powered off intentionally, check the auxiliary (control) power supply. Note: Control board power fail event can be seen in the event logger but is not copied to the SD card.</td>
</tr>
<tr>
<td>5010</td>
<td>PM HB1 short circuit turn off</td>
<td>The desaturation detection of the IGBTs in HB1 (half bridge 1) of a PM has detected a short circuit.</td>
<td>Check the event log for an auxiliary code. The code indicates which PM is affected. - Examine the affected power module according to description given in chapter Inspecting Power Modules. - Replace the faulty PM.</td>
</tr>
<tr>
<td>5011</td>
<td>PM HB2 short circuit turn off</td>
<td>The desaturation detection of the IGBTs in HB2 (half bridge 2) of a PM has detected a short circuit.</td>
<td>Check the event log for an auxiliary code. The code indicates which PM is affected. - Examine the affected power module according to description given in chapter Inspecting Power Modules. - Replace the faulty PM.</td>
</tr>
<tr>
<td>5012</td>
<td>PM HB1 or HB2 short circuit turn off</td>
<td>The desaturation detection of the IGBTs in HB1 (half bridge 1) or HB2 (half bridge 2) of a PM has detected a short circuit.</td>
<td>Check the event log for an auxiliary code. The code indicates which PM is affected. - Examine the affected power module according to description given in chapter Inspecting Power Modules. - Replace the faulty PM.</td>
</tr>
<tr>
<td>5013</td>
<td>PM charging relay not closed</td>
<td>The voltage across the charging relay contact of a PM is larger than it would be expected if the contact was closed.</td>
<td>Check the event log for an auxiliary code. The code indicates which PM is affected. - Examine the affected power module according to description given in chapter Inspecting Power Modules. - Replace the faulty PM.</td>
</tr>
<tr>
<td>Code (hex)</td>
<td>Fault</td>
<td>Cause</td>
<td>What to do</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>5014</td>
<td>PM rating incompatibility</td>
<td>One or more power modules have different rating than specified for the converter. The expected rating of PMs is defined by the drive license key and can be seen in Par. 7.19. The converter can only operate if all power modules have the correct rating.</td>
<td>Check the event log for an auxiliary code. The code indicates which PM is affected. - Replace the PM(s) that have wrong rating. - Check that the expected power module rating (Par. 7.19) corresponds to the converter type code. If the rating specified in Par. 7.19 is not as expected from the type code, check that the correct license key has been entered (in Par. 96.71 - 96.74.) and that license key has been refreshed (Par. 96.75).</td>
</tr>
<tr>
<td>5015</td>
<td>PM DC voltage sense fault</td>
<td>The DC link voltage measurement of a PM is out of range during self test.</td>
<td>Check the event log for an auxiliary code. The code indicates which PM is affected. - Examine the affected power module according to description given in chapter Inspecting Power Modules. - Replace the faulty PM.</td>
</tr>
<tr>
<td>5016</td>
<td>PM heatsink temperature sense fault</td>
<td>The heatsink temperature measurement of a PM is out of range during self test.</td>
<td>Check the event log for an auxiliary code. The code indicates which PM is affected. - Replace the faulty PM.</td>
</tr>
<tr>
<td>5017</td>
<td>PM HB1 and HB2 short circuit turn off</td>
<td>The desaturation detection of the IGBTs in HB1 (half bridge 1) and HB2 (half bridge 2) of a PM has detected a short circuit.</td>
<td>Check the event log for an auxiliary code. The code indicates which PM is affected. - Examine the affected power module according to description given in chapter Inspecting Power Modules. - Replace the faulty PM.</td>
</tr>
<tr>
<td>5094</td>
<td>Measurement circuit temperature problem</td>
<td>Problem with internal temperature measurement of the drive.</td>
<td>Contact the ABB support line.</td>
</tr>
<tr>
<td>50A1</td>
<td>Emergency OFF button pressed</td>
<td>Emergency OFF button on the cabinet door has been pressed.</td>
<td>Check that it is safe to release the emergency OFF button on the front door and if it is, release the emergency OFF button. If the emergency OFF button is released but the fault is still active, check the wiring of the signals from the emergency OFF button. Check if the shield cover inside SBU cabinet is installed correctly.</td>
</tr>
<tr>
<td>5691</td>
<td>Measurement circuit ADC</td>
<td>Measurement circuit fault.</td>
<td>Contact the ABB support line.</td>
</tr>
<tr>
<td>5693</td>
<td>Measurement circuit OFF</td>
<td>Measurement circuit fault.</td>
<td>Contact the ABB support line.</td>
</tr>
<tr>
<td>6000</td>
<td>Internal SW error</td>
<td>Internal software error</td>
<td>Contact the ABB support line. Quote the auxiliary code (check the event details in the event log).</td>
</tr>
<tr>
<td>607A</td>
<td>Trial mode expired</td>
<td>The entered license key of the drive is not valid and the trial mode time has expired.</td>
<td>Contact ABB support line to get a valid license key. Enter a valid license key in parameters 96.71 License key part 1, 96.72 License key part 2, 96.73 License key part 3, 96.74 License key part 4 and then set the parameter 96.75 License key refresh to “Refresh”.</td>
</tr>
</tbody>
</table>
### Fault Tracing

<table>
<thead>
<tr>
<th>Code(hex)</th>
<th>Fault</th>
<th>Cause</th>
<th>What to do</th>
</tr>
</thead>
<tbody>
<tr>
<td>607C</td>
<td>License key missing</td>
<td>License key for the drive has not been entered.</td>
<td>Contact the ABB support line to get a valid license key. Enter a valid license key in parameters 96.71 License key part 1, 96.72 License key part 2, 96.73 License key part 3, and 96.74 License key part 4 and then set the parameter 96.75 License key refresh to &quot;Refresh&quot;.</td>
</tr>
<tr>
<td>607D</td>
<td>Control hub version incompatibility</td>
<td>Incompatible version of the control hub firmware has been detected.</td>
<td>Check the actual control hub firmware version in parameter 07.16 Control hub FW version. If this version is older (smaller) than the version defined in parameter 07.18 Control hub FW version required, this fault is active. - Upgrade the control hub firmware to the version required by BCON SW (shown in Par 07.18). For the control hub FW upgrade procedure refer to chapter Loading of the Control Software.</td>
</tr>
<tr>
<td>607E</td>
<td>PM Software update in progress</td>
<td>An incorrect software version on the power modules was identified and a software update is in progress. This fault is active due to safety reasons to keep the MCB open until valid SW is downloaded to all Power modules. SW download to Power modules lasts 4 minutes.</td>
<td>The fault cannot be reset until the SW download is finished. When the SW download is finished a fault 607F PM Software update done will be shown. - Wait for the fault 607F PM Software update done to show up. Then it is possible to reset the fault and to recharge the drive. - If the SW download keeps happening after charging of the drive it might indicate that communication between PMs and control hub is disturbed so control hub receives wrong information about PMs SW version or that some of the PMs don't have any SW programmed. In this case: - Check the POF links between PMs and control hub. - Check if any SW is installed on all PMs (by connecting directly to PMs) and download SW manually if it is missing.</td>
</tr>
<tr>
<td>607F</td>
<td>PM Software update done</td>
<td>An incorrect software version on the power modules was identified and a software update was done.</td>
<td>Reset the fault.</td>
</tr>
<tr>
<td>6110</td>
<td>PM configuration fail</td>
<td>An undefined fault code from a PM has been received.</td>
<td>Check the event log for an auxiliary code. The code indicates which PM is affected. - Check PM SW version and update if required. - Replace the PM (if always the same PM gives the fault).</td>
</tr>
</tbody>
</table>
### Fault Tracing

<table>
<thead>
<tr>
<th>Code (hex)</th>
<th>Fault</th>
<th>Cause</th>
<th>What to do</th>
</tr>
</thead>
<tbody>
<tr>
<td>6111</td>
<td>PM undefined fault</td>
<td>An undefined fault code from a PM has been received.</td>
<td>Check the event log for an auxiliary code.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The code indicates which PM is affected.</td>
<td>- Check PM SW version and update if required.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Replace the PM (if always the same PM gives the fault).</td>
</tr>
<tr>
<td>6112</td>
<td>PM undefined state</td>
<td>Control hub has detected an undefined PM state.</td>
<td>Note: It is normal for this fault to appear after drive discharge.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If the fault reappears after reset:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Check PM SW version and update if required.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Check the communication between the control hub and PMs by performing tests described in chapter <strong>POF Link Test</strong>.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Refer to the actions described there in case communication problems are discovered.</td>
</tr>
<tr>
<td>6120</td>
<td>CVMI2 configuration fault</td>
<td>During initialization of the CVMI2 measurement board a fault was detected.</td>
<td>- Replace the CVMI2 board.</td>
</tr>
<tr>
<td>6182</td>
<td>Unrecoverable SW Error</td>
<td>An unrecoverable error has occurred.</td>
<td>Check the event log for the fault code and auxiliary code and report those to the ABB support line.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cycle the control power to reboot control boards.</td>
</tr>
<tr>
<td>6306</td>
<td>FBA.A mapping file</td>
<td>Fieldbus adapter A mapping file read error.</td>
<td>Contact the ABB support line.</td>
</tr>
<tr>
<td>6307</td>
<td>FBA.B mapping file</td>
<td>Fieldbus adapter B mapping file read error.</td>
<td>Contact the ABB support line.</td>
</tr>
<tr>
<td>6481</td>
<td>Task overload</td>
<td>Internal fault</td>
<td>Note: This fault cannot be reset. Reboot the control unit (using parameter 96.08 Control board boot) or by cycling power. If the problem persists contact the ABB support line.</td>
</tr>
<tr>
<td>6487</td>
<td>Stack overflow</td>
<td>Internal fault</td>
<td>Note: This fault cannot be reset. Reboot the control unit (using parameter 96.08 Control board boot) or by cycling power. If the problem persists contact the ABB support line.</td>
</tr>
<tr>
<td>64A1</td>
<td>Internal file load</td>
<td>File read error</td>
<td>Note: This fault cannot be reset. Reboot the control unit (using parameter 96.08 Control board boot) or by cycling power. If the problem persists contact the ABB support line.</td>
</tr>
<tr>
<td>64A2</td>
<td>Internal record load</td>
<td>Internal record load error</td>
<td>Contact the ABB support line.</td>
</tr>
<tr>
<td>64A3</td>
<td>Application loading</td>
<td>Application file incompatible or corrupted</td>
<td>Note: This fault cannot be reset. Reboot the control unit (using parameter 96.08 Control board boot) or by cycling power. If the problem persists contact the ABB support line.</td>
</tr>
<tr>
<td>Code( hex)</td>
<td>Fault</td>
<td>Cause</td>
<td>What to do</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------------</td>
<td>----------------------------------------------------------------------</td>
<td>----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>64B0</td>
<td>Memory unit detached</td>
<td>The memory unit (ZMU-02) was detached when the control unit was powered.</td>
<td>Switch off the power to the control unit and reinstall the memory unit. In case the memory unit was not actually removed when the fault occurred, check that the memory unit is properly inserted into its connector and its mounting screw is tight. Reboot the control unit (using parameter 96.08 Control board boot) or by cycling power. If the problem persists, contact the ABB support line.</td>
</tr>
<tr>
<td>64B1</td>
<td>Internal SSW fault</td>
<td>Internal fault</td>
<td>Reboot the control unit (using parameter 96.08 Control board boot) or by cycling power. If the problem persists contact the ABB support line.</td>
</tr>
<tr>
<td>64B2</td>
<td>User set fault</td>
<td>Loading of user parameter set failed because • requested set does not exist • set is not compatible with control program • drive was switched off during loading.</td>
<td>Make sure that a valid user parameter set exists. Reload if uncertain.</td>
</tr>
<tr>
<td>64E1</td>
<td>Kernel overload</td>
<td>Operating system error</td>
<td>Note: This fault cannot be reset. Reboot the control unit (using parameter 96.08 Control board boot) or by cycling power. If the problem persists contact the ABB support line.</td>
</tr>
<tr>
<td>6581</td>
<td>Parameter system</td>
<td>Parameter load or save failed</td>
<td>Try forcing a save using parameter 96.07 Parameter save manually. Retry.</td>
</tr>
<tr>
<td>6591</td>
<td>Backup/Restore Timeout</td>
<td>Backup or restore action takes too long.</td>
<td>Check panel / PC-tool connection to BCU. Abort current backup / restore and retry.</td>
</tr>
<tr>
<td>65A1</td>
<td>FBA A parameter conflict</td>
<td>The drive does not have a functionality requested by PLC (overriding system), or requested functionality has not been activated.</td>
<td>Check PLC (overriding system) programming. Check settings of parameter groups 50 Fieldbus adapter (FBA) and 51 FBA A settings.</td>
</tr>
<tr>
<td>65A2</td>
<td>FBA B parameter conflict</td>
<td>The drive does not have a functionality requested by PLC AC500, or requested functionality has not been activated.</td>
<td>- Reboot the BCU control unit to load the default values for the communication parameters. - Make sure that following parameters are set correctly: 54.1 FBA B type = RS-485 comm 54.2 Profile = ABB Enhanced - Refresh the Modbus settings by setting the parameter: 54.27 FBA B par refresh = Refresh</td>
</tr>
<tr>
<td>6881</td>
<td>Text data overflow</td>
<td>Internal fault</td>
<td>Reset the fault. If the fault persists contact the ABB support line.</td>
</tr>
<tr>
<td>6882</td>
<td>Text 32-bit table overflow</td>
<td>Internal fault</td>
<td>Reset the fault. If the fault persists contact the ABB support line.</td>
</tr>
</tbody>
</table>
## Fault Tracing

<table>
<thead>
<tr>
<th>Code (hex)</th>
<th>Fault</th>
<th>Cause</th>
<th>What to do</th>
</tr>
</thead>
<tbody>
<tr>
<td>6883</td>
<td>Text 64-bit table overflow</td>
<td>Internal fault</td>
<td>Reset the fault. If the fault persists contact the ABB support line.</td>
</tr>
<tr>
<td>6885</td>
<td>Text file overflow</td>
<td>Internal fault</td>
<td>Reset the fault. If the fault persists contact the ABB support line.</td>
</tr>
<tr>
<td>7080</td>
<td>Encoder option module comm loss</td>
<td>The fault is related to encoder feedback that is not supported in ACS580MV.</td>
<td>Restore all parameters in groups 90, 92 and 93 to their default values. Reset the fault. If not possible to reset, reboot the control unit (using parameter 96.08 Control board boot) or by cycling power.</td>
</tr>
<tr>
<td>7081</td>
<td>Panel loss Programmable fault: 49.05 Communication loss action</td>
<td>Control panel or PC tool selected as active control location for drive has ceased communicating.</td>
<td>Check the PC tool or control panel connection. Check control panel connector. Check BCON X13 connector pins. Upgrade the control panel to the latest firmware version (stated in the release notes for ACS580MV SW). Refer to the section <a href="#">Loading the ACS-AP-S assistant panel firmware</a> for instructions on control panel firmware upgrade. Disconnect and reconnect the control panel. If the problem persist, replace control panel in mounting platform. For software versions 2.00.0.3 and older please check SD card for damage if panel loss is detected. If SD card is damaged, return it back to factory for analysis (without formatting). <strong>Caution!</strong> In case of software version 1.41.0.2 or older, change parameter 49.05 to No action to avoid nuisance alarms.</td>
</tr>
<tr>
<td>7082</td>
<td>Ext I/O comm loss</td>
<td>The I/O extension module types specified by parameters do not match the detected configuration.</td>
<td>Check the event log for an auxiliary code (format XXXY YYYY). “XX” specifies the number of the I/O extension module (01: parameter group 14 I/O extension module 1, 02: 15 I/O extension module 2, 03: 16 I/O extension module 3), “YY YYYY” indicates the problem (see actions for each code below).</td>
</tr>
<tr>
<td>00 0001</td>
<td>Communication with module failed.</td>
<td></td>
<td>Check that the module is properly seated in its slot. Check that the module and the slot connector is not damaged. Try installing the module into another slot.</td>
</tr>
</tbody>
</table>
### Fault Tracing

<table>
<thead>
<tr>
<th>Code(hex)</th>
<th>Fault</th>
<th>Cause</th>
<th>What to do</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 0002</td>
<td>Module not found.</td>
<td>Check the type and location settings of the modules (parameters 14.01/14.02, 15.01/15.02 or 16.01/16.02).</td>
<td>Check that the module is properly seated in its slot. Check that the module and the slot connector is not damaged. Try installing the module into another slot.</td>
</tr>
<tr>
<td>00 0003</td>
<td>Configuration of module failed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00 0004</td>
<td>Configuration of module failed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7121</td>
<td>Motor stall</td>
<td>Motor is operating in stall region because of e.g. excessive load or insufficient motor power.</td>
<td>Make sure that the motor is not mechanically blocked from rotating. Check motor load and drive ratings. Check fault function parameters 31.24...31.28 (see the description of those parameters in ACS580MV primary control program firmware manual for more details).</td>
</tr>
<tr>
<td>71B1</td>
<td>Motor fan</td>
<td>No feedback received from external fan.</td>
<td>Check external fan (or other equipment controlled) by the logic. Check settings of parameters 35.100...35.106 (see the description of those parameters in Firmware manual for more details).</td>
</tr>
<tr>
<td>7310</td>
<td>Overspeed</td>
<td>Motor is turning faster than highest allowed speed due to incorrectly set minimum/maximum speed, insufficient braking torque or changes in load when using torque reference.</td>
<td>Check minimum/maximum speed settings, parameters 30.11 Minimum speed and 30.12 Maximum speed for rpm operation mode or 30.13 Minimum frequency and 30.14 Maximum frequency for Hz operation mode. Check the adequacy of motor braking torque for the applied load.</td>
</tr>
<tr>
<td>73B0</td>
<td>Emergency ramp failed</td>
<td>Emergency stop did not finish within expected time.</td>
<td>Check the settings of parameters 31.32 Emergency ramp supervision and 31.33 Emergency ramp supervision delay. Check the predefined ramp times (23.11...23.19 for mode Off1, 23.23 for mode Off3).</td>
</tr>
<tr>
<td>73F0</td>
<td>Overfrequency</td>
<td>Motor is turning faster than highest allowed speed due to incorrectly set minimum/maximum frequency, insufficient braking torque or changes in load when using torque reference.</td>
<td>Check minimum/maximum frequency setting in parameters 30.13 Minimum frequency and 30.14 Maximum frequency. Check the adequacy of motor braking torque for the applied load.</td>
</tr>
</tbody>
</table>
## 64 Fault Tracing

<table>
<thead>
<tr>
<th>Code (hex)</th>
<th>Fault</th>
<th>Cause</th>
<th>What to do</th>
</tr>
</thead>
<tbody>
<tr>
<td>7510</td>
<td>FBA A communication loss func</td>
<td>Cyclical communication between drive and fieldbus adapter module A or between PLC (overriding system) and fieldbus adapter module A is lost.</td>
<td>Check status of fieldbus communication. See user documentation of fieldbus interface. Check settings of parameter groups 50 Fieldbus adapter (FBA), 51 FBA A settings, 52 FBA A data in and 53 FBA A data out. Check cable connections. Check if communication master is able to communicate.</td>
</tr>
<tr>
<td>7520</td>
<td>FBA B communication loss func</td>
<td>Cyclical communication between drive and fieldbus adapter module B or between AC500 PLC and fieldbus adapter module B is lost.</td>
<td>- Check settings of parameter groups 50 Fieldbus adapter (FBA), 54 FBA B settings, 55 FBA B data in and 56 FBA B data out. - Reboot the BCU control unit to load the default values for the communication parameters.</td>
</tr>
<tr>
<td>7534</td>
<td>PM Rx link fault</td>
<td>A communication fault on the Rx communication channel of a PM has been detected. This fault typically indicates error in communication from control hub to PMs.</td>
<td>Check the event log for an auxiliary code. The code indicates which PM is affected. - Check the communication between the control hub and PMs by performing tests described in chapter POF Link Test. Refer to the actions described there in case communication problems are discovered.</td>
</tr>
<tr>
<td>7538</td>
<td>Control hub missing PM</td>
<td>A PM in the converter does not send data to the control hub. This fault can be caused by a faulty Tx channel of a PM and/or by a bad fiber optic connection from the PM to the control hub.</td>
<td>Check the event log for an auxiliary code. The code indicates which PM is affected. For affected PM position, please refer to electric diagram or labels in drive cabinet. - Inspect corresponding power module (PEBBs). - Check the communication between the control hub and PMs by performing tests described in chapter POF Link Test. Refer to the actions described there in case communication problems are discovered.</td>
</tr>
<tr>
<td>7539</td>
<td>Hub RX comm err</td>
<td>A communication error was detected in the control hub on the receiver from one power module (PM). This can be caused by a malfunction on the PM or by a bad fiber optic connection from the PM to the control hub.</td>
<td>Check the event log for an auxiliary code. The code indicates which PM is affected. For affected PM position, please refer to electric diagram or labels in drive cabinet. - Check the communication between the control hub and PMs by performing tests described in chapter POF Link Test. Refer to the actions described there in case communication problems are discovered.</td>
</tr>
<tr>
<td>7540</td>
<td>CVMI2 communication lost</td>
<td>There is no communication to the CVMI2 board.</td>
<td>Check communication wiring from BCU to CVMI2 board. Check power supply wiring of CVMI2 board. Replace the CVMI2 board.</td>
</tr>
<tr>
<td>Code( hex)</td>
<td>Fault</td>
<td>Cause</td>
<td>What to do</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>80A0</td>
<td>AI supervision Programmable fault: 12.03 AI supervision function</td>
<td>An analog signal is outside the limits specified for the analog input.</td>
<td>Check signal level at the analog input. Check the wiring connected to the input. Check the minimum and maximum limits of the input in parameter group 12 Standard AI.</td>
</tr>
<tr>
<td>80B0</td>
<td>Signal supervision (Editable message text) Programmable fault: 32.06 Supervision 1 action</td>
<td>Fault generated by the signal supervision 1 function.</td>
<td>Check the source of the fault (parameter 32.07 Supervision 1 signal).</td>
</tr>
<tr>
<td>80B1</td>
<td>Signal supervision 2 (Editable message text) Programmable fault: 32.16 Supervision 2 action</td>
<td>Fault generated by the signal supervision 2 function.</td>
<td>Check the source of the fault (parameter 32.17 Supervision 2 signal).</td>
</tr>
<tr>
<td>80B2</td>
<td>Signal supervision 3 (Editable message text) Programmable fault: 32.26 Supervision 3 action</td>
<td>Fault generated by the signal supervision 3 function.</td>
<td>Check the source of the fault (parameter 32.27 Supervision 3 signal).</td>
</tr>
<tr>
<td>9081</td>
<td>External fault 1 (Editable message text) Programmable fault: 31.01 External event 1 source 31.02 External event 1 type</td>
<td>Fault in external device 1. Conditions to activate External fault 1 (set in 31.01 External event 1 source) have been met.</td>
<td>Check the external device. Check setting of parameter 31.01 External event 1 source.</td>
</tr>
<tr>
<td>9082</td>
<td>External fault 2 (Editable message text) Programmable fault: 31.03 External event 2 source 31.04 External event 2 type</td>
<td>Fault in external device 2. Conditions to activate External fault 2 (set in 31.03 External event 2 source) have been met.</td>
<td>Check the external device. Check setting of parameter 31.03 External event 2 source.</td>
</tr>
<tr>
<td>9083</td>
<td>External fault 3 (Editable message text) Programmable fault: 31.05 External event 3 source 31.06 External event 3 type</td>
<td>Fault in external device 3. Conditions to activate External fault 3 (set in 31.05 External event 3 source) have been met.</td>
<td>Check the external device. Check setting of parameter 31.05 External event 3 source.</td>
</tr>
</tbody>
</table>
### Fault Tracing

<table>
<thead>
<tr>
<th>Code(hex)</th>
<th>Fault Description</th>
<th>Cause</th>
<th>What to do</th>
</tr>
</thead>
<tbody>
<tr>
<td>9084</td>
<td>External fault 4</td>
<td>Fault in external device 4. Conditions to activate External fault 4 (set in 31.07 External event 4 source) have been met.</td>
<td>Check the external device. Check setting of parameter 31.07 External event 4 source.</td>
</tr>
<tr>
<td>9085</td>
<td>External fault 5</td>
<td>Fault in external device 5. Conditions to activate External fault 5 (set in 31.09 External event 5 source) have been met.</td>
<td>Check the external device. Check setting of parameter 31.09 External event 5 source.</td>
</tr>
<tr>
<td>E100</td>
<td>Trafo phase U1 overtemperature</td>
<td>The winding temperature of the indicated transformer primary phase has exceeded the temperature limit.</td>
<td>Check cooling of the transformer (door air inlet filter pads, fan operation). Check overload settings for the transformer (contact your local ABB representative).</td>
</tr>
<tr>
<td>E101</td>
<td>Trafo phase V1 overtemperature</td>
<td>The winding temperature of the indicated transformer primary phase has exceeded the temperature limit.</td>
<td>Check cooling of the transformer (door air inlet filter pads, fan operation). Check overload settings for the transformer (contact your local ABB representative).</td>
</tr>
<tr>
<td>E102</td>
<td>Trafo phase W1 overtemperature</td>
<td>The winding temperature of the indicated transformer primary phase has exceeded the temperature limit.</td>
<td>Check cooling of the transformer (door air inlet filter pads, fan operation). Check overload settings for the transformer (contact your local ABB representative).</td>
</tr>
<tr>
<td>E103</td>
<td>Ambient overtemperature</td>
<td>The air inlet temperature of the inverter unit has exceeded the maximum converter ambient temperature.</td>
<td>Check and improve the cooling of the electric room where converter is placed.</td>
</tr>
<tr>
<td>E105</td>
<td>AC500 communication error</td>
<td>AC500 has detected a communication errors between BCU and AC500 communication link.</td>
<td>Check the connection between BCU and AC500eco PLC. Check FSCA-01 module. Check that termination of the Modbus line in the module FSCA-01 is done properly (refer to the FSCA-01 manual).</td>
</tr>
</tbody>
</table>
## Fault Tracing

<table>
<thead>
<tr>
<th>Code (hex)</th>
<th>Fault</th>
<th>Cause</th>
<th>What to do</th>
</tr>
</thead>
</table>
| E108      | AC500 communication fault | The watchdog supervision of the communication link between BCU and AC500 has detected a communication failure. | - Check the connection between BCU and AC500 eco PLC.  
- Check FSCA-01 module.  
- Check that termination of the Modbus line in the module FSCA-01 is done properly (refer to the FSCA-01 manual).  
- Reboot the BCU control unit to load the default values for the communication parameters.  
- Make sure that following parameters are set correctly:  
  - 54.1 FBA B type = RS-485 comm  
  - 54.2 Profile = ABB Enhanced  
- Refresh the Modbus settings by setting the parameter:  
  - 54.27 FBA B par refresh = Refresh  
- Check that up to maximum of two fieldbus extension modules are used on the BCU.  
If the fault happens always after the control power cycle, check the AC500 eco PLC firmware (refer to the section Loading IO controller (AC500 eco) firmware on page 20) and update if it is outdated. |
| E109      | MCB not available | MCB available signal is missing. | - Check MCB available signal.  
- Check setting of parameters:  
  - 82.40 MCB available monitoring,  
  - 82.42 MCB available Grp+Indx,  
  - 82.43 MCB available BitNum,  
- Check that the selected input for MCB available signal is not forced (e.g. in parameters 87.11 AC500 CPU DI force selection and 87.12 AC500 CPU DI force data). |
| E10A      | MCB external protection | MCB external protection is active. | - Check MCB external protection signal.  
- Check setting of parameters:  
  - 82.50 MCB external protection monitoring,  
  - 82.52 MCB external protection Grp+Indx,  
  - 82.53 MCB external protection BitNum.  
- Check that the selected input for MCB external protection signal is not forced (e.g. in parameters 87.11 AC500 CPU DI force selection and 87.12 AC500 CPU DI force data). |
<table>
<thead>
<tr>
<th>Code(hex)</th>
<th>Fault</th>
<th>Cause</th>
<th>What to do</th>
</tr>
</thead>
<tbody>
<tr>
<td>E10B</td>
<td>MCB ON inhibited</td>
<td>MCB ON inhibition is active.</td>
<td>- Check MCB ON inhibition signal.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Check setting of parameters: 82.45 MCB ON inhibition monitoring, 82.47 MCB ON inhibition Grp+Indx, 82.48 MCB ON inhibition BitNum.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Check that the selected input for MCB ON inhibition signal is not forced (e.g. in parameters: 87.11 AC500 CPU DI force selection and 87.12 AC500 CPU DI force data).</td>
</tr>
<tr>
<td>E10C</td>
<td>TRU cooling fan 1 overload</td>
<td>Temperature relay integrated in TRU cooling fan 1 has opened.</td>
<td>Check wiring of fan 1 temperature contacts (open circuit, loose terminals). Check if fan is mechanically blocked or makes excessive noise (bearing problem).</td>
</tr>
<tr>
<td>E10D</td>
<td>TRU cooling fan 2 overload</td>
<td>Temperature relay integrated in TRU cooling fan 2 has opened.</td>
<td>Check wiring of fan 2 temperature contacts (open circuit, loose terminals). Check if fan is mechanically blocked or makes excessive noise (bearing problem).</td>
</tr>
<tr>
<td>E10E</td>
<td>TRU cooling fan 3 overload</td>
<td>Temperature relay integrated in TRU cooling fan 3 has opened.</td>
<td>Check wiring of fan 3 temperature contacts (open circuit, loose terminals). Check if fan is mechanically blocked or makes excessive noise (bearing problem).</td>
</tr>
<tr>
<td>E10F</td>
<td>Control supply failure</td>
<td>Control supply failure has been detected based on monitoring of the digital signal.</td>
<td>Check the control supply failure signal. Check setting of the parameter 81.10 Control supply monitoring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Note:</strong> If the drive is equipped with CPR 1 option (600ms buffer) the parameter 81.10 Control supply monitoring should be set to “Alarm low active”. If it is set to “Fault low active” this fault will activate every time the control power supply is switched off by user.</td>
</tr>
<tr>
<td>E110</td>
<td>DC link charging timeout</td>
<td>DC link voltage has not reached the expected value after MCB has been closed.</td>
<td>- Check fuses on all PMs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Check transformer connection to the grid.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Check PM SW version and update if required.</td>
</tr>
<tr>
<td>E111</td>
<td>TRU cooling fan 4 overload</td>
<td>Temperature relay integrated in TRU cooling fan 4 has opened.</td>
<td>Check wiring of fan 4 temperature contacts (open circuit, loose terminals). Check if fan is mechanically blocked or makes excessive noise (bearing problem).</td>
</tr>
<tr>
<td>E113</td>
<td>INU cooling fan 1 overload</td>
<td>Temperature relay integrated in INU cooling fan 1 has opened.</td>
<td>Check wiring of fan 1 temperature contacts (open circuit, loose terminals). Check if fan is mechanically blocked or makes excessive noise (bearing problem).</td>
</tr>
<tr>
<td>Code(hex)</td>
<td>Fault</td>
<td>Cause</td>
<td>What to do</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>E114</td>
<td>MCB control fault</td>
<td>MCB close command and MCB close feedback do not match.</td>
<td>Check if the MCB has tripped on its own, by means of short circuit protection relay or overload protection relay. In case of some serious faults, like e.g. transformer primary winding short circuit, the MCB protection will react faster than the protection of the drive. In this case the MCB control fault will be active. - Check the transformer for any damage. - If there was no damage (MCB opened by mistake) do the following: - Check MCB control wiring between ACS580MV and MCB. - Check that Modbus communication between BCU and AC500eco is working. - Check the settings of MCB protection and adapt if needed (refer to ACS580MV Engineering Guideline for MCB protection settings).</td>
</tr>
<tr>
<td>E115</td>
<td>INU cooling fan 2 overload</td>
<td>Temperature relay integrated in INU cooling fan 2 has opened.</td>
<td>Check wiring of fan 2 temperature contacts (open circuit, loose terminals). Check if fan is mechanically blocked or makes excessive noise (bearing problem).</td>
</tr>
<tr>
<td>E116</td>
<td>INU cooling fan 3 overload</td>
<td>Temperature relay integrated in INU cooling fan 3 has opened.</td>
<td>Check wiring of fan 3 temperature contacts (open circuit, loose terminals). Check if fan is mechanically blocked or makes excessive noise (bearing problem).</td>
</tr>
<tr>
<td>E118</td>
<td>INU door not closed</td>
<td>During charging or operation of the drive, the inverter unit door lock sensor has reported that the door is not closed.</td>
<td>Close the inverter unit door. Check internal wiring of the door lock signals (open circuits, loose terminals). Check that Modbus communication between BCU and AC500 is working.</td>
</tr>
<tr>
<td>E119</td>
<td>MCB discrepancy</td>
<td>MCB open feedback signal and MCB close feedback signal are active at the same time.</td>
<td>Check MCB control feedback signals wiring (open circuit, loose terminals).</td>
</tr>
<tr>
<td>E11A</td>
<td>INU cooling fan 4 overload</td>
<td>Temperature relay integrated in INU cooling fan 4 has opened.</td>
<td>Check wiring of fan 4 temperature contacts (open circuit, loose terminals). Check if fan is mechanically blocked or makes excessive noise (bearing problem).</td>
</tr>
<tr>
<td>E11C</td>
<td>INU door not locked</td>
<td>During charging or operation of the drive, the inverter unit door lock has reported that the door is not locked.</td>
<td>Lock the inverter unit door. Check internal wiring of the door lock signals (open circuits, loose terminals). Check that Modbus communication between BCU and AC500 is working.</td>
</tr>
</tbody>
</table>
### Code(hex) | Fault | Cause | What to do
--- | --- | --- | ---
E11D | Transformer temperature sensor failure | The winding temperature of the indicated transformer primary phase shows extremely high values or its value is 0 all the time. This indicates that there is a PT100 temperature sensor failure. | Check the auxiliary code. The code specifies the affected transformer primary phase as follows:
01: U1
02: V1
03: W1
04: U1 and V1
05: V1 and W1
06: U1 and W1
07: U1, V1 and W1. Check the wiring of the indicated PT100 temperature sensor.

E121 | IO Controller version incompatible | IO Controller (AC500eco) SW version (shown in parameter 81.07 IO Controller version) is lower than the required value (shown in parameter 81.08 IO Controller version required). | Upgrade IO Controller SW to the required version (shown in parameter 81.08 IO Controller version required). For the IO Controller SW upgrade procedure refer to chapter Loading of the Control Software.

E140 | MSS control fault | MSS command and MSS feedback do not match. | Check if MSS has tripped on its own, by means of short circuit protection relay or overload protection relay and adapt MSS protection relay settings if required. Check MB control wiring between ACS580MV and MSS.

E141 | MB control fault | MB command and MB feedback do not match. | Check if MB has tripped on its own, by means of short circuit protection relay or overload protection relay and adapt MB protection relay settings if required. Check MB control wiring between ACS580MV and MB.

E143 | Bypass contactor control fault | Command and feedback of contactor do not match. | Check if contactor has tripped on its own, by means of short circuit protection relay or overload protection relay and adapt contactor protection relay settings if required. Check contactor control wiring between ACS580MV and contactor.

E144 | Inductor overtemperature | The inductor temperature has exceeded the temperature limit. | Check cooling of the inductor.

E145 | Inductor overtemperature | Inductor temperature rising relative to ambient temperature has exceeded the temperature rising limit. | Check cooling of the inductor.

E146 | Voltage transducer sensor failure | The measured RMS voltage of the grid or drive output for SBU has exceeded internal fault level. | Check the auxiliary code. The code specifies affected measuring sensor as follows:
01: Grid voltage
02: Drive output voltage
04: Grid and drive output voltage
Check the voltage sensor wiring for the indicated place. Check MCR-VAC-U1-0-DC board.
### Fault Tracing

E147 Inductor temperature sensor failure

- The temperature of the inductor has exceeded internal fault level.
- Check the wiring of the inductor temperature sensor.

FF81 FB A force trip

- A fault trip command has been received through fieldbus adapter A.
- Check the fault information provided by the PLC (overriding system).

<table>
<thead>
<tr>
<th>Code(hex)</th>
<th>Fault</th>
<th>Cause</th>
<th>What to do</th>
</tr>
</thead>
<tbody>
<tr>
<td>E147</td>
<td>Inductor temperature sensor failure</td>
<td>The temperature of the inductor has exceeded internal fault level.</td>
<td>Check the wiring of the inductor temperature sensor.</td>
</tr>
<tr>
<td>FF81</td>
<td>FB A force trip</td>
<td>A fault trip command has been received through fieldbus adapter A.</td>
<td>Check the fault information provided by the PLC (overriding system).</td>
</tr>
</tbody>
</table>
72 Fault Tracing
Service Level Parameters

What this chapter contains

The chapter describes all parameters that require Service access level. The parameters at End user access level are not listed in this manual, although some of them are referenced. For more details on the End user level parameters refer to ACS580MV primary control program firmware manual. Parameters can be viewed and edited using operator panel ACS-AP-S or Drive composer PC tool. To access parameters described in this chapter the service level password must be entered in the parameter 96.02 Pass code. When service access level is active the parameter 96.3 Access level active will have value 0b0011.

Safety

⚠️ WARNING! Most of service level parameters are safety relevant, such as Protection settings (Group 34 Protections). Wrong setting of such parameters might cause damage to the drive!
Terms and abbreviations

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual signal</td>
<td>Type of parameter that is the result of a measurement or calculation by the drive, or contains status information. Most actual signals are read-only, but some (especially counter-type actual signals) can be reset.</td>
</tr>
<tr>
<td>Def</td>
<td>(In the following table, shown on the same row as the parameter name) The default value of a parameter for the Factory macro. For information on macro-specific parameter values, see chapter Application macros in ACS580MV primary control program firmware manual.</td>
</tr>
<tr>
<td>FbEq16</td>
<td>(In the following table, shown on the same row as the parameter range, or for each selection) 16-bit fieldbus equivalent: The scaling between the value shown on the panel and the integer used in fieldbus communication when a 16-bit value is selected in parameter group 52 FBA A data in or 53 FBA A data out. A dash (-) indicates that the parameter is not accessible in 16-bit format.</td>
</tr>
<tr>
<td>Other [bit]</td>
<td>The value is taken from a specific bit in another parameter. The source is selected from a parameter list.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Either an user-adjustable operating instruction for the drive, or an actual signal.</td>
</tr>
<tr>
<td>p.u.</td>
<td>Per unit</td>
</tr>
</tbody>
</table>

Summary of groups containing service level parameters

<table>
<thead>
<tr>
<th>Group</th>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>05 Diagnostics</td>
<td>Various run-time-type counters and measurements related to drive maintenance.</td>
<td>75</td>
</tr>
<tr>
<td>17 Control Hub IO</td>
<td>Monitoring of control hub input/output signals.</td>
<td>76</td>
</tr>
<tr>
<td>21 Start/stop mode</td>
<td>Start and stop modes; emergency stop mode and signal source selection; DC magnetization settings; flystart settings.</td>
<td>75</td>
</tr>
<tr>
<td>30 Limits</td>
<td>Drive operation limits.</td>
<td>81</td>
</tr>
<tr>
<td>34 Protections</td>
<td>Drive protection functions.</td>
<td>84</td>
</tr>
<tr>
<td>60 DDCS communication</td>
<td>DDCS communication configuration.</td>
<td>88</td>
</tr>
<tr>
<td>79 TC Vector control</td>
<td>PI-Control, filter and configuration settings for vector control mode.</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>Note: Vector control mode is released from SW version MHDRE 2.70.0.1 (2016-B), some parameters from this group are also used by scalar control mode.</td>
<td></td>
</tr>
<tr>
<td>81 System control and monitoring</td>
<td>Application software parameters used for system control and monitoring.</td>
<td>93</td>
</tr>
<tr>
<td>82 Charging, MCB control</td>
<td>MCB control (drive charging control).</td>
<td>94</td>
</tr>
<tr>
<td>83 Cooling system</td>
<td>Control of the converter cooling system.</td>
<td>95</td>
</tr>
<tr>
<td>87 AC500 IO interface</td>
<td>Configuration of IO controller (AC500eco) digital inputs, relay / transistor outputs and analog inputs.</td>
<td>98</td>
</tr>
<tr>
<td>95 HW configuration</td>
<td>Various hardware-related settings.</td>
<td>100</td>
</tr>
<tr>
<td>96 System</td>
<td>Language selection; parameter save and restore; user parameter sets; control unit reboot.</td>
<td>104</td>
</tr>
<tr>
<td>97 Motor control</td>
<td>Voltage reserve; flux braking; IR compensation.</td>
<td>105</td>
</tr>
</tbody>
</table>
### Service Level Parameters

**Parameter listing**

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>99 Motor data</td>
<td>Motor configuration settings.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### 05 Diagnostics
- Various run-time-type counters and measurements related to drive maintenance.
- All parameters in this group are read-only unless otherwise noted.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>05.10</td>
<td>Control board temperature</td>
<td>Measured BCON control board temperature.</td>
</tr>
<tr>
<td>-50 ... 150 °C</td>
<td></td>
<td>1 = 1 °C</td>
</tr>
<tr>
<td>05.48</td>
<td>Control board temperature warning</td>
<td>Control board temperature warning threshold. If the control board temperature exceeds this value the alarm A4A0 Control board temperature will be activated.</td>
</tr>
<tr>
<td></td>
<td>0 (=disabled)</td>
<td></td>
</tr>
<tr>
<td>05.49</td>
<td>Control board temperature fault</td>
<td>Control board temperature fault threshold. If the control board temperature exceeds this value the drive trips on fault 4110 Control board temperature.</td>
</tr>
<tr>
<td></td>
<td>0 (=disabled)</td>
<td></td>
</tr>
</tbody>
</table>

#### 05.140 Communication counter link selector
- Selects the communication link of message counter or error counter displayed in parameters 05.141 and 05.142.
- Note: This parameter is visible only for AINF2, AINFB and AINF6 targets.

<table>
<thead>
<tr>
<th>Name/Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FigBus</td>
<td>Shows the message counter and error counter for UART-communication between fieldbus module and control unit.</td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>DDCS</td>
<td>Shows the message counter and error counter for DDCS link layer.</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Drive-to-Drive (D2D)</td>
<td>Shows the message counter and error counter for Drive-to-Drive communication link.</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Safety option (FSO)</td>
<td>Shows the message counter and error counter for UART link messages between safety option and control unit.</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Power unit communication (PSL2)</td>
<td>Shows the message counter and error counter for PSL2 communication link. All the channels are combined into one common counter.</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Panel communication</td>
<td>Shows the message counter and error counter for panel communication link.</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Communication message counter</th>
<th>Displays the value of message counter based on the communication link selected with parameter 05.140. The counter resets, if you reboot the control board or after the value reaches the maximum limit.</th>
</tr>
</thead>
<tbody>
<tr>
<td>05.141</td>
<td></td>
<td>Note: This parameter is visible only for AINF2, AINFB and AINF6 targets.</td>
</tr>
<tr>
<td>0...4294967295</td>
<td>Number of messages since the last control board reboot.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = 1</td>
<td></td>
</tr>
</tbody>
</table>
### Service Level Parameters

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>05.142</td>
<td>Communication error counter</td>
<td>Displays the value of error counter based on the communication link selected with parameter 05.140. The counter resets, if you reboot the control board or after the value reaches the maximum limit. Note: This parameter is visible only for AINF2, AINFB and AINF6 targets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0…4294967295 Number of errors since the last control board reboot.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>07</td>
<td>System info</td>
<td>Service-level parameters for drive hardware and firmware information. Note: All parameters in this group are read only.</td>
<td></td>
</tr>
<tr>
<td>07.09</td>
<td>Preboot version</td>
<td>Shows the version number of preboot program in the control unit.</td>
<td></td>
</tr>
<tr>
<td>07.16</td>
<td>Drive nominal current</td>
<td>Shows the nominal current of the drive.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 … 15000 A Nominal current.</td>
<td>1 = 1 A</td>
</tr>
<tr>
<td>10</td>
<td>System info</td>
<td>Service-level parameters for drive hardware and firmware information. Note: All parameters in this group are read only.</td>
<td></td>
</tr>
<tr>
<td>10.101</td>
<td>RO1 toggle counter</td>
<td>Counts number of times relay output RO1 changed states. To reset the counter, in control panel depress the Reset key for at least three seconds.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0…4294967295 Number of times RO1 changed states.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>10.102</td>
<td>RO2 toggle counter</td>
<td>Counts number of times relay output RO2 changed states. To reset the counter, in control panel depress the Reset key for at least three seconds.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0…4294967295 Number of times RO2 changed states.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>10.103</td>
<td>RO3 toggle counter</td>
<td>Counts number of times relay output RO3 changed states. To reset the counter, in control panel depress the Reset key for at least three seconds.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0…4294967295 Number of times RO3 changed states.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>17</td>
<td>Control Hub IO</td>
<td>Monitoring of control hub input/output signals.</td>
<td></td>
</tr>
<tr>
<td>17.03</td>
<td>Control hub DO force selection</td>
<td>Selects the control hub digital outputs whose electrical values are replaced by forced values from parameter 17.04.</td>
<td>0b0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit / Name / Information</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0: DO1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: DO2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2: DO3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3: DO4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 … 15: Reserved</td>
<td></td>
</tr>
<tr>
<td>17.04</td>
<td>Control hub DO force data</td>
<td>Forcs control hub digital outputs to the set value if selected in parameter 17.03. Bit 0 is the forced value for control hub DO1.</td>
<td>0b0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit / Name / Information</td>
<td></td>
</tr>
</tbody>
</table>
### Service Level Parameters

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0: DO1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1: DO2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2: DO3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3: DO4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 … 15: Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.06</td>
<td>Control hub DI force selection</td>
<td>Selects the control hub digital inputs whose electrical values are replaced by forced values from parameter 17.07.</td>
<td>0b00000</td>
</tr>
<tr>
<td></td>
<td>Bit / Name / Information</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0: DI1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1: DI2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2: DI3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3: DI4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 … 15: Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.07</td>
<td>Control hub DI force data</td>
<td>Contains the values of digital inputs that are used instead of the electrical statuses if selected in parameter 17.06. Bit 0 is the forced value for control hub DI1.</td>
<td>0b00000</td>
</tr>
<tr>
<td></td>
<td>Bit / Name / Information</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0: DI1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1: DI2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2: DI3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3: DI4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 … 15: Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.08</td>
<td>INU air pressure drop</td>
<td>Inverter unit cabinet pressure drop (raw value).</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Bit / Name / Information</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21 Start/stop mode</td>
<td>Start and stop modes; emergency stop mode and signal source selection; DC magnetization settings; flystart settings.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21.23 DC magn. ctrl P-gain</td>
<td>Proportional gain of the PI controller used for DC magnetization. &lt;br&gt;<strong>Note:</strong> This parameter should be modified only by expert personnel.</td>
<td>10 %</td>
</tr>
<tr>
<td></td>
<td>0 … 1000 %</td>
<td></td>
<td>0.01 = 1 %</td>
</tr>
<tr>
<td></td>
<td>21.24 DC magn. ctrl time constant</td>
<td>Integral time constant of the PI controller used for DC magnetization. &lt;br&gt;<strong>Note:</strong> This parameter should be modified only by expert personnel.</td>
<td>10 ms</td>
</tr>
<tr>
<td></td>
<td>0 … 10000 ms</td>
<td></td>
<td>0.001 = 1 ms</td>
</tr>
<tr>
<td></td>
<td>21.25 DC magn. ctrl max limit</td>
<td>Limit value for the PI controller used for DC magnetization. &lt;br&gt;<strong>Note:</strong> This parameter should be modified only by expert personnel.</td>
<td>1000 %</td>
</tr>
<tr>
<td></td>
<td>0 … 1000 %</td>
<td></td>
<td>0.01 = 1 %</td>
</tr>
<tr>
<td></td>
<td>21.30 Flystart current level</td>
<td>Defines the initial current level to be used during speed scan process. The p.u. refers to the motor current base (motor nominal current defined in parameter 99.6).</td>
<td>0.4 p.u.</td>
</tr>
</tbody>
</table>
### Service Level Parameters

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 p.u.</td>
<td></td>
<td>1 = 1 p.u.</td>
</tr>
<tr>
<td>21.31</td>
<td>Flystart flux ramp time</td>
<td>Defines the flux ramp up time (from 0 to 1 p.u.) during flystart.</td>
<td>10 s</td>
</tr>
<tr>
<td></td>
<td>1 ... 50 s</td>
<td></td>
<td>1 = 1 s</td>
</tr>
<tr>
<td>21.32</td>
<td>Flystart frequency min</td>
<td>Minimum frequency/speed used during speed scan in flystart.</td>
<td>0.1 p.u.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the motor speed is still not found when the frequency reference gets smaller than this parameter, the flystart continues the speed scan with negative sign or ends the speed scan depending on the option selected in parameter 21.34:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>21.34 Flystart reverse enable = 1:</strong> (Motor can rotate in both directions)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the motor speed is still not found when the frequency reference gets smaller than this parameter, it is concluded that the motor speed equals 0 and DC magnetization is performed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>21.34 Flystart reverse enable = 0:</strong> (Motor can rotate only in one direction)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the motor speed is still not found when the frequency reference gets smaller than this parameter it is concluded that the motor speed equals 0 and DC magnetization is performed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1 p.u.</td>
</tr>
<tr>
<td>21.33</td>
<td>Flystart frequency ramp time</td>
<td>Defines the time to ramp the scan frequency from nominal to zero.</td>
<td>10 s</td>
</tr>
<tr>
<td></td>
<td>0 ... 50 s</td>
<td></td>
<td>1 = 1 s</td>
</tr>
<tr>
<td>21.34</td>
<td>Flystart reverse enable</td>
<td>If this parameter is set to 1 the flystart algorithm performs the speed scan over positive and negative speeds. If this parameter is set to 0 the flystart algorithm performs the speed scan only over positive speeds. See parameter 21.32 for more details.</td>
<td>1 NoUnit</td>
</tr>
<tr>
<td></td>
<td>0 ... 1 NoUnit</td>
<td></td>
<td>1 = 1 NoUnit</td>
</tr>
<tr>
<td>21.35</td>
<td>Flystart speed detect curr level</td>
<td>When the motor current in d axis falls below this value the motor speed is considered found. After that the flux is ramped up to the rated value. Important: The current level for finding the motor speed is defined by multiplying this parameter by the parameter 21.30 Flystart current level. In other words, the p.u. for this parameter does not refer to the motor current base (motor nominal current) but to the initial current level used in flystart algorithm (parameter 21.30 Flystart current level).</td>
<td>0.35 p.u.</td>
</tr>
<tr>
<td></td>
<td>0 ... 1 p.u.</td>
<td></td>
<td>1 = 1 p.u.</td>
</tr>
<tr>
<td>21.36</td>
<td>Flystart speed detect quali time</td>
<td>Defines the qualification time for 21.35. After this qualification, the speed shall be defined as detected.</td>
<td>20 ms</td>
</tr>
</tbody>
</table>
Service Level Parameters

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>0…100 ms</td>
<td></td>
<td>Filter time constant in ms for the iq current to be fed to the iq current controller.</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>21.37</td>
<td>Flystart iq ctrl fit time</td>
<td>Proportional gain of the PI controller used to control iq current during flystart.</td>
<td>20 ms</td>
</tr>
<tr>
<td>0 … 10 NoUnit</td>
<td></td>
<td>Integral gain of the PI controller used to control iq current during flystart.</td>
<td>1 NoUnit</td>
</tr>
<tr>
<td>21.38</td>
<td>Flystart iq ctrl kp</td>
<td>Starting inhibit from last stop or fault to make motor fully demagnetized.</td>
<td>5000 ms</td>
</tr>
<tr>
<td>0 … 10 NoUnit</td>
<td></td>
<td>Starting inhibit from last stop or fault to make motor fully demagnetized.</td>
<td>1 NoUnit</td>
</tr>
<tr>
<td>21.204</td>
<td>Starting freeze time</td>
<td>Selects how ramp shape time applies to ramps 1 and 2.</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>26 Torque reference chain</td>
<td>Service level parameters for torque reference chain.</td>
<td>Parameters 26.90 . . . 26.101 configure the acceleration damping function. See also, Acceleration damping function and Reference selection for torque controller chain diagram in the Firmware manual.</td>
<td>1</td>
</tr>
</tbody>
</table>
## Service Level Parameters

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.90</td>
<td>Motor acceleration</td>
<td>Displays the filtered acceleration (i.e. rate of actual speed change). The filtering is defined by parameters 26.92…26.97. Negative values indicate deceleration. This parameter is read-only.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-2147483.648 … 2147483.647 rpm/s</td>
<td>Filtered acceleration.</td>
<td>100 = 1 rpm/s</td>
</tr>
<tr>
<td>26.91</td>
<td>Motor acceleration multiplication</td>
<td>Defines a multiplier for the acceleration value, applied before filtering. Default value zero disables calculation and saves CPU time.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.00 … 256.00</td>
<td>Multiplier for acceleration.</td>
<td>100 = 1</td>
</tr>
<tr>
<td>26.92</td>
<td>Acceleration filtering time</td>
<td>Defines the base filtering time for acceleration of all three filters. This filtering time is normally used above the speed defined in par. 26.95 Acceleration filter increase speed high.</td>
<td>5.0 ms</td>
</tr>
<tr>
<td></td>
<td>0.5 … 3276.7 ms</td>
<td>Acceleration filtering time.</td>
<td>10 = 1 ms</td>
</tr>
<tr>
<td>26.93</td>
<td>Acceleration filter increase</td>
<td>Defines a multiplier for the base filtering time (par. 26.92 Acceleration filtering time). The product of parameters 26.93 and 26.92 is used as the filtering time below the speed defined by parameter 26.94 Acceleration filter increase speed low. The filtering time decreases linearly between the speeds in parameters 26.94 and 26.95.</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>1.0 … 3276.7</td>
<td>Filtering time multiplier for low speeds.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>26.94</td>
<td>Acceleration filter increase speed low</td>
<td>Defines a speed breakpoint below which the increased filtering time (product of parameters 26.92 and 26.93) is used.</td>
<td>30.00 rpm</td>
</tr>
<tr>
<td></td>
<td>0.00 … 30000.00 rpm</td>
<td>Breakpoint for increased filtering time.</td>
<td>1 = 1 rpm</td>
</tr>
<tr>
<td>26.95</td>
<td>Acceleration filter increase speed high</td>
<td>Defines a speed breakpoint above which the base filtering time (par. 26.92) is used.</td>
<td>60.00 rpm</td>
</tr>
<tr>
<td></td>
<td>0.00 … 30000.00 rpm</td>
<td>Breakpoint for base filtering time.</td>
<td>1 = 1 rpm</td>
</tr>
<tr>
<td>26.96</td>
<td>Acceleration filter bypass limit</td>
<td>Defines a limit for rate of speed change (because when actual speed changes quickly, the overall filtering time must be decreased). Above this limit, the first filter is bypassed, and the filtering time of the second and third filters are divided by parameter 26.97 Acceleration filter reduction.</td>
<td>100.000 rpm/s</td>
</tr>
<tr>
<td></td>
<td>0.000 … 32767.000 rpm/s</td>
<td>Filtered rate of actual speed change.</td>
<td>1 = 1 rpm/s</td>
</tr>
<tr>
<td>26.97</td>
<td>Acceleration filter reduction</td>
<td>Defines the acceleration filter reduction value. When actual speed changes faster than the bypass limit (par. 26.96), the first filter is bypassed and the filtering time of the second and third filters are divided by this value.</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>1.0 … 24.0</td>
<td>Filtering time reduction.</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>
### Service Level Parameters

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.98</td>
<td>Acceleration damping gain</td>
<td>Defines the multiplier for filtered acceleration, applied before limitation. Default value zero disables calculation and saves CPU time. When damping is used, also the acceleration calculation needs to be activated by parameter 26.91 Motor acceleration multiplication.</td>
<td>0.0 %s²/rad</td>
</tr>
<tr>
<td>26.99</td>
<td>Abs acceleration damping maximum</td>
<td>Defines the maximum limit for torque correction term (output of the acceleration damping function). Note: The same limit applies for both acceleration and deceleration.</td>
<td>10.0%</td>
</tr>
<tr>
<td>26.100</td>
<td>Acceleration damping output enabled</td>
<td>Determines (or selects a source to determine) whether the output of the acceleration damping function is applied to the torque reference.</td>
<td>Not selected, 0 = Not selected, 1 = Selected, Other [bit] Source selection</td>
</tr>
<tr>
<td>26.101</td>
<td>Acceleration damping output</td>
<td>Displays the output of the oscillation damping function. This value is added to the torque reference (as allowed by par. 26.100). This parameter is read-only.</td>
<td>-1600.0 … 1600.0%</td>
</tr>
<tr>
<td>30.54</td>
<td>Overvoltage Limit</td>
<td>Maximum value of DC link voltage for control. DC link voltage is limited to this value during braking.</td>
<td>1140 V</td>
</tr>
<tr>
<td>30.56</td>
<td>Ridethrough secondary voltage limit</td>
<td>Ridethrough DC Link control level [V]. During the ridethrough the DC Link is controlled to this level.</td>
<td>600 V</td>
</tr>
<tr>
<td>31</td>
<td>Fault functions</td>
<td>Configuration of external events; selection of behavior of the drive upon fault situations.</td>
<td></td>
</tr>
</tbody>
</table>
### Service Level Parameters

#### 31.32 Emergency ramp supervision
- **Description**: Parameters 31.32 Emergency ramp supervision and 31.33 Emergency ramp supervision delay, together with 01.29 Speed change rate, provide a supervision function for emergency stop modes Off1 and Off3.
- **Note**: This parameter is only applied to vector mode (99.04 Motor control mode = Vector).
- **Description**: The supervision is based on either
  - observing the time within which the motor stops, or
  - comparing the actual and expected deceleration rates.
- **Def/FbEq16**: 0%

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
<th>Def/FbEq16</th>
</tr>
</thead>
</table>
| 31.32 | Emergency ramp supervision | Parameters 31.32 Emergency ramp supervision and 31.33 Emergency ramp supervision delay, together with 01.29 Speed change rate, provide a supervision function for emergency stop modes Off1 and Off3. The supervision is based on either
  - observing the time within which the motor stops, or
  - comparing the actual and expected deceleration rates.
  If this parameter is set to 0%, the maximum stop time is directly set in parameter 31.33. Otherwise, 31.32 defines the maximum allowed deviation from the expected deceleration rate, which is calculated from parameters 23.11…23.19 (Off1) or 23.23 Emergency stop time (Off3). If the actual deceleration rate (01.29) deviates too much from the expected rate, the drive trips on 7380 Emergency ramp failed, sets bit 8 of 06.17 Drive status word 2, and coasts to a stop. If 31.32 is set to 0% and 31.33 is set to 0 s, the emergency stop ramp supervision is disabled. See also parameter 31.04 Emergency stop mode. **Note**: This parameter is only applied to vector mode (99.04 Motor control mode = Vector). | 0% |
| 31.33 | Emergency ramp supervision delay | If parameter 31.32 Emergency ramp supervision is set to 0%, this parameter defines the maximum time an emergency stop (mode Off1 or Off3) is allowed to take. If the motor has not stopped when the time elapses, the drive trips on 7380 Emergency ramp failed, sets bit 8 of 06.17 Drive status word 2, and coasts to a stop. If 31.32 is set to a value other than 0%, this parameter defines a delay between the receipt of the emergency stop command and the activation of the supervision. It is recommended to specify a short delay to allow the speed change rate to stabilize. **Note**: This parameter is only applied to vector mode (99.04 Motor control mode = Vector). | 0 s |
| 31.37 | Ramp stop supervision | Parameters 31.37 Ramp stop supervision and 31.38 Ramp stop supervision delay, together with 01.29 Speed change rate, provide a supervision function for normal (ie. non-emergency) ramp stopping. The supervision is based on either
  - observing the time within which the motor stops, or
  - comparing the actual and expected deceleration rates.
  If this parameter is set to 0%, the maximum stop time is directly set in parameter 31.38. Otherwise, 31.37 defines the maximum allowed deviation from the expected deceleration rate, which is calculated from parameters 23.11…23.19. If the actual deceleration rate (01.29) deviates too much from the expected rate, the drive trips on 7381 Stop failed, sets bit 14 of 06.17 Drive status word 2, and coasts to a stop. If 31.37 is set to 0% and 31.38 is set to 0 s, the ramp stop supervision is disabled. **Note**: This parameter is only applied to vector mode (99.04 Motor control mode = Vector). | 0% |

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
<th>Def/FbEq16</th>
</tr>
</thead>
</table>
| 31.37 | Ramp stop supervision | Parameters 31.37 Ramp stop supervision and 31.38 Ramp stop supervision delay, together with 01.29 Speed change rate, provide a supervision function for normal (ie. non-emergency) ramp stopping. The supervision is based on either
  - observing the time within which the motor stops, or
  - comparing the actual and expected deceleration rates.
  If this parameter is set to 0%, the maximum stop time is directly set in parameter 31.38. Otherwise, 31.37 defines the maximum allowed deviation from the expected deceleration rate, which is calculated from parameters 23.11…23.19. If the actual deceleration rate (01.29) deviates too much from the expected rate, the drive trips on 7381 Stop failed, sets bit 14 of 06.17 Drive status word 2, and coasts to a stop. If 31.37 is set to 0% and 31.38 is set to 0 s, the ramp stop supervision is disabled. **Note**: This parameter is only applied to vector mode (99.04 Motor control mode = Vector). | 0% |
| 0…300% | Maximum deviation from expected deceleration rate. | | 1 = 1% |
| 31.37 | Ramp stop supervision | Parameters 31.37 Ramp stop supervision and 31.38 Ramp stop supervision delay, together with 01.29 Speed change rate, provide a supervision function for normal (ie. non-emergency) ramp stopping. The supervision is based on either
  - observing the time within which the motor stops, or
  - comparing the actual and expected deceleration rates.
  If this parameter is set to 0%, the maximum stop time is directly set in parameter 31.38. Otherwise, 31.37 defines the maximum allowed deviation from the expected deceleration rate, which is calculated from parameters 23.11…23.19. If the actual deceleration rate (01.29) deviates too much from the expected rate, the drive trips on 7381 Stop failed, sets bit 14 of 06.17 Drive status word 2, and coasts to a stop. If 31.37 is set to 0% and 31.38 is set to 0 s, the ramp stop supervision is disabled. **Note**: This parameter is only applied to vector mode (99.04 Motor control mode = Vector). | 0% |
| 0…300% | Maximum deviation from expected deceleration rate. | | 1 = 1% |
Service Level Parameters  83

If parameter 31.37 Ramp stop supervision is set to 0%, this parameter defines the maximum time a ramp stop is allowed to take. If the motor has not stopped when the time elapses, the drive trips on 73B1 Stop failed, sets bit 14 of 06.17 Drive status word 2, and coasts to a stop. If 31.37 is set to a value other than 0%, this parameter defines a delay between the receipt of the stop command and the activation of the supervision. It is recommended to specify a short delay to allow the speed change rate to stabilize.

Note: This parameter is only applied to vector mode (99.04 Motor control mode = Vector).

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.38</td>
<td>Ramp stop supervision delay</td>
<td>If parameter 31.37 Ramp stop supervision is set to 0%, this parameter defines the maximum time a ramp stop is allowed to take. If the motor has not stopped when the time elapses, the drive trips on 73B1 Stop failed, sets bit 14 of 06.17 Drive status word 2, and coasts to a stop. If 31.37 is set to a value other than 0%, this parameter defines a delay between the receipt of the stop command and the activation of the supervision. It is recommended to specify a short delay to allow the speed change rate to stabilize. Note: This parameter is only applied to vector mode (99.04 Motor control mode = Vector).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0…32767 s</td>
<td>Maximum ramp-down time, or supervision activation delay.</td>
<td>1 = 1 s</td>
</tr>
</tbody>
</table>
Service Level Parameters

34 Protections

Drive protection functions.

**Note:** For motor related quantities specified in p.u., if no special note is given, the base value is Motor nominal current defined in parameter 99.6. For grid related quantities specified in p.u., if no special note is given, the base value is Rated input current defined by license key (can be seen in parameter 30.41). Any deviation from the above described standard base system is explicitly mentioned in the parameter description.

**Note:** All protection functions use qualifier times that are internally set in software and cannot be changed by Service level parameters. The below described parameters that can be set with Service access level specify the threshold value for faults (except Par 34.01 and 34.23). A fault is activated when the particular drive value exceeds its threshold for longer than qualifier time.

Parameters 31.32 Emergency ramp supervision and 31.33 Emergency ramp supervision delay, together with 01.29 Speed change rate, provide a supervision function for emergency stop modes Off1 and Off3. The supervision is based on either

- observing the time within which the motor stops, or
- comparing the actual and expected deceleration rates.

If this parameter is set to 0%, the maximum stop time is directly set in parameter 31.33. Otherwise, 31.32 defines the maximum allowed deviation from the expected deceleration rate, which is calculated from parameters 23.11...23.19 (Off1) or 23.23 Emergency stop time (Off3). If the actual deceleration rate (01.29) deviates too much from the expected rate, the drive trips on 73B0 Emergency ramp failed, sets bit 8 of 06.17 Drive status word 2, and coasts to a stop.

If 31.32 is set to 0% and 31.33 is set to 0 s, the emergency stop ramp supervision is disabled.

See also parameter 21.04 Emergency stop mode.

**Note:** This parameter is only applied to vector mode (99.04 Motor control mode = Vector).

If parameter 31.32 Emergency ramp supervision is set to 0%, this parameter defines the maximum time an emergency stop (mode Off1 or Off3) is allowed to take. If the motor has not stopped when the time elapses, the drive trips on 73B0 Emergency ramp failed, sets bit 8 of 06.17 Drive status word 2, and coasts to a stop.

If 31.32 is set to a value other than 0%, this parameter defines a delay between the receipt of the emergency stop command and the activation of the supervision. It is recommended to specify a short delay to allow the speed change rate to stabilize.

**Note:** This parameter is only applied to vector mode (99.04 Motor control mode = Vector).
Parameters 31.37 Ramp stop supervision and 31.38 Ramp stop supervision delay, together with 01.29 Speed change rate, provide a supervision function for normal (ie. nonemergency) ramp stopping. The supervision is based on either  
- observing the time within which the motor stops, or  
- comparing the actual and expected deceleration rates.  
If this parameter is set to 0%, the maximum stop time is directly set in parameter 31.38. Otherwise, 31.37 defines the maximum allowed deviation from the expected deceleration rate, which is calculated from parameters 23.11…23.19. If the actual deceleration rate (01.29) deviates too much from the expected rate, the drive trips on 73B1 Stop failed, sets bit 14 of 06.17 Drive status word 2, and coasts to a stop.  
If 31.32 is set to 0% and 31.33 is set to 0 s, the ramp stop supervision is disabled.  
Note: This parameter is only applied to vector mode (99.04 Motor control mode = Vector).

If parameter 31.37 Ramp stop supervision is set to 0%, this parameter defines the maximum time a ramp stop is allowed to take. If the motor has not stopped when the time elapses, the drive trips on 73B1 Stop failed, sets bit 14 of 06.17 Drive status word 2, and coasts to a stop.  
If 31.37 is set to a value other than 0%, this parameter defines a delay between the receipt of the stop command and the activation of the supervision. It is recommended to specify a short delay to allow the speed change rate to stabilize.  
Note: This parameter is only applied to vector mode (99.04 Motor control mode = Vector).

34.03 Grid overcurrent trip level  
Grid overcurrent protection trip level. The parameter is defined in [p.u.] with base value defined in parameter 30.41 Rated input current. Grid overcurrent protection reacts on the instantaneous values of the measured transformer primary current. Therefore the absolute value of the grid overcurrent trip threshold is calculated as:  
Par 34.03 x Par 30.41 * sqrt(2).  
If the instantaneous transformer primary current exceeds the calculated limit in any condition, the drive trips on fault 2110 Trafo overcurrent.  
Note: If the calculated grid overcurrent trip threshold exceeds 95% of the maximum measurable transformer current (defined by the license key) the grid overcurrent trip threshold is set to 95% of the maximum measurable transformer current regardless of the setting in this parameter.  
Note: If the Trafo overcurrent happens during charging on a de-rated R4 drive then this parameter can be increased above the default value. Contact the ABB support line for the exact settings. This is only valid for de-rated R4 drives!
Service Level Parameters

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.05</td>
<td>Trafo over curr no load trip level</td>
<td>If the transformer primary current exceeds this limit during charging the drive trips on fault 2113 Trafo no-load overcurrent. This condition is only checked after MCB has been closed until all power modules are ON (before the time defined in parameter 34.01 is elapsed).</td>
<td>0.5 p.u.</td>
</tr>
<tr>
<td>34.07</td>
<td>Trafo current sensor offset</td>
<td>Maximum expected (allowed) measurement offset of the transformer current sensor. From this value the maximum expected (allowed) current measurement error is calculated in the software. If a measured transformer phase current exceed this maximum allowed measurement error when the MCB is open, the drive trips on fault 2116 Trafo current sense fault phase U1 or 2117 Trafo current sense fault phase V1 depending on the phase that is affected. This occurrence indicates a potential problem with transformer current measurement chain. <strong>Note:</strong> When MCB is open and the drive is fault free, the current calibration is active. The current calibration algorithm removes any current measurement offset from the measurement. Therefore with MCB open and drive fault free, the displayed transformer measured currents are always equal 0 (parameters 1.49 - 1.51). However, the above described current measurement check is done internally. In other words, if the removed offset becomes bigger than the calculated maximum allowed current measurement error, the drive trips on the current sense fault.</td>
<td>0.4 mA</td>
</tr>
<tr>
<td>34.09</td>
<td>Current sensor offset</td>
<td>This parameter works together with parameter 34.7 and 34.24. Maximum allowed measurement offset of the transformer current sensor is maximum of this value and value calculated from 34.07. Maximum allowed measurement offset of the motor current sensor is maximum of this value and value calculated from 34.24. When current sensor fault happens (2116, 2117, 2353, 2354), offset will be set to 0.</td>
<td>0.05 p.u.</td>
</tr>
<tr>
<td>34.12</td>
<td>Grid current asymmetry trip level</td>
<td>If at least one of the differences between any 2 transformer phase currents (U1-V1, U1-W1, V1-W1) exceeds this limit the drive trips on fault 211B Grid current asymmetry.</td>
<td>0.1 p.u.</td>
</tr>
</tbody>
</table>
### Service Level Parameters

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
<th>Def/FbEq16</th>
</tr>
</thead>
</table>
| 34.17 | Motor overcurrent trip level      | The parameter is defined in [p.u.] with base value defined by:  
  - Motor nominal current (Par99.6)  
  Motor overcurrent protection reacts on the instantaneous values of the measured motor phase currents. Therefore the absolute value of the motor overcurrent trip threshold is calculated as:  
  \[
  \min (\text{Par } 99.6 \times \text{Par34.17}, \text{Par30.40} \times \text{Par34.19}) \times 2 \sqrt{\phantom{1}}
  \]  
  This is done to prevent a damage to a weaker component in case converter and motor ratings are different.  
  If the instantaneous value of a measured motor phase current exceeds the calculated threshold, the drive trips on fault 2350 Motor overcurrent phase U2, 2351 Motor overcurrent phase V2 or 2352 Motor overcurrent phase W2 depending on the phase that is affected.  
  **Note:** If the calculated motor overcurrent trip threshold exceeds 95% of the maximum measurable motor current (defined by the license key) the motor overcurrent trip threshold is limited to 95% of the maximum measurable motor current regardless of the settings in this parameter. |
| 0 ... 3 p.u. | 1 = 1 p.u.                           |                                                                                                                                            |            |
| 34.19 | Inverter over curr level          | The parameter is defined in [p.u.] with base value defined by Par30.40 Converter rated output current. Refer to Par34.17 for more details.                                                                |            |
| 0 ... 3 p.u. | 1 = 1 p.u                           |                                                                                                                                            |            |
| 34.23 | Motor curr sense fault ena delay  | Time delay after modulation stop before motor current measurement supervision is enabled. During this time after modulation stop the Motor current sense fault is not checked (see Par 34.24 for more details on Motor current sense fault). |
| 0 ... 30 s | 1 = 1 s                            |                                                                                                                                            |            |
| 34.24 | Mot current sensor offset         | Maximum expected (allowed) measurement offset of the motor current sensor. From this value the maximum expected (allowed) current measurement error is calculated in the software. If a measured motor phase current exceed this limit when the drive is not modulating the drive trips on fault 2353 Motor current sense fault phase U2 or 2354 Motor current sense fault phase V2, depending on the phase that is affected. This occurrence indicates a potential problem with motor current measurement chain.  
  For more details see also parameter 34.7. |
| 0.0 ... 100.0 mA | 1 = 1 mA                            |                                                                                                                                            |            |
| 34.26 | Motor phase loss trip level       | If the absolute value of any of motor phase currents is smaller than this limit and the motor speed is higher than 5% motor nominal speed the drive trips on fault 2355 Motor phase U2 lost, 2356 Motor phase V2 lost or 2357 Motor phase W2 lost, depending on the phase that is affected. |
| 0 ... 1 p.u. | 1 = 1 p.u                           |                                                                                                                                            |            |
### Service Level Parameters

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
<th>Default/Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.34</td>
<td>Motor volt sense fault trip level</td>
<td>If the measured motor phase-to-ground voltage exceeds this limit the drive trips on fault.</td>
<td>1.9 p.u.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3330 Motor voltage sense fault phase U2, 3331 Motor voltage sense fault phase V2 or 3332 Motor voltage sense fault phase W2, depending on the phase that is affected. This occurrence indicates a potential problem with motor voltage measurement chain.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 … 2 p.u.</td>
<td>1 = 1 p.u.</td>
</tr>
<tr>
<td>34.36</td>
<td>Ground fault trip level</td>
<td>Maximum allowed amplitude of the motor common mode voltage fundamental component. If the amplitude of the fundamental component in the motor common mode voltage exceeds this limit the drive trips on fault 3333 Ground fault.</td>
<td>500 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 … 3000 V</td>
<td>1 = 1 V</td>
</tr>
<tr>
<td>34.58</td>
<td>Low frequency current limit delay time</td>
<td>Delay time for low frequency current limit function.</td>
<td>10s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10s…15s</td>
<td>1 = 1 s</td>
</tr>
<tr>
<td>60</td>
<td>DDCS communication</td>
<td>DDCS communication configuration. The DDCS protocol is used to connect to BCON with the R&amp;D PC tool “Drive Tool” (DT) that is used for some special tests. Note: DT is not a service tool and shall not be used for commissioning of the drive.</td>
<td></td>
</tr>
<tr>
<td>60.04</td>
<td>MF response delay</td>
<td>Defines the delay time at which the follower responds to the master. If the follower does not respond within this defined time the count for communication loss timeout starts (parameter 60.08 MF comm loss timeout). Time = 60.04 MF response delay * 250 microseconds Note: Modify this parameter if the follower does not respond to the delay time of 250 microseconds. For example, the follower is older or slower.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1…20</td>
<td>1 = 1</td>
</tr>
<tr>
<td>60.06</td>
<td>MF baud rate</td>
<td>Sets the master/follower communication speed of DDCS channel selected with parameter 60.01 MF communication port when parameter 60.03 MF mode is one of DDCS selections.</td>
<td>4 mbps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 mbps</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 mbps</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 mbps</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 mbps</td>
<td>8</td>
</tr>
<tr>
<td>60.85</td>
<td>IEC D2D baud rate</td>
<td>Defines the drive-to-drive (D2D) communication speed of DDCS channel selected with parameter 60.01 MF communication port when parameter 60.03 MF mode is one of D2D selections.</td>
<td>8 mbps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 mbps</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 mbps</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 mbps</td>
<td>4</td>
</tr>
</tbody>
</table>
### Service Level Parameters

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 mbps</td>
<td>8 Megabits per second</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>60.100</td>
<td>DT node address</td>
<td>Target BCON address for connection to DT.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: When using a table emulator this parameter must be set to 2.</td>
<td></td>
</tr>
<tr>
<td>1 … 254</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60.101</td>
<td>DT baud rate</td>
<td>Baud rate for communication with DT.</td>
<td>1 mbps</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60.102</td>
<td>DT HW connection</td>
<td>Connection configuration between BCON and the PC running DT.</td>
<td>Star</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Star: PC is connected directly to only one BCON.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ring: PC is connected to more BCONs connected in a communication ring.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>This setting shall be used when connecting to the BCON on a drive.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>This setting shall be used when connecting to the BCON on table emulator.</td>
<td></td>
</tr>
<tr>
<td>60.103</td>
<td>DT link control</td>
<td>Link control between PC and BCON.</td>
<td>10</td>
</tr>
<tr>
<td>1 … 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60.104</td>
<td>DT com port</td>
<td>Selects the slot on BCON where FDCO-02 extension module (for connection to DT) is installed.</td>
<td>No connect</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79 TC Vector control</td>
<td>PI-Control, filter and configuration settings for vector control mode.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79.01</td>
<td>Flux ctrl p-gain</td>
<td>Stator flux PI control proportional gain</td>
<td>3 p.u.</td>
</tr>
<tr>
<td>0…25 p.u.</td>
<td></td>
<td></td>
<td>1 = 1 p.u.</td>
</tr>
<tr>
<td>79.02</td>
<td>Flux ctrl integrator time const</td>
<td>Stator flux PI control time constant</td>
<td>1000 ms</td>
</tr>
<tr>
<td>0…1000 ms</td>
<td></td>
<td></td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>79.03</td>
<td>Flux ctrl max limit</td>
<td>Stator flux PI control max limit</td>
<td>10 p.u.</td>
</tr>
<tr>
<td>0…10 p.u.</td>
<td></td>
<td></td>
<td>1 = 1 p.u.</td>
</tr>
<tr>
<td>79.04</td>
<td>Flux ctrl min limit</td>
<td>Stator flux PI control min limit</td>
<td>10 p.u.</td>
</tr>
<tr>
<td>1…10 p.u.</td>
<td></td>
<td></td>
<td>1 = 1 p.u.</td>
</tr>
<tr>
<td>79.05</td>
<td>Flux filter cutoff freq</td>
<td>Flux filter cutoff frequency</td>
<td>200 Hz</td>
</tr>
<tr>
<td>0…1000 Hz</td>
<td></td>
<td></td>
<td>1 = 1 Hz</td>
</tr>
<tr>
<td>79.06</td>
<td>Flux ctrl min p-gain</td>
<td>Minimum value of proportional gain of flux controller. The gain is linearly decreased from &quot;Flux ctrl p-gain&quot; to this value as function of frequency. At frequency equal and greater than &quot;Flux ctrl freq. min p-gain&quot; the gain equals to &quot;Flux ctrl min p-gain&quot;.</td>
<td>1 p.u.</td>
</tr>
<tr>
<td>0…25 p.u.</td>
<td></td>
<td></td>
<td>1 = 1 p.u.</td>
</tr>
</tbody>
</table>
## Service Level Parameters

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>79.07</td>
<td>Freq. of flux ctrl min p-gain</td>
<td>Frequency at which proportional gain of flux controller equals to minimum. The gain is linearly decreased from &quot;Flux ctrl p-gain&quot; to &quot;Flux ctrl min p-gain&quot; as function of frequency. At frequency equal and greater than &quot;Flux ctrl freq, min p-gain&quot; the gain equals to &quot;Flux ctrl min p-gain&quot;.</td>
<td>100%</td>
</tr>
<tr>
<td>79.10</td>
<td>Torque ctrl p-gain</td>
<td>Torque PI control proportional gain</td>
<td>1 = 1 p.u.</td>
</tr>
<tr>
<td>79.11</td>
<td>Torque ctrl time constant</td>
<td>Torque PI control time constant</td>
<td>10 ms</td>
</tr>
<tr>
<td>79.12</td>
<td>Torque ctrl max limit</td>
<td>Torque PI control max limit</td>
<td>10 p.u.</td>
</tr>
<tr>
<td>79.13</td>
<td>Torque ctrl min limit</td>
<td>Torque PI control min limit</td>
<td>-10 p.u.</td>
</tr>
<tr>
<td>79.14</td>
<td>Torque filter cutoff freq</td>
<td>Torque filter cutoff frequency</td>
<td>200 Hz</td>
</tr>
<tr>
<td>79.19</td>
<td>PLL ctrl p-gain</td>
<td>Frequency PLL PI control proportional gain</td>
<td>2.4 p.u.</td>
</tr>
<tr>
<td>79.20</td>
<td>PLL ctrl time constant</td>
<td>Frequency PLL PI control time constant</td>
<td>3 ms</td>
</tr>
<tr>
<td>79.23</td>
<td>PLL filter cutoff freq</td>
<td>Frequency PLL filter cutoff frequency</td>
<td>300 Hz</td>
</tr>
<tr>
<td>79.24</td>
<td>Flux speed filter cutoff freq</td>
<td>Flux estimated speed filter cutoff frequency</td>
<td>10 Hz</td>
</tr>
<tr>
<td>79.25</td>
<td>Est. speed filter cutoff freq</td>
<td>Estimated speed filter cutoff frequency</td>
<td>10 Hz</td>
</tr>
<tr>
<td>79.26</td>
<td>Compensation of PWM phase delay</td>
<td>Compensates phase delay of generated stator voltage due to PWM</td>
<td>-0.5 p.u.</td>
</tr>
<tr>
<td>79.27</td>
<td>Compensation of Is meas. phase delay</td>
<td>Compensates phase delay of stator current due to measurement delay</td>
<td>-3.2 p.u.</td>
</tr>
<tr>
<td>79.28</td>
<td>Premodulation</td>
<td>Flat top premodulation adapts the reference voltages to the dc-link voltage oscillation, in order to extend the range of output voltage</td>
<td>Flat top</td>
</tr>
<tr>
<td></td>
<td>No premodulation</td>
<td>Reference voltages are not changed</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Symmetrising</td>
<td>Reference voltages are symmetrised assuming const dc-link voltages</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Flat top</td>
<td>A reference voltage stickes to dc-link voltage level (made flat top) when exceeding dc-link voltage. Other references are shifted by the same value</td>
<td>2</td>
</tr>
<tr>
<td>No.</td>
<td>Description</td>
<td>Def/FbEq16</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------------------------------------------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>79.29</td>
<td>Voltage in motor model Switch between measured and reference voltage in motor model</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Measured Measured stator voltage is used in motor model</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reference Reference stator voltage is used in motor model</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>79.30</td>
<td>Vector control approach Switch between RFOC and SFOC</td>
<td>RFOC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SFOC Stator flux oriented control</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RFOC Rotor flux oriented control</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>79.31</td>
<td>Current ctrl filter cutoff freq Cut-off frequency of low-pass filter of current controller</td>
<td>150 Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0…318 Hz 1 = 1 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79.32</td>
<td>Current ctrl p-gain Proportional gain of stator current controller</td>
<td>0.24 p.u.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0…3 p.u. 1 = 1 p.u.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79.33</td>
<td>Current ctrl integrator time const Time constant of integrator of stator current controller</td>
<td>49 ms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0…10000 ms 1 = 1 ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79.35</td>
<td>Voltage ctrl p-gain Proportional gain of stator voltage controller</td>
<td>0.5 p.u.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0…10 p.u. 1 = 1 p.u.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79.36</td>
<td>Voltage ctrl integrator time const Time constant of integrator of stator voltage controller</td>
<td>50 ms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0…1000ms 1 = 1 ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79.37</td>
<td>Max forcing of mag current Maximum value of dynamic component of magnetizing current reference in % of motor nominal current</td>
<td>25%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0…1000% 1 = 1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79.38</td>
<td>Raise time of rotor flux reference Raise time of rotor flux reference from 0% to 100%</td>
<td>5 s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0002…25 s 1 = 1 s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79.39</td>
<td>Fall time of rotor flux reference Fall time of rotor flux reference from 100% to 0%</td>
<td>1 s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.00025…25 s 1 = 1 s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79.40</td>
<td>Rotor flux ref filter cutoff freq Cut-off frequency of low-pass filter of rotor flux reference</td>
<td>3 Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0…25 Hz 1 = 1 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79.41</td>
<td>Dynamic margin of modulation index Modulation index margin where torque is limited to zero</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0…15% 1 = 1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79.42</td>
<td>Modulation index limiter gain Modulation index limiter gain</td>
<td>50 p.u.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0…1000 p.u. 1 = 1 p.u.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79.43</td>
<td>Adaptive voltage reserve Enables adaptive voltage reserve</td>
<td>Inactive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inactive</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Active</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>79.50</td>
<td>Stabilizer control Current stabilizer is enable/disable for Scalar control</td>
<td>Enable</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## Service Level Parameters

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Disable</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enable</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>79.51</td>
<td>Scalar current limiter control</td>
<td>Current limiter is enable/disable for scalar control</td>
<td>Enable</td>
</tr>
<tr>
<td></td>
<td>Disable</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enable</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>79.52</td>
<td>Fast stabilizer gain</td>
<td>Fast current stabilizer gain for scalar control</td>
<td>0.0001 p.u.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0…1 p.u.</td>
<td>1 = 1 p.u.</td>
</tr>
<tr>
<td>79.53</td>
<td>Slow stabilizer gain</td>
<td>Slow current stabilizer gain for scalar control</td>
<td>0.001 p.u.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0…1 p.u.</td>
<td>1 = 1 p.u.</td>
</tr>
<tr>
<td>79.54</td>
<td>Compensation gain</td>
<td>Compensation gain used to calculate fast/slow stabilizer gain for scalar control</td>
<td>0.093 p.u.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0…1 p.u.</td>
<td>1 = 1 p.u.</td>
</tr>
<tr>
<td>79.55</td>
<td>Current filter gain</td>
<td>iq filter gain used in slow current stabilizer</td>
<td>0.0067 p.u.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0…1 p.u.</td>
<td>1 = 1 p.u.</td>
</tr>
<tr>
<td>79.56</td>
<td>Current limiter dynamic gain</td>
<td>Delta iq limit gain used in fast current limiter for scalar control</td>
<td>0.001 p.u.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0…1 p.u.</td>
<td>1 = 1 p.u.</td>
</tr>
<tr>
<td>79.57</td>
<td>Current limiter proportional gain</td>
<td>Proportional gain of slow current limiter for scalar control</td>
<td>0.002 p.u.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0…1 p.u.</td>
<td>1 = 1 p.u.</td>
</tr>
<tr>
<td>79.58</td>
<td>Current limiter integral gain</td>
<td>Integral gain of slow current limiter for scalar control</td>
<td>0.0001 p.u.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0…1 p.u.</td>
<td>1 = 1 p.u.</td>
</tr>
<tr>
<td>79.59</td>
<td>Scalar limiter fast preset</td>
<td>Enable/Disable preset speed chain to actual speed for scalar control</td>
<td>Disable</td>
</tr>
<tr>
<td></td>
<td>Disable</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enable</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>79.60</td>
<td>Current id filter gain</td>
<td>id filter gain used in iq limit calculation of current limiter for scalar control</td>
<td>0.0067 p.u.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0…1 p.u.</td>
<td>1 = 1 p.u.</td>
</tr>
<tr>
<td>79.61</td>
<td>Energy balancing gain</td>
<td>Energy balancing algorithm helps to keep the converter three phases balanced even in case of existing unbalance in transformer. Setting 0 to this parameter disables energy balancing. Warning: The energy balancing can be disabled only for testing. Operating a drive with energy balancing disabled can lead to trips.</td>
<td>10 p.u.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0…1000 p.u.</td>
<td>1 = 1 p.u.</td>
</tr>
<tr>
<td>79.63</td>
<td>Energy balancing common mode limit</td>
<td>Common mode voltage limitation for Energy balancing output, setting to zero to this parameter disables energy balancing. Warning: The energy balancing can be disabled only for testing. Operating a drive with energy balancing disabled can lead to trips.</td>
<td>0.05 p.u.</td>
</tr>
</tbody>
</table>
## Service Level Parameters

### 79.66 Dead-time compensation
Enables compensation of switching dead-time

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>0…1 p.u.</td>
<td>Dead-time compensation</td>
<td>Enables compensation of switching dead-time</td>
<td>1 = 1 p.u.</td>
</tr>
<tr>
<td>Enable</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 79.70 Est. Flux Correction K1
The correction coefficient is linearly change Est. Flux Correction K1 at frequency Est. Flux Correction Freq.1 to Est. Flux Correction K2 at Est. Flux Correction Freq.2

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>0…1 p.u.</td>
<td>Est. Flux Correction K1</td>
<td>The correction coefficient is linearly change Est. Flux Correction K1 at frequency Est. Flux Correction Freq.1 to Est. Flux Correction K2 at Est. Flux Correction Freq.2</td>
<td>0.15 p.u.</td>
</tr>
<tr>
<td>Enable</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 79.71 Est. Flux Correction Freq.1
The correction coefficient is linearly change Est. Flux Correction K1 at frequency Est. Flux Correction Freq.1 to Est. Flux Correction K2 at Est. Flux Correction Freq.2

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>0…500%</td>
<td>Est. Flux Correction Freq.1</td>
<td>The correction coefficient is linearly change Est. Flux Correction K1 at frequency Est. Flux Correction Freq.1 to Est. Flux Correction K2 at Est. Flux Correction Freq.2</td>
<td>10%</td>
</tr>
<tr>
<td>Enable</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 79.72 Est. Flux Correction K2
The correction coefficient is linearly change Est. Flux Correction K1 at frequency Est. Flux Correction Freq.1 to Est. Flux Correction K2 at Est. Flux Correction Freq.2

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>0…1 p.u.</td>
<td>Est. Flux Correction K2</td>
<td>The correction coefficient is linearly change Est. Flux Correction K1 at frequency Est. Flux Correction Freq.1 to Est. Flux Correction K2 at Est. Flux Correction Freq.2</td>
<td>0.05 p.u.</td>
</tr>
<tr>
<td>Enable</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 79.73 Est. Flux Correction Freq.2
The correction coefficient is linearly change Est. Flux Correction K1 at frequency Est. Flux Correction Freq.1 to Est. Flux Correction K2 at Est. Flux Correction Freq.2

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>0…500%</td>
<td>Est. Flux Correction Freq.2</td>
<td>The correction coefficient is linearly change Est. Flux Correction K1 at frequency Est. Flux Correction Freq.1 to Est. Flux Correction K2 at Est. Flux Correction Freq.2</td>
<td>60%</td>
</tr>
<tr>
<td>Enable</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 81 System control and monitoring
Application software parameters used for system control and monitoring.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>81.60</td>
<td>FBA communication error counter</td>
<td>Internal Modbus communication between BCON and IO controller is monitored. All lost communication messages are counted and total count is stored in this parameter. The communication error counter is stored on the SD card and can be viewed using ACS580MV data analyzer tool. Some lost messages can be expected in any communication chain and do not indicate any problem. If more consecutive messages are lost, the drive will trip on fault E105 AC500 communication error. However, a constantly increasing error count can point to a potential problem in the Modbus communication that is not yet causing drive to trip but might result in bigger communication errors (trips) in the future. If constant increase in this parameter value is observed, conduct the actions described in the fault E105 AC500 communication error. <strong>Note:</strong> In case of control power loss (BCON shut down), the last value of the error counter might not get properly stored on the SD card. Therefore the values on the SD card might have sudden drops. However, the overall trend of the parameter value will be either constant or increasing. This small drops in the value can be ignored and overall trend should be examined. <strong>Note:</strong> The counter will wrap around - if the maximum value of the parameter is reached, the counting will reset to 0 and continue counting up from 0.</td>
<td>0 NoUnit</td>
</tr>
</tbody>
</table>

| 0 … 4294967295 | 1 | NoUnit |
## Service Level Parameters

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
<th>Def/FbEq16</th>
</tr>
</thead>
</table>
| 81.61 | FBA PLC module error counter | Internal warnings and low priority errors on the IO controller (AC500 PLC) are counted and sent to BCON over internal Modbus communication. The total count is stored in this parameter. The PLC error counter is stored on the SD card and can be viewed using ACS580MV data analyzer tool. Internal PLC warnings and errors do not indicate any serious problem with PLC and are reset automatically. However, a constantly increasing error count can point to a problem in the PLC. In that case examine the PLC and its extension modules. Connect to the PLC and read out the fault data loggers. Report your findings to ABB support line.  
**Note:** In case of control power loss (BCON shut down), the last value of the error counter might not get properly stored on the SD card. Therefore the values on the SD card might have sudden drops. However, the overall trend of the parameter value will be either constant or increasing. This small drops in the value can be ignored and overall trend should be examined.  
**Note:** The counter will wrap around - if the maximum value of the parameter is reached, the counting will reset to 0 and continue counting up from 0. | 0 NoUnit  |
|       |                             |                                                                                                                                             |------------|
| 82.32 | Unlock door after discharged| Force to unlock the inverter cabinet door immediately after converter is discharged. Function is activated only once. It will change back to Disabled automatically.  
**Note:** Without forcing, the inverter cabinet door will be locked for 15 minutes after MCB opens. During this 15minutes, Supply OFF Led on control cabinet front door blinks once per second if DC link is higher than the discharged level, and blinks once every two seconds if DC link is lower than the discharged level.  
**WARNING!** Make sure that all safety measures are in place when opening inverter cabinet door! Refer to ACS580MV hardware manual for instructions on safe handling. | Disabled   |
|       |                             |                                                                                                                                             | 1 = 1 NoUnit|
| 82.80 | Ride through test          | This parameter enables the ride-through test. After setting this parameter to Enabled, the MCB open command will be sent. When ride-through time (defined in parameter 82.81) elapses, MCB close command will be sent, and this parameter will be set to Disabled. During the time defined in Par 82.81 plus the time defined in parameter 82.28 MCB closing time limit, the MCB open status feedback is internally forced to FALSE, and the MCB closed status feedback is internally forced to TRUE. In this way the protection system will not react during the test time allowing for tests with drive disconnected from the grid. Ride-through test can only be performed when MCB is closed, both in Local and Remote mode. | Disabled   |
Service Level Parameters

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>82.81</td>
<td>Ride through test time</td>
<td>This parameter defines ride-through test time. After this time elapses, the MCB close command will be sent and the parameter 82.80 Ride through test will be set to Disabled automatically.</td>
<td>5.00 s</td>
</tr>
<tr>
<td></td>
<td>1  ... 60 s</td>
<td></td>
<td>1 s</td>
</tr>
<tr>
<td>82.92</td>
<td>Charging overload timer</td>
<td>The parameter defines a time period. No more than two attempts of DC link charging in this time period is allowed to prevent DC capacitor overheating.</td>
<td>300s</td>
</tr>
<tr>
<td></td>
<td>1s ~ 1200s</td>
<td></td>
<td>1 s</td>
</tr>
</tbody>
</table>

83 Cooling system

<table>
<thead>
<tr>
<th>Standard fan amount</th>
<th>Description</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Selects the number of cooling fans for inverter (INU) and transformer (TRU) unit. Note: To reduce the starting current, selected fan groups are switched on one after another every 2 seconds.</td>
<td>1 INU fan and 1 TRU fan</td>
</tr>
<tr>
<td>1 INU fan and 1 TRU fan</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1 INU fan and 2 TRU fans</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2 INU fans and 2 TRU fans</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>2 INU fans and 3 TRU fans</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>3 INU fans and 2 TRU fans</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>3 INU fans and 3 TRU fans</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>1 INU fan</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>
### Redundant fan control

Selects redundancy of cooling fans. If redundant fan is selected, the continuous operation of the drive is guaranteed even in case when one fan group has fan failure. Switching on the redundant fan group takes place automatically. Fan failure in one group will result in an alarm message and redundant cooling fan group will be started. If two fan groups have failure, including redundant fan group, a fault will be generated. Note: if redundant fan control is enabled, fan group 1 is assigned to redundant fan.

Redundant fans will be started in case of following events (warnings):
- E201 Trafo phase U1 temperature high...
- E203 Trafo phase W1 temperature high,
- E204 Ambient temperature high, E212 INU air pressure low,
- E20E INU cooling fan 1 overload...
- E211 INU cooling fan 4 overload,
- E214 TRU cooling fan 1 overload...
- E21B TRU cooling fan 4 overload.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
<th>Def/FbEq</th>
</tr>
</thead>
</table>
| 83.11 | Redundant fan control | Selects redundancy of cooling fans. If redundant fan is selected, the continuous operation of the drive is guaranteed even in case when one fan group has fan failure. Switching on the redundant fan group takes place automatically. Fan failure in one group will result in an alarm message and redundant cooling fan group will be started. If two fan groups have failure, including redundant fan group, a fault will be generated. Note: If redundant fan control is enabled, fan group 1 is assigned to redundant fan. Redundant fans will be started in case of following events (warnings):
  - E201 Trafo phase U1 temperature high...
  - E203 Trafo phase W1 temperature high,
  - E204 Ambient temperature high, E212 INU air pressure low,
  - E20E INU cooling fan 1 overload...
  - E211 INU cooling fan 4 overload,
  - E214 TRU cooling fan 1 overload...
  - E21B TRU cooling fan 4 overload. | Disabled |
| 83.16 | Fan power supply selection | Cooling fan power supply can be selected from internal TRU integrated transformer or external custom interface. Note: in this configuration the cooling fans are only active when the MCB is closed. | Internal |
| 83.31 | INU air pressure monitoring delay time | Time delay for monitoring of the air pressure (drop) inside inverter unit cabinet. Different actions will apply in case of low and high pressure and depending on the availability of the redundant fans:
1. If INU cabinet air pressure after cooling starts (from MCB closed begin timing) is lower than the value set in parameter 83.32 for longer than time set in this parameter, the alarm message E212 INU air pressure low is shown. If redundant fan(s) are selected in parameter 83.11, redundant fan group is activated.
2. If INU cabinet air pressure after cooling starts (from MCB closed begin timing) is higher than the value set in parameter 83.34 for longer than time set in this parameter, the alarm message E205 INU air pressure high is shown. | 40 s |

<table>
<thead>
<tr>
<th></th>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
<th>Def/FbEq</th>
</tr>
</thead>
</table>
|  | 83.11 | Redundant fan control | Selects redundancy of cooling fans. If redundant fan is selected, the continuous operation of the drive is guaranteed even in case when one fan group has fan failure. Switching on the redundant fan group takes place automatically. Fan failure in one group will result in an alarm message and redundant cooling fan group will be started. If two fan groups have failure, including redundant fan group, a fault will be generated. Note: If redundant fan control is enabled, fan group 1 is assigned to redundant fan. Redundant fans will be started in case of following events (warnings):
  - E201 Trafo phase U1 temperature high...
  - E203 Trafo phase W1 temperature high,
  - E204 Ambient temperature high, E212 INU air pressure low,
  - E20E INU cooling fan 1 overload...
  - E211 INU cooling fan 4 overload,
  - E214 TRU cooling fan 1 overload...
  - E21B TRU cooling fan 4 overload. | Disabled |
|  | 83.16 | Fan power supply selection | Cooling fan power supply can be selected from internal TRU integrated transformer or external custom interface. Note: in this configuration the cooling fans are only active when the MCB is closed. | Internal |
|  | 83.31 | INU air pressure monitoring delay time | Time delay for monitoring of the air pressure (drop) inside inverter unit cabinet. Different actions will apply in case of low and high pressure and depending on the availability of the redundant fans:
1. If INU cabinet air pressure after cooling starts (from MCB closed begin timing) is lower than the value set in parameter 83.32 for longer than time set in this parameter, the alarm message E212 INU air pressure low is shown. If redundant fan(s) are selected in parameter 83.11, redundant fan group is activated.
2. If INU cabinet air pressure after cooling starts (from MCB closed begin timing) is higher than the value set in parameter 83.34 for longer than time set in this parameter, the alarm message E205 INU air pressure high is shown. | 40 s |
### Service Level Parameters

#### 83.32 INU air pressure low limit
Inverter unit air pressure lower limit. For use explanation see parameter 83.31.

**Note:** This parameter is set in DriveStartup to a value 80 Pa lower than the air pressure measured during commissioning. This setting is enabled only if the air pressure measured during commissioning does not deviate from the air pressure that has been measured during routine testing by more than +/- 50 Pa.

If the deviation between INU air pressure measured during commissioning and the same pressure measured during routine testing is bigger than 50 Pa do the following:
- check the fan operation
- check the filter pads on the INU cabinet door
- check the pressure sensor
- check the air duct (if present)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>83.32</td>
<td>INU air pressure low limit</td>
<td>Inverter unit air pressure lower limit. For use explanation see parameter 83.31.</td>
<td>125 Pa</td>
</tr>
</tbody>
</table>

#### 83.34 INU air pressure high limit
Inverter unit air pressure high limit. For use explanation see parameter 83.31.

**Note:** This parameter is set in DriveStartup to a value 80 Pa higher than the air pressure measured during commissioning. This setting is enabled only if the air pressure measured during commissioning does not deviate from the air pressure that has been measured during routine testing by more than +/- 50 Pa.

If the deviation between INU air pressure measured during commissioning and the same pressure measured during routine testing is bigger than 50 Pa do the following:
- check the fan operation
- check the filter pads on the INU cabinet door
- check the pressure sensor
- check the air duct (if present)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>83.34</td>
<td>INU air pressure high limit</td>
<td>Inverter unit air pressure high limit. For use explanation see parameter 83.31.</td>
<td>425 Pa</td>
</tr>
</tbody>
</table>

#### 83.50 EC fan reference
Speed reference for the inverter unit cooling fans given in percentage of the maximum fan speed.

**Note:** This parameter is effective only if the drive is equipped with EC cooling fans.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>83.50</td>
<td>EC fan reference</td>
<td>Speed reference for the inverter unit cooling fans given in percentage of the maximum fan speed.</td>
<td>100%</td>
</tr>
</tbody>
</table>

#### 85 SBU control and monitoring
Control and monitoring of SBU.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>85.31</td>
<td>Inductor temperature fault limit</td>
<td>A fault will be generated, if actual temperature of inductor rises above this limit</td>
<td>45°C</td>
</tr>
<tr>
<td>85.32</td>
<td>Inductor temperature warning limit</td>
<td>An alarm will be generated, if scaled actual temperature rises above this limit.</td>
<td>55°C</td>
</tr>
<tr>
<td>85.33</td>
<td>Inductor temp rising fault limit</td>
<td>A fault will be generated, if the difference of actual temperature of inductor and ambient temperature rises above this limit.</td>
<td>20°C</td>
</tr>
</tbody>
</table>
### Service Level Parameters

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
<th>Def/FbEq</th>
</tr>
</thead>
<tbody>
<tr>
<td>85.34</td>
<td>Inductor temp rising warning limit</td>
<td>A alarm will be generated, if the difference of actual temperature of inductor and ambient temperature rises above this limit</td>
<td>15°C</td>
</tr>
<tr>
<td></td>
<td>0 … 500°C</td>
<td></td>
<td>10 = 1°C</td>
</tr>
</tbody>
</table>

#### 87 AC500 I/O interface
Configuration of AC500 digital inputs, relay / transistor outputs and analog inputs.

87.11 **AC500 CPU DI force selection**
Electrical status of digital inputs can be overridden, for example during testing. A bit in parameter 87.12 is provided for each digital input, and its value is applied whenever the corresponding bit in this parameter is set to 1.

Example: 0000000000001001b = The electrical status of digital inputs DI3 and DI0 will be overridden with values supplied in bits 3 and 0 of parameter 87.12. The electrical status of all other digital inputs on AC500 CPU remains unchanged.

#### Bit / Name / Information

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>CPU-DI0</td>
<td>External ON request</td>
</tr>
<tr>
<td>1</td>
<td>CPU-DI1</td>
<td>External OFF request</td>
</tr>
<tr>
<td>2</td>
<td>CPU-DI2</td>
<td>Local OFF command (push button)</td>
</tr>
<tr>
<td>3</td>
<td>CPU-DI3</td>
<td>Local ON command (push button)</td>
</tr>
<tr>
<td>4</td>
<td>CPU-DI4</td>
<td>MCB feedback status OPEN</td>
</tr>
<tr>
<td>5</td>
<td>CPU-DI5</td>
<td>Converter space heater tripped</td>
</tr>
<tr>
<td>6</td>
<td>CPU-DI6</td>
<td>Motor space heater tripped</td>
</tr>
<tr>
<td>7</td>
<td>CPU-DI7</td>
<td>INU door locked</td>
</tr>
<tr>
<td>8 … 15</td>
<td>Reserved</td>
<td></td>
</tr>
</tbody>
</table>

87.12 **AC500 CPU DI force data**
Values for overridden digital inputs (0 or 1; bitwise). It is only possible to override the electrical status of digital inputs that have been selected in parameter 87.11. Bit 0 is the overriding value for DI0.

Example: 0000000000000000b = Digital outputs DO0 will be forced to the values supplied in bits 0 of parameter 87.15.

#### Bit / Name / Information

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>CPU-DO0</td>
<td>MCB CLOSE command</td>
</tr>
<tr>
<td>1</td>
<td>CPU-DO1</td>
<td>MCB OPEN command</td>
</tr>
<tr>
<td>2</td>
<td>CPU-DO2</td>
<td>LED activation (Main supply ON indication)</td>
</tr>
<tr>
<td>3</td>
<td>CPU-DO3</td>
<td>LED activation (Main supply OFF indication)</td>
</tr>
<tr>
<td>4</td>
<td>CPU-DO4</td>
<td>System alarm</td>
</tr>
<tr>
<td>5</td>
<td>CPU-DO5</td>
<td></td>
</tr>
<tr>
<td>6 … 15</td>
<td>Reserved</td>
<td></td>
</tr>
</tbody>
</table>

87.14 **AC500 CPU DO force selection**
Electrical status of digital outputs can be forced, for example during testing. A bit in parameter 87.15 is provided for each digital output. A digital output is forced to this value whenever the corresponding bit in this parameter is set to 1.

Example: 0000000000001001b = Digital outputs DO3 and DO0 will be forced to the values supplied in bits 3 and 0 of parameter 87.15.

#### Bit / Name / Information

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>CPU-DO0</td>
<td>MCB CLOSE command</td>
</tr>
<tr>
<td>1</td>
<td>CPU-DO1</td>
<td>MCB OPEN command</td>
</tr>
<tr>
<td>2</td>
<td>CPU-DO2</td>
<td>LED activation (Main supply ON indication)</td>
</tr>
<tr>
<td>3</td>
<td>CPU-DO3</td>
<td>LED activation (Main supply OFF indication)</td>
</tr>
<tr>
<td>4</td>
<td>CPU-DO4</td>
<td>System alarm</td>
</tr>
<tr>
<td>5</td>
<td>CPU-DO5</td>
<td></td>
</tr>
<tr>
<td>6 … 15</td>
<td>Reserved</td>
<td></td>
</tr>
</tbody>
</table>
### Service Level Parameters

**87.15** AC500 CPU DO force data  
Values for forced digital outputs (0 or 1; bitwise). It is only possible to force digital outputs that have been selected in parameter 87.14. Bit 0 is the forced value for DO0.  
0b000000

**87.41** AC500 E P2 DI force selection  
Electrical status of digital inputs can be overridden, for example during testing. A bit in parameter 87.42 is provided for each digital input, and its value is applied whenever the corresponding bit in this parameter is set to 1. Example: 0000000000001001b = The electrical status of digital inputs DI3 and DI0 will be overridden with values supplied in bits 3 and 0 of parameter 87.42. The electrical status of all other digital inputs on AC500 P2 extension module remains unchanged.  
0b00000000

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>E_P2-DI0</td>
<td>Control supply failure</td>
</tr>
<tr>
<td>1</td>
<td>E_P2-DI1</td>
<td>Control backup supply failure</td>
</tr>
<tr>
<td>2</td>
<td>E_P2-DI2</td>
<td>TRU fan1 status OK</td>
</tr>
<tr>
<td>3</td>
<td>E_P2-DI3</td>
<td>TRU fan2 status OK</td>
</tr>
<tr>
<td>4</td>
<td>E_P2-DI4</td>
<td>TRU fan3 status OK</td>
</tr>
<tr>
<td>5</td>
<td>E_P2-DI5</td>
<td>TRU fan4 status OK</td>
</tr>
<tr>
<td>6</td>
<td>E_P2-DI6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>E_P2-DI7</td>
<td>INU door closed</td>
</tr>
<tr>
<td>8 ... 15</td>
<td></td>
<td>Reserved</td>
</tr>
</tbody>
</table>

**87.42** AC500 E P2 DI force data  
Values for overridden digital inputs (0 or 1; bitwise). It is only possible to override electrical status of digital inputs that have been selected in parameter 87.41. Bit 0 is the overriding value for DI0.  
0b00000000

**87.44** AC500 E P2 DO force selection  
Electrical status of digital outputs can be forced, for example during testing. A bit in parameter 87.45 is provided for each digital output. A digital output is forced to this value whenever the corresponding bit in this parameter is set to 1. Example: 0000000000001001b = Digital outputs DO3 and DO0 will be forced to the values supplied in bits 3 and 0 of parameter 87.45.  
0b00000000

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>E_P2-DO0</td>
<td>fan group 1 ON</td>
</tr>
<tr>
<td>1</td>
<td>E_P2-DO1</td>
<td>fan group 2 ON</td>
</tr>
<tr>
<td>2</td>
<td>E_P2-DO2</td>
<td>fan group 3 ON</td>
</tr>
<tr>
<td>3</td>
<td>E_P2-DO3</td>
<td>fan group 4 ON</td>
</tr>
<tr>
<td>4</td>
<td>E_P2-DO4</td>
<td>fan group 5 ON</td>
</tr>
<tr>
<td>5</td>
<td>E_P2-DO5</td>
<td>space heater OFF</td>
</tr>
<tr>
<td>6</td>
<td>E_P2-DO6</td>
<td>INU door unlock</td>
</tr>
<tr>
<td>7</td>
<td>E_P2-DO7</td>
<td>alarm fault LED</td>
</tr>
<tr>
<td>8 ... 15</td>
<td></td>
<td>Reserved</td>
</tr>
</tbody>
</table>
### Service Level Parameters

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
<th>Default/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>87.45</td>
<td>AC500 E P2 DO force data</td>
<td>Values for forced digital outputs (0 or 1; bitwise). It is only possible to force digital outputs that have been selected in parameter 87.44. Bit 0 is the forced value for DO0.</td>
<td>0b00000000</td>
</tr>
<tr>
<td></td>
<td>0000h...FFFFh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>HW configuration</td>
<td>Various hardware-related settings</td>
<td></td>
</tr>
</tbody>
</table>
| 95.36| BCON RX from CVMI2 comm err count | Total (cumulative) number of communication errors from CVMI to BCON. This counter will be reset to zero after BCON reboot.  
It can be manually reset to zero by input from drive composer or from the control panel by keeping Reset depressed for over 3 seconds.  
The counter will be saturated after it reaches maximum value (4095). |                |
| 95.55| Control hub half optical power | If this parameter is set to Enable, the power of the optical transmitters in control hub will be reduced by half.  
Used to diagnose communication problems from control hub to power modules as described in POF Link Test on page 125. | Disable        |
|      | Disable                     | Optical transmitter full power.                                                                                                                                   |                |
|      | Enable                      | Optical transmitter half power.                                                                                                                                   |                |
| 95.70| PM half optical power       | If this parameter is set to Enable, the power of the optical transmitter in power modules will be reduced by half.  
Used to diagnose communication problems from power modules to control hub as described in POF Link Test on page 125. | Disable        |
<p>|      | Disable                     | Optical transmitter full power.                                                                                                                                   |                |
|      | Enable                      | Optical transmitter half power.                                                                                                                                   |                |
| 95.82| PM diode open circuit threshold | When the minimum value of inverse-voltage on each diode in Power module is less than Par95.82 for Par95.83 time, the drive will trip with ‘PM diode open circuit’ fault. | -100v          |
|      | -200v<del>0v                    | 1=1v                                                                                                                                                    |                |
| 95.83| PM diode open circuit qualifier | When the minimum value of inverse-voltage on each diode in Power module is less than Par95.82 for Par95.83 time, the drive will trip with ‘PM diode open circuit’ fault. | 2ms            |
|      | 0ms</del>20ms                    | 1=1ms                                                                                                                                                    |                |
| 95.85| Grid frequency sel          | Selection of grid frequency.                                                                                                                                     | 50 Hz          |
|      | 50 Hz                       | Grid frequency is 50Hz.                                                                                                                                            |                |
|      | 60 Hz                       | Grid frequency is 60Hz.                                                                                                                                            |                |
| 95.88| Capacitor reforming test    | Enable/disable capacitor reforming test                                                                                                                                 | Disabled       |
|      | Disabled                    | Disable capacitor reforming test.                                                                                                                                    |                |
|      | Enabled                     | Enable capacitor reforming test.                                                                                                                                     |                |
| 95.89| Capacitor Reforming time period | The parameter defines how long the capacitor reforming test will last.                                                                                     | 15 minute      |
|      | 1Min~120Min                 | 1=1minute                                                                                                                                                |                |</p>
<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>95.90</td>
<td>PM Sub-capacitor overvoltage 1</td>
<td>When the sub-capacitor of ACS580MV power module is bigger than this value, the drive will trip will 'PM Sub Capacitor Overvoltage1' fault. Note: This fault detection only active during capacitor reforming period.</td>
</tr>
<tr>
<td></td>
<td>95.91</td>
<td>PM Sub-capacitor overvoltage 2</td>
</tr>
<tr>
<td></td>
<td>95.92</td>
<td>PM Sub-capacitor OV quali time</td>
</tr>
<tr>
<td></td>
<td>95.93</td>
<td>DC unbalance status word 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A1</td>
<td>1 = Power module A1 report the 'PM DC unbalance Warning' during capacitor reforming time period.</td>
</tr>
<tr>
<td>1</td>
<td>A2</td>
<td>1 = Power module A2 report the 'PM DC unbalance Warning' during capacitor reforming time period.</td>
</tr>
<tr>
<td>2</td>
<td>A3</td>
<td>1 = Power module A3 report the 'PM DC unbalance Warning' during capacitor reforming time period.</td>
</tr>
<tr>
<td>3</td>
<td>A4</td>
<td>1 = Power module A4 report the 'PM DC unbalance Warning' during capacitor reforming time period.</td>
</tr>
<tr>
<td>4</td>
<td>A5</td>
<td>1 = Power module A5 report the 'PM DC unbalance Warning' during capacitor reforming time period.</td>
</tr>
<tr>
<td>5</td>
<td>A6</td>
<td>1 = Power module A6 report the 'PM DC unbalance Warning' during capacitor reforming time period.</td>
</tr>
<tr>
<td>6</td>
<td>A7</td>
<td>1 = Power module A7 report the 'PM DC unbalance Warning' during capacitor reforming time period.</td>
</tr>
<tr>
<td>7</td>
<td>A8</td>
<td>1 = Power module A8 report the 'PM DC unbalance Warning' during capacitor reforming time period.</td>
</tr>
<tr>
<td>8</td>
<td>A9</td>
<td>1 = Power module A9 report the 'PM DC unbalance Warning' during capacitor reforming time period.</td>
</tr>
<tr>
<td>9</td>
<td>A10</td>
<td>1 = Power module A10 report the 'PM DC unbalance Warning' during capacitor reforming time period.</td>
</tr>
<tr>
<td>10</td>
<td>A11</td>
<td>1 = Power module A11 report the 'PM DC unbalance Warning' during capacitor reforming time period.</td>
</tr>
<tr>
<td>11...15</td>
<td></td>
<td>Reserved</td>
</tr>
</tbody>
</table>
## 102 Service Level Parameters

During capacitor reforming process, if 'PM DC unbalance Warning' is active, this status word indicates which power module in phase B report this warning, if have.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>B1</td>
<td>1 = Power module B1 report the 'PM DC unbalance Warning' during capacitor reforming time period.</td>
</tr>
<tr>
<td>1</td>
<td>B2</td>
<td>1 = Power module B2 report the 'PM DC unbalance Warning' during capacitor reforming time period.</td>
</tr>
<tr>
<td>2</td>
<td>B3</td>
<td>1 = Power module B3 report the 'PM DC unbalance Warning' during capacitor reforming time period.</td>
</tr>
<tr>
<td>3</td>
<td>B4</td>
<td>1 = Power module B4 report the 'PM DC unbalance Warning' during capacitor reforming time period.</td>
</tr>
<tr>
<td>4</td>
<td>B5</td>
<td>1 = Power module B5 report the 'PM DC unbalance Warning' during capacitor reforming time period.</td>
</tr>
<tr>
<td>5</td>
<td>B6</td>
<td>1 = Power module B6 report the 'PM DC unbalance Warning' during capacitor reforming time period.</td>
</tr>
<tr>
<td>6</td>
<td>B7</td>
<td>1 = Power module B7 report the 'PM DC unbalance Warning' during capacitor reforming time period.</td>
</tr>
<tr>
<td>7</td>
<td>B8</td>
<td>1 = Power module B8 report the 'PM DC unbalance Warning' during capacitor reforming time period.</td>
</tr>
<tr>
<td>8</td>
<td>B9</td>
<td>1 = Power module B9 report the 'PM DC unbalance Warning' during capacitor reforming time period.</td>
</tr>
<tr>
<td>9</td>
<td>B10</td>
<td>1 = Power module B10 report the 'PM DC unbalance Warning' during capacitor reforming time period.</td>
</tr>
<tr>
<td>10</td>
<td>B11</td>
<td>1 = Power module B11 report the 'PM DC unbalance Warning' during capacitor reforming time period.</td>
</tr>
<tr>
<td>11-15</td>
<td>Reserved</td>
<td></td>
</tr>
</tbody>
</table>

No. Name/Value Description Def/FbEq16
---
95.94 DC unbalance status word 2 During capacitor reforming process, if 'PM DC unbalance Warning' is active, this status word indicates which power module in phase B report this warning, if have. 0x0000
During capacitor reforming process, if 'PM DC unbalance Warning' is active, this status word indicates which power module in phase C report this warning, if have.

### Bit Name Description

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>95.95</td>
<td>DC unbalance status word 3</td>
<td>During capacitor reforming process, if 'PM DC unbalance Warning' is active, this status word indicates which power module in phase C report this warning, if have.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>C1</td>
<td>1 = Power module C1 report the 'PM DC unbalance Warning' during capacitor reforming time period.</td>
</tr>
<tr>
<td>1</td>
<td>C2</td>
<td>1 = Power module C2 report the 'PM DC unbalance Warning' during capacitor reforming time period.</td>
</tr>
<tr>
<td>2</td>
<td>C3</td>
<td>1 = Power module C3 report the 'PM DC unbalance Warning' during capacitor reforming time period.</td>
</tr>
<tr>
<td>3</td>
<td>C4</td>
<td>1 = Power module C4 report the 'PM DC unbalance Warning' during capacitor reforming time period.</td>
</tr>
<tr>
<td>4</td>
<td>C5</td>
<td>1 = Power module C5 report the 'PM DC unbalance Warning' during capacitor reforming time period.</td>
</tr>
<tr>
<td>5</td>
<td>C6</td>
<td>1 = Power module C6 report the 'PM DC unbalance Warning' during capacitor reforming time period.</td>
</tr>
<tr>
<td>6</td>
<td>C7</td>
<td>1 = Power module C7 report the 'PM DC unbalance Warning' during capacitor reforming time period.</td>
</tr>
<tr>
<td>7</td>
<td>C8</td>
<td>1 = Power module C8 report the 'PM DC unbalance Warning' during capacitor reforming time period.</td>
</tr>
<tr>
<td>8</td>
<td>C9</td>
<td>1 = Power module C9 report the 'PM DC unbalance Warning' during capacitor reforming time period.</td>
</tr>
<tr>
<td>9</td>
<td>C10</td>
<td>1 = Power module C10 report the 'PM DC unbalance Warning' during capacitor reforming time period.</td>
</tr>
<tr>
<td>10</td>
<td>C11</td>
<td>1 = Power module C11 report the 'PM DC unbalance Warning' during capacitor reforming time period.</td>
</tr>
<tr>
<td>11-15</td>
<td>Reserved</td>
<td></td>
</tr>
</tbody>
</table>

This status word indicates the capacitor reforming status.

### Bit Name Description

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>95.96</td>
<td>Cap Reform status word</td>
<td>This status word indicates the capacitor reforming status.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Not Used</td>
<td>1 = Capacitor reforming test is disabled.</td>
</tr>
<tr>
<td>1</td>
<td>Rdy ON</td>
<td>1 = Capacitor reforming function is enabled and waiting for MCB close.</td>
</tr>
<tr>
<td>2</td>
<td>Reforming ongoing</td>
<td>1 = MCB is closed and Capacitor reforming process is ongoing.</td>
</tr>
<tr>
<td>3</td>
<td>Capacitor reforming aborted</td>
<td>1 = Capacitor reforming test was aborted.</td>
</tr>
<tr>
<td>4</td>
<td>Done Failed</td>
<td>1 = Capacitor reforming function was done but there are still DC unbalance warning active.</td>
</tr>
<tr>
<td>5</td>
<td>Done successfully</td>
<td>1 = Capacitor reforming test was done successfully.</td>
</tr>
<tr>
<td>6-15</td>
<td>Reserved</td>
<td></td>
</tr>
</tbody>
</table>

Transformer primary current filter cut-off freq

### Bit Name Description

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>95.100</td>
<td>Trafo Prim current filter cutoff freq</td>
<td>Transformer primary current filter cut-off frequency.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 Hz</td>
<td></td>
</tr>
<tr>
<td>1-20 Hz</td>
<td>1 = 1 Hz</td>
<td></td>
</tr>
</tbody>
</table>

Enable/disable Power Module software force download.

### Bit Name Description

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>95.101</td>
<td>PM SW DL force</td>
<td>Enable/disable Power Module software force download.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Disabled</td>
<td></td>
</tr>
</tbody>
</table>


### Service Level Parameters

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
<th>Def/FlEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>95.102</td>
<td>Min DC Volt Req Force DL</td>
<td>Minimum DC link voltage required to start Power Module software force download. It is only possible to start PM software force download process when the minimum cell dc link voltage is bigger than this value.</td>
<td>900V</td>
</tr>
<tr>
<td>850V~1030V</td>
<td></td>
<td></td>
<td>1 = 1V</td>
</tr>
<tr>
<td>95.103</td>
<td>PM SW Force DL status word</td>
<td>This status word indicates the PM software force download status.</td>
<td>0x0001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Disabled</td>
<td>1 = PM software force download is disabled</td>
</tr>
<tr>
<td>1</td>
<td>Condition not fulfilled</td>
<td>1 = PM software force download is enabled but condition is not fulfilled to start this process. Condition includes: -The minimum cell dc link voltage is lower than Par95.102.</td>
</tr>
<tr>
<td>2</td>
<td>Condition ok to do PM SW DL</td>
<td>1 = PM software force download function is enabled and conditions are fulfilled. The download process will start soon or is ongoing now.</td>
</tr>
</tbody>
</table>

### 96 System

#### 96.21 Time sync secondary source

| Internal | 0 |
| Fieldbus A | 3 |
| Panel link | 8 |
| Ethernet tool link | 9 |

#### 96.40 Internal SW error supervision

| Disable | 0 |
| Enable | 1 |

#### 96.60 Power fail Udc level

If DC voltage decreases below the power fail limit then power fail situation is triggered, meaning that some crucial data is saved immediately before power goes completely down. Normally power fail limit is determined automatically according to drive type and supply voltage range. The non-zero value of this parameter overrides the internal limit. This allows tuning of the power fail limit when necessary.

**Warning:** Too high limit may decrease lifetime of the flash memory if power fail savings are done too often! This parameter should be modified only by expert personnel.

| 0 … 2000 V | 10 = 1 V |

#### 96.68 SD card fault quality value

| 0 … 32767 | Non-zero value. 1 = 1 |

#### 96.83 Site commission complete

| No | Start site commission |

---
### Service Level Parameters

#### 96.205 Disable parameter flash saving while running

Disables parameter flash saving when drive is running. Typically, flash saving occurs before every start command. When saving is disabled, the drive start command is delayed until the saving completed. Maximum typical saving time is around 15 ms.

<table>
<thead>
<tr>
<th>Name/Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Site commission complete.</td>
</tr>
<tr>
<td>No</td>
<td>Flash saving is enabled while drive is running.</td>
</tr>
<tr>
<td>Yes</td>
<td>Flash saving is disabled while drive is running.</td>
</tr>
</tbody>
</table>

#### 97 Motor control

<table>
<thead>
<tr>
<th>Name/Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>97.14</td>
<td>Internal ramp time defines minimum ramp time for the scalar control, that will be used only internally to prevent stepwise reference changes to torque control.</td>
</tr>
<tr>
<td></td>
<td>0 … 100 s</td>
</tr>
<tr>
<td></td>
<td>1 = 1 s</td>
</tr>
</tbody>
</table>

#### 97.40 Output choke inductance

Define the inductance of the output choke. Below is the typical values. Pilot projects may have different value, please check at site.

<table>
<thead>
<tr>
<th>Frame size</th>
<th>Inductance (mH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R3</td>
<td>11</td>
</tr>
<tr>
<td>R4</td>
<td>7.4</td>
</tr>
<tr>
<td>R5</td>
<td>5.6</td>
</tr>
<tr>
<td>R6</td>
<td>3.7</td>
</tr>
<tr>
<td>R7</td>
<td>2.8</td>
</tr>
<tr>
<td>R8</td>
<td>2.0</td>
</tr>
<tr>
<td>R9</td>
<td>1.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name/Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>97.41</td>
<td>SBU max adjust voltage maximum allowed voltage adjusting during synchronizing bypass process.</td>
</tr>
<tr>
<td></td>
<td>0 … 0.3 p.u.</td>
</tr>
<tr>
<td></td>
<td>1 = 1 p.u.</td>
</tr>
</tbody>
</table>

#### 97.42 SBU min adjust voltage

Minimum allowed negative voltage adjusting during synchronizing bypass process.

<table>
<thead>
<tr>
<th>Name/Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.3 … 0 p.u.</td>
</tr>
<tr>
<td></td>
<td>1 = 1 p.u.</td>
</tr>
</tbody>
</table>

#### 97.43 SBU stop modulation current

During synchronizing bypass process, if output current is higher than this value, converter stops modulation.

<table>
<thead>
<tr>
<th>Name/Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 … 10 p.u.</td>
</tr>
<tr>
<td></td>
<td>1 = 1 p.u.</td>
</tr>
</tbody>
</table>

#### 97.44 SBU motor overcurrent trip level

During synchronizing bypass process, SBU motor overcurrent trip level will replace motor overcurrent trip level.

<table>
<thead>
<tr>
<th>Name/Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 … 10 p.u.</td>
</tr>
<tr>
<td></td>
<td>1 = 1 p.u.</td>
</tr>
</tbody>
</table>

#### 97.45 SBU motor phase loss trip level

During synchronizing bypass process, SBU motor phase loss trip level will replace motor phase loss trip level.

<table>
<thead>
<tr>
<th>Name/Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 … 10 p.u.</td>
</tr>
<tr>
<td></td>
<td>1 = 1 p.u.</td>
</tr>
</tbody>
</table>

#### 97.46 SBU current control gain

Gain of SBU current controller.

<table>
<thead>
<tr>
<th>Name/Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-1000 … 1000 p.u.</td>
</tr>
<tr>
<td></td>
<td>1 = 1 p.u.</td>
</tr>
</tbody>
</table>
### Motor data

Motor configuration settings.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td>Motor data</td>
<td></td>
</tr>
<tr>
<td>99.04</td>
<td>Motor ctrl mode</td>
<td>Selects the motor control mode.</td>
</tr>
<tr>
<td></td>
<td>Vector</td>
<td><strong>Warning:</strong> Vector control mode is only officially released from SW version 2.70.0.1 (2018-B). SBU can't work with Vector control mode.</td>
</tr>
<tr>
<td></td>
<td>Scalar</td>
<td>Scalar control - the switching of the output semiconductors is controlled to achieve the constant ratio between motor voltage and frequency (V/f) thus achieving constant flux. With scalar control the motor can be controlled in frequency (Hz) or speed (rpm) mode. The reference value for the motor frequency (or speed) can be set by various sources and the voltage is adjusted accordingly.</td>
</tr>
</tbody>
</table>

---

**Parameter listing default values**
Using ACS580MV Data Analyzer

What this chapter contains
This chapter contains short guideline for using the ACS580MV data analyzer PC tool. This tool can be used to analyze diagnostic data that are continuously stored on SD card in BCU.

ACS580MV data analyzer
ACS580MV data analyzer allows the user to view event logger, fault data logger and continuous monitoring logger files stored in SD card. The SD card installed in BCU allows for storing of big amount of data, so the records of drive operation over its entire lifetime can be collected.
ACS580MV data analyzer allows the following functionalities:

- View the Event logger (long term chronological list of all events that happened on the drive).
- Display of information (helptext) for an event when it is selected in the event logger view.
- Export the event logger in .txt or .csv format.
- Plot the fault data logger if it is attached to a fault. A fault data logger is always attached to the tripping fault - the first fault that is activated after the drive has been error free.
- View time plot information by placing the cursor on the time plot.
- Customize the time plots using settings option.
- Export the fault data logger in .txt or .csv format.
- Align the parameter information displayed in the time plots using Settings -> Parameters Alignment drop-down.
- Zoom the time plot by selecting the required area.
- Synchronize zooming and cursor position.
- Plot the continuous monitoring logger. Continuous monitoring logger contains the slowly sampled drive parameters that are collected continuously.
- Export of continuous monitoring logger in .txt and .csv format.

In the remainder of the chapter a description of different tools options is given.

**Menu bar**

The Menu bar includes the following main menus:

- File
- View
- Help
File menu

File menu allows to open a data folder and to exit the ACS580MV data analyzer session. File menu consists of the following commands:

- **Select Data Folder**: Allows the user to open a top folder containing all logged data.
- **Exit**: Ends ACS580MV data analyzer session.

View menu

View menu allows to change the font size of the user interface. View menu consists of the following commands:

- **Normal**: Changes the text font size of the user interface to normal text.
- **Large**: Changes the text font size of the user interface to large text.
- **The largest**: Changes the text font of the user interface to the largest text.

Help menu

Help menu allows to view the product information and the manual. The Help menu consists of the following commands:

- **About product**: Displays the version number and copyright information.
- **Manual**: Displays ACS580MV data analyzer user manual as a PDF.
Event logger

To open data folder, proceed as follows:

1. In the ACS580MV data analyzer main menu, click **File** and then click **Select Data Folder**.

![ACS580MV Data Analyzer](image_url)

*Figure: ACS580MV data analyzer*
2. Select the data folder in the file system and click **Open**.

![Folder selection](image)

**Figure: Folder selection**

**Note:** The user must select the top folder that contains LOGS and MONITOR folders with event logs, fault data logger and continuous monitor logger files. The ACS580MV data analyzer processes all the files in the selected folder and its sub-folders and extract all the information.

ACS580MV data analyzer displays all the events in a form of chronological list containing the icon, time stamp, event code, event name and event aux code. Additionally, for each tripping fault (i.e. the first fault that activated after a drive was error free), the following data is available:

- Initial values: values of certain important drive parameters at the instant of fault activation.
- Fault data logger that can be plotted as a time plot.
When the user selects an event in a list, the event type (fault or alarm), code and name with related help text are displayed in the top right pane.

3. In the status strip, click Export All in the drop-down list to export the event logger to the file system in .txt or .csv format.
Fault data logger

Fault data logger displays the time plots of corresponding fault data logger. The user can select parameters to be displayed on graphs by checking and unchecking the check box next to parameter.

- Click **Show Plot** in the Event logger to view the time plot of the fault data logger on the right pane.

![Event logger screenshot](image)

**Figure: Time plot**

**Note:** Time plots are applicable for fault events only.

Fault data logger contains Settings, Alignment, Sync plots and Export options in the status strip drop-down list.
Settings

1. In the status strip, click **Settings** in the drop-down list to change the settings of the time plot.

*Figure: Time plot settings*
2. In the Settings window, select the required time plots by selecting the check box.

![Settings](image)

*Figure: Settings*

3. Select the desired option in **Legends Alignment** drop-down list to align the time plot parameter signals.

**Alignment**

Alignment allows the user to align the parameter signal list in the time plot data logger. The user can select the desired option in the Alignment option.

**Sync plots**

Sync plots allows the user to sync the time plot zoom and cursor position across all time plots.

**Export**

Export allows the user to export the time plot data logger to the file system in `.txt` or `.csv` format.
Continuous monitoring logger collects the predefined drive data with slow sample time (10s to 500s, depending on particular drive parameter). Data collected in the Continuous monitoring logger are intended for analysis of the drive operation over longer periods of time. The user can select start and end date to view the time plot. All monitored drive parameters are grouped in several groups (called CML plots) that can be selected by right clicking on the graph area. To display or hide some of the parameters in the graph, check boxes next to parameter numbers can be used. Hovering with the mouse pointer over the parameter signal in the graph displays parameter name, sample time, sample value, average, minimum and maximum value.

Continuous monitoring logger allows to align the legends, parameter signal lists and to select the parameter groups (CML plots) by right-clicking on the graph area.

Continuous monitoring logger contains Parameter list and Export options in the status strip drop-down list.
Parameter list

Parameter list shows which drive parameters are contained in each of the CML plots. Following CML plots are available:
- Default
- Transformer temperatures
- IGBT temperatures (3 temperatures are measured)
- Charging relay temperatures
- Power module communication error counters
- Control hub communication error counters
- Power modules operating hours and total run time of the drive

Export

Export allows the user to export the time plot data logger to the file system in .txt and .csv format.
Drive Composer Support Package

Contents of this chapter

This chapter describes how to quickly collect data from a drive using the Support package functionality of Drive composer PC tool and how to analyse the data.

Support package

Support package collects the data stored in the event logger on BCU’s memory unit. The event logger on the BCU’s memory unit has very limited capacity and gets cyclically overwritten as new events happen. It can store information about the last 5 faults that tripped the drive, and the last 20 secondary events that occurred. Therefore, it cannot provide long term monitoring functionality that is described in chapter Using ACS580MV Data Analyzer. Nevertheless, if collected immediately after an event that needs troubleshooting, the support package can collect valuable data from the drive. The support package can be created by the user of the drive and emailed to ABB Support line for investigation.

Support package is created in Drive composer PC tool by clicking on the icon in the top right corner of the tool window. By clicking on the icon shown in the figure below,
120  Drive Composer Support Package

a file SupportFiles.dcsupport is created and attached to the default email program installed in the PC. The file can also be saved manually.

The support package contains following information from the drive:

- Parameter backup
- Event logger (including fault data loggers for tripping faults)
- System info.

The support package file can be opened in Drive composer PC tool (ver. 1.10 or newer):

Figure: Opening the support package file in Drive composer

In Drive composer the data from support package are available in the “File drives” section:
Tripping faults in the event logger have a fault data logger attached (see chapter Fault Tracing for more details on the event logger and fault data logger). Fault data loggers can be seen in Online Monitor section of Drive composer. Just click on the plot icon next to a tripping fault in the event logger. This will open the data in graphical form in the Online Monitor section of Drive composer (lower part of Drive composer window). Opening the fault data logger will change the title of Online Monitor to “Data logger”:

For further analysis the fault data logger data can be exported in textual format that can be further processed in e.g. Matlab. The fault data logger data can be exported from Online Monitor / Data Logger section of Drive composer by selecting option “Export graph” and setting signals and samples to “All”:  

Figure: Drive data available in support package

Figure: Plotting the fault data logger
The data from the fault data logger are exported in .dcexp format. If Matlab is available, the data can be imported using ABB in-house script in the following way:

```matlab
log_data = read_dcexp('FileName.dcexp');
```

The script will plot the data in predefined format, like in the following figure. If Matlab is not available, the .dcexp file can be imported and analyzed in Excel.
Figure: Example of fault data logger data plotted using Matlab script
POF Link Test

Contents of this chapter

This chapter describes how to use the parameters that control the POF link power between Control Hub and Power Modules, in order to early detect communication problems. The service pass-code is required to have access to these parameters in parameter group 95 HW configuration.

It is important to mention that, by enabling the half optical power, a degradation of –3dBm is introduced in the optical link. According to previous tests performed on one drive, the transmitter optical power is -15.7dBm, at full power, 25°C and 10m cable, resulting in -18.7dBm at half power. However, the communication problems experienced on one drive were correlated to POF cables with an optical power of -30dBm. That means that results of the test described in this chapter might not be conclusive.

Communication problems are observed through the parameters:

• 70.12/32/52…, Hub RX comm err count A1/A2/A3 …
• 71.12/32/52…, Hub RX comm err count B1/B2/B3 …
• 72.12/32/52…, Hub RX comm err count C1/C2/C3 …

and

• 70.5/25/45…, PM RX comm err count A1/A2/A3 …
• 71.5/25/45…, PM RX comm err count B1/B2/B3 …
• 72.5/25/45…, PM RX comm err count C1/C2/C3 …

Note the normal behavior of these counters is to jump to an initial value that is different from 0, after the drive is charged. The parameter “Hub RX comm err count XX” can have an initial value in the range of 5 to 10 and the parameter “PM RX comm err count XX” can have an initial value in the range of 50 to 100. So for the tests
described in this chapter the counters should be observed only after completing the charging sequence of the drive.

**Link from power modules (TX) to control hub (RX)**

The POF transmitter power on the Power Module is controlled with the parameter **95.70 PM half optical power**.

- **Test POF-1: PM TX Full Power**

**Test steps**

Charge the drive.

Set parameter **95.55 Control hub half optical power** to **Disable** to have the full power on the Control Hub TX POF link.

Set parameter **95.70 PM half optical power** to **Disable** to have the full power on the PM TX POF link.

Observe the following parameters:

- 70.12/32/52..., Hub RX comm err count A1/A2/A3 ...
- 71.12/32/52..., Hub RX comm err count B1/B2/B3 ...
- 72.12/32/52..., Hub RX comm err count C1/C2/C3 ...

**Test results**

PASS: the observed Hub RX comm err counters can have an initial value different from 0, but **DO NOT** have variation for more than 10 minutes. ➔ In this case, execute the test **Test POF-2: PM Tx Half Power**.

FAIL: the observed Hub RX comm err counters have **ANY** variation during 10 minutes. This indicates that the PM transmitter is not delivering the data as expected ➔ In this case, skip the test **Test POF-2: PM Tx Half Power** and follow the instructions given in section **What to do in case tests POF-1 or POF-2 fail**.

- **Test POF-2: PM Tx Half Power**

**Test steps**

Charge the drive.

Set parameter **95.55 Control hub half optical power** to **Disable** to have the full power on the Control Hub TX POF link.

Set parameter **95.70 PM half optical power** to **Enable** to have the half power on the PM TX POF link.
Observe the following parameters:
• 70.12/32/52..., Hub RX comm err count A1/A2/A3
• 71.12/32/52..., Hub RX comm err count B1/B2/B3 ...
• 72.12/32/52..., Hub RX comm err count C1/C2/C3 ...

Test results

PASS: the observed Hub RX comm err counters can have an initial value different from 0, but DO NOT have variation for more than 10 minutes ➔ In this case, execute the test Test POF-3: Hub TX Full Power.

FAIL: the observed Hub RX comm err counters have ANY variation during 10 minutes. This indicates that the PM transmitter is not delivering the data as expected ➔ In this case, skip the test Test POF-3: Hub TX Full Power and follow the instructions given in section What to do in case tests POF-1 or POF-2 fail.

What to do in case tests POF-1 or POF-2 fail

In case tests Test POF-1: PM TX Full Power or Test POF-2: PM Tx Half Power fail, the following steps can be executed:

1. Check/exchange the POF link cable between the Control Hub receiver and the PM transmitter of the failed Hub RX comm err counter. Repeat the failed tests.
2. In case point 1 does not solve the problem, exchange the PM connected to the failed Hub RX comm err counter. Repeat the failed tests.
Link from control hub (TX) to power modules (RX)

The POF transmitter power on the Control Hub is controlled with the parameter 95.55 Control hub half optical power.

- **Test POF-3: Hub TX Full Power**

**Test steps**

Charge the drive.

Set parameter 95.55 Control hub half optical power to **Disable** to have the full power on the Control Hub TX POF link.

Set parameter 95.70 PM half optical power to **Disable** to have the full power on the PM TX POF link.

Observe the following parameters:

- 70.5/25/45..., PM RX comm err count A1/A2/A3 ...
- 71.5/25/45..., PM RX comm err count B1/B2/B3 ...
- 72.5/25/45..., PM RX comm err count C1/C2/C3 ...

**Test results**

- **PASS**: the observed PM RX comm err counters can have an initial value different from 0, but **DO NOT** have variation for more than 10 minutes. In this case, execute the test **Test POF-4: Hub Tx Half Power**.
- **FAIL**: the observed PM RX comm err counters have **ANY** variation during 10 minutes. This indicates that the Control Hub transmitter, placed on the daughter board, is not delivering the data as expected. In this case, skip the test **Test POF-4: Hub Tx Half Power** and follow the instructions given in section What to do in case tests POF-3 or POF-4 fail.

- **Test POF-4: Hub Tx Half Power**

**Test steps**

Charge the drive.

Set parameter 95.55 Control hub half optical power to **Enable** to have the half power on the Control Hub TX POF link.

Set parameter 95.70 PM half optical power to **Disable** to have the full power on the PM TX POF link.

Observe the following parameters:

- 70.5/25/45..., PM RX comm err count A1/A2/A3 ...
- 71.5/25/45..., PM RX comm err count B1/B2/B3 ...
- 72.5/25/45..., PM RX comm err count C1/C2/C3 ...
Test results

**PASS:** the observed PM RX comm err counters can have an initial value different from 0, but **DO NOT** have variation for more than 10 minutes ➔ In this case, the test is finished.

**FAIL:** the observed PM RX comm err counters have **ANY** variation during 10 minutes. This indicates that the Control Hub transmitter, placed on the daughter board, is not delivering the data as expected ➔ In this case, follow the instructions given in section *What to do in case tests POF-3 or POF-4 fail*.

**Second FAIL criteria:** By using the Hub TX half power, it can happen that the drive trips with the message “Control hub missing PM” indicating already the POF link that has a problem ➔ In this case, the respective communication error counter does not need to be observed, and the instructions given in section *What to do in case tests POF-3 or POF-4 fail* can be directly applied.

- **What to do in case tests POF-3 or POF-4 fail**

  In case the test fail the following steps can be executed:

  1. Check/exchange the POF link cable between the Control Hub transmitter and the PM Receiver of the failed PM RX comm err counter. Repeat the failed test.

  2. In case point 1 does not solve the problem, exchange the Control Hub daughter board connected to the failed PM RX comm err counter. Repeat the failed test.
Contents of this chapter

In order to detect a malfunction or a failed component in a power module, the tests described in this chapter shall be carried out. If tests identify a failure in the power module, perform investigation steps to solve the problems as recommended.

ABB will also do further analysis and repair.
To detect a faulty power module, proceed with:

- Visual inspection
- Measure the resistance of fuses
- Measure if DC link is short circuited
- Measure the diodes of rectifier and IGBT

Additional Notes:

- Tests are intended to verify malfunction.
- Upload measurements to MoR after all tests specified in section Measurement steps are performed.
- Refer to Warranty directive when sending failed power modules back.
- If failure can still not be identified, do analysis according Known Problems.

---

**Safety**

**DANGER**

High voltage!

Obey the instructions given in chapter 1 Safety instruction and chapter 12 Maintenance of the ACS580MV hardware manual. If you ignore them, injury or death, or damage to the equipment can occur.

Before starting to work on the drive, make sure:

- that the main and auxiliary power supply to the drive is switched off, locked out, and tagged out
- that the drive is dead
- that safety ground connections are in place
- that personal protective equipment is provided and used when required
- that everyone involved is informed.

Before energizing the drive, make sure:

- that all foreign objects are removed from the drive
- that all internal and external covers are securely fastened and all doors are closed, locked and / or bolted
- that the release dials of safety switches are in the locked position.
**Required tools and equipment**

Besides the tools required in chapter 12 in *ACS580MV hardware manual*, below equipment is required for measuring.

1. Multi-meter, for example, Fluke 87, which can measure diode turn-on voltage and resistance.

2. Test clip, MINIGRIP-XCI from Multi-Contact is recommended which can be used on R1-R9 power modules.

**Measurement steps**

Disconnect 3 phase inputs (U/V/W) and 2 outputs (VAC1/VAC2) cables from the power module. To make it easier to connect test clip for DC+, slide the power module out properly.

To do this, follow the instructions of *ACS580MV hardware manual* chapter 12: Maintenance - replacing the power modules.

**Visual inspection**

Take pictures if there is any finding during visual inspection.

1. Check visually if there is any serious mechanical deformation.
2. Check visually if the heatsink is dirty.
3. Check visually if there is any arcing mark between input busbars and housing. If there is an arcing mark, this power module is faulty and there was short circuit. In
this case replace it with a new power module and send the failed power module back to ABB for further analysis.

4. Check visually if the fuses (phase V and W if power module is R1-R6, Phase U and V if power module is R7-R9) on front side of power module are open. If the fuse is open, please continue with measurement as described in sections Measure the resistance of fuses (page 134), Measure if DC link is short circuited (page 134) and Measuring the diodes of rectifier and IGBT (page 135). For location of different measuring points refer to pictures given in section Measuring points.

#### Measure the resistance of fuses

Measure the resistance of the fuses using the multi-meter in resistor test mode.

<table>
<thead>
<tr>
<th>Fuses resistance measurements - Healthy Power Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test item</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

Table 1 Fuse resistance measurements - Healthy Power Module

If the measured values differ from the allowed values in Table 1, continue with the measurements as described in section Measure if DC link is short circuited and Measuring the diodes of rectifier and IGBT. If the power module passed all tests in section Measure if DC link is short circuited and Measuring the diodes of rectifier and IGBT replace the fuse with a new one (refer to ACS580MV hardware manual chapter 12: Maintenance - replacing the power module fuse) and start the drive again.

#### Measure if DC link is short circuited

Measure the resistance of DC link using the multi-meter in resistor test mode.

<table>
<thead>
<tr>
<th>DC link short circuit measurement - Healthy Power Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test item</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Table 2 DC link resistance measurements - Healthy Power Module

If the measured values differ from the allowed values in Table 2, replace with a new power module and send failed power module back to ABB for further analysis.
Measuring the diodes of rectifier and IGBT

Measure the diode turn-on voltage across the measuring points shown in section Measuring points using the multi-meter in diode test mode.

<table>
<thead>
<tr>
<th>Test item</th>
<th>Plus probe</th>
<th>Minus probe</th>
<th>Allowed values</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>DC -</td>
<td>U</td>
<td>0.2V~0.8V</td>
</tr>
<tr>
<td>5</td>
<td>DC -</td>
<td>V</td>
<td>0.2V~0.8V</td>
</tr>
<tr>
<td>6</td>
<td>DC -</td>
<td>W</td>
<td>0.2V~0.8V</td>
</tr>
<tr>
<td>7</td>
<td>U</td>
<td>DC+</td>
<td>0.2V~0.8V</td>
</tr>
<tr>
<td>8</td>
<td>V</td>
<td>DC+</td>
<td>0.2V~0.8V</td>
</tr>
<tr>
<td>9</td>
<td>W</td>
<td>DC+</td>
<td>0.2V~0.8V</td>
</tr>
<tr>
<td>10</td>
<td>DC -</td>
<td>VAC1</td>
<td>0.2V~0.8V</td>
</tr>
<tr>
<td>11</td>
<td>DC -</td>
<td>VAC2</td>
<td>0.2V~0.8V</td>
</tr>
<tr>
<td>12</td>
<td>VAC1</td>
<td>DC+</td>
<td>0.2V~0.8V</td>
</tr>
<tr>
<td>13</td>
<td>VAC2</td>
<td>DC+</td>
<td>0.2V~0.8V</td>
</tr>
</tbody>
</table>

Table 3 Diodes measurements - Healthy Power Module

If the measured values differ from the allowed values in Table 3, replace with a new power module and send failed power module back to ABB for further analysis.
Inspecting Power Modules

- Measuring points

**Figure 1:** R1-R3 power module – Measuring points

**Figure 2:** R4-R6 power modules – Measuring points 1
Inspecting Power Modules

Figure 3: R4-R6 power modules – Measuring points 2

Figure 4: R7-R9 power modules – Measuring points
Figure 5: How to use the clip to access DC+ point (R1-R9)

Figure 6: R1-R6 power modules main circuit diagram
Figure 7: R7 power module main circuit diagram
Figure 8: R8 power module main circuit diagram
Figure 9: R9 power module main circuit diagram
### Record Table

#### Measurements - Healthy Power Module

<table>
<thead>
<tr>
<th>Converter serial number:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power module serial number:</td>
</tr>
<tr>
<td>Power module material number:</td>
</tr>
<tr>
<td>Power module HW release:</td>
</tr>
<tr>
<td>Power module position:</td>
</tr>
</tbody>
</table>

##### Visual Inspection

<table>
<thead>
<tr>
<th>Test item</th>
<th>Plus probe</th>
<th>Minus probe</th>
<th>Allowed values</th>
<th>Measured values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fuse1_1</td>
<td>Fuse1_2</td>
<td>&lt;0.5 Ohm</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Fuse2_1</td>
<td>Fuse2_2</td>
<td>&lt;0.5 Ohm</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>DC+</td>
<td>DC-</td>
<td>&gt;0.5 Ohm</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>DC-</td>
<td>U</td>
<td>0.2V~0.8V</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>DC-</td>
<td>V</td>
<td>0.2V~0.8V</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>DC-</td>
<td>W</td>
<td>0.2V~0.8V</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>U</td>
<td>DC+</td>
<td>0.2V~0.8V</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>V</td>
<td>DC+</td>
<td>0.2V~0.8V</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>W</td>
<td>DC+</td>
<td>0.2V~0.8V</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>DC-</td>
<td>VAC1</td>
<td>0.2V~0.8V</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>DC-</td>
<td>VAC2</td>
<td>0.2V~0.8V</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>VAC1</td>
<td>DC+</td>
<td>0.2V~0.8V</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>VAC2</td>
<td>DC+</td>
<td>0.2V~0.8V</td>
<td></td>
</tr>
</tbody>
</table>

- 1 Warranty sticker is complete.
- 2 Serious mechanical deformation is observed.
- 3 Heatsink is dirty.
- 4 Arcing mark is observed.
- 5 Fuse indicator is open.
How to open the power module (PEBB)

**Preparation**

Before starting any work on the PEBB, please make sure safety rules have been applied, see as chapter Safety.

Necessary tools:

<table>
<thead>
<tr>
<th>Index</th>
<th>Tool Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cable cutter</td>
</tr>
<tr>
<td>2</td>
<td>Sharp-nose plier</td>
</tr>
<tr>
<td>3</td>
<td>Combination screwdriver</td>
</tr>
<tr>
<td>4</td>
<td>T25 torx bit</td>
</tr>
<tr>
<td>5</td>
<td>Protective gloves</td>
</tr>
<tr>
<td>6</td>
<td>Auto screwdriver</td>
</tr>
</tbody>
</table>
Open the Power Module

Step 1: remove red marked screws and open the PEBB.
Unscrew all red marked screws.
Step 2. Unplug the gate emitter connection.

Step 3. Release output voltage cable from cable clamp.

Step 4. Remove cable.

Step 5. Separate HCB board and CB board from holder.
Remove screws marked in red
Inspecting Power Modules

Yellow: charging relay

Pink internal fuse: shall be always checked with multimeter for resistance; if fuse is open, needs to be reported to support line.
Known Problems

Should help field service engineer to diagnose some ACS580MV top known problems on site so that ABB can provide customers with faster resolutions and better experiences.

- **KP1252 Arc inside charging relay causes power module fault**

*Description of the problem*

At the very beginning of charging, full voltage (about more than 1000V DC) applied on charging resistor R1 (also between one main contact and coil of K1), somehow the insulation breaks down inside K1 (the arc we found inside charging relay). High voltage goes to relay control circuit and causes some visible damage on Heavy Copper Board (HCB) or on Control Board (CB).

The reason why there is an arc inside relay is that liquid goes onto the sealed relay during manufacturing. New produced boards are free of the problem.

*Figure 10: Main Circuit of Power Module*
How to identify the problem on site

Fault Messages

This failure happens at the very beginning of charging, but you may not detect the failure during charging phase sometimes. Because there is no feedback from relay, it really depends on how severe the arcing is. You may get this fault when running the motor (at the beginning), large voltage dropping on charging resistor (relay is open) causes “diode fault” or “input voltage deviation”. Possible fault message:

A. 3234 PM +5V power supply regulation fault (usually on R4 - R6)
B. 3237 PM input voltage deviation (usually on R1 - R3)
C. 3239 PM diode open circuit (usually on R1 – R3)

Hardware Failure

If you observe one of below phenomenon, charging relay failure probably is the root cause.

1. Q802 on HCB board is exploded, which is close to relay area and could be observed after removing the cover of power module. (usually on R1 – R3, fuse on front face may open)
2. U605 or Q603 on control board burned, which is close to material label areas and could be observed after removing the cover of power module. (usually on R4 – R6)
How to solve the problem on site

After identifying the problem, we suggest that:

1. Send all available failure information (plus serial number of failed PCBA and power module) to support line for further double check. ABB can recheck if this power module is within the affected batch.

2. No repair is required and wait for instructions from support line.
KP1299 De-lamination of fiber optic cause communication failure

Description of the problem

Fiber optic is MSD (Moisture Sensitive Device), it can absorb moisture in high humidity environment and lead to delamination at period of mounting.

Delamination is a failure mechanism which affects the interfacial bond between two different material systems. Delamination occurs when an external force was put on two different materials with diverse coefficient of thermal expansion. For plastic packages, delamination usually happen when fiber optic is exposed to high humidity environment. When fiber optic’s moisture sensitive part is soldering, high temperature vaporizes moisture rapidly which causes enormous pressure between the interface of two materials, and lead to delamination of fiber optic.

Figure 16: Delamination of fiber optic under X-ray

How to identify the problem on site

Fault Message

Delamination of fiber failure always happens with communication failure, below message can indicate that problem:

1. Control hub missing PM
2. Program download failed

How to analyze Failure

Quick verification with a cable, SAP number tbd can be done on field if FOR still ok or not.
Figure 17: USB-5V power cable

Figure 18 shows, the interface of test pins which can be accessed from outside the PEBB to connect the USB cable for verification.

If there is no red light after connecting the pins correctly to the USB cable, the fiber optic sender is damaged.

Figure 19: Fiber optic is damaged  Figure 20: Fiber optic is ok
How to solve the problem on site
After identifying the problem, we suggest that:
Send all available failure information (plus serial number of failed PCBA and power module) to support line.
KP1249 Fuse of PM control power loop failure causes control hub missing power module fault

Description of the problem
Fuse on HCB of power module open and cause control board cannot work.

How to identify the problem on site

Fault Messages
Fuse on HCB was broken usually invite Control Hub Missing PM on site. Because of control board doesn’t work, so power module cannot communicate with control hub.

To identify this fault we can use USB-5V cable, if control hub missing happened and fiber optic is work well, fuse on HCB should be checked.

How to analyze Failure
Please refer section Open the Power Module to open the PEBB first. And you can find fuse link following photos.
Left photos are PEBB0 frame, right photos are PEBB1 frames.

Use multimeter plus and minus probes test two holders of fuse, the value should lower than 1 ohm.

How to solve the problem on site

If the fuse on HCB broken was the root cause, we suggest replace broken fuse and send all available failure information (plus serial number of failed PCBA and power module) to support line.

- **KP1692 MOSFET failure causes control board power failed**

MOSFET on CB of power module short circuit caused “7538 Control hub missing PM”.
MOSFET short circuit usually happened between its gate and source. Short condition can cause the current in the loop increase and destroy multiple electronic components including the fuse on HCB.

When fuse open is found on site, it should be verified if the MOSFET shorted, before replacing new fuse, otherwise the new fuse will be damaged again.

**How to identify the problem on side**

**Fault Messages**

MOSFET short circuit usually invite 7538 Control hub missing PM on site. Because of control board doesn’t work, so power module cannot communicate with control hub.

Usually PM +5V power supply fault is reported before that.

**How to analyze Failure**

Please refer chapter 2.2 to open the PEBB first. And you can find MOSFET on CB like following photos.

Use multimeter plus measure the resistance between source (test point 1 showed in under photo) and gate (test point 2 showed in under photo) of MOSFET, the resistance should be around 10Kohm.
MOSFET failure happens when the resistance is almost 0ohm.

How to solve the problem on side

After identifying the problem, we suggest that:

1. Send all available failure information (plus serial number of failed PCBA and power module) to support line for further double check.

2. No repair is required and wait for instructions from support line.
KP1632 Failed common mode choke on HCB is leading to malfunction of PEBB

Common mode choke short or open circuit on HCB usually occurs in the coil inside choke. There are two group of coils inside of choke, one group connect with pin1 and pin3, another group connect with pin2 and pin4. Normally, pin1&pin2, pin3&pin4 should be open. Pin1&pin3, pin2&pin4 should be conductive.

How to identify the problem on side

Fault Messages

Once the short or open happened, the device will trap the fault message of “PM HBX short circuit turn off”.

How to analyze Failure

We can verify the choke’s function by measuring resistance using the multi-meter. Usually we can measure IGBT gate cables, black and white cable on IGBT gate terminal, to make sure the choke is ok or not. The resistance in there should be around 10Kohm.

If the choke short inside, the measurement value will far less than 10Kohm. The following table showed the test point and allowed values:

<table>
<thead>
<tr>
<th>Test Item</th>
<th>Plus probe</th>
<th>Minus probe</th>
<th>Allowed values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pin1</td>
<td>Pin2</td>
<td>≈10K ohm</td>
</tr>
<tr>
<td>2</td>
<td>Pin3</td>
<td>Pin4</td>
<td>≈10K ohm</td>
</tr>
<tr>
<td>1</td>
<td>Pin1</td>
<td>Pin3</td>
<td>&lt;2 ohm</td>
</tr>
<tr>
<td>2</td>
<td>Pin2</td>
<td>Pin4</td>
<td>&lt;2 ohm</td>
</tr>
</tbody>
</table>

How to solve the problem on side

If the measured values differ from the allowed values in table, replace with a new power module and send failed power module back to factory for further analysis.
Flystart troubleshooting

Most of the problems during flystart will have a motor current as a consequence. To find out the root cause for a problem it is necessary to observe the time the overcurrent is occurring and previous conditions of the drive. More precisely, the following features should be identified:

- What is the drive configuration (type of load, approximation of friction and losses, potential other sources influencing the driven load)
- To get more information about the drive a test to determine the freewheeling characteristics should be performed – at rated speed set reference speed to 0 with speed/acceleration time = 0 and observe actual deceleration of the drive.
- Motor rated parameters
- Motor limits (current, speed, one direction of rotation or bi-directional…)
- When is the problem occurring:
  - speed scan (beginning/end)
  - reversal of the speed scan
  - flux ramp-up
  - transition to the normal operation
  - after transition to the normal operation
- Make sure to observe following variables:
  - 1.7 “Motor current”
  - 90.1 Motor speed for control
  - 23.2 “Speed ref ramp output” (for rpm operation mode) or “Frequency ref ramp output” (for Hz operation mode)
Flystart troubleshooting

• (If DT tool is used additionally observe currents in d and q axis):
  • \texttt{g\_tMeas\_125us.Idq[0]}
  • \texttt{g\_tMeas\_125us.Idq[1]}

Following table summarizes potential problems and describes troubleshooting measures. Note that for some problems several troubleshooting measures are proposed (sometime having opposite approach). Depending on the particular configuration of the system, one or more of those measures could solve the problem.

<table>
<thead>
<tr>
<th>Issue</th>
<th>Possible solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial flux ramp-up:</td>
<td></td>
</tr>
<tr>
<td>Motor overcurrent on the beginning of the speed scan (during initial flux ramp-up)</td>
<td>Flystart initiated too early. At least time equal to 1-2 rotor time constants have to pass between stop and restart to assure the flux has decayed. Reduce initial flux reference: 21.30 “Flystart current level”</td>
</tr>
<tr>
<td>Motor speed is found but the drive always slows down to 0 before it starts again (with DC magnetization).</td>
<td>The drive is decelerating faster than the speed scan. Conditions to stop the speed scan are not met. Increase the value of 21.36 “Flystart speed detect quali time”.</td>
</tr>
<tr>
<td>Motor overload during initial flux ramp-up</td>
<td>High initial flux, reduce the parameter 21.30 “Flystart current level” (0.05 – 0.15 gives mostly satisfactory results).</td>
</tr>
</tbody>
</table>

Speed scan:

<table>
<thead>
<tr>
<th>Issue</th>
<th>Possible solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor overcurrent near the end of the speed scan</td>
<td>Check if the motor current is rising to high values as the reference speed approaches motor speed. If so, reduce initial flux 21.30 “Flystart current level”. Reduce 21.36 “Flystart speed detect quali time” to reduce the speed of speed scan.</td>
</tr>
<tr>
<td>Motor overcurrent at the speed scan reversal</td>
<td>Reduce initial flux 21.30 “Flystart current level”.</td>
</tr>
</tbody>
</table>

Final flux ramp-up:

<table>
<thead>
<tr>
<th>Issue</th>
<th>Possible solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor overcurrent during final flux ramp-up (after the speed has been found).</td>
<td>Set controller proportional gain (21.38 “Flystart Scan Iq Ctrl Kp”) to 0.</td>
</tr>
<tr>
<td>Initial motor speed is found but during flux ramp-up motor decelerates to 0. Overcurrent occurs as the motor speed is approaching 0.</td>
<td>Reduce flux ramp-up time by reducing parameter 21.31 “Flystart Flux Ramp Time” in order to get motor started before it decelerates to 0. Increase flux ramp-up time by increasing parameter 21.31 “Flystart Flux Ramp Time” in order to get smaller flux at the time the motor decelerates to 0.</td>
</tr>
<tr>
<td>Issue</td>
<td>Possible solution</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Reduce initial flux 21.30 “Flystart current level” to prevent motor from accelerating during speed scan.</td>
<td></td>
</tr>
<tr>
<td>Increase 21.36 “Flystart speed detect quali time” – speed scan will be faster and motor might not accelerate too much.</td>
<td></td>
</tr>
</tbody>
</table>

**Transient to scalar control:**

<table>
<thead>
<tr>
<th>Issue</th>
<th>Possible solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor overcurrent when transferring from flystart to scalar control</td>
<td>Set IR current reference 97.13 “IR compensation (see description in 2.2.). Value of 0.25% is a good starting point. Should be increased in the case of higher stator resistive loses.</td>
</tr>
<tr>
<td>Fly start taking very long (&gt;10 rotor time constants).</td>
<td>Motor starts rotating during speed scan but then decelerates to 0 speed during flux rampup.</td>
</tr>
<tr>
<td>Reduce the time during which reference speed is kept constant. The transient time equals one rotor time constant and cannot be directly set by parameter. In order to change it set parameters 98.4 “Lm user” and 98.3 “Rr user” to achieve different values of rotor time constants. Set rotor time constant to approx. 0.5s to prevent the current becoming too high during this transition. To achieve steady flux ramp-up with such a small rotor time constant the parameter 21.31 “Flystart Flux Ramp Time” should be put to higher value (recommended value = 10).</td>
<td></td>
</tr>
</tbody>
</table>
Flystart troubleshooting
Software capacitor reforming

What this chapter contains

This chapter contains short guideline for using ‘Capacitor reforming’ functionality. The service pass-code is required to have access to these parameters in parameter group 95 HW configuration.

Capacitor reforming test

The software capacitor reforming function can be used when below 2 conditions both fulfilled:

1. the drive runs into PM DC link capacitors not balanced (fault code 3236) during charging,
2. the drive was stored less than 2 years without charging (Maximum allowed time that the drive can charge/reformed without manual capacitor reforming according to reforming instruction 2UBB017371)

This function can be enabled manually by setting parameter 95.88.

When this function is enabled, PM DC link capacitors not balanced (fault code 3236) trip value is increased, so that the capacitor can be reformed by forcing the drive into a special mode to get the capacitor reformed, during which period the drive will stay at hot-standby mode, and no modulation is allowed. The drive will automatically discharged and back to normal operation mode when the defined reforming time is achieved.

Note: This SW reforming function cannot replace normal reforming process, if storage time is longer than 1 year, please follow reforming instruction 2UBB017371.
Capacitor reforming test steps

1. Preparation the drive. The drive should have no active faults and fulfill the condition to close MCB.

2. Set Par 95.88 Capacitor reforming test = Enable. (If possible, use Drive composer to monitor signal Par 95.93, Par 95.94, Par 95.95 and Par 95.96.).

3. Close MCB.

4. There are 3 different situations here:
   - After time period specified by Par 95.89, MCB is opened and there is no fault. This means capacitor reforming was done successfully.
     **Action:** Wait until Par95.96 cap reform status word = 0x0001. And then you can operate the drive following your normal commissioning process.
   - After time period specified by Par 95.89, MCB is opened and the drive tripped with fault 'Cap Reform failed'. This mean capacitor reforming process was done but 'PM DC unbalance Warning' was still active after capacitor reforming test.
     **Action:** Wait until Par 95.96 cap reform status word = 0x0001. And then you can redo the capacitor reforming test again or replace the problematic power modules which are indicated by Par 95.93, Par 95.94 and Par 95.95.
   - MCB is opened and the drive tripped with 'PM Sub Capacitor Overvoltage' fault. This means capacitor reforming was interrupted or aborted because of protection.
     **Action:** Try to redo the capacitor reforming test again. If failed too, replace the problematic power modules which are indicated by Par 95.93, Par 95.94 and Par 95.95.
   - MCB is opened and the drive tripped with other faults. This means capacitor reforming was interrupted or aborted because of other protection.
     **Action:** First try to solve the fault which interrupted the reforming process. Then redo the capacitor reforming test again. If failed too, replace the problematic power modules which are indicated by Par 95.93, Par 95.94 and Par 95.95.
Contact us

www.abb.com/drives
www.abb.com/drivespartners

2UBB005092 Rev K 2021-07-20