AK100 Series
ATEX compliant gas analyzer system for hydrogen-cooled alternators
Measurement made easy
Superior technology and quality from the world leader in hydrogen measurement

ATEX compliant
• Intrinsically safe to II (1)G EN60079–0 & 11 compliant

Safety
• Early warning of hazardous hydrogen / air mixtures

Cost savings
• Maintenance of hydrogen purity ensures efficient cooling of the alternator to optimize plant performance

Choice
• Separate display units for hydrogen purity and purge gas for ease of use and duplicate systems for enhanced security

Low cost of ownership
• No moving parts and just one consumable item ensure minimal maintenance and running costs

Confidence
• ABB has over 80 years experience of katharometer design and operation
**General**
The AK10x range of instruments is designed to provide reliable and accurate hydrogen purity and purge gas measurement to ensure the safe and efficient operation of hydrogen cooled turbo-generators.

**Hydrogen purity**
Modern high capacity turbo-generators need to be cooled efficiently. Hydrogen, with a thermal conductivity of about seven times that of air, is in general use as the coolant.

Any drop in hydrogen purity during operation of the machine has two adverse effects:
- The first, and most important, is to compromise the safe operation of the generator. Accurate measurement of hydrogen purity is essential to provide an early warning of a potentially explosive mixture of hydrogen and air.
- The second is the economic impact of reduced efficiency. To increase plant performance and control generating cost per megawatt, turbine generators must perform with optimum efficiency. A drop in hydrogen purity causes additional windage losses and consequently reduces generator efficiency.

**Purge gas**
To complete the system the AK10x series also incorporates a purge gas analyzer.

During commissioning and de-commissioning of a system it is essential that the hydrogen is safely introduced and removed from the turbo-generator.

To avoid an explosive mixture of air and hydrogen during commissioning, air must first be purged from the system by an inert gas; carbon dioxide is in common use for this purpose although argon or nitrogen are gaining popularity. The hydrogen coolant is then introduced and replaces the purge gas.

To de-commission the turbo-generator the purge sequence is reversed.

![Graph showing typical cost of decreased hydrogen purity](image-url)
Katharometer

Principle of operation
The AK10x range of gas analyzers utilize thermal conductivity as its principle for measurement. When a constant current is passed through an electrical conductor surrounded by gas in a chamber, the temperature rises to a point of thermal equilibrium. Provided radiation, convection and end-conduction losses are minimized, the temperature of the conductor depends upon the heat loss by conduction through the gas. The temperature attained is therefore related to the thermal conductivity of the surrounding gas and hence the resistance of the wire is a function of the thermal conductivity.

The katharometer comprises a wheatstone bridge, each arm of which contains a fine, glass-coated, platinum wire. One pair of parallel arms is sealed in a reference gas of known thermal conductivity and the other pair is exposed to the sample gas. A constant current is passed through the bridge network. Any difference between the thermal conductivities of the reference and sample gases causes an imbalance of the bridge. This imbalance is a function of the difference in thermal conductivities of the two gases so the analyzer can be calibrated directly in terms of the percentage of one gas to another.

Product description
A complete system comprises:
- Display monitor
- One (or two) gas analysis panels
- One (or two) power supply units

Display monitor
The 6553 display monitor includes one or two 4689 digital transmitters, the range selector switch (excluding AK104), katharometer remote zero adjustment control and zener diode safety barriers.

Digital transmitters
The 4600 series universal transmitter provides the operator interface and communication to other devices. The signal from the sensing system is converted by the transmitter and the measurement is presented on a large, easy-to-read, backlit liquid crystal display. This display is used in conjunction with the four tactile membrane keypads to prompt the user through the programming procedures. The transmitter is fitted with two-step alarms for falling hydrogen purity.

Zener barrier devices
Zener barrier devices are included in the display monitor enclosure to prevent any dangerous electrical feedback from the transmitters to the hazardous area.

Power supply
The 4234 power supply units provide the analyzer assemblies with an intrinsically safe, stable constant current. These power units must be installed in a ‘safe’ area but the current output from them may be transmitted to the katharometers in the hazardous area.

Gas analysis panel
Gas analysis assemblies, 6540 (low pressure variant) and 6548 (high pressure variant) are fitted with a thermally lagged katharometer, a needle flow-control valve, a flow gauge and a drying chamber.

Sample gas low-flow alarms
(Only available when system is ordered complete with cubicle)
Optional intrinsically safe, sample-gas low-flow alarms can be fitted in the Cubicle and connected to the sample gas flow meter. These are used to warn operators of leaks or blockages in the sample line.
AK101 hydrogen purity and purge gas analyzer
Industry standard version comprising:
• Two gas analysis panels, the first measuring hydrogen purity and the second measuring the two purge gas ranges.
• Two power supply units.
• One display monitor containing two digital transmitters. The upper transmitter displays hydrogen purity and the lower transmitter displays the two purge gas ranges. The range selector switch controls the range to be displayed and deactivates the unused transmitter display as appropriate.

AK102 dual 3-range analyzer
100 % redundancy and validation version comprising:
• Two gas analysis panels each measuring hydrogen purity plus the purge gas ranges.
• Two power supply units.
• One display monitor containing two digital transmitters. Both the upper and the lower digital transmitters display the hydrogen purity range and the two purge gas ranges. Each digital transmitter has its own range selector switch to control the range to be displayed.

AK103 single 3-range analyzer
Simple solution for purity and purge measurement comprising:
• One gas analysis panel measuring hydrogen purity plus the purge gas ranges.
• One power supply.
• One display monitor containing one digital transmitter that displays the hydrogen purity range and the purge gas ranges. The range selector switch controls the range to be displayed.

AK104 hydrogen purity analyzer
Single range version comprising:
• One gas analysis panel measuring hydrogen purity.
• One power supply unit.
• One display monitor containing a single digital transmitter that displays hydrogen purity. Designed for applications where the purge gas cycle is controlled by other means and measurement of purge gas is not required.

Operating range
Range for hydrogen purity:
• 85 to 100 % H₂
• 80 to 100 % H₂ user selectable

Range for purge gas:
• 0 to 100 % hydrogen in purge gas *
• 0 to 100 % air in purge gas *

Alternative range for hydrogen purity:
• 100 % to 85 % H₂
• 100 % to 80 % H₂ user selectable
  (does not conform to ATEX directive)

* Carbon dioxide standard; argon or nitrogen also available.

Cubicles
When simplified installation is required, the 6553 display monitor and 4234 power supplies can be supplied in a wall-mount enclosure.

Access to select ranges and program the 4689 display units is via the enclosure’s glass panel door. The rear hinged section houses the power supply units and the optional flow alarm relays and miniature circuit breakers (MCBs).

Analyzer panels
The analyzer panels are available with options for use on low pressure or high pressure, gas sample systems (see system diagrams following).

The 6540–203 panels are suitable only for use on systems where the gas sample is vented to atmosphere and the pressure in the analyzer panel is therefore only marginally above atmospheric pressure (1 bar absolute).

For applications where the gas sample may be returned to the generator cooling system at an elevated pressure, the 6548–000 analyzer panel must be used. This panel is equipped with fittings suitable for such duties and is pressure tested to 10 bar (gauge).

Note. As no certification exists for measurements at pressures above 1 bar absolute (nominal), it must be understood that the stated I.S. certification does not cover use at higher pressures.
...Analyzer panels

Hazardous area

Analyzer panel

(6540 or 6548)

80 or 85 % to 100 % in air

0 to 100 % H₂ in purge gas *

0 to 100 % air in purge gas *

Safe area

Power supply units

(4234)

115 or 230 V AC

Monitor

(6553)

4689 indicator

Monitor

(6553)

4689 indicator

115 or 230 V AC

AK101 purity and purge gas analyzer system

AK102 dual 3-range analyzer system

* Carbon dioxide standard; argon or nitrogen also available
**AK100 Series ATEX Compliant Gas Analyzer System**

- **Hazardous area**
  - **Analyzer panel** (6540 or 6548)
  - 80 or 85% to 100% in air
  - 0 to 100% H2 in purge gas *
  - 0 to 100% air in purge gas *

- **Power supply units** (4234)
  - 115 or 230 V AC

- **Monitor** (6553)
  - 4689 indicator

- **Safe area**
  - 115 or 230 V AC

---

**AK103 Single 3-range Analyzer System**

- **Analyzer panel** (6540 or 6548)
  - 80 or 85% to 100% in air

- **Power supply units** (4234)
  - 115 or 230 V AC

- **Monitor** (6553)
  - 4689 indicator

---

**AK104 Hydrogen Purity Analyzer**

* Carbon dioxide standard; argon or nitrogen also available
Low and high pressure systems

The schematic diagrams below show typical arrangements, identifying the types of low or high pressure gas analyzer panels.

**Low pressure system – sample vented**

**High pressure system – sample non-vented**

**Note.** All valves except * fully open during operations
## Specification

### 6553 gas monitor

**Approvals**
- CENELEC approved
- [Ex ia Ga] IIIC (−20°C ≤ Ta ≤ +40°C)
- BASEEFA Certificate No. BAS 01 ATEX 7043
- EN61010-1:2010 compliant

**Ranges**
- 80 % or 85 % to 100 % H₂ in air
- 0 to 100 % H₂ in purge gas *
- 0 to 100 % air in purge gas *

**Range selector switch positions (when fitted)**
1 – percentage by volume, hydrogen in air
2 – percentage by volume, hydrogen in purge gas *
3 – percentage by volume, air in purge gas *

**Accuracy (display units)**
± 0.25 % of scale span

**Ambient temperature range**
0 to 40 °C (32 to 104 °F)

**Power supply**
110/120V AC or 200/240V AC, 50/60Hz
(two separate versions)

**Fuse rating**
F1 / F2 500 mA, 250 V AC rated 1500 A @ 250 V AC, HRC, ceramic, fast blow

**Power consumption**
30 VA approximately

**Outline dimensions**
290 x 362 x 272 mm (11.4 x 14.25 x 10.9 in.)

**Weight**
12 kg (26.4 lb)

**Environment**
Sheltered interior, 0 to 90 % RH

*Note. Purge gas options include:
- CO₂ (carbon dioxide)
- N₂ (Nitrogen)
- Ar (Argon)
---

### Specification

**4234 power supply unit**

**Approvals**
- CENELEC approved
- [Ex ia Ga] IIC (–20°C ≤ Ta ≤ +55°C)
- BASEEFA Certificate No. BAS 01 ATEX 7041
- EN61010-1:2010 compliant

**Power supply**
- 115 V AC 50/60 Hz (4234501) or 230 V AC 50/60 Hz (4234500)

**Power consumption**
- 30 W max.

**Fuse rating**
- T250 mA 250 V AC rated 1500 A HRC ceramic, 250 V AC rated
- 20 x 5 mm

**DC output**
- 350 mA stabilized ±0.14 %

**Load conditions**
- 1 Katharometer 13 Ω max.
- Interconnecting cable 2 Ω max.

**Ambient temperature range**
- –20 to 55 °C (–4 to 131 °F)

**Supply variations**
- ±15 V (115 V supply) or ±30 V (230 V supply) 46 to 64 Hz

**Regulation**
- Within ± 0.5 % for:
  - Load variation of ± 15 %
  - Supply variation of ± 15 %
  - Ambient temperature variation of ± 20 °C (36 °F)
- ±4 Hz frequency variation

**Ripple**
- Less than 0.5 % of set output peak / peak across a 10 Ω load

**Stability**
- Within ± 0.7 % of initial setting, over period of 1 month with load resistance, supply voltage and ambient temperature at nominal stated values

**Overall dimensions**
- 160 x 170 x 110 mm (6.3 x 6.7 x 4.3 in.)

**Weight**
- 2.12 kg (4.8 lb) approx.

**Environment**
- Sheltered interior

---

### 6540–203 and 6548–000 katharometer analyzer panel

**Approvals**
- CENELEC approved
- Ex ia Ga IIC (–20°C ≤ Ta ≤ +55°C)
- BASEEFA Certificate No. BAS 01 ATEX 1042
- EN61010-1:2010 compliant

**Power supply**
- 350 mA DC, from 4234500 or 4234501 power supply unit

**Signal output**
- 0 to 10 mV for each range (air in N₂ 1.0 mV)

**Accuracy**
- ± 2 % of scale span, each range
- ± 5 % of scale span, air in N₂

**Dead time**
- Typically 5 s

**Response time**
- Typically 40 s for 90 % step change at katharometer (tubing and drying chamber introduce extra delays)

**Ambient temperature**
- 55 °C (131 °F) max.
- 0 °C (32 °F) min.

**Sample connections**
- Compression couplings:
  - 6 mm OD tube (Model 6548-000)
  - 8 mm OD tube (Model 6540-203)

**Sample pressure**
- Minimum 125 mm H₂O
- Maximum 0.35 bar (gauge) Model 6540–203
- Maximum 10 bar (gauge) Model 6548–000

**Sample temperature**
- 0 to 55 °C (32 to 131 °F)

**Normal sample flowrate**
- 100 to 150ml/min.

**Maximum gas flowrate**
- 250 ml/min

**Minimum gas flowrate**
- 50 ml/min

**Outline dimensions**
- 610 x 305 x 152 mm (24 x 12 x 6 in.)

**Weight**
- 8.6 kg (18.9 lb)

**Environment**
- Sheltered interior
Overall dimensions
Dimensions in mm (in.)

Katharometer analyzer panel assembly (Model 6540–203)

Katharometer analyzer panel assembly (Model 6548–000)
...Overall dimensions
Dimensions in mm (in.)

Display monitor cubicle

Katharometer intrinsically safe circuits
Power and signal conventional circuits
Cable entries
Mounting panel display face

Model 6553 monitor

Intrinsically safe power supply unit (Model 4234500 or 4234501)
## Ordering information

ATEX compliant gas analyzer for hydrogen-cooled alternators

<table>
<thead>
<tr>
<th>Display monitor unit</th>
<th>AK10 X X X X X X X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Separate H₂ purity and purge gas displays</td>
<td>1</td>
</tr>
<tr>
<td>Dual 3-range displays (H₂ purity and 2 x purge gas)</td>
<td>2</td>
</tr>
<tr>
<td>Single 3-range (H₂ purity and 2 x purge gas)</td>
<td>3</td>
</tr>
<tr>
<td>Single hydrogen purity display</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hydrogen purity range</th>
<th>AK10 X X X X X X X</th>
</tr>
</thead>
<tbody>
<tr>
<td>80/85 % to 100 %</td>
<td>1</td>
</tr>
<tr>
<td>100 % to 85 % (does not conform to ATEX directive)</td>
<td>2</td>
</tr>
<tr>
<td>100 % to 80 % (does not conform to ATEX directive)</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Purge gas</th>
<th>AK10 X X X X X X X</th>
</tr>
</thead>
<tbody>
<tr>
<td>None (AK104 only)</td>
<td>0</td>
</tr>
<tr>
<td>CO₂</td>
<td>1</td>
</tr>
<tr>
<td>Argon</td>
<td>2</td>
</tr>
<tr>
<td>Nitrogen (AK101 only)</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gas analysis panel *</th>
<th>AK10 X X X X X X X</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0</td>
</tr>
<tr>
<td>Low pressure and flame traps for vent to atmosphere 0.35 barg (5 psi) max.</td>
<td>2</td>
</tr>
<tr>
<td>High pressure for closed loop 10 barg (145 psi) max.</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cubicle</th>
<th>AK10 X X X X X X X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without cubicle</td>
<td>0</td>
</tr>
<tr>
<td>With cubicle plus isolator</td>
<td>2</td>
</tr>
<tr>
<td>With cubicle plus isolator plus MCBs and power supply indicators</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gas sample flow alarm (available only with cubicle option)</th>
<th>AK10 X X X X X X X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not fitted</td>
<td>0</td>
</tr>
<tr>
<td>1 flow alarm fitted AK103 and AK104 (single gas analysis panel versions)</td>
<td>1</td>
</tr>
<tr>
<td>2 flow alarms fitted AK101 and AK102 (dual gas analysis panel versions)</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Katharometer power supply ***</th>
<th>AK10 X X X X X X X</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0</td>
</tr>
<tr>
<td>115 V 50 / 60 Hz</td>
<td>1</td>
</tr>
<tr>
<td>230 V 50 / 60 Hz</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Special feature</th>
<th>AK10 X X X X X X X</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0</td>
</tr>
<tr>
<td>Special</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System labels and instruction manuals**</th>
<th>AK10 X X X X X X X</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>1</td>
</tr>
<tr>
<td>French</td>
<td>2</td>
</tr>
<tr>
<td>German</td>
<td>3</td>
</tr>
<tr>
<td>Polish</td>
<td>7</td>
</tr>
</tbody>
</table>

* 2 gas analysis panels are required for AK101 and AK102

** Check with factory for availability

*** 2 katharometer power supplies are required for AK101 and AK102