

Advance Optima

Module Uras 14

Service Manual

43/24-1005-0 EN

ABB Automation

Table of Contents

Chapter 1:	Description of Functions	Page 1-1
Chapter 2:	Analyzer Module Variants	2-1
Chapter 3:	Module Components	3-1
Chapter 4:	Troubleshooting (being prepared)	4-1
Chapter 5:	Testing (being prepared)	5-1
Chapter 6:	Component Interchange	6-1
Chapter 7:	Calibration (being prepared)	7-1
Chapter 8:	Configuration (being prepared)	8-1
Chapter 9:	Parts Catalog	9-1

Chapter 1: Description of functions

Overview

This chapter	describes the underlying physical principles and provides information on the determination of influence values.	
Chapter contents	You will find the following information in this chapter:	
	Subject	See page
	Physical principles	1-2
	Determination of influence values	1-6
	Ex Concept (being prepared)	1-7

Physical principles

Measurement • NDIR Technique (Non-Dispersive InfraRed Analysis) principle • The measurement effect is based on resonance absorption of gas-specific vibration-rotation bands of gas molecules with differing atoms in the median infrared spectrum at wavelengths between 2.8 and 8 µm. • The individual gases to be measured are identified by their specific absorption bands. Each gas has such an absorption spectrum (fingerprint). Exceptions: - Monoatomic gases, such as inert gases

- Symmetrical gases, such as N_2 , O_2 and H_2
- These types of gases cannot be measured with this method.

The relationship between measured infrared emission absorption and the sample component is based on the LAMBERT-BEER law:

A = (10 - 11) / 10 = 1 - e $-\epsilon(\lambda) \cdot \rho \cdot I$

where

А	= Absorption
10	= Emission entering the cell
l1	= Emission leaving the cell
ε(λ)	= Sample component extinction coefficient
ρ	= Sample component density
1	= Sample cell length

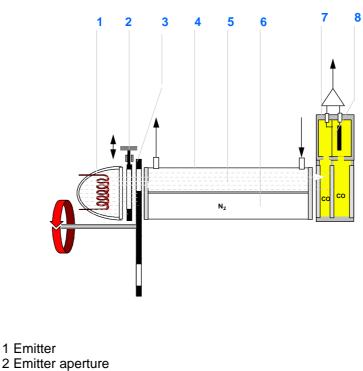
The relationship between test component density ρ and its volumetric concentration c is

$$\rho = \rho_0 \cdot \mathbf{c} \cdot \mathbf{p}/\mathbf{p}_0 \cdot \mathbf{T}_0/\mathbf{T}$$

where

= Pure gas density ρ_0 = Pressure \mathbf{p}_0 = Temperature T_0 under standard conditions (1013 hPa, 0°C).

The second equation shows that the sample component's volumetric concentration depends on the sample cell pressure and temperature.

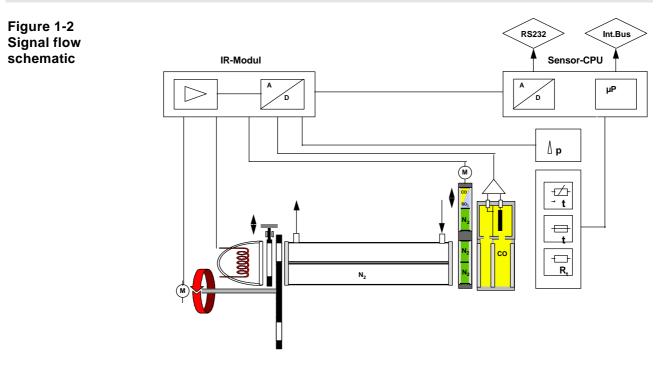

The first equation finds a non-linear relationship between absorption and volumetric concentration.

Physical principles, continued

Basic design

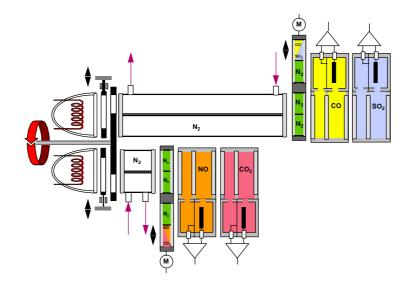
- The Uras 14 analyzer module is a twin-beam NDIR process photometer with no dispersive elements. The module consists of a completely self-contained optical unit with the following elements:
- Infrared source (emitter)
- Chopper wheel
- Emitter aperture
- Sample cell with sample and reference chambers
- Infrared detector with diaphragm capacitor

Figure 1-1 Measurement principle



- 1 Emitter
- 3 Chopper wheel
- 4 Sample cell
- 5 Sample chamber
- 6 Reference chamber
- 7 Infrared detector
- 8 Diaphragm capacitor

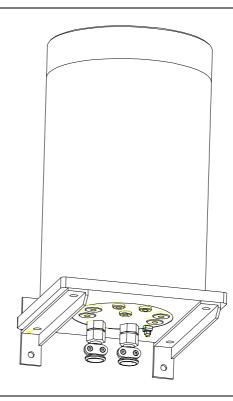
Physical principles, continued


IR emission	 Generated by broad-band emitter Emitted as a beam package alternately in the form of a sample and reference beam through the sample and reference chambers of the sample cell and is partially absorbed by the sample component molecules Counterphase modulation by means of a motorized chopper wheel Both modulated beam packages appear alternately at the infrared detector
Choppers	 Created by applicable regulation of the sample and reference beam balance
Sample cell	 Depending on the application, the sample chamber receives a sample, zero-point or end-point gas flow so that a part of the infrared radiation is absorbed in a concentration-dependent manner. The emission passes unhindered if the reference chamber is filled with a gas that does not absorb infrared (N₂).
Infrared detector	 A two-part transmission detector with front and rear chambers filled with the gas components to be measured; selectivity is determined by the infrared detector. The two chambers are separated by an infrared-transparent window. Additionally, the two chambers are separated by a stressed metal membrane with counterelectrodes. This unit is known as the diaphragm capacitor. It reacts in the following manner in the presence of the sample component: IR radiation is weakened in the sample cell's sample chamber and enters the receiver's front chamber. The equilibrium between the sample and reference beams initially established by calibration and the aperture is now disturbed. There is an energy difference (temperature change) in the form of reduced pressure in the front chamber. This pressure reduction is transformed into a capacitance change in the membrane capacitor by deflecting the metal diaphragm. Since the diaphragm capacitor is connected to a high-impedance DC voltage, a corresponding periodic AC signal is generated.
	Continued on next page

Physical principles, continued

IR-Modul = IR module

Figure 1-3 Outline diagram of fully equipped unit


Determination of influence values

Associated gas effects	The sample gas is a mixture of the sample component and associated gas components. If the infrared absorption bands of one or more associated gas components overlap the sample component's bands, the test results will be affected. The influence of interfering gas components is termed cross sensitivity or carrier gas dependence. Cross sensitivity is determined by connecting an inert gas (e.g. N ₂) which is mixed with the interfering gas components (corresponding to the test gas). The influence acts on the zero-point measurement value indication. Carrier gas dependence, which is rarely observed, occurs when the physical properties of the sample gas differ markedly from those of the test gas. This interference changes the slope of the device's characteristic curve. This curve is corrected at the end-point. The Uras 14 has the following methods available for interference correction: Interference filter Filter cells Internal electronic cross-sensitivity correction Internal electronic carrier gas correction
Pressure	According to the gas laws, the sample cell's volumetric concentration depends on the pressure in the sample cell and is thus dependent on the process gas and air pressure. This effect acts on the end-point and amounts to approx. 1% of the measurement value per 1% of pressure change (therefore, per 10 hPa). An internal pressure sensor reduces this effect to 0.2%.
Flow rate	The flow rate affects pressure in the sample cell and the module's T_{90} times. The flow rate should be between 20 and 100 liters/hour.
Temperature	 Temperature has a markedly different effect on all optical components in the beam path. This effect is reduced by: Temperature compensation A temperature sensor in the first infrared detector's preamplifier measures the temperature in the module. This signal is used for electronic correction. Zero-point effect: ≤ 1% of the measurement range per 10°C End-point effect: ≤ 1% of the measured value per 10°C Thermostat (optional) Zero-point effect: ≤ 1% of the measurement range per 10°C End-point effect: ≤ 1% of the measurement range per 10°C

Ex Concept

Being prepared

Figure 1-4 Ex Module

Chapter 2: Analyzer module variants

Overview

 Introduction
 This chapter describes the individual module variants.

 Chapter contents
 You will find the following information in this chapter

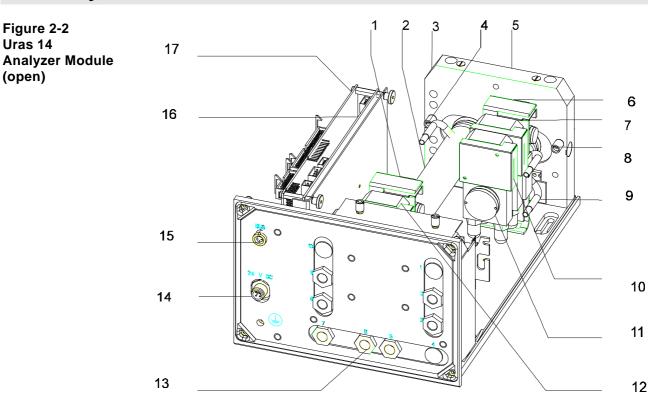
 Subject
 See page

 Summary
 2-2

 Module variants
 2-4

 Hose and piping connections
 2-6

Summary


-			
General	 Depending on the measurement application, the Uras 14 Analyzer can be equipped with the following main components: 1 to 4 infrared detectors 1 to 2 beam paths Up to 2 infrared detectors per beam path The following elements are permanently installed Both emitter inserts are filled There is hardware support for installation of a thermostat IR module circuit board Sensor-CPU circuit board Other components are fitted according to the measurement application or configuration ordered. Any version of the module can be installed in a 19" rack or wall housing without special conversion. The pneumatics module and oxygen analyzer module can be incorporated together in the gas path. 		
Special components	 The following components can be fitted according to the option ordered or measurement task to be carried out: 1 to 2 calibration units 1 to 2 filter cells Optics filter Gas paths FPM hose PTFE hose Stainless steel pipe 		
Figure 2-1 Uras 14 Analyzer Module			

- 1 Connection plate with electrical and gas connections 2 Sensor electronics
- 3 Optical analyzer components with heat hood

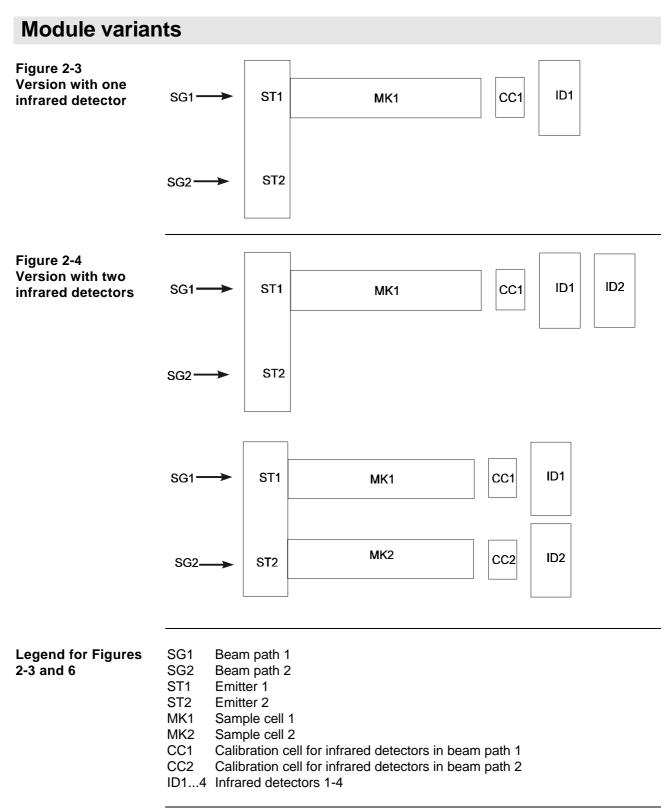
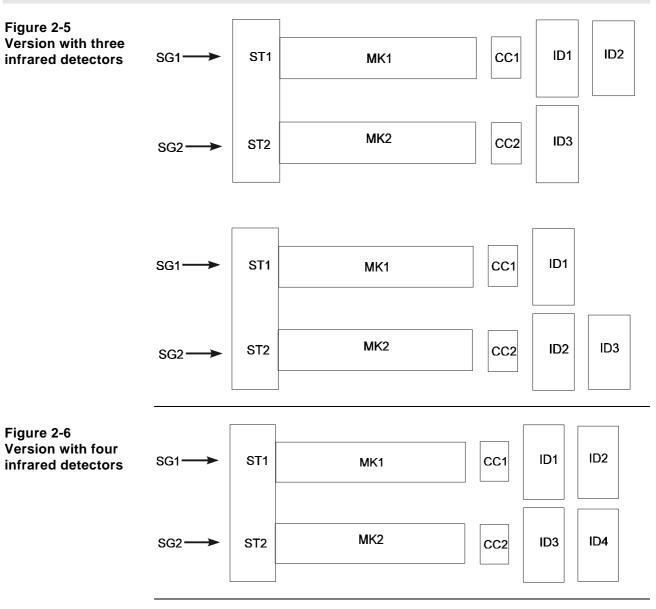
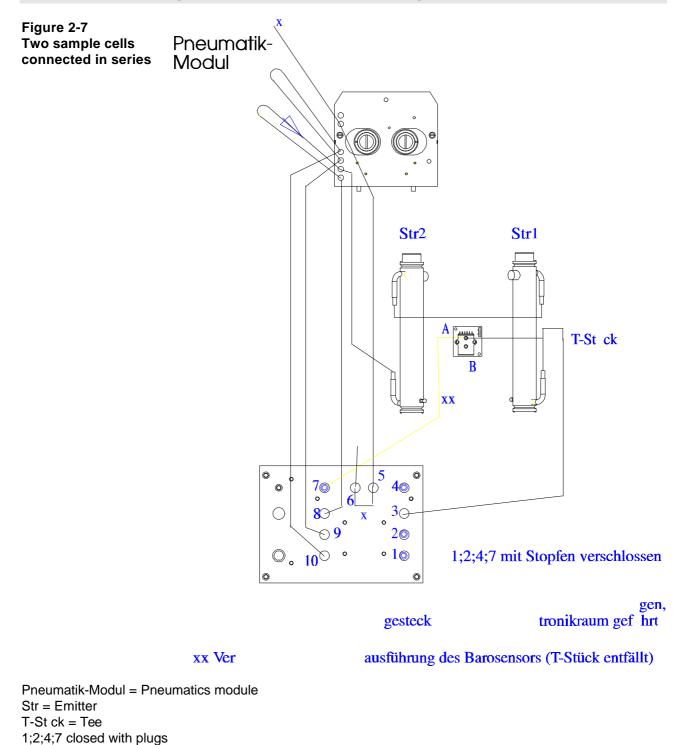

Summary, continued

Figure 2-2 Uras 14


(open)

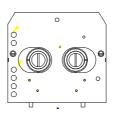
- 1 Calibration unit 2
- 2 Sample cell 2
- 3 Base support with choppers
- 4 Chopper adjustment screw for beam path 2
- 5 Modulator with emitters (not visible)
- 6 Calibration unit 1
- 7 Infrared detector 1
- 8 Chopper adjustment screw for beam path 1
- 9 Sample cell 1
- 10 Infrared detector 2
- 11 End disk (bright or dark)
- 12 Infrared detector 3
- 13 Gas connections
- 14 24-V external power supply
- 15 Internal bus, external connection

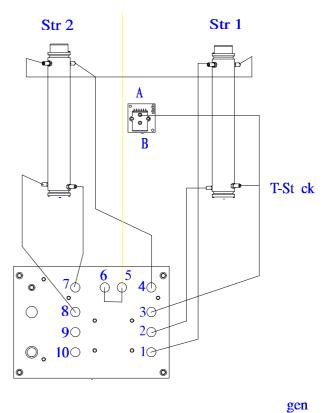


Module variants, continued

- Familiarity with the arrangement of the individual elements is needed for the following tasks:
 - Troubleshooting
 - Configuration
 - Optical alignment
 - Phase alignment

Hose and piping connections (still being supplemented)




Continued on next page

xx Ver version with pressure sensor (Tee not present)

Hose and piping connections (still being supplemented), Continued

Figure 2-8 Two sample cells with flowing reference gas

gesteckt und in den Elektronikraum gef hrt


Хb

Zwei K vetten ver und Barosensor ; ohne PA-Modul

ergleichsgas

Str = Emitter T-St ck = Tee X b ... inserted and placed in electronics compartment Two cells, reference gas and pressure sensor; No PA module

Hose and piping connections (still being supplemented), continued

Strahlengang = Beam path LO = Left top LU = Left bottom RU = Right bottom RO = Right top Luftdruck... = Air pressure sensor URAS 14 = URAS 14 connection plate (plug-in accessory)

In the URAS 14 Ex version, these pipes are screwed onto the flame barrier (pipes should be notched about 7 mm)

Chapter 3: Module components

Overview

Chapter contents	You will find the following information in this chapter:		
	Subject	See page	
	Emitter	3-2	
	Modulator	3-3	
	Choppers	3-6	
	Sample cell	3-7	
	Filter cell	3-10	
	Optics filter	3-11	
	Calibration unit	3-12	
	Calibration cell	3-14	
	Infrared detector	3-15	
	IR module circuit board	3-18	
	Sensor-CPU circuit board	3-22	
	Pressure sensor circuit board	3-27	
	Thermostat circuit board	3-28	
	Hood with supplemental heater	3-29	
	Connecting cable	3-30	

Emitter

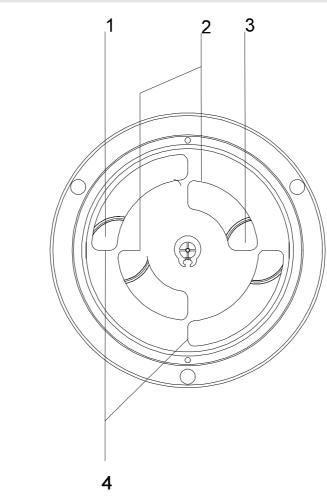
Location in module	Two emitters (emitter inserts) are installed at all times. The emitter inserts are attached to the modulator receiver plate (aluminum block).		
Design	The emitter insert consists of a reflective body, which houses a wire filament in a ceramic shell. The assembly is sealed behind a gas-tight, infrared-transparent window. For increased service life the emitter insert filled with a special gas.		
Function	Depending on module equipment, test components and measurement ranges, the emitter inserts are supplied with approx. 5-10 VDC. The filament then emits a broad-band, constant infrared light beam of the appropriate intensity.		
Figure 3-1 Emitter insert	1 3 2 4		
	 Infrared-transparent window Emitter filaments (not visible here) Electrical connections Reflective housing 		
Figure 3-2 Modulator with emitter insert			
	1 Modulator (receiver plate) 2 Emitter insert		

Modulator

Location in module	The modulator is fastened to the base support with the chopper adjustment.		
Design	The modulator consists of: • Receiver plate, on which all components are mounted • 2 emitter inserts • Chopper wheel • Synchronous motor to drive the chopper wheel • Coupling between synchronous motor and chopper wheel • Circuit board with • Emitter power supply connectors • Synchronous motor connector • Split light barrier • O rings to seal the emitter inserts and the entire modulator assembly		
Function	The computer-controlled synchronous motor drives the chopper wheel. Modulation rate: 7.3 Hz (standard setting). The motorized chopper wheel is designed to alternately cover the test and reference chambers in the sample cell so that infrared light from the emitters passes alternately through each chamber twice per revolution. This alternating arrangement is assured by the split light barrier fastened to the motor shaft by means of a lug. This design solution creates modulated light which results in a highly stable measurement signal.		
Figure 3-3 Modulator			

Continued on next page

Chopper wheel
 Synchronous motor
 Emitter circuit board
 Emitter inserts


5 Receiver plate

O/

Modulator, continued

Figure 3-4

Modulator **Chopper wheel**

1 Emitter 2

2 Chopper wheel aperture to reference chamber 3 Emitter 1

4 Chopper wheel aperture to test chamber

Modulator, continued

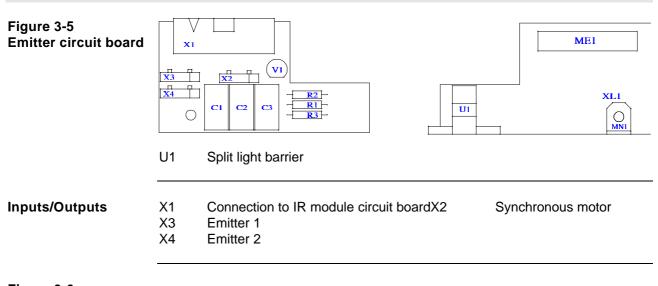
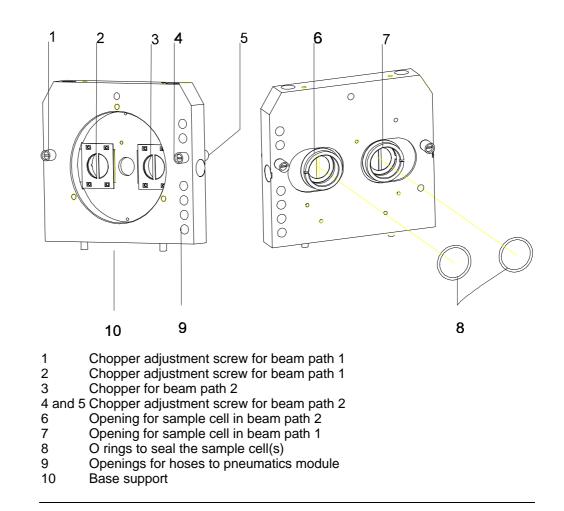
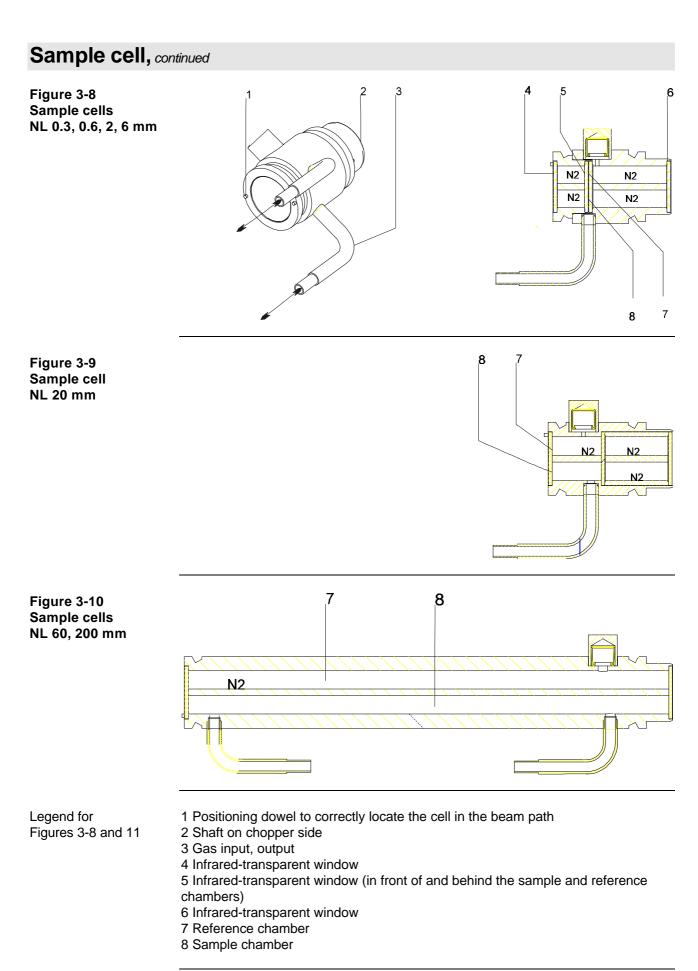
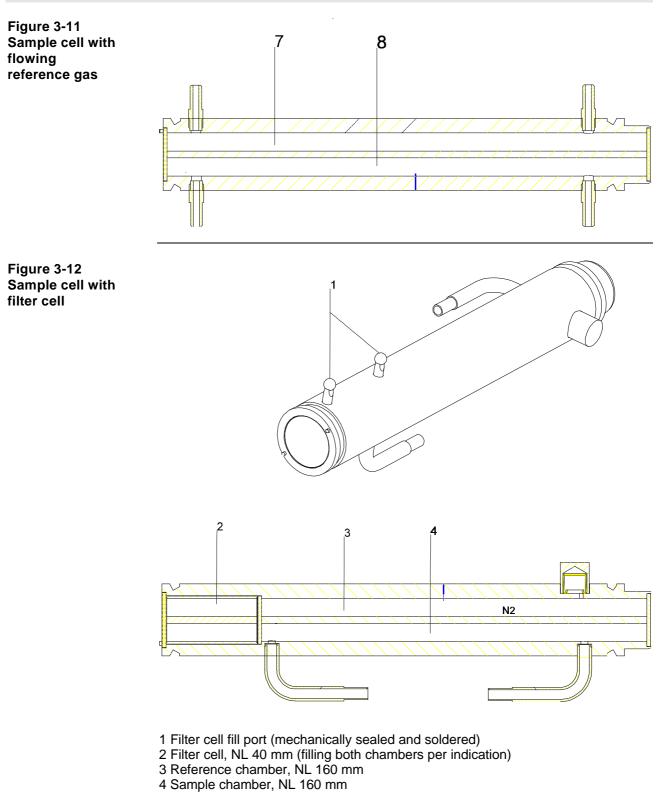



Figure 3-6 Pin layout

Choppers

Location in module	The choppers and their adjusting screws are found on the base support, between the modulator and sample cells.
Design	In the base support there are always two choppers installed in slides which can be moved in and out horizontally by means of a screw. Their arrangement reflects the division of the test cell into test and reference chambers.
Function	The chopper cuts the emitter's infrared output into the test and reference beams according to the adjustment in effect. Goal: Equal intensity for both beams in the infrared detector during the initial adjustment. Asymmetry is induced by design or sample gas considerations. The "Optical alignment" function is used to achieve balance.


Figure 3-7 Choppers


Sample cell

Location in module	The sample cell is installed between the base support with modulator and the infrared detector or calibration unit.
Design	The cell consists of a gold-plated, special-section tube. A land divides it into a sample and a reference chamber. The chambers are closed off at both ends with infrared-transparent windows. As standard equipment, the reference chamber is filled with N_2 . Two gas inlets allows the sample gas to flow through the sample chamber. The gas inlets are designed for the connection of piping or hoses. Positioning dowels hold the sample cells firmly in the beam path. For design reasons, shorter sample cells have additional N_2 -filled chambers in the sample and reference beams.
Function	 Cell length depends on the measurement range involved. Since infrared detectors for the components being measured have an assigned signal output, absorption adjustment according to the Lambert-Beer Law has to take place in the sample cell. Infrared light absorption depends on the concentration to be measured (measurement range) and the optical path length. The optical path length is the distance between the two windows in the sample and reference chambers. The gold plating on the chamber surfaces serves the following purpose: Optimal light reflection Corrosion protection for the cell Reflective properties are taken into consideration during optical alignment and calibration. There are special sample cells for specific applications: Sample cells with flowing reference gas In this application the reference chamber can receive a sample gas flow (without the sample component). Result: Absorption of the portion of light in the interference gas absorption line region. This occurs equally in both chamber portions. There is no cross sensitivity. A measurements are another application. Sample cell with integrated filter cell Here, both filter chambers (sample and reference side) are filled with the interference gas effect (cross sensitivity).
Variants	The nominal length is the optical path between the insides of the two windows.

NL (Nominal length) mm	Hose connection	Pipe connection	Flowing reference gas
0.3	Х	Х	-
0.6	Х	Х	-
2	Х	Х	-
6	Х	Х	Х
20	Х	Х	Х
60	Х	Х	Х
200	Х	Х	Х

Sample cell, continued

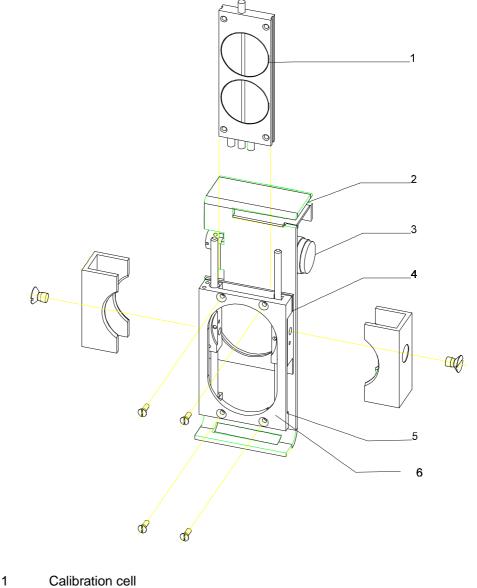
Filter cell

Location in module	The filter cell is mounted between the sample cell and the infrared detector or between the sample cell and the calibration cell.				
Design	The filter cell consists of a gold-plated, special section tube. A land divides it into sample and reference chambers with a gas connection between them. The filter cell is closed off at both ends with infrared-transparent windows. Two positioning dowels hold the filter cell properly in the beam path.				
Function	The sample and reference sides are individually filled with the corresponding interference gas. This causes absorption of the beam portion within the range of the interfering gas absorption lines. Result: A marked reduction in cross sensitivity.				
Figure 3-13 Filter cell NL 60 mm					

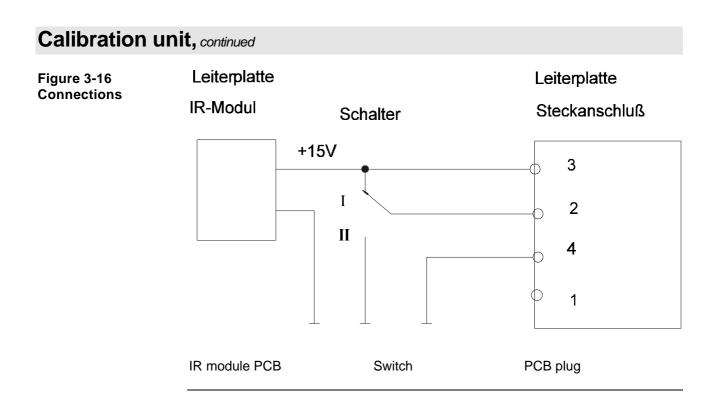
Optics filter

Location in module	Depending on the module arrangement and measurement task involved, the optical filters are placed in the following locations: between Sample cell and infrared detector Two infrared detectors Calibration unit and infrared detector				
Design	The optical filter (interference filter) consists of a silicon disk with varying degrees of metallic dampening depending on the desired properties. The filter is clamped in a metal socket. The design of the sockets varies according to the sites listed above.				
Function	Emission ranges in the sample and interference band overlap regions are diminished by installing interference filters. This means that certain filter types only allow specific wavelengths to pass. For reasons of symmetry, the filter acts on the sample and reference sides of the beam path. Use of filters is dependent on the following marginal conditions: Combination of gas components in the sample gas Component concentrations Measurement ranges Filters are primarily used for the SO ₂ , NO, N ₂ O, and C _n H _m components.				
Figure 3-14 Optics filter					

1 Optical filter, Type A (between sample cell / detector and detector 2 Optical filter, Type B (between calibration cell and detector)

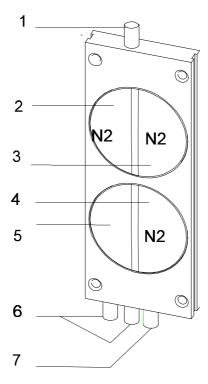

Calibration unit

Location in module The calibration unit is an option. It is installed between the sample cell and infrared detector.


Design

The calibration device is a motor-driven slide system for the calibration cell. A small geared motor with a drive pin moves a slide block. Small permanent magnets are used to improve calibration cell positioning and fastening. Two U-clamps are used to attach the cell. Different versions are provided for use with and without an optical filter.

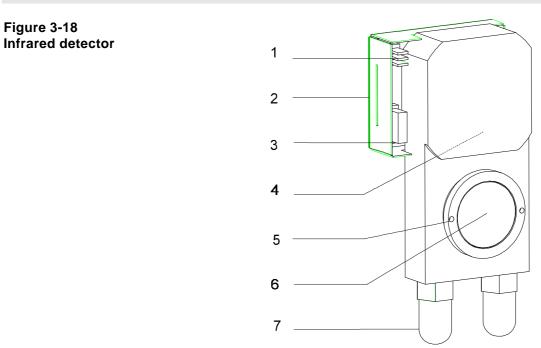
Figure 3-15 Calibration unit


- Connector circuit board
- 2 3 Geared motor
- 4 & 5 Permanent magnet
- Slide block 6

Calibration cell

Location in module	The optional calibration cell can be installed in the calibration unit. A calibration cell can be installed in each beam path.		
Design	The calibration cell housing consists of a gold-plated metal frame with four chambers which are sealed in a gas-tight manner by infrared-transparent window. Three chambers are filled with nitrogen. One chamber is filled with the required test gas mixture.		
Function	The calibration cell is used for end-point calibration. Each beam path can have a calibration cell. When there are two infrared detectors in the beam path, the calibration cell contains a mixed filler. The calibration gas fill is comparable to that of a test gas vessel. The concentration marked on the calibration cell is the fill concentration. This is not the calibration concentration for the Uras 14. It should be determined with the test gas.		

Figure 3-17 Calibration cell



- 1 N_2 fill port (sealed gas-tight and soldered)
- 2 & 3 Chambers filled with N_2 , for measurement and zero-point alignment in the beam path
- 4 N₂-filled chamber, for end-point calibration in reference gas beam path
- 5 Test gas-filled chamber, for end-point calibration in the sample beam path
- 6 Test gas fill ports (sealed gas-tight and soldered)
- 7 N₂ fill port (sealed gas-tight and soldered)

Infrared detector

Location in module	The infrared detector is placed at the end of the sample cell. Depending on the application, there can be 1-4 detectors. Up to 2 detectors can be installed per beam path.			
Design	 The infrared detector consists of the following parts: Optopneumatic part, consisting of 2 consecutively connected chambers; these are separated by infrared-transparent windows. The chambers are filled with the gas appropriate for the sample component involved. The emission-free area contains the diaphragm capacitor made up of a gas-tight, metal diaphragm installed between the two chamber portions and a fixed counterelectrode. Both parts are connected to the preamplifier via gas-tight passages. The preamplifier is an integral part of the detector. The preamplifier incorporates a temperature sensor for temperature compensation. 			
Function	The beam reaching the detector is absorbed in the region of the fill gas absorption line and by means of molecular collision is momentarily changed into a pressure reflecting the heat energy. This pressure change is detected by the diaphragm capacitor. Via a high-impedance circuit, the 150-volt power supplied now generates a corresponding mV-range DC voltage. Primary absorption of the emission occurs in the front chamber (positive displacement). The flank-emphasized light emission portion of the rotation line, which leads to cross sensitivity in case of interfering gas component overlap, acts on the rear chamber. Due to the greater depth of the rear chamber this interfering emission is extensively absorbed so that here there is a pressure increase which counters the pressure in the front chamber. This results in some suppression of cross-sensitivity effects. The temperature sensor determines the ambient temperature of the optical components and thus is part of the measurement signal temperature compensation mechanism. Only the sensor of the first infrared detector is involved.			
Types	All infrared detectors are mechanically identical. The application determines the fill. The detectors are suitable for all measurement ranges permitted according to the data sheet. Measurement components: CO, NO, SO ₂ , N ₂ O, Frigen/R12, H ₂ O, SF ₆ , CS ₂ , NH ₃ CH ₄ , C ₂ H ₂ , C ₂ H ₄ , C ₂ H ₆ , C ₃ H ₆ , C ₃ H ₈ , C ₄ H ₁₀ , C ₆ H ₆ , C ₆ H ₁₄ CO ₂ with 10% fill for small measurement ranges CO ₂ with 100% fill for large measurement ranges			

Infrared detector, continued

- 1 Jumpers for amplifier matching
- 2 Preamplifier
- 3 Plug for IR module circuit board4 Diaphragm capacitor
- 5 Front and rear chambers
- 6 Positioning dowels and bores
- 7 Fill ports (mechanically sealed and soldered)

Figure 3-19 Preamplifier

- BR 1 Amplification x 1
- BR 2 Amplification x 3
- BR 3 Amplification x10
- ST1 Connection to IR module circuit board
- A / B Solder points for diaphragm capacitor

Infrared detector, continued

Figure 3-20 Preamplifier Pin layout

_

PI Connection t	ug 1 o IR electron	ics
SIGN. GND	1	
+ 150V	2	
	3	
AGND	4	
TEMP	5	
<u>+ 15V</u>	6	
GNDA	7	
SIGN. INP.	8	
TEST	9	
<u>- 15</u> V	10	

Note

Pin 3 of plug ST1 is not available. It is used for keying (positioning the plug).

IR module circuit board

Location in module	The circuit board sits beside the analyzer module and is connected to the Sensor- CPU circuit board.				
Design	There are three socket terminal strips on the back of the circuit board for power supply and signal communication purposes. There are two side-mounted pin-type terminal strips for flat cable connections to the optical components.				
Function	 The circuit board contains the following functions: 4x channel electronics for the four possible infrared detectors with computer-controlled 0.3/ 1.0/3.5/12-fold amplification matching. 150-V power supply for the diaphragm capacitors Power supply for Emitter 1 with computer-controlled emitter power adjustment Power supply for Emitter 2 with computer-controlled emitter power adjustment Power supply for chopper wheel motor Light barrier signal Power supply for calibration unit motors 				
Figure 3-21 IR module circuit board	X3 X4 X9 X7 X7 X8 X9				

Inputs/Outputs Х3 Infrared detector 1 preamplifier Infrared detector 2 preamplifier Modulator (Emitter 1 and 2, synchronous motor, split light barrier Calibration unit 1 Calibration unit 2 Pressure sensor X4 Infrared detector 3 preamplifier Infrared detector 4 preamplifier Χ7 Connection to sensor-CPU circuit board X8 Connection to sensor-CPU circuit board Connection to sensor-CPU circuit board X9

IR module circuit board, continued

Figure 3-22.1 Pin layout IR module circuit board

Plug X 3 Plug X $S1 +$ 1 CCVORH 1 $S1 +$ 2 CC 1 $F1 +$ 3 + 15V $S1 -$ 4 - $F1 -$ 5 - $S2 -$ 6 - $S2 -$ 6 - $S2 +$ 7 CCVORH 2 $F2 -$ 8 CC 2 MOTOR 1 9 + 15V $F2 +$ 10 - MOTOR 2 11 - 12 + 5V 13 L SCHR 14 + 15V 15 -15V 16 17^- - BARO 1 18 19 + 150V 12 - 12 - 12 - 12 - 12 - 12 - 12 - 122 -	39 40 41 42 43 44 45
F1 + 3 + 15V S1 - 4 F1 - 5 5 S2 - 6 S S2 + 7 CCVORH 2 F2 - 8 CC 2 MOTOR 1 9 + 15V F2 + 10 + 15V MOTOR 2 11	41 42 43 44 45
F1 + 3 + 15V S1 - 4 F1 - 5 S2 - 6 S2 + 7 F2 - 8 MOTOR 1 9 + 15V F2 + 10 + 15V MOTOR 2 11 1 12 + 15V + 5V 13 L SCHR 14 + 15V 15 - 15V 16 1 19 + 150V 20 1 21 1 22 LN335 - 1 23	42 43 44 45
S1 - 4 F1 - 5 S2 - 6 S2 + 7 F2 - 8 MOTOR 1 9 F2 + 10 MOTOR 2 11 12 12 + 5V 13 L SCHR 17 BARO 1 18 19 + 150V 20 121 122 LN335 - 1 23	<u>43</u> <u>44</u> 45
F1 - 5 S2 - 6 S2 + 7 F2 - 8 MOTOR 1 9 F2 + 10 MOTOR 2 11 12 + 5V 13 L SCHR 14 + 15V 15 -15V 16 17 BARO 1 18 19 + 150V 20 12 12	<u>44</u> 45
S2 - 6 S2 + 7 F2 - 8 CCVORH 2 MOTOR 1 9 + 15V F2 + 10 \downarrow MOTOR 2 11 \downarrow MOTOR 2 11 \downarrow + 5V 13 L SCHR 14 + 15V 15 $-15V$ 16 17 BARO 1 18 19 $+150V$ 20 12 22 21 22 LN335 - 1 23	<u>44</u> 45
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
F2 + 10 MOTOR 2 11 12 + 5V 13 L SCHR 14 + 15V 15 - 15V 16 17 BARO 1 19 + 150V 20 12 - 12 - 15V 16 17 BARO 1 18 19 + 150V 20 21 22 LN335 - 1 23	46
F2 + 10 MOTOR 2 11 12 + 5V 13 L SCHR 14 + 15V 15 - 15V 16 17 BARO 1 19 + 150V 20 12 - 12 - 15V 16 17 BARO 1 18 19 + 150V 20 21 22 LN335 - 1 23	47
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	48
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>49</u>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>50</u>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Image: line Image: line BARO 1 18 Image: line 19 + 150V 20 Image: line 21 Image: line 22 LN335 - 1 23	
BARO 1 18 19 + 150V 20 121 22 LN335 - 1	
⊥ 19 + 150V 20 ⊥ 21 ⊥ 22 LN335 - 1 23	
+ 150V 20 21 22 LN335 - 1 23	
<u> 21</u> <u> 22</u> <u>LN335 - 1 23</u>	
<u> </u>	
LN335 - 1 23	
<u>+ 15V 24</u>	
25	
<u>VV 1 26</u>	
VV-Test 27	
<u>- 15V 28</u>	
29	
<u>+ 150V 30</u>	
31	
32	
LM 335-2(nc) 33_	
<u>+ 15V 34</u>	
35	
<u>VV 2 36</u>	
<u>VV-TEST 37</u>	
<u>- 15V 38</u>	

IR module circuit board, continued

Figure 3-22.2 Pin layout IR module circuit board

Plug 4	Plug 7
1	<u>+ 5V 1</u>
<u>+ 150V 2</u>	2
3	<u>+ 24V 3</u>
4	4
<u>LM 335 (no) 5</u>	5
<u>+ 15V 6</u>	6
7	<u>24 COM 7</u>
<u>VV 3 8</u>	<u>8</u>
<u>VV-TEST 9</u>	<u>9</u>
<u>- 15V 10</u>	10
<u> </u>	BARO 1 11
<u>+ 150V 12</u>	12
13	CCVORH1 13
14	CCVORH2 14
LM 335-4 (no) 15	<u>S DOWN1 15</u>
<u>+ 15V 16_</u>	<u>16</u>
17	<u>17</u>
<u>VV 4 18</u>	<u>18</u>
<u>VV-TEST 19</u>	<u>19</u>
<u>- 15V 20</u>	<u>20</u>

		Plug 8	P	lug 8
+ 5V		1	<u>A8</u>	17
		2	<u>A9</u>	18
		<u>3</u>	<u>A10</u>	19
		4	<u>CS-I/O-1</u>	20
	D0	5	<u>CS-I/O-2</u>	21
	D1	6	RD	22
	D2	7	WR	23
	D3	8	ADH-CLK	24
	D4	9	ADH-CLK2	25
	D5	10	RUN/HOLD	<u>26</u>
	D6	11	AD1_PW	<u>27</u>
	D7	12		<u>28</u>
	<u>A0</u>	13	<u>INT 1</u>	29
	<u>A1</u>	14	INT:2	30
	A2	15	INT 3	31
	<u>A3</u>	16	INT_4	32

Continued on next page

IR module circuit board, continued

Figure 3-22.3 Pin layout IR module circuit board

	Plug 9	
+ 15V	1	
<u>- 15V</u>	2	
	3	
NTC 1	4	
LM335-1	5	
<u>(</u> NTC)	6	
RESET	7	
ICLK	8	
IDAT	9	
	10	
<u>TFS_77</u>		11
<u>RFS 77</u>	12	
DIN 77	13	
<u>DOUT 77</u>	14	
<u>SCLK 77</u>	15	
<u>DRDY_77</u>	16	
<u>SYNC_77</u>	17	
<u>A=/CS_77</u>	18	
	<u>19</u>	
	<u>20</u>	

Sensor-CPU circuit board

Location in module	The Sensor-CPU circuit board sits beside the analyzer modules and is connected to the IR module circuit board.
Design	The Sensor-CPU circuit board transfers signals to the Sensor-CPU circuit board [<i>Translator's note: sic</i>] via 3 pin-type terminal strips. Also there are 5 plug connections for central and peripheral functions.
Function	 The circuit board contains the following functions: Module signal processing and control processor A/D converter for variables Multiplexer for variables Selection of internal sample preparation 15-V, 24-V power supplies Reset generation Internal bus controller
Figure 3-23 Sensor-CPU circuit board	

D14

5

1 1027

D16

D20

X6

XB8

0

8

DS

D13

MEI

D18

XL

I D15

ΰľ

R36 R34

X12

X10

+

0

R27

R54 R85

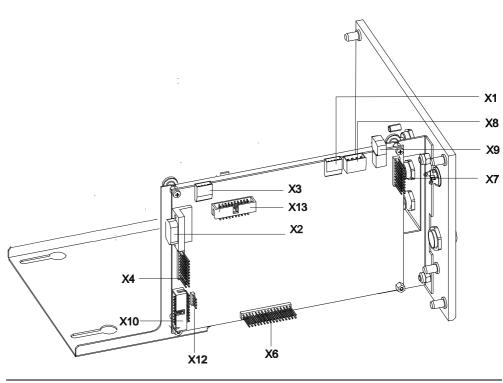
Continued on next page

ជ

4

0

20


VI2

N9

V13 C64 +

Inputs/Outputs	X1 X2 X3 X4 X6 X7 X8 X9 X10 X12 X13	Internal bus RS232/Service RS232 Connection to IR module circuit board Connection to IR module circuit board Connection to IR module circuit board Heater 24-V power supply Connection to pneumatics module Pressure sensor input (not for Uras 14 module) Dongle
Equipment	D24 D18 H1 H2 H3 EEPRO	Flash EPROM with Firmware EEPROM with analyzer data Green LED, power supply Yellow LED, analyzer module needs service Red LED, Sensor-CPU failure DM D18 contains all analyzer and electronics data.

Figure 3-24 Pin layout on Sensor-CPU circuit board

Continued on next page

Figure 3-25.1 Pin layout Sensor-CPU

Plug X1 Internal bus	Socket X2 RS232 Service
4GNDCAN3CANH2CANL1GNDCAN7457451)_9)_8)_7)_6)_5)_4)_3 RXD1)_2 TXD1)_1 7457452
Plug X3 RS232	Plug X4 Connection to IR electronic
3 TXD2 2 RXD2 1	$\begin{array}{c c} \hline \\ \hline $
7457453	4 5 6 7 HEIZUNG 8
	9 10 BARO1 11 12 PORT_7.0 13 PORT_7.1 14
	S_DOWN1 15 PORT_7.3 16 PORT_7.4 17 PORT_7.5 18 VAREF 19 VAGND 20

Continued on next page

Figure 3-25.2 Pin layout Sensor-CPU

Plug X6 <u>Connection to IR elect</u> <u>VCC</u> <u>+DATEN</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>DC</u> <u>D</u>	1 2 3 4 5 1 6 2 7 3 8 8 9 5 10	C	onnection ·	to IR electronics
*DATEN	2 3 4 5 1 6 2 7 3 8 4 9 5 10			15∨ 2 3 NTC1 4 LM335-1 5 (NTC) 6 RESET 7 ICLK 8 IDAT 9
RUN/ HOLD AD1_PW AD1_PW AD1_PW AD1_PW AD1_PW AD1_PW AD1_2 AD1_PW AD1_2 AD1_PW AD1_2 AD1_PW AD1_2	12 13 14 15 16 17	8-Bit I/O Port	TFS_77 RFS_77 DIN_77 DOUT_77 SCLK_77 DRDY_77 SYNC_77 A0/CS_77 7457457	PORT_5.0 11 PORT_5.1 12 PORT_5.2 13 PORT_5.3 14 PORT_5.4 15 INT_1 16 PORT_5.6 17 PORT_5.7 18 PORT_1.7 19 20 20
Plug X8 Heater				lug X9 24V

DATEN = DATA HEIZ = HEATING HEIZUNG = HEATING

Continued on next page

7457459

4

Heizung

X8

NTC1

_ X9B

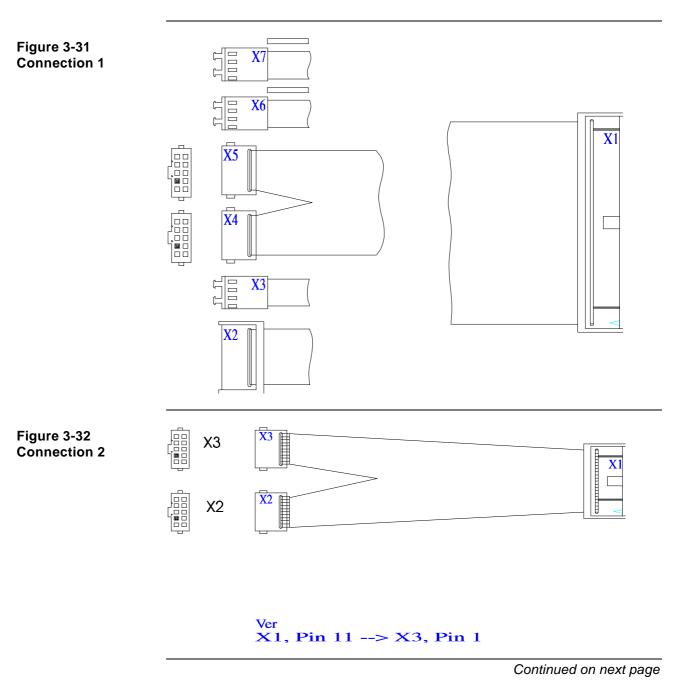
Figure 3-25.3 Pin layout Sensor-CPU

Plug X10	Plug X12
Pneumatics module	Flow rate sensor
	not applicable to Uras 14
PUMPE24V 1	+15V 1 _
PUMPE24V 2	-15V 2 <u>_</u>
PUMPE_M 3 _	FLOW1 3
PUMPE_M 4 _	4
MV1_24V 5 _	74574512
MV1_M 6	74074012
MV2_24V 7	
MV2_M 8	
MV3_24V 9	
MV3_M 10	
NTC2 11	
12_	
02-A 13 _	
14	
O2-B 15	
16	
+15∨ 17_	
-15V <u>18</u>	
FLOW1 19	
20	
FLOW2 21	
22	
23	
24	
25	
74574510 26	

Pressure sensor circuit board

Location in module	The pressure sensor is mounted on the analyzer module base plate.
Design	The pressure sensor is fastened to a circuit board with the appropriate circuitry. The circuit board is plug-connected to the IR module circuit board.
Function	The pressure sensor measures the pressure in the sample cell. This signal is used for pressure correction of the measurement signal. Optionally the pressure sensor can be connected to measure external pressure via a separate hose line. Specifications: • Absolute pressure sensor • Working range 700-1300 mbar • Offset calibration required
Figure 3-26 Pressure sensor circuit board	A A A
Inputs/Outputs	X2 Connection to IR module circuit boardA Gas input (pressure in the sample cell)
Figure 3-27 Pin layout	$\begin{array}{c c} +15V & 1 \\ -15V & 2 \\ \hline 3 \\ \hline 8aro & 4 \\ \hline 745722 \end{bmatrix}$

Thermostat circuit board


Location in module	The circuit board is connected to the base support.	
Design	The circuit board contains 2 heating resistors. The temperature sensor (NTC) is soldered via a cable. A connecting cable for supplemental heating is also soldered. A single plug is used for power supply and regulation. The thermal link is clamped in.	
Function	The thermostat circuit board is responsible for control of the optical element temperature. The temperature setting is 55°C. The thermal link fails at 85°C.	
Figure 3-28	 1 2 3 I I I I I I I I I I I I I I I I I I I	
Figure 3-29 Pin layout Thermostat circuit board	$\begin{array}{c c} & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$	
Inputs/Outputs	 Plug connection to Sensor-CPU Thermal link clamp connection Solder points for NTC temperature sensor XA1/XA2 Plug connection for supplemental heating in hood 	

Hood with supplemental heater

Location in module	This hood covers the optical components.
Design	The hood consists of a U-shaped piece of sheet metal with a heating element fitted on each of the side walls.
Function	The heated hood works with the base support heating system to control the temperature of all optical elements. It is plug-connected in parallel with the thermostat circuit board.
Figure 3-30 Hood with heater	STA1

Connecting cable

Location in module Connection between IR module circuit board and optical components.

Connecting cable, continued

Figure 3-33 Pin layout Connecting cable 1

Strahler=Emitter; VV = Preamplifier; Kanal = Channel; Kalibrierküvette=Calibration cell; IR-Elektronik = IR electronics

Continued on next page

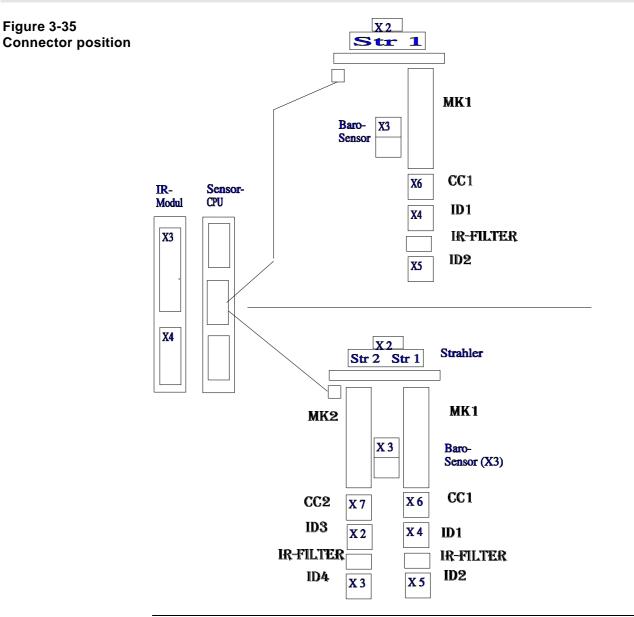

Connecting cable, continued

Figure 3-34 Pin layout Connecting cable 2

Kanal = Channel IR-Elektronik = IR electronics

Continued on next page

Connecting cable, continued

IR-Modul = IR module Str = Emitter Strahler = Emitter Baro-Sensor = Pressure sensor

Chapter 4: Troubleshooting

Subject See page Display error messages Does not operate Unreliable/wrong measurements Output error Interface problems Other errors

Chapter 5: Testing

Overview		
Introduction	This chapter describes procedures for testing the primary measurement and influence values on the analyzer module as well as testing of components. Special accessories will be described where necessary.	
Chapter contents	In this chapter you will find the following information:	
	Subject	See page
	Seal integrity	5-2
	Flow Rate	
	Measurement signal	
	IR module circuit board	
	Sensor-CPU circuit board	
	Emitter	5-7
	Modulator	
	Sample Cell	5-9
	Calibration unit	
	Calibration cell	
	Infrared detector	
	Pressure sensor	
	Temperature regulation	5-14

Some portions are still being prepared

Checking Gas Path Seal Integrity

Accessories	Pressur	Pressure leak tester		
Test method	Test pTest ti	e drop method: ressure p = 50 mbar me t = 180 sec ure drop< 5 mbar	_	
Procedure				
	Step	Action	_	
	1	Verify hose routing per hose connection diagram.	_	
	2	Close sample das outlet		

- 2 Close sample gas outlet.
- 3 Connect the pressure leak tester to the sample gas inlet.

Flow Rate

Measurement signal

IR module circuit board

Sensor-CPU circuit board

Emitter

ccessories	Multimete	er		
Test method	-	esistance me	asurements	
		esistance:	$13 \pm 0.5 \Omega$	
	 Impres 	sed voltage:	$5.6 \pm 0.5 \; V$	2.2 W emitter output
			7.45 ± 0.5 V	3.8 W emitter output
			9.5 ± 0.5 V	6.8 W emitter output
rocedure				
rocedure	Step	Action		
rocedure	Step 1			
Procedure		Voltage test • Emitter vo leads. Note: The	Itage can be me	asured at the emitter insert electrical t visibly at voltages between 7.45 and 9.5
rocedure	1	Voltage test • Emitter vo leads. Note: The V.	Itage can be me	asured at the emitter insert electrical t visibly at voltages between 7.45 and 9.5
rocedure		Voltage test • Emitter vo leads. Note: The V. Resistance	Itage can be me filament will ligh test:	

Modulator

Sample cell			
Accessories	Cleaners as necessary		
Test method	Visual check		
Procedure			
	Step	Action	
	1	Remove the sample cell.	
	2	Visual check;	
		 The windows should be unobstructed and free of coatings. The gold-plated interior surfaces should have the typical gleam and be free of any shading. 	
	3	 Cleaning: Rinse (agitate) with distilled water; if necessary, loosen contaminants with a small amount of detergent. Rinse with distilled water. Dry with nitrogen (if possible, warmed to approx. 60°C). 	

Calibration unit

Calibration cell

Infrared detector

Pressure sensor

Temperature regulation

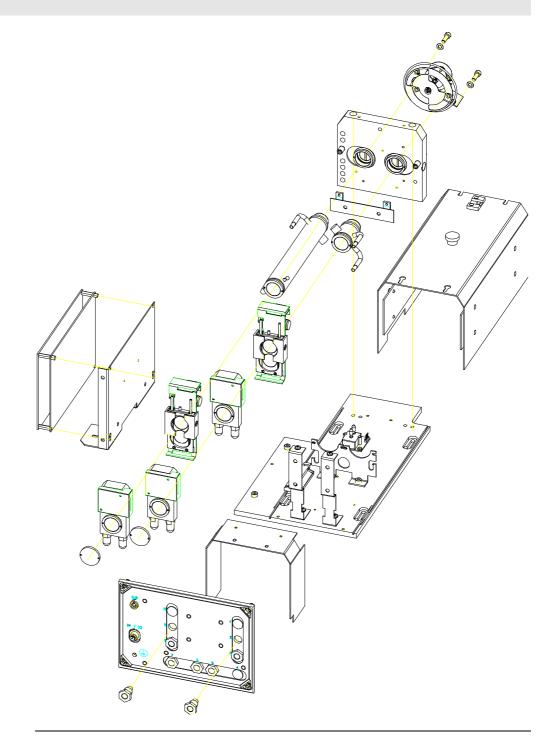
To a form of the solution			
Test method	Voltage/resistance measurements Power supply voltage Heat resistors Base support: Hood: Temperature sensor (NTC) Thermal link 	24 V approx. 12.5 Ω approx. 50 Ω approx. 8 k Ω Check continuity	
Procedure			-

Step	Action
1	Remove the connecting cable from the board (plug X8 on Sensor-CPU PCB).
2	Remove the electrical connection from the hood.
3	Measure resistance at the appropriate connectors.

Chapter 6: Component Interchange

Overview			
Introduction		This chapter contains the steps and procedures to be follo components.	wed when interchanging
	œ	In order to remove and install components safely and correct the instructions and warnings in this chapter.	ectly, read and follow all
	ø	Caution! The tasks described in this chapter require special t certain conditions involve working on the analyzer v powered up. For this reason, these tasks should on specially trained and qualified persons.	while it is open and
Chapter contents		You will find the following information in this chapter:	
		Subject	See page
		Summary	5-2
		Remove/install Uras 14 analyzer module	5-3
		Change emitter insert	5-5
		Change modulator	5-6
		Change sample cell	5-7
		Change calibration cell and calibration unit	5-9
		Change infrared detector	5-10

Change IR module and Sensor-CPU circuit boards


Change thermal link

5-11

5-12

Summary

Figure 6-1 Analyzer module

Remove/install Uras 14 analyzer module

Module removal

To remove the module, proceed as follows:

	Step	Action
-	1	Jurn off the analyzer power supply.
-	2	Shut off the gas supply (sample gas and, if applicable, reference gas) to the analyzer.
-	3	Disconnect the gas lines from the analyzer module ports.
-	4	Flush the analyzer module.
-	5	Open the system housing.
-	6	Remove the cables connecting the analyzer module to the central unit.
-	7	Disconnect the hood cable.
-	8	Remove 4 screws (1)
-	9	Remove the hood.
-	10	Remove the analyzer module mounting screws. 4 bolts on the gas connection plate (2). 4 nuts on the base plate (3).
-	11	Remove the analyzer module from the housing
-		
Iodule installation T	o install	the module, proceed as follows

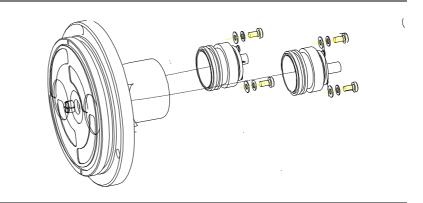
Action Step 1 Place the analyzer module in the system housing. 2 Secure the analyzer module with the four bolts and four nuts. 3 Install the hood. 4 Reconnect the cables. Close the system housing. 5 6 Check the analyzer module seal integrity. 7 Connect the gas lines to the analyzer module. 8 Open the gas supply to the analyzer module. 9 Turn on the analyzer system power supply

Continued on the following page

Remove/install Uras 14 analyzer module, continued

Figure 6-2 Opening the analyzer module 00 Ø ۵ 0 á 0 0 C Figure 6-3 Removing the analyzer module Đ С 0 3 0 3 0

3


3

Change emitter insert

Note

The emitter inserts can be changed without removing the analyzer module. Both plugs need to be removed from the modulator circuit board. Two screws in each case need to be removed.

Figure 6-4 Changing emitter inserts

Change modulator

Note

The modulator can be changed without removing the analyzer module. The connecting cable plug needs to be removed from the modulator circuit board. Remove three screws (1).

Figure 6-5 Removing the modulator

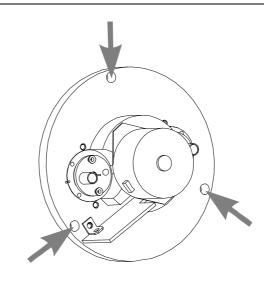
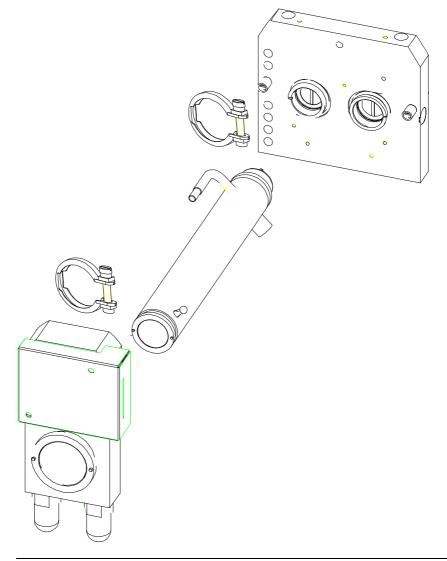


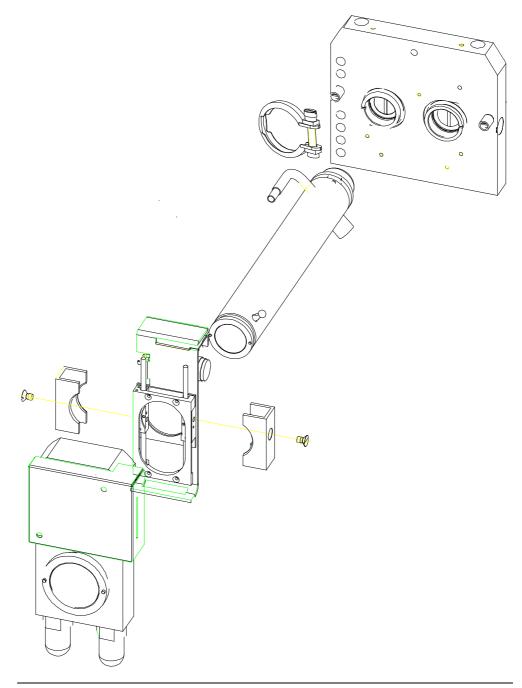
Figure 6-6 Disassembling the modulator


Change sample cell

Removing/installing the sample cell

To remove the sample cell, proceed as follows:

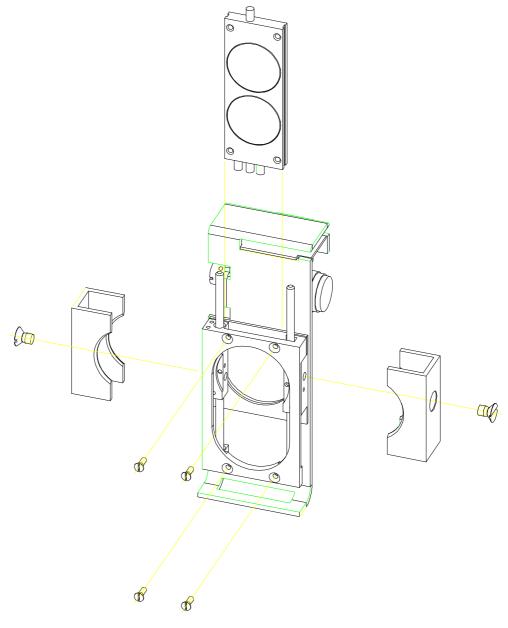
Step	Action
1	Carry out "Analyzer module removal" steps 1-7.
2	Remove the infrared detector wiring.
3	If applicable, remove the calibration unit wiring.
4	Loosen and bend back the clamp on the base support.
5	Remove the hoses from the sample cell.
6	If applicable, remove the 200-mm cell attachment O-ring
7	Slide the entire optical unit out of the base support.
8	Depending on the option involved, disassemble the optic unit according to the figure.
9	Reverse the above steps to install.


Figure 6-7 Removing without calibration cell

Continued on the following page

Change sample cell, Continued

Figure 6-8 Removing sample cell with calibration unit

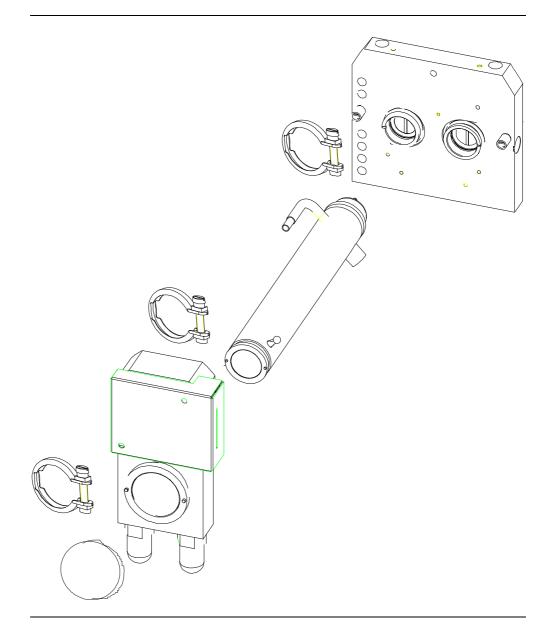

Change calibration cell and calibration unit

Removing the calibration cell

To remove the calibration cell, proceed as follows:

	Step	Action
	1	Carry out all steps listed under "Sample cell removal".
Installing the calibration cell	filled wi	! nstalling, make sure to place the calibration cell window which is th test gas in the proper side. and right beam paths are mirror images of each other.

Figure 6-9 Calibration unit with calibration cell

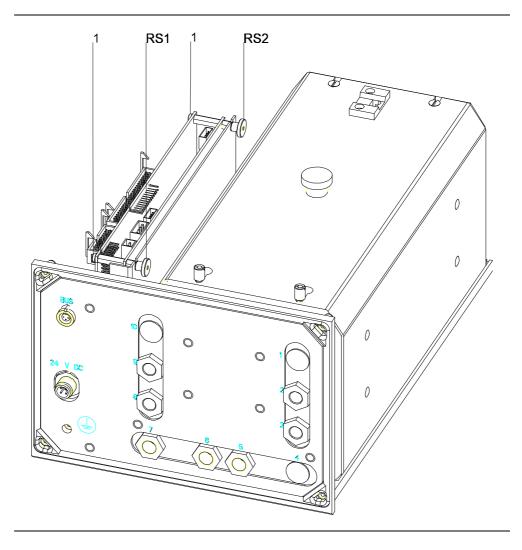

Change infrared detector

Removing/installing the infrared detector

To remove the infrared detector, proceed as follows:

Step	Action
1	Carry out "Analyzer module removal" steps 1-7.
2	Remove all wiring connected to the optical components.
3	Loosen and bend back the clamp on the base support.
4	Remove the hoses from the sample cell.
5	If applicable, remove the 200-mm cell attachment O-ring
6	Pull the entire optical unit out of the base support.
7	Remove the infrared detector per Figure 5-8 and 5-10.
8	Reverse the above steps to install Make sure the proper end disk (bright or dark) is installed behind the infrared detector.

Figure 6-10 Removing the infrared detector


Change IR module and Sensor-CPU circuit boards

Removing the circuit To remove the circuit boards, proceed as follows: **board**

Step	Action			
1	Turn off the analyzer power supply.			
2	Open the large door on the system housing.			
3	Remove all cable connections from the circuit boards.			
4	Loosen the two knurled nuts (RS1 and RS2) and remove the IR module and Sensor-CPU board from the support.			
5	Remove the four attaching screws (1) and carefully remove the IR module circuit board from the Sensor-CPU board connector.			

Installing the circuit Essentially the installation process is the reverse of the removal process. **board**

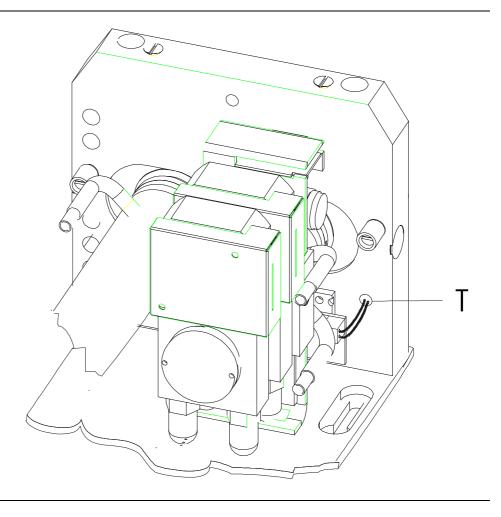
Figure 6-11 Analyzer module view

Caution!

The Sensor-CPU circuit board contains the flash EPROM with the module firmware and the EEPROM with module-specific data.

Change thermal link

Removing the thermal link


To remove the thermal link, proceed as follows:

Step	Action
1	Turn off the analyzer power supply.
2	Open the large door on the analyzer housing.
3	Remove the hood.
4	Remove the thermostat circuit board connector.
5	Pull the thermal link (T) out of the base support.

Installing the thermal link

Essentially the installation process is the reverse of the removal process.

Figure 6-12 Analyzer module Partial view

Chapter 7: Calibration

Overview				
ntroduction	This chapter describes the basic calibration of the analyzer module and the ancillary detectors.			
Chapter contents	In this chapter you will find the following information:			
Chapter contents	In this chapter you will find the following information:	See page		
Chapter contents		See page 7-2		

Being prepared

Chapter 8: Configuration

Overview

Being prepared

Chapter 9: Spare parts list

Overview				
Introduction	This chapter contains the spare parts list for the Uras 14 analyzer module. It identifies the spare parts with a part number, description and additional information.			
Chapter contents	You will find the following information in this chapter:			
Chapter contents	You will find the following information in this chapter:	See page		
Chapter contents	·	See page 8-2		

Notes

being prepared

Spare parts list

Part	Description	Additional information	VT	VE	JB	Note
number						
0745 611	Modulator	with 2 emitter inserts	1		1	1
0745 401	Emitter insert	complete	х		0.2	
0768 417	Base support	for modulator, with chopper				
0967 979	Wrench	for emitter insert				
0746 271	CO receiver	with preamplifier			0.2	
0768 458	SO2 receiver	with preamplifier			0.2	
0768 459	NO receiver	with preamplifier			0.2	
0856 053	CO2-10% receiver	with preamplifier			0.2	
0856 296	CO2-100% receiver	with preamplifier			0.2	
0743 968	H2O receiver	with preamplifier			0.2	
0856 320	Frig/R12 receiver	with preamplifier			0.2	
0856 629	N2O receiver	with preamplifier			0.2	
0746 254	NH3 receiver	with preamplifier			0.2	
0856 096	CH4 receiver	with preamplifier			0.2	
0746 255	C2H2 receiver	with preamplifier			0.2	
0746 256	C2H4 receiver	with preamplifier			0.2	
0746 257	C2H6 receiver	with preamplifier			0.2	
0746 258	C3H6 receiver	with preamplifier			0.2	
0743 969	C3H8 receiver	with preamplifier			0.2	
0746 260	C4H10 receiver	with preamplifier			0.2	
0746 261	C6H6 receiver	with preamplifier			0.2	
0856 319	C6H14 receiver	with preamplifier			0.2	
0746 259	CS2 receiver	with preamplifier			0.2	
0746 262	SF6 receiver	with preamplifier			0.2	
0271 234	End disk	dark				
0271 324	End disk	bright				
0768 443	Sample cell	0.3 mm			0.3	
0768 444	Sample cell	0.6 mm			0.3	
0768 448	Sample cell	2 mm			0.3	
0768 449	Sample cell	6 mm			0.3	
0768 450	Sample cell	20 mm			0.3	
0768 453	Sample cell	60 mm			0.3	
0768 454	Sample cell	200 mm			0.3	
0768 433	Sample cell	6 mm, flowing reference gas			0.3	
0768 435	Sample cell	20 mm, flowing reference gas			0.3	
0768 437	Sample cell	60 mm, flowing reference gas			0.3	
0768 439	Sample cell	200 mm, flowing reference gas			0.3	
0768 472	Sample filter cell	200 mm, (160/40), specify filler			0.3	
0768 477	Filter cell	FK60, specify filler			0.2	

Continued on the following page

Spare parts list, Continued

Part	Description	Additional information	VT	VE	JB	Note
number	·					
0856 484	Calibration unit	for version without optional filter			0.2	
0856 485	Calibration unit	for version with optional filter			0.2	
5618 170	Calibration cell	Specify filler concentration			0.2	
	installation					
0768 180	Optical filter	CO2				
0768 181	Optical filter	CO2, for calibration unit				
0856 303	Optical filter	NO				
0856 306	Optical filter	NO, for calibration unit				
0856 304	Optical filter	CnHm				
0856 307	Optical filter	CnHm, for calibration unit				
0856 631	Optical filter	N2O				
0856 632	Optical filter	N2O, for calibration unit				
0768 491	Optical filter	SO2				
0768 492	Optical filter	SO2, for calibration unit				
0768 515	Optical filter	SF6				
0768 516	Optical filter	SF6, for calibration unit				
0768 523	Optical filter	CO2, for reduced sensitivity				
0074 505						
0271 565	Hose ports					
0271 586	Piping connection	SO E 1021 E 1 atomican atomi				
0839 968	Piping threads	SO 5.1021-5-4, stainless steel		0	4	
0801 936	Connection set	for (internal) pipe threads	Х	Set	1	
0801 937	Seal kit	Seals and fasteners	х	Set	1	
0768 534	Connecting hose	complete, PTFE				
0069 841	Hose	FPM-70-SW-4x1.5 (7/4x1.5)		• ·		
0801 935	Tension ring	optional component with optional filter		Set		. .
0856 099	Clamp	-				3 each
0745 722	Circuit board	Pressure sensor				
0745 744	Circuit board	Temperature equalization				
0745 836	Thermal link		х		1	
0745 823	Heating resistor	installed, for hood				
0745 648	Circuit board	IR module				
0745 745	Circuit board	Sensor-CPU				
0745 832	Connector	IR module - IR electronics, large				
0745 833	Connector	IR module - IR electronics, small				
0745 927	Connector	24V				
0801 938	Accessory plug	24V, with cable and multi-pin connector		Set		
0801 945	Connectors	Internal bus				

Continued on the following page

Spare parts list, Continued

Part	Description	Additional information	VT	VE	JB	Note
number						
0743 091	Connector	Module/PC				
0743 091	Connector	Module/FC				
0768 494	Flame barrier	Purge gas				
0768 493	Flame barrier	Sample gas				

ABB Automation Analytical Division Stierstaedter Strasse 5, D-60488 F

Stierstaedter Strasse 5, D-60488 Frankfurt am Main Phone +49-69-79 30-40, Fax +49-69-79 30-45 66 E-Mail analytical-mkt.deapr@de.abb.com, http://www.abb.com/analytical Subject to technical changes Printed in the Fed. Rep. of Germany 43/24-1005-0 EN 10.98