Fault Indicator

SPEF 3A2 C

Product Guide

	Fault Indicator	SPEF 3A2 C	
	Product Guide	IMRS750440-MBG Issued: April 1999 Status: Updated Version: C/26.04.2006 Data subject to change without notice	
Features	 Versatile, multifunction line fault indicator for distribution networks Overcurrent, earth-fault and phase unbal- ance indication in one 	 Alternative analog or digital outputs, where no fibre-optic SPA bus is available Improved system reliability supported by a built-in sophisticated self-supervision sys- tem 	
	 Definite time operation characteristic and wide setting ranges Two current sensors available: type KOHU 24A1 and type KOKU 072G3 Set values, measured values, fault records, event records and diagnostic data can be read locally and remotely via the serial port Serial communication between fault indicator and substation control level system 	 High immunity to conducted electromagnetic interference Snap-on mounting on standard DIN rail or surface mounting on cabinet wall Member of the SPACOM product family, ABB's Distribution Automation system 	
Application	The fault indicator type SPEF 3A2 C is used in association with disconnector terminal units (DTUs) for detection of short circuits, earth faults and phase discontinuity in distri- bution networks. The fault indicator functions a data acquisition unit which allows measured information and alarms from a DTU to be	read by a remote control system. The infor- mation can be used e.g. for locating faults in the distribution network. If no serial bus (SPA bus) is available, infor- mation can be obtained via the relay outputs and the analog outputs of the fault indicator.	

Product Guide

Design

4

The fault indicator is energized from current sensors type KOHU 24A1 or KOKU 072G3. The current sensors isolate the power network from the electronics and match the phase currents to suit the measuring circuits of the fault indicator.

The fault indicator comprises three functional units, i.e. an overcurrent unit, an earth-fault unit and a phase unbalance unit. Further, the indicator includes a serial communication unit which communicates with hierarchically superior systems via the serial bus.

The overcurrent unit monitoring the three phase currents starts if one or more of the supervised phase currents exceed the set start value I>. If the fault persists, an alarm will be given after a set time t>.

The earth-fault unit monitoring the residual current starts if the residual current exceeds the set start value I_0 >. If the fault persists, an alarm will be given after a set time t_0 >.

The phase unbalance unit monitoring the phase currents starts if the phase unbalance exceeds the set start value ΔI >. If the fault persists, an alarm will be given after a set time t Δ >.

The fault indicator is provided with three analog outputs, one for the load current, one for the earth-fault current and one for the phase unbalance. Further, the indicator has three contact alarm outputs.

Data communication

The indicator is provided with a serial interface connecting the equipment to the SPA bus.

Self-supervision

The indicator incorporates a sophisticated self-supervision system with auto-diagnosis, which increases the availability of the device and the reliability of the system. The selfsupervision system continuously monitors the hardware and the software of the indicator.

When a permanent internal relay fault is detected, the IRF indicator on the relay front panel is lit. At the same time a fault message is transmitted to the higher-level system over the serial bus. Further, in most fault situations, a fault code is shown on the display of the device. The fault code indicates the type of the fault that has been detected.

Auxiliary supply voltage

The fault indicator is powered from an external 24 V dc source (20...30 V dc). The power consumption is 1.5...3 W, depending on the state of the indicators and output relays.

Technical data

Table 1: Energizing inputs

Туре		Primary current	KOHU 24A/ KOKU 073G2
			secondary current
Measuring range of phase	e current input	0700 A	00.175 A
Thermal withstand	continuously	400 A	0.1 A
	for 1 s, with connection box SPEC 3	20 kA (I _{th})	2.3 A
Dynamic current withstand, including connection box SPEC 3	Half-wave value	50 kA (l _{dyn})	5.7 A
Earth-fault protection mea	asuring range	070 A	-
Input impedance		<100 Ω	1
Rated frequency fn, according to order		50 Hz or 60 Hz	

Table 2: Overcurrent unit

Start current I>	30300 A
Start time, typically	60 ms
Operate time t>	0.06300 s
Reset time, typically	60 ms
Drop-off/pick-up ratio, typically	0.95
Operate time accuracy	±2% of set value or ±25 ms
Operation accuracy	±3% of set value

Table 3: Earth-fault current unit

Start current I ₀ >	220 A
Start time, typically	60 ms
Operate time t>	0.1300 s
Reset time, typically	60 ms
Drop-off/pick-up ratio, typically	0.95
Operate time accuracy	$\pm 2\%$ of set value or ± 25 ms
Operation accuracy	\pm 5% of set value or \pm 1% of I _{load}

Table 4: Phase unbalance unit

Start current ∆I>	1060% of I _n
Start time, typically	90 ms
Operate time t>	0.1300 s
Reset time, typically	90 ms
Drop-off/pick-up ratio, typically	0.90
Operate time accuracy	$\pm 2\%$ of set value or ± 75 ms
Operation accuracy	\pm 5% of displayed value

Table 5: Output contact ratings

According to IEC 60255-0-20	
Rated voltage	250 V ac
Breaking capacity (L/R < 7 ms)	2 A , 20 V dc or 250 V ac
Making capacity	5 A, 0.5 s
Minimum load	10 mA at 5 V dc

Product Guide

Technical data (cont'd) Table 6: Analog outputs

Voltage range		05 V dc
Load impedance, min.		10 kΩ
Response delay		<500 ms
Accuracy	I _{load} when current >5 A	5% or 30 mV
	I ₀	5% or ±30 mV
	ΔI when I_{phase} (I_{L1} , I_{L2} or	±200 mV
	I _{L3}) ≥ 10 Å	

Table 7: External control input

Control voltage	1830 V dc
Control current at activated input, typically	10 mA

Table 8: Data transmission

Transmission mode	Serial bus
Transmission protocol	SPA bus
Data transfer rate, selectable	4800 Bd or 9600 Bd

Table 9: Power supply

Supply voltage	2030 V dc
Power consumption, depending on relays and indicators	1.53 W

Table 10: Tests and standards

Test voltages	Insulation test (IEC 60255-5)	2 kV, 50 Hz, 1 min
(for the output relays)	Impulse test (IEC 60255-5)	5 kV, 1.2/50 μs, 0.5 J
	Insulation resistance (IEC 60255-5)	>100 MΩ, 500 V dc
Interference tests (the test arrangement	High frequency disturbance test (IEC 60255-6), common mode	2.5 kV, 1 MHz
box SPEC 3 and	High frequency disturbance test (IEC 60255-6), differential mode	1.0 kV, 1 MHz
$a \ge 2$ m connection cable)	Electrostatic discharge test (IEC 60255-22-2, class III), air discharge	8 kV
	Electrostatic discharge test (IEC 60255-22-2, class III), contact discharge	6 kV
	Fast transient test (IEC 60255-22-4, class III)	2 kV
Environmental conditions	Specified ambient service temperature range	-10+55°C
	Transport and storage temperature range	-40+70°C
Climatic environmental tests	Damp heat test (IEC 60068-2-30)	RH=93%, +55°C, 6 cycles
	Dry heat test (IEC 60068-2-2)	+55°C/16 h
	Dry cold test (IEC 60068-2-1)	-10°C/16 h
	Degree of protection by enclosure of the device case (IEC 60529)	IP 20
	Weight	about 1.3 kg

Fault Indicator

7

Product Guide

Block diagram

Fig. 1 Block diagram and sample connection diagram

Product Guide

Ordering

When ordering, please specify:

Ordering information	Ordering example
1. Type designation and quantity	SPEF 3A2 C, 5 pieces
2. Order number	RS 489 001-AA
3. Rated frequency	f _n = 50 Hz
4. Special requirements	-

Order numbers

Fault indicator SPEF 3A2 C	RS 489 001-AA, BA
The last two letters of the order number indicate the	AA equals f _n = 50 Hz
rated frequency f _n of the indicator as follows:	BA equals f _n = 60 Hz

References

Additional information

|--|

ABB Oy Distribution Automation P.O. Box 699 FI-65101 Vaasa, FINLAND Tel +358 10 22 11 Fax +358 10 224 1094 www.abb.com/substationautomation