ABB Oil Movement & Blending Applications

- State-of-the-art OM&B Applications for Refinery Offsites and Terminal Tank Farms

- Experience & Global Reach
 - >200 man-years of application engineering experience
 - gained over 30 projects, covering 70 blenders, in a dozen countries

- Full-Scope, Closed-Loop Solutions comprising:
 - Industrial IT DCS
 - all required field instrumentation
 - online analytical instrumentation
 - proprietary chemometric modeling technology
 - advanced blend property control & optimization
 - expert system movements automation
 - FEED through construction capability
 - Pay-for-Performance project financing
ABB OM&B Application Software Packages

- TIMS – Tank Information Management
- RBC – Regulatory Blend Control
- ABC – Advanced Blend Control
- StarBlend – Offline Blend Planning
- iOM&S – Oil Movement & Storage
- CP&S – Crude Planning & Scheduling
Tank Information Management System (TIMS)

- DCS-level interface to multiple tank gauging systems
- DCS &/or NT-based Operator Interface
- Volume calculations from strapping tables or formulas
- ASTM/API volume correction
- Gross/net volumes & capacities
- Operating states
Regulatory Blend Control (RBC)

- standard configuration & programming for Advant, Symphony, & Industrial-IT DCS
- manual or automatic line-up
- automatic sequential control for start-up, ramps, and shutdown
- flow ratio control
- pacing control
- built-in simulator for testing and operator training
ABB’s IIT DCS Technology

Aspects & Objects

Built-in OPC connectivity

Full implementation of IEC 61131-3 standards (SFC, ST, & “blockware” used)

Revision control via Control Builder Control Modules, not monolithic compiled code

Offline, closed-loop testing via soft controller
Advanced Blending Control (ABC) Package

- Native-Windows, client-server design:
 - Oracle relational database
 - Visual Basic HMI
 - nonlinear optimization

- Comprehensive operations tool for:
 - offline planning
 - blend & general transfer order management
 - physical movement line-up
 - pre-blend optimization
 - optimal online control
 - monitoring & reporting

- Supports its own configuration & maintenance
<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>State</th>
<th>Target Vol</th>
<th>Blender</th>
<th>Product</th>
<th>Dest Tank</th>
<th>Start Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>000001</td>
<td>TEST1</td>
<td>ACTIVE</td>
<td>120000</td>
<td>MOGAS1</td>
<td>87 REGULAR A</td>
<td>TK1102</td>
<td>1998-11-08 03:30</td>
</tr>
<tr>
<td>000002</td>
<td>TEST2</td>
<td>DONE</td>
<td>110000</td>
<td>MOGAS1</td>
<td>87 REGULAR A</td>
<td>TK1106</td>
<td>1998-11-09 03:32</td>
</tr>
<tr>
<td>000003</td>
<td>TEST3</td>
<td>PARTIAL</td>
<td>22000</td>
<td>CRUDE HDR1</td>
<td>87 REGULAR B</td>
<td>TK3050</td>
<td>1998-12-10 03:31</td>
</tr>
<tr>
<td>000004</td>
<td>TEST4</td>
<td>PAUSED</td>
<td>21000</td>
<td>FUEL HDR1</td>
<td>87 REGULAR B</td>
<td>TK3051</td>
<td>1999-03-05 03:25</td>
</tr>
<tr>
<td>000005</td>
<td>TEST5</td>
<td>READY</td>
<td>40000</td>
<td>DIESEL HDR1</td>
<td>87 REGULAR B</td>
<td>TK1104</td>
<td>1999-02-06 03:33</td>
</tr>
<tr>
<td>000006</td>
<td>TEST6</td>
<td>SEALED</td>
<td>40000</td>
<td>CRUDE HDR2</td>
<td>87 REGULAR B</td>
<td>TK1106</td>
<td>1999-03-04 03:33</td>
</tr>
<tr>
<td>000007</td>
<td>TEST7</td>
<td>SEALED</td>
<td>40000</td>
<td>MOGAS2</td>
<td>87 REGULAR B</td>
<td>TK1102</td>
<td>1999-02-15 03:37</td>
</tr>
<tr>
<td>000008</td>
<td>ERIK1</td>
<td>SEALED</td>
<td>12000</td>
<td>MOGAS1</td>
<td>87 REGULAR A</td>
<td>TK1102</td>
<td>1999-01-05 04:07</td>
</tr>
<tr>
<td>000009</td>
<td>ERIK2</td>
<td>SEALED</td>
<td>12000</td>
<td>MOGAS1</td>
<td>87 REGULAR A</td>
<td>TK1102</td>
<td>1999-01-01 04:07</td>
</tr>
<tr>
<td>000010</td>
<td>ERIK3</td>
<td>SEALED</td>
<td>12000</td>
<td>MOGAS1</td>
<td>87 REGULAR A</td>
<td>TK1102</td>
<td>1998-12-15 04:07</td>
</tr>
<tr>
<td>000011</td>
<td>ERIK4</td>
<td>SEALED</td>
<td>12000</td>
<td>MOGAS1</td>
<td>87 REGULAR A</td>
<td>TK1102</td>
<td>1998-12-05 04:07</td>
</tr>
<tr>
<td>000012</td>
<td>ERIK5</td>
<td>SEALED</td>
<td>12000</td>
<td>MOGAS1</td>
<td>87 REGULAR A</td>
<td>TK1102</td>
<td>1998-11-30 04:07</td>
</tr>
<tr>
<td>000013</td>
<td>ERIK6</td>
<td>SEALED</td>
<td>12000</td>
<td>MOGAS1</td>
<td>87 REGULAR A</td>
<td>TK1102</td>
<td>1998-01-05 04:07</td>
</tr>
<tr>
<td>000014</td>
<td>ERIK7</td>
<td>SEALED</td>
<td>12000</td>
<td>MOGAS1</td>
<td>87 REGULAR A</td>
<td>TK1102</td>
<td>1997-02-05 04:07</td>
</tr>
<tr>
<td>000015</td>
<td>NODEST1</td>
<td>SEALED</td>
<td>12000</td>
<td>MOGAS1</td>
<td>87 REGULAR E</td>
<td>TK1102</td>
<td>1997-02-04 04:07</td>
</tr>
<tr>
<td>000016</td>
<td>NODEST2</td>
<td>SEALED</td>
<td>12000</td>
<td>MOGAS1</td>
<td>87 REGULAR E</td>
<td>TK1102</td>
<td>1997-02-04 04:07</td>
</tr>
<tr>
<td>001008</td>
<td>TEST8</td>
<td>PARTIAL</td>
<td>0</td>
<td>MOGAS1</td>
<td>87 REGULAR E</td>
<td>TK1102</td>
<td>1999-06-10 15:38</td>
</tr>
<tr>
<td>001010</td>
<td>TEST9</td>
<td>PARTIAL</td>
<td>0</td>
<td>MOGAS1</td>
<td>87 REGULAR E</td>
<td>TK1102</td>
<td>1999-06-10 16:33</td>
</tr>
<tr>
<td>001014</td>
<td>TEST10</td>
<td>PARTIAL</td>
<td>0</td>
<td>MOGAS1</td>
<td>87 REGULAR E</td>
<td>TK1102</td>
<td>1999-06-10 16:33</td>
</tr>
</tbody>
</table>
ABC Blend Order Display
<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>MIN</th>
<th>MAX</th>
<th>NEW VALUE</th>
<th>SAMPLE TIME</th>
<th>CURRENT VALUE</th>
<th>CURRENT TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>RON (PROD)</td>
<td>75</td>
<td>95</td>
<td>93.10</td>
<td></td>
<td>94.20</td>
<td>01/20/2000 3:27:42 PM</td>
</tr>
<tr>
<td>MON (PROD)</td>
<td>60</td>
<td>85</td>
<td>82.10</td>
<td></td>
<td>83.00</td>
<td>04/05/1999 12:02:00 PM</td>
</tr>
<tr>
<td>RDOI</td>
<td>70</td>
<td>95</td>
<td>87.60</td>
<td></td>
<td>84.00</td>
<td>04/05/1999 12:02:00 PM</td>
</tr>
<tr>
<td>REID VAPOR P</td>
<td>5</td>
<td>18</td>
<td>71.2</td>
<td></td>
<td>7.0</td>
<td>04/05/1999 12:02:00 PM</td>
</tr>
<tr>
<td>0% PT</td>
<td>100</td>
<td>400</td>
<td></td>
<td></td>
<td>124.3</td>
<td>01/20/2000 3:30:09 PM</td>
</tr>
<tr>
<td>10% PT</td>
<td>70</td>
<td>200</td>
<td></td>
<td></td>
<td>160.2</td>
<td>01/20/2000 3:30:09 PM</td>
</tr>
<tr>
<td>50% PT</td>
<td>125</td>
<td>350</td>
<td></td>
<td></td>
<td>218.2</td>
<td>01/20/2000 3:30:09 PM</td>
</tr>
<tr>
<td>90% PT</td>
<td>0</td>
<td>425</td>
<td></td>
<td></td>
<td>367.1</td>
<td>01/20/2000 3:30:10 PM</td>
</tr>
<tr>
<td>99.999% PT</td>
<td>375</td>
<td>450</td>
<td></td>
<td></td>
<td>432.0</td>
<td>01/20/2000 3:30:10 PM</td>
</tr>
<tr>
<td>SULFUR</td>
<td>0</td>
<td>25</td>
<td>0.04</td>
<td></td>
<td>0.01</td>
<td>01/20/2000 3:30:10 PM</td>
</tr>
<tr>
<td>API</td>
<td>-1</td>
<td>120</td>
<td></td>
<td></td>
<td>30.00</td>
<td>04/05/1999 12:02:00 PM</td>
</tr>
<tr>
<td>AROM</td>
<td>0</td>
<td>50</td>
<td></td>
<td></td>
<td>30.00</td>
<td>04/05/1999 12:02:00 PM</td>
</tr>
<tr>
<td>OLEFIN</td>
<td>0</td>
<td>50</td>
<td></td>
<td></td>
<td>9.00</td>
<td>04/05/1999 12:02:00 PM</td>
</tr>
<tr>
<td>DXEATE</td>
<td>0</td>
<td>100</td>
<td></td>
<td></td>
<td>8.00</td>
<td>04/05/1999 12:02:00 PM</td>
</tr>
<tr>
<td>BENZ</td>
<td>0</td>
<td>5</td>
<td></td>
<td></td>
<td>0.00</td>
<td>04/05/1999 12:02:00 PM</td>
</tr>
<tr>
<td>VILI_COLOMBIA</td>
<td>20</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_V70C</td>
<td>5</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ABC Blend Optimization

- **Objective:**
 - maximize profit,
 - minimize give-away, &/or
 - minimize recipe deviation

- **Subject to Constraints:**
 - planner/operator recipe limits (simple bounds)
 - physical tank inventory/pump capacity/rundown mass balance limits (can further constrain recipe)
 - product property specs (nonlinear property correlations)
ABC Blend Optimization Features

- Objective to maximize profit, minimize give-away, &/or minimize recipe deviation
- GAMS nonlinear modeling/solution technology
- Utilizes StarBlend GAMS formulation for consistency when offered with offline planner
- User-tunable heel correction rate smooths transition at on-spec volume
- Multi-header/multi-period formulation allows individual or global optimization
- Can be extended to incorporate future blends
ABC Online Optimization/Control

\[\tilde{y}_{\text{min}, \text{max}} \]

Volume-Average (TQI) Control

[Diagram of optimization process]

\[f \]

\[x_{\text{sp}} \]

Flow Ratio Control

\[\lambda \]

Blend Property Prediction

\[y \]

Optimization

Blender & Analyzers

Property Vector

Component Ratio Vector

Disturbance Vector

Blend Flowrate

Model Dependent

Volume Averaged

ABB
StarBlend™ Offline Blend Planning

- Equiva (Shell) offline application
- Creates optimized plans for multiple blends across multiple time periods
- Integrates with ABC to automatically create blend orders
ABC Blend Optimization Models

- Library of standard models
 - conventional linear, index, interaction, Ethyl RT-70
 - generic & property-specific (e.g., cetane, VLI)
 - EPA & CARB models

- Refinery site-specific models
 - user-defined coefficients for standard correlation structures
 - client-proprietary structures added to GAMSware

- Optional Topnir spectral blend models
 - ABB-proprietary and patented technology
 - Exploits richness of component FTIR spectra to improve accuracy of blended property predictions
 - Approach virtually eliminates the need for conventional lab analyses of component stocks
 - Can provide recipe-independent, linear blend indices to higher level planning & scheduling systems

© ABB - 17
Conventional Blend Model Prediction

Recipe

Lab Analyses:
- RON: ASTM D-2699
- MON: ASTM D-2700
- RVP: ASTM D-323
- DIST: ASTM D-86
- AROM: ASTM D-1319
- OLEF: ASTM D-1319
- BENZ: ASTM D-3606

Nonlinear Correlations:
- \(\sum_{i=1}^{M} \left(\sum_{j=1}^{N} \sum_{k=1}^{n} \alpha_{ijk} \cdot y_{ijk} \right) \)
- \(\sum_{i=1}^{M} \left(\sum_{j=1}^{N} \sum_{k=1}^{n} \beta_{ijk} \cdot z_{ijk} \right) \)
- \(\sum_{i=1}^{M} \left(\sum_{j=1}^{N} \sum_{k=1}^{n} \gamma_{ijk} \cdot w_{ijk} \right) \)
- \(\sum_{i=1}^{M} \left(\sum_{j=1}^{N} \sum_{k=1}^{n} \delta_{ijk} \cdot v_{ijk} \right) \)

Predictions:
- RON
- MON
- RVP
- DIST
- AROM
- OLEF
- BENZ

M properties
\(\times \)
N components

M property models
Topnir Spectral Blend Model Prediction

Recipe

Lab FTIR Spectra:

Spectral Blend Model:

Predictions:
- RON
- MON
- RVP
- DIST
- AROM
- OLEF
- BENZ

N component spectra

1 model

Improved Accuracy
ABB Online Analytical Instrumentation

- Largest, most extensive supplier of online analytical instrumentation in the industry, with online analyzers for crude, fuel oil, kerosene, jet fuel, gasoline, and diesel in-line blenders
- Vista Model 4100 RVP analyzer is the industry standard
- Bomem Advance FT-NIR offers
 - high wavelength accuracy and precision
 - extremely low maintenance
 - model transferability between instruments
- Vista II Process GC for applications requiring extremely accurate distillation analysis
- Vista II Fuel Sulfur Analysis to 100 ppb
- Pastech is the industry's leading analytical instrumentation system integrator
ABB Blending Solutions

Closed-loop capability, closed-loop responsibility

ABC
Property Control & Optimization

RBC
Base Regulatory & Sequential Control

Blender

Analyzers
FTIR & Conventional

© ABB - 21
Phased Offline-to-Online Project Plan

- **Implementation:**
 - Begin with Bomem laboratory FTIR (purchase or Easy/R lease)
 - Develop Topnir chemometric models
 - Implement ABC for optimal, offline planning
 - Close ABC loops when inline blender, RBC, & online analyzers are installed
 - Retain bench FTIR for component analyses

- **Benefits:**
 - Early return on low initial investment
 - No investment compromised
 - Closed-loop solution investment across multiple CAPEX budget cycles
 - Phased training & site acceptance
Intelligent Oil Movement & Storage (iOM&S)

- Graphical, object-oriented, expert system technology
- Optimal path selection, sequencing, & monitoring of typical tank farm operations
- Improves utilization of storage and equipment and efficiency of receipts, internal transfers, and shipments
- Enforces SOPs, safety, and environmental policies
- Eliminates incompatible material contamination
- Optional Crude Planning & Scheduling package
iOM&S Functions

- Select equipment (tanks, valves, pumps) for movements per daily operating orders
- Automatically select optimal path
- Generation of equipment operation sequences
- Terminate movements or swing source and destination tanks at specified levels or volumes
- Calculate stop gauges and total volumes shipped for custody transfer
- Monitor field element feedback, alarm, and service statuses
- Monitor tanks for improper movements
- Track movements and line contents to enforce material compatibility
iOM&S Movement Types

- tank to tank transfer
- tank water drainage
- tank circulation
- batch receipts & shipments, via pipeline or ship
- perpetual receipts & shipments, via pipeline
- sequential blend (sequential transfers from several component tanks to the same product tank)
- simultaneous blend (parallel transfers)
- manual transfer operation (operator specifies the source and destination, and the field elements to be committed)
iOM&S Software Design

- iGES/AIEM (G2) graphical object-oriented design for tank farm objects & connectivity
- Underlying Oracle relational database
- G2 is completely hidden from operator and configuration engineer
 - engineer interface via iGES
 - operator interface via browser
- Configuration requires:
 - topology (from plot plan, PFD, P&IDs)
 - project-specific rule-base
- Can use inherent DCS/SCADA/PLC-level sequence table processing capability, or drive individual devices directly.
Crude Planning & Scheduling (CP&S)

- Planning (~30 day) and scheduling (~3 day) of tank farm receipts, transfers, blends, and shipments
- Completely integrated with iOM&S package
- Proven MIP technology optimizes inventories, distribution, production, and giveaway
- Native-NT application integrated with MS Access & Project
<table>
<thead>
<tr>
<th>Source</th>
<th>Destination</th>
<th>Crude</th>
<th>Product</th>
<th>Amount</th>
<th>Start</th>
<th>Finish</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>T00040</td>
<td>T150006</td>
<td>UP</td>
<td>CPG</td>
<td>34.07</td>
<td>3/31/99 6:55 AM</td>
<td>3/31/99 8:55 AM</td>
<td>3 hrs</td>
</tr>
<tr>
<td>LLBL</td>
<td>T00033</td>
<td>LLW</td>
<td>LLW</td>
<td>38.34</td>
<td>3/31/99 6:55 AM</td>
<td>3/31/99 2:35 PM</td>
<td>8 hrs</td>
</tr>
<tr>
<td>SMLB</td>
<td>T150006</td>
<td>SM</td>
<td>CPG</td>
<td>70.2</td>
<td>3/31/99 6:55 AM</td>
<td>3/31/99 10:55 AM</td>
<td>3 hrs</td>
</tr>
</tbody>
</table>

Task Information

- **Task Name**: CPG DEMAND
- **Description**: CPG Demand for Refinery
- **Start Time**: 4/21/99 2:45 PM
- **Duration (hrs)**: 7
- **Transfer Amount (1000 bbl)**: 73.2
Economic Losses at the Blender

- Octane Giveaway
- Volatility Giveaway
- Sub-Optimal Recipes

VS.

- Reblends
- Inventory Cost
- Demurrage
- Missed Shipments

Bottom Line = $0.05 - 0.25/bbl lost profits

© ABB - 30
Economic Benefits: Property Giveaway

Octane
- a reduction of 0.15 octane is generally achievable
- savings realized chiefly in lower reformer severity
- using a typical value of an "octane barrel":
 \[(0.15 \text{ ON})(\$0.25/\text{ON bbl})(100,000 \text{ bbl/day})(350 \text{ days/year})\]
 \[= \$1,312,500/\text{year}\]

RVP
- an increase of 0.5 psi is generally achievable
- savings realized by maximizing n-butane volume
- using a typical value of a "psi barrel":
 \[(0.5 \text{ psi})(\$0.08/\text{psi bbl})(100,000 \text{ bbl/day})(350 \text{ days/year})\]
 \[= \$1,400,000/\text{year}\]
Savings Beyond “Zero Giveaway”

<table>
<thead>
<tr>
<th></th>
<th>COST</th>
<th>PLAN</th>
<th>OPTIMAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFM</td>
<td>$21.40</td>
<td>36.0</td>
<td>35.3</td>
</tr>
<tr>
<td>FCCG</td>
<td>$20.35</td>
<td>35.0</td>
<td>35.9</td>
</tr>
<tr>
<td>ALKY</td>
<td>$21.58</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>ISOM</td>
<td>$19.71</td>
<td>14.0</td>
<td>15.0</td>
</tr>
<tr>
<td>LNAP</td>
<td>$19.41</td>
<td>9.0</td>
<td>9.4</td>
</tr>
<tr>
<td>PENT</td>
<td>$18.70</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>BUTN</td>
<td>$12.50</td>
<td>2.0</td>
<td>2.4</td>
</tr>
<tr>
<td>RdON</td>
<td></td>
<td>87.1</td>
<td>87.1</td>
</tr>
<tr>
<td>RVP</td>
<td></td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>COST</td>
<td>$20.39</td>
<td></td>
<td>$20.34</td>
</tr>
</tbody>
</table>

© ABB - 32