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Abstract: The evaluation of control performance by means of performance indices from 
large amounts of measurement data is investigated. The focus is twofold: Firstly to assess 
information that can be deduced from many data sets and secondly to investigate the 
usefulness of simple performance measures. Established methods and some useful new 
ideas are evaluated on many industrial data sets and the results are discussed.  
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1 INTRODUCTION 

 

The evaluation of control performance mostly deals 
with the computation of performance indices. These 
indices range from very simple ones, e.g. the control 
error mean and variance (e.g. [Salsbury, 1999] up to 
rather complex ones involving e.g. subspace identifi -
cation [Bezergianni and Georgakis, 2000].  

Obviously, simple indic es are very appealing since 
for performance monitoring, typically many control 
loops are assessed regularly. Unfortunately, com -
plexity and information are usually correlated such 
that simple indices mostly imply simple answers. 
One exception is the mini mum-variance control 
performance index by Harris [Harris, 1989]. It 
combines low computational effort with important 
information about the current loop performance. This 
fact contributed to its popularity over the last decade.  

Traditionally, control loop  performance assessment 
deals with the kind of information that can be 
deduced from the evaluation of a specific data set. 
This approach is sound and valid but carries some 
pitfalls: the data set may reflect unusual behaviour of 
the control loop in questio n. In the industrial 
practice, single data batches are often erroneous 
since plant shut downs or other unusual events might 
have been reflected in the data.  
Such data sets will in general not be able to givea fair 
picture of the control loop per formance. They should 
ideally be excluded from performance evaluation; 
however, a mechanism to automatically discard all 
such cases seems to be very difficult to achieve.  
 
This paper attacks control performance assess ment 
from a slightly different point of view: Given the fact 
that the time constant of good control is in the range 
of months rather than days, it would make sense to 

base a performance assessment on much more than 
only a few data sets.  
 
The first issue discussed in this paper is: can useful 
information be found in simple control performance 
indices when evaluated on many data sets? Some 
indices (both simple and more advanced ones) will 
be evaluated for 20 control loops from a pulp mill. 
For each of the control loops more than 400 data 
batches were analysed.  
 
A second aspect discussed is the continous collection 
of information that can be combined to new 
knowledge about a control loop. The availability of 
many data sets can be used to build a nonlinearity 
map of the process. Such information is of grea t use 
for tuning procedures.  
 
The paper is organised as follows: In Section 2 the 
data used in this study is described and presented. 
Section 3 presents the evaluation of some 
performance indices for all data sets and conclusions 
thereof. Section 4 discuss es the use of data in order 
to build a knowledge database that grows with each 
data set that was analysed.  
 
Examples accompany both sections and the pa per 
concludes with a summary and require ments for 
industrial control performance moni toring tools. 
 
 

2 INDUSTRIAL DATA SETS  
 
This study makes intensive use of more than 400 data 
sets containing control loop data from a stock 
preparation section in a pulp mill. Each data set 
contains about 20 minutes of data at a sampling rate 
of 1 second. The loop setpoint  (SP), the process 



     

variable (PV) and the controller output (OP) were 
logged.  
 

A typical data batch containing 20 control loops (11 
flow loops, 3 level loops and 6 composition loops) is 
shown in Figure 1. 

 
Figure 1: Example data (SP and PV respectively) for 20 loops from one data collection occasion. The signals 
are scaled such that they have equal standard deviation and are plotted on top of each other.  
 
The data collection was done autmatica lly, once per 
day for more than a year resulting in 424 data sets.  

 
 

3 PERFORMANCE INDICES  
 

Quite a number of performance measures for ass ess-
ing controller performance have been pro posed in the 
literature, especially during the last decade. Most of 
them targeted to be computed from normal operating 
data only. It is the constraint of not allow ing 
experiments that outperforms the computation of 
similar performance measures that are typically used 
in controller design (e.g. the loop overshoot or rise 
time).  

 
3.1 Simple statistics 
 
The term 'simple indices' refers to indices that can be 
evaluated with a modest amount of computa tions and 
that do not require any non -trivial a priori know-
ledge. Table 1 shows the simple performance indices 
that were evaluated in this study.  
 
The control error mean should of course be centered 
around zero with no off -set and a sufficiently small 
standard deviation. Long or excessive deviation can 
easily be identified (see loops no. 2, 12, 15 and 20 in 
Figure 2. 
 
 
 

 
 
 
  

index description 
CE mean [%] mean of control error  
CE std [%] standard dev. of control err.  
OP std [%] st. dev. of controller ouptut  
CE skewness skewness of control error  
CE kurtosis kurtosis of control error  

std ratio ratio of std of control error 
and controller output  

maximum bic max. bicoherence 

correlation 
coefficient 

correlation coefficient bet -
ween control error and 
controller output  

Table 1: Simple performance indices that were 
evaluated for all data sets. The units [%] refer to the 
operating ranges of OP and PV.  

The (normalised) standard deviation of the control 
error can also give considerable insight into loop 
behaviour, see Figure 3. It can be clearly seen that 
loop No. 8 has a problem with increased variability 
between logs no. 250 and 300. At this time, the loop 
had a strong oscillatory behaviour.  



     

 
Figure 2: Trend of loop standard deviation.  

 
Figure 3: Standard deviation of control error (loop 
No. 8).  

Another interesting statistics is the control error 
skewness. Skew data often indicate problems of 
nonlinear character. As an example see Figure 4 
where it can be seen that for many data sets, the 
skewness is rather large, indicating regular problems 
of nonlinear source. As a matter of fact, this loop 
exhibits stiction regularly resulting in the presented 
non-symmetrical data distribution.  

 
Figure 4: Skewness trend of control error for loop 
No. 2. 

Consider another example in Figure 5 where the 
control error kurtosis for loop No. 12 is shown. For 
Gaussian signals, the kurtosis should be centered 
around zero. In this case, it is clearly around –1 
instead, indicating rather non - Gaussian signals. The 
reason in this case is a slow periodic behaviour with 

a cycle time of around one hour. The data batches are 
too short for a detection algorithm to detect this 
oscillation. 

 
Figure 5: Control error kurtosis trend for loop 12.  

In Figure 6, two trends of the ratio of the stan dard 
deviations of control error and controller out put are 
shown 
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Figure 6: Example for ratio of standard devia tions of 
control error and controller output. Left: case with 
not moving process output, loop No.6; right:loo p 
with normal behaviour, loop No. 5  

It can be seen that the value is 5 orders of magnitude 
smaller in the left example than in the right one. The 
reason is that the process variable in the left loop 
(No. 6) does not move much more than the 
quantisation level, whereas the loop on the right (No. 
5) moves reasonably much. In loop No. 6, either the 
sensor signal is corrupt or the loop actuator does 
hardly move. 
 
For a last example consider Figure 7 where the 
maximum bicoherence of the control error is plotted 
for all loops. In [Choudhury et al., 2004]  it is shown 
that the bicoherence plot can be used to assess signal 
nonlinearity. Single evaluations may tend to contra -
dict this hypothesis but when considering many data 
sets, it turns out that such a measure may be able to 
detect loops that exhibit nonlinearity problems (in 



     

this case loops No. 1, 2, 5, 6, 9, 10 and 11). This is in 
line with the knowledge about these loops.  

 
Figure 7: Trend of maximum bicoherence over all 
loops. 

 
3.2 More advanced indices  
 
Another group of indices involves more complex 
computations and eventually more prior know ledge. 
As already mentioned, the most promi nent of these 
indices is the Harris index that compares actual lo op 
variability to minimum-variance variability leading 
to an index between 0 and 1 where 1 equals 
minimum-variance performance,  
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Figure 8:Example of trends for the Harris index.  

The example in Figure 8 shows the need for 
interpreting the Harris index with a grain of salt. The 
left loop shows a good behaviour, however, for some 
batches the index is very low. The right loop on the 
other side offers the complete rang e of index values, 
indicating that the performance (or its  assessment) is 
very different at different days. To rely on a few or a 
single data set only can be misleading when dealing 
with the Harris index.  
 
Badly performing loops often exhibit oscillatory  be-
haviour. Therefore, oscillation indices for oscillation 
detection and assessment are the most important 
quantity that should be monitored. More and more 
industrial applications start focussing on periodic 
disturbances in addition to the Harris index,  which 
was mostly discussed in the mid -90s. 

Oscillation detection can be done in various ways, 
see [Hägglund, 1995], [Forsman and Stattin, 1999] or 
[Seborg and Miao, 1999].  

 
Figure 9: Oscillation index for all loops.  

In Figure 9, trends of the oscillation index [Forsman 
and Stattin, 1999] are plotted. It can easily be seen 
that loops No. 1, 3, 4, 5, 8, 9, 10, and 11 exhibit regu -
lar oscillatory behaviour. The human eye recognises 
an oscillation when the index is larger than about 0.3.  

 
 

4 Combination of indices  
 
Performance indices provide a good means of 
analysing plant behaviour. However, it is often the 
combination of indices that gives significant insight 
into bad plant performance.  
 
A very compact assessment would be the test if 
certain control loops exhibit bad behaviour 
simultaneously. Hence, a correlation of a spe cific 
index for different loops would be a valuable source 
of information.  

 
Figure 10: Correlation coefficients for oscillation 
indices over all loops.  

Consider Figure 10 where oscillation indices are 
correlated for each loop. Such a plot indicates which 
loops typically oscillate simultaneously. The plot 
reveals a common oscillatory behaviour between 



     

loops no. 5, 7 and 17; see Figure 11. Note that the 
equality of frequency is of no importance for the 
correlation of the oscillation indices.  

 
Figure 11: Three oscillating signals (with 
normalised variance) as indicated by correlation of 
their oscillation indices.  

4.1 Increasing information  
  
As mentioned in the introduction, the step beyond 
storing indices for single data batches is to collect 
and combine assessment information from single 
evaluations for future use. Examples for such 
applications are:  
 

n Creation of static input – output maps 
n Indication of data sets suitable for model 

identification 
 

A static input output map is often of importance 
when control loop tuning is performed. Many 
commercial tuning tools offer ways to analyse exper -
imental data where the process input is changed step -
wise. The automatic generation of static y -u-maps 
can avoid costly experiments and thus enable faster 
controller tuning without disturbing current pro -
duction.  
 
If the data within a data batch is sufficiently sta -
tionary, then an algorithm can extract stationary 
values of OP and PV and store them. Figure 12 
shows examples of static maps for all control loops 
analysed. For loops where sufficiently many different 
operating points have been found, a quadratic fun -
ction has been fit to the data using a least -squares 
method. 
 
For most data sets, a linear function would be 
sufficient to describe the static input output 
relationship well. Loops where the quadratic function 
fits the map better are No. 1, 2 and 8. However, the 
nonlinearity does not seem to be too severe, such that 
it could also be neglected.  

 
Figure 12: Static maps for all 20 control loops. The fitted curve is quadratic. Vertical axis is the controller 
output and horizontal axis is the process variable.

It was mentioned that static maps provide useful 
insight into the process model when dealing with 
controller tuning. A natural question is then: Could 
the regular analysis of normal operating data be used 
to detect data sets that are suitable for model 
identification? This would be data sets where (a) the 
setpoint is changed abruptly by a significant amount 
or, (b) the loop is in manual mode and the operator 

changes the process input stepwise. For both cases, a 
regular analysis of data could raise and store a flag if 
suitable identification data is available.  
Since it may not be sufficient  to flag for setpoint 
changes (or input changes in manual loop mode) 
only, it was chosen to use a flag that indicates if an 
estimated dynamic model for the process has 
sufficiently good quality. The quality is measured by 



     

goodness of fit test as they are u sed in standard 
system identification packages. Figure 13 shows an 
example of a data set that typically would flag for 
being suitable for system identification.  

 
Figure 13: Data set suitable for model identification 
and controller tuning.  

Clearly, some loops would never generate these flags 
since setpoints may never be changed or the loops 
are never taking into manual mode. Note that 
disturbances alone never qualify data to be useful for 
process model identification. In these cases, only the 
controller can be identified.  
 
Using both static maps and the described model fit 
flags, it is hence possible – at least for some loops – 
to generate the information that is usually required 
for controller tuning without being forced to perform 
experiments. 
 
Yet another flag that is useful to store for later use in 
controller tuning is whether the loop exhibited 
stiction behaviour [Horch, 1999]. Such information 
should be available when tuning loops.  
 
 
5 IMPLICATIONS FOR IND USTRIAL TOOLS 

 
From the above results, some implications for the 
controller performance tools shall be drawn. A 
senseful tool should … 
 

n … enable analysis of performance indices 
such as plot combinations, correlation, trend 
plots etc.,  

n … enable application -dependent selection 
/discarding of  indices,  

n … offer an index database for search 
queries, 

n … help to retrieve data collection dates and 
– if possible – specific data sets.  

 
 

6 CONCLUSIONS 
 
The usefulness of performance indices for automa tic 
controller performance assessment is an accepted 
fact in the process industry. A question that has 
received little attention so far is which indices to use 
and what kind of infor mation can be deduced from 
each of them.  
The focus in this paper was to show the strengths of 
some selected indices when a large amount of data 

batches is available. From the analyses, some general 
conclusions shall be drawn:  
 
n Simple statistics are most useful for fast and 

overview-like scans of large amounts of data.  
n More complex indices are very useful when 

averages over many data sets are available. 
Single evaluations may be misleading.  

n Combination (e.g. correlation) of indices is 
useful and gives insight into the plant dynamics  

n Storage of results for later usage are very 
helpful, especially for tuning (linearity, stiction).  

n Trending of indices presents an extreme data and 
information compression for comfortable repor -
ting. 
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