

ABB Consulting

Introduction to IEC61508 and Functional Safety

Power and productivity for a better world™

Why have Functional Safety Systems?

To prevent risk to people, environment and business HOW ?

- By good management safety and quality systems
- Design to standards / best practices
- Using competent resources to deliver

WHAT HAPPENS IF THESE GO WRONG ?

Have You Been Asked This?

"How can you demonstrate that you are safe?"

Safety Issues for End User / Operators

- How do you demonstrate that your operations are 'safe'?
- How do you demonstrate that your equipment is 'safe'?
- How do you demonstrate that your safety and protective systems protect against your hazards?

You can answer these questions by demonstrating compliance with Industry Safety Standards

IEC61508 - Functional safety of electrical / electronic / programmable electronic safety-related systems

What is IEC61508?

- An international standard relating to the Functional Safety of electrical / electronic / programmable electronic safety related systems
 - Mainly concerned with E/E/PE safety-related systems whose failure could have an impact on the safety of persons and/or the environment
 - Could also be used to specify any E/E/PE system used for the protection of equipment or product
- It is an industry best practice standard to enable you to reduce the risk of a hazardous event to a tolerable level

Features of IEC61508

- Generic Standard which may be applied by all Sector variants (machinery, process plant, medical, rail)
- International standard end users and suppliers operate internationally
- Guidance on use of Electrical, Electronic and Programmable
 Electronic Systems which perform safety functions
- Comprehensive approach involving concepts of Safety Lifecycle and all elements of protective system
- Risk-based approach leading to determination of Safety Integrity Levels (S.I.Ls) - measures proportionate to the risk reduction required
- Considers the entire Safety Critical Loop
- Aims to facilitate improvements in both safety and economic performance through effective use of the (PES) technology

Overall Safety Lifecycle in IEC 61508

Why this lifecycle ?

- Maps directly to the normal work pattern of the project in a 'cradleto-grave' process.
- Maps directly to asset life cycle
- Seen by the Regulatory Authorities as industry best practice
- Can be used in any business, any sector.
- Applies to all aspects of the end user supply chain relationship
- Will be used to demonstrate regulatory compliance
- Generates efficiencies in 'cost of safety'
 - Common terminology
 - Defined document / responsibility interfaces throughout the supply chain
 - Common practices

Summary of the Key Messages in IEC 61508

Safety Management System

- Life cycle
- Planning
- Assessing compliance
- Supply chain

Technical Requirements

- Choice of technologies
- Assessment of risk
- Specifications of function & integrity level

Competencies

- Roles & responsibilities
- Skills & training

Benefits of a Safety Management System

- A defensible method of managing risks
- Coherent approach to the whole subject
- Facilitates specification, design and purchase
- Allows self regulation

What is Risk?

• The probable rate of occurrence of a hazard causing harm

AND

- the degree of severity of the harm
 - Qualitatively Words
 - Quantitatively Figures

Risk and Determination of Safety Integrity Levels

Increasing Likelihood

Levels of Risk and ALARP

Risk reduction: General concepts

Technologies Under Consideration

- Electrical
 - Electro-mechanical / relays / interlocks
- Electronic
 - Solid state electronics
- Programmable Electronic Systems
 - Programmable Logic Controllers (PLC's);
 - Microprocessor based systems
 - Distributed Control Systems
 - Other computer based devices
 - ("smart" sensors / transmitters / actuators)

Extent of a E/E/PE safety-related system

Example method of calculating a Target Safety Integrity Level

- Hazard studies and HAZOPs
- Evaluate possible consequences
- Establish tolerable frequencies vs ALARP
- Build event chain
- Estimate demand rates
- Define protection required
- Specify required Safety Integrity Level

Risk Reduction Requirements

Safety Integrity Level	Risk Reduction	
1	10 - 100	
2	100 - 1,000	
3	1,000 - 10,000	
4	10,000 - 100,000	

Reliability, Failure Rate and Availability at each level

	Reliability	Probability of failure on demand	Trip Unavailable (per year)
SIL 1	90% - 99%	0.1 to 0.01	876 to 87.6hrs
SIL 2	99% - 99.9%	0.01 to 0.001	87.6 to 8.76hrs
SIL 3	99.9% - 99.99%	0.001 to 0.0001	8.76hrs to 52.6 mins
SIL 4	99.99% - 99.999%	0.0001 to 0.00001	52.6 mins to 5.3 mins

Protective System Technology

Standard components, single channel or twin non-diverse channels

Standard components, 1 out of 2 or 2 out of 3, possible need for some diversity. Allowance for common-cause failures needed

Multiple channel with diversity on sensing and actuation. Common-cause failures a major consideration. Should rarely be required in process industry

Specialist design. Should never be required in the Process Industry

Protective System Design, Test and Maintenance Requirements

Relatively inexpensive to design, build and maintain Test interval unlikely to be less than 3 months

Moderately expensive to design, build and maintain Test interval unlikely to be more than 3 months

Expensive to design, build and maintain Test interval likely to be 1 month

Extremely expensive to design, build and maintain Test interval as for SIL 3 (diminishing returns below 1 month)

IEC 61508 - ownership of phases

PRE-DESIGN (Phases 1 to 5)

End user / operator

DESIGN AND INSTALLATION (Phases 6 to 13)

Engineering Contractors / Equipment Supplier

OPERATION (Phases 14 to 16)

End user / operator

Pre-Design: Phases 1 - 5

Design & Implementation : Phases 6 - 13

How do you ensure competencies for all these activities?

Operation : Phases 14 - 16

16 Decommissioning

IEC 61508 - Three Phases for Protective Functions

IEC 61508 Responsibilities: End Users / Operators

- Functional Safety Specification Requirements
 - Contribution from all Safety Function Technologies and Risk Reduction Methods
 - Target SIL for the E/E/PES contribution
- Overall Responsibility for the Management of Functional Safety
- Functional Safety Plan at the outset of the work -Identification of Functional Safety Assessments for the project duration
- Overall Validation and Verification
- Commissioning and acceptance
- Operations and Maintenance
- Modification and Retrofit

Power and productivity for a better world[™]

