XMC20 NUSA2

NUSA2 provides transport of TDM and Ethernet services over SDH STM-16/4/1 and offers 48 E1 interfaces for mission-critical networks.

The XMC20 NUSA2 offers the ability to transport TDM and Ethernet services via SDH STM-16, STM-4, or STM-1 from the XMC20 platform. NUSA2 enables the smooth migration from SDH networks to pure Ethernet networks in one subrack. NUSA2 also allows the coexistence of both types of transport technologies simultaneously.

Overview

NUSA2 can be fitted in the subracks XMC25, XMC23 and XMC22. NUSA2 provides SDH, Ethernet and E1 interfaces on the front of the unit. It has access to the traffic of the TDM bus as well as to the GbE/10 GbE star of the backplane. NUSA2’s access to the TDM backplane allows the transport of TDM traffic from any TDM interface installed in the XMC20 subrack. This includes SHDSL TDM lines, E1 and V/X interfaces as well as legacy voice services. The NUSA2 is available in a 2-slot wide variant.

High density E1 transport

In addition to the transport capabilities of TDM bus traffic, NUSA2 provides E1 front interfaces for clock- and data transparent transport of up to 48 x 2 Mbps data channels over the SDH network without occupying TDM bus capacity. When NUSA2 is working with a second NUSA2 in equipment protection mode, the E1 front interfaces are fully protected as well.
NUSA2 can transport Ethernet traffic via an SDH network with its Ethernet-over-SDH functionality. The Ethernet data can be supplied via the front ports of the unit or the backplane. Hence, data from installed Ethernet cards can be processed as well as data from the core unit COGE5. Beside the Layer 2 switching operational mode, the front ports can be configured for a direct point-to-point connection mode, to ensure the availability of the required bandwidth.

Supported topologies
The unit allows the realisation of various SDH transport topologies:
- Ring networks, including multiple ring connections on one XMC20
- Linear networks
- Star networks
- Meshed networks

Protection functions
The NUSA2 provides a set of functions which guarantees the highest equipment service availability through the support of traffic and equipment protection mechanisms:
- Multiplex Section Protection (MSP)
- Subnetwork Connection Protection (SNCP)
- 1+1 equipment protection including E1 front interfaces
- Synchronous Equipment Timing Source (SETS) protection
- Ethernet-over-SDH providing Link Capacity Adjustment Scheme (LCAS)

Chassis switch architecture
The NUSA2 is part of XMC20’s chassis switching architecture. This means that XMC20 is one switch with one IP address and an expandable number of ports. Every installed Ethernet card will expand the switch. With it the access node can be adapted to the local demands.

ERPS for protection switching
NUSA2 supports Ethernet Ring Protection Switching (ERPS) for rapid restoration within Ethernet/SDH networks in ring topologies. ERPS compliance with ITU-T G.8032v2 allows ring interconnections supporting major/subring configurations and multiple ERP instances (or multiple logical rings).

Safety concept
XMC20 offers highest reliability and quality. For this purpose all modules come with an on-board power supply and high MTBF values.

Management
All services are managed centrally via the management system UNEM or via the local craft terminal ECST.
Technical Data

General
VC cross connects
High Order: 123x123 VC-4
Low Order: 48 x 48 VC-3, 1309x1309 VC-12

Multiplex Section Protection (MSP)
1+1 unidirectional and bi-directional

Traffic protection
Subnetwork Connection Protection (SNCP)

Equipment protection
1+1 EQP, with 2 units via the backplane, E1 front interfaces protected via Y-cable

Performance monitoring
According to G.826

Synchronisation
SETS according ITU-T G.813

Access to TDM bus
64 terminated/transparent 2 Mbps channels, n x 64 kbps with grooming

Ethernet switching
Onboard 10 Gbps VLAN-aware Layer2 switch

VLAN services
Customer bridging acc. to IEEE 802.1Q-2011, 4096 VLANs supported
Port-based customer VLAN tunnelling (Q-in-Q)
Port-/PCP-/DSCP-based classification (CoS) of ingress traffic with eight priority queues
Maximum frame length of up to 9'216 bytes (Jumbo frames)

Port Security
Ingress Storm Control (flood control, flood rate limiting)

Spanning Tree Protocols
RSTP (Rapid Spanning Tree Protocol), acc. to IEEE 802.1D-2004
MSTP (Multiple Spanning Tree Protocol), acc. IEEE 802.1Q-2011- (Supported only in System Release R4)

ERPS
Ethernet Ring Protection Switching (ERPS), acc. to ITU-T G.8032v2, supporting up to 12 ERP instances

Remote management
Via DCC-channel (MSOH and/or RSOH), OSPF routing on COGE5

SDH Network Interfaces
Bit rate
2.5 Gbps (STM-16), 622 Mbps (STM-4), or 155 Mbps (STM-1)

Number of ports (single unit)
2 x STM-16/STM-4 and 2 x STM-4/STM-1

Number of ports (EQP-pair, two units)
4 x STM-16/STM-4 and 4 x STM-4/STM-1

Port types (optical and electrical)
SFP-based

Ethernet-over-SDH (EoS)
Framing procedure
GFP according to ITU-T G.7041

Virtual concatenation (VCAT)
According to ITU-T G.707

Link Capacity Adjustment (LCAS)
According to ITU-T G.7042

Number of EoS channels
Up to 32

Total bitrate (all EoS channels)
Up to 2 Gbps

Ethernet Interfaces
Interfaces (connectors)
4 x 10/100/1000BaseT (RJ45)

Mode of operation
EoS and GbE point-to-point and switched operation

E1 Interfaces
Interfaces
48 x 2 Mbps transparent according ITU-T G.703 for direct mapping into VC-12’s

Management
ECST
For local management and offline configuration

UNEM
For central management

Power Supply
Input voltage nominal (min/max)
−48/−60 VDC (−39.5 V DC ... −72 V DC)

Operation Environment
Temperature range and humidity
According to XMC20 environmental specifications