
In April 2008, around 50 leading experts from industry and academia gathered 
to discuss the future trends of optimization in production management and 
manufacturing execution systems (MES). Presentations were made by 16 speak-
ers  focusing on the optimization of MES in the process industries. Among the 
topics covered were applications of mathematical optimization in industry and 
the experience and evaluation of modeling tools and optimization software. 
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The optimization world
Mathematical optimization is a well-
defined technology based upon a for-
mal representation of the optimization 
problem. In order to solve a real-
world problem using mathematical 
optimization, three key steps are nec-
essary 2 .
1) Problem identification
2) Modeling, ie, expressing the prob-

lem in mathematical terms
3) The development of appropriate 

 algorithms to solve the problem

For industrial applications, once es-
tablished, the solution to the problem 
will be implemented in the production 
environment. Optimization solutions 
are part of the MES layer (for more 
details see “The automation pyramid” 
factbox on page 16 of this issue) 
that sits on top of the automation 
 system and also communicates with 
enterprise resources planning systems. 
Successful implementation requires 
real-time capabilities, online confi-
gurability, connectivity and reliabil-
ity 3a .

Optimization problems
Production planning and scheduling 
is an area in which there are many 
applications for optimization 3b . In 

series of refinements to provide a bet-
ter solution. This technique is often 
used to refine production processes 
with the aim of increasing produc-
tivity. 

Continuous improvement is good – it 
will find a better solution – but opti-
mization would be better. Optimiza-
tion finds the best solution! In its 
mathematical sense, “optimization” is 
the process of finding the best of all 
possible solutions. Therefore, the set 
of all possible solutions can be repre-
sented by a formal model describing 
the aim of the exercise (the objective), 
the decision variables and the con-
straints.

Interest in mathematical 
optimization has intensi-
fied in recent decades 
as computers have 
 become more powerful 
and sophisticated new 
 algorithms have been 
 developed.

Mathematical optimization means find-
ing the minimum or maximum of the 
objective function by choosing the 
values for a set of decision variables, 
while satisfying the constraints. For 
any specified objective, there may be 
local and global optima 1 . In mathe-
matical optimization, it is not enough 
simply to move closer to the optimal 
point, as done in process improve-
ment. In mathematical optimization, 
the aim is to find the best solution 
point globally.

Every year the German Operations 
Research society (GOR) organizes 

joint workshops with industry. In 
April 2008, ABB hosted the 80th such 
workshop entitled “Optimization in 
Manufacturing Execution Systems.”1) 
The main message of the workshop 
was that optimization is a fast growing 
area with an increasing number of 
 applications in the process industries. 
Production companies and automation 
system vendors alike are under in-
creasing pressure to raise production 
yield and run plants at maximum pro-
ductivity. 

What is meant by “optimization”?
A traveling salesman planning his 
route between 20 customers at 20 dif-
ferent sites provides a classic example 
of an optimization problem. Planning 
a route would be easy enough, but 
planning the best route would be a 
different matter. Optimization experts 
could be consulted, but only if a clear 
definition of “best” could be estab-
lished. Would the “best” route be the 
fastest route or the shortest route? Or 
would it be the route that allowed the 
salesman to stay in his favorite hotel? 

The decision hinges on the saleman’s2) 
definition of “best” and on what as-
pects of his route he would “optimize” 
for. Daily life is full of such optimiza-
tion challenges: What is the quickest 
way of traveling between Frankfurt 
and Berlin? Which method will be 
most productive over a particular 
timeframe? How can the salesman 
spend more time with his family? 
One way to solve these challenges is 
through a process of continuous im-
provement. This involves finding a 
 solution, which is then subjected to a 

1  Optimization objective as a function of two variables 2  The key elements of mathematical optimization3)
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Footnotes
1) The workshop was jointly organized and hosted 

by Dr. Guido Sand, Scientist at ABB Corporate 

 Research, and Prof. Josef Kallrath, head of the 

GOR working group. For the set of presentation 

slides contact guido.sand@de.abb.com.
2) The “traveling salesman problem” is a classical 

problem in mathematical optimization.
3) The solution developers, modeling languages 

and solvers named here were presented at the 

workshop. There are others which are not named 

here.
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been clarified (not always an easy 
task), the next step is to identify the 
decision variables, the choices that 
can be made. For example, can an en-
ergy-intensive production process be 
shifted to take advantage of cheaper 
electricity tariffs? What equipment is 
available and which machines would 
be best suited to the task in hand? 
Can raw material be purchased from 
different suppliers? When these ques-
tions have been answered, the con-
straints of the problem can be defined. 

With each problem that needs to be 
solved comes a different set of consid-
erations. A process might rely on the 
use of limited resources, such as raw 
materials, processing capacity, or even 
storage capacity for the final product. 
All processes are limited by bottle-
necks, but it is not always easy to 
identify where these bottlenecks are.

When expressing an 
optimization problem in 
mathematical terms, the
first step is to define the 
problem clearly.

Objective functions and their relation-
ship with decision variables and con-
straints are expressed by mathematical 
equalities and inequalities4). The com-
plete formulation is referred to as a 
“mathematical program,” where the 
term program is used differently to 
the common notion5). Mathematical 
programs are of different types, de-
pending on the nature of the formula-
tion. If all equations, ie, the objective 
and all constraints, can be formulated 
using only linear terms with continu-
ous variables, the optimization is re-
ferred to as linear programming. The 
formulation of a linear program (LP) 
is as follows:

that are often addressed manually 
 include the following: 
 Production scheduling (in terms of 
both volume and product type)

 Machine scheduling for each batch 
of products

 Capacity allocation (manpower and 
resource planning) 

Interest in mathematical optimization 
has intensified in recent decades as 
computers have become more power-
ful and sophisticated new algorithms 
have been developed. 

Modeling the optimization problem
When expressing an optimization 
problem in mathematical terms, the 
first step is to define the problem 
clearly. Is the aim to maximize 
throughput or to minimize energy 
consumption? Or are both variables 
important? Once the objective has 

planning and scheduling, the task is 
to allocate scarce resources to tasks 
over a specified period of time. In the 
production environment, resources 
comprise energy, raw materials, pro-
cess equipment and manpower. Mathe-
matical optimization can be used to 
determine the best use of these re-
sources under given production con-
straints. For example, energy con-
sumption and cost can be minimized 
by optimizing the energy efficiency of 
equipment and shifting energy-inten-
sive operations to periods of low con-
sumption when cheaper electricity tar-
iffs are available 3c . 

Although many industrial problems 
have been analyzed and improved so-
lutions have been developed, in many 
areas the best solution has not yet 
been found and the optimization po-
tential remains untapped. Problems 

3  Table of speakers participating in the meeting

Topic Speaker Affiliation

a
Requirements on sustainable MES solutions and 
technologies in process industry of process industries

Ansgar 
Münnemann 

BASF, Germany 

b
Overview of planning and scheduling for 
enterprise-wide optimization 

Ignacio 
Grossmann 

Carnegie Mellon 
University, USA 

c
On the relevance of optimization for the growing re-
quirements on energy efficiency with cases studies 

Bazmi 
Husain 

ABB, Sweden 

d
Manufacturing – Is there a role for algebraic 
modeling systems?

Jan-Henrik 
Jagla

GAMS, Germany

e
Optimizing manufacturing processes and planning 
with AIMMS

Frans 
de Rooij

AIMMS, 
Netherlands

f
Integrated manufacturing planning, batching, 
and scheduling, with ILOG plant PowerOps

Julien 
Briton

ILOG, France

g
Solving hard production planning and scheduling 
problems using Xpress-MP

Oliver 
Bastert

Fair Isaac, 
Germany

h
Production Optimization – requirements 
for sustainable Success

Alexander 
Horch

ABB, Germany

i Oil & gas supply chain optimization
Marco 
Fahl

Honeywell, 
Germany

j
Advanced process control and optimization 
in the modern industry

Eduardo 
Gallestey

ABB, Switzerland 

k
Unattended operation of water supply 
and optimization of pump schedules

Jan 
Poland

ABB, Switzerland

l
Chance constrained model predictive control 
for building energy management

Manfred 
Morari

ETH Zürich, 
Switzerland

m
Non-anticipative scheduling in semiconductor 
manufacturing systems involving setups

Hermann 
Gold

Infineon Technolo-
gies, Germany

n
The challenge of increasing complexity 
in production optimization 

Iiro 
Harjunkoski 

ABB, Germany 

o
Integration of manufacturing optimization 
according to ISA 95

Thomas 
Schulz

Rockwell Automa-
tion, Germany 

p Uncertainty-conscious production scheduling
Sebastian 
Engell

TU Dortmund, 
Germany

Footnotes
4) Equality is a proposition stating that two terms are 

equal ie, an equation. Inequality is a proposition 

stating the relative size, order, or difference of two 

objects ie, greater than (>),less than (<), or not 

equal to (≠).
5) The term “mathematical program” does not refer to 

a computer program but is simply a synonym for a 

formal optimization model. Correspondingly, the 

term “mathematical programming” is a synonym for 

solving the mathematical program, ie, for mathe-

matical optimization.
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ber of possible solutions 
grows exponentially with the 
number of choices to be 
made. The production se-
quence of three products, A, 
B and C, which are all manu-
factured by the same ma-
chine, can be produced 3! 
(factorial)= 1*2*3 = 6 differ-
ent sequences (ie, ABC, ACB, 
BAC, BCA, CAB and CBA). 
Normally, to manufacture 100 
different products, several 
machines would be needed. 

Manufacturing just twenty products on 
one machine would result in 20! dif-
ferent sequences – a number with 18 
digits – and it is clear that not even a 
super computer could try all combina-
tions within a reasonable time. If a 
computer was able to test one million 
combinations per second, it would 
need 77,000 years to try 20! combina-
tions and find the best solution. This 
sequencing problem is very similar to 
the traveling salesman problem stated 
above: The number of possible travel-
ing routes is also 20!

A standard method to solve mixed-in-
teger problems (MILPs or MINLPs) is 
to apply branch-and-bound algo-
rithms. Branch-and-bound algorithms 
can be used to solve a sequence of 
LPs or NLPs and are capable of find-
ing an optimal solution by examining 
only a fraction of the possible solu-
tions and eliminating whole branches 
of the search tree 5 . 

There are many solvers available, 
such as ILOG CPLEX, which can deal 
with very large optimization problems 
using multiple CPUs in parallel pro-
cesses 3f . Xpress-MP Optimizer is not-
ed for its ability to solve numerically 
difficult or unstable problems, which 
is often applied in the process indus-
tries 3g . Because these sophisticated 
algorithms are still very expensive, in 
the range of several thousand dollars 
each, optimization as a service that 
can be purchased on demand, may 

Finding the optimal solution
Finding the optimal solution to a 
problem can be very difficult, particu-
larly if there are large numbers of 
variables to be considered and if the 
problem is highly complex. Generally, 
even large LPs can be solved in a 
 relatively short time because the best 
solution lies at the constraints or at 
 intersections of the constraints. For 
example, the throughput of a process 
may be limited by an output-flow rate. 
This means that the maximum 
throughput will be exactly equal to 
the limiting output flow rate. Finding 
the solution to NLPs, however, can be 
more challenging, especially if the 
problem is non-convex7) 4 . In these 
cases, more complex algorithms must 
be applied or the problem must be 
 divided into convex sub-problems. 

A standard method to 
solve mixed-integer prob-
lems (MILPs or MINLPs) 
is to apply branch-and-
bound algorithms.

Discrete decisions can also complicate 
an optimization problem as the num-

maximize cTx
subject to Ax ≤ b

where x is a vector of vari-
ables, c and b are known 
 parameter vectors and A is a 
matrix of known parameters. 
cTx is the objective function 
and Ax ≤ b represent the 
constraints6).

If any equation comprises a 
nonlinear term, for example 
a product of two decision variables 
(x

1
·x

2
), then the problem is referred to 

as a nonlinear program (NLP). 

In many cases, the decisions to be 
made are binary and answer yes/no 
questions: “Shall I visit customer x 
 today: yes/no?” Also, many variables 
are integers (whole numbers): A car-
penter can manufacture only a whole 
number of tables, never a fraction of a 
table. In this case, the problem would 
be a mixed-integer linear program 
(MILP) or a mixed-integer nonlinear 
program (MINLP). 

Most modeling languages for mathe-
matical programs were developed for 
operations research, but have found 
increasing use in engineering applica-
tions. Two dedicated modeling lan-
guages for optimization problems are 
GAMS and AIMMS. The roots of these 
modeling tools are in economic opti-
mization 3d , but there is increasing 
 interest in their use in engineering 
 applications. Current software in-
cludes debugging, profiling and data 
analysis features 3e . The modeling 
systems provide interfaces to a num-
ber of standard solvers for the differ-
ent types of mathematical programs.

4  Optimization problem types – convex and non-convex nonlinear programming problems
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5  Binary search tree for solving mixed-integer linear programs 
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Footnotes
6) As each equality constraint can equivalently be 

 represented by two inequality constraints, the 

 formulation covers both equality and inequality 

 constraints.
7) When the problem is described by a function that 

forms a non-convex curve on a graph.
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ule that maximized the plant’s 
throughput, by determining the opti-
mal material quantity and detailed 
timing for each batch of copper pro-
duction. The overall schedule was 
constrained by equipment availability 
for each stage of purification, as well 
as by processing and transportation 
times. The problem was formulated as 
an MILP and the solution used ILOG 
CPLEX to generate the schedule and 
the optimal recipe definition for each 
batch. The objective was to minimize 
the makespan9) tm of all products p 
on all machines m:

min tm
subject to
tm ≥ tf

pm  
�p,m

Where tf is the finishing time of a 
product p on machine m. The optimi-
zation solution showed the plant’s po-
tential to increase throughput by up 
to 20,000 tons of copper concentrate 
per year. 
 
Energy efficient hot rolling
In a hot rolling mill, steel slabs are 
heated to several hundred ºC and 
rolled into thin sheets. An important 
decision variable is the speed at 
which each slab is rolled.
 
Minimizing energy consumption is 
one optimization objective the opera-

and batch scheduling in semiconduc-
tor plants 3m. 

In the following, three very successful 
ABB optimization solutions, published 
previously and discussed at the GOR 
workshop, are shown in the context 
of mathematical optimization. 

The US government pro-
vides a website (NEOS) 
onto which optimization 
problems in GAMS or 
AMPL can be uploaded 
and solutions retrieved in 
real time.

Copper plant scheduling and 
optimization 
In copper production, the ore is puri-
fied in several consecutive stages. 
During this process, it is transferred 
between stages in ladles using cranes. 
Large copper plants have parallel pro-
cessing lines for the stages that would 
otherwise create bottlenecks and 
these must be synchronized to pre-
vent overloading. This is a complex 
problem because the length of the pu-
rification stages differ depending on 
the quality of the ore. 

The productivity of a copper plant is 
chiefly determined by the scheduling 
of the batches through the plant. ABB 
has developed an optimization solu-
tion to determine the optimum sched-
ule for this process [1] 6 . The task 
was to determine a production sched-

become a popular option 3h . The US 
government already provides a web-
site (NEOS) onto which optimization 
problems in GAMS or AMPL can be 
uploaded and solutions retrieved in 
real time. This may not be viable for 
all applications, but is a good way to 
test and verify problems before invest-
ing in expensive solvers8). 

Applications 
Real-world optimization problems are 
usually hard to solve. The problem 
type is often nonlinear and/or con-
tains binary variables. The perfor-
mance of standard tools is often insuf-
ficient, necessitating the development 
of engineered solutions. Engineered 
mathematical programming uses care-
fully designed optimization models 
and intelligent solution strategies, of-
ten based on problem decomposition. 
When designing such a solution, the 
optimization core ie, formulating and 
implementing the problem, often con-
tributes no more than 10 to 15 percent 
of the engineering effort. Problem un-
derstanding, idea development, dis-
cussion with customers, testing, docu-
mentation, marketing, and so on, con-
stitutes the remaining effort. During 
the GOR workshop, this opinion was 
shared by speakers presenting optimi-
zation application solutions – both 
from inside and outside ABB. The ap-
plications introduced included supply 
chain management in liquefied natural 
gas plants 3i , economic process opti-
mization and scheduling in minerals 3j

, optimization of pump schedules in 
pump stations 3k , online optimization 
for building energy management 3l  

6  Copper production and Gantt chart of the optimal schedule 7  Hot rolling mill optimization solution faceplate [2]

Structure of a rolling optimization set-up

Objective
Minimization of total rolling POWER/ENERGY, or,
Maximization of PRODUCTION SPEED, or, 
Minimization of deviation from target powers (LOAD SHARING), or,
Minimization of deviation from target widths (GROOVE UTILIZATION), or,
Minimization of deviation from target areas (GROOVE UTILIZATION)

Parameter Bounds
… < Roll gap < …,
… < Motor speed < …,
… < Interpass tension < …,
… < Width < …,
… < Area < …,
… < Production speed < …,
… < Billet temperature < …,

Variables
Roll gaps, motor speeds

Footnotes
8) For further information visit NEOS website: http://

www-neos.mcs.anl.gov/(December, 2008).
9) Makespan is the total production duration, ie, until 

the last product has finished on the last machine.
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often not known. A batch 
may take on average 10 min-
utes to produce but can in 
some instances be finished 
after eight minutes, in others 
after 12. Dealing with these 
uncertainties is a key chal-
lenge for real-world applica-
tions of these solutions 3p . 
Evolutionary algorithms, in 
combination with traditional 

solution algorithms, show potential to 
deal with these types of problems.
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Footnotes
10)  http://www.abb.com/metals → Profile mills → Pro-

file mill products → ADM
11)  http://www.abb.com/cpm → CPM for the Pulp 

and Paper Industry → Quality Based Re-Trim Opti-

mization
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losses. By implementing the best qual-
ity considerations in the cutting pro-
cess, profit margins can be improved 
by up to 15 percent 8 . 

Complexity and uncertainty
In the processing industries, there are 
already numerous optimization solu-
tions to improve productivity. How ever, 
there still remain some unresolved 
 issues that were discussed at the 
workshop. One is the ever-increasing 
complexity of problems 3n . The rea-
sons for this are manifold, but many 
problems that were previously solved 
manually should now be optimized 
mathematically. Also, separate prob-
lems concerning the same production 
process can be combined. For exam-
ple, a production process can be opti-
mized for both throughput and energy 
consumption. More and more infor-
mation can be measured, stored and 
used for optimization, which increases 
the number of decision variables and 
constraints. With an increase in com-
plexity comes the problem of perfor-
mance. Solutions to problems should 
be available in seconds or minutes. 

A further open issue is the fact that 
optimization software solutions have 
to be integrated into the existing land-
scape of IT systems and cannot be 
used independently 3o . They require 
information from other systems, from 
the control, business-planning and 
 logistic systems. There are a number 
of useful industrial standards for inte-
gration. For instance, the ISA-95 stan-
dard describes the necessary standards 
for interfacing between these systems. 

Lastly, most optimization solutions 
 assume that the input parameters are 
correct. The decisions must be made 
based on information that is available 
before the optimization algorithm is 
run. In the real production environ-
ment, the correct parameter values are 

tor may pursue, while at the 
same time meeting upper 
and lower speed limits for 
bar width, area, speed, inter-
pass tension, roll gap and 
motor speed. In short, the 
question is: what is the best 
production speed for a hot 
rolling mill if the system is 
limited by available motor 
power and torque?

ADMTM (Adaptive Dimension Models) is 
an ABB software tool that formulates 
solutions to the optimization problem 
as a nonlinear program10) [2]. In addi-
tion to minimizing energy consump-
tion, the user interface allows the oper-
ator to choose between alternative op-
timization objectives, such as maximiz-
ing throughput, minimizing deviations 
from target power, width or areas 7 . 

ABB’s ADMTM software 
tool formulates solutions 
to the optimization 
problem as a nonlinear 
program.

Minimizing trim loss in paper cutting
Paper mills produce so-called jumbo 
paper reels, 10 meters wide, which 
are cut down after production to meet 
customer specifications. Qtrim11), a re-
trimming solution developed at ABB, 
takes an existing cutting plan for a 
jumbo reel and re-plans it according 
to the requirements [3]. The quality-
based trim loss problem asks the fol-
lowing: What is the best way to cut 
rolls to customer-specified dimensions 
while also meeting the customer’s 
quality requirements? The objective 
can be expressed in mathematical 
terms as follows:

max 
r,j

  c
rj
·xd

rj
 

where index r indicates the rolls and 
index j indicates discrete slices, corre-
sponding to a position on a jumbo 
reel. The cost coefficient c

rj
 is the val-

ue of a roll r at a given position j. The 
binary variable xd

rj
 indicates if roll r is 

allocated to slice j (xd
rj
=1) or not 

(xd
rj
=0). 

The output of the optimization is a 
cutting plan that minimizes the quality 

8  Optimized trim set of a jumbo reel 
 (Quality A = white, B = yellow, C = Red) [3]
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